Recognizing noun phrasesin biomedical text:
An evaluation of lab prototypes and commercial chunkers

Joachim Wermter 2 Juliane Fluck P Jannik Stroetgen P Stefan GeiRler ¢ Udo Hahn 2
2 Jena University Language and Information Engineering (JULIE) Lab
http://www._uni-jena.de/coling._html
b Fraunhofer Institute — SCAI Bioinformatics
http://www.scai . fraunhofer.de/bio.html
¢ TEMIS Deutschland GmbH
http://www.temis-group.com

Abstract

In the biomedical domain, many systems for text min-
ing and information extraction rely on basic morpho-
logical and syntactic analysis such as part-of-speech
tagging or noun phrase (NP) chunking. Due to the
lack of sufficient in-domain resources these systems
often make use of NLP tools trained and evaluated
on newspaper-language training sets. Scientific texts
in the life sciences, however, differ from general lan-
guage in the structure and complexity of noun phrases.
Therefore, we tested the effects this domain change has
on the performance of these systems.

For this purpose, we compared three prototype chunk-
ing systems developed in research labs (all based on
statistical learning methods) and one chunking system
which is part of a commercial information extraction
toolkit (based on manually supplied grammar specifi-
cations). Trained on PENN TREEBANK tagging and
chunking annotations for newspapers, we ran these
systems on the GENIA treebank which contains such
annotations for biological abstracts taken from MEeD-
LINE. We, first, observed a significant over-all loss in
performance (on the order of 4%) and, second, found
(with the exception of the SVM-based system) no sig-
nificant difference between the performance of lab pro-
totypes and the commerical chunker on GENIA data.
Fortunately, the performance loss can also be partly
remedied by few biomedical domain-specific adapta-
tions.

Introduction

In the life sciences domain a large fraction of informa-
tion is only available in form of unstructured free text.
For molecular biology, genome-based clinical research
and medicine, this comes in the form of technical re-
ports and scientific articles. By now, the sheer volume
of literature and medical narratives makes it almost im-
possible for biologists, clinical researchers and medi-
cal professionals to retrieve all relevant information on
a specific topic and to keep up with current research.

Fortunately, the field of human language technology
makes available various tools for text mining in or-

der to automatically extract relevant information con-
tained in free text. Their benefits are to filter out rele-
vant information, to extract structured knowledge from
large text collections, or to support database curators
and providers in choosing the most relevant data and
extracting relevant data for filling up database entries
faster.

Many NLP applications are composed of different lev-
els of text analysis. A basic processing step consists
of the assignment of part-of-speech tags to text tokens.
A subsequent step after tagging focuses on the iden-
tification of basic structural relations between groups
of words. This recognition task is usually referred to
as noun phrase (NP) chunking. Because both of these
techniques are particularly beneficial for named entity
recognition,! they are (among others) widely used in
applications of text mining in the life sciences domain
(cf., e.g., [13], [15], [9]). It should be noted, how-
ever, that most of these studies make direct use of NLP
tools for part-of-speech (POS) tagging and chunking
that were developed for general-purpose newspaper
language and whose performance on biomedical lan-
guage has not been evaluated so far. The question thus
arises whether such tools — and, if so, which ones — are
portable to the biomedical domain without a drastic
performance loss. Results on part-of-speech tagging
indicate different methods vary as for performance loss
[4] when domains and text genres are exchanged.

In this paper, we focus on the exemplary evaluation of
noun phrase chunking in the biomedical domain and
look at two very different types of chunking tools:

e \We examine three general-purpose chunkers which
rely on statistical machine learning techniques and
are trained on a common newspaper-language cor-
pus: YAMCHA [5] a kernel-based support vector
machine system, BOSS, a statistical chunking tool
developed at Jena University’s Language and Infor-
mation Engineering Lab, and TBL [14], a base NP

1For example, in the biomedical domain, virtually all
named entites, such as protein, gene or cell names, are lin-
guistically expressed as noun phrases.



chunking tool that learns transformation rules. Es-
pecially the performance of the latter one is of in-
terest since a number of recent studies in need of a
noun phrase chunker use it for the various biomedi-
cal text mining tasks (e.g., [6], [11]).

e We also looked at a commercially deployed sys-
tem (TEMIS), which is used in different applica-
tion domains in industrial contexts. The gram-
mar rules it employs are hand-crafted. Text min-
ing systems which employ manually supplied rules
are easier to adapt to different domains because the
in-domain training corpora required for machine-
learning methods are often not available or only
costly to establish.  Still, such manually main-
tained systems tend to be incomplete and error-
prone. Thus, a commercial system’s usability for
noun phrase recognition, alongside with research-
only machine-learning methods, should be partic-
ularly illuminating. Moreover, to our knowledge,
this is the first study to evaluate a commercially de-
ployed system in the biomedical domain according
to the scientific community’s evaluation standards.

