
Specifying Semantic Email Processes

Luke McDowell, Oren Etzioni, and Alon Halevy

University of Washington
E-mail: {lucasm,etzioni,alon}@cs.washington.edu

Abstract

Prior work has shown that semantic email processes
(SEPs) can be an effective tool for automating email-
mediated tasks that are currently performed manually in
a tedious, time-consuming, and error-prone manner. How-
ever, specifying a SEP can be difficult to accomplish, even
for users familiar with RDF and semantic email. In re-
sponse, this paper considers an approach for specifying
SEP templates that can be authored once but then instanti-
ated many times by untrained users. We describe the tem-
plate language and provide a complete example, highlight-
ing the key features needed to enable general SEPs. We
then examine a number of challenges related to SEP au-
thoring. In particular, we discuss the problem of verifying
that a given template will always produce a valid instantia-
tion and give the computational complexity of this problem.
In addition, we discuss how to simplify the task of SEP au-
thoring (and improve execution quality) by automatically
generating explanations for the actions performed in pur-
suit of a SEP’s goals. Finally, we report on practical expe-
rience with our fully deployed system.1

1 Introduction

In previous work [2, 7], we introduced semantic email
processes (SEPs) and demonstrated how they can effec-
tively manage a number of tasks that are currently per-
formed via email in a tedious, time-consuming, and error-
prone way. These processes support the common task
where an originator wants to ask a set of participants some
questions, collect their responses, and ensure that the re-
sults satisfy some set of goals. In order to achieve these
goals, the semantic email manager may utilize a number
of interventions (e.g., rejecting a participant’s response or
suggesting changes).

McDowell et al. [7] demonstrated that SEPs can be used
for a wide range of useful interactions and that important
reasoning problems for SEPs are computationally tractable

1See www.cs.washington.edu/research/semweb/email
for a publicly accessible server (no installation required); source code is
also available from the authors.

in many common cases. Applying this theory to real prob-
lems, however, requires the ability to create a SEP specifi-
cation that corresponds to an originator’s goals. Ideally, we
would like an originator who is untrained in the usage of
RDF and semantic email to be able to easily construct such
a specification. Unfortunately, without appropriate support
this task may be challenging even for trained users, because
the specification must fully describe the originator’s goals
in terms of some RDF content to collect, express how and
when to use interventions in order to achieve these goals,
and support the explanation of these interventions to the
participants.

The contributions of this paper are as follows. First, we
describe how to specify SEPs via templates. This approach
addresses the difficulties described above by enabling a
SEP template to be authored once by a user familiar with
semantic email but then instantiated many times by un-
trained originators. We describe the key primitives of our
declarative template language, which allows authors to eas-
ily express complex goals but also raises several authoring
challenges. In particular, to avoid frustrating the originator
we must ensure that every possible instantiation of a tem-
plate is executable, yet checking this property manually can
very difficult for the SEP author. Thus, we examine how to
automate this task by formally defining the problem of test-
ing instantiation safety, describing its computational com-
plexity, and providing an approximate solution. Likewise,
to secure the participants’ cooperation the manager’s inter-
ventions must be clearly explained, yet providing these ex-
planations in the template can be challenging or impossible
for the author. Consequently, we examine how to automat-
ically generate these explanations in terms of why a par-
ticular response could not be accepted and what responses
would be more acceptable, and describe both approximate
and optimal algorithms for computing these quantities.

The next section gives a brief overview of SEPs while
Section 3 describes our template language and a complete
example. Sections 4 and 5 examine the problems of in-
stantiation safety and explanation generation that were dis-
cussed above. Finally, Section 6 discusses our experience
with a deployed semantic email system, Section 7 exam-
ines related work, and Section 8 concludes.

����� ��� �	�	
��	�

����
��������� �����

����
 "!$#&% � '�� !

(�	�
)�!+* � '$,�'-�/. �$�

021
�3	�"��� ���

021
�3��4�

5 ��6�
����	
�� ��
�� �"�

78!+9
: ��, #

Figure 1. The creation of a semantic email process. Initially, a SEP template is authored by the “Author”, then is later instantiated
by the “Originator”. Typically, a template is authored once and then instantiated many times.

