
Applications of Preferences using Answer Set
Programming

Claudia Zepeda1;3,Mauricio Osorio1, Juan Carlos Nieves2, Christine Solnon3, and
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Abstract. Preferences are useful when the space of feasible solutionsof a given
problem is dense but not all these solutions are equivalent w.r.t. some additional
requirements. In this case, the goal is to find feasible solutions that most satisfy
these additional requirements. In order to represent preferences, in this paper we
use an extension of ordered disjunction programs. Ordered disjunction is an ap-
proach based on answer sets that allows us to represent alternative, ranked options
for a problem. Moreover, we give a brief overview of two real applications of ex-
tended ordered programs in two different domains. The first one is in planning:
evacuation planning. The second one is in argumentation: organ transplantation.
In particular, we show the role of negated negative literalsin extended ordered
programs to obtain the preferred solution of each application.
Key words: Preferences, Answer Set Programming, Ordered DisjunctionPro-
grams, Planning.

1 Introduction

Preferences are useful when the space of feasible solutionsof a given problem is dense
but not all these solutions are equivalent w.r.t. some additional requirements. In this
case, the goal is to find feasible solutions that most satisfythese additional require-
ments. In [3] Brewka introducedlogic programs with ordered disjunction (LPODs)
where the connective�, calledordered disjunction, allows a natural and simple rep-
resentation of preferences. However, if we only want to specify a preference ordering
among the answer sets of a program with respect to an ordered list of atoms then ordered
disjunction as defined by Brewka does not work since it corresponds to a disjunction
where an ordering is defined. For instance, the answer sets ofthe programP defined asf a  : b  ::   :b: d  :a: f  ;:a: e  b;:a: g arefa; bg
andfa; g. Then, if we consider the programP together with the ordered disjunction
rule ff � g that stands for “iff is possible thenf otherwise” (see [3]), we obtain
two answer setsfa; b; fg andfa; ; fg. Thinking in a preference sense, withff � g
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we would like to express the fact that we are more interested in answer sets containingf than answer sets containing. Then, we would expect to obtain onlyfa; g.
In order to specify a preference ordering among the answer sets of a program with

respect to an ordered list of atoms, we propose to use double negation in each atom
of the ordered rule that represents the mentioned list of atoms. Formally, an atom with
double negation corresponds to anegated negative literalwhere the only negation used
is default negationas we shall define in Section 2. Then, in this paper we are taking ad-
vantage of the extension of ordered disjunction programs defined in [10]. For instance,
if we consider again the programP and the ordered list of atomsff; g, then the ex-
tended ordered disjunction program isP [ f::f � ::g and we obtain the desired
answer setfa; g. It is worth mentioning that currently runningPsmodels[5] we can
obtain the different inclusion preferred answer sets for anordered program as defined
by Brewka, however we cannot obtain the inclusion preferredanswer sets for extended
ordered programs. In particular, in this paper we show how wecan easily translate an
extended ordered disjunction program withnegated negative literalsto a standard or-
dered disjunction program as defined by Brewka. Then using this translation we can
run Psmodelsto obtain the preferred answer sets of an extended ordered disjunction
program.

Additionally, we can also usenegated negative literalsto obtain the maximal an-
swer sets of a program w.r.t. a set of atoms. In [8] there is a full description of a real
application using ASP to perform decision making based on anargument framework
(AF) in the domain of organ transplantation. Then, we propose to usenegated negative
literals to obtain the maximal answer sets of a program characterizing an AF such that
these maximal answer sets correspond to the preferred extensions of the AF.

In this paper, we also give a brief overview of an example of a real application where
negated negative literalsin extended ordered programs are useful to express preferences
in planning domain: evacuation planning. The idea is to specify an ordering among the
feasible plans of a planning evacuation problem using extended ordered programs.

The rest of the paper is structured as follows. In Section 2, we introduce some
fundamental definitions of Answer Sets and Logic Programs with Extended Ordered
Disjunction. In Section 3, we present the role of default negation in extended ordered
disjunction programs. In section 4, we show how extended ordered disjunction pro-
grams may be translated to standard ordered programs so thatone can use existing
solvers to compute answer sets. In Sections 5 we introduce anexample of a real appli-
cation in planning domain where negated negative literals in extended ordered programs
are useful to express preferences: evacuation planning. InSection 6 we present related
work about how to use extended ordered programs to obtain themaximal answer sets
of a particular program such that these maximal answer sets correspond to the preferred
extensions of an argument framework. Finally in Section 7, we present conclusions and
future work.

