
Cylindrical Algebraic Decomposition
for Nonlinear Arithmetic Problems
Gereon Kremer

Department of Computer Science
Technical Report

Aachener Informatik-Berichte (AIB) | ISSN 0935-3232 | AIB-2020-04
RWTH Aachen University | Department of Computer Science | May 2020

The publications of the Department of Computer Science of RWTH Aachen University
are in general accessible through the World Wide Web.

http://aib.informatik.rwth-aachen.de/

http://aib.informatik.rwth-aachen.de/

Cylindrical Algebraic Decomposition
for Nonlinear Arithmetic Problems

Von der Fakultät für Mathematik, Informatik und Naturwissenschaften der
RWTH Aachen University zur Erlangung des akademischen Grades eines Doktors

der Naturwissenschaften genehmigte Dissertation
vorgelegt von

Gereon Kremer, Master of Science

aus Bergisch Gladbach

Berichter: Universitätsprofessorin Dr. Erika Ábrahám
Universitätsprofessor Dr. James H. Davenport
Privatdozent Dr. Viktor Levandovskyy

Tag der mündlichen Prüfung: 12. März 2020

Diese Dissertation ist auf den Internetseiten der Universitätsbibliothek online verfügbar.

Abstract

Satisfiability modulo theories solving is a technology to solve logically encoded problems
for many applications like verification, testing, or planning. Among the many theories
that are considered within this logical framework, nonlinear real arithmetic stands
out as particularly challenging, yet decidable and sufficiently well understood from a
mathematical perspective. The most prominent approach that can decide upon nonlinear
real questions in a complete way is the cylindrical algebraic decomposition method.
We explore the usage of the cylindrical algebraic decomposition method for satisfiability
modulo theories solving, both theoretically and experimentally. This method is commonly
understood as an almost atomic procedure that gathers information about an algebraic
problem and then allows to answer all kinds of questions about this algebraic problem
afterward. We essentially break up this method into smaller components that we can
then process in varying order to derive the particular piece of information – whether the
problem is satisfiable or unsatisfiable – allowing to avoid some amount of computations.
As this method often exhibits doubly exponential running time, these savings can be
very significant in practice.
We furthermore embed this method in the regular satisfiability modulo theories framework
where the cylindrical algebraic method is faced with a sequence of problems that are
“related” in the sense that they usually share large parts of their problem statements. We
devise different approaches to retain information from a previous run so that it can be
reused when the problem is only “extended” as well as purging now obsolete information
if the problem is “reduced”. These variants change in how much information can be
reused, the granularity of the information that is removed, and how much bookkeeping
needs to be done.
This integration is then enhanced with techniques that are more or less well-known in
the computer algebra community, for example, different projection operators, equational
constraints, or employing the so-called resultant rule. Furthermore, we present novel
features necessary for an efficient embedding in the satisfiability modulo theories frame-
work like infeasible subset computations and early termination as well as extensions to
integer problems and optimization problems.
We then turn to an alternative approach to satisfiability modulo theories solving that
is commonly called model-constructing satisfiability calculus. The core idea of this
framework is to integrate the theory reasoning, in particular the construction of a theory
model, tightly with the Boolean reasoning. The most popular theory reasoning engine is
again based on the cylindrical algebraic decomposition method, though we focus on the
overall framework here.
We start with our own variant of the model-constructing satisfiability calculus and
discuss some general insights and changes compared to current implementations. We
then proceed to present a whole series of reasoning engines for arithmetic problems
and show how a proper (though still naive) combination of those serves to significantly
improve a practical solver. We also show how the tight integration into the Boolean
reasoning allows for novel strategies for notoriously hard problems like the theory variable
ordering or expedient cooperation between the Boolean and the theory reasoning.
Finally, we consider the theoretical relation of the model-constructing satisfiability
calculus to other proof systems, in particular, the aforementioned regular satisfiability
modulo theories solving. Under certain assumptions – that turn out to be instructive
in and of themselves – we show that they are equivalent with respect to their proof
complexity and even establish what we call “algorithmic equivalency” afterward.

Zusammenfassung

Satisfiability modulo Theories Solving ist eine Technologie, um logisch kodierte Probleme
für Anwendungen wie Verifikation, Testen oder Planungsprobleme zu lösen. Unter den
in diesem Framework untersuchten Theorien sticht die nicht-lineare reelle Arithmetik
heraus: Sie ist anspruchsvoll, aber noch entscheidbar, und aus mathematischer Sicht
hinreichend gut verstanden. Die bekannteste Möglichkeit, solche Probleme vollständig
zu behandeln, ist die Methode der Zylindrisch Algebraischen Zerlegung.
Wir untersuchen die Verwendung dieser Methode für Satisfiability modulo Theories
sowohl theoretisch als auch experimentell. Die Methode wird typischerweise als atomarer
Algorithmus verstanden, der zunächst Informationen über das Eingabeproblem sammelt
und anschließend darauf basierend eine Vielzahl von Fragen über die Eingabe beantworten
kann. Wir zerlegen die Methode in kleinere Teile, die dann in beliebiger Reihenfolge
ausgeführt werden können, um die entscheidende Information – ob das Problem erfüllbar
oder unerfüllbar ist – ableiten zu können, ohne tatsächlich alle Berechnungen vollständig
durchführen zu müssen. Da die Methode häufig eine doppelt exponentielle Laufzeit
aufweist, können diese Einsparungen in der Praxis erheblich sein.
Wir betten diese Methode anschließend in das typische Framework für Satisfiability
modulo Theories ein, bei dem die Methode der Zylindrisch Algebraischen Zerlegung eine
Folge von Eingabeproblemen beantworten muss. Diese sind „ähnlich“ in dem Sinne, dass
üblicherweise weite Teile der Problemstellung übereinstimmen. Wir zeigen verschiedene
Ansätze, um Berechnungen von vorherigen Läufen wiederzuverwenden (falls das Problem
nur „erweitert“ wurde) oder einzelne Berechnungen zu entfernen (falls das Problem
„reduziert“ wurde). Diese Varianten unterscheiden sich in Bezug auf die Menge der
wiederverwendbaren Berechnungen, der Granularität der zu entfernenden Berechnungen
und dem Aufwand für die Buchhaltung.
Diese Einbettung wird schließlich durch mehr oder weniger bekannte Techniken aus der
Computeralgebra erweitert, beispielsweise verschiedene Projektionsoperatoren, Equa-
tional Constraints oder die sogenannte Resultantenregel. Zusätzlich entwickeln wir
Funktionen, die für eine effiziente Behandlung im Kontext von Satisfiability modulo
Theories notwendig sind, wie Gründe für Unerfüllbarkeit, vorzeitige Terminierung oder
die Erweiterung auf ganzzahlige Probleme oder Optimierungsprobleme.
Anschließend wenden wir uns einem alternativen Ansatz für Satisfiability modulo Theo-
ries zu, dem Model-Constructing Satisfiability Calculus. Die Kernidee ist hierbei, die
Berechnungen in der Theorie enger mit denen auf boolescher Ebene zu verzahnen, insbe-
sondere die Konstruktion einer Belegung für Theorievariablen. Die Hauptmethode für
die Theorie basiert auch hier auf der Zylindrisch Algebraischen Zerlegung, wobei wir
uns in diesem Teil mehr auf das Framework konzentrieren.
Wir stellen zunächst unsere Variante des Model-Constructing Satisfiability Calculus vor
und diskutieren das generelle Verständnis und Unterschiede zu anderen Implementierun-
gen. Anschließend präsentieren wir eine Reihe von Methoden für Berechnungen in der
Theorie und zeigen, wie selbst eine recht naive Kombination dieser Methoden eine prak-
tische Implementierung wesentlich verbessern kann. Zudem stellen wir fest, dass die enge
Verzahnung zwischen booleschen und Theorieberechnungen neue Ansätze für notorisch
schwere Probleme eröffnet, beispielsweise die Variablenordnung für Theorievariablen
oder eine zielführende Kooperation zwischen booleschen und Theorieberechnungen.
Zuletzt schauen wir auf den theoretischen Zusammenhang des Model-Constructing Satis-
fiability Calculus und anderen Beweissystemen, insbesondere dem typischen Framework
für Satisfiability modulo Theories. Unter gewissen Annahmen – die bereits für sich ge-
nommen interessant sind – sind diese bezüglich ihrer Beweiskomplexität äquivalent und
wir zeigen sogar einen stärkeren Zusammenhang, den wir als „algorithmische Äquivalenz“
bezeichnen.

Declaration of Authorship

I, Gereon Lukas Kremer declare that this thesis and the work presented in it are my own
and has been generated by me as the result of my own original research. I do solemnly
swear that:

1. This work was done wholly or mainly while in candidature for the doctoral degree
at this faculty and university;

2. Where any part of this thesis has previously been submitted for a degree or any
other qualification at this university or any other institution, this has been clearly
stated;

3. Where I have consulted the published work of others or myself, this is always
clearly attributed;

4. Where I have quoted from the work of others or myself, the source is always given.
This thesis is entirely my own work, with the exception of such quotations;

5. I have acknowledged all major sources of assistance;
6. Where the thesis is based on work done by myself jointly with others, I have made

clear exactly what was done by others and what I have contributed myself;
7. Parts of this work have been published before. A detailed list can be found in

Section 1.2.

Aachen, June 12, 2020

Acknowledgements

First and foremost, I want to thank Erika. She not only supervised this thesis and all
the work that went into it but also provided for a wonderful environment to work in.
This of course also includes my current and former colleagues, in particular Florian,
Francesco, Rebecca, and Stefan, but also all other co-workers from the MOVES group.
My first few years were characterized by the liberty to explore a rather wide range of
topics, also thanks to the funding provided by AlgoSyn. Later on, the SC2 project
provided for extremely valuable interaction with people that I learned a lot from, in
particular my other two supervisors, James and Viktor. James proved time and again to
be an irreplaceable source of knowledge and never tired to explain in his inimitable way
whatever I asked about CAD. Viktor on the other hand not only provided advice on a
number of student projects but also helped repeatedly with the algebraic foundations of
this work.
Our cooperations, in particular within the SC2 project, sparked many more enlight-
ening and productive discussions and cooperations with, among others, John Abbott,
Christopher W. Brown, Matthew England, Pascal Fontaine, Vijay Ganesh, Einar Broch
Johnsen, Jacopo Mauro, and Thomas Sturm.
Neither the work presented in this thesis nor the thesis itself would have been possible
in this form without the help of other people. While quite a few students contributed to
CArL and SMT-RAT over these years, I want to thank Jasper and Sebastian in particular.
Furthermore, I want to thank Jens and Marcel for their patience in a series of discussions
about algebraic details in both theory and implementation.
Last but not least, I wish to thank my family and friends for their support throughout
these years, in particular Beate, Thomas, Elisa, Fiona, and Noam.

Contents

I Introduction

1 Introduction 3
1.1 Related work . 4
1.2 Contributions . 13
1.3 Implementation . 17

2 Preliminaries 19
2.1 Fundamentals . 19
2.2 Polynomials . 20
2.3 First-order logic . 25
2.4 Deductive proof systems . 29
2.5 Real algebraic numbers . 33
2.6 Benchmarks and methodology . 48

3 CDCL-style SAT solving 53
3.1 Satisfiability via enumeration . 54
3.2 Satisfiability via deduction . 54
3.3 Davis–Putman procedure . 56
3.4 Davis–Putnam–Logemann–Loveland procedure 58
3.5 Towards modern DPLL . 59
3.6 Conflict-driven clause learning . 61

4 Satisfiability modulo theories solving 67
4.1 Eager SMT solving . 67
4.2 Lazy SMT solving . 68
4.3 SMT compliancy . 70
4.4 Common theory solvers . 73
4.5 CDCL(T) as a proof system . 75

II Cylindrical Algebraic Decomposition for SMT solving

5 Cylindrical Algebraic Decomposition 79
5.1 General idea . 79
5.2 Projection operators . 85
5.3 Lifting . 98

x CONTENTS

6 Cylindrical Algebraic Decomposition for SMT solving 103
6.1 Changing perception . 103
6.2 Proof system . 104
6.3 Variants of incrementality . 110
6.4 Projection operators . 111
6.5 Heuristic choices . 113
6.6 Equational constraints . 117
6.7 Infeasible subsets . 122
6.8 Integer problems . 125
6.9 Quantifier elimination . 126
6.10 Optimization . 127

III Model-Constructing Satisfiability Calculus

7 Proof system 131
7.1 Definition . 131
7.2 Intuition . 135
7.3 Constructing theory assignments . 136
7.4 Explanation functions and termination 137
7.5 Model-Refining Satisfiability Calculus 141
7.6 Optimization . 142

8 Implementation 145
8.1 Extending CDCL to MCSAT . 146
8.2 Assignment finder . 147
8.3 Explanation functions . 150
8.4 Heuristics . 156
8.5 Experimental results . 158

9 Theoretical aspects 161
9.1 Proof complexity . 161
9.2 Algorithmic equivalency to CDCL∗(T) 167
9.3 Theory reasoning in practice . 177

10 Conclusion 181
10.1 Contributions . 181
10.2 Future work . 183

Bibliography 185

Index 203

Part I

Introduction

Introduction

Digital systems are becoming ubiquitous in all aspects of our lives, from obvious
examples like smartphones or social media to less evident developments like autonomous
aircraft and cars or smart home devices. While software used to be confined to the
particular machine it was running on, more and more systems have a direct physical
impact on their environment and preventing malfunction is becoming ever more
important: a “Blue Screen of Death” or a “Kernel panic” on a desktop computer are
way less threatening than having an autonomous car shut down on the highway.
This (perceived) threat is reinforced by an inevitable collection of well-documented
software failures with fatal consequences: the Ariane 5 rocket exploded due to an
incorrect conversion from floating-point to integers; the Therac-25 radiation therapy
machine caused at least three deaths from overdoses of radiation, attributed to an
overall poor software design prone to concurrency issues; several airplane incidents have
been traced to erroneous behavior of automatic flight control systems, for example,
Qantas Flight 72 in 2008 or Lion Air Flight 610 in 2018.
While solid software designs and extensive testing can do their part in preventing such
events, formal verification presents a more rigorous approach that aims to prove a
component safe under a certain specification. While the better part of formal verification
is concerned with software, the above examples highlight that the interaction between
software and hardware is particularly important and challenging.
One possible approach that has gained significant traction is to model a hardware
component in combination with a software controller as a hybrid system that allows for
continuous or dynamic behavior, as well as discrete control. Safety can then be shown
by reachability (or rather non-reachability) of bad states. One popular approach to
do this eventually encodes this reachability problem as a satisfiability problem and
uses satisfiability modulo theories (SMT) solvers that can decide upon the satisfiability
of nonlinear real arithmetic. While most solvers aimed at this application of SMT
employ techniques like interval constraint propagation we propose the use of exact
algebraic procedures like the cylindrical algebraic decomposition (CAD) method. We
focus on first-order logic with nonlinear real arithmetic as a rigorous language that is
independent of the actual application.
Within this work we start with an introduction to algebraic procedures and SMT
solving and present two main techniques: firstly using CAD as a theory solver within a
regular SMT solver and secondly using an alternative framework for SMT solving called
MCSAT whose theory reasoning is also based on CAD. Note that we do not consider any
verification techniques that build on SMT solvers, but only discuss SMT solving itself.

4 CHAPTER 1. INTRODUCTION

1.1 Related work
We give a short overview of various works that are in some way or another related
to what we discuss in this thesis. We start with some historical notes on decision
procedures for nonlinear real arithmetic – or the theory of the reals – and give a few
more details on important milestones in the development and improvement of CAD.
We then name some alternative approaches that are incomplete in that they can not
deal with the whole set of nonlinear problems and finally survey the solving techniques
used in the SMT community for nonlinear problems.

1.1.1 Theory of the reals

Soon after the formalization of mathematical logic and theories was (mostly) agreed
on early in the twentieth century, the desire to have methods to determine the truth of
statements within certain logics arose. For this quest for decision procedures, Hilbert
coined the term metamathematics, aiming for mechanical algorithms that could answer
whether a given statement (formally sentence) is valid (or is a consequence) within a
given theory (or an axiomatic system that defines it).
A closely connected (though not identical) question is whether a theory admits quantifier
elimination, that is whether we can construct a quantifier-free formula that is equivalent
to a given quantified formula. A quantifier elimination method usually constitutes a
complete decision procedure by eliminating all quantifiers from a sentence (a formula
without free variables) and evaluating the resulting sentence (that contains no variables)
to either true or false. Based on this, the question for the satisfiability of a formula ϕ
with free variables x can be rephrased equivalently to whether ∃x. ϕ is valid.
Arguably one of the easiest quantifier elimination techniques is the recursive variant
of enumeration for propositional logic. It works by instantiating the variable with
both true and false and constructing their disjunction or conjunction, for existential or
universal quantification, respectively, where ϕ[x/c] denotes the syntactic substitution
of c for a variable x in ϕ.

∃x. ϕ⇔ (ϕ[x/true] ∨ ϕ[x/false])
∀x. ϕ⇔ (ϕ[x/true] ∧ ϕ[x/false])

We can easily generalize this idea for variables of any finite domain Dx and already
note that this technique fails for infinite domains:

∃x. ϕ⇔
∨

d∈Dx

ϕ[x/d] ∀x. ϕ⇔
∧

d∈Dx

ϕ[x/d]

Another possibility for quantifier elimination for propositional logic is using the reso-
lution rule to successively eliminate Boolean variables from a formula in conjunctive
normal form as we later show in Algorithm 3.3. It essentially combines two clauses to
produce a new clause without the variable that is to be eliminated and gives certain
guarantees when original clauses can safely be discarded. Very similarly, Dines [Din19]
and Motzkin [Mot36] reframed a method originally due to Fourier [Fou25; Fou26] to
provide quantifier elimination for sets of linear inequalities over real variables – that is
without multiplication among variables – to what we now call the Fourier–Motzkin
variable elimination.

