
Semantics driven support for query formulation

Paolo Dongilli, Enrico Franconi, and Sergio Tessaris

Free University of Bozen-Bolzano, Italy
<lastname>@inf.unibz.it

Abstract

In this paper we describe the principles of the design and development of an intelli-
gent query interface, done in the context of the SEWASIE (SEmantic Webs and AgentS in
Integrated Economies) European IST project. The SEWASIE project aims at enabling a
uniform access to heterogeneous data sources through an integrated ontology. The query
interface is meant to support a user in formulating a precisequery – which best captures
her/his information needs – even in the case of complete ignorance of the vocabulary of
the underlying information system holding the data. The intelligence of the interface is
driven by an ontology describing the domain of the data in theinformation system. The
final purpose of the tool is to generate a conjunctive query ready to be executed by some
evaluation engine associated to the information system.

1 Introduction

In this paper we describe the principles of the design and development of an intelligent query
interface, done in the context of the SEWASIE (SEmantic Webs and AgentS inIntegrated
Economies) European IST project. The SEWASIE project aims at enablinga uniform access
to heterogeneous data sources through an integrated ontology. The query interface is meant to
support a user in formulating a precise query – which best captures her/his information needs
– even in the case of complete ignorance of the vocabulary of the underlying information
system holding the data. The final purpose of the tool is to generate a conjunctive query (or
a non nested Select-Project-Join SQL query) ready to be executed by some evaluation engine
associated to the information system.

The intelligence of the interface is driven by an ontology describing the domain of the
data in the information system. The ontology defines a vocabulary which is richer than the
logical schema of the underlying data, and it is meant to be closer to the user’s rich vocabulary.
The user can exploit the ontology’s vocabulary to formulate the query, and she/he is guided
by such a richer vocabulary in order to understand how to express her/his information needs
more precisely, given the knowledge of the system. This latter task – calledintensional navi-
gation– is the most innovative functional aspect of our proposal. Intensionalnavigation can
help a less skilled user during the initial step of query formulation, thus overcoming problems
related with the lack of schema comprehension and so enabling her/him to easily formulate
meaningful queries. Queries can be specified through an iterative refinement process sup-
ported by the ontology through intensional navigation. The user may specify her/his request

This work has been partially supported by the EU projects Sewasie, KnowledgeWeb, and Interop.



using generic terms, refine some terms of the query or introduce new terms, and iterate the
process. Moreover, users may explore and discover general information about the domain
without querying the information system, giving instead an explicit meaning to a query and
to its subparts through classification.

In the literature there are several approaches at providing intelligent visual query systems
for relational or object oriented databases (see[10] for an extensive survey). However, to
our knowledge, the work presented in this paper is among the first well-founded intelligent
systems for query formulation support in the context of ontology-based query processing.
The strength of our approach derives from the fact that the graphical and natural language
representation of the queries is underpinned by a formal semantics provided by an ontology
language. The use of an appropriate ontology language enables the system engineers to pre-
cisely describe the data sources, and their implicit data constraints, by meansof a system
global ontology (see[9]). The same ontology is leveraged by the query interface to sup-
port the user in the composition of the query, rather than relying on a less expressive logical
schema. The underlying technology used by the query interface is basedon the recent work
on query containment under constraints (see[8; 16]).

The paper is organised as follows. Firstly we present the system w.r.t. user viewpoint,
with the functionalities of the interface, then we describe the semantics and the reasoning
services supporting the query interface. These include the query language expressiveness,
the ontology support to the query formulation, and the natural language verbalisation issues.
Finally, we discuss related work and we draw some conclusions.

2 Query interface: the user perspective

Initially the user is presented with a choice of different query scenarios which provide a
meaningful starting point for the query construction. The interface guides the user in the
construction of a query by means of a diagrammatic interface, which enablesthe generation
of precise and unambiguous query expressions.

Query expressions are compositional, and their logical structure is not flat but tree shaped;
i.e. a node with an arbitrary number of branches connecting to other nodes. This structure
corresponds to the natural linguistic concepts of noun phrases with one or more propositional
phrases. The latter can contain nested noun phrases themselves.

