
Semantical Descriptions of Models for Web Design

Peter Barna, Geert-Jan Houben, Flavius Frasincar, and Richard Vdovjak
Technische Universiteit Eindhoven

PO Box 513, NL-5600 MB Eindhoven, The Netherlands
{pbarna, houben, flaviusf, richardv}@win.tue.nl

Abstract

The use of semantic web languages brings a number of
advantages for web engineering methodologies. In this pa-
per we present how in the Hera methodology the design
models benefit from description in semantic web languages.
We describe how the important models are expressed and
how the corresponding meta-models are defined. This is il-
lustrated for the Application Model that specifies the hyper-
media navigation over the content in the application, and
do so for both the static and dynamic cases. With the sup-
port of the dynamics, particularly the interaction of the user
with the generated hypermedia presentation, we extend the
possibilities to specify the design of a new generation of web
applications.

1. Introduction

The current requirements for web applications do ask for
a rigorous design and engineering approach. Several design
methodologies for web applications have been proposed in
the research literature. We mention here OOHDM [10],
OO-H [6], UWE [7], WebML [5], and Hera [11]. Charac-
teristic for many of these approaches is their model-based
nature. They choose to offer an approach that supports a
model-driven design. Typically, one sees models that de-
scribe the content (domain), that describe the navigation
over that content (hypermedia), and that describe the pre-
sentation of that content and its navigation (layout, tim-
ing, etc.). In order to get a better grip on the web appli-
cation design, this model-driven approach proves effective.
Specifically, in those data-intensive applications that are
constructed from content that is retrieved from a diverse and
distributed set of repositories: in that case it is obvious that
a schema-based approach is required and the earlier princi-
ples from manually constructing a web application are not
valid anymore. Most of these design approaches specially
target this second generation of web applications.

With the further development of the applications from

this second generation, the aspect of dynamics starts play-
ing a more important role. In the second generation the tar-
get was much more the presentation of the content in a way
that conveyed the appropriate semantics to the application
user. In the third generation there is also more attention for
the interaction of the user with the presentation: the actions
from the user do influence the behavior of the application,
and the design models need to reflect that aspect of the com-
munication as well. So, in the next generation of the web
design methodologies we see a stronger focus on the design
of dynamic web applications.

A second trend that we observe in the design of web ap-
plications is the use of semantic web technologies. As we
already recognized quite early in the process of the develop-
ment of our Hera methodology, some of the languages and
techniques that emerged from the semantic web initiative
could be extremely useful in the specification of the differ-
ent aspects of the design models. Specially when it comes
to sharing and exchanging information (and their schemas),
languages like RDF [8], RDFS [4], and OWL [9] appear to
be quite effective.

In this paper we address the issue of the semantical de-
scription of the design models. We explain and illustrate
how the semantical descriptions can play a prominent role
in the specification of the web application. Furthermore,
we show how the (meta-)models for these models can be
described and benefit from the use of RDF(S) and OWL.
We do so in terms of our Hera methodology and for this
paper we particularly focus on the application model, i.e.
the model that specifies the (hypermedia) navigation over
the content. In Section 2 we shortly recap the essentials
of Hera, while Section 3 covers the models of the semanti-
cal layer (the content models). Then, in Section 4 we take
a closer look at the application layer with the models for
the navigation, first for the static case, then for the dynamic
case. Section 5 presents the implementation of the tools that
support the methodology, before Section 6 concludes our
view on the role of semantical descriptions in web design.

2. Hera

Hera [11] is a model-driven methodology that defines
a set of design steps that need to be taken to build a web
application. In the design steps a set of models is con-
structed describing certain aspects of the designed web ap-
plication. The models are used within the specification of
an automatic data transformation process starting with data
retrieval and producing hypermedia presentations in an end-
user format (for instance HTML).

