
The WSML Editor Plug-in to the Web Services
Modeling Toolkit

Mick Kerrigan

Digital Enterprise Research Institute (DERI),
National University of Ireland, Galway, Ireland

mick.kerrigan@deri.org

Abstract. Research into Semantic Web Services is continuously produc-
ing new technologies. It is important that these technologies are made
accessible to end users, as technologies are adopted based on the ease
with which they can be applied. The level of tool support in Seman-
tic Web Services is relatively low and existing tools are not centralized.
This is due to the large overhead in creating applications and a lack of
communication between different groups. The Web Services Modeling
Toolkit (WSMT) is a framework within which tools for Semantic Web
Services can be centralized, it provides the ’glue’ code required to pro-
duce a high-quality application, reducing the overhead for developers and
encouraging third-party tool creation. The WSML editor, for describing
Ontologies, Mediators, Web Services and Goals in the WSML language,
is the first tool developed for the WSMT.

1 Introduction

It is important that any new technology should be accessible to end users to
ensure that this technology is adopted. As work in the field of Semantic Web Ser-
vices continues, the need for tools increases. The Web Service Modeling Toolkit
(WSMT) [7] is an attempt to reduce the effort needed to create tools for Se-
mantic Web Services by supplying a framework within which these tools can be
created and deployed. The Web Service Modeling Toolkit will also act as a loca-
tion to centralize tools for Semantic Web Services, enabling end users to obtain
one application for all their needs.

One such technology, which currently lacks adequate tool support, is the Web
Service Modeling Language (WSML) [3]. Within the Web Service Execution
Environment (WSMX1) [1] working group there is a constant need for WSML
documents containing Ontologies, Mediators, Web Services and Goals. Creating
these documents is time-consuming and a tool for creating these documents
would greatly help the productivity of end users. Current tools for editing WSML
documents are either not up-to-date with the current version of WSML used by
WSMX or lack the support for all the elements of a WSML document. The
WSML Editor [8] is the first tool developed for the WSMT and it attempts

1 http://www.wsmx.org



2 Mick Kerrigan

to provide an up-to-date, extensible editor for modifying all the elements of a
WSML document.

An introduction to the WSMO, WSML and WSMX tecnologies is presented
in Section 2. The Web Services Modeling Toolkit (WSMT) and its architecture
is described in Section 3. The WSML Editor, the first plug-in to the WSMT, is
introduced in Section 4. Section 5 presents some related work in the area of tools
for Semantic Web Services. Finally, section 6 concludes the paper and presents
some conclusions and future work.

2 WSMO, WSML and WSMX

The Web Service Modeling Ontology (WSMO) [11] is an ontology for describing
Semantic Web Services. WSMO is based on the Web Service Modeling Frame-
work (WSMF) [5] and as such, is based on the four main elements of the WSMF:
Ontologies, Mediators, Web Services, and Goals. The aim of WSMO is to solve
the integration problem by describing Web Services semantically and by remov-
ing ambiguity about the capabilities of a Web Service and the problems it solves.

The Web Service Modeling Language (WSML) [3] is a formalization of the
WSMO ontology, providing a language within which the properties of Semantic
Web Services can be described. There are five language variants, based on De-
scription Logic and Logic Programming. Each language variant provides different
levels of logical expressiveness [3]. These variants are: WSML-Core, WSML-DL,
WSML-Flight, WSML-Rule and WSML-Full. WSML-Core, which corresponds
with the intersection of Description Logic and Horn Logic, provides the basis
for all the variants, while WSML-Full unites the functionality of all variants.
WSML Core is extended in the direction of more expressive Description Logic
by WSML-DL and towards Logic Programming by WSML-Flight and WSML-
Rule.

The Web Service Execution Environment (WSMX) [1] is a reference imple-
mentation of WSMO using the WSML language. This implementation is an
execution environment for the dynamic discovery, mediation, composition and
invocation of Semantic Web Services. It uses WSMO as its conceptual model
and defines its own execution semantics [10], architecture [12] and implementa-
tion [12]. The completed WSMX system will allow service providers to describe
their Web Services in WSML and publish these descriptions to the WSMX sys-
tem. When end users send goals described in WSML to WSMX, these goals are
matched against the capabilities of the Web Services registered with the WSMX
system. These services can then be invoked to realize the users’ goals.