Methods

In this section, we, first, describe the corpora which we
used for training and testing. Second, we introduce the
four types of chunking systems we assess.

The Training and Test Environments

All three lab prototypes were trained on the stan-
dard data set for base NP2 chunking put forward by
Ramshaw and Marcus [14], viz. sections 15-18 of the
Wall Street Journal part of the PENN TREEBANK [7].
This benchmark set amounts to 211,727 tokens which
were part-of-speech (POS-)tagged [2] with the PENN
TREEBANK (PTB) tagset and chunk-annotated using
the standard Inside/Outside (or I0B3) chunk represen-
tation, first introduced by Ramshaw and Marcus [14]
and since then canonically applied to base NP chunk-
ing. Typically, ML-based chunking systems make use
of the available types of linguistic information (i.e.,
word and POS information ) in the training corpus in
order to estimate their model parameters.

TEMIS, the commercial system, on the other hand, not
only uses its own hand-crafted set of grammar rules
(adapted to the same standard PTB training set — see

2Base NPs are defined as non-recursive noun phrases
ending after their nominal head and excluding any type of
postmodification (e.g., prepositional phrases, attributes, ap-
positions). Base NP recognition is an often used representa-
tive task to compare different NLP methods.

31 = current token is inside of a chunk, O = current token
is outside of any chunk, B = current token is the beginning
of a chunk immediately following another chunk.

the subsection on the TEmIS system below) but also
its own internal XELDA [12] tagger and tagset. Thus,
it is necessary to interpret the performance values ob-
tained by the different systems accordingly.

The test set on which we evaluated the different sys-
tems was derived from the Beta version of the GE-
NIA treebank® a subset of the GENIA corpus [10],
which comprises 200 syntactically annotated MED-
LINE abstracts from the molecular biology domain.
Although GENIA is POS-tagged using the PTB tagset,
its POS-annotation scheme had to be changed (and
is thus different to the PTB scheme) to account for
various properties specific to text from the molecular
biology domain [19] Among these are (non-proper)
names beginning with capital letters (e.g., “NFAT”,
“RelB”), chemical and numeric expressions including
non-alphanumeric characters such as commas, paren-
theses, or hyphens (e.g., “beta-(1,3)-glucan”), partici-
ples of unfamiliar verbs describing domain-specific
events, and fragments of words (e.g., “up- and down-
regulate™).

To conform to already established evaluation metrics
[16], the GENIA treebank was automatically converted
to the 10B-format described above (see also Table 1).
We thus obtained a data set which runs 44,914 tokens
in size. From this, we split off one quarter (~11,246
tokens) as a development set to allow the TEMIS sys-
tem output format to be formatted according to the
I0B chunk tag notation. The remaining 33,668 tokens
served as the actual test set.

a DT I
mechanism NN |
that WDT B
increases vBZ O
NF-kappa NN |
B/ NN I
kappa NN |
B NN I
dissociation NN |
without IN 0]
affecting VBG O
the DT I
NF-kappa NN |
B NN I
translocation NN |
step NN |

Table 1: The standard 10B chunk tag notation

4http://www-tsujii.is.s.u-tokyo.ac.
Jp/GENIA/topics/Corpus/GTB.html



Learning-based lab prototypes

We examined the following lab prototypes for chunk-
ing, all based on statistical methods of machine learn-
ing:

YAMCHA. YAMCHA [5] is an open source text
chunker based on so-called Support Vector Machines
(SVMs). Typically, SVMs are binary classifiers and
thus must be extended to multi-class classfiers to clas-
sify three (as in the case for NP chunking with (1,0,B)
or more classes — see [17] for the underlying statis-
tical learning theory). Typically, they map their n-
dimensional input space into a high-dimensional fea-
ture space in which a linear classifier is then con-
structed. Generally, this approach requires consider-
able computational resources. As a consequence, vari-
ous methods are employed by YAMCHA [5] to reduce
the training costs incurred by this approach.