A query is composed by a list of terms coming from the ontology (classes); e.g. “Supplier”
and “Multinational”. Branches are constituted by a property (attributes or associations) with
its value restriction, which is a query expression itself; e.g. “selling on Italianmarket”, where
“selling on” is an association, and “Italian market” is an ontology term.

The focus paradigm is central to the interface user experience: manipulation of the query
is always restricted to a well defined, and visually delimited, subpart of the whole query (the
focus). The compositional nature of the query language induces a natural navigation mecha-
nism for moving the focus across the query expression (nodes of the corresponding tree). A
constant feedback of the focus is provided on the interface by means ofthe kind of operations
which are allowed. The system suggests only the operations which are “compatible” with the
current query expression; in the sense that do not cause the query tobe unsatisfiable. This is
verified against the formal model describing the data sources.

One of the main requirements for the interface is that it must be accessed by any HTML
browser, even in presence of restrictive firewalls. This constraints theits design, which overall
appearance is shown in Figure 1. The interface is composed by three functional elements. The



first one (top part) shows a natural language representation of the query being composed, and
the current focus. The second one is the query manipulation pane (bottompart) containing a
diagram representing the focus and its terminological context, together with tools to specialise
the query. Finally, a query result pane containing a table representing theresult structure. The
first two components are used to compose the query, while the third one is used to specify
the data which should be retrieved from the data sources. Because of lack of space, in this
paper we concentrate on the query building part. Therefore we wont discuss the query result
pane, which allows the user to define the columns of a table which is going to organise the
data from the query result.

Query textual representation The first component consists of a text box representing the
query expression in a natural language fashion. The user selects subparts of the query for
further refinement. The selection defines the current focus, which will be represented in the
diagrams described in the following sections. The selected subexpressioncan be modified
(refined or extended) by means of the query manipulation pane.

Although the query verbalisation does not provide accounts of the querystructure, the
system is aware of the nesting (and so is the user). The system provides the feedback on
the nesting by means of navigation in the query expression when the user is interested in
selecting a subpart of the query. When a node is selected, then the systemautomatically
selects the whole subtree rooted at the node selected by the user.

It is important to stress that, although natural language is used as feedback to represent
the query, this is used in generation mode only. Since the user does not writequeries directly,
there is no need to parse any natural language sentence or to resolve linguistic ambiguities.

Query manipulation pane The elements in the pane represent the current selection, and the
operations allowed in its context. It is organised as a diagram showing the taxonomic context
of the selection (the central part), and tools enabling the user to build the query expression.

The central part of the interface is occupied by the diagram allowing whatwe callsubsti-
tution by navigation; i.e. the possibility of substituting the selected portion of the query with
a more specific or more general terms.

The central part in the diagram shows the main term of the focus. While the surrounding
terms are either more specific or more general w.r.t. the query expressionfrom the focus
viewpoint. For example, w.r.t. the query showed in Figure 1 with the focus on the first term
(“Supplier”), the terms “Merchant” and “Agent” are more general term inthe ontology, while
“Retailer” and “Wholesaler” are more specific. By selecting one of these terms, the user can
substitute the whole focus with the selected term. The purpose of the substitutiongroup is
twofold: it enables the replacement of the focus and it shows the position ofthe selection
w.r.t. the terms in the ontology.

It can be the case that in the ontology there are terms which are equivalentto the selected
part. In this case the user is offered to replace the selection with the equivalent term by the
activation of theReplace Equivalent button.

A different refinement enabled by the interface is bycompatible terms. These are terms
in the ontology whose overlap with the focus can be non-empty. These ontology terms can be
added to the head of the selection by using theAdd Concept pop-up menu. For example,
“Student” is among the compatible terms for the focus “Employee”, but “Textile”is not. The
compatible terms are automatically suggested to the user by means of appropriatereasoning
task on the ontology describing the data sources.