3 Web Services Modeling Toolkit

The Web Services Modeling Toolkit (WSMT)2 [7] is a framework for the rapid
creation and deployment of homogeneous tools for Semantic Web Services. A
2 The latest version of the Web Services Modeling Toolkit is available from

http://sourceforge.net/projects/wsmx/



The WSML Editor Plug-in to the Web Services Modeling Toolkit 3

homogeneous toolkit improves the users experience while using the toolkit, as
the tools have a common look and feel. Usability is also improved as the user
does not need to relearn how to use the application when switching between
tools.

The WSMT enables developers of tools to focus on the tool’s functionality
and provides the framework within which they can be deployed and executed.
The WSMT is implemented in the Java programming language in order to ben-
efit from its multi-platform support and the existing Java libraries available for
Semantic Web technologies, for example WSMO4J3. Using the WSMT frame-
work does not require the user to learn any new technologies. This can be a
problem with other frameworks like Eclipse4, which uses a different graphical
library (IBM’s SWT - The Standard Widget Toolkit) than most Java users are
accustomed to (Sun’s Java Swing library).

The aims of the WSMT are to encourage the development of tools for Se-
mantic Web Services and, once developed, to centralize these tools in a common
application. This will allow users who wish to describe and manage Semantic
Web Services, to install a single application from which all the tools are avail-
able. By continuing to use Sun’s Java Swing graphics library over IBM’s SWT
library, we enable existing tools to be ported to the WSMT, thus centralizing
existing tools.

Fig. 1. Architecture of the WSMT

Figure 1 shows the architecture of the Web Services Modeling Toolkit, which
consists of three tiers. The first tier contains the compact launcher, the second

3 http://wsmo4j.sourceforge.net/
4 http://www.eclipse.org/



4 Mick Kerrigan

contains the core and the third contains the individual plug-ins. Each tool is
implemented as a plug-in to the WSMT framework. Deploying the tool into the
framework is just a matter of compiling the plug-in into a jar file, which imple-
ments a number of interfaces, and placing the jar file, along with any third-party
jars used, into the lib folder of the WSMT installation. This means that new tools
can be deployed into the application without the requirement of recompiling the
application.

Building the classpath dynamically is a major issue when developing appli-
cations where it is not known in advance what jar files will be in the classpath.
When executing an application in a Unix environment, scripting can be used to
build this classpath. However, this is only possible in operating systems where
scripting is supported. The job of the launcher is to build the dynamic classpath.
It does this by locating all jar files in the lib folder of the WSMT installation
and building a dynamic classloader. This classloader is then used to launch the
WSMT core.

The WSMT core is responsible for supplying the ’glue’ code to the plug-ins
(tools), providing the main application frame, the menu bar, and the configu-
rations for multi-language localization. The core loads all the available tools by
searching for plug-in description files in the lib folder of the WSMT installation.
Each description specifies a unique identifier and the class that the core should
instantiate in order to load the plug-in. This class must implement the Plugin
interface, which allows access to the plug-in itself.

The WSMT is wrapped in a full installation system, which allows the end
user to choose the tools that are installed during the installation process. A fully
private Java 1.5 run-time environment is also installed, which means there is
no dependency on the user to install any third-party software. A third-party
tool provider can choose to supply their own tool for inclusion in the WSMT
installation or provide their own installation for their tool.

An initial set of tools for the WSMT includes: a WSML Editor [8] for editing
WSML documents and publishing them to WSMO repositories, which will be
described in more detail in the next section; a WSMX Monitor [9] for monitoring
the state of the components in the WSMX environment; a WSMX Mediation
tool for creating mappings between Ontologies (which is in fact an existing tool
that will be ported to the WSMT), and finally, a WSMX Management tool for
managing the WSMX environment.

4 The WSML Editor

The aims of developing the WSML Editor are to provide a useful tool for de-
scribing Semantic Web Services using the WSMO ontology and publishing these
descriptions to a WSMO repository and also to facilitate user experimentation
with the WSMO ontology and WSML language. The first version of the WSML
Editor focuses on the creation of semantic descriptions in WSMO and reading
and writing these semantic descriptions to and from a local hard-disk using the
WSML syntax. Future work, which we will look at in more detail in section 6, will



The WSML Editor Plug-in to the Web Services Modeling Toolkit 5

focus on communicating with WSMO repositories and execution environments
in order to register semantic descriptions with these systems.

