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Abstract 
 

The DOPE project (Drug Ontology Project for 
Elsevier) is driven by the need to access multiple 
information sources through a single interface. In this 
paper, we describe how DOPE allows thesaurus-driven 
access to heterogeneous and distributed data, based on 
the RDF data model. The architecture allows for the 
easy addition of thesauri and data sources, and can 
facilitate explorations in ontology mapping and data 
integration. 

1 Introduction 
With the unremitting growth of scientific information 
sources, the need for integrated access to these sources 
becomes ever more urgent. The aim of the DOPE 
project (Drug Ontology Project for Elsevier) is to allow 
access to multiple information sources in the area of life 
sciences through a single interface, using semantic web 
data standards. The DOPE prototype* allows thesaurus-
driven access to heterogeneous and distributed data, 
based on the RDF data model. This architecture allows 
for the easy addition of thesauri/ontologies∗∗ and data 
sources, to facilitate the investigation of ontology 
mapping and data integration issues. 

Thesauri provide controlled vocabularies for indexing 
information, and by grouping relevant terms, help 
overcome some of the problems of free-text search. 
Examples of medical thesauri include MeSH 
(http://www.nlm.nih.gov/mesh/meshhome.html) and 
Elsevier’s life science thesaurus 
EMTREE(http://www.elsevier.com/homepage/sah/spd/ 
site/). These thesauri are currently used to index 
specific information sources – such as the abstract 
databases PubMed (http://pubmed.org) and EMBASE 
(http://embase.com/). 

To utilise the advantages of thesauri, we would like to 
use them to disclose other data sources, as well. 
Currently there is no open architecture available to do 
so. Furthermore, since the mental models and common 
terms for data access diverge between communities, 
different thesauri need to coexist. An ideal architecture 
would allow for the disclosure of distributed and 
heterogeneous data sources through different thesauri.  

                                                
§  Corresponding author: a.dewaard@elsevier.com  
* The DOPE prototype can be viewed on http://www.aduna.biz/dope 
∗ ∗ We consider thesauri to be “lightweight ontologies” and, 
throughout this paper, use the two words interchangeably 

The aim of DOPE is to work towards such an 
architecture.  

Semantic web technologies facilitate access to 
distributed data through open standards that allow 
semantic qualifications, such as RDF [7]. To 
successfully disclose these data via a single query 
interface, however, we need to align the diverse 
conceptualizations used by different data sources. RDF 
represents the data conceptualization in a schema 
definition, and can therefore be used to map the data 
sources to each other. To execute this mapping step, an 
RDF query language is needed. Of the many RDF query 
languages available, only a few provide the required 
transformation functionality – these include Triple and 
SeRQL [1]. We used SeRQL because it is already 
implemented in Sesame, the RDF repository used for 
DOPE (see below). 

The general architecture of DOPE is shown in Fig. 1: 
1. DOPE Client: The DOPE Client makes use of a 

thesaurus-driven visualization technology called 
the Spectacle Cluster Map [2,3], developed by 
Aduna BV. The DOPE Client interacts with the 
other components via SeRQL queries sent by 
HTTP. The DOPE client is discussed in section 5. 

2. EMTREE: Elsevier’s main life science thesaurus, 
EMTREE 2003©, was converted to an RDF-
Schema format. The thesaurus mapping to RDF is 
described in section 2.  

3. Metadata Server: For the prototype, the full content 
of Science Direct (containing full text articles and 
several abstract databases) and the last 10 years of 
MEDLINE have been indexed against EMTREE 
2003 thesaurus by the Collexis indexing 
technology. This indexing technology creates a 
weighted vector of a document to the thesaurus 

 
Figure 1: DOPE Architecture 



terms by statistical methods, called a fingerprint 
(See (www.collexis.com) and [4] for details). The 
metadata is mapped to an RDF source model via an  
Extractor component, and accessed via a SOAP 
protocol. Details of the indexer are discussed in 
section 4,  the mapping to RDF is described 
elsewhere [5]. 