Analogously, the user can add properties to the focus:associations(e.g. “Industry with
sector”), and/orattributes(e.g. “Employee whose name is”). This can be performed by means
of a Add Property pop-up menu, which presents the possible alternatives. Name and
value restrictions for each property are verbalised using meta information associated to the
terms in the ontology. For example, the association “with sector” with the restriction “Textile”
is shown as “belonging to the textile sector”.

Note that the terms and the prop-

Figure 1: Query building interface.

erties proposed by the system de-
pend on the overall query expres-
sion, not only on the focus. This
means that subparts of the query
expression, taken in isolation, would
generate different suggestions w.r.t.
those in their actual context in the
query.

Sub-queries can be associated
to new names by means of aDefine
button. This process corresponds
to the definition of a new named
view. These newly introduced names
can be used to shorten the query
expression, or as a simple mech-
anism to extend the ontology to build
a customised user’s viewpoint.

3 Query interface: inside the box

In this section we describe the underpinning technologies and techniques enabling the user
interface described in the previous sections. We will start by describing our assumptions on
the query language, followed by system perspective over the described query building process.
The whole system is supported by formally defined reasoning services which are described in
Section 3.2. Finally, we introduce the verbalisation mechanism which enables the system to
show the queries in a natural language fashion.

3.1 Conjunctive queries

Since the interface is build around the concept of classes and their properties, we consider
conjunctive queries composed by unary (classes) and binary (attributeand associations) terms.

The body of a query can be considered as a graph in which variables (and constants) are
nodes, and binary terms are edges. A query is connected (or acyclic) when for the corre-
sponding graph the same property holds. Given the form of query expressions composed by
the interface introduced in Section 2, we restrict ourselves to acyclic connected queries. This
restriction is dictated by the requirement that the casual user must be comfortable with the
language itself.1 Note that the query language restrictions do not affect the ontology lan-

1Our technique can deal with disjunction of conjunctive queries, even with alimited form of negation applied
to single terms. See[8; 16] for the technical details.



guage, where the terms are defined by a different (in our case more expressive) language. The
complexity of the ontology language is left completely hidden to the user, who doesn’t need
to know anything about it.

To transform any query expression in a conjunctive query we proceed in a recursive fash-
ion starting from the top level, and transforming each branch. A new variable is associated to
each node: the list of ontology terms corresponds to the list of unary terms.For each branch,
it is then added the binary query term corresponding to the property, andits restriction is
recursively expanded in the same way.

Let us consider for example the query “Supplier and Multinational corporation selling on
Italian market located in Europe”, with the meaning that the supplier is located in Europe.
Firstly, a new variable (x1) is associated to the top level “Supplier and Multinational corpo-
ration”. Assuming that the top level variable is by default part of the distinguished variables,
the conjunctive query becomes

{x1 |Suppl(x1), Mult corp(x1), . . .},
where the dots mean that there is still part of the query to be expanded. Then we consider
the property “selling on”, with its value restriction “Italian market”: this introduces a new
variablex1,1. The second branch is expanded in the same way generating the conjunctive
query
{x1 | Suppl(x1), Mult corp(x1), sell on(x1, x1,1), It market(x1,1), loc in(x1, x1,2), Eur(x1,2)}.

This transformation is bidirectional, so that a connected acyclic conjunctivequery can
be represented as a query expression (in the sense of Section 2) by dropping the variable
names. As a matter of fact, the system is using this inverse transformation sincethe internal
representation of queries is conjunctive queries.

Since a query is a tree, the focus corresponds to a selected sub-tree. It is easy to realise that
each sub-tree is univocally identified by the variable corresponding to a node. Therefore, the
focus is always on variable, and moving the focus corresponds to selecting a different variable.
Modifying a query sub-part means operating on the corresponding sub-tree modifying the
corresponding query tree.