The WSML Editor is capable of opening multiple WSML documents in a
tabbed interface, each tab containing all the information about a given doc-
ument. A WSML document is comprised of four types of top-level element,
Ontologies, Mediators, Web Services and Goals. These elements are grouped to-
gether and displayed in a tree structure, as can be seen in figure 2. This means
that, for example, all of the Web Services described in a given document are
displayed together. A node in the document tree represents either an element or
a group of elements, by expanding a group the elements within can be seen.

Fig. 2. WSML Document Tree

The namespaces node can be seen at the top of the WSML document tree,
as shown in figure 2. WSML documents use namespaces in a similar manner to
XML Schema, with the namespaces providing shortcut prefixes so that identifiers
from different spaces can be differentiated. When this node is selected, the user
is able to add and remove namespaces from the WSML document. The available
namespaces can be used throughout the elements in the document, where values
and ranges of elements must be chosen.

Fig. 3. Right-Click Menus



6 Mick Kerrigan

A new element is added to the document by right-clicking on the parent
element in the tree. A number of potential right-click menus that can be dis-
played, are shown in figure 3. The content in the right-click menu depends upon
the element which was selected. When adding an element to the document, an
identifier must be added. The dialog for doing this can be seen in figure 4.

Fig. 4. Adding a new Element

When selecting nodes that represent an element in the document tree, the
properties of that element are displayed in the panel on the right-hand side of
the application. There are many common properties between different WSML
elements, which means that this panel is dynamically built based on the function-
ality supported by the given element. For example, when displaying a concept,
the non-functional properties, super concepts, and logical expressions panels are
displayed.

Dynamically building the panel in this way ensures that if new elements are
added to the WSML standard, they can easily be incorporated into the editor.
This also enables an encapsulated application design. Examples of the sub-panels
which can be used to make up the dynamic panel include panels for adding
and removing non-functional properties, imported ontologies, used mediators,
super concepts, super relations, setting logical expressions, choosing ranges and
choosing values. Figure 5 shows the properties of an ontology displayed in the
WSML Editor, the dynamic panel is made up of the non-functional property,
imported ontology, and used mediator sub-panels.

WSMO4J is used as the object model that is built up as the user creates
their semantic descriptions. WSMO4J is an open source library comprising a
Java API and reference implementation compatible with WSMO v1.0, as de-
scribed in WSMO Deliverable 2, Appendix A[11]. Future work on the WSMO4J
library will upgrade the library to be compatible with WSML Deliverable 16.1[3].
When this work is completed the WSML Editor will be upgraded so that it is
also compatible. As part of the reference implementation, a WSML parser and
serializer are supplied, which allows the object model to be written to hard-disk
and re-read later.



The WSML Editor Plug-in to the Web Services Modeling Toolkit 7

Fig. 5. The properties of an ontology displayed in the WSML Editor

5 Related Work

This section outlines a number of tools (in development or completed), which
can be used for the management of Ontologies in the WSML language.

5.1 OMWG - Ontology Editing and Browsing Tool

The Ontology Editing and Browsing Tool [6] is a plug-in for the Eclipse frame-
work currently under development by the Ontology Management Working Group
(OMWG)5. The tool can be used to edit Ontologies described within WSML
documents. The tool uses two different views of the WSML document to aid
in ontology management. The first view, called the ’Class Explorer’, is used to
view Concepts, Relations, Functions, Axioms, Attributes and Parameters. The
second view, called the ’Instance Explorer’, is used to view Instances of Con-
cepts and Relation Instances of Relations, along with their associated Attribute
and Parameter values. The main difference between this editor and the WSML
Editor is the focus. Where the WSML Editor looks at Ontologies, Mediators,
Web Services and Goals, the OMWG editor focuses only on Ontologies. This
essentially means that while the OMWG editor provides useful functionality to
users for building Ontologies, it does not provide the much needed functionality
for Semantic Web Services
5 http://www.omwg.org/



8 Mick Kerrigan

5.2 SWWS Studio

Originally based on OWL-S [2], the SWWS Studio [4] was developed by Ontotext
Lab6 as part of the Semantic Web enabled Web Services (SWWS)7 European
IST project. The tool can be used to edit Ontologies, Mediators, Web Services,
and Goals located in a local or remote registry. SWWS Studio is based on early
versions of the WSMO ontology, and has not recently been updated to support
features added to the WSMO ontology and the WSML language. The closed
license on SWWS studio makes it difficult to update and extend. This is one
of the main driving forces behind making the WSMT and the WSML Editor
available under an open source license.