2 Background

In this section we introduce some fundamental definitions ofAnswer Sets and Logic
Programs with Extended Ordered Disjunction.
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2.1 Answer Set Programming

Using Answer Set Programming (ASP) makes it possible to describe a computational
problem as a logic program whose answer sets correspond to the solutions of the given
problem. Currently, there are several answer set solvers, such as: DLV1 and SMOD-
ELS2.

In this paper, logic programs are understood as propositional theories. We shall
use the language of propositional logic in the usual way, using propositional symbols:p; q; : : : , propositional connectiveŝ;_;!;? and auxiliary symbols:(; ). An atomis a
propositional symbol. Aliteral is either an atoma (a positive literal) or the negation of
an atom:a (a negative literal) where: denotesdefault negationand it is the only type
of negation considered in this paper. Anegated literalis the negation sign: followed
by any literal, i.e.:a or::a. We assume that for any well formed propositional formulaf , :f is just an abbreviation off ! ? and> is an abbreviation of? ! ?. In
particular,f ! ? is calledconstraintand it is also denoted as f . Given a set of
formulasF , we define:F = f:f j f 2 Fg. Sometimes we may usenot instead of:
anda; b instead ofa ^ b, following the traditional notation of logic programming.We
shall define as aclauseany well formed formulaF . A regular theoryor logic program
is just a finite set of clauses, it can be called justtheoryor programwhere no ambiguity
arises. We want to stress the fact that in our approach, a program is interpreted as a
propositional theory. For readers not familiar with this approach, we recommend [12,
9] for further reading. We will restrict our discussion to propositional programs. As
usual in answer set programming, we take for granted that programs with predicate
symbols are only an abbreviation of the ground program. The signature of a programP , denoted asLP , is the set of atoms that occur inP . In some definitions we use
Heyting’s intuitionistic logic, which will be denoted by the subscriptI. For a given set
of atomsM and a programP we will write P `I M to abbreviateP `I a for all a 2M
andP I M to denote the fact thatP `I M andP is consistent w.r.t. logicI (i.e. there
is no formulaA such thatP `I A andP `I :A).

We shall define answer sets (or stable models) of logic programs. The stable model
semantics was first defined in terms of the so calledGelfond-Lifschitz reduction[6] and
it is usually studied in the context of syntax dependent transformations on programs. We
follow an alternative approach started by Pearce [12] and also studied by Osorio et.al.
[9]. This approach characterizes the answer sets for a propositional theory in terms of
intuitionistic logic and it is presented in the following theorem. The notation is based
on [9].

Theorem 1. LetP be any theory andM a set of atoms.M is an answer set forP iffP [ :(LP nM) [ ::M I M .

2.2 Logic Programs with Extended Ordered Disjunction

In [3] Brewka introduced the connective�, calledordered disjunction, to allow an easy
and natural representation of preferences and desires. While the disjunctive clausea_ b

1 http://www.dbai.tuwien.ac.at/proj/dlv/
2 http://www.tcs.hut.fi/Software/smodels/



Applications of Preferences using Answer Set Programming 321

is satisfied equally by eithera or b, to satisfy the ordered disjunctive clausea � b, a
will be preferred tob, i.e. a model containinga will have a bettersatisfaction degree
than a model that containsb but does not containa. For example, the natural language
statement“I prefer coffee to tea”can be expressed asoffee � tea. The definition
presented here is that of [10], where ordered disjunctions is extended to wider classes
of logic programs3.

Definition 1 (Ordered Logic Programs).An extended ordered disjunction ruleis ei-
ther a clause as defined in section 2.1, or a formula of the form: f1 � : : : � fn  g
wheref1; : : : ; fn; g are (well formed) propositional formulas. Anextended ordered
disjunction programis a finite set of extended ordered disjunction rules.

The formulasf1 : : : fn are usually called the choices of a rule and their intuitive reading
is as follows: if the body is true andf1 is possible, thenf1; if f1 is not possible, thenf2; . . . ; if none off1; : : : ; fn�1 is possible thenfn. The particular case where allfi are
literals andg is a conjunction of literals corresponds to the original LPODs as presented
by Brewka in [3], and we shall call themstandard ordered disjunction programs4. If
additionallyn = 0 the clause is a constraint (equiv.?  g). If n = 1 it is an extended
clause and ifg = > the clause is a fact and can be written asf1� : : :�fn. An extended
ordered disjunction programand astandard ordered disjunction programas defined by
Brewka can be called justextended ordered programand standard ordered program
respectively where no ambiguity arises.

