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Abstract. In this paper, we compare performance of several dimension
reduction techniques, namely LSI, random projections and FastMap. The
qualitative comparison is based on rank lists and evaluated on a subset of
TREC 5 collection and corresponding TREC 8 ad-hoc queries. Moreover,
projection times and intrinsic dimensionality were measured to present
a common baseline for methods’ usability.
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1 Introduction

The information retrieval [14, 2] deals among other things with storage and
retrieval of multimedia data that can be usually represented as vectors in mul-
tidimensional space. This is especially suitable for text retrieval, where we store
a collection (or corpus) of texts. There are several models used in text retrieval,
from which we will use the vector model [12] providing qualitatively better re-
sults than the Boolean model [14], which combines word matching with Boolean
operators.

In the vector model, we have to solve several problems. The ones addressed
in this paper are problems with the ability to index given collection, search
efficiency and result set quality.

Latent semantic indexing (LSI ) adds an important step to the indexing pro-
cess. In addition to recording which terms a document contains, the method
examines the document collection as a whole, to see which other documents
contain some of those same terms. LSI considers documents that have many
terms in common to be semantically close, and ones with few words in com-
mon to be semantically distant. However it is not suitable for huge collections
and is computationally expensive, so other methods of dimension reduction were
proposed. We test two of them – Random projection, which projects document
vectors into a subspace using a randomly generated matrix, and FastMap, a
pivot-based method based loosely on Multi-Dimensional Scaling. Since both of
them were created for Euclidean spaces, they may not supply good results for a
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different distance functions. In our case, we need to evaluate, how these methods
behave when using cosine measure, common in text retrieval.

The rest of this paper is organised as follows. In the second section, we de-
scribe classic vector model and its problems, which may be addressed by dimen-
sion reduction. The third section explains used dimension reduction methods. In
the fourth section, we briefly describe qualitative measures used for evaluation
of our tests and in the fifth the projection properties. In the sixth section, we
supply results of tests on a subset of TREC 5 collection. In conclusions we give
ideas for future research.

2 Vector model

In vector model, a document Dj is represented as a vector dj of term weights,
which record the extent of importance of the term for the document.

To portrait the vector model, we usually use an n × m term-by-document
matrix A, having n rows – term vectors t1 . . . tn (where n is the total number of
terms in collection) and m columns – document vectors d1, . . . dm, where m is
the size of collection (or corpus) C.

Term weights can be calculated in many different ways: wij ∈ {0, 1}; as a
membership grade to a fuzzy set; or as a product of functions of term frequency
both in a document and in the whole collection [13] (usually tf.idf – count of term
occurrences in the document multiplied by a logarithm of the inverse portion
of documents containing the term). The normalisation of document vectors is
sometimes applied during index generation phase to make the calculation in the
retrieval phase faster.

A query Q is represented as an n-dimensional vector q in the same vector
space as the document vectors. There are several ways how to search for relevant
documents. Generally, we can compute some Ln metrics to represent the simi-
larity of query and document vectors. However, in text retrieval better results
can be obtained by computing similarity, usually using the cosine measure:

SIMcos(dj , q) =
dj • q

||dj ||.||q||
=

n∑
i=1

(wi,j . qi)√
n∑

i=1

w2
i,j .

n∑
i=1

q2
i

As one can see, we do not only obtain documents which are considered rel-
evant, but according to their similarity (or distance) to the query vector, we
can order them and obtain a rank for every document in the answer set. If we
need a metrics instead of similarity measure, we can use the deviation metric
ddev(x, y) = arccos(SIMcos(x, y)).

We can define a threshold t, too. All documents closer than t will be consid-
ered relevant, whilst the rest will be irrelevant. However, the choice of t is not
exact and its value is usually determined experimentally.
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The main problem of the vector model is that the document vectors have a big
dimension (e.g. 150,000) and are quite sparse (i.e. most co-ordinates are zero). If
we store them as classical vectors, the storage volume is huge – consider size of
a term-by-document matrix consisting of 100,000 terms and 200,000 documents.

We can use existing compression schemes for the term-by-document matrix
representation to decrease memory usage, but then the access time is much
longer and we are limited by the fact, that we cannot access either the term or
the document vectors quickly. Another way is to use combined storage with both
row and column compression, but updating would still pose a problem.

