
Efficient Reasoning with Range and Domain Constraints

Dmitry Tsarkov and Ian Horrocks

Department of Computer Science
The University of Manchester

Manchester, UK
{tsarkov|horrocks}@cs.man.ac.uk

Abstract

We show how a tableaux algorithm for SHIQ can be extended to support role boxes
that include range and domain axioms, prove that the extended algorithm is still a de-
cision procedure for the satisfiability and subsumption of SHIQ concepts w.r.t. such a
role box, and show how support for range and domian axioms can be exploited in order
to add a new form of absorption optimisation called role absorption. We illustrate the
effectiveness of the optimised algorithm by analysing the perfomance of our FaCT++
implementation when classifying terminologies derived from realistic ontologies.

1 Introduction

Many modern ontology languages (e.g., OIL [3], DAML+OIL [8] and OWL [2]) are based on
expressive description logics, and in particular on the SHIQ family of description logics [9].
These ontology languages typically support domain and range constraints on roles, i.e., ax-
ioms asserting that if an individual x is related to an individual y by a role R, then x must be
an instance of the concept that is the domain of R and y must be an instance of the concept
that is the range of R.Such axioms are not directly supported by SHIQ, but can trivially
be transformed into general inclusion axioms (GCIs), i.e., an axiom asserting a subsumption
relationship between two arbitrary concept terms. In particular, restricting the domain of a
role R to be concept C is equivalent to adding an axiom ∃R.> v C, and restricting the range
of a role R to be concept D is equivalent to adding an axiom > v ∀R.D.

The problem with this transformation is that such GCIs are not amenable to absorption,
an optimisation technique that tries to rewrite GCIs so that they can be efficiently dealt with
using the lazy unfolding optimisation [6]. Absorption is one of the crucial optimisations that
enable state of the art DL reasoners such as FaCT [7], Racer [5] and Pellet [12] to deal ef-
fectively with large knowledge bases (KBs), and these reasoners perform much less well with
KBs containing significant numbers of unabsorbable GCIs. Unfortunately, many ontologies
contain large numbers of different roles, each with a range and domain constraint, and the
resulting KBs therefore contain many unabsorbable GCIs.

It has already been shown that, in order for the Racer system to be able to classify large
KBs containing many range and domain constraints, it is necessary to give a special treatment
to the GCIs introduced by range and domain axioms [4]. The approach used by Racer is
to extend the lazy unfolding optimisation so that concepts equivalent to those that would be



introduced by the GCIs are introduced only as necessary. In the approach presented here,
we extend the tableaux satisfiability testing algorithm so that range and domain axioms are
directly supported. The advantage with this approach is that we are able to extend the formal
correctness proof to demonstrate that the extended algorithm is still a decision procedure for
SHIQ satisfiability (i.e., it returns satisfiable iff the input concept is satisfiable).

As well as allowing range and domain to be dealt with very efficiently, this algorithm also
allows us to implement an extended version of the absorption optimisation, called role absorp-
tion, that transforms GCIs into domain constraints. Role absorption can provide alternative
and perhaps more effective ways to absorb certain forms of GCI, and can also be applied to
some otherwise unabsorbable forms of GCI. This can lead to dramatic performance improve-
ments for KBs that contain significant numbers of such GCIs. We demonstrate this (as well
as the performance improvements resulting from support for range and domain axioms) with
an empirical analysis of the performance of the extended algorithm when classifying several
KBs derived from realistic ontologies.

2 Preliminaries

We first introduce the syntax and semantics of the SHIQ logic, including the semantics of
role boxes extended with range and domain axioms. Most details of the logic and the tableaux
algorithm are little changed from those presented in [9]. We will, therefore, focus mainly on
the parts that have been added in order to deal with range and domain axioms, and refer the
reader to [9] for complete information on the remainder.

The absolutely most part of formal definitions here is taken from [9]. We have introduced
new constructions into the existing definitions, so all algorithms were slightly changed.