5.3 WSMO Studio

WSMO Studio8 is a new tool in the design phase that will be made available as
a set of Eclipse Plug-ins. The tool is a joint project developed by Ontotext Lab
and the University of Innsbruck9 as part of the DIP10 European IST project
and builds on the work done in the SWWS Studio project. The aim of the
WSMO Studio is to create an open source, extensible editor for the WSMO
ontology, allowing users with different roles to use the editor to create and version
Ontologies, Mediators, Web Services and Goals in WSML and to publish and
manage these descriptions in their relevant repositories.

6 Conclusions

The Web Services Modeling Toolkit provides a useful framework for the rapid
development of tools for Semantic Web Services. As more and more tools are
developed using the framework the WSMT will become more popular, encourag-
ing third-party developers to use it. Future work to the WSMT will include the
addition of more graphical components to which individual tools can contribute;
for example an application toolbar and preferences dialog. Additional compo-
nents will also be added to the core to reduce the effort required to develop
tools. These components will include an application logging component and a
communication component. The logging component will enable tool developers
to perform high-quality logging without the overhead of developing a logging
framework. The communication component will encapsulate the communication
with external execution environments and repositories.

The first version of the WSML Editor is the first step towards a fully func-
tional tool for creating semantic descriptions in the WSML language and pub-
lishing these semantic descriptions to external systems. The WSMO4J library is
6 http://www.ontotext.com/
7 http://swws.semanticweb.org/
8 http://www.wsmostudio.org/
9 http://www.uibk.ac.at/

10 http://dip.semanticweb.org/



The WSML Editor Plug-in to the Web Services Modeling Toolkit 9

currently being upgraded to bring it into line with WSML Deliverable 16.1[3].
When this upgrade is complete the WSML Editor will undergo the same process.
Currently, the WSMO4J library deals with logical expressions, which are used
throughout the WSML documents, as strings. This means that there is currently
no validation of logical expressions within the object model. Development of an
object model for logical expressions is underway and once this development is in-
corporated into the WSMO4J library, the WSML Editor will be able to validate
all logical expressions and provide a more graphical mechanism for building
up these expressions. The main functionality to be added in later versions, is
communication with external execution environments and repositories so that
semantic descriptions can be registered with these systems. This communication
will be done through the new communication component in the WSMT core.

References

1. E. Cimpian, T. Vitvar, and M. Zaremba, Overview and Scope of WSMX,
http://www.wsmo.org/TR/d13/d13.0/v0.2/

2. M. Dean, G. Schreiber, (Eds.). OWL Web Ontology Language Ref-
erence, W3C Recommendation, 10 February 2004. Available from
http://www.w3.org/TR/2004/REC-owl-ref-20040210/.

3. J. de Bruijn, H. Lausen, and D. Fensel, The WSML Family of Representation Lan-
guages, http://www.wsmo.org/TR/d16/d16.1/

4. M. Dimitrov, Z. Marinova, P. Radkov, SWWS - Prototype Tools II,
http://swws.semanticweb.org/public doc/D5.2.pdf

5. D. Fensel and C. Bussler: The Web Service Modeling Framework WSMF, Electronic
Commerce Research and Applications, 1(2), 2002.

6. J. Henke, OMWG Editing and Browsing Implementation,
http://www.omwg.org/TR/d8/d8.3/

7. M. Kerrigan, Web Services Modeling Toolkit (WSMT),
http://www.wsmo.org/TR/d9/d9.1/v0.1/

8. M. Kerrigan, WSML Editor, http://www.wsmo.org/TR/d9/d9.2/
9. M. Kerrigan, WSMX Monitor, http://www.wsmo.org/TR/d9/d9.3/
10. E. Oren. WSMX Execution Semantics, http://www.wsmo.org/TR/d13/d13.2/
11. D. Roman, H. Lausen, U. Keller (eds.): Web Service Modeling Ontology (WSMO),

http://www.wsmo.org/TR/d2/
12. M. Zaremba, M. Moran, WSMX Architecture,

http://www.wsmo.org/TR/d13/d13.4/v0.2/


