
The Drug Ontology Project for Elsevier
An RDF Architecture Enabling Thesaurus-Driven Data Integration

J. Broekstra, C. Fluit,

A. Kampman
Aduna BV,

The Netherlands

F. van Harmelen,
H. Stuckenschmidt
Vrije Universiteit,
The Netherlands

R.Bhogal, A.Scerri,
A. de Waard§
Elsevier B.V.,

The Netherlands

E. van Mulligen
Collexis B.V./

Erasmus University
Medical Center,
The Netherlands

Abstract

The DOPE project (Drug Ontology Project for
Elsevier) is driven by the need to access multiple
information sources through a single interface. In this
paper, we describe how DOPE allows thesaurus-driven
access to heterogeneous and distributed data, based on
the RDF data model. The architecture allows for the
easy addition of thesauri and data sources, and can
facilitate explorations in ontology mapping and data
integration.

1 Introduction
With the unremitting growth of scientific information
sources, the need for integrated access to these sources
becomes ever more urgent. The aim of the DOPE
project (Drug Ontology Project for Elsevier) is to allow
access to multiple information sources in the area of life
sciences through a single interface, using semantic web
data standards. The DOPE prototype* allows thesaurus-
driven access to heterogeneous and distributed data,
based on the RDF data model. This architecture allows
for the easy addition of thesauri/ontologies∗∗ and data
sources, to facilitate the investigation of ontology
mapping and data integration issues.

Thesauri provide controlled vocabularies for indexing
information, and by grouping relevant terms, help
overcome some of the problems of free-text search.
Examples of medical thesauri include MeSH
(http://www.nlm.nih.gov/mesh/meshhome.html) and
Elsevier’s life science thesaurus
EMTREE(http://www.elsevier.com/homepage/sah/spd/
site/). These thesauri are currently used to index
specific information sources – such as the abstract
databases PubMed (http://pubmed.org) and EMBASE
(http://embase.com/).

To utilise the advantages of thesauri, we would like to
use them to disclose other data sources, as well.
Currently there is no open architecture available to do
so. Furthermore, since the mental models and common
terms for data access diverge between communities,
different thesauri need to coexist. An ideal architecture
would allow for the disclosure of distributed and
heterogeneous data sources through different thesauri.

§ Corresponding author: a.dewaard@elsevier.com
* The DOPE prototype can be viewed on http://www.aduna.biz/dope
∗ ∗ We consider thesauri to be “lightweight ontologies” and,
throughout this paper, use the two words interchangeably

The aim of DOPE is to work towards such an
architecture.

Semantic web technologies facilitate access to
distributed data through open standards that allow
semantic qualifications, such as RDF [7]. To
successfully disclose these data via a single query
interface, however, we need to align the diverse
conceptualizations used by different data sources. RDF
represents the data conceptualization in a schema
definition, and can therefore be used to map the data
sources to each other. To execute this mapping step, an
RDF query language is needed. Of the many RDF query
languages available, only a few provide the required
transformation functionality – these include Triple and
SeRQL [1]. We used SeRQL because it is already
implemented in Sesame, the RDF repository used for
DOPE (see below).

The general architecture of DOPE is shown in Fig. 1:
1. DOPE Client: The DOPE Client makes use of a

thesaurus-driven visualization technology called
the Spectacle Cluster Map [2,3], developed by
Aduna BV. The DOPE Client interacts with the
other components via SeRQL queries sent by
HTTP. The DOPE client is discussed in section 5.

2. EMTREE: Elsevier’s main life science thesaurus,
EMTREE 2003©, was converted to an RDF-
Schema format. The thesaurus mapping to RDF is
described in section 2.

3. Metadata Server: For the prototype, the full content
of Science Direct (containing full text articles and
several abstract databases) and the last 10 years of
MEDLINE have been indexed against EMTREE
2003 thesaurus by the Collexis indexing
technology. This indexing technology creates a
weighted vector of a document to the thesaurus

Figure 1: DOPE Architecture

terms by statistical methods, called a fingerprint
(See (www.collexis.com) and [4] for details). The
metadata is mapped to an RDF source model via an
Extractor component, and accessed via a SOAP
protocol. Details of the indexer are discussed in
section 4, the mapping to RDF is described
elsewhere [5].