1.1. RELATED WORK 5

The overarching question for decision procedures promptly incited an active field of
research that not only rediscovered existing methods but also devised new decision
procedures and provided fundamental new insights into the nature of logic itself.
One of the earliest (published) results in this direction is due to Presburger [Pre30]
which gives a decision procedure – again by quantifier elimination – for formulae with
linear constraints over integer variables. (We strongly recommend [Sta84] and [Cro75]
not only for an enjoyable read but also for some historical perspective and hints to
further work in this area.)
Shortly after these, some fundamental results emerged that restrict the range of logics
for which we can hope to find a decision procedure, most prominently the undecidability
results due to Gödel [Göd31] and shortly after due to Church [Chu36] and his student
Rosser [Ros36]. Most importantly (for us) they show that formulae with nonlinear
constraints over integer variables are undecidable in general, that is no complete
decision procedure for nonlinear integer problems exists.
Whether nonlinear real arithmetic is decidable remained unsolved for quite some time,
though it seems now that Tarski essentially had the result since about 1930 [Chu69].
It was only (publicly) resolved in [Tar51] and [Sei54] which (once again) employed a
constructive quantifier elimination method. We refer to [Dri88] for a historical and
thematical assessment with many references to related work.
All methods above have been superseded by more efficient techniques in most practical
applications. Propositional logic, which only consists of Boolean variables and con-
nectives, is commonly dealt with using CDCL-style SAT solving (see Section 3.6), the
simplex method is used for linear real arithmetic and branch-and-bound-based methods
are used for the linear integer case. However, all of the original quantifier elimination
methods are still useful for more specialized cases as we will see for Fourier–Motzkin
elimination in Section 8.3.3, for example.
Tarski’s method is different in this respect in that it exhibits an asymptotic complexity
that is not elementary – it can not be bounded by an exponential tower of finite size
– and hence was never seriously used in practice. Nevertheless, it remains one of the
most important results in this area, at least sparking the hope for a solution efficient
enough for practical applications.
Encouraged and inspired by Tarski’s result, a number of alternative (and hopefully
more efficient) decision procedures emerged including the cylindrical algebraic decom-
position method due to Collins [Col74], but also other methods due to Grigor’ev and
Vorobjov [GV88], Renegar [Ren88], or Basu, Pollack, and Roy [BPR96] which all
improved significantly upon the asymptotic complexity of Collins’ cylindrical algebraic
decomposition (which is doubly exponential in the number of variables).
One might ask why this thesis is concerned with CAD then, and consequently why
Collins’ work sparked a whole field of sustained and active research while the other
methods stayed theoretical side notes. The answer may be given by Hong [Hon91]
in that these advances on the asymptotic side are outweighed by huge constants in
practice. The approaches due to Grigor’ev and Renegar are impractical even for trivial
problems and the break-even-point is moved so far away that there is essentially no
way to reach it. The third approach due to Basu, Pollack, and Roy – not included in
Hong’s comparison as it is more recent – also did not result in an implementation to
the best of our knowledge.

6 CHAPTER 1. INTRODUCTION

Consequently, the cylindrical algebraic decomposition method is the predominant
decision procedure (or quantifier elimination method) for nonlinear real problems
nowadays, if one wishes to have a complete method.

1.1.2 Origins of CAD

We now give a summary of the genesis of the cylindrical algebraic decomposition
method and refer to [CJ98] for more information. Shortly after Collins received his
Ph.D. degree under Rosser – about twenty years after [Ros36] – Collins was already
concerned with Tarski’s work and actually aimed at implementing it at IBM, noting
that the “amount of labor involved in even very simple applications has prohibited any
progress in this aspiration to this date” [Col56].
Though we assume that this project did not yield a practical implementation – witnessed
by the lack of ensuing publications – Collins stuck to the question of quantifier
elimination and made significant advances in the field we now call computer algebra
and beyond, including reference counting [Col60], the implementation of the early
computer algebra systems PM [Col66] and SAC-1 [Col71b], and efficient ways to
compute subresultants [Col67] and resultants [Col71a].
In 1973, Collins gave a talk [Col73] presenting a novel method for quantifier elimination
that he called “cylindrical algebraic decomposition”, followed by two papers [Col74;
Col75]. They not only contain a detailed description of the algorithms but also give
bounds on the asymptotic complexity which is doubly exponential – way better than
the non-elementary complexity of Tarski’s method. Furthermore, they also hint to an
ongoing effort to implement it within the SAC-1 computer algebra system.
The implementation apparently proved to be more difficult than expected: a group
around Collins with experience from SAC-1 and SAC-2 started in 1974 but still had
major sub-algorithms unimplemented in 1978. Meanwhile, parts of the method were
implemented by Müller [Mül78] to solve nonlinear optimization problems. In 1979,
finally, Arnon [Arn81] took up the task to produce a complete CAD implementation
that was eventually integrated into SAC-2 [Col85].
This first implementation was then promptly followed by various improvements to CAD
– mostly within the projection operator as we discuss in Section 5.2 – by several of
Collins’ students, most prominently McCallum [McC84; McC85; McC88], Hong [Hon90],
and Brown [Bro01].
At the latest since the second half of the 1980s, the topic was picked up by a larger
community as witnessed by being mentioned in [Wei88], some theoretical contributions
based on CAD by Davenport and Heintz [DH88] and another projection operator for
CAD due to Lazard [Laz94].

1.1.3 CAD today

During the first attempts for a full CAD implementation, it became clear that it
requires a large amount of nontrivial functionality to work and thus the number of
implementations of CAD is still somewhat limited today. Most notably, we have
QEPCAD [Hon91] due to Hong and its successor QEPCAD B [Bro03] (mostly due to
Brown), as well as implementations within the computer algebra systems Redlog [DS97],
Mathematica [Str00] and Maple [CMX+09; IYA+09].

1.1. RELATED WORK 7

Only a few special-purpose versions of CAD exist beyond the above, as far as we know.
The NLSAT-style explanations that we also discuss in Section 8.3 are implemented
in both Z3 [JM12] and Yices [Dut14] based on libpoly [JD17]. Also, the theorem
prover Coq features a custom CAD implementation [Mah07] for proofs over nonlinear
arithmetic that is tailored to proof generation.
To the best of our knowledge, our implementation in SMT-RAT (and its related projects)
is the only other general-purpose implementation of CAD. Earlier versions also exist
within our libraries GiNaCRA [LÁ11] and CArL [KÁ18]. The current implementation
powers not only a theory solver for regular SMT solving as described in [CKJ+15], but
also a quantifier elimination method [Neu18a] and our version of MCSAT [NKÁ19].

1.1.4 Variants of CAD

The CAD implemented within Maple – or rather the RegularChains library [CMX+09]
– deviates from the traditional CAD framework presented in this work. While what
we call CAD is only concerned with real numbers, it can also be used in the complex
space as presented in [CMX+09]. Intuitively, we can understand it as using a larger
projection to obtain a CAD-like object in the complex space, using a somewhat easier
lifting procedure to obtain sample points, and projecting them into the real space.
Another recent variant of CAD stays in the real space but (partly) departs from
the fundamental concept of cylindricity. In what is called non-uniform cylindrical
algebraic decomposition or NuCAD [Bro15], the individual regions may have overlapping
projections onto lower-dimensional space. In this sense, every cell itself is still cylindrical,
but the entirety of cells is not arranged cylindrically relative to each other. While this
approach makes it harder to perform classical quantifier elimination, it is suitable for
answering many other questions about a nonlinear problem, promising a significantly
reduced number of cells in practice.
We presented a novel interpretation of CAD in [ÁDE+20]. We can understand it as
bringing the conflict-driven reasoning style of MCSAT into a regular CAD-based CDCL(T)-
style theory solver. Similar to MCSAT, we construct a theory model dimension-wise and
exclude intervals on every dimension. Once a dimension is fully covered, we combine
these intervals into an interval on a lower dimension using a characterization step
that closely resembles a CAD projection. Preliminary experiments suggest, that this
approach is competitive to the CAD-based theory solver we present in Chapter 6.

1.1.5 Other complete methods

As we already mentioned, the CAD method is not the only complete method that
deals with nonlinear real arithmetic. The first method presented by Tarski [Tar51] had
non-elementary complexity and thus it was essentially clear since its discovery that it
would not be suitable for implementation – though the method is constructive.
Later approaches – we already mentioned Grigor’ev and Vorobjov [GV88], Rene-
gar [Ren88], and Basu, Pollack, and Roy [BPR96] – all share that they significantly
improve upon the theoretical complexity of the cylindrical algebraic decomposition
method. Still, to the best of our knowledge, no practical implementation of either of
the three methods exists. For the former two, Hong gave a strong argument in [Hon91]
in that – though the asymptotic complexity improved – the methods are incredibly
inefficient in practice.

8 CHAPTER 1. INTRODUCTION

For the approach due to Basu, Pollack, and Roy [BPR96] we could only conjecture
why it has not been implemented or at least did not result in any implementation we
are aware of. Our group – once upon a time – tried to implement this approach as well
but abandoned it in favor of cylindrical algebraic decomposition due to the complexity
of the mathematical background and the complexity of the upcoming implementation.

1.1.6 Incomplete methods

Trying to deal with nonlinear problems has a long history – just think of the Pythagorean
theorem – and has thus spawned a wealth of diverse methods with very different targets,
characteristics, and trade-offs. We have previously focused on methods that give us
precise (or symbolic) information on nonlinear (polynomial) equalities and inequalities.
In the following, we give an overview on different approaches that for some reason or
another do not satisfy those conditions, for example, because they are approximate
(what we call numerical algorithms) or are restricted in their input in that they can
deal only with equalities (or inequalities) or only polynomial up to a certain degree.
Note that these other methods are by no means less relevant or worse. Quite the
contrary, some of the following approaches are well established and routinely used in
practice and are in this respect way ahead of CAD.

1.1.6.1 Linearization

Possibly the most obvious approach is called linearization which tries to describe a
nonlinear problem in terms of linear constraints. Note that this method is inherently
incomplete as nonlinearity is a qualitative trait that we can not eliminate without loss
of information: nonlinear constraints allow to describe solution spaces that are beyond
the linear formalism and thus the linearization of something nonlinear can only ever
be an approximation.
We, however, observe in practice that a linear approximation can very well be enough
to answer different kinds of interesting questions about a nonlinear problem. Most
applications have uncertainties, require tolerances, or are only concerned with a small
area around some target point and we are looking for an open solution space that allows
for safe over-approximations that can be linear. Even if we encounter equalities – and
thus the solution is restricted to a lower-dimensional space – linearization techniques
may be able to make a linear solver provide a solution that satisfies the nonlinear
problem. Some examples can be found in [Isi95; ADG07].
A novel linearization approach for nonlinear SMT problems that proved to be very
powerful in practice was presented in [CGI+18; Irf18] and was adapted within our solver
SMT-RAT in [Zam19]. Though not finished yet, we hope that further improvements to
this approach and proper integration with a CAD-based theory solver – or even within
the MCSAT framework – will be fruitful.

1.1.6.2 Numerical algorithms

A wealth of fundamentally different methods to deal with nonlinear problems can be
found in the field we call numerical analysis, employing numerical approximation in one
form or another. Prominent examples include the Newton method, various methods for
linear equation systems using matrix decompositions, the area commonly called convex
optimization, eigenvalue problems or a plethora of methods for differential equations.

1.1. RELATED WORK 9

Some of them can be adapted to be useful in our field, and we have reported on some
work in [Kre13; Kre18]. Unfortunately, such attempts oftentimes fail due to a very
fundamental problem: numerical analysis is concerned with finding a good approximation
and gives guarantees on the convergence – that is how fast the approximation improves
– but usually gives no absolute error bounds on the numeric results.
Simply put: if you figure out your approximation is not good enough, you only need to
let it run some more time. Figuring out whether your approximation is good enough is
usually hard to determine, though. Furthermore, this research is usually very focused
on what one could describe as “realistic” problems, which allows these methods to
essentially fail for “obscure” corner cases, or at least require manual intervention to
reformulation of the problem at hand.
This is in stark contrast to our expectations: we want to obtain “push-button solutions”
that deal with any input problem from some formal language – first-order logics in
our case – without human interaction. Furthermore, we consider our tools to be sound
and complete in the sense that we can guarantee that our results are correct – and not
approximate or probably correct – and that they always work, even for the more obscure
cases. While we endure degraded performance for such corner cases, incorrectness is
usually unacceptable.
Thus, we sometimes try to adapt numerical methods, but can usually only do so as fast
preprocessing techniques to solve easy cases and need to provide complete methods as
fall-backs. One such case is described in [Kre13] where eigenvalue computations serve
as preconditioning for the actual root finding method. The usage of interval arithmetic
in our implementation of real algebraic numbers that we describe in Section 2.5 also
partly fits this description (though it is also strictly required for some operations).

1.1.6.3 Interval constraint propagation

Instead of abandoning numerical algorithms altogether, we might want to equip such
methods with some technique to provide absolute guarantees on their results. The
most prominent approach is called interval arithmetic, essentially defining arithmetic
operations on intervals that capture the “real results” of some operation in an over-
approximating way. To give a rough idea, let us consider multiplication:
Let a, b ∈ R be represented by two intervals a ∈ (

˜
a, ã), b ∈ (

˜
b, b̃). Let us assume for

now that the intervals are reasonably small as our intuition is that they approximate
individual numbers a and b. An approximation of the product a ·b can then be obtained
from the intervals as follows:

a · b ∈ (
˜
a, ã) · (

˜
b, b̃) = (min{

˜
a ·

˜
b,
˜
a · b̃, ã ·

˜
b, ã · b̃},max{

˜
a ·

˜
b,
˜
a · b̃, ã ·

˜
b, ã · b̃})

This construction not only accumulates the inaccuracy of the two intervals for a and b
but possibly introduces more inaccuracy. Firstly, one oftentimes uses floating-point
representations for the interval endpoints which provide great performance, but also
introduce additional rounding errors. Note that this is not only an issue for the
precision of the result, but we also need to take care that this rounding happens safely
– that is over-approximating – as we otherwise risk getting incorrect results by losing
possible solutions.
Secondly, we may be unable to consider algebraic relations between variables. If for
example, we know that a = b it is clear that a · b = a2 ≥ 0. If we perform direct interval

10 CHAPTER 1. INTRODUCTION

arithmetic we lose this knowledge and the resulting interval may very well contain
negative numbers. We can sometimes treat such cases specifically, but these relations
are oftentimes not that obvious and once this calculation has been performed, it is
usually very difficult to exploit them after the over-approximation has been introduced.
The most popular – and most widely adopted – method to exploit interval arithmetic
for SMT solving is called interval constraint propagation [BG06], being implemented in
solvers like dReal [GKC13], iSAT [LSC+13; SKB13], or raSAT [TKO17], as well as our
own solver SMT-RAT [Sch13]. Its fundamental idea is to use individual constraints to
maintain an interval that contains the possible range of values for every variable and
shrink these intervals using relatively simple propagations like the following:

(y, z ∈ (0, 1) ∧ x = y · z) =⇒ x ∈ (0, 1)

This technique is surprisingly effective in excluding large parts of the search space
quickly, and oftentimes even proving unsatisfiability. It is however notoriously difficult
to construct satisfying assignments, in particular, if equalities are present. We mainly
propose to use it to quickly shrink the space of solution candidates and then exploit
these additional bounds in the algebraic methods as described in [LSC+13] or [KÁG19].

1.1.6.4 Virtual substitution

In [Wei88] Weispfenning studies the complexity of quantifier elimination of linear
problems over different fields, which also turns out to be doubly exponential – though
only in the number of quantifier alternations instead of the number of variables. He
also gives a method that consequently runs in (singly) exponential time if no quantifier
alternations are present.
This method was subsequently implemented within REDUCE [LW93] and extended to
quadratic constraints [Wei97] to what we call virtual (term) substitution. The classical
notion of virtual substitution essentially uses (parametric) solution formulae for the
roots of polynomials and substitutes their results, thereby eliminating the respective
variable. This, however, yields a restriction on the degree as solution formulae only
exist for polynomials up to degree four. Even worse, the substitution rules for degree
three are sufficiently difficult that they were only implemented recently in [Koš16].
The restriction on the degree of the polynomial can be lifted by a generalization of virtual
substitution [KS15] which essentially substitutes a characterization of the polynomial
root – as an expression in first-order logic – instead of an explicit representation. This
allows for arbitrary degrees in principle, however, the only automated way to obtain
these first-order logic expressions is by means of quantifier elimination. In this sense,
one could argue that this method merely reproduces the results of parametric quantifier
eliminations obtained from other procedures – for example CAD.
Despite these restrictions, virtual substitution is impressively effective in practice and
certainly is a valuable tool for quantifier elimination and related problems. We thus also
implement virtual substitution in our solver and use it in combination with cylindrical
algebraic decomposition [CKJ+15].

1.1.6.5 Gröbner bases

Since the formalization of polynomial ideals, computer algebra was looking for a canoni-
cal way to represent such ideals and – if possible – construct them effectively. Buchberger

1.1. RELATED WORK 11

answered both questions with the introduction of Gröbner bases in 1965 [Buc65], giving
conditions that characterize a canonical representation of a set of generators for a
polynomial ideal and providing an algorithm to construct this set. To this day, Gröbner
bases are one of the most important tools in computer algebra to deal with a set of
polynomials – or implicitly with a set of equalities.
Essentially, Gröbner bases provide a canonical way to simplify a set of polynomials,
retaining the set of common roots and thereby the solutions to the set of polynomial
equalities. Though Gröbner bases have some caveats in practice – it may exhibit doubly
exponential run time that is very sensitive to the variable ordering we need to choose –
it is arguably the most successful tool to deal with such problems.
As for our problem of satisfiability of real arithmetic formulae, Gröbner bases have
several restrictions that need to be overcome. Firstly, Gröbner bases only deal with
polynomials – implicitly equalities – while we usually want to consider inequalities
as well. We can convert inequalities to equalities while introducing new variables as
described for example in [Jun12] like this.

p ≥ 0 ⇔ ∃y. p− y2 = 0

Note, however, that practical experience shows that this technique works well in some
examples, but does not seem to help a lot in many other cases.
Secondly, Gröbner bases can determine whether some polynomials have a common
complex root but usually can not argue about real roots. If we certify that no complex
root exists we of course also have unsatisfiability in the reals, but a gap remains where
a complex root exists but we do not find a real one.
Given that we are only interested in real solutions we have certain opportunities to apply
additional simplifications to our polynomials – actually computing or approximating
what is sometimes called the real radical instead of the Gröbner basis. Some ways to
do exactly that are explored in [Jun12] and more recently as well in [ABP18; SYZ18].
Even if a complex root exists it is not trivial to actually construct one, even more so
if one aims to find a real one. Some attempts are made in [Jun12], but again their
applicability highly depends on the individual input.