TBL. Transformation-based error-driven learning
[14] starts with a training corpus specifying the correct
values for the linguistic features of interest, a baseline
heuristic for predicting initial values for these features
and a set of rule templates that determine a space
of possible transformational rules. Model learning
is achieved by iteratively testing and improving
hypotheses using the rule templates. TBL turned out
to be one of the standard systems used for base NP
chunking.

BoSS. The BoSS chunking system developed at
Jena University’s Language and Information Engineer-
ing (JULIE) Lab predicts borders of noun phrases
(beginning and end points) based on statistical cri-
teria.> These predictions are estimated by combin-
ing the observed probabilities of NP borders and NP
POS patterns in a training corpus. The challenge then
is to pair the predicted borders in an “optimal’ way
into non-overlapping phrases. BOSS, in analogy to
[8], finds the pairing with the maximal value using a
shortest-path algorithm. At its current development
stage, BOSS is comparatively knowledge-poor since
it only uses POS information from the training cor-
pus, whereas both YAMCHA and TBL, in addition, in-
tegrate lexical and word feature information.

TEMIS — The hand-coded commercial system

Architectureof the TEMIS system. The experimen-
tal setup for the TEMIS system initially ignored the
GENIA POS tags, using only the plain text part of the
corpus. This was fed into a processing chain that uses
the XEL DA toolkit [12] to compute morphological in-
formation using finite-state transducers to implement

5Viewing noun phrase recognition as a border finding
problem was first introduced by Church [3].

a two-level morphology [1]. The resulting potentially
ambiguous chain of POS tags is then disambiguated
using a HMM POS tagger. Finally, transducers are
again employed to apply a finite-state grammar to con-
struct larger phrases such as NPs from the tagged in-
put.

This processing chain is implemented in the commer-
cial TEMIS system, which is applied to information
extraction tasks in a wide range of different applica-
tion settings. Because the system is designed to facil-
itate grammar development in several languages, the
underlying tagset is common to all languages and ap-
plications. This is a compromise satisfying as good
as possible the requirements in each of the languages
addressed. Still, this tagset does not stand in a well-
defined relation to commonly used tagsets such as the
PTB tagset.

Adjustment to the Evaluation. A first quick com-
parison of the NPs returned by the TEMIS system and
the NPs given on the development set showed that
the TEMIS developers had to modify the NP gram-
mar in order to account for the differing interpretations
of what should be an NP. In particular, the complex
NPs (NPs with embedded PPs or genitives, etc.) ac-
counted for many cases where the TEMIS results dif-
fered from the intended base NP target representation
(see Table 1). For example, in [[the synthesis]nm,.e
of [long enhancer transcriptsINp.eINPompec OF 1N
[[Hashimoto]np,.., [’s thyroiditis]np,,eINPmpec TWO
or more base NPs connect to one complex NP in the
TEMIS grammar, because for commercial-type infor-
mation extraction there is no need to analyze such indi-
vidual base NPs separately. To be in line with the base
NP target representation and to be comparable to the
ML-based systems, however, such complex NPs were
split up into their base components using the patterns
provided by the PENN TREEBANK .

Trandation of the TEMIS-internal tagset. Because
the TEMIS system uses its own XELDA tagset and
thus ignores the POS information for chunking pro-
vided in the GENIA test set, we wanted to test whether
a manual translation of those 28 XELDA tags, which
are relevant for NP chunking, to the ones used by GE-
NIA would be beneficial for the commercial software.
Due to their different underlying design principles, a
simple one-to-one mapping between the relevant tags
in both tagsets is not always possible. Hence, we had
to distinguish three types of mapping:

e In 28.5% (6/28) of the cases, there is a one-to-one
correspondence, e.g., the XELDA tag for coordina-
tions (COORD) corresponds to the GENIA tag (CC).



| Default | PTB corpus | GENIA corpus |
Recall Precision F-score | Recall Precision F-score
YAMCHA 94.29 94.15 94.22 89.00 89.30 89.15
BoSS 89.92 90.10 90.01 86.46 86.84 86.65
TBL 92.27 91.80 92.03 86.31 85.49 85.90
TEMISxeLDA | 86.94  86.29 86.61 87.14 85.34 86.23
Table 2: Benchmark results of the different systems as default.
| Domain-specific Adaptations | GENIA corpus |
Recall Precision F-score
TEMISGenia 91.24 90.59 90.91
BOSSpar 87.25 89.19 88.21