4. The Mediator: The RDF repository Sesame [6]
plays a central role in the DOPE prototype. A
Sesame RDF database communicates with the
Collexis server and the RDF version of EMTREE.
The core of the connected system is the Storage
And Inference Layer (SAIL) API that forwards
incoming method calls from the SeRQL query
engine to the relevant information sources. The
mediation architecture is discussed in section 3.

2 Thesaurus Representation in RDF
Design

To access different information sources in a uniform
way, we have to deal with heterogeneity at different
levels: information sources may use a different syntax,
different data models, and/or different
conceptualizations. Syntactic heterogeneity is largely
solved by the widespread use of XML as a basis for
encoding information, but the problem remains that
information sources often use different, application
specific data models, encoded in DTDs or schema
definitions. Aligning these data models from XML
schemas is often difficult due to the conceptual
ambiguity of XML schema definitions that do not, for
example, distinguish objects from relations.

In the Semantic Web initiative, a number of proposals
exist for metadata language standards. One of the most
stable ones is the Resource Description Framework
(RDF) [7]. RDF is not only assumed to be the lingua
franca for encoding meta-data about any kind of
information on the Web, it also provides the syntax for
defining other semantic web languages like RDF
Schema (RDFS) [8] or the ‘Web Ontology Language’
(OWL) [9]. To convert our sources into a uniform
model, we have to convert data sources into RDF. Our
first step in building a distributed architecture for multi-
thesaurus querying, therefore, was to convert the
EMTREE thesaurus to RDF format.

EMTREE is a thesaurus maintained by Elsevier as a
terminological resource for researchers in life science.
EMTREE is used to index EMBASE, an online
database that is indexed by human indexers. EMTREE
2003 contains about 45,000 preferred terms and
190,000 synonyms, organized in a multi-level
hierarchy. Making EMTREE available in RDF is not a
trivial task, because the result of the process has to
satisfy a number of requirements:
- Thesaurus maintenance should not be affected
- The RDF model has to behave in the same way as

the original thesaurus.

As our aim is to support effective access to
information sources, we consider the following tasks,
connected to the formulation and execution of a
thesaurus-based query:
A) Suggest Query Term. Based on query terms
provided by the user, the system can suggest additional
terms to refine the query.
B) Normalize Query Term. As the indexes of the
information sources are normalized to preferred terms,
each query stated to the system will also have to use
these preferred terms. Therefore the same mechanism is
needed on the query side.
C) Expand Query based on Hierarchy. The main task
of EMTREE in querying documents is to expand the
query specified by the user by broader, narrower and
related terms.
D) Dynamically Generate User Interface. As
EMTREE provides the basic knowledge structure for
interacting with information resources such as
EMBASE, it also provides the basis for generating a
user interface (discussed in section 5).

A number of RDF-based thesaurus interchange
formats have already been proposed [10],[11]. We
adopt the following principles mentioned in the
different proposals when defining an RDF
representation of EMTREE to support query
processing.
– A thesaurus is organized as a set of hierarchies of

concepts each with a unique root
– Concepts are represented independently from the

terms used to describe them
– The semantic relations are defined between

concepts rather than terms

Based on existing proposals and the specific needs of
the project, we chose the following ways of encoding
the EMTREE thesaurus in RDF-based languages:
a) Representation of the EMTREE meta-model

Checking the consistency of a set of query terms (part
of task A and D above) requires reasoning about types
of EMTREE terms. In particular, we have to check
whether a combination of EMTREE terms is consistent
with the conceptual model behind EMTREE. This kind
of reasoning is only supported by a logic-based
language like OWL (though much of the expressive
power of OWL will not be needed in this case). In order
to support this kind of reasoning, we have to define the
ontology that underlies EMTREE at the meta level. The
actual terms and their relations are instantiations of this
ontology. If we encode this ontology in OWL, we can
check a given set of index terms against it. The
following statements could for example be part of an
EMTREE ontology:

(hasDrugLink domain DrugTerm)
(hasDrugLink range DrugLink)
(aspirin type DrugTerm)

The model states that the ’hasDrugLink’ –relation can
only hold between ’DrugTerms’ and ’DrugLinks’.
Further we state that ’aspirin’ is a drug term. From this
small model we can automatically deduce that aspirin
should only be related to a DrugLink by this relation.
Note that in this model terms act as objects that are
described. The model uses semantic relations taken
from the OWL language.