Definition 1 Let C and R be disjoint sets of concept names and role names respectively.
The set of SHIQ-roles is R ∪ {R− | R ∈ R}. To avoid considering roles such as R−−, we
define a function Inv on roles such that Inv(R) = R− if R is a role name, and Inv(R) = S if
R = S−. For R and S SHIQ-roles and C a SHIQ-concept, a role axiom is either a role
inclusion of the form R v S, a transitivity axiom of the form Trans(R), or a constraint axiom
of the form Domain(R, C) or Range(R, C). A role box R is a finite set of role axioms.

A role R is called simple if, for v* the transitive reflexive closure of v on R and for each
role S, S v* R implies Trans(S) 6∈ R and Trans(Inv(S)) 6∈ R.

The set of concepts is the smallest set such that every concept name is a concept, and,
for C and D concepts, R a role, S a simple role and n a non-negative integer, then C u D,
C t D, ¬C, ∃R.C, ∀R.C, >nS.C and 6nS.C are also concepts.

The semantics is given by means of an interpretation I = (∆I , ·I) consisting of a non-
empty set ∆I , called the domain of I, and a valuation ·I which maps every concept to a subset
of ∆I and every role to a subset of ∆I × ∆I such that, for all concepts C, D, roles R, S,
and non-negative integers n, the properties in Figure 1 are satisfied, where ]M denotes the
cardinality of a set M .

An interpretation satisfies a role axiom if it satisfies the semantic conditions given in
Figure 1. An interpretation satisfies a role box R if it satisfies each role axiom in R.

A terminology or TBox T is a finite set of general concept inclusion axioms, T = {C1 v
D1, . . . , Cn v Dn}, where Ci, Di are arbitrary SHIQ-concepts. An interpretation I satis-
fies T iff CI

i ⊆ DI
i holds for all Ci v Di ∈ T .



Concepts & Roles Syntax Semantics
atomic concept C A AI ⊆ ∆I

atomic role R R RI ⊆ ∆I × ∆I

inverse role R− {〈x, y〉 | 〈y, x〉 ∈ RI}
conjunction C u D (C u D)I = CI ∩ DI

disjunction C t D (C t D)I = CI ∪ DI

negation ¬C (¬C)I = ∆I \ CI

exists restriction ∃R.C (∃R.C)I = {x | ∃y.〈x, y〉 ∈ RI and y ∈ CI}
value restriction ∀R.C (∀R.C)I = {x | ∀y.〈x, y〉 ∈ RI implies y ∈ CI}
atleast restriction >nS.C (>nS.C)I = {x | ]({y.〈x, y〉 ∈ SI} ∩ CI) > n}
atmost restriction 6nS.C (6nS.C)I = {x | ]({y.〈x, y〉 ∈ SI} ∩ CI) 6 n}
Role Axioms Syntax Semantics
role inclusion R v S RI ⊆ SI

transitive role Trans(R) RI = (R+)I

role domain Domain(R, C) 〈x, y〉 ∈ RI implies x ∈ CI

role range Range(R, C) 〈x, y〉 ∈ RI implies y ∈ CI

Figure 1: Syntax and semantics of SHIQ

A SHIQ-concept C is satisfiable w.r.t. a role box R and a terminology T iff there is an
interpretation I with CI 6= ∅ that satisfies both R and T . Such an interpretation is called
a model of C w.r.t. R and T . A concept C is subsumed by a concept D w.r.t. R and T iff
CI v DI for each interpretation I satisfying R and T .

Theorem 1 Satisfiability and subsumption of SHIQ-concepts w.r.t. terminologies and role
boxes is polynomially reducible to (un)satisfiability of SHIQ-concepts w.r.t. role boxes [9].

3 Tableaux Reasoning with Range and Domain

Here we present an algorithm for deciding the satisfiability of a SHIQ-concept C w.r.t. a
role box R; it is an extension of the SHIQ tableaux algorithm from [9].