1.1.7 Boolean reasoning and SMT solving

The formalization of mathematical logic we discussed at the beginning of Section 1.1.1
did not only launch a plethora of developments on arithmetic theories – though it seems
to have received more attention – but also sparked the interest in decision procedures
for Boolean logics.
Oftentimes – Fourier–Motzkin being a notable exception – methods for arithmetic
theories naturally incorporated dealing with a Boolean structure. Thus the question
of satisfiability – or validity – for purely Boolean formulae (propositional logic) was
well-established but was usually treated very naively. It took until [DP60] for a method
that outperformed simple enumeration in practice. We give an overview of the methods
for the satisfiability of purely Boolean formulae in Chapter 3.
From the very beginning, the question of satisfiability for purely Boolean formulae was
usually motivated by dealing with more complex logics. Nowadays, we usually consider
the satisfiability of first-order logic formulae and call the corresponding satisfiability

12 CHAPTER 1. INTRODUCTION

problem, as well as methods to solve it, satisfiability modulo theories (SMT). That
being said, propositional satisfiability is an established field of research on its own
which has arguably outgrown its origins due to the impressive practical results.
While the origins of practical approaches for SMT solving are usually dated to the late
1970s and early 1980s, we tend to understand [DP60] as a form of SMT solving already,
given that it employs a method for propositional satisfiability to solve the validity of a
richer logic. Early works that approach what we understand as SMT solving today
include [NO79; Sho79; NO80; BM90] while the approach that we understand as (lazy)
SMT solving – a combination of a regular SAT solver and what we call theory solvers
as described in Chapter 4 – emerged in the late 1990s, apparently at multiple places
around the same time, for example [GS96; ACG99; BGV99; PRS+99].

1.1.8 SMT solving today

Shortly after the lazy SMT solving framework emerged, an effort was made to draw the
whole “SMT community” together, or rather form such a community, by establishing
both SMT-LIB [BFT16] in 2002 and the SMT-COMP [BMS05]. These initiatives
and their close cooperation, in particular, made it possible to gather the better part
of a comparably diverse community – that works on very different theories – using
a common input language and a common set of benchmarks that both live in the
SMT-LIB initiative.
Within the last five years, more than twenty different solvers have participated within
about fifty different logics (about twenty of them involving quantifiers) at the annual
SMT-COMP, witnessing both the wide-spread interest in SMT solving and the diversity
of tackled logics. Note that some of the competing solvers are actually targeted at
other problems and rather solve SMT problems as a side issue, for example, AProVE,
Alt-Ergo, Redlog, and Vampire.
Given the scope of this thesis, we want to focus on solvers for nonlinear real arithmetic
which is called QF_NRA in SMT-LIB. Within the last five years, the following seven
solvers competed in this logic: CVC4 [BCD+11], MathSAT [CGS+13], raSAT [TKO17],
veriT+Redlog [FOS+18], Yices [Dut14], Z3 [MB08c] and our own SMT-RAT [CKJ+15].
While CVC4 and MathSAT employ linearization techniques as described in Section 1.1.6.1,
raSAT is solely based on interval constraint propagation similar to Section 1.1.6.3,
veriT+Redlog integrates the full-fledged computer algebra system Redlog into the
SMT solver veriT and finally Yices and Z3 employ an alternative framework for SMT
solving called MCSAT that we discuss in more detail in Chapters 7 and 8.
Our own solver SMT-RAT implements all of these techniques with a particular focus on
complete methods. As we have already seen, the only complete method for nonlinear
arithmetic – that has ever been seriously implemented – is CAD. As far as we know,
there are only two integrations of CAD into SMT solvers: 1. using CAD as a theory
solver in regular SMT solving as implemented in veriT+Redlog and SMT-RAT and
2. adapting CAD as an explanation backend for MCSAT as implemented in Yices, Z3,
and SMT-RAT.

1.2. CONTRIBUTIONS 13

1.2 Contributions
In this thesis, we present novel approaches that roughly fall into the following categories:

1. embedding and adapting the CAD method into an SMT compliant theory solver
for nonlinear real arithmetic,

2. extending and using this theory solver for other problems like nonlinear integer
arithmetic or quantifier elimination,

3. implementing the MCSAT proof system with a special focus on modularity, and
4. theoretical study of the MCSAT proof system.

Note that by “novel approaches” we do not mean to talk about “as of yet unpublished”
results, but also about results presented in publications that have been (co-) authored
by this author. Publications that are relevant for this are listed and discussed in the
following Section 1.2.1. We now give a very brief overview of the contributions of this
thesis, deferring a more detailed discussion to Section 10.1.
We start with a general introduction into CAD that shifts the understanding into a
point of view that is more suitable for our application, followed by a novel proof system
that allows decomposing the oftentimes “monolithic” CAD easily. We then discuss a
number of design choices and heuristics and show how to apply this variant of CAD to
integer problems, quantifier elimination, and optimization problems.
The second part is concerned with MCSAT, starting with a general definition and two
extensions for model refinement (instead of model construction) and optimization. We
then describe a concrete implementation based on a novel embedding into an existing
CDCL-style SAT solver and various possibilities for its main theory reasoning methods –
the assignment finder and the explanation function – and evaluate this implementation
using several different strategies. Finally, we discuss some theoretical observations
that relate CDCL(T)-style SMT solving with MCSAT-style SMT solving in the hope to
underpin some practical observations with theoretical results.

1.2.1 Relevant publications

We present the list of our publications that are relevant to this thesis and detail the
author’s contributions to them below. For full bibliographic references, we refer to the
bibliography at the end of this work.

[ÁNK17] Erika Ábrahám, Jasper Nalbach, and Gereon Kremer. “Embedding the Vir-
tual Substitution Method in the Model Constructing Satisfiability Calculus
Framework”. SC2 2017.

[CKJ+15] Florian Corzilius, Gereon Kremer, Sebastian Junges, Stefan Schupp, and
Erika Ábrahám. “SMT-RAT: An Open Source C++ Toolbox for Strategic
and Parallel SMT Solving”. SAT 2015.

[HKÁ18] Rebecca Haehn, Gereon Kremer, and Erika Ábrahám. “Evaluation of Equa-
tional Constraints for CAD in SMT Solving”. SC2 2018.

[KÁ18] Gereon Kremer and Erika Ábrahám. “Modular strategic SMT solving with
SMT-RAT”. Acta Universitatis Sapientiae, Informatica, 2018.

[KÁ20] Gereon Kremer and Erika Ábrahám. “Fully Incremental Cylindrical Alge-
braic Decomposition”. Journal of Symbolic Computation, 2020.

14 CHAPTER 1. INTRODUCTION

[KÁG19] Gereon Kremer, Erika Ábrahám, and Vijay Ganesh. “On the Proof Com-
plexity of MCSAT”. SC2 2019.

[KCÁ16] Gereon Kremer, Florian Corzilius, and Erika Ábrahám. “A Generalised
Branch-and-Bound Approach and Its Application in SAT Modulo Nonlinear
Integer Arithmetic”. CASC 2016.

[NKÁ19] Jasper Nalbach, Gereon Kremer, and Erika Ábrahám. “On Variable Order-
ings in MCSAT for Non-linear Real Arithmetic (extended abstract)”. SC2

2019.
[VKÁ17] Tarik Viehmann, Gereon Kremer, and Erika Ábrahám. “Comparing Different

Projection Operators in the Cylindrical Algebraic Decomposition for SMT
Solving”. SC2 2017.

The contributions published in these papers mainly fall into three categories: adapta-
tions and extensions of CAD for SMT solving, research on MCSAT, and implementation
within SMT-RAT. For all the above papers, the author took part in the discussions and
writing of the actual publication. Most publications were attained in cooperation with
other researchers and we discuss the individual contributions in more detail now.
The overall architecture of our integration of CAD into SMT is described in [KÁ20]
which contains most of what is described in Chapter 6, though presented as actual
algorithms while we formulate it as a proof system here. The fundamental ideas to
perform CAD incrementally predate the author’s work and are mostly due to Ulrich
Loup (see for example [LÁ11; CLJ+12; LSC+13; Lou18]). The presented approach is
however significantly different from previous publications and is based on a completely
new implementation conducted by the author. A preliminary presentation of this
approach was given by the author at [ÁK18].
While working on the overall framework for incremental CAD, a whole range of
individual issues were investigated in the context of CAD. First, we extended SMT-RAT
to allow for efficient solving of nonlinear integer formulae using a branch-and-bound
approach, resulting in [KCÁ16]. While Florian Corzilius worked on the adaption of
virtual substitution, the author was responsible for the required changes in CAD.
Together with Tarik Viehmann, we analyzed how different projection operators (that we
describe in Section 5.2) perform in the context of SMT solving. The work started as his
thesis project in [Vie16] and was then extended to [VKÁ17]. The author mainly provided
the underlying implementation for the individual projection operators, consulted on
ideas for further experiments, and finally took part in writing the publication.
In her thesis [Hae18], Rebecca Haehn integrated the usage of equational constraint
(as presented in Section 5.2.8) into our incremental CAD and how they improve the
applicability of CAD in practice. Given the deep level of integration into the existing
implementation, the author not only contributed essential ideas but also parts of the
implementation in the preparation of the subsequent paper [HKÁ18].
This work was accompanied by improvements to the general framework in SMT-RAT
and the underlying library CArL, as well as various additional solving techniques not
directly related to this thesis. Some of them were presented in a series of papers, others
remain unpublished, but are freely available as implemented in CArL and SMT-RAT.
While [CLJ+12] predates the author’s activities, the author contributed major parts of
the implementation and writing to both [CKJ+15] and [KÁ18].

1.2. CONTRIBUTIONS 15

Another, though related, line of research was the exploration of the MCSAT solving
framework (originally presented in [JM12; MJ13]) which we still consider work in
progress. In [ÁNK17] (based on [Nal17]) we present Jasper Nalbach’s work to employ
virtual substitution as a novel explanation backend in MCSAT in addition to CAD
and Fourier–Motzkin (that were previously described in [JM12; JBM13]). The MCSAT
framework gives a more flexible integration of Boolean and theory reasoning and we
explored possible heuristics in [NKÁ19]. The author contributed the majority of our
implementation of MCSAT, initially in cooperation with Florian Corzilius and eventually
supported by Jasper Nalbach.
In [KÁG19], we had a more theoretical look at MCSAT by relating it to CDCL∗(T) in
terms of its proof complexity. We have proven MCSAT to be equivalent to Res∗(T) which
in turn is equivalent to CDCL∗(T), as was previously shown in [RKG18]. This whole
topic was almost exclusively one of the author’s side projects.

1.2.2 Further publications

During the time the author worked on the presented topics, the following other
publications and talks where attained. Again we refer to the bibliography at the end
of this work for full references.

[ÁCJ+16] Erika Ábrahám, Florian Corzilius, Einar Broch Johnsen, Gereon Kremer,
and Jacopo Mauro. “Zephyrus2: On the Fly Deployment Optimization Using
SMT and CP Technologies”. SETTA 2016.

[ÁDE+20] Erika Ábrahám, James H. Davenport, Matthew England, and Gereon Kre-
mer. “Deciding the Consistency of Non-Linear Real Arithmetic Constraints
with a Conflict Driven Search Using Cylindrical Algebraic Coverings”. arXiv
e-prints, 2020.

[ÁK16] Erika Ábrahám and Gereon Kremer. “Satisfiability Checking: Theory and
Applications”. SEFM 2016.

[ÁK17] Erika Ábrahám and Gereon Kremer. “SMT Solving for Arithmetic Theories:
Theory and Tool Support”. SYNASC 2017.

[Kre18] Gereon Kremer. “Computer Algebra and Computer Science”. ACA 2018.

A case study on the applicability of SMT solving – in particular in comparison to
constraint programming – was conducted in [ÁCJ+16], aiming at automated deployment
of cloud-based web applications. The author contributed to the problem formulation
and encoding as an SMT formula, performed the benchmarking presented in the paper,
and took part in the writing process.
The remaining papers [ÁK16; ÁK17] and the talk [Kre18] all aim at presenting
the SMT approach with its unique advantages and challenges to different audiences.
While [ÁK16] was targeted at software engineering researchers interested in formal
verification, we describe the current state-of-the-art (including our own solver SMT-RAT)
to the computer algebra community in [ÁK17]. The talk [Kre18] was a result of the SC2

project and presented concrete challenges we encountered when integrating established
computer algebra software (like Maple or CoCoALib) into an SMT framework. Finally,
we proposed a novel CAD-based decision procedure in [ÁDE+20] that employs a
conflict-driven strategy within a theory solver with surprisingly good results.

16 CHAPTER 1. INTRODUCTION

1.2.3 Supervised thesis projects

The author oversaw many thesis projects that mostly explored topics more or less
closely related to this work. While some of them resulted in subsequent publications
that are mentioned later, the others might be interesting to read as well, covering
topics that just did not make it into the present work.

[Bar18] Lorena Calvo Bartolomé. “Using Fourier-Motzkin Variable Elimination for
MCSAT Explanations in SMT-RAT”.

[Fra20] Hanna Franzen. “Conflict Driven Cylindrical Algebraic Coverings for Non-
linear Arithmetic in SMT Solving”.

[Gro17] Marta Grobelna. “Solving Pseudo-Boolean Constraints”.
[Hae18] Rebecca Haehn. “Using Equational Constraints in an Incremental CAD

Projection”.
[Hen17] Wanja Hentze. “Computing minimal infeasible subsets for the Cylindrical

Algebraic Decomposition”.
[Kor17] Leonard Korp. “SMT-based Planning for Autonomous Robot Fleets”.
[Krü15] Andreas Krüger. “Bitvectors in SMT-RAT and Their Application To Integer

Arithmetics”.
[Kuk19] Denis Kuksaus. “SMT-basierte Lösung reell-algebraischer Probleme mittels

Linearisierung”.
[Lös18] Christopher Lösbrock. “Implementing an Incremental Solver for Difference

Logic”.
[Lot18] Henri Lotze. “Automated Optimization in Production Planning”.
[Nal17] Jasper Nalbach. “Embedding the Virtual Substitution in the MCSAT Frame-

work”.
[Nal20] Jasper Nalbach. “A novel adaption of the Simplex algorithm for linear real

arithetic”.
[Neu15] Lukas Neuberger. “Generation of Infeasible Subsets in Less-Lazy SMT-

Solving for the Theory of Uninterpreted Functions”.
[Neu18a] Tom Neuhäuser. “Quantifier Elimination by Cylindrical Algebraic Decom-

position”.
[Neu18b] Malte Neuß. “Using Single CAD Cells as Explanations in MCSAT-style

SMT Solving”.
[Sal18] Ömer Sali. “Linearization Techniques for Nonlinear Arithmetic Problems in

SMT”.
[Vie16] Tarik Viehmann. “Comparing different projection operators in the Cylindri-

cal Algebraic Decomposition for SMT solving”.
[Vol15] Matthias Volk. “Using SAT Solvers for Industrial Combinatorial Problems”.
[Win16] Tobias Winkler. “Using Thom Encodings for Real Algebraic Numbers in

the Cylindrical Algebraic Decomposition”.
[Zam19] Aklima Zaman. “Incremental Linearization for SAT Modulo Real Arithmetic

Solving”.

1.3. IMPLEMENTATION 17

Most of these thesis projects also deal with some aspects or special approaches to
nonlinear problems, mostly centering around the application of cylindrical algebraic
decomposition or the MCSAT approach. While [Hae18] enhanced our CAD implemen-
tation with equational constraints, variants for minimal infeasible subsets for CAD
were explored in [Hen17], properties of different projection operators were compared
in [Vie16], a novel method based on CAD from [ÁDE+20] was implemented in [Fra20],
and a different representation for real algebraic numbers was implemented in [Win16].
Meanwhile, [Neu18a] employed this CAD implementation for quantifier elimination as
described in Section 6.9.
Some were also targeted at the MCSAT approach where [Bar18] made a first attempt
at implementing a Fourier–Motzkin-based explanation backend, the theory for an
explanation backend based on virtual substitution was laid out in [Nal17], and an
implementation of the OneCell CAD approach (see Section 8.3.2) was carried out
in [Neu18b].
Several thesis projects were concerned with solving techniques unrelated to CAD or
even not meant for nonlinear real arithmetic: pseudo-Boolean constraints in [Gro17],
bit-vectors and their usage for nonlinear integer arithmetic in [Krü15], a solver for
difference logic in [Lös18], a novel interpretation of the simplex method in [Nal20],
uninterpreted functions and different variants for infeasible subsets in [Neu15], two
linearization techniques based on subtropical satisfiability and reduction to linear
integer arithmetic in [Sal18], and finally incremental linearization based on axiom
instantiation in [Zam19; Kuk19].
Lastly, some projects aimed at applying SMT techniques to (more or less) practical ap-
plications: combinatorial system design problems in cooperation with Siemens Belgium
in [Gro17], planning for robot fleets for the RoboCup Logistics Team “Carologistics”
in [Kor17], production planning for Robert Bosch GmbH in [Lot18], and industrial
product configuration problems for DAF Trucks N.V. in [Vol15].

1.3 Implementation
As we have already mentioned at several places, the author is currently the main
author of our own software SMT-RAT [Kre+20b; CKJ+15] which is both a toolbox
for and around SMT technology and an SMT solver itself. This project is closely
accompanied by our library CArL [Kre+20a; KÁ18] that implements many fundamental
data structures like polynomials, real algebraic numbers, and formulae as well as
algorithms like resultant computation, real root isolation, interval arithmetic, Gröbner
bases, or computing set coverings. Of course, CArL again relies on other libraries like
Boost [Boo19], CoCoALib [AB19], Eigen3 [GJ+10] or GMP [Gt19].
Both CArL and SMT-RAT are freely available as open-source C++ software. As the border
between SMT-RAT and CArL is both pretty technical and in some parts historical, but
not relevant for this work, we say “SMT-RAT” to talk about the whole implementation
comprised of both SMT-RAT and CArL from now on. Almost everything of what we
discuss in this work has been implemented in SMT-RAT and we encourage everyone
interested in implementing any of this to study our implementation.

Preliminaries

To ease the subsequent presentation and allow for a consistent notation, we give some
introduction and definitions for numbers, polynomials, formulae, proof systems and
show how real algebraic numbers and experimental evaluation work.

2.1 Fundamentals

We start with some fundamental definitions to set a common notation. Of course, we
already build on other elementary concepts here and refer, for example, to [Art91] for
definitions of algebraic concepts.