b) Model of (Parts of) the Concept Hierarchy
Tasks like query expansion (task B) and term
suggestion (task A) mainly require the hierarchy of
Terms that constitutes the backbone of EMTREE.
Reasoning about this hierarchy is mostly restricted to
the retrieval of broader and narrower terms. This kind
of reasoning is supported by RDF schema. As fairly
scalable tools exist for storing and querying RDF
schema models, RDF schema representations of (parts
of) the EMTREE hierarchy should be considered as
default views on the Thesaurus. The following example
could be part of a concept hierarchy of EMTREE’s drug
facet:

(c1 subClassOf c2)
(c1 label ’acetylsalicylic acid’)
(c2 label ’salicylic acid derivative’)

The example states that the concept denoted by c1 is
a subconcept of another concept c2, Further, we have
information about the terms that are used to refer to
these concepts: ’acetylsalicyclic acid’ and ’salicylic
acid derivative’. In fact, this small example resembles
the ’broaderTerm’ relationship between the two
preferred terms mentioned and can be used to support
an explosion query over the more general term. Note
that the model only uses semantic relations that are part
of the RDF schema specification (i.e. subClassOf).

c) Representation of Synonym Relations
Some tasks like the normalization of index or query
terms (task B and part of task A) do not even require
taxonomic reasoning, as we only have to look up the
preferred term that is in a functional relation to the
index or query term. For this purpose a plain RDF file
with a single relation or even a database table is a
sufficient and efficient representation. The following
example could be part of a synonym table:

(c1 preferredTerm ’acetylsalicylic acid’)
(c1 synonymTerms [aspirin aspirine asperina])

This example defines the concept c1 using associated
terms from the thesaurus distinguishing between
preferred and synonym terms. It states that the preferred
term of concept c1 is ’acetylsalicylic acid’ and that
’aspirin’ is just a synonym. This model can therefore be
used to normalize an index or a query. Note that the
model does not use any semantic relationship from a
schema language.

Discussion:
- Instead of a complete migration of EMTREE to

RDF, we dynamically generate views on parts of
the complete model in RDF when required. We
found RDF and RDF schema sufficiently
expressive to represent the information required for
the tasks we performed on the thesaurus.

- However, we are not fully utilising the capabilities
of semantic web languages such as OWL. To
perform more interesting semantic queries (such as
“which drug produces which side effects?”) a
richer model of the information space, and the
thesaurus, should be made. The architecture used,
based on Sesame and SeRQL (discussed below)
does allow for this.

3 Mediation Architecture: SAIL API
Design

Sesame [6] allows persistent storage of RDF data and
schema information, and subsequent querying of that
information. To do this, Sesame needs a scalable
repository. A logical choice for such a repository is a
DBMS: a large number of DBMS's have been
developed, each having their own strengths and
weaknesses, targeted platforms, and API's. For each of
these DBMS's, the RDF data can be stored in numerous
ways. Depending on the application domain, other
forms of (persistent) storage may be more suitable, for
example storage in main-memory, in files, or in some
external source. As we would like to keep Sesame's
architecture independent from the actual choice of
repository, all storage-specific code is concentrated in a
single architectural layer of Sesame: the Storage And
Inference Layer (SAIL) [12].

This SAIL is a Java application programming
interface (API) that offers RDF(S)-specific methods to
its clients and translates these methods to calls to its
specific repository. An important advantage is that it
lets us build Sesame on top of a wide variety of
repositories without changing any of Sesame's other
components. Sesame's functional modules are clients of
the SAIL API. Currently, there are six such modules
delivered as part of the Sesame standard package: three
query engines (RQL, SeRQL, RDQL) , an RDF admin
module and the extract and remove modules. Naturally,
since these modules operate on the public SAIL API,
extending the set of modules for a domain- or
application-specific purpose is possible.

Depending on the environment in which it is
deployed, different ways to communicate with the
Sesame modules may be desirable. For example,
communication over HTTP may be preferable in a Web
context, but in other contexts protocols such as Remote
Method Invocation (RMI) or the Simple Object Access
Protocol (SOAP)13 may be more suited. In other
settings, it may be more desirable to use Sesame as a

Java library instead of a separate server, and use direct
Java method calls on either the modules or even directly
on the SAIL. For maximal flexibility, the handling of
these protocols has been placed outside the scope of the
functional modules. Instead, protocol handlers are
provided as intermediaries between the modules and
their clients, each handling a specific protocol.