Table 3: The TEmIs-internal tagset was translated into the tagset used by
GENIA. BOSS uses a pattern which recognizes NP-internal parentheses.

e In 25% (7/28) of the cases, a XELDA tag corre-
sponds to more than one GENIA tag. For exam-
ple, the word “there” is always tagged as an adverb
in XELDA although it actually can have a nominal
function such as in existential constructions (“There
is quite a bit ...”). In GENIA, “there” receives an RB
tag in its adverbial function, while in its existential
one it gets an EX tag.

e In 46.5% (13/28) of the cases, more than one
XELDA tag corresponds to one GENIA tag.
For example, XELDA distinguishes between per-
sonal (PronPers) and reflexive pronouns (PronRefl),
whereas GENIA only uses one tag (PRP) for both.

Results
Two Series of Experiments

In evaluating the performance on the GENIA test set,
we ran two series of experiments. The first one used
all systems in their default configuration, except for
the adaptation of the TEMIS software (see the descrip-
tion in the subsection describing this adjustment). For
the ML-based systems, their parameters from their
PENN TREEBANK training were left unchanged. In
the second series of experiments, we made some in-
domain adaptations on two systems. For TEMIS, we
used the GENIA-translated tagset. For BOSS, a simple
additional bio-domain-specific pattern was introduced,
which recognizes noun phrases with internal parenthe-
ses (such as in interleukin 2 (IL-2) activation).

Evaluation of the Different Systems

The three lab prototype systems based on machine
learning techniques were all trained and tested on
the same PENN TREEBANK (PTB) general-language

newspaper corpus data set.® The adjusted NP grammar
for TEMIS was also based on the PTB corpus. Table 2
contains the performance figures of these four systems
on the GENIA corpus. The results for the two adapted
system (TEMISgeniag and BOSSpy;) are reported in Ta-
ble 3.

As far as the default systems are concerned, the YAM-
CHA kernel-based support vector machine performs
best on both corpora, but looses approximately 4 per-
centage points of performance (from an F-score of
94.22% to 89.15%) for the GENIA corpus. The TBL
method, which performs second best on the Penn Tree-
Bank corpus (F-score: 92.03) performs worst on the
biomedical corpus (with a F-score of 85.9%). Of all
ML-based systems, the BOSS system has the low-
est performance on the PENN TREEBANK corpus but
faces the least loss (only 3.35 percentage points) on
the GENIA corpus, on which it performs second best.
Its comparatively low performance on PTB can be ex-
plained by the fact that it only utilizes POS informa-
tion for chunking but no lexical information like the
two other ML-based systems do. In comparison to the
ML-based methods, the performance of the grammar-
based TEMISxe pa System on GENIA lies between the
BoSS and the TBL method. Due to its low perfor-
mance on the PENN TREEBANK (F-score: 86.61), to
which this base NP grammar has been adapted, the
loss is only 0.38 percentage points. A detailed error
analysis is given in the next section.

Overall Error Analysis for the Default Systems

For error analysis, the false negative hits (i.e., tokens
that were not recognized as part of a noun phrase) as
well as the false positive hits (i.e., tokens that were er-

6The results for YAMCHA and TBL are reported in [5]
and [14], respectively.



roneously identified as part of noun phrase) are sorted
with the help of the positional 10B chunk tag infor-
mation. The hits were then compared in a pair- and
n-wise fashion between the different systems and thus
allowed them to be examined as to whether they as-
sign the same erroneous 10B chunk tag to the same
token, i.e., their common mistakes could be identified
(see Figures 1 and 2).

Comparison of False Negatives

Separate and Common Chunker Errors

Figure 1: False Negative (FN) errors based on postitional
I0OB chunk tag information

Comparison of False Positives

Separate and Common Chunker Errors

Figure 2: False Positive (FN) errors based on postitional
IOB chunk tag information

For the false negative (FN) hits, the TEMISxeLpa SOft-
ware made the most mistakes (849), followed by the
YAMCHA system (735). The other two systems have
very similar error rates. The overlap of mistakes is the
highest between the ML-based systems. The propor-
tion of common mistakes between all three systems is
53.2% according to the system with the lowest error
rate (BoSS), and varies between 63.9% and 68.8% on
pairwise comparisons. According to the ML system
with the highest error rate (YAMCHA), 39.5% of all
mistakes are common to the three ML-based systems,
whereas the overlap on a two-system comparison ba-
sis ranges from 47.3% to 66.8%. Scaled by the system
with the lowest error rate, the error overlap between

the TEMISxeLpa Software and each ML-based systems
ranges between 29.8% (YAMCHA) and 49.2% (TBL);
between all systems the error overlap is 26%. Scaled
by the TEMISxa pa System, the overlap only ranges
from 25.8% (YAMCHA) to 32.5% (TBL) for pairwise
comparisons and only reaches 16.7% comparing all
systems.