Definition 2.1: Total order

Let Ω be some set of elements. A total order ≤ on Ω is a relation that adheres
to the following properties:

∀a, b ∈ Ω. (a ≤ b ∧ b ≤ a) =⇒ a = b (antisymmetry)
∀a, b, c ∈ Ω. (a ≤ b ∧ b ≤ c) =⇒ a ≤ c (transitivity)
∀a, b ∈ Ω. (a ≤ b ∨ b ≤ a) (connexity)

Definition 2.2: Ring

Let R be a set of elements with binary operations + and · such that (R,+) is
a commutative group, (R, ·) is a semigroup, and the operation · is distributive
with respect to +. We call (R,+, ·) a ring and usually only denote it by R.
If (R, ·) is a monoid, that is 1 ∈ R, where 1 is the multiplicative identity, we
call R a ring with 1. If · is commutative over R, we call R commutative. If
∀a, b, c ∈ R. (a · b = a · c ∧ a 6= 0) → b = c we call R an integral domain.

Recognizing that rings without 1 and non-commutative rings are interesting concepts
in their own rights, all rings within this work are both with 1 and commutative and we
simply call such objects rings.

Definition 2.3: Sets of Numbers

Let B = {true, false} be the set of Booleans, N = N0 = {0, 1, . . . } the set of
natural numbers, Z the set of integers, Q the set of rational numbers, and R the
set of real numbers. Furthermore, we denote the set of real algebraic numbers by
R and refer to Section 2.5 for a definition.

20 CHAPTER 2. PRELIMINARIES

Definition 2.4: Indexed sets

We write ω for a set of elements {ω1, . . . , ωn} and specify n if relevant and not
clear from the context.

Definition 2.5: Power sets

Let Ω be some set of elements. We define the power set of Ω as

P(Ω) = {ω | ω ⊆ Ω}

We sometimes talk about sequences of certain objects, for example the trails of DPLL,
CDCL, CDCL(T), or MCSAT. We fix a common notation in the following Definition 2.6.

Definition 2.6: Sequences

Let Ω be some set of elements. A (finite) sequence M over Ω is an ordered
(finite) list of elements from Ω and we write

M = Jω1, . . . ωkK

By abuse of notation, we may also use M as a set and write M ⊆ Ω, M1 ⊆M2,
ω ∈M , or |M |. We call M ′ = Jωi1 , . . . , ωilK a subsequence of M = Jω1, . . . ωkK if
M ′ ⊆M and i1 < · · · < il. Furthermore, we write JM,ωK to append ω to M or
in general JM1, ω,M2K for the concatenation of M1, JωK, and M2. We call M1

(M2) a prefix (suffix) of M = JM1, ω,M2K.

2.2 Polynomials

Most of this thesis centers around techniques for nonlinear real arithmetic and thus
needs to work on polynomials. In the following, we give a brief introduction to
polynomials and some non-trivial methods and properties.

Definition 2.7: Variables

We denote variables by x1, . . . , xn and associate every variable xi with a domain
Dxi . If no domain is given or clear from the context, we assume the domain R.

In many of the following ideas and algorithms, we impose a total order on variables.
We usually assume the canonical order as defined below for all examples, but could
plug in any arbitrary order. The importance of selecting a good order is discussed later,
for example, in Section 6.5.1.

Definition 2.8: Variable order

A variable order is a total order on a set of variables x = {x1, . . . , xn}. We use
x1 < · · · < xn as the canonical order.

We usually aim to associate every variable to a value from its domain so that this
variable assignment satisfies our formula. We call such a mapping a model, following
common naming in mathematical logic.

2.2. POLYNOMIALS 21

Definition 2.9: Variable assignment

Let x = {x1, . . . , xn} be variables with domains D1, . . . , Dn. We call

Ax = {x1 7→ d1, . . . , xn 7→ dn} with di ∈ Di for i ∈ {1, . . . , n}

a variable assignment for x, denote the (set of all) variable assignments of x by

Ax = {Ax | d1 ∈ D1, . . . , dn ∈ Dn}

and write A and A if the set of variables is clear from the context. To retrieve
a variable assignment for an individual variable from A, we commonly write
(xi 7→ di) ∈ A or A(xi) = di.

As the domains of our variables are usually the real numbers – and all other domains
from Definition 2.3 can be embedded canonically into the real numbers – we oftentimes
interpret a variable assignment for variables x as an element of Rn, assuming some
variable ordering. Thus, we can identify a variable assignment with a point in the
n-dimensional real space.
The fundamental operational objects for most of the methods we present here are
polynomials. We define polynomials over arbitrary rings, but already note that their
coefficients come from Q for most parts of this work. We observe that most of these
methods are almost exclusively interested in the roots of polynomials, and we can thus
go from coefficients from Q to coefficients from Z without loss of generality (though
we acknowledge that the polynomial rings over Q and Z are very different in nature).
An example for this is given in Example 2.1.

Definition 2.10: Polynomials

Let R be some ring and x a variable. A polynomial with x over R has the form

p =

n∑
i=0

ci · xi

where c ∈ Rn are coefficients from R. We define the degree deg(p) = n for p 6= 0
and deg(0) = −∞ and the coefficients coeffs(p) = {ci | 0 ≤ i ≤ n} as usual. We
call p (affine) linear if deg(p) = 1 and constant if deg(p) ≤ 0. We write R[x] for
the set of all polynomials with variable x over R and call it the polynomial ring
with x over R.
We oftentimes identify a polynomial p with its polynomial function p : Dx →
Dx, x 7→ p(x) (assuming R ⊆ Dx) to evaluate p at some point x 7→ α with
α ∈ Dx and write p(α).

If R is a set of numbers – usually Q or Z – we call polynomials from R[x] univariate.
However, R can itself be a polynomial ring as well, allowing for polynomials over
multiple variables that we call multivariate. We usually denote such a polynomial ring
by R[x] where R is a set of numbers and x is some set of variables. Note that the
order of the variables is not relevant here, and we can thus give a standard form for
multivariate polynomials that is not based on a recursive application of Definition 2.10,
but uses all variables from x directly as given in the following Definition 2.11.

22 CHAPTER 2. PRELIMINARIES

Definition 2.11: Multivariate polynomials

Let R be some ring and x = {x1, . . . , xn} variables. A multivariate polynomial
with x over R has the form

p =
∑
i

ci ·
∏
j

x
eij
j

where eij ∈ N are exponents and ci ∈ R coefficients. We write R[x] for the set
of all polynomials with variables x over R and call it the polynomial ring R[x].
We call the summands the terms of p, coeffs(p) = c the coefficients of p, and ei

the exponent vectors (for every term). We assume that the terms are ordered
according to a variable ordering on x, or rather a derived term ordering, and
usually use the degree reverse lexicographical ordering. Under such an ordering
we define the leading term lterm(p), leading coefficient lcoeff(p), and trailing
coefficient tcoeff(p), as well as the total degree tdeg(p).

We note that we can directly convert polynomials between the representations given in
Definition 2.10 and Definition 2.11. We consider these the canonical representations for
univariate and multivariate polynomials, respectively. It is sometimes convenient – in
particular in the context of CAD – to univariately represent a multivariate polynomial.

Definition 2.12: Univariately represented polynomial

Let p ∈ R[x] be a multivariate polynomial and xi ∈ x. We say that p is univari-
ately represented, denoting p as specified in Definition 2.10 and its coefficients
from R[x \ {xi}] in any representation, usually as in Definition 2.11. We call
xi the main variable of p. We usually assume that xi is the largest variable
among x (under the variable ordering) and say that the level of p is |x| and
write level(p) = |x|. If p ∈ R (that is x = ∅) we define level(p) = 0.

Note that we have defined multiple “canonical” representations for polynomials, and
there are even more ways to write polynomials that are all meaningful in their own
way – all of which induce the same polynomial function and allow to convert arbitrarily
from one to another. For example, x21 − 2x1x2 − 3x22 (as a multivariate polynomial in
Z[x1, x2], or distributive representation) can also be written as (1) · x21 + (−2x2) · x11 +
(−3x22) · x01 (as a univariate polynomial in Z[x2][x1], or recursive representation) or
even as (x1 − 3x2) · (x1 + x2). These different notations allow to easily obtain different
information, for example, the (total) degree or the constant part of the polynomial,
the structure with respect to one “main” variable or polynomial factors.
We recognize that different representations have different trade-offs in practice and
choosing a suitable representation can have a huge impact on real-world performance.
Though the choice of representation is sometimes crucial for performance and the
conversion between different representations is not always computationally easy, we
ignore this issue for the most part of this work.
We are oftentimes interested in a factorization of a polynomial p, usually over R[x].
As a thorough introduction into this topic is beyond the scope of this work, we use
notions like the factorization p, irreducible normalized factors of p (factors(p)), p being
square-free and the square-free part of p, the content of p (cont(p)) and the primitive

2.2. POLYNOMIALS 23

part of p (prim(p)), the (finest) square-free basis and the (finest) irreducible basis of
sets of polynomials without definition and refer to any of [Art91; GCL92]. Another
important property of polynomials (at least in the context of this work) are their real
roots, intuitively the variable assignments that make a polynomial evaluate to zero.

Definition 2.13: Real roots

Let p ∈ R[x] be a polynomial. We call roots(p) := {α ∈ Rn | p(α) = 0} the real
roots of p. If p 6= 0 is univariate we observe that | roots(p)| ≤ deg(p).

In fact, we are solely interested in the real roots of polynomials in most parts of this
work. This allows us to not only rewrite polynomials but actually simplify them by
normalizing the coefficients or removing multiple factors and thereby multiple roots as
we show in the following Example 2.1.

Example 2.1: Simplifying polynomials

Let p = −4x3 + 12x − 8 be a polynomial and we assume that we are only
interested in the real roots of p. The following derivations show how we can use
coefficient normalization and the removal of multiple factors to safely replace
this polynomial by x2 + x− 2:

−4x3 + 12x− 8 = −4 · (x3 − 3x+ 2)

=⇒ roots(−4x3 + 12x− 8) = roots(x3 − 3x+ 2)

x3 − 3x+ 2 = (x− 1)2 · (x+ 2)

=⇒ roots(x3 − 3x+ 2) = roots((x− 1) · (x+ 2))

(x− 1) · (x+ 2) = x2 + x− 2

We finally define some operations on polynomials that are used, in particular, for the
projection operators in Section 5.2: reducta, resultants, and discriminants.

Definition 2.14: Reducta and reducta sets

Let P ⊆ R[x] be a set of polynomials and p ∈ P . We define

red(p) :=p− lterm(p)

red0(p) :=p

redk(p) :=red(redk−1(p))

RED(p) :={redk(p) | 0 ≤ k ≤ deg(p)}

RED(P) :=
⋃
p∈P

RED(p)

We call red(p) the reductum of p, redk(p) the k’th reductum of p, RED(p) the
reducta set of p, and RED(P) the reducta set of P .

All further components of the projection operators that we define later rest on resultants
and various related (or rather derived) concepts: subresultants, principal (sub-)resultant
coefficients, and discriminants. We only give brief definitions and refer to relevant
literature on this topic like [BPR10] or [GCL92].

24 CHAPTER 2. PRELIMINARIES

Definition 2.15: Resultant

Let p, q ∈ R[x] be univariately represented polynomials with deg(p) = n and
deg(q) = m. The resultant of p and q is the determinant of the Sylvester matrix:

resx(p, q) = Det

pn · · · p0
.

.
pn · · · p0

qm · · · q0
.

.
.

qm · · · q0

.

If p and q are univariate, or the main variable x is clear from the context, we
usually write res(p, q) instead of resx(p, q).

Note that other variants of the Sylvester matrix exist, mostly obtained by permutations
of rows and columns, which sometimes have certain computational benefits. Another
type of matrix is the Bézout matrix, whose determinant also turns out to be the resultant
of two polynomials. The Sylvester matrix also allows to compute subresultants as the
determinants of certain submatrixes.
In practice, however, resultants and subresultants are usually not computed using
determinants, but using subresultant pseudo-remainder sequences. These sequences
allow to iteratively compute all subresultants and ultimately the resultant, which
is commonly considered the 0th element of this sequence. Our implementation, for
example, uses a variant of what is presented in [Duc00].
In contrast to the definition of resultants, we usually compute a simplified version of the
resultant. As we are only interested in the roots of the resultant, we can safely make
it square-free and remove any constant (or non-vanishing) factors. We also use these
simplifications whenever we use resultants throughout this work, hence the polynomials
that result from resultant computations are not necessarily identical to the resultants
one computes with other systems like Maple.
As the definition of subresultants and principal subresultant coefficients is very technical,
we refer to [GCL92; Duc00] for exact characterizations and denote the set of all principal
subresultant coefficients of two polynomials p, q by PSC(p, q) without definition.
Apart from this rather technical and unintuitive definition, a very instructive charac-
terization for resultants is as follows. Let p, q be polynomials of degree d and e with
roots αi and βj respectively, then we have

res(p, q) = lcoeff(p)e · lcoeff(q)d ·
∏

1≤i≤d
1≤j≤e

(αi − βj)

in an algebraic closure of the according polynomial ring, as the resulting polynomial
might not factor into linear factors in the polynomial ring itself.

2.3. FIRST-ORDER LOGIC 25

If we assume that p and q are univariate polynomials, then αi and βj are algebraic
numbers and the resultant is zero if and only if p and q have a common root. If we
instead let p and q be multivariate polynomials in some main variable, αi and βj
themselves contain the remaining variables, that one could consider them parameters.
Now, the resultant has a root – in the remaining variables – wherever any αi and βj
coincide (or meet). Hence the resultant can be seen as an indicator for intersections of
the root surfaces of multivariate polynomials.
While resultants provide indicators for common roots of two polynomials, we are also
sometimes interested in multiple roots of a single polynomial. Multiple roots can be
recovered using the (normalized) resultant of a polynomial and its derivative which is
commonly called the discriminant.

Definition 2.16: Discriminant

Let p ∈ R[x] be a univariately represented polynomial with deg(p) = n. The
discriminant of p is defined as follows in terms of the resultant of p and its
partial derivative with respect to x:

discx(p) = (−1)
n·(n−1)

2 · resx(p, p
′)

lcoeff(p)

2.3 First-order logic

We now depart from the algebraic world of polynomials into the realm of logic. Within
this work, the basic logical objects – except for Boolean variables and constants – are
(arithmetic) constraints, consisting of a polynomial and a sign condition.

Definition 2.17: Sign condition

We define a sign condition to be a function from a sign (negative, zero or
positive) to a Boolean value, formally σ : {−, 0,+} → B. Except for the trivial
sign conditions · 7→ true and · 7→ false, sign conditions are what we commonly
know as relations {<,≤,=, 6=,≥, >}.
We usually write p σ 0 instead of σ(sgn(p)) – where sgn : R → {−, 0,+} denotes
the sign function – to allude to the intuition of σ being a relation.

We observe that p σ p′ can equivalently be rewritten to p−p′ σ 0 and thus this formalism
of sign conditions can be used to define what we commonly know as polynomial
(in-)equalities. For what we call constraints, we use a slightly more generic definition,
allowing for other “arithmetic expressions” than polynomials.

Definition 2.18: Constraint

Let p be an arithmetic expression and σ a sign condition. We call the pair (p, σ)
an (arithmetic) constraint with the semantics of p σ 0. We call p its left-hand
side and σ its relation.

Note that we can determine the truth value of a constraint in multiple ways. If its
left-hand side is a numeric constant – or we can evaluate it to one using a variable
assignment – we can simply compare it to zero. If it is not, though, we can sometimes

26 CHAPTER 2. PRELIMINARIES

evaluate it anyway using further knowledge about the left-hand side: for example, we
know that x2 + 1 is strictly positive and thus x2 + 1 > 0 is true.
We have only seen polynomials as arithmetic expressions that could be used as left-hand
sides of constraints, however, we trust the reader to know further arithmetic functions
like square roots, cosines, or logarithms. While polynomials are sufficient for most
of this work, we eventually introduce another variant in Section 8.3.1 that compares
variables against the kth root of some polynomial.
Based on constraints, we can finally construct more complex logical objects that we
call formulae. Formulae are in some sense the language of mathematics, allowing
to concisely formulate statements and problems in a very general way. We classify
formulae into logics with well-defined rules for syntax and semantics. A large variety of
logics exists for different (practical or theoretical) purposes. While some logics consider
only Boolean constructs – Boolean variables and Boolean connectives like ∨ or ∧ –
most involve some kind of theory T . The theory adds predicates or theory atoms –
in our case constraints – that in some way allow to map theory expressions to the
Boolean level. Some logics add quantifiers like ∃ or ∀ while sometimes more specialized
operators are used (for example, in LTL).
This work mostly considers first-order logics, which are the focus of satisfiability modulo
theories solving. Apart from the standard Boolean structure, it allows for theory atoms
as specified before and quantification over the theory variables from these theory atoms.

Definition 2.19: First-order logic

Let T be some theory with variables x and theory atoms A, B the set of Boolean
variables, and B = {false, true} the Boolean constants. A first-order logic
formula ϕ is one of the following:

ϕ ::= b | c | p b ∈ B, c ∈ B, p ∈ A

ϕ ::= ϕ ∨ ϕ | ¬ϕ
ϕ ::= ∃x. ϕ

We call Boolean constants, Boolean variables, and theory atoms first-order logic
atoms and write ΦT for the set of all such first-order logic formulae.

We note that ∨ and ¬ are what we call functionally complete and can be used to
construct all other Boolean connectives like ∧ (and) and ⊕ (xor) as syntactic sugar.
Similarly, ∀x (universal quantification) can be constructed from ∃x and ¬.
Throughout this work, we oftentimes manipulate or relate formulae and sometimes
need to distinguish explicitly between syntactic operations and semantic reasoning.
We usually employ semantic reasoning to argue about the actual meaning of a formula
instead of how we write it down as this allows us to pass over certain technical details.

Definition 2.20: Semantic deduction

Let x be variables, ϕ and ϕ′ formulae, and A an assignment over x. If ϕ evaluates
to true when x is substituted by A, we say that A satisfies ϕ and write A |= ϕ.
We say that ϕ′ follows from ϕ, denoted by ϕ |= ϕ′, if

∀A ∈ A. A |= ϕ =⇒ A |= ϕ′.

2.3. FIRST-ORDER LOGIC 27

It is oftentimes convenient to assume some normal form for first-order logic formulae.
Throughout this thesis – unless stated otherwise – we assume all first-order logic
formulae to be in prenex normal form and the quantifier-free part to be in conjunctive
normal form (which implies negation normal form) and simply call them “formulae”.

Definition 2.21: Prenex normal form

A formula ϕ is in prenex normal form if it has the form

ϕ ::= Q1
x1
. . . Qn

xn
ϕ′

with quantifiers Qi ∈ {∃,∀} and ϕ′ containing no quantifiers. We call ϕ′ the
quantifier-free part of ϕ.