Now, we present the semantics of programs with extended ordered disjunction. Most
of the definitions presented here are taken from [3, 5]. The only relevant difference is
the satisfaction degree. The reader may see that the satisfaction degree as defined here
is just a straightforward generalization of Brewka’s definition, according to our notation
and Definition 1 (see [10]).

Definition 2. [3] Let r := f1 � : : :� fn  g be an ordered rule. Fork � n thek-th
option of r is defined as follows:rk := fk  g;not f1; : : :not fk�1. Let P be an
extended ordered program.P 0 is a split program ofP if it is obtained by replacing each
rule r := f1 � : : : � fn  g in P by one of its optionsr1; : : : ; rn. LetM be a set of
atoms.M is an answer set ofP iff it is an answer set5 of a split programP 0 of P . LetM be an answer set ofP and letr := f1 � : : :� fn  g be a rule ofP . We define the
satisfaction degree of r, denoted bydegM (r), as follows:

– if M [ :(LP nM) 6`I g, thendegM (r) = 1.
– if M [ :(LP nM) `I g thendegM (r) = min fi jM [ :(LP nM) `I fig .

For instance, the answer sets of the standard ordered programP1 = fa� bg arefag
andfbg while the extended ordered programP2 = f::a� ::bg has no answer set.

3 Moreover, while the extension introduced in [10] is in the context of Answer Sets, the extension
introduced in [4] for the operator� is in a different context.

4 Brewka’s LPODs use the strong negation connective. Here we will consider only one type of
negation but this does not affect the results given in [3].

5 Note that since we are not considering strong negation, there is no possibility of having incon-
sistent answer sets.
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Theorem 2. [3] Let P be an extended ordered program. IfM is an answer set ofP
thenM satisfies all the rules inP to some degree.

Definition 3 (Preferred Answer Set).[5] Let P be an extended ordered program andL a set of atoms. We defineSiL(P ) = fr 2 P j degL(r) = ig. LetM andN be answer
sets of an extended ordered programP . M is inclusion preferredto N , denoted asM >i N , iff there is ani such thatSiN (P ) � SiM (P ) and for all j < i, SjM (P ) =SjN (P ). M is cardinality preferredto N , denoted asM > N , iff there is ani such

that
��SiM (P )�� > ��SiN(P )�� and for all j < i, ���SjM (P )��� = ���SjN (P )���. S is a k-preferred

answer set(wherek 2 finlusion; ardinalityg) of P if S is an answer set ofP and
there is noS0 answer set ofP , S 6= S0, such thatS0 >k S.

For instance, the only inclusion preferred answer set of thestandard ordered pro-
gramP3 = fa� b: b  :a:g is fag while the only inclusion preferred answer set of
the extended ordered programP4 = f::a � ::b: b  :a:g is fbg. As we will see
in Section 4, when a program has extended ordered rules usingnegated negative literals
we can easily translate it to a standard ordered program and then usePsmodelsto obtain
the preferred answer sets. Then, the translation of programP4 will be r�[A[fb :ag
wherer� = fa� � b�g andA = f :a; a�: a�  :aÆ: aÆ  :a:  a; aÆ:  :b; b�: b�  :bÆ:bÆ  :b: b; bÆ: g such thata�; b�; aÆ; bÆ are atoms that do not occur inP4. Then, by running
Psmodelswe obtain the inclusion-preferred answer set of the standard ordered programr� [ A [ fb :ag: fb; bÆg. Finally, we can see that the intersection of the inclusion-
preferred answer set withLP4 corresponds to the inclusion-preferred answer sets of the
original extended ordered programP4: fbg.
3 The role of default negation in extended ordered disjunction

programs

In this section, we remark on the role of negated negative literals (for instance::a)
in an extended ordered program with respect to the definitionof Brewka, that can be
found in [3].

3.1 Specifying a preference ordering among the answer sets of a program with
respect to an ordered list of atoms

Since::a is equivalent to the restriction :a, the intuition behind::a is to indicate
thatamust be in the answer set of a program. Moreover, the intuitive reading of the ex-
tended ordered rule::a�::b is as follows: if there is an answer set containinga then
this answer set is preferred; if there is no answer sets containing a, then it is preferred
an answer set containingb; if there is no answer sets containinga or b then none of the
answer sets are preferred. Then, while the preferred answerset of the standard ordered
programfa � bg is fag, the extended ordered programf::a � ::bg has no answer
set. Hence, the intuition behind an extended ordered rule using negated negative literals
is to indicate that we want to specify a preference ordering among the answer sets of
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a program with respect to an ordered list of atoms. An exampleof this is in Section 1
where the programP and the ordered list of atomsff; g are considered.

