
DL-Lite: Practical Reasoning for Rich DLs

Diego Calvanese1, Giuseppe De Giacomo2, Maurizio Lenzerini2,

Riccardo Rosati2, Guido Vetere3

1 Faculty of Computer Science
Free University of Bolzano/Bozen

Piazza Domenicani 3
I-39100 Bolzano, Italy

calvanese@inf.unibz.it

2 Dipartimento di Informatica e Sistemistica
Università di Roma “La Sapienza”

Via Salaria 113
I-00198 Roma, Italy

lastname @dis.uniroma1.it

3 IBM Italia
Via Sciangai 53, I-00144 Roma, Italy

guido_vetere@it.ibm.com

Abstract

In this paper we study a DL rich enough to express UML class diagrams
including ISA and disjointness between classes (but not covering constraints),
typing of associations, and participation and functional cardinality constraints.
For such a DL, which we call DL-Lite, we propose novel reasoning techniques for
a variety of tasks, notably including query containment and query answering for
conjunctive queries over concepts and roles. The techniques are based on query
containment under constraints typical of databases. A prototype implementation
of DL-Lite has been developed and experimented with.

1 Introduction

One of the most important lines of research in Description Logics (DLs) is concerned
with the trade-off between expressive power and computational complexity of sound
and complete reasoning. Research on this topic has shown that DLs with efficient,
i.e., worst-case polynomial time, reasoning algorithms lack modeling power required
in capturing conceptual models and basic ontology languages, while DLs with suffi-
cient modeling power suffers from inherently worst-case exponential time behavior of
reasoning [8, 9, 2].

In this paper we propose a new DL specifically tailored to capture conceptual data
models (e.g., Entity-Relationship) [1], Object-oriented formalisms (e.g., basic UML
class diagrams)1, and basic ontology languages. Notably, we show that advanced forms
of sound and complete reasoning, taking into account a knowledge base constituted
by a TBox and an ABox, and queries, can be done in polynomial time in the size of
the knowledge base. More precisely, our contributions are the following:

1. We define DL-Lite, a DL rich enough to capture a significant ontology language.
In particular, DL-Lite is able to express UML class diagrams including ISA

1http://www.omg.org/uml/

and disjointness between classes (but not covering constraints), typing of asso-
ciations, and cardinality constraints imposing mandatory participation to roles
and functionality of roles.

2. For such a DL we propose novel reasoning techniques for a variety of tasks,
including conjunctive query answering and containment between conjunctive
queries over concepts and roles. Our presentation is focused on the problem of
answering conjunctive queries over a knowledge base. We observe that this is one
of the few results on answering complex queries (i.e., not corresponding simply to
a concept or a role) over a knowledge base [6, 7]. Indeed, answering conjunctive
queries over a knowledge base is a challenging problem, even in the case of
DL-lite, where the combination of constructs expressible in the knowledge base
does not pose particular difficulties in computing subsumption. Our solution bu
builds upon and extends a series of techniques developed in databases for query
containment and query answering under constraints [10, 3, 4].

3. We show that the above mentioned reasoning tasks can be carried out in poly-
nomial time in the size of the knowledge base.

A prototype implementation of DL-Lite has been developed and tested within the
SMO (System Management Ontology) project carried out jointly by the University of
Rome “La Sapienza” and the IBM Tivoli Laboratory.

The next section defines DL-Lite and the associated reasoning services. Section 3
shows that DL-Lite is indeed an interesting logic for capturing the basic modeling
constructs of conceptual models and ontology languages. Section 4 briefly describes
the fundamental reasoning technique associated to DL-Lite. Section 5 concludes the
paper.

2 DL-Lite

The DL DL-Lite that we present in this paper is quite simple from the language
point of view. Namely, starting from atomic concepts, denoted by A, possibly with
subscripts, and atomic roles, denoted by R, possibly with subscripts, we define basic
concepts, denoted by B, as follows:

B ::= A | ∃R | ∃R−

where A is an atomic concept, ∃R is the usual unqualified existentiality on atomic
roles R, and ∃R− is the same on inverse roles. General concepts in DL-lite are then
defined as follows:

C ::= B | ¬B | C1 u C2

Note that we have negation on basic concept only and that we have conjunction but
not disjunction.

Using this simple language we allow to make assertions of specific forms. Specifi-
cally, in a DL-Lite TBox, we allow for inclusion assertions of the form:

B v C

where on the left-hand-side we must have a basic concept (B), while on the right-
hand-side we may have a general DL-Lite concept.