If ϕ has multiple identical subsequent quantifiers, we allow to combine them into a
single quantifier block and write Q1

x1,...,xk
ϕ′. We observe that we can arbitrarily reorder

variables within such a quantifier block without changing the semantics of ϕ.
A given formula can be transformed to prenex normal form by pushing all quantifiers
towards the front of the formula, taking care that 1. the relative order of quantifiers
does not change, 2. variables are renamed if they are referenced by multiple quantifiers,
and 3. quantifiers are properly changed if pushed over a negation.

Definition 2.22: Negation normal form

A (quantifier-free) formula is in negation normal form if negations only occur
immediately before atoms.

Similar to how we converted formulae to prenex normal form, we can transform any
(quantifier-free) formula to negation normal form by pushing all negations inside
towards the atoms using De Morgan’s laws.

Definition 2.23: Conjunctive normal form

A (quantifier-free) formula is in conjunctive normal form if it is a conjunction of
disjunctions of (possibly negated) atoms. We write

ϕ ::=
∧
i

∨
j

aij

where aij are atoms or negated atoms. We call aij literals and
∨

j aij clauses,
identify a clause with its corresponding set of literals, and a formula with the
corresponding sets of its clauses, allowing for notations like aij ∈ c ∈ ϕ.

It is rather easy to see that any (quantifier-free) formula can be converted to conjunctive
normal form. One possibility is to 1. negate it, 2. convert to disjunctive normal form
with a Quine-McCluskey method as in [McC56], 3. negate it again, and 4. bring it to
negation normal form. Unfortunately, this method can produce exponentially large
formulae – just as for disjunctive normal form.
Tseitin found a way around this in [Tse68] by introducing fresh Boolean variables,
devising a possibility to construct equisatisfiable formulae that are only linearly larger.
The fundamental idea is to replace every subformula by a fresh Boolean variable and

28 CHAPTER 2. PRELIMINARIES

require equivalence of the subformula and the Boolean variable. Instead of a deeply
nested formula, we obtain a conjunction of very shallow subformulae of constant size
which can then be transformed to conjunctive normal form individually.

Definition 2.24: Tseitin’s transformation

Let ϕ be a (quantifier-free) formula and t(φ) = xφ for every subformula φ of ϕ
where xφ are fresh (Boolean) variables. The result of Tseitin’s transformation is
ϕ′ ∧ t(ϕ) where ϕ′ is constructed inductively as follows:

ϕ ::= b | c | p ϕ′ := t(ϕ) ↔ ϕ

ϕ ::= ϕ1 ∨ ϕ2 ϕ′ := t(ϕ) ↔ (t(ϕ1) ∨ t(ϕ2)) ∧ϕ′
1 ∧ ϕ′

2

ϕ ::= ¬ϕ1 ϕ′ := t(ϕ) ↔ ¬t(ϕ1) ∧ϕ′
1

We note that the resulting formula is technically not yet in conjunctive normal
form, but a conjunction of subformulae of constant size. Transforming every
subformula individually with a generic method as described above yields a
formula in conjunctive normal form with only linear overhead.

We have defined first-order logic for arbitrary theories and shown how to convert
arbitrary formulae to conjunctive normal form. Throughout this work, we focus on
first-order logic with nonlinear real arithmetic, commonly defined as real variables with
addition, multiplication, and comparisons as defined in Definition 2.25.

Definition 2.25: Nonlinear real arithmetic

Let x be a set of real-valued variables and =, < the relations with the usual
semantics. We define terms and predicates of nonlinear real arithmetic as follows:

t ::= 0 | 1 | x ∈ x | t+ t | t · t
p ::= t = t | t < t

The predicates from Definition 2.25 nicely coincide with the constraints from Defini-
tion 2.18 where arithmetic expressions are restricted to polynomials.
Note that we use the term nonlinear real arithmetic for both the arithmetic theory and
the first-order logic over said theory. We use the following other theories analogously
without explicit definition as well: nonlinear integer arithmetic (x ranges over Z
instead of R), linear real arithmetic (without t · t or, equivalently, restricted to linear
polynomials), and linear integer arithmetic (both over Z and only linear).
While a formula has many interesting properties, we mainly focus on the question
of satisfiability. In this work, we consider the satisfiability of quantifier-free formulae
where all variables are implicitly quantified existentially. We observe that checking for
satisfiability can be used to derive validity as well by checking whether the negation of
a formula is unsatisfiable.

Definition 2.26: Satisfiability

We call a quantifier-free formula ϕ satisfiable if it has a variable assignment A
such that A |= ϕ. If no such A exists then ϕ is unsatisfiable and thus ϕ ≡ false.
We call A a model for ϕ.

2.4. DEDUCTIVE PROOF SYSTEMS 29

2.3.1 Extended polynomial constraints

While we generally operate in the realm of first-order logic as defined before, we
sometimes need to extend it a bit to allow for more expressive statements. Note that
the constraints we are about to present are not more expressive in the strict logical
sense – they can be formulated equivalently within first-order logic – but allow for a
much shorter and more concise formulation.
We want to state that some variable is smaller than some root of a polynomial at
several places in this work, for example, in Section 6.9 and Section 8.3. In particular,
we want these polynomials to be multivariate and evaluate these expressions with
respect to some theory model. We call such constraints extended polynomial constraints
and define them as follows, mostly following the corresponding definition in [JM12] or
what is called an indexed root expression in [Bro99].

Definition 2.27: Extended polynomial constraints

Let p ∈ Q[z, x] be a polynomial, v some variable, and σ a sign condition. We
call v σ root(p, k) an extended polynomial constraint where root(p, k) refers to
the kth root of p in z (for fixed values of x), v the left-hand side and root(p, k)
the root expression of this extended polynomial constraint.
To evaluate v σ root(p, k) we first compute the kth root of p with respect to a
model A. If the number of roots is smaller than k, the result is false, otherwise
the result is v σ αk where αk is the kth root of p.

Note that this definition fails to give proper semantics for the evaluation, in particular,
if p does not become univariate in z over A. Our intuition is, that such a constraint is
a constraint on v and that it does not apply yet, much like a regular constraint does
not give a Boolean result if it does not fully evaluate.
One special case that exists, however, is when v is already assigned in A but some
xi ∈ x is not. The constraint then intuitively becomes a constraint on xi, though
it is not clear at all how to deal with this case. Whether this particular situation
actually occurs and how we can deal with it depends on how we construct and use
such constraints, and we thus defer this discussion to Section 8.4.1.

2.4 Deductive proof systems

A popular framework to perform derivations in a systematic way are (deductive) proof
systems. A proof system is a set of proof rules that allow deriving new statements
from a set of assumptions to eventually obtain a (logically sound) proof in the form of
a derivation sequence from the initial assumptions Φ to the target statement Ψ. We
later consider proof systems that argue about formulae and are at least sound: the
syntactic transformation is logically sound.
The proof rules are specified so that they can be applied syntactically and thus allow to
construct a semantic proof using only syntactic operations. As we are mostly interested
in the satisfiability of formulae, we usually have Ψ = false. We start with the definition
of a single proof rule.

30 CHAPTER 2. PRELIMINARIES

Definition 2.28: Deductive proof rule

Let ϕ = {ϕ1, . . . , ϕn} and ψ = {ψ1, . . . , ψm} be sets of formulae. We call
PR(ϕ,ψ) a proof rule, commonly write

PR:
ϕ1, . . . , ϕk

ψ1, . . . , ψm
if ϕk+1, . . . , ϕn

for the proof rule itself, and call ϕ the premises and ψ the conclusions. We
sometimes split the premises into two parts to simplify the presentation and call
{ϕk+1, . . . , ϕn} the side conditions.
The proof rule PR is applicable to a set of formulae Φ if f(ϕ) ⊆ Φ where f
may rename variables from ϕ appropriately. The result of the application of
PR to a set of formula Φ is Φ∧ f(

∨
ψ) and we write Φ `PR Φ∧ f(

∨
ψ), though

we usually omit f to simplify notation. We call Φ `PR Ψ a derivation and
oftentimes write Φ ` Ψ if PR is either irrelevant or clear from the context.

The separation of the premises into two sets is purely to simplify the notation and
we can move individual formulae into or out of the side conditions without changing
the meaning. We use this distinction (intuitively) to describe what the rule does in
{ϕ1, . . . , ϕk} and when it is applicable in {ϕk+1, . . . , ϕn}.
Though we defined applicability as a purely syntactic property – ϕ ⊆ Φ up to renaming
– we usually allow f to perform some easy logical reasoning, like conversion to a normal
form or deriving immediate corollaries from Φ, as well. In particular, side conditions
are usually not part of the formula but can be easily inferred from it. We understand
proof rules as (almost) syntactic rewriting operators that hide a (more or less) complex
reasoning such that it can be automated.
Applying a proof rule requires a conjunction of premises but results in a disjunction of
conclusions, severely limiting the applicability of proof rules to the result of a previous
application. Thus, proof rules usually have only a single conclusion – all proof rules in
this work have this form – and thereby keep the formula in a conjunctive form.
The above definition of a proof rule poses no restriction on the logical soundness of the
derivation. However, one can very well argue that a proof rule whose conclusion does
not logically follow from the assumptions is not particularly useful. We thus assume all
proof rules in this work to be sound in the sense of the following Definition 2.29.

Definition 2.29: Soundness of a proof rule

We say a proof rule PR(ϕ,ψ) is sound if it only allows for valid derivations:

∀ϕ.
(∧

ϕ `
∨
ψ
)

=⇒
(∧

ϕ |=
∨
ψ
)

We now combine one or more proof rules into a proof system, which can roughly be
seen as the equivalent of an algorithm to manipulate formulae. Note, though, that a
proof system only provides certain operations – the proof rules – but leaves it to the
“user” when to apply which proof rule to which formulae. To obtain an actual proof,
one thus has to provide what some would call a scheduler for a given proof system.

2.4. DEDUCTIVE PROOF SYSTEMS 31

Definition 2.30: Deductive proof system

We call a set P of proof rules a (deductive) proof system.

Throughout this work, we use two arguably different interpretations of proof systems,
though they both match the general definition from above. The first one operates on a
set of formulae and progresses by selecting a subset of them and applying a proof rule
to this subset to derive a new formula that is added to the (global) set of formulae.
The most prominent proof system within this work – the resolution proof system as
shown in Definition 3.3 – is of this type.
The second variant more closely resembles an algorithm in that it merely manipulates
a single formula, usually discarding previous “versions” of this formula. Intuitively,
we think of this formula as our state and for a proof rule the premises ϕ describe (or
rather unpack) the state while the side conditions ϕ′ contain conditions on the state,
restricting the applicability of the proof rule. Formally, we can enhance the underlying
theory with a new predicate for the state and thereby adhere to the above definition of
a proof rule. This is only a technicality, though, and we, therefore, avoid it here.
It is sometimes convenient, in particular when we extend an existing proof system, to
compose multiple proof rules into a single one, thereby restricting how the proof system
is allowed to operate. This is no fundamental extension to the definition of proof
systems: we can again enhance our underlying theory with predicates that represent
intermediate states, thereby enforcing this composition completely within the previously
defined framework.

Definition 2.31: Composition of deductive proof rules

Let PR1(ϕ1, ψ1) and PR2(ϕ2, ψ2) be two proof rules that are “chainable”:

∀Φ. (PR1 is applicable to Φ =⇒ PR2 is applicable to Ψ where Φ `PR1 Ψ)

We call PR(ϕ1, ψ2) the composition of PR1 and PR2 and write PR = PR1◦PR2.

For a proof system as defined here, the initial formula essentially already contains the
“question” the proof is supposed to answer. As every application of a proof rule yields
a logically valid deduction, we can only steer a proof system – by applying different
proof rules – but not change the destination – assuming that the logic is consistent and
all proof rules are sound. In this sense, applying proof rules is only a way to discover
the right pieces of information that allow deriving the final result, one reasonably easy
step at a time.
However, we sometimes want to logically change the formula the proof system is
working on. Our main intention is to work on a sequence of formulae without com-
pletely restarting the proof system, for example, because we can reuse some partial
computations. In order to do this, we allow for proof rules to take external inputs.

Definition 2.32: Deductive proof rule with external input

Let PR(ϕ ∪ {i}, ψ) be a proof rule with ϕ = {ϕ1, . . . , ϕn}, ψ = {ψ1, . . . , ψm}
and an additional input i. We write

32 CHAPTER 2. PRELIMINARIES

PR i:
ϕ1, . . . , ϕk

ψ1, . . . , ψm
if ϕk+1, . . . , ϕn

where both ϕ and ψ can make use of the input i.

Note that we did not restrict the input to be “logical” but instead intend it to be
rather “operational”. If i would always be a “logical” information (a formula) the only
reasonably intuitive thing to do would be to replace ϕ by ϕ ∧ i and continuing from
there. This however only allows to “add to the formula”, but never “remove from it”.
By “operational” we instead mean that i can be an instruction like “assume that ϕ
holds” or analogously “remove the assumption that ϕ holds” – which is fundamentally
different from “assume that ¬ϕ holds”. Again we can formally add such operational
statements as new predicates to our theory, bringing this extension in line with the
previous definitions. It may not be immediately clear how this can be useful yet, and
we put the reader off until Section 6.2 on this issue.

Definition 2.33: Deductive proof

Let P = {PR1, . . . , PRn} be a proof system, Φ an initial formula, and Ψ a
target formula. A proof P for Φ and Ψ consists of a sequence of proof rule
applications that derives Ψ from Φ:

P := Φ `PRi1
· · · `PRik

Ψ

with i1, . . . , ik ∈ {1, . . . , n}, allowing to repeatedly apply proof rules in arbitrary
order. We denote the set of all proofs for a proof system by P` and call the
number of proof rule applications k the length of P and write |P| = k.

Finally, we should discuss two fundamental properties of (many) proof systems: sound-
ness and completeness. As for individual proof rules, soundness ensures that the
derivations within a proof system are logically sound and thereby all (syntactic) proofs
from P` are logically valid. Again, we argue that a proof system that is not sound
is not particularly useful and thus all proof systems in this work are sound (which
technically already follows from the analogous assumption for proof rules).
Completeness, on the other hand, indicates whether a proof system can produce a proof
for every Φ |= Ψ that is valid within our logic. As a proof merely combines syntactic
rewriting steps based on the proof rules provided by the proof system, it becomes clear
that the proof rules must be carefully crafted such that these syntactic operations can
be combined to prove all logical statements. As we usually only consider the question
of satisfiability, it is mostly sufficient for a proof system to be refutationally complete
where we can produce a proof for every Φ |= false.

Definition 2.34: Soundness & Completeness

We say that a proof system P is sound if all of its proofs are logically valid:

∀P ∈ P`. (P = Φ ` · · · ` Ψ) =⇒ (Φ |= Ψ)

If all proof rules of P are sound, we immediately get soundness of P as every

2.5. REAL ALGEBRAIC NUMBERS 33

step of every proof P is sound. We say that a proof system P is complete if it
allows to construct a proof for every valid Φ |= Ψ:

(Φ |= Ψ) =⇒ ∃P ∈ P`. P = Φ ` · · · ` Ψ

Moreover, we say that a proof system P is refutationally complete if it allows to
construct a proof for every valid Φ |= false:

(Φ |= false) =⇒ ∃P ∈ P`. P = Φ ` · · · ` false

2.5 Real algebraic numbers

When computing with numbers in an exact way, we usually think of integers, rationals,
or reals. While there are decent libraries for arbitrarily large integers and rationals,
for example [Gt19], we should not expect to deal with the real numbers in a similarly
constructive way.
One common approach is to trade in provable correctness (by computing with an
exact representation) for efficiency by using floating-point numbers that usually come
with hardware support following [IEE08]. Throughout this thesis, and when provable
correctness is strictly required, this is oftentimes not sufficient as this floating-point
representation comes with a limited precision that may introduce rounding errors.
Furthermore, practical experience shows that these rounding errors accumulate to be
significant during the computation and we thus need some exact way to represent and
compute with real numbers.
It is possible to exploit the performance of floating-point numbers by representing
a real number by an interval that contains it and ensure that all operations on this
interval are over-approximating. This is common for certain applications, for example
in interval constraint propagation (ICP), and efficient implementations of such intervals
exist that take care of appropriate rounding, for example, Boost interval [Boo19]. They
work well if the intervals can be refined regularly – either because this is how the
method works anyway, like for ICP, or because we have additional symbolic information
– but otherwise tend to accumulate rounding errors.
Fortunately, we do not require the full set of real numbers in this work because the
ways how numbers “emerge” in our scenario are limited. As our input is always
finite, numbers can (exactly) be represented as rationals. We then compute with
these numbers using what ultimately are only basic arithmetic operations most of the
time. The only exception is when we compute the real roots of polynomials (over the
rationals) by real root isolation as presented in the previous section. The set of such
roots (of polynomials over the rationals) is called the real algebraic numbers and covers
all reals except for the transcendental numbers – like π or Euler’s number e.

Definition 2.35: Real algebraic numbers

Let α ∈ R be a real number. We call α a real algebraic number if there is a
polynomial 0 6= p ∈ Q[ξ] with p(α) = 0. We denote the set of all real algebraic
numbers by R and note that Q (R (R.

34 CHAPTER 2. PRELIMINARIES

We are commonly used to explicit numeric representations for integers, typically in
binary, and rationals – given by explicit numerators and denominators. Therefore,
we usually make no conceptual difference between the meaning of a number and its
representation. Though representations like

√
2 might suggest that it is just as easy for

real algebraic numbers, there oftentimes is no (finite) explicit numeric representation,
but only a symbolic declarative one. We thus recognize that we can not just compute
with real algebraic numbers. Though they are (almost) seamlessly integrated within
software packages like Maple or Mathematica, dealing with real algebraic numbers
requires a significant amount of algebraic machinery in the background.
At this point, we have two possibilities: we can consider real algebraic numbers an
implementation detail and assume our environment to “just support” them, for example,
if we use a full-fledged computer algebra system like Maple, Mathematica, or alike. If
this is the case, the reader may want to skip to the end of this section. The presented
implementation, however, did not take place within such a system – for various reasons
– and the proper implementation of real algebraic numbers was a major concern.
Consider for example

√
2 where it is well-known that the sequence of decimal places is

infinite and non-repeating. We have a concise symbolic representation – commonly
written

√
2 – which only bears little information on how to work with this number,

though. Can we easily determine whether we have some q ∈ Q such that q ·
√
2 =

√
8?

Can we still do the same for
√
3 +

√
3 and

√
3−

√
3?