2 Overview of SEP Creation and Execution

We illustrate SEPs with the running example of a “bal-
anced potluck.” The originator of the process initially sends
out a message announcing the potluck and asking each par-
ticipant whether they are bringing an Appetizer, En-
tree, or Dessert (or Not-Coming). The originator
also expresses a set of goals for the potluck, which may be
specified in two different ways. For a logical SEP, the orig-
inator specifies a set of constraints that should be satisfied
by any process outcome. For example, the originator may
specify that the difference in the number of appetizers, en-
trees, or desserts should be at most two. Alternatively, for a
decision-theoretic SEP, the originator provides a function
representing the utility of possible process outcomes (e.g.,
a function that becomes more negative as the potluck be-
comes more unbalanced).

Conceptually, the semantic email system acts as a man-
ager that uses interventions to direct the process towards
an outcome consistent with the originator’s goals. For in-
stance, if the manager detects that the potluck is becoming
too unbalanced, the manager can reject a participant’s re-
sponse or suggest that a participant modify his response.

Figure 1 demonstrates how a template is used to create a
new SEP. Initially, a user, who is assumed to have some ba-
sic knowledge of RDF and semantic email, authors a new
template using an editor (most likely by modifying an ex-
isting template). We call this user the SEP author. The
template is written in OWL based on a SEP ontology that
describes the possible queries, goals, and messages for a
process. For instance, the “balanced potluck” template de-
fines the general balance constraints for the process, but
has placeholders for parameters such as the participants’
addresses, the specific choices to offer, and how much im-
balance to permit. To enable an originator to provide these
values later, the author also constructs a simple web form
that prompts the originator for each parameter. Section 4
describes how to automatically generate such forms.

An untrained originator finds a SEP template from a
public library and instantiates the template by filling out
the corresponding web form, yielding a SEP declaration
(also in OWL). The originator then invokes the process by
submitting this declaration to the manager. The manager

executes the declaration, using appropriate algorithms to
decide how to direct the process via message rejections and
suggestions.

In our implementation, the manager is a central server.
When invoked, this server sends initial messages to the
participants announcing the process. These messages also
contain a plain text form that can be handled by any mail
client. Participants reply via mail directly to the server,
rather than to the originator, and the originator receives sta-
tus messages from the server when appropriate. The origi-
nator can query or alter the process via additional emails or
a web interface.

3 SEP Templates
This section defines the parts of a SEP template and then

examines a detailed example for the balanced potluck.

3.1 Components of a SEP template

SEP templates (as well as SEP declarations) are com-
posed of four primary parts:

Preamble: general information describing the process
originator, the set of participants, and explanatory text to be
sent with the initial request (e.g., “You have been invited to
the following potluck...”).

Queries: the set of queries to ask each participant. For in-
stance, a potluck SEP might query each participant for the
food item and the number of guests that they are bringing.
Each query defines a variable name for later use and the
type of valid responses to that query (e.g., integer, boolean,
etc.). Queries may also specify further restrictions on what
responses are considered valid (e.g., NumGuests must be
non-negative). Finally, each query item provides an RDQL
query that specifies the semantic meaning of the requested
information and is used to map the participant’s textual re-
sponse to RDF. This RDQL portion also enables a suitably
equipped participant to have an agent respond to some re-
quests automatically (e.g., “Decline all invitations for Fri-
day evening”).

Goals: the originator’s goals for the process. These goals
may be expressed either as constraints that must be satis-
fied at every point in time (a MustConstraint) or con-

straints that should, if possible, be ultimately satisfied by
the final process outcome (a PossiblyConstraint).
Alternatively, the goals can be expressed via a utility func-
tion over the eventual process outcome, along with descrip-
tions of the costs (social or otherwise) of asking partici-
pants to switch and the probabilities of expected participant
behavior (see [7] regarding the estimation of these values).
This type of goal is referred to as a TradeoffGoal be-
cause it strives to balance the utility of the expected process
outcome against the costs of actions taken to achieve that
outcome.

The manager uses the process’s goals to decide when
to make a rejection or suggestion. Goals may also spec-
ify some text to explain these interventions to the partic-
ipants. This text may be static or dynamically generated
based on the current state (e.g., “Sorry, we already have 5
more Appetizers than Desserts”). Providing enough detail
in the messages so that they are understandable to the par-
ticipants (and hence yield the desired cooperation) can be
a challenge for the SEP author. Section 5 discusses tech-
niques for automatically constructing these explanations.