The introduction of the SAIL and the protocol
handlers makes Sesame into a generic architecture for
RDFS storage and querying, rather than just a particular
implementation of such a system. Adding additional
modules or protocol handlers is also possible.

The core of the SAIL API is a set of four interfaces
that extend across two dimensions: RDF vs. RDF
Schema, and retrieve vs. manipulate (see fig. 2) :
– RdfSource offers retrieval methods for RDF, e.g.

getStatements(subject, predicate, object).
– RdfRepository extends RdfSource and adds

manipulation methods for RDF, e.g.
addStatement(subject, predicate, object).

– RdfSchemaSource also extends RdfSource, adding
retrieval methods for RDF Schema, e.g.
getInstancesOf(class).

– RdfSchemaRepository extends both RdfRepository
and RdfSchemaSource, combining RDF
manipulation and RDF Schema retrieval methods.
This interface does not add any new methods.

Any combination of these interfaces is possible,
where each implementation can make its own choices
on how to support storage and inference. This allows
the higher functionality of Sesame (such as querying) to
be ported to any environment in a flexible manner. The
SAIL interface allows the implementation of SAILs that
do not connect directly to a storage device, but instead
connect to another SAIL. This mechanism allows for
the 'stacking' of SAILs on top of each other, which is

useful for storage-agnostic functionality like caching or
synchronization.

Discussion

Overall, the SAIL architecture allowed a flexible and
easy development of the prototype system. Coupling
different parts of the distributed architecture was greatly
facilitated by conforming to the SAIL API for the
different components. Since this allowed reuse of
existing components (such as the SeRQL query engine,
and several different storage and inferencing
components available through the SAIL), it reduced
development cost considerably.

 However, a number of problems arose during the
implementation:
- The SAIL implementation for the DOPE prototype

does not handle concurrency issues specific to a
distributed environment. The converter stores a
retrieved result to re-use for answering the next
incoming query, but if two users query the system at
the same time, this will have unexpected results. This
is mainly an engineering issue that can be solved
with a small additional effort.

- The DOPE implementation for the mediator is very
domain-specific and would have to be re-
implemented for a new domain. Efforts are underway
to develop a more generic SAIL-based mediator
implementation.

- The performance of the system has a number of
bottlenecks. A number of these bottlenecks have been
identified to be easily solvable with some
engineering effort, but some are inherent to the
distributed nature of the system.

4 The Metadata Server
Design:

The metadata server consists of the following
backend services that form the heart of the Collexis
indexing technology:
- The abstraction component is used to recognize in a

piece of text a number of phrases (concepts) as
defined in a thesaurus and assign a relevance score to
each concept. The set of concepts and their relevance
score are named by Collexis a “concept fingerprint”
and are stored together with the document metadata
in a remote database.

- The matching engine allows for identifying those
fingerprints in a collexion that most closely resemble
a given query fingerprint. A document fingerprint can
also be used as a search fingerprint. The matching
engine has been based on the vector space model of
Salton [14] and knows a number of variations.

- The selection engine takes care of the combination of
matching and conditional searches on metadata. Any
indexed metadata field can be used in a Boolean
query together with a match on a search fingerprint.

Figure 2: The SAIL Architecture

- The relation engine maintains relations between
concept fingerprints. It can be used, for instance, to
relate fingerprints for a given author -- an aggregation
of document fingerprints -- with the original
document fingerprints, to see to what extent an
author’s subject coverage coincides with that of the
set of documents.

- The SOAP interface provides functions to query the
fingerprint and metadata repository. The statements
retrieved can be viewed as expressions stating that a
particular concept is present in a document with a
certain weight.

- To query the metadata server through RDF, an
Extractor component is deployed which, through use
of the SOAP interface, converts the Collexis
information in an RDF format that is a 1:1 mapping
to the original information: the physical model
(described in detail in [5]).

Discussion:
- The prototype currently uses a number of thresholds

on relevancies and the numbers of results to get
reasonably relevant documents and terms as well as a
timely response. There are currently some
performance bottlenecks caused by inefficient
querying and network overhead.

- There are problems with performance, which mostly
have to do with the query procedures between the
Sesame system and the Collexis-SOAP interface.
Improvements in the Sesame implementation for
DOPE and the query mechanism of the DOPE
Browser would likely make the thresholds on
maximum number of documents and terms
unnecessary, or at least orders of magnitude larger.