To resolve these issues, we introduce a representation for real algebraic numbers that
is both symbolic and numeric, allowing us to work both symbolically and numerically,
whatever is suitable or more efficient for the desired operation. The symbolic part is
a polynomial with one root being the represented number while the numeric part is
an interval containing exactly one of the roots of the polynomial. Though alternative
representations exist as well, and we mention them briefly in Section 2.5.4, we consider
this “the” representation of a real algebraic number for the purpose of this thesis.

Definition 2.36: Representation of real algebraic numbers

Let α ∈ R, 0 6= p ∈ Q[ξ], and I be a real interval that is either open (I =
(
˜
α, α̃) ⊆ R) or a point interval (I = [α, α]). We say that (p, I) represents the real
algebraic number α if roots(p) ∩ I = {α}. In this case, we call p a polynomial of
α and I an isolating interval of α.

Note that we oftentimes identify α with (p, I) and thus say that (p, I) is a real algebraic
number, though neither the polynomial nor the interval is unique for a real algebraic
number α. Although this is not strictly necessary, we usually make sure that p is
irreducible and normalized, making it the minimal polynomial of α (and thereby unique).
A proper definition of these terms follows shortly in Insertion 2.5.2.
We have different options for how to store the interval endpoints, for example, floating-
point numbers or arbitrary rational numbers. While the former may be much faster, it
ultimately suffers from its limited precision. We assume the interval endpoints to be
rationals with arbitrary precision (which works in general as Q is dense in R) and thus,
the isolating interval may only be a point interval if α ∈ Q, but is necessarily an open
interval if α ∈ R \Q. For a point interval, we can furthermore extract the (precise)
rational assignment and eventually replace the above representation by a rational to
easily exploit this information in all subsequent operations.

2.5. REAL ALGEBRAIC NUMBERS 35

Before we discuss the operations we need to perform on real algebraic numbers and
how to implement them, we look at how we obtain them in the first place. As already
mentioned before they arise when we compute the real roots of polynomials.

2.5.1 Real root isolation

Many methods that argue about properties of polynomials – in particular those that
this thesis is concerned with – employ one fundamental building block: they need
to distinguish the different real roots of a polynomial. While some purely symbolic
methods exist that we discuss later as well, it has proven to be very beneficial in
practice to work with some explicit approximation of a real root, which is usually
maintained as an isolating interval that contains the real root.

Definition 2.37: Real root isolation

Let p ∈ Q[x] be a univariate polynomial. A real root isolation of p is a set that
contains a single isolating interval for every real root of p.

As an isolating interval needs to contain the real root – and not only be a good
approximation – standard numerical techniques for real root finding are not immediately
applicable with similar arguments as discussed in Section 1.1.6.2. Attempts to apply
these techniques anyway can be found in [Kre13], though with arguably modest success.
As numerical methods are difficult to apply – and this problem in some form even
predates modern numerical analysis methods – it has sparked various specialized
methods. Research on this specific problem includes Descartes’ rule of signs [Des37]
and Sturm’s theorem [Stu29], but also more recent ones like [Hei70; CA76; Sag12].
They all have in common that some algebraic technique is used to count (in the case
of Sturm’s theorem) or at least provide an upper bound (in the case of Descartes’ rule
of signs) on the number of real roots within a given interval. Given an initial interval,
we can subdivide the interval until every interval contains at most a single real root.
As for the initial interval, we have methods to compute an upper bound on the (absolute)
value of any real root – for example [Cau28; Fuj16; HM97] or [Lag08; MS02]. If any of
those yields an upper bound a, then we can perform such a bisection approach with
the initial interval [−a, a] and obtain isolating intervals for all real roots. An abstract
algorithm that employs these building blocks – and may very well be extended with
various optimizations – is sketched in Algorithm 2.1.
While the correctness immediately follows from the ability to correctly compute an
initial interval and safely answer the question whether the interval has no or only a
single real root, termination can be a bit more involved if we can not exactly count the
number of real roots – as is the case for Descartes’ rule of signs that only yields an
upper bound. We refer to the literature already cited above for details on this topic.
Furthermore, we need to employ a sensible splitting heuristic, for example, we should
only split into finitely many intervals and not allow for infinitesimally small intervals.
Note that we oftentimes need to take special care of the interval endpoints, as the
methods to count the real roots within an interval usually only work in open intervals.
Therefore, we split intervals into open intervals and point intervals, where point intervals
can be processed by simply evaluating the polynomial on this (rational) point.

36 CHAPTER 2. PRELIMINARIES

Algorithm 2.1: Abstract real root isolation algorithm
1 Function RealRootIsolation(p)
2 R := ∅
3 Q := { initial interval based on some root bound }
4 while Q 6= ∅ do
5 I := remove some element from Q
6 if I contains no root of p then
7 Drop I

8 else if I contains a single root of p then
9 R := R ∪ {I}

10 else
11 Split I into disjoint intervals I1, I2, . . . with I = ·∪i Ii
12 Q := Q ∪ {I1, I2, . . . }

13 return R

2.5.2 Algebraic foundations

Before we go into the algorithmic details on how to work with real algebraic numbers,
let us make a turn and lay some algebraic groundwork here, in particular minimal
polynomials and the correspondence of field extensions and quotient rings. The main
question that we target here is how we can (partially) evaluate a multivariate polynomial
over real algebraic numbers. The following discussion is mostly taken from [Art91] and
we refer the reader to [Art91], or any other textbook on algebra, for proper definitions.
We summarize the key insights below and expect these to be sufficient to understand
the subsequent discussion.

Insertion: Algebraic foundations [Art91]

Let K be a field and α an algebraic number over K. We define K(α) as the
smallest field that contains both K and α and call it an extension field of K.
Let ϕα : K[ξ] → K(α) be the K-linear function that maps ξ to α.
The fundamental theorem on homomorphisms provides that the quotient ring
K[ξ]/ kern(ϕα) is isomorphic to image(ϕα) = K(α) as a ring, and as K(α) is
a field, K[ξ]/ kern(ϕα) is a field as well. As K[ξ] is a polynomial ring over a
field, and thus a principal ideal domain, the kernel of ϕα is generated by a single
element and we write K[ξ]/ kern(ϕα) = K[ξ]/〈pα〉. The generating element of
kern(ϕα) = 〈pα〉 is unique (up to normalization with respect to K) and we call
it the minimal polynomial of α over K.
Let α and β be two real algebraic numbers with pα = pβ . Then we have K(α) ∼=
K[ξ]/〈pα〉 = K[ξ]/〈pβ〉 ∼= K(β), however we may very well have K(α) 6= K(β),
for example, β 6∈ K(α) and α 6∈ K(β).
We can iterate this construction of extension fields and the corresponding quotient
rings by using K(α1) and K[ξ1]/〈pα1〉 as base fields to obtain K(α1)(α2) and
(K[ξ1]/〈pα1〉)[ξ2]/〈pα2〉. However, pα2 needs to be a minimal polynomial over
K(α1). If pα2 is reducible over K(α1), (K[ξ1]/〈pα1〉)[ξ2]/〈pα2〉 is no longer an
integral domain (and thus not a field) and not isomorphic to K(α1)(α2).

2.5. REAL ALGEBRAIC NUMBERS 37

The extension fields we construct are (in general) neither splitting fields, normal,
nor Galois extensions as the minimal polynomial pα may very well have another
root β 6∈ K(α) and thus may not decompose into linear factors over K(α).
This is (in some way) already implied by the fact that we only care about real
algebraic numbers and never consider complex roots.
For K ′ = K[x]/〈p〉 we call idK′ : K[x] → K ′, q 7→ q+〈p〉 the canonical embedding
homomorphism. We also write idK′ for idK′[y] : K[x][y] → K ′[y]. Furthermore,
we identify any p+ 〈pα〉 ∈ K[ξ]/〈pα〉 with its canonical representative p as given
by its preimage under the following bijection:

ϕ : {p ∈ K[ξ] | deg(p) < deg(pα)} → K[ξ]/〈pα〉, p 7→ p+ 〈pα〉

Let us briefly reiterate the key insights in an intuitive way. The substitution ring
homomorphism ϕα substitutes a real algebraic number – represented by its minimal
polynomial – for a variable into a polynomial. The result is a polynomial over an
extension field of Q with the real algebraic numbers that we need to represent the
result of the substitution. Such an extension field is isomorphic (“essentially identical”)
to a quotient ring and we can use the canonical representative of an element of this
quotient ring instead of an element of the extension field.
Substituting a real algebraic number for a variable into a polynomial can now be
done with the (canonical) embedding homomorphism with respect to the minimal
polynomials of a tower of field extensions.
We feel that it is important to point out the intricacies of the “identity” of an extension
field. While an (extension) field is usually seen as the set of its elements (numbers)
it contains, we oftentimes distinguish between different representations of the same
set. Though Q(

√
2) and Q(−

√
2) contain the same numbers – and are thus the same –

their representations may differ, affecting practical computations with these objects.
Our common representation for an extension field K(α) is a quotient ring of the form
K[ξ]/〈pα〉 where pα is the minimal polynomial of α over K. Such a quotient ring is
isomorphic to all extension fields K(αi) where αi are the roots of pα, α being one of
them. Note that all these extension fields are isomorphic, but not (necessarily) the
same: they may very well contain different elements as we show in Example 2.4.
In the following we oftentimes identify an extension field K(α) with the corresponding
quotient ring K[ξ]/〈pα〉, acknowledging the aforementioned ambiguities. We always
use this formalism with respect to a model, and thus we can resolve these ambiguities
and obtain the “correct” extension field by numeric evaluation with the model for the
variables we use to construct the quotient ring. For example, we do this when selecting
the appropriate factor f from the factorization of px in Algorithm 2.2. Being fully
aware of this issue, we nevertheless call such a quotient ring an extension field as well,
provided that we have the model at hand.
It is important to realize that the substitution homomorphism does not actually
substitute a real algebraic number – in the numeric sense – but only the algebraic
information. In particular, it does not (and can not) distinguish between the different
roots of the minimal polynomial. Furthermore, it does not really “get rid of the
variable” but “only” exploits the algebraic information from the minimal polynomial.
We thus split the task of “evaluating a polynomial” into three separate steps that

38 CHAPTER 2. PRELIMINARIES

can roughly be described as “algebraic cancellation”, “algebraic substitution” and
“numeric evaluation” where the substitution homomorphism is responsible for most
of the algebraic cancellation. Before discussing these individual steps, we briefly
summarize our task more formally.

Definition 2.38: (Partial) evaluation of a polynomial

Let p ∈ Q[x1, . . . , xn] and A = {x1 7→ α1, . . . , xn−1 7→ αn−1}. The result
of (partially) evaluating p over A shall be a polynomial q ∈ Q[xn] such that
roots(p) ⊆ roots(q)× Rn−1.
We perform this evaluation in two steps: 1. algebraic cancellation makes sure
that all cancellation over A is done and thus no terms of p vanish anymore
and 2. algebraic substitution reduces the resulting polynomial from Q[x] to an
appropriate polynomial in the remaining variables.

The resulting polynomial is then used to either evaluate a constraint or isolate its real
roots. In both cases, we employ numeric evaluation, either to perform the evaluation
with the sign condition or to identify the roots of q that actually correspond to roots
of p and discard all others. We now present what we call algebraic cancellation and
algebraic substitution and leave the numeric evaluation for later as it depends on what
we need to do with the resulting polynomial q.

2.5.2.1 Algebraic cancellation

We can understand “algebraic cancellation” as turning numeric cancellation – terms
are zero under numeric evaluation with some assignment – into symbolic cancellation
– terms are zero under syntactic rewriting. Indeed, the latter steps require that any
possible cancellation is done symbolically. Let us assume we want to substitute

√
2

into x3 − x2 + x− 1. If computing manually, we would proceed roughly as follows:

√
2
3︸︷︷︸

=2
√
2

−
√
2
2︸︷︷︸

=2

+
√
2− 1 = 2

√
2− 2 +

√
2− 1 = 3

√
2− 3

We can not further process this expression symbolically and would start some numeric
approximation now. Instead we can identify x2 − 2 as the minimal polynomial of

√
2

over Q and embed the polynomial into Q(
√
2), or rather Q[x]/〈x2 − 2〉, obtaining

(x3 − x2 + x− 1) + 〈x2 − 2〉 = (3x− 3) + 〈x2 − 2〉

in Q[x]/〈x2 − 2〉. Note that the result in both variants still contains some expression
that we can not immediately deal with (either

√
2 or x), however, we stay within the

realm of polynomials over rational coefficients for the latter.
In case we need to substitute multiple real algebraic numbers, we can iterate this
process, but need to honor a small detail here: the minimal polynomial pα is a minimal
polynomial over Q, and to properly construct the quotient ring we need to obtain
an appropriate minimal polynomial over the quotient ring Q∗ constructed from the
preceding real algebraic numbers. We thus need to take the minimal polynomial of the
next real algebraic number over Q and reduce it with respect to Q∗ as described in
Lemma 2.1 and exploited in the subsequent Algorithm 2.2.

2.5. REAL ALGEBRAIC NUMBERS 39

Lemma 2.1: Minimal polynomial over an extension field

Let Q∗ be an extension field of Q and p be the minimal polynomial of α over Q.
The minimal polynomial p∗ of α over Q∗ is a unique element from the irreducible
normalized factors of p over Q∗ and we have Q∗[ξ]/〈p∗〉 ∼= Q∗(α).

Proof. As α is an algebraic number, a minimal polynomial for α exists over Q
and every extension field of Q. Let ϕ and ϕ∗ be the Q-linear ring homomorphisms
for Q and Q∗ for α as follows:

ϕ : Q[ξ] → Q(α), ξ 7→ αx

ϕ∗ : Q∗[ξ] → Q∗(α), ξ 7→ αx

Let p∗ be the minimal polynomial of α over Q∗. As ϕ = ϕ∗|Q[ξ], we have

p ∈ kern(ϕ) = kern(ϕ∗|Q[ξ]) ⊆ kern(ϕ∗) = 〈p∗〉

and thus p∗ divides p. Hence, we find the minimal polynomial of α over Q∗

by considering all the irreducible normalized factors of p over Q∗. Finally,
we construct Q∗[ξ]/〈p∗〉, which is isomorphic to Q∗(α), using the embedding
homomorphism as p∗ is the minimal polynomial of α over the base field Q∗.

In Algorithm 2.2, we need to construct a minimal polynomial for αx over Q∗ from the
minimal polynomial px over Q. Following Lemma 2.1, we consider all irreducible and
normalized factors of px over Q∗ and select the one that vanishes over αx. Due to
Lemma 2.1, this factor f exists and is unique. Finally, we use this minimal polynomial
f over Q∗ to construct the new extension field.

Algorithm 2.2: Perform algebraic cancellation
Input: polynomial p, model A

1 Function AlgebraicCancellation(p, A)
2 Q∗ := Q, A∗ := ∅
3 for x 7→ αx ∈ A do
4 Let px the minimal polynomial of αx . px in variable ξx
5 Let f ∈ factors(px,Q∗[ξx]) such that f(A∗, ξx 7→ αx) = 0
6 if f is linear in ξx then
7 Substitute ξx − f for x in p

8 else
9 Let Q∗ := Q∗[ξx]/〈f〉

10 Let A∗ := A∗ ∪ {ξx 7→ αx}

11 return idQ∗(p)

If the minimal polynomial over Q∗ is linear in ξx, then already α ∈ Q∗ and we can
simplify this procedure by directly replacing x in p instead of making the effort to
construct another quotient ring and keeping an additional variable (though this would
still be correct). We finally embed p into Q∗ to obtain the properly reduced polynomial
and rest the correctness of Algorithm 2.2 on Lemma 2.1.

40 CHAPTER 2. PRELIMINARIES

We concede that it may not be immediately clear intuitively why the reduction from
Algorithm 2.2 is necessary. Let us thus work through a few examples that illustrate
how the resulting polynomial q is not “fully canceled” if we do not reduce the minimal
polynomials. The first Example 2.2 shows the most intuitive case, where two real
algebraic numbers come from the same extension field.

Example 2.2: Same extension field

Let A = {x1 7→
√
2, x2 7→

√
2} and q = x1 + x2. Naturally, we want to realize

that indeed x1 = x2 and only perform the algebraic operations once. Starting
with Q∗ = Q and x1 7→

√
2, ξ21 − 2 is the minimal polynomial of

√
2 over Q∗ and

we construct Q∗ = Q[ξ1]/〈ξ21 − 2〉.
For x2 we have the minimal polynomial ξ22 − 2 for

√
2 over Q which factors

into (ξ2 + ξ1) · (ξ2 − ξ1) over Q∗ and we select the factor ξ2 − ξ1 as the minimal
polynomial of

√
2 over Q∗ (as the corresponding polynomial factor x2 − x1

vanishes over A). We can recognize that this is linear in ξ2 and instead of
constructing another quotient ring simply eliminate x2 using x2 := x1.
This is not unique to identical real algebraic numbers, but for all that can
directly be represented within the current extension field Q∗. Consider for
example x2 7→ 5 or x2 7→ 1 +

√
2 which can also be dealt with in this way.

We can understand this as finding a linear parametrization in the previous
assignments.

Let us consider a slightly more complex and arguably less intuitive
case. Assume the extension field of a real algebraic number to
be related to the current Q∗ in the sense that it has a nontrivial
intersection (more than Q) but is not included in Q∗ as depicted on
the right. In this case, the minimal polynomial factors into multiple
factors, but the vanishing factor f is not linear. Q

Q
(√

2
)Q

(
4
√
2
)

(
(

Example 2.3: Related extension field

Let A = {x1 7→
√
2, x2 7→ 4

√
2} with p1 = ξ21 − 2 and p2 = ξ42 − 2 the minimal

polynomials of
√
2 and 4

√
2 over Q. We observe, that p2 factors into (ξ22 − ξ1) ·

(ξ22 + ξ1) over Q[ξ1]/〈p1〉, but ignore this knowledge for the moment and attempt
to extend Q∗ with the original p2.
Assume a = ξ22 − ξ1, b = ξ22 + ξ1 and c = 0, then we have a · b = 0 = a · c and
a 6= 0 in (Q[ξ1]/〈p1〉)[ξ2]/〈p2〉, but b 6= c. This violates the definition for integral
domains and thus (Q[ξ1]/〈p1〉)[ξ2]/〈p2〉 is not a field.

It might not be immediately clear why working on a Q∗ that is not a field like shown in
Example 2.3 should be a problem. Of course, fields are a “more convenient” structure
in general, but we show now that the algebraic cancellation may indeed fail.