The second problem is the so-called “curse of dimensionality”, which causes
classical indexing structures like M-trees, A-trees, iDistance, etc. (see [5]), to
perform in the same way or even worse than sequential scan in high dimen-
sions. This is caused by the distribution of document vectors, which prevents
partitioning into meaningful regions.

Third, the synonyms of terms and other semantically related words are not
taken into account.

The first two problems can be addressed for queries containing only a few
words by inverted list, which is in fact a compressed storage of term vectors.
Only term vectors for terms contained in a query Q are loaded and processed,
computing rank for all documents containing at least one of the terms at once.
However, the inverted list is not efficient when searching for similar documents,
because significant part of index must be processed.

3 Dimension reduction methods

We used three methods of dimension reduction - latent semantic indexing, ran-
dom projection, and FastMap, which are briefly described bellow.

3.1 Latent semantic indexing

LSI [3] is an algebraic extension of classical vector model. Its benefits rely on
discovering latent semantics hidden in the term-by-document matrix A. Infor-
mally, LSI discovers significant groups of terms (called concepts) and represents
the documents as linear combinations of the concepts. Moreover, the concepts
are ordered according to their significance in the collection, which allows us to
consider only the first k concepts important (the remaining ones are interpreted
as “noise” and discarded). To name the advantages, LSI helps solve problems
with synonymy and homonymy. Furthermore, LSI is often referred to as more
successful in recall when compared to vector model [3], which was proved for
pure (only one topic per document) and style-free collections [11].

Formally, we decompose the term-by-document matrix A by singular value
decomposition (SVD), calculating singular values and singular vectors of A. SVD
is especially suitable in its variant for sparse matrices.

Theorem 1 (Singular value decomposition [3]). Let A is an n ×m rank-
r matrix and values σ1, . . . , σr are calculated from eigenvalues of matrix AAT
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as σi =
√

λi. Then there exist column-orthonormal matrices U = (u1, . . . , ur)
and V = (v1, . . . , vr), where UT U = In a V T V = Im, and a diagonal matrix
Σ = diag(σ1, . . . , σr), where σi > 0, σi ≥ σi+1. The decomposition

A = UΣV T

is called singular decomposition of matrix A and the numbers σ1, . . . , σr are
singular values of the matrix A. Columns of U (or V ) are called left (or right)
singular vectors of matrix A.

Now we have a decomposition of the original term-by-document matrix A.
The left and right singular vectors (i.e. U and V matrices) are not sparse. We
get r nonzero singular numbers, where r is the rank of the original matrix A.
Because the singular values usually fall quickly, we can take only k greatest
singular values with the corresponding singular vector coordinates and create a
k-reduced singular decomposition of A.

Definition 1 ([3]). Let us have k (0 < k < r) and singular value decomposi-
tion of A

A = UΣV T ≈ Ak = (UkU0)
(

Σk 0
0 Σ0

) (
V T

k

V T
0

)
We call Ak = UkΣkV T

k a k-reduced singular value decomposition (rank-k SVD).

Instead of the Ak matrix, a concept-by-document matrix Dk = ΣkV T
k is

used in LSI as the representation of document collection. The document vec-
tors (columns in Dk) are now represented as points in k-dimensional space (the
pseudodocument-space). For an illustration of rank-k SVD see Figure 1.

Fig. 1. rank-k SVD

Rank-k SVD is the best rank-k approximation of the original matrix A.
This means that any other decomposition will increase the approximation error,
calculated as a sum of squares (Frobenius norm) of error matrix B = A − Ak.
However, it does not implicate that we could not obtain better precision and
recall values with a different approximation.
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The value of k was experimentally determined as several tens or hundreds
(e.g. 50–250), it is known to be dependent on the number of topics in collection,
however its exact value cannot be simply determined.

The LSI is hard to compute with complexity O(mn2) for dense and O(mnc)
for sparse matrices having on the average c nonzero values per column [11]. Once
computed, it reflects only the decomposition of original term-by-document ma-
trix. If several hundreds of documents or terms have to be added to existing
decomposition (folding-in), the decomposition may become inaccurate. Because
the recalculation of LSI is expensive, so it is impossible to recalculate LSI every
time documents and terms are inserted. The SVD-Updating [3] is a partial solu-
tion, but since the error slightly increases with inserted documents and terms,
If the updates happen frequently, the recalculation of SVD may be needed soon
or later.