Substitution by navigationcorresponds to substitute the whole sub-tree with the chosen
ontology term. The result would be a tree composed by a single node, withoutany branch,
whose unary term is the given ontology term. In therefinement by compatible terms, the
selected terms are simply added to the root node as unary query terms. For the property
extension, adding an attribute or associations corresponds to the creation of a new branch.
This operation introduces a new variable (i.e. node) with the correspondingrestriction. When
an attribute is selected, and a constant (or an expression) is specified, then this is added as
restriction for the value of the variable.

3.2 Reasoning services and query interface

Reasoning services w.r.t. the ontology are used by the system to drive the query interface. In
particular, they are used to discover the terms and properties (with their restrictions) which
are proposed to the user to manipulate the query.

Our aim is to be as less restrictive as possible on the requirements for the ontology lan-
guage. In this way, the same technology can be adopted for different frameworks, while the
user is never exposed to the complexity (and peculiarities) of a particular ontology language.

In our context, an ontology is composed by aset of predicates(unary, binary), together
with a set of constraintsrestricting the set of valid interpretations (i.e. databases) for the



predicates. The kind of constraints which can be expressed defines theexpressiveness of the
ontology language. Note that these assumptions are general enough to take account of widely
used modelling formalisms, like UML for example.

We do not impose general restrictions on the expressiveness of the ontology language;
however, we require the availability of twodecidablereasoning services: satisfiability of
a conjunctive query, and containment test of two conjunctive queries, both w.r.t. the con-
straints. If the query language includes theemptyquery (i.e. a query whose extension is
always empty), then query containment is enough (a query is satisfiable iffit is not contained
in the empty query). As described in Section 2, the query building interface represents the
available operations on the query w.r.t. the current focus; i.e. the variablewhich is currently
selected. Therefore, we need a way of describing a conjunctive query from the point of view
of a single variable. The expression describing such a viewpoint is still a conjunctive query;
which we callfocused. This new query is equal to the original one, with the exception of the
distinguished (i.e. free) variables: the only distinguished variable of the focused query is the
variable representing the focus. In the following we represent asqx the queryq focused on
the variablex. For example, the query
q ≡ {x1, x1,2 |Mult corp(x1), sell on(x1, x1,1), It market(x1,1), loc in(x1, x1,2), Eur(x1,2)},
focused in the variablex1,1 would simply be
qx1,1 ≡ {x1,1 |Mult corp(x1), sell on(x1, x1,1), It market(x1,1), loc in(x1, x1,2), Eur(x1,2)}.

The operations on the query expression require two different types ofinformation: hi-
erarchical (e.g. substitution by navigation), and oncompatibility (e.g. refinement and new
properties).

Let us consider the substitution by navigation with the more specific terms (the cases
with more general and equivalent terms are analogous). Given the focused queryqx, we are
interested to the unary atomic termsT s.t. the query{y |T (y)} is contained inqx and it is most
general (i.e. there is no other query of that form contained inqx, and containing{y |T (y)}).

Refinement by compatible terms and the addition of a new property to the query require
the list of terms “compatible” with the given query. In terms of conjunctive queries, this
corresponds to add a new term to the query. The term to be added should “join” with the
query by means of the focused variable, and must be compatible in the sensethat the resulting
query should be satisfiable. This leads to the use of satisfiability reasoning service to check
which predicates in the ontology are compatible with the current focus. With unary terms this
check corresponds simply to the addition of the termT (x) to the focused queryqx, and verify
that the resulting query is satisfiable.

The addition of a property requires the discovery of both a binary term and its restriction:
the terms to be added are of the form{x |R(x, y), T (y)} if the focused variable isx. As for
the refinement by compatible terms, the system should check all the differentbinary pred-
icates from the ontology for their compatibility. This is practically performed by verifying
the satisfiability of the queryqx ./ {x |R(x, y)}, for all atomic binary predicatesR in the
signature and wherey is a variable not appearing inq.2 Once a binary predicateR is found
to be compatible with the focused query, the restriction is selected as the most general unary
predicateT such that the queryqx ./ {x |R(x, y), T (y)} is satisfiable.

2Here./ represents a natural join.