2.5. REAL ALGEBRAIC NUMBERS 41

Example 2.3 continued

Let p = (x22 − x1) · x3. Embedding p into (Q[ξ1]/〈p1〉)[ξ2]/〈p2〉 — which is
not even an integral domain as shown before – yields (ξ22 − ξ1) · x3, though p
vanishes identically at A. The factorization of p2 over Q[ξ1]/〈p1〉 instead gives us
(ξ22 − ξ1) · (ξ22 + ξ1) and we construct Q∗ = (Q[ξ1]/〈p1〉)[ξ2]/〈ξ22 − ξ1〉. Embedding
p into Q∗ now correctly yields p = 0.

We used two real algebraic numbers that have an algebraic relation (namely α1 = α2
2)

and we see that cancellation is only performed incompletely if the information about
this relation is not explicitly stated. Also note that this process heavily depends on
the order in which the real algebraic numbers are considered as we see next.

Example 2.3 continued

Let instead A = {x1 7→ 4
√
2, x2 7→

√
2}. Then p2 factors into (ξ21 − ξ2) · (ξ21 + ξ2)

over Q[ξ1]/〈p1〉 and we can derive that either ξ2 = ξ21 or ξ2 = −ξ21 . This allows
us to avoid constructing another quotient ring altogether and simply substitute
ξ2 (by either ξ21 or −ξ21) in p.

In the previous example we considered related real algebraic
numbers – in the sense that α1 ∈ Q(α2) – with different min-
imal polynomials. It is also possible that two unrelated real
algebraic numbers have the same minimal polynomial as we
see in Example 2.4. Note that, as depicted on the right, the
extensions field for these unrelated real algebraic numbers are
still isomorphic.

Q

Q(α1) Q(α2)

Q(α1, α2)

((

((

'

Example 2.4: Unrelated extension field

Let p = ξ4−6ξ2+6 be irreducible over Q[ξ] with four real roots α1,2 = ±
√
3 +

√
3

and α3,4 = ±
√
3−

√
3. We can show that α3 6∈ Q(α1) and α1 6∈ Q(α3) and thus

Q[ξ]/〈p〉 represents two different – though isomorphic – extension fields.

If we indeed want to work with all of these roots, for example
α1 and α3, we have to construct further extension fields –
one for each group of what one could call “adjoint” roots –
until all of the roots are contained in Q∗. For this to work,
we compute the minimal polynomial of α3 in Q(α1) as
shown in the continued example. Consider the visualization
on the right on how these fields relate to each other.

Q

Q(α1) Q(α3)

Q(α1, α3)

K1

K2

((

((

' '

'

Example 2.4 continued

Assume K1 = Q[ξ1]/〈ξ41 − 6ξ21 + 6〉. p is not irreducible over K1 but factors into
(ξ + ξ1) · (ξ − ξ1) · (ξ2 + ξ1 − 6) and we can construct a second extension field
K2 = (Q[ξ1]/〈ξ41 − 6ξ21 + 6〉)[ξ2]/〈ξ22 + ξ1 − 6〉.

42 CHAPTER 2. PRELIMINARIES

2.5.2.2 Algebraic substitution

Now that we have taken care of all cancellations, we need to eliminate the respective
variables from the polynomial. Let us first discuss possible implementations and
then consider an example. We propose two versions, either based on Gröbner bases
or resultants, which both allow projecting algebraic information about the roots of
polynomials onto lower dimensions. Note that we sometimes speak about “eliminating
variables” here, fully aware that this is, in fact, different from quantifier elimination and
more similar to how a projection operator in the cylindrical algebraic decomposition
“eliminates variables”.
The fundamental insight for both variants is to understand the problem of substitution
as a system of equalities, consisting of the input polynomial p (embedded into the
extension field) and the minimal polynomials mi (of the extension fields). To obtain
the polynomial q we need to eliminate x1, . . . xk from this system of equalities.
One of the most popular methods in computer algebra in general are Gröbner bases.
We refrain from a definition or an in-depth discussion here and only refer to appropriate
literature like the one referenced in Section 1.1.6.5. In particular, however, Gröbner
bases can be instrumented to perform exactly this kind of “variable elimination” by
employing an appropriate elimination order. In our case we use the canonical variable
order x1 < · · · < xn – or rather the induced lexicographical term order.
Under this lexicographical order (which is an elimination order) the resulting Gröbner
basis always contains a polynomial q from Q[xn] and the roots of this polynomial
cover the roots of the input polynomial p over the given assignment. We formalize this
statement in the following Theorem 2.1 and note that we only consider the special case
of k = n− 1 here. For arbitrary k this works essentially the same, however, we only
require k = n− 1 for the subsequent operations.

Theorem 2.1: Gröbner basis for algebraic substitution

Let p ∈ Q[x1, . . . , xn] be a polynomial, A = {x1 7→ α1, . . . , xn−1 7→ αn−1} an
assignment, and pi minimal polynomials for αi over Q[x1, . . . , xi]/〈p1, . . . , pi−1〉
as constructed in Algorithm 2.2.
Let I := {p1, . . . , pn−1, p} and let G be the Gröbner basis of I with an elimination
block ordering {x1, . . . , xn−1} > {xn}. Then G contains at least one non-zero
polynomial qn ∈ Q[xn]. Thus, the real roots of qn (in xn) cover all solutions of
G and as 〈G〉 = 〈I〉 also cover all real roots of p evaluated at A:

roots(p(A)) ⊆ roots(qn)

Proof. We have seen that K := Q[x1, . . . , xn−1]/〈p1, . . . , pn−1〉 is a field and its
dimension over Q is finite. Furthermore, the leading coefficient of p as polynomial
from Q[x1, . . . , xn]/〈p1, . . . , pn−1〉 (or rather K[xn]) is invertible and we obtain
p′ = p/ lcoeff(p) = xdn −

∑d−1
i=1 aix

i
n for some coefficients ai ∈ K. Thus, we have

〈I ′〉 := 〈p1, . . . , pn−1, p
′〉 = 〈p1, . . . , pn−1, p〉 = 〈I〉.

Now consider J := Q[x1, . . . , xn]/〈I ′〉 as vector space over Q. From p′ ∈ 〈I ′〉 we
get p′ = 0 in J , or equivalently xdn =

∑d−1
i=1 aix

i
n. Hence, J is finitely generated

as vector space over K by {1, xn, x2n, . . . , xd−1
n } and, thus, has finite dimension

2.5. REAL ALGEBRAIC NUMBERS 43

as vector space over Q. We claim that every (non-zero) element from this vector
space J is algebraic and we can use its minimal polynomial over Q to construct
a polynomial in 〈I ′〉.
Let 0 6= p ∈ J be such a non-zero element and consider the vector space over
Q given by J ′ := 〈1, p, p2, . . . 〉Q. As J is a Q-algebra and thus closed under
multiplication, J ′ is a sub-vector space of J . J has finite dimension, thereby
J ′ has finite dimension as well and thus J ′ = 〈1, p, p1, . . . , pd−1〉Q for some d.
Hence, there exist coefficients ai ∈ Q such that pd =

∑d−1
i=0 ai · pi. If d is minimal,∑d−1

i=0 ai ·pi is the minimal polynomial for p and in particular pd−
∑d−1

i=0 ai ·pi = 0.
This implies that pd −

∑d−1
i=0 ai · pi ∈ 〈I ′〉 and for p = xn we have a polynomial

qn ∈ Q[xn] such that qn ∈ 〈I ′〉 = 〈I〉.
Under an elimination block ordering of the form {x1, . . . , xn−1} > {xn}, such a
qn ∈ Q[xn] is one of the generators of the reduced Gröbner basis of 〈I〉.

We can also slightly reframe the system of equalities as the search for common roots of
multiple polynomials. Resultants are commonly used to generate a polynomial with
one variable less whose roots witness the common roots of the input polynomials, which
is essentially what we need here. Note that the resultant itself argues about complex
roots, and thus not every real root of the resultant witnesses a common real root of
the input polynomials. Instead, the real roots of the resultants cover all common real
roots of the input polynomials.
Given that we have one polynomial over x and one polynomial over every xi that shall
be eliminated, we can give an easy scheme that applies resultants to compute q:

qk := p qi := resξi+1
(qi+1, pi) q := q0

Both methods – either using a Gröbner basis with an appropriate elimination order or
using iterated resultants – yield a polynomial (equation) that is univariate in xn and
logically follows from the input equations. Thus, the real roots for the input polynomial
p are a subset of the assignment A extended with the real roots of the polynomial q.
We show how both approaches can be used in the following Example 2.5.

Example 2.5: Algebraic substitution

Let A = {x1 7→
√
2, x2 7→ 4

√
2} and p = (x22 + x1) · x3. We have seen in

Example 2.3 that we construct Q∗ = (Q[ξ1]/〈ξ21 − 2〉)[ξ2]/〈ξ22 − ξ1〉. Embedding
p into Q∗ yields (ξ22 + ξ1) · x3.
The Gröbner basis of {ξ21 − 2, ξ22 − ξ1, (ξ

2
2 + ξ1) · x3} under the elimination order

ξ1 > ξ2 > x3 is {ξ1 − ξ22 , ξ
4
2 − 2, x3} and we thus extract q := x3.

Using resultants we can compute q2 = p, q1 = ξ1 · x3 and finally q = q0 = x3 to
obtain the same result.

Note that this algebraic substitution is not necessarily exact (or precise) in the sense
that the resulting polynomial q has exactly the roots we are looking for. As the algebraic
substitution only works on the minimal polynomials – that can not distinguish between
any of its real roots – we essentially get all possible solutions for all the roots. The
resulting polynomial q might thus have additional roots where p does not vanish and
we call such roots spurious.

44 CHAPTER 2. PRELIMINARIES

As q only has finitely many roots, we can check them individually (whether p vanishes
over this root) and thereby identify the “actual” real roots of p and discard the spurious
roots as shown in Example 2.6.

Example 2.6: Algebraic substitution with spurious roots

Let A = {x1 7→
√
2} and p = x22+(2−x1)·x2+1−x1. We obtain x32+3x22+x2−1

– either from a Gröbner basis or the (reduced) resultant – which again factors
into (x2 + 1) · (x22 + 2x2 − 1) with real roots −1 and −1±

√
2. We check that

{x1 7→
√
2, x2 7→ −1} is indeed a root, as is {x1 7→

√
2, x2 7→ −1+

√
2}. However,

{x1 7→
√
2, x2 7→ −1−

√
2} is spurious as p does not vanish at this point.

Note that evaluating a polynomial p over some variable assignment is usually formulated
as isolating the (unique) real root of v − p, where v is a fresh variable. However, this
requires real root isolation over a (partial) variable assignment again and leaves us
with a cyclic dependency of these two methods. We thus show how to evaluate the
constraint p = 0 without relying on real root isolation in the following Section 2.5.3.

2.5.3 Computing with real algebraic numbers

Though we introduced real algebraic numbers as a general set of numbers – just like
the rationals – we do not need to perform arbitrary arithmetic operations on them.
For example, we do not strictly require addition or multiplication for our purpose. We
thus implement only the bare minimum of functionality here, mostly consisting of the
following operations: ordering two real algebraic numbers, evaluating constraints over
a model with real algebraic numbers, and isolating the real roots of a multivariate
polynomial over a (partial) model. In addition, we present a few more elementary
operations, required for the above.
Our implementation follows a few guiding principles that are by no means unique or
particularly ingenious, but we feel are worth noting. If we can infer the result from
the numerical information alone – for example for ordering two real algebraic numbers
– doing so is usually way more efficient than considering the algebraic information.
Furthermore, we oftentimes refine a real algebraic number – usually by making the
isolating interval smaller, but possibly also reducing the polynomial if it is not a
minimal polynomial already – and we “propagate” this refinement to all instances of
this particular real algebraic number by maintaining a common global state.

Refinement. The refinement of a real algebraic number α aims at making the
isolating interval smaller but still having it isolate the same real root. The easiest
strategy is to split the interval in half, check whether the root is in the left part or the
right part of the interval, and replace the interval by its left or right half accordingly.
To check whether a particular interval contains a root we can employ methods like
Sturm’s theorem [Stu29] or Descartes’ rule of sign [Des37; CA76] that we also use for
real root isolation as discussed in Section 2.5.1.
If we can ensure that the polynomial is square-free – for example because it is a minimal
polynomial – we can improve upon this by only considering the sign of the polynomial
at the interval endpoints. We can then establish the invariant that the signs of the
endpoints of any isolating interval are different and use this criterion to select the new
isolating interval. We formalize this observation in the following Theorem 2.2.

2.5. REAL ALGEBRAIC NUMBERS 45

Theorem 2.2: Refinement with irreducible polynomials

Let p 6= 0 be an irreducible polynomial (for example a minimal polynomial) and
(
˜
α, α̃) an isolating interval for some real root of p. Then sgn(p(

˜
α)) 6= sgn(p(α̃)).

Let now c ∈ (
˜
α, α̃) be a pivot point. Then a new isolating interval is

(
˜
α, c) if sgn(p(c)) = sgn(p(α̃))

[c, c] if p(c) = 0

(c, α̃) if sgn(p(c)) = sgn(p(
˜
α))

Proof. Let p′ be the derivative of p. As p 6= 0 is irreducible and p 6= p′ due
to deg(p′) < deg(p), we know that p and p′ have no common roots and thus
p′(α) 6= 0 for every real root α of p. Therefore, the signs of lim

x↑α
p(x) and lim

x↓α
p(x)

are different and thus an infinitesimally small interval around α is isolating with
the above property.
Now assume that (

˜
α, α̃) is an isolating interval. Due to the observation that the

upper and lower limits have different signs, we also know that p(
˜
α) and p(α̃)

have different signs. Otherwise, p would need to have another root in the interval
– to change from one sign at

˜
α (α̃) to the other sign at the lower (upper) limit –

according to the intermediate value theorem. The existence of this other root,
however, contradicts the assumption that the interval was isolating.
Given that the endpoints of any isolating interval have different signs (and the
interval contains only a single root) the only sign change occurs exactly at the
real root. We can thus refine the interval by selecting an arbitrary new interval
contained in the isolating interval which still contains this single sign change.

It can be useful to not select the pivot point arbitrarily “at random”. If we refine the
representations of α1 and α2 to establish that α1 6= α2 by showing that I1 and I2 are
disjoint, we can use

˜
α2 (or α̃2) as pivot points. If I1 is refined to be below

˜
α2 (or above

α̃2) we obtain the result after a single refinement step.

Comparison. Comparing two real algebraic numbers is the evaluation of the common
relational operators – <,≤,=, 6=,≥, > – in line with the standard relation on real
numbers. This allows us to recognize that two real algebraic numbers are, in fact,
equal – even if their representation is not identical – or sort a list of real algebraic
numbers. In many cases, a reasonably good numeric approximation (from the interval
I) is sufficient for comparison. If we assume the real algebraic numbers to be different,
we can refine the numeric approximations until the intervals are disjoint.
Let us thus consider the question whether two real algebraic numbers α1 = (p1, I1)
and α2 = (p2, I2) are equal. Recall that we did not assume the polynomial to be the
minimal polynomial, hence α1 and α2 might be equal although p1 6= p2. Still, α1 = α2

implies that p1 and p2 have a common root, or equivalently that they are a root of
gcd(p1, p2). We can thus compute the greatest common divisor and use the result to
refine α1 and α2 as shown in Algorithm 2.3. If we always use minimal polynomials,
p1 6= p2 directly implies α1 6= α2 and this refinement is not only unnecessary but
also completely pointless: if p1 and p2 are both minimal polynomials, they are either
identical or their greatest common divisor is one and no refinement can be done.

46 CHAPTER 2. PRELIMINARIES

Algorithm 2.3: Refine polynomial of two real algebraic numbers
1 Function RefinePolynomial(α1, α2)
2 g := gcd(p1, p2)
3 if α1 is a root of g then
4 p1 := g

5 else
6 p1 := p1/g

This algorithm relies on being able to decide whether the real algebraic number α1 is a
root of the polynomial g. Though this is a more difficult question in general, we have
that g is a factor of p1 here which makes it significantly easier to answer: we have that
roots(g) ⊆ roots(p1) and hence the isolating interval of α1 either isolates a single or no
root of g. Thus we only need to check whether g has a root in I1 which can be done
by Descartes’ rule of signs, or any other method mentioned in Section 2.5.1.
After this refinement – or without it, if we use minimal polynomials anyway – we check
whether p1 6= p2. If so, we immediately have α1 6= α2, otherwise we need to refine
the intervals until they are either disjoint (certifying α1 6= α2) or one of the intervals
contains the other (implying α1 = α2).

Sampling. An important part of many procedures that are presented later is to
generate a sample point s relative to one or two real algebraic numbers. We generally
distinguish the following three cases:

s < α s ∈ (α1, α2) α < s

Assuming that α1 < α2, a sufficiently good numeric approximation (such that α̃1 <
˜
α2)

is enough to generate a rational sample point s in all cases. We can then implement
sampling as follows:

for s < α : s =
˜
α− 1

for s ∈ (α1, α2) : s = midpoint(α̃1,
˜
α2)

for α < s : s = α̃+ 1

Evaluation of constraints. Given that we want to find a solution to systems of
constraints, we need to be able to evaluate constraints – or, in other words, evaluate
the sign of a polynomial for some model. To simplify the later presentation, we define
the exact problem in Definition 2.39.

Definition 2.39: Evaluation over real algebraic numbers

Let p ∼ 0 be a constraint and a model A that may contain real algebraic numbers.
We denote the question whether p ∼ 0 is true after substituting A into p by
evaluating p ∼ 0 or equivalently determining the sign of p.

