
A Review to Model-Based User Interface
Development Technology

Pedro J. Molina

CARE Technologies S.A.
Pda. Madrigueres, 44.

03700 Denia, Alicante, Spain
+34 966 345555

pjmolina@care-t.com

ABSTRACT
This position paper discusses the idea of the suitability of
the Model Based User Interface Development (MB-UID) to
develop commercial applications in industrial
environments. Main problems, advantages, author’s
experiences, and current trends are presented.
Keywords
Model-based user interface development, conceptual
modeling, device independent user interface, code
generation.
INTRODUCTION
Model-based User Interface Development has had a
significant research during more than twenty years. Under
these conditions, technology should be mature enough to be
applied to the professional development software
community.
However, reality reveals the some pitfalls. Industry is still
leaded by RAD tools (Rapid Application Development),
IDE (Integrated Development Environments) and authoring
tools (like Macromedia Dreamweaver or Macromedia
Flash). These kinds of tools are characterized for being very
WYSIWYG (What You See Is What You Get) oriented,
useful to create prototypes and real UIs, at a low level
detail, exploiting all the design aspects the tool is conceived
for. Empowering, in this way, the creativity of the artist or
designer, enabling the possibility of innovation of new
interaction styles and designs but also opening the door to
create bad designs by inexperienced designers.
In this game, the quality of traditional UIs depends in a
strong factor on the experience of the designers and their
skills in the platform and development tools.
On the other hand, the market is moving to web interfaces,
ubiquitous systems, and wireless. More user interfaces for
every-day applications are needed in several devices

(multiple user interfaces), also at the same time.
Developing UIs of this kind of systems has extra constrains
and constitutes a challenge per se. Different kinds of
homogeneity among different platforms should be
preserved in the User Interface. Otherwise, the user’s
learning curve will force him to learn a new UI for each
device he uses to access the system.
In the quoted systems, the user interface can be specified
once and then refined for each target devices until reaching
the implementation. Such approach can be supported by
MB-UID methods and tools. Moreover, using an approach
capable of generating the UI code, a high percentage of
time and resources can be saved.
NOVAK’S RULE
In my humble opinion, the main problem of MB-UID
approaches can be summarized using the Novak’s rule:

“Automatic Programming is defined as the synthesis of
a program from a specification. If automatic
programming is to be useful, the specification must be
smaller and easier to write than the program would be
if written in a conventional programming language.”
[6]

Methods should be properly supported by tools, and should
provide visible assets, evident to the practitioners like code
generation, model validation, animation, verification,
documentation, etc.
UNSOLVED PROBLEMS
Depicting the Novak’s rule for MD-UID methods and tools
we can list the following ones:

1. Maintainability. Specifications and artifacts
produced by the tools should have easy
maintenance: allowing to keep the changes in the
specification or, alternatively, allowing a sort of
reverse engineering from the code to the model.

2. Scalability. Practitioners and designers need to
apply these methods and tools to real-life
problems. If the methods and tools have been
poorly tested outside academic environments, is
difficult to fine-tune the method and tools for

scalability to guarantee the success in industrial
scenarios.

3. Round Trip Problems. [1] Code generated from a
model has more constrains and less choices that
the allowed in the final target device. Frequently,
some sort of tweaking or beautification must be
applied to modify the final UI to fit the usage
scenario. These out-of-the-model changes should
be reapplied (ideally automatically) whenever the
model changes and the UI needs to be regenerated
accordingly.

4. Integration with artists’ designs. Especially
important for web sites and multimedia contents,
artists have a relevant role in the developing of
such systems. MB-UID artifacts must be integrated
with this other source of elements to configure the
final UI. To support this kind of development,
special tools or conventions must be followed in
both sides of the development.

5. Lack of standards like UML for software design
or architecture. There is no standard for UI
development. At least in software design there is a
common agreement in the notation: UML.
However, for user interface, we are still far away
of having such standards.

6. Lack of robust code generators. More code
generators are needed to produce UIs for different
kind of applications. Few tools are available on the
market and are limited to specific context of usage.

7. Lack of integration with business logic. UIs per
se are not enough to build running systems. Good
integration mechanisms with application’s
functionality (business logic) are needed. Much
better if the business logic can also be specified
and generated.

8. Lack of commercial tools supporting the
methods. Few tools are available on the market.
Practitioners interested in the field need to know
them in first place, use and evaluate them to check
if a tool fits their needs. There are also methods
without any tool support at all: making much
harder for practitioners to use such methods.