- Some of the performance issues we encountered are a
result of the conversion of the Collexis metadata to
an RDF format. In our experience, the writing of an
“RDF-wrapper” for the metadata server is likely to be
the biggest task to solve, both intellectually and in
terms of development effort.

5 The DOPE Client UI
Design:

The DOPE Client user interface† is based on Aduna
visualization technology, also called the Spectacle
Cluster Map [2], [3] and implemented as a Java client
side application. Java version 1.4 is the minimum
requirement, which at the moment is available for the
Windows, Mac OS X, Linux and Solaris platforms.
Communication with the DOPE Sesame server takes
place using the Sesame Java client library, which
communicates with the server using SeRQL queries
over HTTP.

EMTREE 2003 contains about 46,000 preferred
terms and 190,000 synonyms, organized in a multi-level

† The DOPE prototype can be viewed on http://www.aduna.biz/dope

hierarchy. Clicking through a hypertext version of the
thesaurus in order to create complex queries is too
much effort to be acceptable. In the DOPE client, the
user can quickly focus on a topically related subset of
both the document collection and the thesaurus. First,
the user selects a single thesaurus term. The system then
fetches all documents indexed with that focus term, as
well as all other terms those documents are indexed
with. These co-occurring terms are used to provide an
interface in which the user can explore the set of
documents indexed with the focus term.

For example, a user can enter the string "aspirin" in
the text field at the upper left of the figure. The system
then consults Sesame for all concepts than can be
related to this string. It responds with a dialog showing
four possible EMTREE terms, asking the user to pick
one. (This dialog is omitted when there is only one
exact match with an EMTREE term.) We assume the
user chooses the term "acetylsalicylic acid", this is now
the focus term.

The system consults Sesame again and retrieves (at
maximum) the 500 most relevant documents about
"acetylsalicylic acid", their metadata fields (such as
titles and authors) and the other most important terms
with which these documents are indexed. The co-
occurring terms are presented in the tree at the left hand
side, grouped by their facet term (the most generic
broader term, i.e. the root of the tree they belong to).
The user browses the tree and checks one or more
checkboxes that appear behind the term names, to see
their contents visualized at the right hand side.

Figure 3 shows the state of the interface after the user
has checked the terms "mortality", "practice guideline",
"blood clot lysis" and "warfarin". The visualization
graph shows if and how their document sets overlap.
Each sphere in the graph represents an individual
document, with its color reflecting the document type,
e.g. full article, review article or abstract. The colored
edges between terms and clusters of spheres reveal that
those documents are indexed with that term. This
visualization shows that within the set of documents
about aspirin there is significant overlap between the
terms “blood clot lysis” and “mortality”, and that 4 of
the practice guidelines documents relate to these two
topics as well.

Various ways exist to further explore this graph. The
user can click on a term or a cluster of articles to
highlight their spheres and list the document metadata
in the panel at the lower right. Moving the mouse over
the spheres reveals the same metadata as a tool tip. The
visualizations can also be exported to a clickable image
map that can be opened in a web browser.

The user can start with a new query by typing in a
new search string. This will empty the rest of the
interface and load a new set of documents and co-
occurring terms. The Thesaurus Browser provides an
alternate starting point for a next query. When a focus
term has been selected, the user can click the "Navigate

Thesaurus..." button at the upper left. She is then
confronted with a dialog that lets her select a new focus
term, by browsing through the thesaurus, starting from
the focus term. The user can iteratively select a broader,
narrower or alternative term until she encounters a term
that she wants to make the new focus term.

The visualization conveys several types of
information. The user obviously sees document
characteristics, such as index terms and article types.
Visualizing a set of terms shows all Boolean
combinations, without the need for the user to express
them all separately. The graph also shows how terms
relate within the selected set of documents, i.e. if they
have some overlap and if so, which documents
constitute that overlap.

Discussion:

We have performed a user test with 10 potential end
users at a Drug Discovery conference in 2003. A full
account of the results of the user studies is given
elsewhere [5] but, in summary, the visualization tool
was found to be a useful to aid in the information
discovery process, and in particular it was found to
provide richer contextual information about the
documents presented and simpler scanning of the data
sources

Users indicated that the main benefit of the UI is to
aid the exploration of a large, mostly unknown
information space rather than offer support for
searching for concrete articles. Examples of beneficial
applications mentioned by potential end users included:

- Filtering material for preparing lectures about a
certain topic,

- Supporting graduate students in doing literature
surveys (e.g. using a “shopping basket” to collect
search results).