3.3 Using a Description Logics Reasoner

Although our approach is not tight to any ontology language, in the test implementation of
our system we are using Description Logics (DLs). The reasons for thischoice lie in the facts
that DLs can capture a wide range of widespread modelling frameworks, and the availability
of efficient and complete DL reasoners.

We adopted the Description LogicsSHIQ (see[15]); which is expressive enough for
our purposes, and for which there are state of the art reasoners. Note that the adoption of
SHIQ allow us to use ontologies written in standard Web Ontology languages like OWL–
DL (see[14]).

For space limitations we are not going to describe in detail the underlyingSHIQ DL;
the reader is referred to the above mentioned bibliographic references.The ontology contains
unary (concepts) and binary (roles) predicates, and the constraints are expressed by means of
inclusion axioms between concept or role expressions. One of the key features ofSHIQ is
the possibility of expressing the inverse of a role; which is extremely usefulfor converting
tree–shaped queries into DL concept expressions.

Given the restriction to tree–shaped conjunctive query expressions, together with the
availability of inverse roles, a focused query (see Section 3.2) corresponds to a concept ex-
pression (see[17]). Therefore, all the reasoning tasks described in Section 3.2 correspond to
standard DL reasoning services. Again, this is not a restriction imposed bythe underlying
technology, since general conjunctive queries can be dealt with techniques described in[8;
16].

The idea behind the transformation of a query expression into a single concept description
is very simple, and it is based on the fact that a concept expression can be seen as a query
with a single distinguished variable. To focus the query on a variable, we start from the
variable itself, then we traverse the query graph by encoding binary termsinto DL existential
restrictions and dropping the variable names. The fact that queries are tree–shaped ensures
that variable names can be safely ignored. Let us consider for example the query expression

{Mult corp(x1), Italian(x1), sell on(x1, x1,1), It market(x1,1)}.
The DL expression corresponding to the query focused onx1,1 is

(It marketu ∃sell on−(Mult corpu Italian));
where sellon− corresponds to the inverse of sellon role.

As explained in Section 3.2, we need two kinds of information: hierarchical and com-
patibility. These, in the DL framework, are provided by the standard reasoning services of
satisfiability and taxonomy position of a concept expression respectively.The first service
verifies the satisfiability w.r.t. a knowledge base; while the second classifies aconcept expres-
sion (i.e., provides it w.r.t. the ISA taxonomy of concept names).3 Reasoning tasks described
in Section 3.2 can be straightforwardly mapped into satisfiability and classification.

For example, checking the compatibility of the term Italian with the query
{Mult corp(x1), sell on(x1, x1,1), It market(x1,1)},

is performed by checking the satisfiability of the concept
Italianu Mult corpu ∃sell onIt market.

Compatibility of binary terms is performed analogously by using an existential restriction;
e.g.,∃sell on>.4 To discover the restriction of a property we use classification instead of

3DL systems usually provide an efficient way of obtaining the taxonomic position of a given concept expres-
sion.

4Note the use of the> concept representing the whole domain (any possible concept).



repeated satisfiability. The idea is to classify the query focused on the variable introduced by
the property. For example, to discover the restriction of sellon applied to the query expression

{x1 |Mult corp(x1), Italian(x1)},
we classify the expression∃sell on−(Mult corpuItalian)). The DL reasoner returns the list of
concept names more general and equivalent to the range of the relation sell on, when restricted
to the domain(Mult corpu Italian). This is exactly the information we need to discover the
least general predicate(s) which can be applied to the property in the given context.

Our implementation uses the DL reasoner Racer (see[12]); which fully supports the
SHIQ DL. The interaction with the DL reasoner is based on the DIG 1.0 interface API
(see[1]), a standard to communicate with DL reasoners developed among differentDL sys-
tems implementors. This choice makes our system independent from a particular DL reasoner,
which can be substituted with any DIG based one.

3.4 Query verbalisation

The system always presents the user with a natural language transliteration of the conjunctive
query. This is performed in an automatic way by using meta information associated with
the ontology terms, both classes and properties. The verbalisation of the ontology terms
must be provided in advance by the ontology engineers. For the verbalisation we use an
approach similar to the one adopted by the Object Role Modelling framework (ORM, see[13;
19]).