However, thinking in a preference sense and in case that the answer sets of the
program do not contain any of the atoms in the given ordered list of atoms, then the
extended ordered rule must allow to obtain all the answer sets of the program. In order
to obtain all the answer sets of the program we propose to add an atom at the end of
the extended ordered rule, this atom must be an atom that doesnot occur in the original
program. For example, let us consider again programP of Section 1 and let us suppose
that we are more interested in answer sets containinge than answer sets containingf ,
but in case no answer set contains eithere or f , we are interested in all answer sets ofP . This may be expressed by adding the following extended ordered rule to programP :::e�::f �all pref whereall pref is an atom that does not occur inP . Therefore,
we obtain two answer setsfa; b; all prefg andfa; ; all prefg since answer sets ofP
do not contain neithere nor f . These answer sets correspond to answer sets ofP but
including the atomall pref . Note that the answer sets ofP together with the standard
ordered rulee� f � all pref arefa; b; eg andfa; ; eg.
Definition 4 (Translation of a program w.r.t. an ordered list of atoms).LetP be a
program andC = f1; 2; : : : ; ng be an ordered list of atoms such thatC � LP . We
define a translation ofP w.r.t.C, denoted asordrule(P;C), into an extended ordered
program as follows:ordrule(P;C) := P [ rC such thatrC := ::a1 � ::a2 � : : :�::an�all pref is an extended ordered rule defined fromC whereall pref is an atom
that does not occur inP .

The following Lemma formalizes the previous discussion about the specification of
an ordering among the answer sets of an extended ordered program with respect to an
ordered list of atoms.

Lemma 1. LetP be a program and letC = f1; 2; : : : ; ng be an ordered list of atoms
such thatC � LP . LetrC be the extended ordered rule defined fromC. ThenM is an
inclusion-preferred answer set ofordrule(P;C) iff there does not exist an inclusion
preferred answer setN of ordrule(P;C) such thatdegN (rC) < degM (rC).
3.2 Obtaining the maximal answer sets of a program with respect to a set of

atoms

We can also use negated negative literals in an extended ordered program to obtain the
maximal answer sets of a program w.r.t. a set of atomsA. For instance, if the answer
sets of a programP arefb; ; eg, fb; ; dg ff; eg andfe; a; g thenfb; ; dg andff; eg
are the maximal answer sets with respect to the set of atomsA = fb; d; fg. The for-
mal definition of a maximal answer set with respect to a set of atoms is based on the
definition of maximal set with respect to a set.

Definition 5 (Maximal set w.r.t. a set A). [8] Let fSi : i 2 Ig be a collection of
subsets ofU such that

Si2I Si = U andA � U . We say thatSi is a maximal set
w.r.t. A among the collectionfSi : i 2 Ig iff there is noSj with j 6= i such that(Si \ A) � (Sj \ A).
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Definition 6 (Maximal answer set w.r.t. a set A).[8] Let P be a consistent program
andfMi : i 2 Ig be the collection of answer sets ofP . LetA � LP . We say thatMi
is a maximal answer set w.r.t.A iff Mi is an answer set ofP such thatMi is a maximal
set w.r.t.A among the collection of answer sets ofP .

In order to obtain the maximal answer sets with respect to a set of atoms, the original
programP is extended with a set of extended ordered rules using negated negative
literals. Each extended ordered rule is defined from an atom in the given set of atomsA.
For instance, in the previous example whereA = fb; d; fg the set of extended ordered
rules is the following:f::b � b�: ::d � d�: ::f � f�:g whereb�, d� andf� are
atoms that do not occur in the original program. Then the extended ordered program is
the following:P [ f::b� b�: ::d� d�: ::f � f�:g

The following Lemma formalizes our previous discussion about the use of negated
negative literals in an extended ordered program to obtain the maximal answer sets of a
program w.r.t. a set of atoms.

Definition 7. Let P be a program andS � LP . We define a translation ofP w.r.t.S into an ordered program, denoted byordset(P; S): First, we define a set of or-
derd clauses w.r.t.S as follows:CS = f::a � a� j a 2 S and a� 62 LP g. Then,ordset(P; S) = P [ CS .