The Hera methodology recognizes the following phases
and models:

• Conceptual (semantic) design. The main output of this
phase is the Conceptual Model (CM) describing the
data structure of the overall data content used in the de-
signed web application. The Media Model associates
data items from CM with media types from the Media
Vocabulary.

• Application design. In this phase the designer creates
the Application Model (AM) defining the navigation
structure and behavior of the application.

• Presentation design. In this phase the designer speci-
fies the layout and rendering of presented content ma-
terialized in the Presentation Model (PM). It is out of
scope for this paper.

The process of data transformations starts with posing a
query to the data repository. The process of presentation
generation (see Figure 1) has the following steps:

• Data retrieval and CM instance generation, where the
required data is collected from data sources and trans-
formed into an instance of CM (CMI). This is per-
formed within the Semantic Layer (CM defines the se-
mantics of the data content).

• AM instance generation, where the data is transformed
into an AM instance (AMI) using the AM. AMI is gen-
erated within the Application Layer, because the AM
defines the application structure (navigation and be-
havior).

• Presentation generation, where the AMI is transformed
using the PM into a presentation in a concrete for-
mat. Presentations are generated within the Presenta-
tion Layer.

Meta-models are used to define the basic modelling prim-
itives that are used in all concrete models specifying the
designed applications. All models and meta-models are ex-
pressed in RDFS [4]. In the next sections we describe meta-
models and models for the Semantic Layer and the Appli-
cation Layer.

Content

Semantic Layer

Media Vocabulary

Conceptual
Model

Media Model

Application Layer

Application
Meta-model

Application
Model

Presentation Layer

Presentation
Meta-model

Presentation
Model

Browser

CMI

Presentation

AMI

User

Figure 1. Data transformations using models
in Hera

aname

Artifact

year

cname

Creator

biography

picture

Painting

Painter

tname

Technique

description

Set

Set

Set

exemplified_by

exemplifies

created_by

creates

painted_by

paintsSubClassOf

SubPropertyOf

Figure 2. An example of CM using Hera’s
graphical notation

3. Models for the Semantic Layer

CM describing the semantics of the data content, is the
core model of the Semantic Layer. Next to CM, the Me-
dia Model (MM) associates displayable data attributes with
appropriate media types.

Both CM and MM are expressed in terms of RDFS, by
means of concepts, their attributes (literals), and properties
(including predefined properties asrdfs:subClassOf,
rdfs:subPropertyOf, and rdf:type). Hence,
RDFS is a meta-model for CM and MM. In addition, the
Media Vocabulary defines the hierarchy of media types used
in MM.

For CM we use Hera’s own concise graphical notation
that mimics RDFS, where darker ovals represent RDF(S)
concepts, white ovals inside concepts represent literal at-
tributes, and arrows represent concept properties. TheSet
construct is a shortcut for the0...∗ cardinality that is added
to the RDFS meta-model. An example of CM in this nota-
tion is given in Figure 2. The example describes a simple
domain of artifacts, authors, and used techniques with spe-
cializations for painters and paintings.

Figure 3 shows a MM defining media types for the exam-

tname

Technique

description

aname

Artifact

year

cname

Creator

biography
picture

Painting

ShortText LongText Integer LImage

media property

Figure 3. An example of the Media Model

Media

Text Number DateTime

Image Video

ShortText LongText Integer Decimal Thumb LImage LRVideo HRVideo

Frame Timed

Figure 4. Media Vocabulary

ple CM. It contains associations between literal attributes
from CM and media types from Media Vocabulary shown
in Figure 4.

4. Models for the Application Layer

The core model of the Application Layer is the AM spec-
ifying the (dynamic) navigation view over the conceptual
data. We first explain the basic (static) AM using the ex-
ample from the previous section and the Application Meta-
model. Then we explain how navigation dynamics is speci-
fied within AM.