Each class name in the ontology has associated a short noun phrase (usually one or two
words), which represents the term in a natural language fashion. For example, to the class
PStudentis associated “Postgraduate student” The user will see only the associatedsentence,
while PStudentis just used in the internal ontology representation.

For (binary) associations the ontology engineer has to provide two different verbalisations
for the two directions. For example, let assume that the ontology states that theassociation
occ room links the two classesPStudentand Room. Then the engineer associates to the
association the verbalisation “occupies” for the direction fromPStudentto Room, and the
verbalisation “is occupied by” for the other direction.

Attributes need one direction only, since they are never used from the point of view of the
basic data type. In this case, the engineer is only required to provide the attribute verbalisation
from the point of view of the class.

4 Discussion

The work proposed in this paper deals with a relatively new problem, namely providing the
user with a visual interface to query heterogeneous data sources through an integrated ontol-
ogy (that is, a set of constraints), and a specific literature does not exist yet. By looking at
the extensive survey on Visual Query System (VQS) presented in[10] it easy to see that only
little work has been done in the specific context we are dealing with. Some preliminary work
was done by one research group[4; 11; 6; 5]. Similar work from the point of view of the
visual interface paradigm, but without the well founded support of a logic-based semantics
was carried out in the context of the Tambis project[18; 2]. Also [3] contains some interesting
approach from the point of view of the visual interface, but again the system has a different
background semantics.



In fact, only recently research has started to have a serious interest in query processing and
information access supported by ontologies. Recent work has come up withproper seman-
tics and with advanced reasoning techniques for query evaluation and rewriting using views
under the constraints given by the ontology – also called view-based query processing[20;
7]. This means that the notion of accessing information through the navigation ofan ontology
modelling the information domain has its formal foundations.

This paper has presented the first well-founded intelligent user interface for query for-
mulation support in the context of ontology-based query processing. This paper hopefully
proved that our work has been done in a rigorous way both at the level of interface design and
at the level of ontology-based support with latest generation logic-based ontology languages
such as description logics, DAML+OIL and OWL. However, there are open problems and
refinements which have still to be considered in our future work.

The system uses the verbalisations described in Section 3.4 to transform theconjunctive
query into a natural language expression closer to the user understanding. In the course of
the SEWASIE project some effort will be dedicated to explore semi-automatic techniques to
rephrase the expressions in more succinct ways without loosing their semantic structure.

Another important aspect to be worked out is the understanding of the effective method-
ologies for query formulation in the framework of this tool, a task that needs astrong coop-
eration of the users in its validation. This will go in parallel with the interface user evalua-
tion, which is just starting at the time of writing this paper.5 The other crucial aspect is the
efficiency and the scalability of the ontology reasoning for queries. We are currently experi-
menting the tool with various ontologies in order to identify possible bottlenecks.

We would like to thank Tiziana Catarci, Tania Di Mascio, and Giuseppe Santucci, for their
valuable suggestions and discussions on the user interface. Moreover, the support of Ralf
Möller and Volker Haarslev with the Racer reasoner has been essential for the development
of our system prototype.

References

[1] Sean Bechhofer, Ralf Mller, and Peter Crowther. The dig description logic interface. InProceed-
ings of the 2003 International Workshop on Description Logics (DL2003), volume 81 ofCEUR
Workshop Proceedings, 2003.

[2] Sean Bechhofer, Robert Stevens, Gary Ng, Alex Jacoby, and Carole A. Goble. Guiding the user:
An ontology driven interface. InUIDIS 1999, pages 158–161, 1999.

[3] Francesca Benzi, Dario Maio, and Stefano Rizzi. VISIONARY:a viewpoint-based visual lan-
guage for querying relational databases.J. Vis. Lang. Comput., 10(2):117–145, 1999.

[4] P. Bresciani and E. Franconi. Description logics for information access. InProceedings of the
AI*IA 1996 Workshop on Access, Extraction and Integration of Knowledge, Napoli, September
1996.