For the false positive (FP) rates, the BOSS sys-
tem made the most errors (587) followed by the
TEMISxe pa System (494). The YAMCHA SVM per-
forms by far the best with the lowest error rate (190).
Under the FP condition, the pairwise overlaps between
the ML-based methods are also higher than between
the TEMISxepa SOftware and each ML system. In par-
ticular, the overlap between BOSS and TBL is very
high (75%) in comparison to 53% and 55% from these
systems to YAMCHA.

Error Type Analysis for Default Systems

Although the false negative/positive error rates shed
some light on the overall performance of each system,
they alone do not explain the performance on the GE-
NIA corpus. Therefore, we tried to identify the most
common error types across the different systems by
looking at the part of speech and the context of each
false negative/positive hit (see Tables 4 and 5).

There were certain linguistic constructions around
which error types could be established for FNs, i.e. to-
kens that were not recognized as part of a noun phrase
with such a linguistic property, and for FPs, i.e. to-
kens that were erroneously identified as part of noun
phrase with such a linguistic property. The following
list enumerates the most salient ones:”

e NPs with coordinated/enumerated elements (Co-
ord), e.g.,
FN: new DNA binding proteins of 85, 75 and* 54
kDa
FP: Cyclosporin A and FK506 inhibit T- and B-cell
activation and* other processes

e NPs with internal parenthesized/bracketed elements
(Par), e.g.,
FN: chloramphenicol acetyl-transferase (CAT)*
gene expression
FP: human immunodeficiency virus type 1 (HIV-1)*

o NPs with verbal forms in prenominal adjective func-
tion, (Verbal), e.g.,
FN: from resting* and induced* ML-1 cells
FP: a specific target termed* TAR

"The underscored items marked with an asterisk (*) are
misclassified by some or all systems as FNs or FPs with re-
spect to their correct IOB chunk tag.



| Method | Coord Par  Verbal Adv Adj Noun Det ]
YAMCHA 52.0 216 8.3 3.3 3.3 3.5 0
(382) (159) (61) (24) (24) (26) (6)
BoSS 30.5 347 121 2.2 5.0 1.7 0
(166) (189) (66) 12) @7 (9 Q
TBL 374 234 148 3.7 7.8 11 0
(210) (131) (83) 21) 44) @) (6)
TEMISxeLpa || 26.0 5.8 8.2 11.2 8.6 22.5 7.5
(221) (49) (70) (95) (73) (191) (64)
TEMISceNnIA || 41.5 8.0 8.6 3.6 136 0 12.3
(275) (B3) (57) (24) (90) (0) (85)

Table 4: Distribution of error types (in %, with absolute numbers in parentheses) for
false negatives, i.e. tokens that were not recognized as part of a noun phrase chunk.

| Method | Coord Par Verbal Adv Adj |
YAMCHA 40.5 95 47 6.3 205
(r7)  (18) (9) (12) (39
BoSS 52.3 1.2 8.5 6.3 11.8
307 () (50) (37) (69)
TBL 60.1 6.8 9.2 3.8 9.2
(255)  (29) (39)  (16) (39)
TEMISxepa || 23.1 13.0 326 3.0 14.2
(114) (64) (161) (15) (70)
TEMISceNnIA || 41.3 6.7 11.6 158 13.3
(99) (16) (28) (38) (32)

Table 5: Distribution of error types (in %, with absolute numbers
in parentheses) for false positives, i.e., tokens that were erroneously
recognized as part of a noun phrase chunk (error types listed in
Table but not here are irrelevant).

e NPs with adverbs modifying prenominal elements
(Adv), e.g.,
FN: abnormally* low plasma cysteine levels
FP: Together* these results constitute...