3.2 Approximate LSI calculation

Several approximate methods for faster SVD calculation were offered, such as
application of Monte-Carlo method [8] and using random projection (see sec-
tion 3.3) of document vectors into suitable l-dimensional subspace before LSI
calculation for resulting k dimensions [11].

We used the latter method, applying LSI on a matrix with reduced document
vectors created by random projection. This method has a complexity of O(ml(l+
c)).

3.3 Random projection

Random projection is a fast method of dimension reduction. Unlike LSI method,
it does not require expensive computation of decomposition. Instead, it uses
a randomly-generated projection matrix to reduce dimension of vector space.
Vector from original space with dimension n is multiplied with projection matrix
to obtain a vector in reduced space of dimension l, where l << n.

Results of dimensionality reduction by random projection are of course worse
than in case of LSI and we do not obtain latent semantics. If the reduced di-
mension is high enough and random values building projection matrix have a
zero-mean unit-variance distribution such as N(0, 1), the Euclidean distances
and angles between vectors are well-preserved.

The minimal “safe” dimension can be obtained from Johnson-Lindenstrauss
lemma, however the currently known bound is still quite high and experiments
showed that even smaller dimensions can be used [4]. Interestingly, the resulting
dimension does not depend on original one, only on number of original points.
With current best known bound, the lemma looks as follows:

Theorem 2 (Johnson-Lindenstrauss [1]). For every set P of m points in
Rn, given ε > 0, β > 0 and l > 0, l ≥ l0 = 4+2β

ε2/2−ε3/3 log m, there exists with
probability at least 1− n−β mapping f : Rn → Rl, such that for all u, v ∈ P

(1− ε)||u− v||2 ≤ ||f(u)− f(v)||2 ≤ (1 + ε)||u− v||2
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Since we JL lemma considers only Euclidean distances, we don’t have yet
any bounds for cosine measure. Papadimitriou et al showed in [11] that a bound
can be found for cosine measure, too. In that case

f(vi).f(vj) ≤ (1− ε)vi.vj + ε(v2
i + v2

j ).

Are the lengths of all vk ≤ 1, changes the inner product at most by 2ε. Again,
real-life data indicate that the bound is still too high and smaller dimensions
can be used.

When calculating the Euclidean distances, we need to apply a scaling factor√
n/l first, to obtain correct results because less coordinates are being used.
Classical implementations of random projection used orthogonalisation, nor-

malisation and a dense projection matrix with Gaussian distribution. Achlioptas
showed that orthogonalisation and normalisation can be skipped. He also pro-
posed yet another powerful simplification – instead of using real coefficients of
N(0, 1) distribution, he offered two possible distributions for elements rij of pro-
jection matrix R [1]:

rij =
√

3.

8>>>><
>>>>:

−1 with probability 1
6

0 with probability 2
3

+1 with probability 1
6
.

rij =

8<
:
−1 with probability 1

2

+1 with probability 1
2
.

The
√

3 component does not have to be stored in projection matrix. It can be
used together with scaling factor after calculation of projected vector coordinate.
If we are calculating cosine measure, it can be even discarded and instead of
multiplication, we can use addition and subtraction.

We used this method in our tests, since previous results [10] indicated almost
the same performance as in the case of classic random projection. The complexity
of random projection is O(mcl).

3.4 FastMap

FastMap [7] is a pivot-based technique of dimension reduction, suitable for Eu-
clidean spaces.

In first step, it chooses two points, which should be most distant for calculated
reduced dimension. Because it would be expensive to calculate distances between
all points, it uses following heuristics:

1. A random point c0 is chosen.
2. The point bi having maximal distance δ(ci, bi) from ci is chosen, and based

on it we select the point ai with maximal distance δ(bi, ai)
3. We iteratively repeat step 2 with ci+1 = ai (authors suggest 5 iterations).
4. Points a = ai and b = bi in the last iteration are pivots for the next reduction

step.