4. The Mediator: The RDF repository Sesame [6] 
plays a central role in the DOPE prototype. A 
Sesame RDF database communicates with the 
Collexis server and the RDF version of EMTREE. 
The core of the connected system is the Storage 
And Inference Layer (SAIL) API that forwards 
incoming method calls from the SeRQL query 
engine to the relevant information sources. The 
mediation architecture is discussed in section 3. 

2 Thesaurus Representation in RDF 
Design 

To access different information sources in a uniform 
way, we have to deal with heterogeneity at different 
levels: information sources may use a different syntax, 
different data models, and/or different 
conceptualizations. Syntactic heterogeneity is largely 
solved by the widespread use of XML as a basis for 
encoding information, but the problem remains that 
information sources often use different, application 
specific data models, encoded in DTDs or schema 
definitions. Aligning these data models from XML 
schemas is often difficult due to the conceptual 
ambiguity of XML schema definitions that do not, for 
example, distinguish objects from relations. 

In the Semantic Web initiative, a number of proposals 
exist for metadata language standards. One of the most 
stable ones is the Resource Description Framework 
(RDF) [7]. RDF is not only assumed to be the lingua 
franca for encoding meta-data about any kind of 
information on the Web, it also provides the syntax for 
defining other semantic web languages like RDF 
Schema (RDFS) [8] or the ‘Web Ontology Language’ 
(OWL) [9]. To convert our sources into a uniform 
model, we have to convert data sources into RDF. Our 
first step in building a distributed architecture for multi-
thesaurus querying, therefore, was to convert the 
EMTREE thesaurus to RDF format. 

EMTREE is a thesaurus maintained by Elsevier as a 
terminological resource for researchers in life science. 
EMTREE is used to index EMBASE, an online 
database that is indexed by human indexers. EMTREE 
2003 contains about 45,000 preferred terms and 
190,000 synonyms, organized in a multi-level 
hierarchy. Making EMTREE available in RDF is not a 
trivial task, because the result of the process has to 
satisfy a number of requirements: 
- Thesaurus maintenance should not be affected 
- The RDF model has to behave in the same way as 

the original thesaurus. 

As our aim is to support effective access to 
information sources, we consider the following tasks, 
connected to the formulation and execution of a 
thesaurus-based query: 
A) Suggest Query Term. Based on query terms 
provided by the user, the system can suggest additional 
terms to refine the query. 
B) Normalize Query Term. As the indexes of the 
information sources are normalized to preferred terms, 
each query stated to the system will also have to use 
these preferred terms. Therefore the same mechanism is 
needed on the query side. 
C) Expand Query based on Hierarchy. The main task 
of EMTREE in querying documents is to expand the 
query specified by the user by broader, narrower and 
related terms. 
D) Dynamically Generate User Interface. As 
EMTREE provides the basic knowledge structure for 
interacting with information resources such as 
EMBASE, it also provides the basis for generating a 
user interface (discussed in section 5). 
 

A number of RDF-based thesaurus interchange 
formats have already been proposed [10],[11]. We 
adopt the following principles mentioned in the 
different proposals when defining an RDF 
representation of EMTREE to support query 
processing. 
– A thesaurus is organized as a set of hierarchies of 

concepts each with a unique root 
– Concepts are represented independently from the 

terms used to describe them 
– The semantic relations are defined between 

concepts rather than terms 
 

Based on existing proposals and the specific needs of 
the project, we chose the following ways of encoding 
the EMTREE thesaurus in RDF-based languages: 
a) Representation of the EMTREE meta-model 

Checking the consistency of a set of query terms (part 
of task A and D above) requires reasoning about types 
of EMTREE terms. In particular, we have to check 
whether a combination of EMTREE terms is consistent 
with the conceptual model behind EMTREE. This kind 
of reasoning is only supported by a logic-based 
language like OWL (though much of the expressive 
power of OWL will not be needed in this case). In order 
to support this kind of reasoning, we have to define the 
ontology that underlies EMTREE at the meta level. The 
actual terms and their relations are instantiations of this 
ontology. If we encode this ontology in OWL, we can 
check a given set of index terms against it. The 
following statements could for example be part of an 
EMTREE ontology: 