Observe that we do allow for cyclic assertions. Indeed, we can enforce the cyclic
propagation of the existence of an R-successor using the two DL-Lite inclusion asser-
tions A v ∃R, ∃R− v A. The constraint imposed on a model is similar to the one
imposed by the ALC cyclic assertion A v ∃R.> u ∀R.A, though stronger, since it
additionally enforces the second component of R to be typed by A.

Also, in addition to inclusion assertions, in DL-Lite we have functionality asser-
tions of the form

(funct R), (funct R−)

expressing, respectively, the functionality of atomic roles and of inverses of atomic
roles.

As for the ABox, we allow for membership assertions on atomic concept and on
atomic roles:

A(a), R(a, b)

stating respectively that the object (denoted by the constant) a is and instance of
A and that the pair (a, b) of objects (denoted by the two constants a and b) is an
instance of the atomic role R.

In fact, to denote objects, DL-Lite includes two kinds of constants: the usual con-
stants for which the unique name assumption holds, and the so called soft constants,
which are constants for which the unique name assumption does not hold.

Notice that, using soft constants, we can express in the ABox also membership
assertions involving existentials. For example, to express the membership assertion
(∃R)(a), where a is a non-soft constant, we can include in the ABox the membership
assertion R(a, u) where u is a fresh (i.e., not used elsewhere in the ABox) soft constant.

Given a DL-Lite KB K = (T ,A), where T is a TBox and A is an ABox, we
can query the knowledge base using conjunctive queries. A conjunctive query q is an
expression of the form

{ ~x | conj(~x, ~y) }

where ~x are the so called distinguished variables that will be bound with object in the
KB, ~y are the non-distinguished variables, which are existentially qualified variables,
and conj(~x, ~y) is a conjunction of atoms of the form A(z) or R(z1, z2) where A and R

are respectively atomic concept and roles and z, z1, z2 are either constants in the KB
or variables in ~x or ~y.

The reasoning services that are of interest in DL-Lite are:

• query-answering : given a query q(~x) with distinguished variables ~x and a knowl-
edge base K, return all tuples ~t of objects that substituted to ~x are such that
K |= q(~t). Observe that as a special case of query answering we have concept
satisfiability and logical implication of ABox assertions.

• query-containment : given two queries q1 and q2 and a knowledge base K, verify
whether K |= q1 v q2, i.e., whether in every model I of K the tuples of objects

that form the extension of q1 in I are also in the extension of q2 in I. Ob-
serve that as a special case of query containment we have logical implication of
inclusion assertions involving atomic concepts on both sides.

In fact, it can be shown that query containment can be reformulated as query
answering, in particular with the help of soft constants. Hence, when we discuss
reasoning (see Section 4) we will focus on query answering only.

3 Why DL-Lite is a “rich” DL

Although equipped with advanced reasoning services, at first sight DL-Lite seems to
be rather weak in modeling intensional knowledge, and hence of limited use in practice.
In fact this is not the case. Despite the simplicity of its language and the specific form
of inclusion assertions allowed, DL-Lite is able to capture the main notions (though
not all, obviously) of conceptual modeling formalism used in databases and software
engineering such as ER and UML class diagrams.

In particular, DL-Lite assertions allow us to specify (below A, A1 and A2 are
atomic concepts, and R is an atomic role):

• ISA, using assertions of the form A1 v A2, stating that the class A1 is a subclass
of the class A2;

• class disjointness, using assertions of the form A1 v ¬A2, stating disjointness
between the two classes A1 and A2;

• role-typing, using assertions of the form ∃R v A1 (resp., ∃R− v A2), stating
that the first (resp., second) component of the relation R is of type A1 (resp.,
A2);

• participation constraints, using assertions of the form A v ∃R (resp., A v ∃R−),
stating that instances of class A participate to the relation R as the first (resp.,
second) component;

• non-participation constraints, using assertions of the form A v ¬∃R (resp., A v
¬∃R−), stating that instances of class A do not participate to the relation R as
the first (resp., second) component;

• functionality restrictions, using assertions of the form (funct R) (resp., (funct R−)),
stating that an object can be the first (resp., second) component of the relation
R at most once.

Notably two important modeling features are missing in DL-Lite:

• the ability of stating covering constraints, i.e., stating that each instance of a
class must be an instance of (at least) one of its subclasses;

• the ability of stating subset constraints between relations.

These features are missing exactly to get the nice computational characteristics that
we are after.

Instead, observe that the limitation to binary roles only is not crucial. Indeed, it
is possible to extend the reasoning techniques reported here to n-ary relations without
losing most nice computational properties.

Finally, let us comment on the ability of DL-Lite of asserting extensional knowledge
using soft constants. These can be considered as an advanced form of null values
stating that the object with the desired property exists, though its identifier is not
known. In other words, soft constants act as existentially quantified variables whose
scope is the entire knowledge base.