4.1. Static AM

Slices are the basic building blocks of AM. They specify
the structure of navigation nodes (e.g. pages). Every slice
is based on a single concept from CM (owner concept) and
represents a meaningful collection of information given by
selected attributes of the owner concept, or attributes of re-
lated concepts (connected by a property(ies) in CM). A slice
is a composite structure that represents a whole page or its
fragment. Names of slices are usually derived from their
owner concept and their purpose.

Navigation edges (e.g. links) are modelled as slice refer-
ences that have anchors associated with some slice compo-
nents. Reference targets are (top-level) slices. A slice can
contain components of the following types:

• attribute of the owner concept that displays the data
value of an attribute;

• foreign attribute(attribute of a related concept) that
displays the data value of an attribute of a related con-
cept instance given by a CM property;

• foreign slicebased on a related concept that displays
its own content;

• link anchorbased on foreign attribute, or foreign slice,
and

• setsof links, foreign attributes, or foreign slices.

For AM Hera uses its own graphical language (inspired by
RMM [2] notation) that facilitates the design process. How-
ever, the AM specifications are in Hera tools translated into
RDFS.

4.1.1 Example of Static AM

An example AM is given in Figure 5. All mentioned
types of slice components appear there. The initial slice
Technique.Main is marked by the black triangle. Ovals
represent concepts from CM, where large ovals are owner
concepts of slices. Small ovals within slices are related con-
cepts.

The Technique.Main slice displays the values of
thetname anddescription attributes of the instance
of Technique (for this simple example we assume that
there is only one instance of theTechnique concept in
the data content). Furthermore, the set of painting names
(Painting.aname) is displayed. The selection of proper
instances is determined by theexemplified by prop-
erty. A set of links is associated withPainting.aname
as link anchoring element, andPainting.Main as
a target slice. Hence, every instance of the painting
(Painting.aname) is associated with a link instance
navigating to a concretePainting.Main instance dis-
playing more information about the concrete painting.

4.1.2 Meta-model for Static AM

Figure 6 shows a meta-model for AM. The meta-model is
presented using UML notation. Although it is currently in
RDFS, its extension to OWL, allowing to express the con-
straint(s) shown in the figure, is under development. The
property concepts are in the figure distinguished from other
concepts by darker color.

All slices defined in a concrete AM (for instance top-
level Technique.Main or Painter.Info) are sub-
classes of the generalSlice concept. Moreover, all
slice components are modelled as slices (e.g. attributes like
Technique.tname or foreign attributes and their sets
like Painting.aname, etc.) as well.

The slice-ref property is the basic means of slice
nesting. All sub-components of a slice are associated to the