For ease of Tableaux construction, we assume C and all concepts in (range and domain
axioms in) R to be in negation normal form (NNF), that is, negation occurs only in front
of concept names. Any SHIQ-concept can easily be transformed into an equivalent one in
NNF by pushing negations inwards; with ∼C we denote the NNF of ¬C. We define RD(R)
as the set of concepts s.t. C ∈ RD(R) iff Domain(R, C) ∈ R or Range(R, C) ∈ R for some
role R. We define cl(C,R) as the smallest set of concepts that is a superset of C ∪ RD(R)
and is closed under subconcepts and ∼.

Definition 2 Let D be a SHIQ-concept in NNF, R a role box, and RD the set of roles
occurring in D and R together with their inverses. Then T = (S, L, E) is a tableau for D
w.r.t. R iff S is a set of individuals, L : S → 2cl(D,R) maps each individual to a set of
concepts, E : RD → 2S×S maps each role to a set of pairs of individuals, and there is some
individual s ∈ S such that D ∈ L(s). Furthermore, for all s, t ∈ S, C, C1, C2 ∈ cl(D,R),
and R, S ∈ RD, it holds that:



1. if C ∈ L(s), then ¬C /∈ L(s),

2. if C1 u C2 ∈ L(s), then C1 ∈ L(s) and C2 ∈ L(s),

3. if C1 t C2 ∈ L(s), then C1 ∈ L(s) or C2 ∈ L(s),

4. if ∀S.C ∈ L(s) and 〈s, t〉 ∈ E(S), then C ∈ L(t),

5. if ∃S.C ∈ L(s), then there is some t ∈ S such that 〈s, t〉 ∈ E(S) and C ∈ L(t),

6. if ∀S.C ∈ L(s) and 〈s, t〉 ∈ E(R) for some R v* S with Trans(R), then ∀R.C ∈ L(t),

7. 〈s, t〉 ∈ E(R) iff 〈t, s〉 ∈ E(Inv(R)),

8. if 〈s, t〉 ∈ E(R) and R v* S, then 〈s, t〉 ∈ E(S),

9. if (6 n S C) ∈ L(s), then ]ST (s, C) 6 n,

10. if (> n S C) ∈ L(s), then ]ST (s, C) > n,

11. if (./ n S C) ∈ L(s) and 〈s, t〉 ∈ E(S) then C ∈ L(t) or ∼C ∈ L(t),

12. if 〈s, t〉 ∈ E(S) and Domain(S, C) ∈ R, then C ∈ L(s),

13. if 〈s, t〉 ∈ E(S) and Range(S, C) ∈ R, then C ∈ L(t),

where we use ./ as a placeholder for both 6 and > and we define

ST (s, C) := {t ∈ S | 〈s, t〉 ∈ E(S) and C ∈ L(t)}.

Lemma 1 A SHIQ-concept D is satisfiable w.r.t. a role box R iff D has a tableau w.r.t. R.

3.1 An Extended Tableaux Algorithm

In order to make the following description easier, we will abuse notation by using Domain(R)
and Range(R) to mean the sets of concepts corresponding to the domain and range axioms in
R that apply to a role R, i.e., Domain(R) = {C | Domain(R, C) ∈ R}, and Range(R) =
{C | Range(R, C) ∈ R}.

Definition 3 A completion tree for a concept D is a tree where each node x of the tree is
labelled with a set L(x) ⊆ cl(D,R) and each edge 〈x, y〉 is labelled with a set L(〈x, y〉)
of (possibly inverse) roles occurring in cl(D,R); explicit inequalities between nodes of the
tree are recorded in a binary relation 6

.
= that is implicitly assumed to be symmetric.

Given a completion tree, a node y is called an R-successor of a node x iff y is a successor
of x and S ∈ L(〈x, y〉) for some S with S v* R. A node y is called an R-neighbour of x iff y
is an R-successor of x, or if x is an Inv(R)-successor of y. Predecessors and ancestors are
defined as usual.

A node is blocked iff it is directly or indirectly blocked. A node x is directly blocked iff
none of its ancestors are blocked, and it has ancestors x′, y and y′ such that

1. x is a successor of x′ and y is a successor of y′ and

2. L(x) = L(y) and L(x′) = L(y′) and

3. L(〈x′, x〉) = L(〈y′, y〉).



A node y is indirectly blocked iff one of its ancestors is blocked, or it is a successor of a
node x and L(〈x, y〉) = ∅.