(hasDrugLink domain DrugTerm) 
(hasDrugLink range DrugLink) 
(aspirin type DrugTerm) 



The model states that the ’hasDrugLink’ –relation can 
only hold between ’DrugTerms’ and ’DrugLinks’. 
Further we state that ’aspirin’ is a drug term. From this 
small model we can automatically deduce that aspirin 
should only be related to a DrugLink by this relation. 
Note that in this model terms act as objects that are 
described. The model uses semantic relations taken 
from the OWL language. 
 
b) Model of (Parts of) the Concept Hierarchy 
Tasks like query expansion (task B) and term 
suggestion (task A) mainly require the hierarchy of 
Terms that constitutes the backbone of EMTREE. 
Reasoning about this hierarchy is mostly restricted to 
the retrieval of broader and narrower terms. This kind 
of reasoning is supported by RDF schema. As fairly 
scalable tools exist for storing and querying RDF 
schema models, RDF schema representations of (parts 
of) the EMTREE hierarchy should be considered as 
default views on the Thesaurus. The following example 
could be part of a concept hierarchy of EMTREE’s drug 
facet: 

(c1 subClassOf c2) 
(c1 label ’acetylsalicylic acid’) 
(c2 label ’salicylic acid derivative’) 
 

The example states that the concept denoted by c1 is 
a subconcept of another concept c2, Further, we have 
information about the terms that are used to refer to 
these concepts: ’acetylsalicyclic acid’ and ’salicylic 
acid derivative’. In fact, this small example resembles 
the ’broaderTerm’ relationship between the two 
preferred terms mentioned and can be used to support 
an explosion query over the more general term. Note 
that the model only uses semantic relations that are part 
of the RDF schema specification (i.e. subClassOf). 
 
c)  Representation of Synonym Relations 
Some tasks like the normalization of index or query 
terms (task B and part of task A) do not even require 
taxonomic reasoning, as we only have to look up the 
preferred term that is in a functional relation to the 
index or query term. For this purpose a plain RDF file 
with a single relation or even a database table is a 
sufficient and efficient representation. The following 
example could be part of a synonym table: 

 
(c1 preferredTerm ’acetylsalicylic acid’) 
(c1 synonymTerms [aspirin aspirine asperina ]) 

 
This example defines the concept c1 using associated 
terms from the thesaurus distinguishing between 
preferred and synonym terms. It states that the preferred 
term of concept c1 is ’acetylsalicylic acid’ and that 
’aspirin’ is just a synonym. This model can therefore be 
used to normalize an index or a query. Note that the 
model does not use any semantic relationship from a 
schema language. 

 
Discussion: 
- Instead of a complete migration of EMTREE to 

RDF, we dynamically generate views on parts of 
the complete model in RDF when required. We 
found RDF and RDF schema sufficiently 
expressive to represent the information required for 
the tasks we performed on the thesaurus.  

- However, we are not fully utilising the capabilities 
of semantic web languages such as OWL. To 
perform more interesting semantic queries (such as 
“which drug produces which side effects?”) a 
richer model of the information space, and the 
thesaurus, should be made. The architecture used, 
based on Sesame and SeRQL (discussed below) 
does allow for this.  

3 Mediation Architecture: SAIL API 
Design 

Sesame [6] allows persistent storage of RDF data and 
schema information, and subsequent querying of that 
information. To do this, Sesame needs a scalable 
repository. A logical choice for such a repository is a 
DBMS: a large number of DBMS's have been 
developed, each having their own strengths and 
weaknesses, targeted platforms, and API's. For each of 
these DBMS's, the RDF data can be stored in numerous 
ways. Depending on the application domain, other 
forms of (persistent) storage may be more suitable, for 
example storage in main-memory, in files, or in some 
external source. As we would like to keep Sesame's 
architecture independent from the actual choice of 
repository, all storage-specific code is concentrated in a 
single architectural layer of Sesame: the Storage And 
Inference Layer (SAIL) [12]. 