The constraints or utility functions are written as ex-
pressions involving arbitrary arithmetic functions over con-
stants and variables. There are three classes of variables:
• Parameters: a value provided by the originator when

instantiating the template (e.g., Choices, the options
to offer the participants).

• Author-defined: any variable explicitly defined by the
SEP author. These variables may represent common
subexpressions or may be used to iterate over some set
(e.g., to loop through each value of Choices, veri-
fying that none violate the constraints). In addition,
these variables may be queries over a supporting data
set that contains the responses of each participant to
the originator’s request. For convenience, these RDF
responses are mapped to a virtual relational table that
may be queried via SQL.

• Pre-defined: variables automatically computed by the
manager (e.g., NumResponses, the total number of
responses received so far). The system also provides
a few common queries over the supporting data set
(e.g., Bringing.Entree.count() is the number
of “Entree” responses received).

Notifications: a set of email messages to send when some
condition is satisfied. The target of a notification may be
an arbitrary list of email recipients (possibly from a query
over the underlying data set). Alternatively, the target may
be the Originator, Responders, NonResponders
(particularly useful for sending a reminder to respond after
a few days), or AllParticipants. Finally, sending a
notification to the virtual target ProcessSummary adds
the notification text to a process-specific web page. This
web page contains a table with the response of each partic-

ipant; adding ProcessSummary notifications is useful
for displaying further summary information over this data
(e.g., to show the most popular response to a vote).

A notification may be triggered by a number of con-
ditions including OnResponseReceived, OnAllRe-
sponsesReceived,OnDateTime, or the most general
OnConditionSatisfied. In addition to the notifica-
tions specified in the template, our implementation allows
the originator to easily create an arbitrary number of On-
DateTime “reminders” when instantiating the process.

3.2 Template Example

Figure 2 shows a complete SEP template for our ex-
ample balanced potluck. Parameters that must be instan-
tiated by the originator are shown in bold; other variables
such as NumGuests will be evaluated as the SEP is ex-
ecuted. The declaration follows the four main parts de-
scribed above. First, the template specifies the participants
and a suitable prompt for the initial message. Second, the
template defines two queries. The Bringing query in-
dicates that a valid response to this query must be in the
the (originator-provided) set Choices. The NumGuests
query is “guarded” so that applies only if the parameter
AskForNumGuests is true; if so, this query will accept
only non-negative integers. In both cases the query prop-
erty provides the aforementioned RDQL query.

Third, the template specifies one MustConstraint
goal. The constraint is evaluated over every possible (x,y)
where x and y are in the set (Choices - OptOut);
OptOut is for choices such as “Not Coming” that should
be excluded from the constraints. The constraint requires
that the number of responses x (e.g., Appetizer) must dif-
fer from the number of responses y (e.g., Dessert) by
no more than MaxImbalance. The message prop-
erty provides an explanation to send to a participant
if their response is rejected because of this constraint.
This message utilizes the predefined variable Bring-
ing.acceptable(), which is explained in Section 5.

Finally, the template specifies two notifications. The
first notifies the originator as soon as the total number of
expected guests (computed via a SQL query over the sup-
porting data set) reaches GuestThreshold. The other
notification updates the process summary to include counts
of each type of response received. Notice the use of the
forAll property to iterate over the possible responses,
similar to its use in the MustConstraint.

The above example demonstrated the use of a Must-
Constraint goal; the same properties may be used to
define a PossiblyConstraint instead. A Tradeof-
fGoal follows the same general form but instead of an
enforce property it provides a utility expression via an
optimize property, along with additional properties to
describe the associated costs and probabilities.