Lemma 2. LetP be a program andM be an answer set ofP . LetS � LP . ThenM is
an inclusion-preferred answer set ofordset(P; S) iff M \ LP is a maximal answer set
ofP w.r.t.S.

4 Computing preferred answer sets for extended ordered
programs

It is worth mentioning that neither runningPsmodels[5] nor following the definition
given by Brewka [3] for ordered disjunction we can obtain theinclusion preferred an-
swer sets for extended ordered programs. The reason is that the definition given by
Brewka for ordered disjunction has syntactical restrictions. However, in particular when
this program has extended ordered rules using negated negative literals we can easily
translate it to a standard ordered program and then usePsmodelsto obtain the preferred
answer sets. In the following definition and lemma the atomsa�, aÆ, are atoms that do
not occur in the original programP .

Definition 8. Let ::a be a negated negative literal. We define the associated set of
rules of ::a as follows:R(::a) := f  :a; a�: a�  :aÆ: aÆ  :a:  a; aÆ: g.
Lemma 3. Let P be a program and letC = f1; 2; : : : ; ng be a set of atoms such
that C � LP . Let rC := ::1 � ::2 � : : : � ::n � all pref be an extended
ordered rule defined fromC whereall pref is an atom that does not occur inP . LetA = fR(::i)j::i 2 rC and 1 � i � ng andr�C = f�1� �2� : : :� �n�all prefg
where �i , 1 � i � n are atoms that occur inA. ThenM is an inclusion-preferred
answer set ofP [ r�C [ A iff M \ LP is an inclusion-preferred answer set ofP [ rC .
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For instance, if we consider the programP of Section 1 and the set of atomsC =ff; g thenrC = ::f � ::� all pref ,A = f :f; f�: f�  :fÆ: fÆ  :f:  f; fÆ: :; �: �  :Æ: Æ  ::  ; Æ: g andr�C = ff� � � � all prefg.
Then, by runningPsmodelswe obtain the following inclusion-preferred answer set

of the standard ordered programP [ r�C [A: fa; ; �; fÆg. Finally, we can see that the
intersection of the answer set withLP corresponds to the inclusion-preferred answer
set of the original extended ordered programP [ rC as it was described in Section 1,
i.e.,fa; g.
5 Application to a real planning problem

In this section, we give a brief overview of a real application where negated negative
literals in extended ordered programs are useful: evacuation planning. We start giving a
short description of planning problems and we introduce howwe can express plan pref-
erences as an extended ordered program. Then we give a brief overview of a language
for planning preference specification calledPP and we remark on the appropriateness
of PP for expressing evacuation planning. Finally, we briefly describe the solution to
the real problem of finding alternative evacuation routes involcano Popocatepetl using
extended ordered programs.

5.1 Defining planning problems with preferences

A planning problem(D; I;G) is defined by three components: the domain descriptionD, the initial conditionsI , and the goalG. A planning problem can be formally rep-
resented using action languages [7]. One of these action languages is language�. The
alphabet of the language� consists of two nonempty disjoint sets of symbolsF andA.F is called the set of fluents andA is called the set of actions. A fluent represents the
property of an object in a world. A state of the world� is a collection of fluents. Lan-
guage� is based on the concept of a transition relationT � P(F )�A�P(F ) such that(�i; aj ; �k) 2 T means that actionaj allows one to go from state�i to state�k. The so-
lution of a planning problem corresponds to a plan or a sequence of actionsa1; : : : ; an
to achieve its goalG, i.e., the solution is a sequence of actionsa1; : : : ; an such thatD j=I G after a1; : : : ; an. The sequence�0; a1; �1 : : : ; an; �n where�1; : : : ; �n are
states and(�i�1; ai; �i) 2 T , 1 � i � n is called ahistory of the transition systemT .
A full description about language� can be found in [7]. Given a planning problem ex-
pressed in language�, it is possible to define an answer set encoding of it [2], denoted
as�(D; I;G). Then, it is possible to obtain the solution of the planning problem (the
plan) from the answer sets of�(D; I;G) [2].

Given a planning problem, we may obtain a high number of solutions. In this case,
we need to specify an ordered list of criteria of preference(1; : : : ; n) to select the
“best” of those plans. To specify such preferences among feasible plans, [13] intro-
duced a new language namedPP. We consider this languagePP because it allows
us to express temporal preferences over plans: the preferences inPP are based on the
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occurrence of an action in a plan, on the fluents that define a state in the plan, on the
moment when an action occurs or a fluent holds in a state or on some combination of all
them. The preferences representing time are expressed using the temporal connectives
next, always, untilandeventually. The combination of them can be defined using three
different classes of preferences:

—A basic desire, denoted as', is aPP formula expressing a preference about a
trajectory with respect to the execution of some specific action or with respect to the
states that the trajectory gets when an action is executed.