e Adjectives (Adj) in various functions, e.g.,
FN: the expression of endogenous AP-1 regulated®
genes
FP: 16 patients, aged™ 16-27 years,...

e Nouns/nominal elements (Nom), e.g.,
FN: lymphocyte glucocorticoid receptor binding*
parameters

e Determiners (Det), e.g.,
FN: the* human and murine TNF genes

In terms of the error type distribution, the most fre-
quent type for FN and FP errors is the recognition
of coordination elements. This is a dominant error
source for the ML-based systems (YAMCHA: 52% FN
and 40.5% FP; BOSS: 52.3% FP), except for BOSS,
whose most common FN error type are parenthesized

elements (34.7%), and the commercial TEMISxe pa
system, which does a better job at not erroneously FP-
recognizing coordinative elements as part of a noun
phrase (26.0%). The BOSS system, in particular, very
often erroneously recognizes coordinative elements®
as part of an NP, which must be attributed to the fact
that it does not utilize any lexical information. As
for FNs, noun phrases with parenthesized elements, as
well as verbal forms in prenominal adjective functions,
are other common error sources. NPs with such inter-
nal parenthesized/bracketed elements are special to the
biomedical domain and, thus, their higher amount of
false negative errors can be explained. It seems, how-
ever, that the grammar-based TEMISxe_pa System does
a better job in recognizing these elements as part of a
noun phrase (5.8% FN) than the ML systems (YAM-
CHA: 21.6% FN; BOSS: 34.7% FN; TBL: 23.4% FN).
On the other hand, it also FP-recognizes them more of-
ten erroneously (13.0%).

8This mistake is also responsible for its overall high num-
ber of FP errors.



Although FN coordination is also a prominent er-
ror source for the commercial TEMISxe pa SOftware
(26%), its FN error type distribution exhibits other er-
ror sources which are virtually absent from the ML
systems. Most strikingly, these are nominal elements
(21.8%) and determiner elements (7.7%).°

Another noteworthy difference between the ML-based
system and TEMISxepa is the high amount of FP ver-
bal elements (32.6%) for the latter one.

In-domain Adaptations

In the second round of experiments we tested whether
some in-domain heuristic adaptations both on the com-
mercial TEMIS software and on the ML-based BoSS
system would lead to any performance increase.

First, for TEMIS we translated its internal XELDA
tagset to GENIALO (see the subsection above). The
results in Table 3 above show a clear boost for
TEMISgenia by 4.7 percentage points to 90.91% F-
score. The FN error rate dropped by 186 to 663,
and FP errors decreased by more than 50% (down to
240). Another run through our analysis of error types
showed that for the TEMIS system the FN error rate
for nominal elements dropped to 0%. This is not un-
expected because various biomedicine-specific nouns
are unknwon to the XELDA default tagger. In partiu-
lar, the noun binding, which accounted for almost half
of the noun FN errors, was frequently mistagged by
XELDA as a verbal progressive form and thus not rec-
ognized as part of a base NP. Furthermore, as shown
in Table 5 the number of FP verbal errors drops from
161 to 28 using the GENIA tags. Thus, in parallel to
the class of nouns wrongly tagged as verbs there is an-
other class of verbs wrongly tagged as nouns by the
TeMmis-internal XELDA tagger.

Second, our error analysis showed that NPs with in-
ternal parenthesized/bracketed elements peculiar to the
biomedical domain are a major source of errors. Such
elements can be recognized in a straightforward way
by checking whether the opening parenthesis is di-
rectly preceded and the closing one directly followed
by an NP (i.e., by a chunk I-tag). We thus examined in
an exemplary way whether such a heuristic adaptation
facilitating the recognition of these types of NPs would
lead to any performance increase on the BOSS system.
As can be seen in our results in Table 3, BOSSpy in-
creased its performance by 1.6% F-score. In particular,
this heuristic performed a boost on its accuracy value
by 2.3%. This shows that more noun phrases peculiar
to the biomedical domain are recognized correctly.

9These error classes, however, did not play any role as
for FPs.

10A more far-reaching adaptation beyond the scope of this
paper would be training the XELDA tagger on a domain-
specific biomedical corpus (e.g., the GENIA corpus).