A more advanced potential application that was
mentioned was to monitor changes in the focus of the
research community. This, however, would require a
mechanism for filtering documents by date of
publication, as well as the visualization for changes that
happen over time.

Three issues were identified that would improve
the visualisation:
- Interpretation of the subset names was found

problematic
- Complex term overlaps were difficult to interpret
- Manipulation of the graph could be improved

6 Conclusions and next steps
We conclude that:
- The system we have built is a working

implementation of semantic web technologies,
which can serve as an open architecture for
thesaurus-based access to distributed data sources.

- RDF was used as a common language for
integrating data and schema information from
diverse partners in industry and academia. We
created RDF models of the EMTREE thesaurus and
wrapped an existing information source into an
RDF model. We found RDF and RDF schema
sufficiently expressive to represent the information.

Figure 3: the DOPE Client UI

- We used the SeRQL query and transformation
language to access and convert data in the system.
Using SeRQL as a transformation language was
essential for mediating between different sources.
The fact that many RDF query languages do not
support the transformation of data into a different
formal is major problem for their use in real
applications. Recently, there is some work on
providing explicit view definition languages for
RDF information. We expect this work to further
improve the engineering of RDF-based
applications.

- The DOPE prototype currently provides access to
about half a million full text articles and more than
ten million abstracts. These are numbers that are
realistic for real life applications. We did not
encounter major bottlenecks with respect to storing
and processing RDF data in the Sesame system. In
fact, we found that other factors such as the
bandwidth of the metadata server and the user
interface were the limiting factors with respect to
scalability.

- To provide the required functionality, we had to
link our RDF infrastructure with XML
technologies, both at development and at run time.
We converted an XML representation of the
thesaurus into RDF and provided an RDF wrapper
for the metadatabase based on an existing SOAP
interface. The use of XML as a common
denominator made it easy to connect these
technologies. While this integration could easily be
done on a technical level, we still had to cope with
the differences at the conceptual level. The
conceptual differences between the XML and RDF
data model, for example, forced us to develop the
two-stage transformation process described in the
paper. There are attempts to leverage this problem
by providing a tighter integration of XML and
RDF technologies (e.g. (for example [15,16]). We
consider these attempts to be crucial RDF-based
application engineering.

- The DOPE Client UI works well with the rest of
the technology, and offers an interesting graphical
environment for scientific users to browse this vast
data store.

There are several issues that could be improved on:
- In this prototype we only used one thesaurus, so the

extension with different thesauri, which was our
original goal, has not been tested in practice.

- The limitations of the JAVA-based client interface
forced us to limit the set of documents presented to
the user to the 500 most relevant documents. With
respect to the problem of high communication costs
and low bandwidth, results from the area of
distributed databases could be used to optimize
data access using techniques such as pre-fetching
or caching.

- We are not fully utilising the semantic capabilities
of RDF, or OWL. The Sesame architecture and
SeRQL query language do, in principle, allow for a
much greater semantic richness of the queries.

- We have only used data indexed by a specific
indexing technology (Collexis). When using this
architecture to disclose different metadata
repositories, there could be an improvement in
performance and semantic search capabilities.
However, in our experience the writing of an
“RDF-wrapper” for the metadata server is likely to
be the biggest task to solve, both intellectually and
in terms of development effort.

- With the user tests, it is hard to say to what extent
the GUI obscures or clarifies the data integration
and thesaurus manipulation that occurs with DOPE.

Therefore, promising steps forward would be:
- Inclusion of multiple ontologies

Work is currently underway at the Vrije
Universiteit to map the Gene Ontology [17] to
EMTREE, which would allow the disclosure of
genetic and document data through a single user
interface

- Generalization of the architecture
This work can be used as a basic architecture for
further explorations of distributed data sources and
thesauri. To open it up for general use, the
architecture needs to allow for the inclusion of
distributed databases for RDF data (other than
those of Collexis used in this project)
Work is currently underway between Aduna and
the Vrije Universiteit to investigate this.

- Inclusion of full-text search
To do a full comparison between thesaurus-based
search and full-text search, which is an issue of
interest to us, we need to have a representative set
of data to query via both methods via a bare-bones
interface. Some steps have been taken in this
direction, but further work needs to be done to
disclose a representative amount of data which will
allow realistic user tests.