—An atomic preference, denoted as = '1 / '2 / : : : / 'k, is a formula that gives
the order in which a set of basic desires formulas should be satisfied.

—A general preferenceis a formula based on atomic preferences.

5.2 Computing answer sets of planning problems with preferences

In order to compute the preferred trajectories of a planningproblemhD; I;Gi w.r.t. a
preference of any of the three classes, [13] defines the answer set encoding�(D; I;G;  )
as�(D; I;G) [� [�sat where�(D; I;G) is the answer set encoding of the plan-
ning problem as defined in [2],� is the encoding of the preference formula and�sat are the set of rules for checking of basic desire formula satisfaction. Moreover, ifM is an answer set of�(D; I;G), then�M denotes the trajectory achieving the goalG represented byM .

It is worth mentioning that in particular [13] shows how we can obtain the most
preferred trajectory with respect to a basic desire or an atomic preference. It is assigned
a weight to each component of the preference formula, then the weight of each tra-
jectory is obtained based on the weight of each component of the preference formula
satisfied by the trajectory. Finally, in order to obtain the most preferred trajectory, i.e.,
the answer set with maximal weight it is used themaximize construct in SMODELS.
In [13] it is recommended to usejsmodelssince SMODELS has some restrictions on
using themaximizeconstruct. Moreover, in [13] it is showed how an atomic preference
of PP can be mapped to a collection of standard ordered rules as defined by Brewka in
order to obtain the most preferred trajectory. However, theuse of weights or the map-
ping results in a complicated encoding. We now show that extended ordered rules with
negated negative literals allows a simpler and easier encoding. This encoding is based
on Corollary 1 of Lemma 1.

Corollary 1. LetP = �(D; I;G) be an answer set encoding of a planning problem(D; I;G). LetC = f1; 2; : : : ; ng be an ordered list of atoms such thatC � LP . LetA be the set of actions such thatA � LP .ThenM \ A is a preferred plan w.r.t.C iffM is an inclusion-preferred answer set ofordrule(P;C).
In order to obtain the most preferred trajectory using Corollary 1, givenP =hD; I;Gi a planning problem and = '1 /'2 / : : :/'n an atomic preference formula

of P we do the following :
— First, we obtainC the ordered list of atoms from : We define the transfor-

mation functionT of the basic desire'i, 1 � i � n as follow:T ('i) := i  'i
such thati 62 LP . Then, we define the associated ordered list of rules of as follow:
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atoms w.r.t. as follow:f1; : : : ; nji  'i 2 S and 1 � i � ng.

— Finally, we apply Corollary 1 to obtain�M the most preferred trajectory w.r.t. 
fromM an inclusion-preferredanswer set ofordrule(P 0; C ) whereP 0 = �(D; I;G;  )[S .

An example where the most preferred trajectory with respectto an atomic prefer-
ence is obtained using the Corollary 1 is presented in the following subsection. Obvi-
ously, the most preferred trajectory w.r.t. a basic desire is a particular case of an atomic
preference. Hence, Corollary 1 works in order to obtain the most preferred trajectory
w.r.t. a basic desire.

5.3 Finding alternative routes in the risk zone of the Popocatepelt

In order to illustrate the use of Lemma 1, let us consider the real problem of finding
alternative evacuation routes in the risk zone of volcano Popocatepetl in Mexico. In
[15, 16] we presented a detailed description of this problemand we proposed a partial
solution to it using CR-Prolog [1], an extension of ASP withconsistency restoring rules.
Another partial solution to this problem was presented in [11] where we showed how
CR-Prolog programs can be translated into standard ordereddisjunction logic programs
as defined by Brewka [3].