This SAIL is a Java application programming 
interface (API) that offers RDF(S)-specific methods to 
its clients and translates these methods to calls to its 
specific repository. An important advantage is that it 
lets us build Sesame on top of a wide variety of 
repositories without changing any of Sesame's other 
components. Sesame's functional modules are clients of 
the SAIL API. Currently, there are six such modules 
delivered as part of the Sesame standard package: three 
query engines (RQL, SeRQL, RDQL) , an RDF admin 
module and the extract and remove modules. Naturally, 
since these modules operate on the public SAIL API, 
extending the set of modules for a domain- or 
application-specific purpose is possible. 

Depending on the environment in which it is 
deployed, different ways to communicate with the 
Sesame modules may be desirable. For example, 
communication over HTTP may be preferable in a Web 
context, but in other contexts protocols such as Remote 
Method Invocation (RMI) or the Simple Object Access 
Protocol (SOAP)13 may be more suited. In other 
settings, it may be more desirable to use Sesame as a 



Java library instead of a separate server, and use direct 
Java method calls on either the modules or even directly 
on the SAIL. For maximal flexibility, the handling of 
these protocols has been placed outside the scope of the 
functional modules. Instead, protocol handlers are 
provided as intermediaries between the modules and 
their clients, each handling a specific protocol. 

The introduction of the SAIL and the protocol 
handlers makes Sesame into a generic architecture for 
RDFS storage and querying, rather than just a particular 
implementation of such a system. Adding additional 
modules or protocol handlers is also possible. 

The core of the SAIL API is a set of four interfaces 
that extend across two dimensions: RDF vs. RDF 
Schema, and retrieve vs. manipulate (see fig. 2) : 
– RdfSource offers retrieval methods for RDF, e.g. 

getStatements(subject, predicate, object). 
– RdfRepository extends RdfSource and adds 

manipulation methods for RDF, e.g. 
addStatement(subject, predicate, object). 

– RdfSchemaSource also extends RdfSource, adding 
retrieval methods for RDF Schema, e.g. 
getInstancesOf(class). 

– RdfSchemaRepository extends both RdfRepository 
and RdfSchemaSource, combining RDF 
manipulation and RDF Schema retrieval methods. 
This interface does not add any new methods. 

Any combination of these interfaces is possible, 
where each implementation can make its own choices 
on how to support storage and inference. This allows 
the higher functionality of Sesame (such as querying) to 
be ported to any environment in a flexible manner. The 
SAIL interface allows the implementation of SAILs that 
do not connect directly to a storage device, but instead 
connect to another SAIL. This mechanism allows for 
the 'stacking' of SAILs on top of each other, which is 

useful for storage-agnostic functionality like caching or 
synchronization. 
 
Discussion  

Overall, the SAIL architecture allowed a flexible and 
easy development of the prototype system. Coupling 
different parts of the distributed architecture was greatly 
facilitated by conforming to the SAIL API for the 
different components. Since this allowed reuse of 
existing components (such as the SeRQL query engine, 
and several different storage and inferencing 
components available through the SAIL), it reduced 
development cost considerably. 

 However, a number of problems arose during the 
implementation: 
- The SAIL implementation for the DOPE prototype 

does not handle concurrency issues specific to a 
distributed environment. The converter stores a 
retrieved result to re-use for answering the next 
incoming query, but if two users query the system at 
the same time, this will have unexpected results. This 
is mainly an engineering issue that can be solved 
with a small additional effort. 

- The DOPE implementation for the mediator is very 
domain-specific and would have to be re-
implemented for a new domain. Efforts are underway 
to develop a more generic SAIL-based mediator 
implementation. 

- The performance of the system has a number of 
bottlenecks. A number of these bottlenecks have been 
identified to be easily solvable with some 
engineering effort, but some are inherent to the 
distributed nature of the system.  