4 Query answering in DL-Lite

We now present an algorithm that computes the answers to a conjunctive query over
a DL-Lite KB. In the following, for ease of exposition we assume that the input
query is a boolean query: the extension of the algorithm to non-boolean queries is
straightforward.

Due to space limitations, we are only able to provide an informal description of
the algorithm; moreover, we assume that no soft constants are present in the ABox.

4.1 Algorithm

The algorithm takes as input a DL-Lite KB K = (T ,A) and a boolean conjunctive
query q, and returns a boolean value. The algorithm consists of five steps:

1. TBox normalization: inclusion assertions of T in which conjunctive concepts
occur in the right-hand side are rewritten by iterative application of the rule: if
B v C1uC2 occurs in T , then replace this assertion in T with the two assertions
B v C1 , B v C2. The normalized TBox resulting from such a transformation
contains the following types of assertions:

• ISA assertions of the form A1 v A2, where A1 and A2 are atomic concepts;

• disjointness assertions of the form B1 v ¬B2 where B1 is a basic concept
(i.e., either an atomic or an existential concept) and ¬B2 is a negated basic
concept;

• role-typing assertions of the form ∃R v B or ∃R− v B, where B is a basic
concept;

• participation assertions of the form A v ∃R or A v ∃R−, where A is an
atomic concept;

• functionality assertions of the form (funct R) or (funct R−).

2. KB consistency check : this step checks whether the ABox A satisfies the func-
tionality and disjointness assertions occurring in the TBox T . Specifically:

(a) First, in order to check satisfiability w.r.t. disjointness assertions, the TBox
is expanded by computing all the disjointness assertions implied by the
inclusion assertions in T . More precisely, the TBox T is closed with respect
to the following inference rule: if the assertions C1 v C2 and C2 v C3

occur in T (where C1, C2, C3 are arbitrary concepts), then add the assertion
C1 v C3 to T .

(b) Then, the algorithm checks satisfiability w.r.t. disjointness assertions in T :
e.g., the assertion B1 v ¬B2 in T is satisfied in A iff there is no a such
that both a : B1 and a : B2 are in A (if B2 is the existential concept ∃R

(resp., ∃R−), then also assertions of the form R(a, b) (resp., R(b, a)) are
taken into account).

(c) Finally, also satisfiability of A w.r.t. functionality assertions is checked:
e.g., the assertion (funct R) in T is satisfied in A iff there is no pair of
assertions in A of the form R(a, b), R(a, c).

If there is a disjointness assertion or a functionality assertion in T that the ABox
A does not satisfy, then the algorithm returns true (there is no model for the
KB K, therefore every query is trivially true), otherwise the algorithm executes
the next step.

3. Query expansion: the conjunctive query is rewritten based on the ISA, role-
typing, and participation assertions in T . More specifically, starting from the
initial conjunctive query, a union of conjunctive queries is computed, by es-
sentially applying the ISA, role-typing, and participation assertions as concept
rewriting rules, applied from right to left. For instance, in the presence of the
ISA assertion A v C, the query C(a) can be rewritten as A(a), while in the
presence of the role-typing assertion ∃R v C, the same query can be rewritten
as R(a, x), where x is a new variable symbol. Intuitively, in expanding the query
we essentially embed all the relevant knowledge of the TBox represented by ISA,
role-typing, and participation assertions.

4. Query evaluation: Finally, the expanded query is evaluated over the ABox A.
More precisely, the algorithm returns true if and only if there exists a conjunct
of the expanded query that has an image in the ABox. Basically, a conjunct
has an image in the ABox A if there exists a substitution σ from the variables
occurring in the conjunct to the constants occurring in A such that for each
atom φ occurring in the conjunct, σ(φ) ∈ A (actually, if an existential concept
occurs in the atom, then also role memberhip assertions can provide an image
for the atom). In other words, the algorithm evaluates the union of conjunctive
queries considering the ABox as a database.

4.2 Correctness

Informally, the correctness of the above reasoning technique is essentially due to the
fact that the assertions in the TBox can be divided into two classes:

• disjointness and functionality assertions, taken into account by Step 2 of the
algorithm;

• ISA, role-typing, and participation assertions, considered in Step 3.

Indeed, it can be shown that the interaction between these two classes of assertions
is limited to the derivation of new disjointness assertions in the TBox closure com-
puted during Step 2. After these steps, the TBox can be discarded in the final query
evaluation step.