:participants "$ParticipantsList$";
:prompt
"You have been invited to the following potluck. Please use the form below to indicate what you are
bringing. To ensure that our meal selection is balanced, you may be asked to modify your choice.
Description: $PromptDescription$
Location: $PromptLocation$
Date and Time: $PromptDateTime.toUserFriendly()$";

:queries (
[a :StringQuery;
:name "Bringing";
:query "WHERE (?process, <rdfcal:attendee>, ?x1),

(?x1, <rdfcal:calAddress>, ?EMAIL),
(?x1, <uw:bringing>, ?Bringing)
USING rdfcal FOR <http://www.w3.org/2002/12/cal/ical#>,
uw FOR <http://www.cs.washington.edu/research/semweb/vocab#v1_0>";

:enumeration "$Choices$"]

[a :IntegerQuery;
:guard "$AskForNumGuests$";
:name "NumGuests";
:query "WHERE (?process";
:minInclusive "0";]);

:goals (
Reject the message if it results in too much inbalance between any two pairs
[a :MustConstraint;
:forAll ([:name "x"; :range "$Choices$-$OptOut$"]

[:name "y"; :range "$Choices$-$OptOut$"]);
:suchThat "x != y";
:enforce "abs($Bringing.{$x$}.count()$ - $Bringing.{$y$}.count()$) <= $MaxImbalance$";
:message "Your request to bring a $Bringing.last()$ could not be accepted.

Choices that could be accepted right now are $Bringing.acceptable()$.";]);

:notifications (
Notify the owner if the number of guests crosses a threshold (ignore if $GuestThreshold$ is zero)
[a :OnConditionSatisfied;
:guard "$GuestThreshold$!= 0";
:define ([:name "TotalGuests"; :value "[SELECT SUM(NumGuests) FROM CURR_STATE]"]);
:condition "$TotalGuests$ >= $GuestThreshold$";
:notify :Originator;
:message "Currently, $TotalGuests$ guests are expected.";]

Update the process summary
[a :OnMessageReceived;
:notify :ProcessSummary;
:message ("Here’s how many of each choice confirmed so far:"

[:forAll ([:name "x"; :range "$Choices$"]);
:evaluate "x: $Bringing.{$x$}.count()$";])])

Figure 2. SEP template for a “Balanced Potluck” process, shown in N3 format. Variables in bold (e.g., $Choices$) are param-
eters provided by the originator when instantiating the template. Other variables are defined inside the declaration (e.g., x,
$TotalGuests$) or are automatically computed by the system (e.g., $Bringing.acceptable()$).

4 Template Instantiation and Verification

This section describes how parameter descriptions can
be used to generate and validate a web form for instantiat-
ing templates, then examines the problem of templates that,
when instantiated, may yield invalid declarations.

4.1 Parameter Descriptions

Each SEP template must be accompanied by a web form
that enables originators to provide the parameters needed
to instantiate the template into a declaration. To automate
this process, our implementation provides a tool that con-
verts a simple OWL parameter description into such a web
form. Figure 3 shows a partial example for our example
balanced potluck. The description provides a name, type,
and prompt for each parameter, along with any restrictions
on the legal values of that parameter. For instance, the first
parameter block specifies that Choices is a set of strings,
while the second parameter indicates that OptOut is a set

of strings that must be a subset of Choices. The last two
parameters relate to asking participants about the number
of guests that they will bring to the potluck.

The form generator tool takes a parameter description
and template as input and outputs a form for the originator
to fill out and submit. If the submitted variables comply
with all parameter restrictions, the template is instantiated
with the corresponding values and the resulting declaration
is forwarded to the manager for execution. Otherwise, the
tool redisplays the form with errors indicated and asks the
originator to try again.

4.2 Instantiation Safety

This section considers the problem of templates which,
when instantiated, may yield invalid declarations, explores
the significance of this problem, and describes the solutions
adopted in our system. There are a number of possible er-
rors that might render a declaration invalid, including:

:parameters (
[a :TypeList;
:name "Choices";
:prompt "Choices for the recipients to choose from (enter a comma-separated list)"]

[a :TypeList;
:name "OptOut";
:prompt "Choices to exclude from these restrictions (enter a comma-separated list)";
:subset "$Choices$"]

[a :TypeSelectOne;
:name "AskForNumGuests";
:choices ([:value :True; :prompt "Yes, ask how many guests each person is bringing"]

[:value :False; :prompt "No, don’t ask about guests"])]

[a :TypeInteger;
:name "GuestThreshold";
:prompt "Notify the originator when the number of guests reaches (enter 0 to ignore):";
:minInclusive "0"]

)

Figure 3. Part of a parameter description for the potluck template of Figure 2. Additional elements for variables such as
MaxImbalance are not shown.