For a node x, L(x) is said to contain a clash iff {A,¬A} ⊆ L(x) or if, for some concept
C, some role S, and some n ∈ N: (6 n S C) ∈ L(x) and there are n + 1 S-neighbours
y0, . . . , yn of x such that C ∈ L(yi) and yi 6

.
= yj for all 0 ≤ i < j ≤ n. A completion tree

is called clash-free iff none of its nodes contains a clash; it is called complete iff none of the
expansion rules is applicable.

For a SHIQ-concept D, the algorithm starts with a completion tree consisting of a single
node x with L(x) = {D} and 6

.
= = ∅. It applies the expansion rules in Fig. 2, stopping when

a clash occurs, and answers “D is satisfiable” iff the completion rules can be applied in such
a way that they yield a complete and clash-free completion tree.

Note that the only change w.r.t. [9] is addition of the domain and range-rules that add
concepts to node labels as required by domain and range axioms.

Lemma 2 Let D be an SHIQ-concept.

1. The tableaux algorithm terminates when started with D.

2. If the expansion rules can be applied to D such that they yield a complete and clash-free
completion tree, then D has a tableau.

3. If D has a tableau, then the expansion rules can be applied to D such that they yield a
complete and clash-free completion tree.

The following theorem is an immediate consequence of Lemmas 1, 2 and Theorem 1.

Theorem 2 The tableaux algorithm is a decision procedure for the satisfiability and sub-
sumption of SHIQ-concepts with respect to role boxes.

4 Role Absorption

Given that the new algorithm is able to deal directly with range and domain axioms, it makes
sense to transform GCIs into range and domain axioms. We call this new form of absorp-
tion role absorption in contrast to the usual form of absorption we will refer to as concept
absorption (see [10]).

Role absorption is important because in ontology derived KBs range and domain con-
straints will often have been transformed into GCIs. This is because tools such as OilEd
[1] and Protégé [11] are designed to work with range of DL reasoners, some of which (e.g.,
FaCT) do not support range and domain axioms. Moreover, these forms of GCI are not, in
general, amenable to standard concept absorption techniques.

We introduce two kinds of role absorption: basic and extended role absorptions.

Basic role absorption.

The simple form of role absorption, which we will refer to as basic role absorption, deals
with the axiom of the form ∃R.> v C and > v ∀R.C and is formalised in the following
theorem:



u-rule: if 1. C1 u C2 ∈ L(x), x is not indirectly blocked, and
2. {C1, C2} 6⊆ L(x)

then L(x) −→ L(x) ∪ {C1, C2}

t-rule: if 1. C1 t C2 ∈ L(x), x is not indirectly blocked, and
2. {C1, C2} ∩ L(x) = ∅

then L(x) −→ L(x) ∪ {C} for some C ∈ {C1, C2}

∃-rule: if 1. ∃S.C ∈ L(x), x is not blocked, and
2. x has no S-neighbour y with C ∈ L(y),

then create a new node y with L(〈x, y〉) = {S} and L(y) = {C}

∀-rule: if 1. ∀S.C ∈ L(x), x is not indirectly blocked, and
2. there is an S-neighbour y of x with C /∈ L(y)

then L(y) −→ L(y) ∪ {C}

∀+-rule: if 1. ∀S.C ∈ L(x), x is not indirectly blocked, and
2. there is some R with Trans(R) and R v* S,
3. there is an R-neighbour y of x with ∀R.C /∈ L(y)

then L(y) −→ L(y) ∪ {∀R.C}

choose-rule: if 1. (./ n S C) ∈ L(x), x is not indirectly blocked, and
2. there is an S-neighbour y of x with {C,∼C} ∩ L(y) = ∅

then L(y) −→ L(y) ∪ {E} for some E ∈ {C,∼C}

>-rule: if 1. (> n S C) ∈ L(x), x is not blocked, and
2. there are not n S-neighbours y1, . . . , yn of x with

C ∈ L(yi) and yi 6
.
= yj for 1 ≤ i < j ≤ n

then create n new nodes y1, . . . , yn with L(〈x, yi〉) = {S},
L(yi) = {C}, and yi 6

.
= yj for 1 ≤ i < j ≤ n.