In this paper we give an overview of a more complete solution of the problem about
finding alternative evacuation routes using languagePP. We considered to usePP
because it allows us to express preferences over plans wherethe satisfaction of these
preferences depends on time and on their temporal relationships. We think that in par-
ticular in evacuation planning it is very useful to express preferences in terms of time.
For instance, it isalwayspreferred to evacuate people from a place in risk following the
defined evacuation routes. However, if atany momentpart of the evacuation route be-
comes blocked then evacuees will travel by an alternative evacuation routeuntil they ar-
rive to any place out of risk. Nowadays, “Plan Operativo Popocatepetl” office in Mexico
(POP office) is responsible of assuring safety of the people living in the risk zone of the
volcano in case of an eruption. For this purpose, POP office has defined ten evacuation
routes. However, some hazards that can accompany volcano eruptions (mud flows, flash
floods, landslides and rockfalls, etc.) can result on the blocking of the pre-established
routes. Thealternative evacuation route problemcan be stated as follows:

There is a set of predefined evacuation routes for people living in the risk area.
Evacuees should travel by these routes. In case part of an evacuation route becomes
inaccessible, then evacuees should search an alternative path. This alternative path
can belong or not to another evacuation route. If it does not belong to an evacuation
route then it should arrive to some point belonging to an evacuation route, to some
refuge or to some place out of risk.

We represent the network of roads between towns in the risk zone as a directed
graph. This representation was created from an extract of our GIS database and con-
tains real evacuation routes, towns (mostly in risk, but nearby towns not in direct risk
are also included) and some additional segments that do not belong to any evacuation
route, since these segments are necessary to obtain the alternative evacuation plans.
We define a directed graph where nodes represent towns and evacuation routes are
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Fig. 1. Three evacuation routes: A short example.

paths in the graph. Each segment is represented byroad(P,Q) whereP andQ are
nodes. Some segments belong to evacuation routes. An exogenous action which causes
road(P,Q) to become blocked results in a fact of the formblocked(P,Q). The
actiontravel(P,Q) allows to travel fromP to Q if there is an unblocked segment of
road fromP to Q. We assumed that each action takes one unit of time.

Example 1 (Evacuation in volcano Popocatepetl).
We can define�(D; I;G) as follows:

% initial and final conditions
initially(position(busA, 1)).
initially(position(busB, 12)).
initially(position(busC, 14)).
finally(position(B,N)) :- bus(B), node(N).
% fluents
fluent(position(B,X)) :- bus(B), node(X).
fluent(blocked (P,Q)) :- road(P,Q).

% actions travel by a segment of road
action(travel(B,P,Q)) :- bus(B),road(P,Q).

% Dynamic causal laws
caused(position(B,Q),travel(B,P,Q)) :- bus(B),road(P,Q).
caused(neg(position(B,P)),travel(B,P,Q)) :- bus(B),road(P,Q).

% Executability Conditions
noaction_if(travel(B,P,Q),neg(position(P))):- bus(B),road(P,Q).
noaction_if(travel(B,P,Q),blocked(P,Q)) :- bus(B),road(P,Q).

We can use the following abbreviations of basic desires to define the associated atomic
preference of this planning problem: “travel by evacuationroute assigned by the gov-
ernment” astravelERass, “travel by evacuation route not assigned by the government”
as travelER, “travel by a road out of an evacuation route until arrive to any point of an
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evacuation route” asarriveER , “travel by a road out of an evacuation route until arrive
to any refuge” asarriveRef, “travel by a road out of an evacuation route until arrive to
any place out of risk” asarriveOR . In particular, if we consider the directed graph in
Figure 1 we have the following definition oftravelERassbasic desire.

travelERass:= always(occ(travel(busB,12,13))_ occ(travel(busB,13,8))_
occ(travel(busB,8,9))_ occ(travel(busB,9,11))_ (position(busB,11))) ^
always( occ(travel(busC,14,16))_ (position(busC,16))) ^
always ( occ(travel(busA,1,2))_ occ(travel(busA,2,3))_ (position(busC,3))).

Let’s notice thattravelERassconsiders the three buses described in Figure 1. Due to
lack of space we do not define the other basic desires, howeverit is not difficult to
define them in a similar way. Then, the atomic preference is the following:  =travelERass / travelER / arriveER / arriveRef / arriveOR.

Then in order to obtain the most preferred trajectory of the planning problemP =�(D; I;G;  ) with respect to the atomic preference we follow the indications given
in Subsection 5.2:

1. We obtain the associated ordered list of rules of :S = f1  travelERass: 2  travelER: 3  arriveER:4  arriveRef: 5  arriveOR:g
2. We obtain the associated ordered list of atoms w.r.t. representing the ordered list

of criteria of preference: C = f1; 2; 3; 4; 5g.
3. Then by Definition 4 the extended ordered rule defined fromC is: rC = ::1�::2 � ::3 � ::4::5 � no pref , whereno pref is an atom that does not

occur inP . Also by Definition 4 the translation ofP w.r.t. C is: ordrule(P [S ; C ) = P [ S [ rC .
4. Finally, we apply Corollary 1 to obtain�M a most preferred trajectory w.r.t. 