1. Missing/multiple properties: e.g., each MustCon-
straint must have exactly one enforce property.

2. Wrong object type: e.g., the name property must
point to a literal string, not a resource.

3. Ambiguous names: e.g., the same variable or query
name must not be defined twice.

4. Expression errors: e.g., "x ++ y" is not permitted.

5. Undefined symbols: e.g., a condition property
must refer only to variables that have been defined.

6. Empty set: e.g., properties such as enumeration
require that their argument is not the empty set.

Errors 1 and 2 above can be detected automatically by
validating the template against the corresponding OWL on-
tology, while errors 3, 4, and sometimes 5 can be automat-
ically detected by a static analysis of the template. How-
ever, some occurrences of errors 5 and 6 will only occur
for particular instantiations of the template and thus cannot
be detected by examining the template alone. For instance,
considering instantiating the potluck template in Figure 2
with the following (partial list of) parameters:

AskForNumGuests = False
GuestThreshold = 50

In this case the first notification in Figure 2 is invalid,
since it refers to a query NumGuests that does not exist
because AskForNumGuests is false. Thus, the declara-
tion is not executable and must be refused by the manager.
This particular template problem could be addressed either
by adding an additional guard on the first notification or
by adding a parameter restriction on GuestThreshold.
However, this leaves open the general problem of ensuring
that no instantiation results in an invalid declaration:

Definition 4.1 (instantiation safety) Let τ be a template
and φ a parameter description for τ . τ is instantiation safe
w.r.t. φ if, for all parameter sets ξ that satisfy φ, instantiat-
ing τ with ξ yields a valid SEP declaration. 2

This problem is of significant practical interest for two
reasons. First, because errors are detected in the declara-
tion, any error message is likely to be very confusing to
the originator (who knows only of the web form, not the
declaration). Thus, an automated tool to ensure that a de-
ployed template is instantiation safe is desirable. Second,
constructing instantiation-safe templates can be very oner-
ous for authors, since it may require considering a large
number of possibilities. Even when this is not too difficult,
having an automated tool to ensure that a template remains
instantiation safe after a modification would be very useful.

Theorem 4.1 Let τ be a template and φ a parameter de-
scription for τ . If τ is an arbitrary SEP template, then
instantiation safety is co-NP-complete in the size of φ.

Thus, in general determining instantiation safety is dif-
ficult, though in practice φ may be small enough that the
problem is tractable. In our implementation, we provide a
tool that approximates instantiation safety testing via lim-
ited model checking. The tool operates by instantiating τ

with all possible parameters in φ with type boolean or enu-
meration (these most often correspond to general configu-
ration parameters). For each possibility, the tool chooses
random values that satisfy φ for the remaining parameters.
If any instantiation is found to be invalid, then τ is known
to be not instantiation safe. We conjecture that an exact,
polynomial time algorithm exists for most common cases;
this will be considered in future work.

5 Automatic Explanation Generation
While executing the process, the manager utilizes rejec-

tions or suggestions to influence the eventual SEP outcome.
However, the usefulness of these interventions depends on
the extent to which they are understood by the participants.
For instance, the rejection “Sorry, only 2 tickets left” is a
much more helpful response to a request for 4 tickets than a
simple “No.” Likewise, the suggestion “Please consider an

Appetizer instead” is much more likely to elicit the desired
cooperation than a suggestion with no hint as to a more ac-
ceptable potluck dish. As previously mentioned, the SEP
author may provide such messages in the template, but pro-
viding them in sufficient detail can be a challenging and
time-consuming task.

Below we consider techniques for simplifying the task
of the SEP author by automatically computing such ex-
planations. We focus first on explaining the reasons for
a particular intervention and then briefly consider comput-
ing the set of currently acceptable responses. Note that in
some cases these methods can also be viewed as improving
the quality of explanations that are possible for a SEP. For
instance, because the decision about whether to suggest a
different response due to a TradeoffGoal depends on a
complex balance of possible future states vs. action costs,
an automatically-generated explanation can provide much
more detail than the manually-encoded explanation of even
the most thorough SEP author. Finally, the discussions be-
low relate to all SEPs, but specific complexity results ap-
ply only when the constraints/utilities are bounded or K-
partitionable [7]; this includes many common cases and
all SEPs discussed in this paper.