4 The Metadata Server 
Design: 

The metadata server consists of the following 
backend services that form the heart of the Collexis 
indexing technology: 
- The abstraction component is used to recognize in a 

piece of text a number of phrases (concepts) as 
defined in a thesaurus and assign a relevance score to 
each concept. The set of concepts and their relevance 
score are named by Collexis a “concept fingerprint” 
and are stored together with the document metadata 
in a remote database. 

- The matching engine allows for identifying those 
fingerprints in a collexion that most closely resemble 
a given query fingerprint. A document fingerprint can 
also be used as a search fingerprint. The matching 
engine has been based on the vector space model of 
Salton [14] and knows a number of variations. 

- The selection engine takes care of the combination of 
matching and conditional searches on metadata. Any 
indexed metadata field can be used in a Boolean 
query together with a match on a search fingerprint. 

 

  
Figure 2: The SAIL Architecture 

 



- The relation engine maintains relations between 
concept fingerprints. It can be used, for instance, to 
relate fingerprints for a given author -- an aggregation 
of document fingerprints -- with the original 
document fingerprints, to see to what extent an 
author’s subject coverage coincides with that of the 
set of documents. 

- The SOAP interface provides functions to query the 
fingerprint and metadata repository. The statements 
retrieved can be viewed as expressions stating that a 
particular concept is present in a document with a 
certain weight. 

- To query the metadata server through RDF, an 
Extractor component is deployed which, through use 
of the SOAP interface, converts the Collexis 
information in an RDF format that is a 1:1 mapping 
to the original information: the physical model 
(described in detail in [5]). 

 
Discussion: 
- The prototype currently uses a number of thresholds 

on relevancies and the numbers of results to get 
reasonably relevant documents and terms as well as a 
timely response. There are currently some 
performance bottlenecks caused by inefficient 
querying and network overhead. 

- There are problems with performance, which mostly 
have to do with the query procedures between the 
Sesame system and the Collexis-SOAP interface. 
Improvements in the Sesame implementation for 
DOPE and the query mechanism of the DOPE 
Browser would likely make the thresholds on 
maximum number of documents and terms 
unnecessary, or at least orders of magnitude larger. 

- Some of the performance issues we encountered are a 
result of  the conversion of the Collexis metadata to 
an RDF format. In our experience, the writing of an 
“RDF-wrapper” for the metadata server is likely to be 
the biggest task to solve, both intellectually and in 
terms of development effort.  

5 The DOPE Client UI 
Design: 

The DOPE Client user interface† is based on Aduna 
visualization technology, also called the Spectacle 
Cluster Map [2], [3] and  implemented as a Java client 
side application. Java version 1.4 is the minimum 
requirement, which at the moment is available for the 
Windows, Mac OS X, Linux and Solaris platforms. 
Communication with the DOPE Sesame server takes 
place using the Sesame Java client library, which 
communicates with the server using SeRQL queries 
over HTTP. 

EMTREE 2003 contains about 46,000 preferred 
terms and 190,000 synonyms, organized in a multi-level 

                                                
† The DOPE prototype can be viewed on http://www.aduna.biz/dope 

hierarchy. Clicking through a hypertext version of the 
thesaurus in order to create complex queries is too 
much effort to be acceptable. In the DOPE client, the 
user can quickly focus on a topically related subset of 
both the document collection and the thesaurus. First, 
the user selects a single thesaurus term. The system then 
fetches all documents indexed with that focus term, as 
well as all other terms those documents are indexed 
with. These co-occurring terms are used to provide an 
interface in which the user can explore the set of 
documents indexed with the focus term. 

For example, a user can enter the string "aspirin" in 
the text field at the upper left of the figure. The system 
then consults Sesame for all concepts than can be 
related to this string. It responds with a dialog showing 
four possible EMTREE terms, asking the user to pick 
one. (This dialog is omitted when there is only one 
exact match with an EMTREE term.) We assume the 
user chooses the term "acetylsalicylic acid", this is now 
the focus term. 