Technique Painting

Main Main

Painter

Info

Painter

Info

painted_by

Painting

exemplified_by

Set

tname

Set

picture

Painting

aname

description

aname

year

cname

biography

paints

Figure 5. An example of static AM expressed
in Hera’s graphical language

Slice

 main : xsd:boolean
 owner: CM:Concept

Link

Set

1..1

0..1

sourceSlice > <destinationSlice

1..1

1..1
1..1

1..1

Media
0..11..1

1..*

1..1

0..1 1..1

media >

attr-ref : rdf:Property

slices >1..1 0..*

links >

1..1 1..*

slice-ref >rdf:Property
0..1 1..1

< prop-ref <<constraint>>
self.domain.domain.owner

<>
self.domain.range.owner

< set

 ^
link

Figure 6. Application meta-model in RDFS
and OWL using the UML notation

Slice

Slice.Technique.Main

 main : yes
 owner: CM:Technique

Slice.Technique.tname

 main : no
 owner: CM:Technique

Slice.Technique.description

 main : no
 owner: CM:Technique

Slice.Painting.set1

 main : no
 owner: CM:Painting

Set.Paintings
< links

Slice.Painting.aname

 main : no
 owner: CM:Painting

Link

< set
Link.Painting

Set

Slice.Painting.Main

 main : no
 owner: CM:Painting

sourceSlice >

destinationSlice >

ShortText

< media

attr-ref: CM:exemplified_by

< slice-ref

< slice-ref slice-ref
 V

Figure 7. The Technique.Main slice specifica-
tion

slice as another slices by means of properties that are sub-
properties ofslice-ref. Sub-slices can represent links
(if it has thelink property), attributes (if it has themedia
property), nested slice, or sets of links or slices (if it has
the set property). Theattr-ref property ofmedia
determines an attribute from CM, and (sub-class of) the
Media concept determines the media type of the attribute.
Theprop-ref property gives a CM property connecting
the owner concept of the parent slice with the owner con-
cept of the nested slice. The constraint attached to it limits
the existence ofprop-ref only for such slices related by
slice-ref that have different owner concepts.

Figure 7 shows theTechique.Main slice specifica-
tion implemented as a specialization of AM meta-concepts.
TheTechique.Main slice and its components are sub-
classes ofSlice. The components are of types at-
tributes (e.g. Slice.Technique.tname, its media
property is not shown due to the lack of space) and
set (Slice.Painting.Set1 that has aset property
Set.Paintings). The set of paintings is constructed
from the link set (Link.Painting) that is based on the
set of painting names (Slice.Painting.aname with
its media property defining its media type and the prop-
erty exemplified by connecting theTechnique and
Painting concepts).

4.2. Dynamic AM

In this section we explain how the specification method
for the Application Layer, concretely the modelling prim-
itives of AM specified in its meta-model, is extended to
allow the design of dynamic web applications. We define
the dynamics as the ability of the navigation structure to
change depending on the user’s actions and the data (s)he
enters. An example of such a dynamic pattern is a temporar-
ily stored selection of items, e.g. realized in the form of a
virtual shopping basket. Another example is a dynamic per-
sonalized navigation view based on a user model (as we typ-
ically see in applications that offer user adaptation e.g. [3]).

We need to introduce primitives for modelling input
forms, and for operations that will process entered data and
based on this change the state of the system (e.g. data con-
tent). The notion of application model is thus extended in
three ways:

• Input formsare added to the set of possible slice com-
ponents.

• Data content manipulationoperationsassociated with
input forms are added to the AM specification. They
are executed when the forms are filled and submitted
by the user.

• Appearance conditionscan be associated with slices
(and its components) to facilitate personalization.

In Hera we have introduced inputs of three basic types
that are encapsulated in forms:select1 allows users to
select one value from a list,selectN allows user to se-
lect a set of values from a list, andiText supports textual
input. The initial data of these inputs (lists or default text
values) can be taken out of the data content or can be con-
stants specified in AM.

Data content manipulation operations are specified in a
form of data manipulation queries (in SeRQL [1] in our cur-
rent implementation) that can use values entered by users in
the input forms associated with the operations. They can
temporarily or persistently change the data content.

Appearance conditions are attached to slices or slice
components: in the case of sets they limit the selection of
instances, whereas in the case of single attributes or sub-
slices they determine their visibility. During the generation
of application pages the appearance conditions are automat-
ically transformed into data retrieval queries.

4.2.1 Example of Dynamic AM

For the purpose of demonstrating the described modelling
primitives we redefine our earlier example now. The ap-
plication will now initially offer a list of paintings painted
by a certain technique (as in the former case), but now it

PaintingSelection
selPaintings

Set

inSelection

Figure 8. An extension of CM for the support
of dynamic navigation

will allow the user to select a number of them. After ac-
knowledging the selection by the user the application will
display information about painters, of which paintings ap-
peared in the selection more than once. Although this exam-
ple is rather hypothetical, it allows us to use all mentioned
modelling primitives.

First, we extend the specification of the data as given by
CM with auxiliary concepts and properties that will support
the navigation dynamics. The instances of theSelection
concept, and theselPaintings and inSelection
properties will store the user selection, see Figure 8. Dur-
ing the initialization (beginning of session) one instance
of Selection will be created. Multiple instances of
selPaintings and its inverse propertyinSelection
will specify the user selection of paintings itself.