[5] Paolo Bresciani and Paolo Fontana. A knowledge-based querysystem for biological databases.
In Proceedings of FQAS 2002, volume 2522 ofLecture Notes in Computer Science, pages 86–89.
Springer Verlag, 2002.

5An on-line prototypical version of the query building tool, with a toy ontology without lexicalisation, is
available at the URLhttp://dev.eurac.edu:8090/sewasie/.



[6] Paolo Bresciani, Michele Nori, and Nicola Pedot. A knowledge based paradigm for querying
databases. InDatabase and Expert Systems Application, volume 1873 ofLecture Notes in Com-
puter Science, pages 794–804. Springer Verlag, 2000.

[7] D. Calvanese, G. De Giacomo, and M. Lenzerini. Answering queries using views over descrip-
tion logics knowledge bases. InProc. of the 16th Nat. Conf. on Artificial Intelligence (AAAI
2000), 2000.

[8] Diego Calvanese, Giuseppe De Giacomo, and Maurizio Lenzerini. On the decidability of query
containment under constraints. InProc. of the 17th ACM SIGACT SIGMOD SIGART Symp. on
Principles of Database Systems (PODS’98), pages 149–158, 1998.

[9] Diego Calvanese, Giuseppe De Giacomo, Maurizio Lenzerini,Daniele Nardi, and Riccardo
Rosati. Information integration: Conceptual modeling andreasoning support. InProc. of the
6th Int. Conf. on Cooperative Information Systems (CoopIS’98), pages 280–291, 1998.

[10] Tiziana Catarci, Maria Francesca Costabile, Stefano Levialdi, and Carlo Batini. Visual query
systems for databases: A survey.Journal of Visual Languages and Computing, 8(2):215–260,
1997.

[11] Enrico Franconi. Knowledge representation meets digital libraries. InProc. of the 1st DELOS
(Network of Excellence on Digital Libraries) workshop on “Information Seeking, Searching and
Querying in Digital Libraries”, 2000.

[12] Volker Haarslev and Ralf M̈oller. Racer system description. InAutomated Reasoning: First In-
ternational Joint Conference, IJCAR 2001, volume 2083 ofLecture Notes in Computer Science.
Springer-Verlag Heidelberg, 2001.

[13] Terry A. Halpin. Augmenting UML with fact orientation. InHICSS, 2001.

[14] Ian Horrocks and Peter F. Patel-Schneider. Reducing OWL entailment to description logic sat-
isfiability. In Dieter Fensel, Katia Sycara, and John Mylopoulos, editors,Proc. of the 2003 In-
ternational Semantic Web Conference (ISWC 2003), number 2870 in Lecture Notes in Computer
Science, pages 17–29. Springer, 2003.

[15] Ian Horrocks and Ulrike Sattler. Optimised reasoning forSHIQ. In Proc. of the 15th Eur. Conf.
on Artificial Intelligence (ECAI 2002), pages 277–281, July 2002.

[16] Ian Horrocks, Ulrike Sattler, Sergio Tessaris, and StephanTobies. How to decide query con-
tainment under constraints using a description logic. InLogic for Programming and Automated
Reasoning (LPAR 2000), volume 1955 ofLecture Notes in Computer Science, pages 326–343.
Springer, 2000.

[17] Ian Horrocks and Sergio Tessaris. Querying the semantic web: a formal approach. In Ian Hor-
rocks and James Hendler, editors,Proc. of the 2002 International Semantic Web Conference
(ISWC 2002), number 2342 in Lecture Notes in Computer Science. Springer-Verlag, 2002.

[18] Norman Murray, Carole Goble, and Norman Paton. A framework for describing visual interfaces
to databases.J. Vis. Lang. Comput., 9(4):429–456, 1998.

[19] http://www.orm.net, 2003.

[20] J. D. Ullman. Information integration using logical views.In Proc. of the 6th Int. Conf on
Database Theory (ICDT’97), pages 19–40, 1997.