4.3 Complexity

As for the complexity of the algorithm, it is easy to prove that the algorithm runs in
polynomial time with respect to the size of the knowledge base K, while the computa-
tion time is exponential with respect to the size of the query. The latter is due to the
fact that the union of conjunctive queries computed in Step 3 may consist of a number
of disjuncts (each of polynomial size) that is exponential in the number of atoms in
the body of the initial query. Moreover, the evaluation of each disjunct in Step 4 may
take nondeterministic polynomial (i.e., for practical purposes, exponential) time in
the number of atoms of the disjunct, and hence in the number of atoms in the body
of the initial query.

The algorithm can be extended to the presence of soft constants in the ABox,
by adding a unification step that takes into account the presence of functionality
assertions on the soft constants. Such an extension does not affect the computational
properties of the algorithm.

Finally, it can be shown that, in the presence of soft constants, containment be-
tween conjunctive queries can be immediately reduced to query answering by the
well-known “query freezing” technique (see, e.g., [11]), in which soft constants are
used to deal with possible equalities implied by functionality assertions.

Summarizing, the following property holds.

Theorem 1 Subsumption, query answering, and query containment in DL-Lite are
polynomial in the size of the knowledge base.

5 Conclusions

We have described DL-Lite, a new DL specifically tailored to capture conceptual data
models and basic ontology languages, while keeping the worst-case complexity of sound
and complete reasoning tractable.

In this paper we focused on binary roles only, but this is not a crucial limitation.
Indeed, it is possible to extend the reasoning techniques reported here to n-ary re-
lations without loosing their nice computational properties. On the other hand, the
results reported in [5] imply that the introduction of subset constraints on roles (i.e.,
role inclusion assertions) makes our technique inapplicable.

Acknowledgments This research was partly supported by MIUR under FIRB
(Fondo per gli Investimenti della Ricerca di Base) project “MAIS: Multichannel Adap-
tive Information Systems” in the context of the Workpackage 2 activities, and by the
EU funded projects INFOMIX (IST-2001-33570) and SEWASIE (IST-2001-34825).

References

[1] C. Batini, S. Ceri, and S. B. Navathe. Conceptual Database Design, an Entity-
Relationship Approach. Benjamin and Cummings Publ. Co., Menlo Park, Cali-
fornia, 1992.

[2] A. Borgida and R. J. Brachman. Conceptual modeling with description logics. In
F. Baader, D. Calvanese, D. McGuinness, D. Nardi, and P. F. Patel-Schneider,
editors, The Description Logic Handbook: Theory, Implementation and Applica-
tions, chapter 10, pages 349–372. Cambridge University Press, 2003.

[3] A. Cal̀ı, D. Lembo, and R. Rosati. On the decidability and complexity of query
answering over inconsistent and incomplete databases. In Proc. of the 22nd
ACM SIGACT SIGMOD SIGART Symp. on Principles of Database Systems
(PODS 2003), pages 260–271, 2003.

[4] A. Cal̀ı, D. Lembo, and R. Rosati. Query rewriting and answering under con-
straints in data integration systems. In Proc. of the 18th Int. Joint Conf. on
Artificial Intelligence (IJCAI 2003), pages 16–21, 2003.

[5] D. Calvanese, G. De Giacomo, D. Lembo, M. Lenzerini, and R. Rosati. What to
ask to a peer: Ontology-based query reformulation. In Proc. of the 9th Int. Conf.
on Principles of Knowledge Representation and Reasoning (KR 2004), 2004.

[6] D. Calvanese, G. De Giacomo, and M. Lenzerini. On the decidability of query
containment under constraints. In Proc. of the 17th ACM SIGACT SIGMOD
SIGART Symp. on Principles of Database Systems (PODS’98), pages 149–158,
1998.

[7] D. Calvanese, G. De Giacomo, and M. Lenzerini. Answering queries using views
over description logics knowledge bases. In Proc. of the 17th Nat. Conf. on
Artificial Intelligence (AAAI 2000), pages 386–391, 2000.

[8] D. Calvanese, M. Lenzerini, and D. Nardi. Description logics for conceptual
data modeling. In J. Chomicki and G. Saake, editors, Logics for Databases and
Information Systems, pages 229–264. Kluwer Academic Publisher, 1998.

[9] D. Calvanese, M. Lenzerini, and D. Nardi. Unifying class-based representation
formalisms. J. of Artificial Intelligence Research, 11:199–240, 1999.

[10] D. S. Johnson and A. C. Klug. Testing containment of conjunctive queries under
functional and inclusion dependencies. J. of Computer and System Sciences,
28(1):167–189, 1984.

[11] J. D. Ullman. Information integration using logical views. In Proc. of the 6th Int.
Conf. on Database Theory (ICDT’97), volume 1186 of Lecture Notes in Computer
Science, pages 19–40. Springer, 1997.