The AM is in Figure 9. TheTechnique.Main slice
contains thePaintingsForm input of the SelectN
type that displays the list of all available paintings painted
using the technique. Theinitialize operation called
at the beginning of the session creates one instance of
Selection. The updateSelection operation cre-
ates instances ofselPaintings and inSelection
connecting selectedPainting instances with the
Selection instance, and deletes otherselPaintings
and inSelection instances storing possible previous
selections. TheSelection.Painters slice uses
the selPaintings.painted by joint property to
select painters that painted selected paintings. The list of
Painter.Info instances is limited by the appearance
condition to painters, of which paintings appeared in the
selection more than once. ThePainter.Info slice
remains the same as in the previous example, so it is not
shown here again.

4.2.2 Extension of Meta-model for Dynamic AM

Figure 10 shows the extension of the application meta-
model containing additional modelling primitives that allow
the specification of dynamic web applications.

A slice can have an associated appearance condition (the
Condition concept) that is a specialization ofQuery.
Specification of the user input elements is provided by the
IForm Input, select1, selectN, andiText con-
cepts. The input processing is modelled by the (sequence
of) Operation concept that is a specialization of a (data

Technique Selection

Main Painters

Painter

Info

selPaintings.painted_by

tname

description

PaintingsForm

sN bname

bname

PaintingSet

exemplified_by

Set

COUNT(SELF.paints.inSelection) > 1

updateSelection

initialize

Figure 9. An example of dynamic AM ex-
pressed in Hera’s graphical language

manipulation) query. TheProcessing is a sub-class of
therdf:seq sequence. ThetargetSlice property de-
fines to what slice to navigate after the processing is exe-
cuted.

The implementation of theTechnique.main slice
using the extended meta-model is in Figure 11. It
has two attributesSlice.Technique.tname and
Slice.Technique.description implemented as
slices, and the formPaintingsForm also encapsulated
in the Slice.Painting.PForm slice. The form pro-
cessingupdateSelection is a sequence of two op-
erationsdeleteSelection andcreateSelection,
where the first is a data manipulation query that deletes all
instances of theinSelection andselPaintingsCM
properties, and the second one creates new instances of the
properties corresponding to the new selection.

5 Implementation

The Hera project includes also the development of pro-
totypes of software engines generating and running web
applications. The first type of engine (called HPG: Hera
Presentation Generator) generates static web presentations
(with a static AM as described in Section 4.1). Figure 12
shows the main window that allows to configure the com-
plete setup of the generated presentation (selection of con-
crete AM, source data, user profiles, end format, etc.). It
also allows stepwise processing (controlled by the user).
The transformation process is based on XSLT processing
using XSL stylesheets.

The engine producing dynamic web applications (with
the dynamic AM as described in Section 4.2) runs as a
servlet under a web server (Apache Tomcat). It calculates
application pages on demand and allows processing of user

Slice

 main : xsd:boolean
 owner: CM:Concept

Query

text :xsd:string

IForm

Input

defaultData[] : xsd:string

Processing

select1 selectN iText

Condition

 ^
aCondition1..1

0..1

1..1

1..1
 ^
submission

Operation

rdf:seq

<ops

1..11..*

form >1..1 0..1

inputs
 v

1..1

0..*

rdf:Property
<inputData 1..10..1

<targetSlice

1..1

1..1

Figure 10. The extension of the application
meta-model for dynamic web applications

Slice

Slice.Technique.Main

 main : yes
 owner: CM:Technique

Slice.Technique.tname

 main : no
 owner: CM:Technique

Slice.Technique.description

 main : no
 owner: CM:Technique

Slice.Painting.PForm

 main : no
 owner: CM:Painting

PaintingsForm

< inputs

updateSelection

selectN

< form

input1

IForm

exemplified_by
inputData >

< slice-ref

< slice-ref
slice-ref
 V

Processing

deleteSelection {1} createSelection {2}

< submission

Operation

ops {2} >

ops {1}
 v

Figure 11. Implementation of slice Tech-
nique.Main in the extended application meta-
model