Discussion and Conclusions

We evaluated the performance of four different sys-
tems which perform noun phrase recognition for a
biomedical text corpus (GENIA). Three of the sys-
tems are machine-learning-based systems which were
trained on the PENN TREEBANK newspaper corpus.
The F-score performance on the newspaper corpus
is between 90.01% and 94.22% and drops down to
between 85.9 and 89.15% for the biomedical cor-
pus. Porting default chunkers to the life sciences
domain, therefore, implies a substantial loss of per-
formance. Furthermore, the drop of performance is
system-dependent. The kernel-based support vector
machine system, YAMCHA, performs best on both cor-
pora but still looses 5% on the GENIA corpus. The
performance loss for the TBL tool is even higher (over
6%). By contrast, the statistical chunking tool BOSS
only looses 3.35%.

In a parallel evaluation step, we also examined a com-
mercial general grammar-rule-based system (TEMIS)
which employs hand-crafted grammar rules for fast
system adaptations to different domains. It could be
shown that the performance of the TEMIS system is
comparable to the machine learning systems TBL and
BoSS. Still, the settings of the two different meth-
ods (machine learning vs. hand coding) are not di-
rectly comparable. For the machine learning based
systems the biomedical corpus is too small for using
it as a training corpus. On the other hand, the stan-
dard TemIs software uses a different tagger. Hence,
a considerable amount of the TEmMIS FN errors (ap-
proximately 21%, cf. Table 2) can be attributed to the
fact that nouns in the GENIA corpus were not correctly
recognized as such by the XELDA tagger. The error
rate of false negatives could be cut in half through an
adaptation of the TEMI s software using the GENIA tag
set instead. With this adaptation, the performance is
boosted to an F-score of 90.91%. This result shows the
importance of accurate POS tagging for NP chunking.
Despite of these differences, we stipulate that standard
ML approaches (trained on a newspaper corpora) and
a standard commercial domain-unspecific rule-based
system (based on its own tagger) yield comparable per-
formance results. This holds true unless support vector
machines come into play. Though they grant a consid-
erable performance boost, their application in large-
scale systems is hard to envisage given their resource
consumption requirements. This is a crucial counter-
argument for their usability in the biomedical domain,
which requires cheap computations on very large data
sets. 11

11This is particularly important considering the fact that
we here deal with the rather basic pre-processing step of NP
chunking, and have not even touched upon subsequent in-



For error analysis, false negative and false positive
matches were compared. Although the individual sys-
tems’ false negative and false positive hits do not di-
rectly correspond to their final performance, they do
have an effect on it. For the TEMIS software, it is the
high number of false negative hits, for the YAMCHA
system, its very low number of false positive hits. With
the help of the error rates we could identify common
mistakes for the different systems. Twice as many false
negative and positive errors are common between the
ML-based methods as between all systems.

An analysis of error types showed that coordinated ele-
ments were identified as the most common error class.
This comes as no surprise, since coordination was not
only reported to be problematic for NP chunking tasks
(see [14]), but also for more expressive higher-level
formalisms such a as full-sentence parsing. Another
prominent error class also reported in the literature is
the recognition of verbal elements inside NPs. A more
domain-specific error source came form NP-internal
parentheses, which is a feature specific to the biomi-
cal domain. Certain error classes (nominal elements,
cardinal numbers) do only appear in the rule-based
TEMIS system and can be attributed to the fact that
both its XELDA tagger and its XELDA dictionaries
were set up as general and domain-unspecific as pos-
sible (whereas the ML systems also made use of the
POS information given by the GENIA test set).

In follow-up experiments, however, we were able to
boost the TEMIS software’s performance by using the
POS tags given in the GENIA test set. For this purpose,
we manually translated the XELDA tagset to the GE-
NIA/PTB one. A further domain-specific adaption con-
cerned the recognition of noun phrases with internal
parenthesized/bracketed elements. A straightforward
heuristic solution for the BOSS system lead to notice-
able performance increase.'? Thus, our results are cru-
cial with respect to the fast re-usability of such sys-
tems for different biomedical text mining tasks, such
as named entity recognition or information extraction,
especially in the light of insufficient in-domain (i.e.,
biomedical) training resources.

Acknowledgements:

Jena University is a member of the EU Network of Excel-
lence Semantic Mining (Semantic Interoperability and Data
Mining in Biomedicine — NoE 507505).

Addressfor Correspondence:
joachim.wermter@uni-jena.de

depth text processing and mining tasks, which tend to grow
in their computational load.

12These results are also in line with previous studies ([18],
[4]) which examined the portability of part-of-speech taggers
to the biomedical domain.
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