fromM an inclusion-preferred answer set ofordrule(P [ S ; C ). At this point,
it is worth describing how we can easily translate the extended ordered programordrule(P [ S ; C ) to a standard ordered program and then usePsmodelsto
obtain the preferred answer sets. Then, using Definition 8 toobtain the setA of
associated rules for each::i with 1 � i � 5 we have,A = f  :1; �1: �1  :Æ1: Æ1  :1:  1; Æ1: :2; �2: �2  :Æ2: Æ2  :2:  2; Æ2: :3; �3: �3  :Æ3: Æ3  :3:  3; Æ3: :4; �4: �4  :Æ4: Æ4  :4:  4; Æ4: :5; �5: �5  :Æ5: Æ5  :5:  5; Æ5: g
and the standard ordered rule isr�C = f�1 � �2 � �3 � �4 � �5 � all prefg.
Hence thanks to Lemma 3, the intersection of an inclusion-preferred answer set ofP [S [ r�C [A with LP is an inclusion-preferred answer set ofP [S [rC , i.e.,
it is an inclusion-preferred answer set of the extended ordered programordrule(P[
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sets of the standard ordered programP [ S [ r�C [ A.

In particular, if we consider the set of segments of the directed graph in Figure 1
with no blocked segments then the most preferred trajectoryw.r.t. is:

time 1: travel(busB,12,13), travel(busC,14,16), travel(busA,1,2);
time 2: travel(busB,13,8), travel(busA,2,3);
time 3: travel(busB,8,9);
time 4: travel(busB,9,11).

We can see that this most preferred trajectory satisfies thetravelERassbasic desire
of the atomic preference since all the buses travel by the evacuation route assigned by
the government exactly asPOP officeindicates. Now, if we consider the set of segments
of the directed graph in Figure 1 with segment from node 1 to node 2 blocked, i.e., if
we add the initial conditioninitially(bloked(1; 2)) to the programP then the most
preferred trajectory w.r.t. is:

time 1: travel(busB,12,13), travel(busC,14,16), travel(busA,1,14);
time 2: travel(busB,13,8), travel(busA,14,16);
time 3: travel(busB,8,9);
time 4: travel(busB,9,11).

Now, the most preferred trajectory satisfies thetravelER basic desire of the atomic
preference sincebusA travels by a road out of the evacuation route assigned by the
government until it arrives to node 14 of evacuation route 1.

6 Related work

Another possible real application of negated negative literals in extended ordered pro-
grams is in argumentation and in particular in the domain of organ transplantation.
CARREL [14] is an agent-based platform to mediate organ transplants. In [8] there is
a full description about CARREL-ASP, namely CARREL extended with ASP to per-
form decision making based on an argumentation framework inthe domain of organ
transplantation. The idea is to use Lemma 2 to obtain the preferred extension of an ar-
gumentation framework by getting the inclusion preferred answer sets of the extended
ordered programordset(P;A) as defined in Definition 7 whereP corresponds to the
encoding of an argumentation frameworkAF andA corresponds to the translation of
the set of arguments ofAF to the programP . It is worth mentioning that in [8] ex-
tended ordered programs are not used to obtain the preferredextensions. For details see
[8] .

7 Conclusions

In this paper we have shown how we can easily translate an extended ordered program
with negated negative literals to a standard ordered disjunction program as defined by
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Brewka thanks to the characterization of the answer sets fora propositional theory
in terms of intuitionistic logic. It is worth mentioning that it is also possible to use
a different approach to represent preferences instead of ordered disjunction programs
like abductive logic programs, since the kind of preferences that we are using in this
paper is not very complex.

We are interested in expressing more sophisticated preferences in evacuation plan-
ning. Then we will see if using general preferences ofPP language is possible to
express them. For instance, ifa represents “arrive to a refuge (a place out of risk with
provisions and water)”,b represents “arrive to a place in risk with water” and repre-
sents “arrive to a place in risk with food” then we would like to express a preference to
indicate that we prefer the answer sets containinga to the answer sets containingb and, but neitherb is preferred to nor  is preferred tob.
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Mars 2004.

16. Claudia Zepeda, Christine Solnon, and David Sol. Planning Operation: An extension of a Ge-
ographical Information System. InLA-NMR 2004 CEUR Workshop proceedings, volume 92,
2004.