5.1 Explaining Interventions

In this subsection we consider how to generate expla-
nations for an intervention based on identifying the con-
straint(s) or utility term(s) that led to the intervention. We
do not discuss the additional problem of translating these
terms into a natural language suitable for sending to a par-
ticipant, but note that even fairly simple explanations (e.g.,
“Appetizer Count (10) too high vs. Dessert Count (3)”) are
much better than no explanation.

In our implementation the manager intervenes only with
rejections for a MustConstraint or PossiblyCon-
straint, and only with suggestions for a Tradeoff-
Goal(cf., [7]). We consider each of these in turn.

MustConstraint: In this case all constraints must be ini-
tially satisfied, so any constraint that is not satisfied after
adding a response r to state D is an explanation for reject-
ing r. Note that, for explanations, we treat each forAll
possibility as a separate constraint; otherwise, the sample
potluck of Figure 2 would always produce the same (com-
plex) constraint for an explanation.

PossiblyConstraint: For a PossiblyConstraint,
there is no guarantee that the constraints are satisfied, only
that it is possible for them to be ultimately satisfied when
more responses are received. In this case an explanation
should satisfy the following definition:

Definition 5.1 (sufficient explanation) Given a data set D

and constraints CD such that D is ultimately satisfiable but

would not be after adding response r, we say that E ⊆ CD

is a sufficient explanation for rejecting r iff no sequence of
responses from the participants, beginning with r, will put
D in a state that satisfies E. 2

Intuitively, a sufficient explanation E justifies rejecting
r, because accepting r precludes ever satisfying E. Using
a modified form of our ultimate satisfiability theorem [7],
testing if any particular E is a sufficient explanation can
be done in polynomial time. We could use this procedure
repeatedly to compute the minimum-size sufficient expla-
nation, but this might require time exponential in the num-
ber of constraints. Alternatively, we could use an approx-
imate, greedy algorithm that first ranks each constraint by
the number of possible future states for which it is not sat-
isfied, then incrementally adds to E the constraint with the
largest rank until every possible state is covered. Note that,
in the particularly useful case where |Eminimum| = 1, this
algorithm is guaranteed to find the optimal solution.

TradeoffGoal: In this case, it is more difficult to single out
specific terms that are responsible for a manager’s sugges-
tion, because every term contributes to the process utility
to some extent, either positively or negatively. However,
if the manager decides to make a suggestion, then the ex-
pected improvement must outweigh the certain cost of this
action. Thus, for non-zero costs, there must be a signifi-
cant difference in the utility of the state where the manager
requested a switch (Ssw) vs. where the manager did not
(S0).

We seek to identify the terms that explain most of this
difference. In particular, given a n-term utility function

U(s) = u1(s) + ... + un(s)

we define the change δu in each utility term as

δu = u(Ssw) − u(S0).

We wish to identify a set E ⊆ {u1, .., ..un} such that:
∑

u∈E

δu ≥ β[U(ssw) − U(S0)]

i.e., so that the terms in E explain at least β of the change.
Note that, when generating an explanation, we are pri-

marily interested in terms indicating that a switch is bene-
ficial, i.e., where δu > 0. If we only consider such terms,
then a greedy algorithm suffices to identify the explanation
E of guaranteed minimal size: set E to ∅, then incremen-
tally add to E the term with the largest δu until E explains
at least β of the total change. If we wish to consider util-
ity terms with both positive and negative changes, then this
problem becomes more challenging (cf., Klein and Short-
liffe [5]).

Procedural approach Declarative approach Size Reduction
SEP name Java code Forms (HTML) Total Template Forms (Params) Total for Declarative
Balanced Potluck 1283 397 1680 113 57 170 90%
First-come, First-served 301 235 536 66 33 99 82%
Meeting Coordination 471 272 743 60 22 82 89%
Request Approval 772 286 1058 80 29 109 90%
Auction 392 111 503 55 43 98 81%

Table 1. Comparison of the size (in number of lines) of different ways of specifying a SEP. For the procedural prototype, the first
numerical section displays the size of the Java code for encoding the SEP functionality, size of the HTML for acquiring parameters
from the originator, and the total of these two. For the declarative approach, the second section displays the size of the template
(OWL, in N3 format), size of the parameter description, and the total. The final column shows the percentage reduction in the size
of a SEP when changing from the procedural approach to the declarative approach.