The system consults Sesame again and retrieves (at 
maximum) the 500 most relevant documents about 
"acetylsalicylic acid", their metadata fields (such as 
titles and authors) and the other most important terms 
with which these documents are indexed. The co-
occurring terms are presented in the tree at the left hand 
side, grouped by their facet term (the most generic 
broader term, i.e. the root of the tree they belong to). 
The user browses the tree and checks one or more 
checkboxes that appear behind the term names, to see 
their contents visualized at the right hand side. 

Figure 3 shows the state of the interface after the user 
has checked the terms "mortality", "practice guideline", 
"blood clot lysis" and "warfarin". The visualization 
graph shows if and how their document sets overlap. 
Each sphere in the graph represents an individual 
document, with its color reflecting the document type, 
e.g. full article, review article or abstract. The colored 
edges between terms and clusters of spheres reveal that 
those documents are indexed with that term. This 
visualization shows that within the set of documents 
about aspirin there is significant overlap between the 
terms “blood clot lysis” and “mortality”, and that 4 of 
the practice guidelines documents relate to these two 
topics as well. 

Various ways exist to further explore this graph. The 
user can click on a term or a cluster of articles to 
highlight their spheres and list the document metadata 
in the panel at the lower right. Moving the mouse over 
the spheres reveals the same metadata as a tool tip. The 
visualizations can also be exported to a clickable image 
map that can be opened in a web browser. 

The user can start with a new query by typing in a 
new search string. This will empty the rest of the 
interface and load a new set of documents and co-
occurring terms. The Thesaurus Browser provides an 
alternate starting point for a next query. When a focus 
term has been selected, the user can click the "Navigate 



Thesaurus..." button at the upper left. She is then 
confronted with a dialog that lets her select a new focus 
term, by browsing through the thesaurus, starting from 
the focus term. The user can iteratively select a broader, 
narrower or alternative term until she encounters a term 
that she wants to make the new focus term. 

The visualization conveys several types of 
information. The user obviously sees document 
characteristics, such as index terms and article types. 
Visualizing a set of terms shows all Boolean 
combinations, without the need for the user to express 
them all separately. The graph also shows how terms 
relate within the selected set of documents, i.e. if they 
have some overlap and if so, which documents 
constitute that overlap. 
 
Discussion: 

We have performed a user test with 10 potential end 
users at a Drug Discovery conference in 2003. A full 
account of the results of the user studies is given 
elsewhere [5] but, in summary, the visualization tool 
was found to be a useful to aid in the information 
discovery process, and in particular it was found to 
provide richer contextual information about the 
documents presented and simpler scanning of the data 
sources 

Users indicated that the main benefit of the UI is to 
aid the exploration of a large, mostly unknown 
information space rather than offer support for 
searching for concrete articles. Examples of beneficial 
applications mentioned by potential end users included:  

- Filtering material for preparing lectures about a 
certain topic,  

- Supporting graduate students in doing literature 
surveys (e.g. using a “shopping basket” to collect 
search results).  

A more advanced potential application that was 
mentioned was to monitor changes in the focus of the 
research community. This, however, would require a 
mechanism for filtering documents by date of 
publication, as well as the visualization for changes that 
happen over time. 

Three issues were identified that would improve 
the visualisation: 
- Interpretation of the subset names was found 

problematic 
- Complex term overlaps were difficult to interpret 
- Manipulation of the graph could be improved 

6 Conclusions and next steps 
We conclude that:  
- The system we have built is a working 

implementation of semantic web technologies, 
which can serve as an open architecture for 
thesaurus-based access to distributed data sources. 

- RDF was used as a common language for 
integrating data and schema information from 
diverse partners in industry and academia. We 
created RDF models of the EMTREE thesaurus and 
wrapped an existing information source into an 
RDF model. We found RDF and RDF schema 
sufficiently expressive to represent the information. 

 
Figure 3: the DOPE Client UI 



- We used the SeRQL query and transformation 
language to access and convert data in the system. 
Using SeRQL as a transformation language was 
essential for mediating between different sources. 
The fact that many RDF query languages do not 
support the transformation of data into a different 
formal is major problem for their use in real 
applications. Recently, there is some work on 
providing explicit view definition languages for 
RDF information. We expect this work to further 
improve the engineering of RDF-based 
applications. 