In second step (having the two pivots a, b), we use the cosine law to calculate
position of each point on line joining a and b. The coordinate xi of point pi is
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calculated as

xi =
δ2(ai, pi) + δ2(ai, bi)− δ2(bi, pi)

2δ(ai, bi)
and the distance function for next reduction step is modified to

δ′2(p′i, p
′
j) = δ2(pi, pj)− (xi − xj)2

The pivots in original and reduced space are recorded and when we need to
process a query, it is projected using the second step of projection algorithm
only. Once projected, we can again use the original distance function in reduced
space.

The complexity of FastMap is O(mck) for sparse and O(mnk) for dense
matrices.

4 Qualitative measures of Retrieval Methods

Since we need an universal evaluation of any retrieval method, we use some
measures to determine quality of such method. In case of Information Retrieval
we usually use two such measures - precision and recall. Both are calculated
from the number of objects relevant to the query Rel – determined by some
other method, e.g. by manual annotation of given collection and the number
of retrieved objects Ret. Based on these numbers we define precision (P ) as a
fraction of retrieved relevant objects in all retrieved objects and recall (R) as a
fraction of retrieved relevant objects in all relevant objects. Formally:

P =
|Rel ∩Ret|
|Ret|

and R =
|Rel ∩Ret|
|Rel|

So we can say that recall and precision denote, respectively, completeness of
retrieval and purity of retrieval. Unfortunately, it was observed that with the
increase of recall, the precision usually decreases [14]. This means that when it
is necessary to retrieve more relevant objects, a higher percentage of irrelevant
objects will be probably obtained, too.

For the overall comparison of precision and recall across different methods
on a given collection, we usually use the technique of rank lists [2], where we
first sort the distances from smallest to greatest and then go down through the
list and calculate maximal precision for recall closest to each of the 11 standard
recall levels (0.0, 0.1, 0.2, . . . , 0.9, 1.0). If we are unable to calculate precision on
i-th recall level, we take the maximal precision for the recalls between i − 1-th
and i + 1-th level.

5 Projection properties

5.1 Intrinsic dimensionality

The search in a collection of high-dimensional document vectors is negatively
affected by a phenomenon called the curse of dimensionality [6], which causes
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almost all regions to be overlapped by nearly every “reasonable” query region;
so that searching deteriorates to sequential scan over all the classes. To judge
the indexability of given dataset (in a metric space), we can use the concept
of intrinsic dimensionality [6], defined as ρ = µ2

2σ2 , where µ and σ2 are the
mean and the variance of the dataset’s distance distribution. In other words, the
intrinsic dimensionality is low if there exist tight clusters of objects. Conversely,
if all pairs of the indexed objects are almost equally distant, the intrinsic dimen-
sionality is high (i.e. the mean is high and/or the variance is low), which means
that the dataset is poorly intrinsically structured.

5.2 Projection stress

Sometimes, we need to verify, how well are the distances between objects pre-
served in the reduced dimension. To do so, we usually calculate the stress of
projection f as

stress =

√
(
∑m

i,j=1(d′(f(xi), f(xj))− d(xi, xj))2∑m
i,j=1 d2(xi, xj)

,

where d is the distance function in original and d′ in projected space. The lower
the stress, the better. If stress = 0, then the projection did not change the
distances at all.

However, the stress function must not be overrated – even if the distances
are not well-preserved, they might have been scaled by some factor, making the
only difference in the choice of similarity threshold.

6 Experimental results

For testing of our approach, we used a subset of TREC collection [16], consisting
of 16,889 Los Angeles Times articles (years 1989 and 1990) assessed in TREC-8
ad-hoc queries. We indexed this collection, removing well-known stop-words and
terms appearing in more than 25% of documents, thus obtaining 49,689 terms.

We calculated random projection into dimensions l ∈ {100, 250, 500, 1000};
both classic and approximate LSI (with random projection into l = 1000) for
k ∈ {100, 250}. For FastMap, we used for every value of k suggested 5 iterations
to choose “most distant” points. Additionally we calculated FastMap for k = 100
and 3 iterations (which yielded slightly worse results). Classic LSI was included
to provide a baseline, since its improvement of recall is well-known.

The reduction and query projection times are shown in Table 1 1.