Figure 12. The main window of HPG

Figure 13. AM builder

inputs via HTML forms. When a form is submitted, the
engine performs operations associated with the form (spec-
ified in AM), and then it creates the page corresponding to
the target slice specified with form processing. When an
http request for the next page (encoded in links or form sub-
mission elements as slice identifiers) is received, the engine
according to the specifications in AM retrieves the required
data and creates AMI for a certain page, that is then trans-
formed into HTML. The engine is written in Java, uses HP
Jena RDF API, and the Sesame repository.

Tools facilitating the design of Hera models are also un-
der developmnet. They allow the designer to specify the
models by drawing their graphical notation, what makes the
design process more effective. Our tools translate the graph-
ical notation into RDFS (OWL not yet) descriptions that are
used by the aforementioned Hera engines. Concretely, we
have implemented CM and AM builders (see Figure 13) that
are based on Microsoft Visio templates.

6 Conclusion

In this paper we have addressed the role of semantical
descriptions in the process in which in the Hera methodol-
ogy web applications are designed. Hera models rely on
the use of languages like RDF(S), OWL, and SeRQL to de-
fine how the navigation and personalization are specified for
data-intensive web applications. The languages are flexible
and extensible (allow schema refinement and enrichment,
for instance the cardinality of properties that we use for CM
in RDFS), and have explicit semantics (unlike e.g. XML)
what allows us effectively use third party RDF software for
the most of processing.

Meta-models expressed in the semantic web languages
formalize the Hera methodology and precisely describe hi-
erarchies of concepts (building blocks of models) that can
be used in concrete models. Thanks to constraints speci-
fied within the meta-models, it is possible to automatically
check the correctness of models, what can be also used in
the designer tools already at design time.

References

[1] Aidministrator Nederland b.v. The serql query language.
http://sesame.aidministrator.nl/publications/users/ch05.html.

[2] V. Balasubramanian, M. Bieber, and T. Isakowitz. A case
study in systematic hypermedia design.Information Sys-
tems, 26(4):295–320, 2001.

[3] P. D. Bra, A. Aerts, G. J. Houben, and H. Wu. Making
general-purpose adaptive hypermedia work. InWebNet 2000
World Conference on the WWW and Internet, pages 117–
123. AACE, 2000.

[4] D. Brickley and R. V. Guha. Rdf vocabulary description lan-
guage 1.0: Rdf schema. W3C Recommandation 10 February
2004.

[5] S. Ceri, P. Fraternali, A. Bongio, M. Brambilla, S. Comai,
and M. Matera.Designing Data-Intensive Web Applications.
Morgan Kaufmann, 2003.

[6] J. Gomez, C. Cachero, and O. Pastor. On conceptual model-
ing of device-independent web applications: Towards a web
engineering approach.IEEE Multimedia, 8(2):26–39, 2001.

[7] N. Koch, A. Kraus, and R. Hennicker. The authoring process
of the uml-based web engineering approach. InFirst Inter-
national Workshop on Web-Oriented Software Technology,
2001.

[8] O. Lassila and R. R. Swick. Resource description frame-
work (rdf) model and syntax specification. W3C Recom-
mendation 22 February 1999.

[9] D. L. McGuinness and F. van Harmelen. Owl web ontol-
ogy language overview. W3C Recommendation 10 Febru-
ary 2004.

[10] D. Schwabe and G. Rossi. An object oriented approach to
web-based application design.Theory and Practice of Ob-
ject Systems, 4(4):207–225, 1998.

[11] R. Vdovjak, F. Frasincar, G. J. Houben, and P. Barna. Engi-
neering semantic web information systems in hera.Journal
of Web Engineering, 2(1-2):3–26, 2003.