- Retrieval of semantic relations
The RDF query engine is in principle capable of
answering such entity- relationship extractions to
answer questions such as: “What diseases does this
drug treat?” or “What drugs treat this disease?”. A
further collaboration between all parties
participating in DOPE is being explored to
investigate this promising route.

7 Acknowledgements
We thank Jan van Buel and Ian Crowlesmith for
helping us understand the intricacies of EMTREE. This
work was funded by the Elsevier Advanced Technology
Group.

8 References

[1] Arjohn Kampman, Jeen Broekstra: SeRQL User
Manual. Technical Report, Aduna, 2003. See
http://www.openrdf.org/doc/SeRQLmanual.html

[2] Christiaan Fluit, Marta Sabou, Frank van Harmelen.
Supporting User Tasks through Visualisation of Light-weight
Ontologies. In: S. Staab and R. Studer (eds.), Handbook on
Ontologies in Information Systems. Springer-Verlag, 2003

[3] Christiaan Fluit, Marta Sabou, Frank van Harmelen.
Ontology-based Information Visualisation. In: V.
Geroimenko, C. Chen (eds.), Visualizing the Semantic Web.
Springer-Verlag, 2003.

[4] Van Mulligen EM, Van Der Eijk C, Kors JA, Schijvenaars
BJ, Mons B., Research for research: tools for knowledge
discovery and visualization. Proc AMIA Symp. 2002. 835-9.

[5] H.Stuckenschmidt, A. de Waard, R. Bhogal, Chr. Fluit, A.
Kampman, J.van Buel, E. van Mulligen, J. Broekstra, I.
Crowlesmith, F. van Harmelen and A. Scerri, Exploring Large
Document Repositories with RDF Technology – the DOPE
Project. IEEE Intelligent Systems, special Issue on the
Semantic Web Challenge, accepted for publication 2004.

[6] Broekstra, J., Kampman, A., and van Harmelen, F.
Sesame: An Architecture for Storing and Querying RDF data
and Schema Information. Proceedings of the First
International Semantic Web Conference ISWC 2001.

[7] O. Lassila and R. Swick. Resource description framework
(RDF). Proposed recommendation, W3C, January 1999.
http://www.w3c.org/TR/WD-rdf-syntax.

[8] Dan Brickley and R.V. Guha. RDF vocabulary description
language 1.0: RDF schema. Working draft, W3C, April 2002.
http://www.w3.org/TR/2002/WD-rdfschema-20020430/

[9] L. McGuinness, Peter F. Patel-Schneider, and Lynn
Andrea Stein. Web ontology language (OWL) reference
version 1.0. Working draft, W3C, November 2002.
http://www.w3.org/TR/owl-ref/.

[10] Phil Cross, Dan Brickley, and Traugott Koch. Rdf
thesaurus specification. Institute for Learning and Research
Technology, 2001. http://ilrt.org/discovery/2001/01/rdfthes/

[11] B.M. Matthews, K. Miller, and M.D. Wilson. A
thesaurus interchange format in RDF. LIMBER project, 2002.
http://www.limber.rl.ac.uk/External/external.htm.

[12] See
http://sesame.aidministrator.nl/publications/api/server/

[13] Box, D., Ehnebuske, D., Kakivaya, G., Layman, A.,
Mendelsohn, N., Nielsen, H. F., Thatte, S., and Winer, D.
(2000). Simple Object Access Protocol (SOAP) 1.1. W3c
note,World Wide Web Consortium. See
http://www.w3.org/TR/SOAP/

[14] G. Salton, Wong, and C.S. Yang. A vector Space Model
for automatic indexing. Communications of the ACM, 18:613
620, 1975.

[15] A. Y. Halevy, Z. G. Ives, P. Mork, and I. Tatarinov.
Peer data management systems: Infrastructure for the
semantic web. In Proceedings of the 12th International
World Wide Web Conference, 2003.

[16] J. van Ossenbruggen and L. Hardman. Smart style on the
semantic web. In Proceedings of the Semantic Web Workshop
at the 11th International World Wide Web Conference, 2002.

[17] The Gene Ontology Consortium. Gene ontology: tool for
the unification of biology. Nature Genetics, 25(1):25--29,
May 2000.