6-rule: if 1. (6 n S C) ∈ L(x), x is not indirectly blocked, and
2. ]ST(x, C) > n and there are two S-neighbours y, z of x with

C ∈ L(y), C ∈ L(z), y is not an ancestor of x, and not y 6
.
= z

then 1. L(z) −→ L(z) ∪ L(y) and
2. if z is an ancestor of x

then L(〈z, x〉) −→ L(〈z, x〉) ∪ Inv(L(〈x, y〉))
else L(〈x, z〉) −→ L(〈x, z〉) ∪ L(〈x, y〉)

3. L(〈x, y〉) −→ ∅
4. Set u 6

.
= z for all u with u 6

.
= y

domain-rule if 1. C ∈ Domain(S), x is not indirectly blocked, and
2. there is an S-neighbour y of x and C 6∈ L(x)

then L(x) −→ L(x) ∪ {C}

range-rule if 1. C ∈ Range(S), x is not indirectly blocked, and
2. there is an S-neighbour y of x with C 6∈ L(y)

then L(y) −→ L(y) ∪ {C}

Figure 2: The complete tableaux expansion rules for SHIQ

Theorem 3 Let R be a SHIQ role box.



1. An interpretation I satisfies R and ∃R.> v C iff I satisfies R∪ {Domain(R, C)}.

2. An interpretation I satisfies R and > v ∀R.C iff I satisfies R∪ {Range(R, C)}.

Extended Role Absorption

Rewriting techniques similar to those used in concept absorption can be used to extend the
basic role absorption technique to deal with a wider range of axioms. An axiom of the form
∃R.C v D can be absorbed into a domain constraint Domain(R, D t ¬∃R.C) by rewriting
it as ∃R.> v D t ¬∃R.C. Similarly, an axiom of the form D v ∀R.C can be absorbed into
a domain constraint Domain(R,¬D t ¬∃R.¬C).

5 Implementation and Empirical Evaluation

We have implemented the extended tableaux algorithm and role absorption optimisation in
the FaCT++ DL reasoner. FaCT++ is a next generation of the well-known FaCT reasoner [7],
being developed as part of the EU WonderWeb project (see http://wonderweb.
semanticweb.org/); it is based on the same tableaux algorithms as the original FaCT,
but has a different architecture and is written in C++ instead of Lisp.

Absorption

Absorption in FaCT++ uses the same basic approach as FaCT [10, 6]. Given a TBox T , the
absorption algorithm constructs a triple of TBoxes 〈Tdef , Tsub, Tg〉 such that:

• Tdef is a set of axioms of the form A ≡ C (equivalent to a pair of axioms {A v C, C v
A} ⊆ T ), where A ∈ C (i.e., A is a concept name) and there is most one such axiom
for each A ∈ C. Such an axiom is often called a definition (of A).

• Tsub consists of a set of axioms of the form A v D, where A ∈ C and there is no
axiom A ≡ C in Tdef .

• Tg contains all the remaining axioms from T .

The lazy unfolding optimisation allows the axioms in Tdef and Tsub to be dealt with more
efficiently than those in Tg. Therefore, during the absorption process, FaCT++ processes
the axioms in Tg one at a time, trying to absorb them into Tsub. Those axioms that are not
absorbed remain in Tg.

To simplify the formulation of the absorption algorithm, each axiom C v D is viewed as
a clause G = {D,¬C}, corresponding to the axiom > v C → D, which is equivalent to
C v D. The concepts in G are also assumed to be in negation normal form. For each such
axiom, FaCT++ applies the absorption steps described in Fig. 3, with t({C1, . . . , Cn}) being
used to denote C1 t . . . t Cn.

In contrast to the FaCT approach, FaCT++ applies all possible simplifications (except
recursive absorption) in a single step. This usually leads to several possible concept and
role absorption options, with the intention that heuristics will be used to select the “best”
absorption. The development of suitable heuristics is, however, still part of future work.