- The DOPE prototype currently provides access to 
about half a million full text articles and more than 
ten million abstracts. These are numbers that are 
realistic for real life applications. We did not 
encounter major bottlenecks with respect to storing 
and processing RDF data in the Sesame system. In 
fact, we found that other factors such as the 
bandwidth of the metadata server and the user 
interface were the limiting factors with respect to 
scalability.  

- To provide the required functionality, we had to 
link our RDF infrastructure with XML 
technologies, both at development and at run time. 
We converted an XML representation of the 
thesaurus into RDF and provided an RDF wrapper 
for the metadatabase based on an existing SOAP 
interface. The use of XML as a common 
denominator made it easy to connect these 
technologies. While this integration could easily be 
done on a technical level, we still had to cope with 
the differences at the conceptual level. The 
conceptual differences between the XML and RDF 
data model, for example, forced us to develop the 
two-stage transformation process described in the 
paper. There are attempts to leverage this problem 
by providing  a tighter integration of XML and 
RDF technologies (e.g. (for example [15,16]). We 
consider these attempts to be crucial RDF-based 
application engineering. 

- The DOPE Client UI works well with the rest of 
the technology, and offers an interesting graphical 
environment for scientific users to browse this vast 
data store. 

 
There are several issues that could be improved on: 
- In this prototype we only used one thesaurus, so the 

extension with different thesauri, which was our 
original goal, has not been tested in practice. 

- The limitations of the JAVA-based client interface 
forced us to limit the set of documents presented to 
the user to the 500 most relevant documents. With 
respect to the problem of high communication costs 
and low bandwidth, results from the area of 
distributed databases could be used to optimize 
data access using techniques such as pre-fetching 
or caching.  

- We are not fully utilising the semantic capabilities 
of RDF, or OWL. The Sesame architecture and 
SeRQL query language do, in principle, allow for a 
much greater semantic richness of the queries.  

- We have only used data indexed by a specific 
indexing technology (Collexis). When using this 
architecture to disclose different metadata 
repositories, there could be an improvement in 
performance and semantic search capabilities. 
However, in our experience the writing of an 
“RDF-wrapper” for the metadata server is likely to 
be the biggest task to solve, both intellectually and 
in terms of development effort.  

- With the user tests, it is hard to say to what extent 
the GUI obscures or clarifies the data integration 
and thesaurus manipulation that occurs with DOPE.  

 
Therefore, promising steps forward would be: 
- Inclusion of multiple ontologies  

Work is currently underway at the Vrije 
Universiteit to map the Gene Ontology [17] to 
EMTREE, which would allow the disclosure of 
genetic and document data through a single user 
interface 

- Generalization of the architecture 
This work can be used as a basic architecture for 
further explorations of distributed data sources and 
thesauri. To open it up for general use, the 
architecture needs to allow for the inclusion of 
distributed databases for RDF data (other than 
those of Collexis used in this project)  
Work is currently underway between Aduna and 
the Vrije Universiteit to investigate this. 

- Inclusion of full-text search 
To do a full comparison between thesaurus-based 
search and full-text search, which is an issue of 
interest to us, we need to have a representative set 
of data to query via both methods via a bare-bones 
interface. Some steps have been taken in this 
direction, but further work needs to be done to 
disclose a representative amount of data which will 
allow realistic user tests. 

- Retrieval of semantic relations 
The RDF query engine is in principle capable of 
answering such entity- relationship extractions to 
answer questions such as: “What diseases does this 
drug treat?” or  “What drugs treat this disease?”. A 
further collaboration between all parties 
participating in DOPE is being explored to 
investigate this promising route. 

7 Acknowledgements 
We thank Jan van Buel and Ian Crowlesmith for 
helping us understand the intricacies of EMTREE. This 
work was funded by the Elsevier Advanced Technology 
Group. 