PROS
Despite the quoted problems, I strongly believe that
producing commercial applications using MB-UID
technology has mayor advantages:

1. The abstraction level is higher that working with
development environments. The specification is
less dependent from the underlying technology.

2. Better productivity. A percent of the final UI can
be directly generated and used in the final system
without any further changes.

3. Better quality. Generated code has always the
same elements in the same places. Repeating tasks
exactly in the same way every time is easier for a
machine than for humans, obtaining, in this way
homogeneity. Conformity with standards is also
easy to obtain by generating the code according to
such standards.

4. Less errors. Generated code contains zero
generation errors (if the generator is robust and it
has been thoroughly tested). Semantic errors can
still appear but as a consequence of
misunderstanding requirements or modeling
misprints.

5. Provides a precise Engineering process.
Development can be repeated, measured and
tracked as a production line. Future projects can be
estimated and scheduled with more precision
based on previous data.

6. Multiple device support: using generators for
multiples devices, platforms and architectures.

7. Less Time to Market. UIs can be built in less
time allowing to put the product early in the
market.

ENVISIONING NEW TOOLS AND CHALLENGES
From my point of view, new generation tools should
address the previously quoted problems to overpass the
Novak’s rule.
Modeling tools should be visual and support sketching as
done in DENIM [4]. Easy of use is crucial to make work
perceived as a non time-consuming task.
An standard in XML representation is needed urgently as a
base for tools interchange. Later on, notations and
semantics should be standardized also.
Going form initial requirements gathering to final

Figure 1. Modeling tool for creating specifications.

implementation is a long path that needs to be depicted in
subphases, for example: analysis, logical design, physical
design, implementation. An MB-UID should cross all this
stages in a consistent seamless way. At such, Model Driven
Architecture [7] based on Platform Independent Models
(PIMs) and Platform Specific Models (PSM) should be
taken into account.
Finally, I think that patterns [3, 8] can play a relevant role
in the development of UIs. Design patterns, Usage patterns,
or Conceptual patterns are examples of how patterns can
help to build User Interfaces.
If developers perceive the methods and tools as something
really useful (saving works-hours in any way) they will be
using them.
AUTHOR’S BACKGROUND
I have a PhD in Computer Science obtained in the
Universidad Politécnica de Valenica, Spain. During the
development of the PhD thesis I combined the academic
point of view from university and a practical work
implementing the ideas in a software engineering firm:
CARE Technologies, where I currently works as a
researcher and a software engineer.
During the last years I have been involved in the
development of a user interface specification model based
on conceptual patterns [5], a tool for supporting it, and code
generators to produce UI code to several desktop and web
platforms. All of these products are part or the commercial
tool suite OlivaNova Model Execution System.
Figure 1 shows a screenshot of the OlivaNova Modeler [2].
Figure 2 shows an example of generated UI for VB in
Windows. Finally, Figure 3 shows a UI generated for web
environment using Cold Fusion MX.

More info at: http://www.dsic.upv.es/~pjmolina/EN/.

REFERENCES
1. Bergman. L. et al. “Combining Handcrafting and

Automatic Generation of User-Interfaces for Pervasive
Devices”. In Ch. Kolski y J. Vanderdonckt (editors),
“Computer-Aided Design of User Interfaces III”, pp.
155–166. Kluwer Academics Publisher, Dordrecht,
Valenciennes, France, May 2002.

2. CARE Technologies S.A. OlivaNova Model Execution
System. http://www.care-t.com

3. Greene, S. et al. CHI’2003 HCI Pattern Workshop.
http://nitro.watson.ibm.com/chi2003Workshop.

4. Landay J., Myers B. "Sketching Interfaces: Toward
More Human Interface Design." IEEE Computer, vol.
34, no. 3, March 2001, pp. 56-64.

5. Molina, P.J. et al. “JUST-UI: A User Interface
Specification Model” Proceedings of Computer Aided
Design of User Interfaces, CADUI'2002, Les Valenciens
(2002) France, pp. 323-334.

6. Novak G.S. Novak’s rule:
http://www.cs.utexas.edu/users/novak/index.html.

7. Object Modeling Group. Model Driven Architecture.
2001. Available at: http://www.omg.org/cgi-
bin/apps/doc?ormsc/01-07-01.pdf

8. van Welie M., Trætteberg H. "Interaction patterns in
user interfaces". In 7th. Pattern Languages of Programs
Conference, Allerton Park Monticello, Illinois, USA,
August 2000.

Figure 2. Generated UI for Windows environment.
Figure 3. Generated UI for a Web environment.