5.2 Acceptable Responses

In addition to explaining the reasons why a particular
response led to an intervention, we would also like to be
able to inform participants about what responses would be
more “acceptable.” (One could also ask for an explanation
of why a given response is acceptable, but we do not con-
sider that problem here.) For a constraint-based SEP, if
adding a response r to the current state D still permits the
constraint to be satisfied (either immediately or ultimately,
as appropriate) then r is acceptable. We previously proved
that computing whether a specific response r is acceptable
with respect to a set of MustConstraints or Possi-
blyConstraints could be done in polynomial time [7].
A corollary is that it is also possible to compute in polyno-
mial time the entire set of responses which are acceptable
from state D. Our system currently computes and makes
available this result for MustConstraints (e.g., the use
of Bringing.acceptable() in Figure 2).

For a TradeoffGoal, we define an “acceptable” re-
sponse as one that is “good enough” so that the manager
will not respond with a change suggestion. We might also
be interested in computing responses that are “better” than
others, e.g., those which result in an expected utility in the
top 25% compared to other possible responses. This infor-
mation could be used when making a suggestion (“Please
consider one of these values...”, or could be displayed as
part of the process summary to assist participants that have
yet to respond. Given a particular state D, both such prob-
lems can be solved in polynomial time by comparing the
expected utility of states before and after an additional re-
sponse is received.

6 Experience and Future Work

Our semantic email system is deployed and may be
freely used by anyone without any software installation;
the source code for deploying other instances of the server
is also available. So far we have developed simple pro-
cesses for functions like collecting RSVPs, giving tickets

away, scheduling meetings, and balancing a potluck. De-
spite very limited publicity, our semantic email server has
seen growing interest. For instance, a DARPA working
group has adopted semantic email for all of its meeting
scheduling and RSVP needs, students have used semantic
email to schedule seminars and Ph. D. exams, and semantic
email has been used to organize our annual database group
and departmental-wide potlucks.

Our experience has led to a number of observations re-
garding SEP authoring and instantiation. First, our tem-
plate language is sufficient for specifying a wide range of
useful SEPs. Second, these declarative specifications are
much simpler and more concise than corresponding spec-
ifications written in Java. For instance, Table 1 displays
the number of lines of OWL needed for a number of sam-
ple SEP templates vs. the number of lines of Java/HTML
needed in our original prototype (which utilized process-
specific procedures). Overall, the declarative approach re-
quires about 80-90% fewer lines than the procedural ap-
proach. These figures are approximate – neither approach
had a goal of using as few lines as possible – but give a
flavor for the conciseness of the declarative approach.

Second, despite the usage we have seen, the group of
people instantiating new SEPs seems to be much smaller
than the group of people who have learned about and shown
enthusiasm for the system. While some of this effect is to
be expected, we also believe that a significant cause is that
the system still requires too much initial work to launch a
new SEP. In spite of SEPs’ advantages, when faced with a
particular data-collection task it is easier in the short-term
to just send a non-semantic email message and deal with
the consequences later. Essentially, originators need more
instant gratification to motivate them to use the semantic
system, as we have also described in the web context [6].
One way to address this problem would be to have authors
provide basic versions of their SEPs that provide defaults
for almost all parameters, akin to how modern search en-
gines hide most of their functionality behind an “advanced”
interface. An additional improvement would be to allow
originators to easily modify the default parameters while a

process is executing. This both eliminates the need for up-
front work and simplifies appropriate parameter selection,
since the originator can delay this task until a few illustra-
tive responses have arrived.

7 Related Work

Some hardcoded email processes, such as the meeting
request feature in Outlook and invitation management via
Evite have made it into popular use already. Our work pro-
vides a general, declarative infrastructure for SEPsand an-
alyzes the inference problems it needs to solve to manage
processes effectively and guarantee their outcome. Like-
wise, workflow and collaboration systems such as Lotus
Notes/Domino and Zaplets offer scripting capabilities and
some graphical tools that could be used to implement so-
phisticated email processes. However, these systems lack
support for reasoning about data collected from a number
of participants (e.g., as required to balance a potluck or en-
sure that a collected budget satisfies aggregate constraints).
In addition, such processes are constructed from arbitrary
pieces of code, and thus lack the formal properties that our
declarative model provides.