8 References 
                                                
[1]  Arjohn Kampman, Jeen Broekstra: SeRQL User 
Manual. Technical Report, Aduna, 2003. See 
http://www.openrdf.org/doc/SeRQLmanual.html  
 
[2] Christiaan Fluit, Marta Sabou, Frank van Harmelen. 
Supporting User Tasks through Visualisation of Light-weight 
Ontologies. In: S. Staab and R. Studer (eds.), Handbook on 
Ontologies in Information Systems. Springer-Verlag, 2003 
 
[3] Christiaan Fluit, Marta Sabou, Frank van Harmelen. 
Ontology-based Information Visualisation. In: V. 
Geroimenko, C. Chen (eds.), Visualizing the Semantic Web. 
Springer-Verlag, 2003. 
 
[4] Van Mulligen EM, Van Der Eijk C, Kors JA, Schijvenaars 
BJ, Mons B., Research for research: tools for knowledge 
discovery and visualization. Proc AMIA Symp. 2002. 835-9. 
 
[5] H.Stuckenschmidt, A. de Waard, R. Bhogal, Chr. Fluit, A. 
Kampman, J.van Buel, E. van Mulligen, J. Broekstra, I. 
Crowlesmith, F. van Harmelen and A. Scerri, Exploring Large 
Document Repositories with RDF Technology – the DOPE 
Project. IEEE Intelligent Systems, special Issue on the 
Semantic Web Challenge, accepted for publication 2004. 
 
[6] Broekstra, J., Kampman, A., and van Harmelen, F. 
Sesame: An Architecture for Storing and Querying RDF data 
and Schema Information. Proceedings of the First 
International Semantic Web Conference ISWC 2001. 
 
[7] O. Lassila and R. Swick. Resource description framework 
(RDF). Proposed recommendation, W3C, January 1999. 
http://www.w3c.org/TR/WD-rdf-syntax. 
 
[8] Dan Brickley and R.V. Guha. RDF vocabulary description 
language 1.0: RDF schema. Working draft, W3C, April 2002. 
http://www.w3.org/TR/2002/WD-rdfschema-20020430/ 
 
[9] L. McGuinness, Peter F. Patel-Schneider, and Lynn 
Andrea Stein. Web ontology language (OWL) reference 
version 1.0. Working draft, W3C, November 2002. 
http://www.w3.org/TR/owl-ref/. 
 
[10] Phil Cross, Dan Brickley, and Traugott Koch. Rdf 
thesaurus specification. Institute for Learning and Research 
Technology, 2001. http://ilrt.org/discovery/2001/01/rdfthes/ 
 
[11] B.M. Matthews, K. Miller, and M.D. Wilson. A 
thesaurus interchange format in RDF. LIMBER project, 2002. 
http://www.limber.rl.ac.uk/External/external.htm. 
 
[12] See 
http://sesame.aidministrator.nl/publications/api/server/  
 
[13] Box, D., Ehnebuske, D., Kakivaya, G., Layman, A., 
Mendelsohn, N., Nielsen, H. F., Thatte, S., and Winer, D. 
(2000). Simple Object Access Protocol (SOAP) 1.1. W3c 
note,World Wide Web Consortium. See 
http://www.w3.org/TR/SOAP/ 
 

                                                                          
[14] G. Salton, Wong, and C.S. Yang. A vector Space Model 
for automatic indexing. Communications of the ACM, 18:613 
620, 1975. 
 
[15] A. Y. Halevy, Z. G. Ives, P. Mork, and I. Tatarinov. 
Peer data management systems: Infrastructure for the 
semantic web. In Proceedings of the 12th International 
World Wide Web Conference, 2003. 
 
[16] J. van Ossenbruggen and L. Hardman. Smart style on the 
semantic web. In Proceedings of the Semantic Web Workshop 
at the 11th International World Wide Web Conference, 2002. 
 
[17] The Gene Ontology Consortium. Gene ontology: tool for 
the unification of biology. Nature Genetics, 25(1):25--29, 
May 2000. 