B Beginning of the absorption cycle.

C Concept absorption. If there is a concept ¬A ∈ G such that A ∈ C and there is no
axiom of the form A ≡ C in Tdef , then add A v t(G \ {¬A}) to Tsub and exit.

R Role absorption. If there is a concept ¬∃R.C ∈ G, then add Domain(R,t(G))
to R and exit.

S Simplification.

1. For every C ∈ G such that C is of the form (C1 t . . . t Cn), change G as
follows: G = G ∪ {C1, . . . , Cn} \ {C}}.

2. For every A ∈ G (resp. ¬A ∈ G), if there is an axiom A ≡ C in Tdef , then
substitute A ∈ G (resp. ¬A ∈ G) with C (resp. ∼C).

3. If any simplification rule was applied, then return to step B.

E If there is some C ∈ G such that C is of the form (C1 u . . . u Cn), then for each
Ci try to absorb (recursively) G ∪ {Ci} \ {C}, and exit. Otherwise, absorption of
G has failed; leave G in Tg, and exit.

Figure 3: FaCT++ absorption algorithm

Experiments

We have tested FaCT++’s performance when classifying several TBoxes derived from realis-
tic ontologies. In each case range and domain constraints from the ontology had already been
transformed into GCIs of the form ∃R.> v C and > v ∀R.C as described above. All tests
used FaCT++ version 0.90 beta running under Linux on an Athlon 2000+ machine with 1Gb
of memory.

All our experiments shows that classification time and number of operations reduced by
approximately 1 order of magnitude after applying basic role absorption, and by a further
60-80% (approximately) after applying extended role absorption (if avaliable). Due to lack of
space we only present here results for a single example.

The RTIMS ontology is taken from a publish and subscribe application where it is used by
document publishers to annotate documents so that they can be routed to the appropriate sub-
scribers [13]. The ontology contains about 250 concepts (with medium-complex structure),
76 range and domain constraints and 14 GCIs that are not absorbable by concept absorption.

This ontology is too small to show significant gains in performance. In order to give an
indication of the effects of extended role absorption on larger Tboxes containing proportion-
ately more GCIs, we duplicating the RTIMS TBox, systematically renaming concepts and
roles, and generated larger TBoxes by unioning together several (from 1 to 100) copies of the
the original TBox.

The results of our experiments with these Tboxes are shown in Figure 4, with the prob-
lem size (number of copies of the original TBox) on the x-axis and classification time in
CPU seconds and number of t-rule applications on the y-axis (using a logarithmic scale). It
can be seen that without role absorption the classification time (and other y-axis parameters)
increases rapidly with problem size, and without extended (basic) role absorption a TBox con-
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Figure 4: Classification time (left) and t-rule applications (right) for multi-RTIMS TBoxes

sisting of 28 (8) copies of the original already takes several thousand CPU seconds to classify.
Further tests failed due to memory limits. In contrast, when using extended role absorption,
a TBox consisting of 100 copies of the original could be classified in a little over 100 CPU
seconds and requires about 34Mb of memory.

6 Discussion

We have shown how a tableaux algorithm for SHIQ can be extended to support role boxes
that include range and domain axioms, and proved that the extended algorithm is still a de-
cision procedure for the satisfiability and subsumption of SHIQ concepts w.r.t. such a role
box. It should be straightforward to similarly extend tableau algorithms for related DLs such
as SHOQ. We have also shown how support for range and domian axioms can be exploited
in order to add a new form of absorption optimisation called role absorption.

We have implemented the extended algorithm and the role absorption optimisation in the
FaCT++ reasoner, and we have illustrated their effectiveness by analysing the behaviour of
FaCT++ when classifying several KBs derived from realistic ontologies. The analysis shows
that, not only are the new techniques highly effective, but also that the ordering of different
absorption steps can have a significant effect on performance. Future work will include a
more detailed study of this effect with a view to devising heuristics that can select the most
effective absorption for each GCI.
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