Recent work on the Inference Web [8] has focused on
the need to explain a Semantic Web system’s conclusions
in terms of base data and reasoning procedures. In con-
trast, we deal with explaining the manager’s actions in
terms of existing responses and the expected impact on
the SEP’s goals. In this sense our work is more similar
to prior research that sought to explain decision-theoretic
advice (cf., Horvitz et al. [3]). For instance, Klein and
Shortliffe [5] describe the VIRTUS system that can present
users with an explanation for why one action is provided
over another. Note that this work focuses on explaining the
relative impact of multiple factors on the choice of some
action, whereas we seek to compute the simplest possi-
ble reason why some action could not be chosen (i.e., ac-
cepted). Other relevant work includes Druzdzel [1], which
addresses the problem of translating uncertain reasoning
into qualitative verbal explanations.

For constraint satisfaction problems, a nogood [9] is
a reason that no current variable assignment can satisfy
all constraints. In contrast, our notion of a sufficient ex-
planation for a PossiblyConstraint is a reason that
no future assignment can satisfy the constraints, given the
set of possible future responses. Potentially, our problem
could be reduced to nogood calculation, but this would not
exploit the special structure of SEPs that ensures that a
candidate explanation can be checked in polynomial time.
Jussien and Ouis [4] describe how to generate user-friendly
nogood explanations, though they require that a designer
explicitly model a user’s perception of the problem as
nodes in some constraint hierarchy.

8 Conclusions
This paper has described our template-based approach

to specifying SEPs. Templates greatly increase the usabil-
ity of SEPs by shifting most of the complexity of specify-
ing a SEP from untrained originators onto a much smaller
set of trained SEP authors. In addition, our template lan-
guage enables authors to easily express complex goals in a
way that can be automatically pursued by the manager via
interventions. We also examined a number of challenges to
authoring high-quality templates that arise in this context.
In particular, we explored the problem of verifying that a
given template will always yield a valid instantiation, de-
scribed the computational complexity of this problem, and
presented an approximate solution. We also discussed mul-
tiple ways in which the manager can automatically gener-
ate useful explanations for its interventions. Collectively,
these techniques both simplify the task of the SEP author
and improve the overall execution quality for the originator
and the participants of a SEP. Future work will consider
additional ways to make SEP authoring and instantiation
even easier and continue to promote SEP adoption by a
wide range of users.

References

[1] M. Druzdzel. Qualitative verbal explanations in bayesian be-
lief networks. Artificial Intelligence and Simulation of Be-
haviour Quarterly, 94:43–54, 1996.

[2] O. Etzioni, A. Halevy, H. Levy, and L. McDowell. Semantic
email: Adding lightweight data manipulation capabilities to
the email habitat. In Sixth Int. Workshop on the Web and
Databases, 2003.

[3] E. J. Horvitz, J. S. Breese, and M. Henrion. Decision the-
ory in expert systems and artificial intelligence. International
Journal of Approximate Reasoning, 2:247–302, 1988.

[4] N. Jussien and S. Ouis. User-friendly explanations for con-
straint programming. In ICLP’01 11th Workshop on on Logic
Programming Environments, Paphos, Cyprus, 1 Dec. 2001.

[5] D. A. Klein and E. H. Shortliffe. A framework for explaining
decision-theoretic advice. Artificial Intelligence, 67(2):201–
243, 1994.

[6] L. McDowell, O. Etzioni, S. D. Gribble, A. Halevy, H. Levy,
W. Pentney, D. Verma, and S. Vlasseva. Mangrove: Entic-
ing ordinary people onto the semantic web via instant grati-
fication. In Second International Semantic Web Conference,
October 2003.

[7] L. McDowell, O. Etzioni, A. Halevey, and H. Levy. Semantic
email. In World Wide Web, 2004.

[8] D. L. McGuinness and P. Pinheiro da Silva. Infrastructure
for web explanations. In Second International Semantic Web
Conference, October 2003.

[9] T. Schiex and G. Verfaillie. Nogood Recording fot Static
and Dynamic Constraint Satisfaction Problems. International
Journal of Artificial Intelligence Tools, 3(2):187–207, 1994.