6.1 Analytical results

We calculated stress and intrinsic dimension for each projection method for
deviation metrics.
1 Since the LSI was calculated on a different computer, the LSI calculation times are

only approximate
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Table 1. Times of (a) dimension reduction and (b) projection of 45 TREC queries [s]

Reduction method
k LSI FastMap RP

50 – 771 5.43
100 > 5400 910 11.98
250 > 14400 2193 26.81
500 – – 50.51
1000 – – 93.44

(a)

Reduction method
k LSI FastMap RP RP+LSI

50 0.05 0.14 0.02 0.05
100 0.12 0.28 0.03 0.12
250 0.35 1.00 0.07 0.35
500 – – 0.13 0.78
1000 – – 0.25 –

(b)

0.0 0.5 1.0 1.5

0
1

2
3

4
5

Distance histogram − VSM

distance

di
st

an
ce

 fr
eq

ue
nc

y 
[%

]

(a)

0.00 0.05 0.10 0.15 0.20 0.25

0
5

10
15

Distance histogram − FM250

distance

di
st

an
ce

 fr
eq

ue
nc

y 
[%

]

(b)

Fig. 2. Distance distribution histograms for Deviation metrics and (a) vector model,
(b) FastMap

The stress, summarised in Table 2a is quite low for both LSI and random
projection, however in case of FastMap are the deviations not well-preserved.
From the look at distance distribution histograms of original and FastMap re-
duced space in Figure 2 one can observe that the distances are highly reduced.
The question, if the change affects only the dissimilarity threshold will be partly
solved in the next section.

In Table 2b, we can observe high intrinsic dimensions for both LSI vari-
ants and especially for random projection, whilst the intrinsic dimension for
FastMap is surprisingly low. Additional tests on real data structures are re-
quired for FastMap, to verify the indexability of reduced data. In case of LSI,
we recently offered a modified σ-LSI model [15], which trades the precision for
better indexing with Metric Access Methods, namely M-trees.
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Table 2. (a) Stress and (b) intrinsic dimensionality of reduced datasets

Reduction method
k LSI FastMap RP RP+LSI

50 0.210 0.978 0.296 0.247
100 0.224 0.978 0.284 0.259
250 0.242 0.980 0.282 0.270
500 – – 0.279 0.275
1000 – – 0.278 –

(a)

Reduction method
k LSI FastMap RP RP+LSI

50 25.1 0.2 53.3 46.8
100 51.1 0.5 100.2 93.9
250 121.1 0.9 217.1 206.4
500 – – 343.7 329.7
1000 – – 489.3 –
VM ←− 31.8 −→

(b)

6.2 Query Evaluation

Firstly, we used rank lists and measured interpolated average precision of the
above mentioned TREC Queries at the 11 standard recall levels. Results are
summarised in Figure 3. We can see that while classic LSI provides even better
results than vector model due to latent semantics, other reduction techniques try
with a different success to reach the results of vector model. In our case, we got
results close to vector model for random projection with l=1000 and FastMap
with k=250.

Since the important part of precision-recall curve is close to the 100% recall,
we also calculated the mean average precision for all relevant documents in rank
lists. The relative results against vector model (100%) are shown in Table 3.

Table 3. Mean average precision of different reduction methods

Reduction method
k LSI FastMap RP RP+LSI

50 128% 31% 13% 85%
100 155% 58% 24% 98%
250 112% 80% 37% 79%
500 – – 59% 77%
1000 – – 74% –

7 Conclusion

In this paper, we have compared three well-known dimension reduction meth-
ods from the view of indexability, distance preservation and results on real-live
text data (using cosine measure as similarity function). Whilst the LSI is known
to provide latent semantics, it is computationally expensive and in case we only
need to battle the “curse of dimensionality” by reducing the dimension, FastMap
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Fig. 3. Precision at the 11 standard recall levels: (a) LSI, (b) random projection, (c)
approximate LSI calculation and (d) FastMap

or random projection may suffice. As expected, LSI was the slowest, but most
exact method, followed by FastMap, which is faster but less accurate, and Ran-
dom projections which are fast, but accurate only in high dimensions and have
high intrinsic dimensionality.

There are some other newly-proposed methods, which may be interesting
for future testing, e.g. the SparseMap [9]. Additionally, faster pivot selection
technique based on text corpus properties may be considered. Finally, testing
FastMap with deviation metrics on metric structures should answer the question
of projected data indexability.
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