As before, a good numeric approximation can be very beneficial in practice. Let us
assume that the polynomial p evaluates to some value that is different from zero. In
this case, we can employ interval arithmetic to evaluate p over the isolating intervals

2.5. REAL ALGEBRAIC NUMBERS 47

from A and refine these isolating intervals until the result of the evaluation (by interval
arithmetic) no longer contains zero. We can then safely derive the sign of p under A.
However, we need to stop this method eventually in case p evaluates to zero to ensure
termination.
One possible approach – which is the one we implement – is to construct the polynomial
q := ξ − p and isolate the real roots in ξ. For several reasons – in particular because q
is linear in ξ – this is much easier than the general multivariate real root isolation we
discuss in the subsequent section: 1. we know that we are only looking for a single real
root α, 2. we know that we can obtain an interval I that contains α by evaluating p
over the isolating intervals from A, 3. we only need to determine the sign of α.
Our method furthermore relies on the fact that we can use any of the bounds on
real roots from Section 2.5.1 to obtain a lower bound lb on positive real roots (and
accordingly upper bound ub on negative real roots). From these roots, we can derive
1. if I ⊆ (−∞, 0) then α < 0, 2. if I ⊆ (ub, lb) then α = 0, 3. if I ⊆ (0,∞) then α > 0.
Given these observations, we only need to refine the real algebraic numbers in A until
I satisfies one of these criteria.
The careful reader might notice that the bounds on real roots from Section 2.5.1 are
defined for univariate polynomial over number coefficients while q is a multivariate
polynomial. We thus need to “eliminate” all variables (except ξ) from q and do so as
described in Definition 2.38 to compute bounds on the real roots. Furthermore, note
that although we initially described our approach as isolating the real roots of ξ − p in
ξ, we have not used this more general approach here but rather use a more specialized
method that exploits the additional knowledge mentioned above.
We have seen that the partial evaluation of q that we use to compute the bounds on
real roots might introduce what we called spurious roots. They do not pose a serious
problem here as they might only make the bounds worse and we thus simply ignore
this issue here.

Multivariate real root isolation
Finally, we need to compute the real roots of a polynomial over a given model A.
More specifically, we have a multivariate polynomial p ∈ Q[x1, . . . , xk] and A = {x1 7→
α1, . . . xk−1 7→ αk−1} and want to compute all real roots of the univariate polynomial
that is created by substituting the model into p. As noted above, we can not simply
substitute the model into p and invoke a method for real root isolation – at least not
in every case – but need to employ some other method.
As before, we employ the (partial) evaluation of p over A to obtain a polynomial q that
covers the roots of p. Multivariate root isolation is thus implemented as 1. partially
evaluating p in the sense of Definition 2.38, obtaining q, 2. isolating the (univariate) real
roots αi of q, and 3. removing spurious roots where p does not vanish at A∪{xk 7→ αi}
by evaluating the constraint p = 0.
As already explained and shown in Example 2.6, the result of the partial evaluation
can have spurious roots where p in fact does not vanish. Note that we thus require
evaluating the constraint p = 0 in the third step. Therefore, it is crucial that we
implement this constraint evaluation from the previous section without actually relying
on multivariate root isolation to avoid cyclic dependencies.

48 CHAPTER 2. PRELIMINARIES

2.5.4 Other representations

As already mentioned, other representations for real algebraic numbers exist. We now
briefly describe two alternatives based on root indexing and employing Thom’s lemma
to get a unique characterization of roots. Be aware that using different representations
within one implementation usually has the significant caveat that they do not interact
nicely. We assume that our whole software uses either of them and all real algebraic
numbers that we have – in one execution of our program – have the same representation.
Of course, a rational root can be represented as a rational number and we convert all
of the representations to a simple rational representation if possible. All described
algorithms gracefully integrate rational representations, thus being an exception to the
above restriction.

Indexed representation. Instead of storing an isolating interval, we can also iden-
tify a root by its index among all the (ordered) real roots of the given polynomial.
This makes for a very concise representation and also allows for some computations.
However, we eventually need some numeric representation – usually intervals – for
many operations.
Note that this indexed representation can nicely be generalized to higher dimensions to
what we call multivariate roots in Section 8.3 where we identify a root of a multivariate
polynomial over a partial model (that assigns all but one particular variable).

Thom representation. Another representation based on Thom’s lemma consists
of sign conditions on the derivatives of a polynomial and is sometimes called Thom
encoding. They offer a very different approach to represent real algebraic numbers and
a thorough definition can be found in [BPR10] which also proposes a variant of CAD
based on Thom encodings.
We have experimented with Thom encodings and found them to be surprisingly efficient
but still not on par with the interval-based representation shown before. Details on our
implementation, as well as some experiments, can be found in [Win16]. Note, however,
that some issues with our implementation are listed at the end of [Win16], thus its
performance relative to the interval-based representation could probably be improved.

2.6 Benchmarks and methodology

When trying to evaluate any software, it is important to have a somewhat reasonable
set of test cases that represent the important use cases for the software at hand and
allow to check for the interesting qualitative and quantitative properties of the runs. In
our case, the software being tested are different solvers that we check for correctness,
memory usage, and run time. The set of test cases (or benchmarks) is taken from
the SMT-LIB benchmark set [BFT16], arguably the standard set for SMT solving.
Unless explicitly stated otherwise, we always refer to the quantifier-free nonlinear real
arithmetic benchmarks (called QF_NRA).
The SMT-LIB benchmark sets are usually organized into “families”, where each family
contains a number of benchmarks that usually come from a particular application and
thus also share common characteristics. Given that the number of benchmarks per
family varies wildly, it is an ongoing discussion in the SMT community how to compare

2.6. BENCHMARKS AND METHODOLOGY 49

5,1479515,388

SAT Unknown UNSAT

Figure 2.1: Known satisfiability

0k 2k 4k 6k 8k 10k 11.45k
100

101

102

103

104

105

problems

variables
real variables
boolean variables

Figure 2.2: Number of variables

different solvers across such a benchmark set, for example, witnessed by regularly
changing scoring rules for the SMT competition.
We sometimes observe that the performance of different heuristics significantly varies
across these families, giving an apparent advantage to heuristics that happen to work
better on larger families. We do not engage in this kind of analysis throughout this
thesis and only consider the overall number of solved instances, as 1. there is no
other metric that enjoys a similarly widespread acceptance throughout the community,
2. there is no point in analyzing the specific characteristics of the individual families
for this thesis and 3. it would multiply the space and effort needed for our evaluation
without a clear benefit. Instead, we encourage the reader to evaluate multiple variants of
the proposed techniques on the particular problems of interests, even if they performed
rather badly for us.
Separate from the question of how we use this benchmark, we need to understand that
this benchmark set is not the absolute truth. Being only a collection of benchmarks –
the best we have, though – it merely contains whatever someone submitted at some
point. Some benchmarks are clearly artificial while others stem from actual applications
that use SMT queries in their backends. However, rumor has it that some of these were
generated by feeding artificial problems to these applications, making the resulting
SMT queries somewhat artificial as well. Altogether, we can use this benchmark set as
an indicator for performance but need to be cautious to extrapolate to new applications.
To get a feeling for this set of benchmarks, we give a rough analysis of its characteristics.
For this, we parsed the problem instances with SMT-RAT and extracted some statistical
data from the resulting formulae. Note that some amount of simplification and
normalization is performed while constructing the formulae.
Firstly, Figure 2.1 shows the known satisfiability of all problem instances where unknown
represents files without annotation or unknown status. Having checked that no solvers
produce conflicting results, we assume a problem to have SAT or UNSAT status if they
are annotated by SMT-LIB or any solver can solve them.

50 CHAPTER 2. PRELIMINARIES

0k 2k 4k 6k 8k 10k 11.45k
100

101

102

103

104

105

problems

constraints
equalities
maxdeg∑

deg

Figure 2.3: Number of constraints and equalities

The number of variables is one of the main drivers of asymptotic complexity for
essentially all methods that are discussed in this thesis. We see in Figure 2.2 that
almost two-thirds of the benchmarks only contain a low number of variables (below
10), but also a few hundred with a thousand or more variables are present.
More than three-quarters of the benchmarks contain no Boolean variables at all, which
already indicates a low Boolean complexity in most cases – though this might change
after Tseitin’s transformation. Interestingly, we observe that 461 examples have no
variables at all, mostly because normalization and naive simplifications were sufficient
to reduce the formula to true or false.
The number of constraints also plays a considerable role and we see some statistics in
Figure 2.3. Once again, we observe that 461 benchmarks were simplified to either true
or false and thus contain no constraints. About half of the benchmarks have at most
ten constraints, though the maximum is at almost 250k.
More interesting observations can be drawn from the degrees of the constraints. Com-
paring the sum of all degrees with the number of constraints indicates that the average
degree is rather small and usually less than two. The maximum degree, however, is
significantly larger, growing up to 44. We infer that many examples consider only a
few (or even only a single one) high-degree constraint in conjunction with a larger
set of low-degree constraints, apparently linear in many cases. This observation moti-
vates a number of techniques that aim to exploit linear constraints in particular, for
example [LSC+13] or variable elimination from Section 6.6.1.
We also observe that more than a third of the examples contain a significant number
of equalities, which also allows for effective simplifications in many cases as we discuss
for example in Section 5.2.8 or Section 6.6.1.

2.6.1 Preprocessing and tuned heuristics

We now try to give some intuition on how different components of a solver might
contribute to the overall solving performance and how we are going to analyze the
practical performance of a solver. To do this we exemplarily look at the performance
of the SMT solver Z3 [MB08c] that is shown in Figure 2.4 on this benchmark set. Z3
implements an MCSAT – or more specifically NLSAT – approach which is explained in
more detail in Chapter 7.

2.6. BENCHMARKS AND METHODOLOGY 51

0k 2k 4k 6k 8k 10k 11.45k

10−2

10−1

100

101

102

103

solved problems

ru
n

tim
e

(s
)

Z3

Figure 2.4: Run times of Z3 (seconds)

timeout solved

0.1 s 9115
1 s 9543
5 s 9761

10 s 9824
20 s 10 054
60 s 10 070
120 s 10 076
300 s 10 087
600 s 10 093

1200 s 10 103

property solved

Overall 10 105
In NLSAT 8457
At least one propagation 8457
At least one stage 7749
At least five propagations 7664
At least one conflict 5323
At least five stages 3090
At least one Boolean decision 3016
At least five conflicts 2255
At least five Boolean decision 1870

Figure 2.5: Statistics of Z3 on QF_NRA

First, we observe that a longer timeout is unlikely to yield more results as the required
run time tends to grow exponentially in practice. Consider, for example, the results
shown in Figure 2.4. We see that more than 90% of the instances – that can be solved
within 20 minutes – are already solved within 0.1 seconds and less than 0.5% of the
solved ones required more than 20 seconds.
Altogether, we can say that we either solve a benchmark instantly – within a few
seconds – or there is a good chance that we cannot solve it in a practically acceptable
time at all. It seems tempting to immediately argue with the doubly-exponential
run-time behavior of CAD which is the underlying technique of the NLSAT solver that
Z3 ultimately uses for this logic.
We should, however, put this claim into perspective and give some selected views on the
Z3 solving statistics. We see in Figure 2.5 that about 1650 problems do not enter the
NLSAT solver at all – note that the 8457 problems that have at least one propagation
cover all the ones below.
Moreover, only 7749 instances create at least a single stage – selecting a theory variable
to be assigned – indicating that the difference of about 700 problems never even
considers performing a theory decision. Only 5323 ever finish conflict resolution at
least once – thus 3134 problems either detect unsatisfiability upon the first conflict or
construct a satisfying assignment on the first try for theory and Boolean variables.

52 CHAPTER 2. PRELIMINARIES

Solver SAT UNSAT overall

Z3 5004 2.14 s 5099 1.63 s 10 103 87.9%

Figure 2.6: Experimental results for Z3

The situation gets even worse if we look for problems where actual solving happens
in the sense that we need all the (theoretic) power that the solver has. One could
very well argue that benchmarks where solving hits (almost) no conflicts are essentially
trivial – and we have only 2255 problem instances that show at least five conflicts.

2.6.2 Presentation of experimental results

Throughout the thesis, we show experimental results that analyze the impact of
individual features or different configurations. We thus use a “minimal solver”– for
example just a SAT solver and a CAD-based theory solver – without applying more
involved preprocessing techniques.
All benchmarks presented throughout this thesis were run on Intel Xeon Platinum 8160
processors and were allowed to use up to four gigabytes of memory and two minutes
of processor time. If run times tend to vary from one execution to the next, it is
sometimes reasonable to perform multiple runs and present average values. All our
solvers – and we assume this to hold for Z3 as well – are completely deterministic and,
thus, the fluctuations of the needed computation time are marginal in practice.
Consider Figure 2.6 for an illustrative example of benchmark results. For every solver
(here only Z3), we show the number of satisfiable and unsatisfiable instances that were
correctly solved, as well as the average run time for the solved instances. Additionally,
we show the overall number of solved instances and also give the percentage of solved
instances from the overall benchmark set. In this case, Z3 solves 10103 instances (from
these 5004 satisfiable and 5099 unsatisfiable) which are 87.9% of the benchmark set
(that consists of 11489 instances altogether). On the remaining 1386 instances, Z3
exhausted the resources (either time or memory). No solver presented in this thesis
yielded incorrect results.

CDCL-style SAT solving

One of the most basic logics is propositional logic. It exclusively deals with Boolean
variables (sometimes called atomic propositions or propositional variables) and Boolean
combinations thereof. While the formal syntax is one of the simplest available, it
already proves to be very powerful: the satisfiability problem for propositional logic is
one of the original NP-complete problems from [Kar72].

Definition 3.1: Propositional logic

Let B be the set of Boolean variables and B = {false, true} the Boolean constants.
The syntax of a propositional logic formula ϕ is defined as follows.

ϕ ::= b | c b ∈ B, c ∈ B
ϕ ::= ϕ ∨ ϕ | ¬ϕ

We assume that ¬ and ∨ have the common semantics of negation and conjunction.
Further Boolean connectives, like disjunction or exclusive or, can be defined in
terms of negation and conjunction as syntactic sugar.

Note that we do not allow for explicit quantification of variables – like for example
quantified Boolean formulae (QBF) does – but rather push the quantification to the
question we ask about the formula at hand. Given a propositional logic formula ϕ(x),
we aim to decide whether it is satisfiable – ∃x. ϕ(x) – and reuse this to decide whether
it is a tautology – ∀x. ϕ(x) ≡ ¬∃x. ¬ϕ(x).

Definition 3.2: Propositional satisfiability problem

Let ϕ be a propositional logic formula over variables x. The propositional
satisfiability problem (SAT) is to decide whether there is a variable assignment
for x that satisfies ϕ, or more formally, whether the following statement is true:

∃x. ϕ(x)

Practical algorithmic approaches to this problem usually follow one of two paths that
we identify as enumeration or deduction. The former works on the variable assignment
and exploits that the number of variable assignments is finite, as the number of variables
and the number of possible values for each variable is finite. Given this finiteness, we
can simply try all possible assignments and eventually find a satisfying one or find that
there is none. The latter uses logical reasoning on the formula to derive new knowledge
about the solution space, aiming for a proof that there is no solution.

54 CHAPTER 3. CDCL-STYLE SAT SOLVING

3.1 Satisfiability via enumeration

The arguably simplest approach to determine satisfiability is to try all possible assign-
ments and check whether any of them satisfies the formula. A naive implementation of
this idea is shown in Algorithm 3.1. Assuming n variables with two possible values
each – true and false – we obtain at most 2n variable assignments that we have to
check as we can determine satisfiability as soon as one assignment is satisfying.

Algorithm 3.1: Solving the SAT problem via enumeration
1 Function Satisfiable(ϕ)
2 for every model α ∈ A do
3 if ϕ(α) then
4 return SAT

5 return UNSAT

We observe that the formula is hardly used here, in particular, we do not even attempt
to make use of certain structures a formula may have. For example, if our formula has
the form ϕ = x1 ∨ ϕ′, we could determine satisfiability by assigning x1 7→ true and
avoid looking at a – possibly huge – remaining formula ϕ′. This idea of exploiting
formula structure leads to the following recursive Algorithm 3.2.

Algorithm 3.2: Solving the SAT problem via recursive enumeration
1 Function Satisfiable(ϕ)
2 x := select unassigned variable from ϕ
3 for value ∈ {true, false} do
4 if Satisfiable(ϕ[x/value]) = SAT then
5 return SAT

6 return UNSAT

This version of enumeration essentially builds partial assignments one variable at a
time and tries substituting all possible values (true and false) for some variable. The
substitution allows to simplify the formula before extending the partial assignment and
thereby could solve the above example x1 ∨ ϕ′ immediately – given that we select x1
and assign it to true.
There are a few fundamental ideas that are already part of this very simple algorithm.
Firstly, we try to make use of the structure of the formula at hand. Secondly, we
reduce our problem to one or more simpler problems and inherit or combine the results.
We see that even if we have no idea how to do a reduction, we can split into multiple
cases – this is what we do in Line 3 of Algorithm 3.2 – and combine the results of all
possible cases afterward. Thirdly, we have choices to make, for example, which variable
to select or in which order to process our cases.

3.2 Satisfiability via deduction

Given the nature of enumeration, it is only suited for questions of satisfiability and
can not be applied for more complex questions, for example, variable elimination.
Deduction is a general approach that aims at inferring new facts that are implied by

3.2. SATISFIABILITY VIA DEDUCTION 55

the current formula. If we apply a (sound) deductive proof system, we construct a
proof for such a new fact from our formula. We usually try to infer false, which proves
unsatisfiability.
The most prominent example of such a deductive proof system is the (Boolean)
resolution proof system. Though it only consists of a single rule – which is sometimes
argued to be a template that can be instantiated to form arbitrarily many rules – it is
a sound and complete proof system for propositional logic.

Definition 3.3: Resolution proof system

Assume two clauses that share some variable y, though with opposite polarity.
The resolution rule states that

Resolution:
(x1 ∨ · · · ∨ xi ∨ y), (¬y ∨ z1 ∨ · · · ∨ zj)

(x1 ∨ · · · ∨ xi ∨ z1 ∨ · · · ∨ zj)

We say that we perform resolution on y and write Resolutiony(·, ·), sometimes
skipping the variable we perform resolution on. The resolution proof system
consists of only the Resolution rule.

Theorem 3.1: Soundness & completeness

The resolution proof system, as defined in Definition 3.3, is sound and refuta-
tionally complete for propositional logic.

Soundness. Let ϕ = (x1 ∨ · · · ∨ xi ∨ y)∧ (¬y ∨ z1 ∨ · · · ∨ zj) and α ∈ A such that
α |= ϕ. Thus, α |= (x1 ∨ · · · ∨ xi ∨ y) and α |= (¬y ∨ z1 ∨ · · · ∨ zj). We consider
two cases: α |= y and α |= ¬y.
If α |= y we can infer α |= (z1∨· · ·∨zj) and thus α |= (x1∨· · ·∨xi∨z1∨· · ·∨zj).
In the same way, if α |= ¬y we can infer α |= (x1 ∨ · · · ∨ xi) and thus α |=
(x1 ∨ · · · ∨ xi ∨ z1 ∨ · · · ∨ zj). Hence, we get α |= (x1 ∨ · · · ∨ xi ∨ z1 ∨ · · · ∨ zj) in
both cases, and thus ϕ |= (x1 ∨ · · · ∨ xi ∨ z1 ∨ · · · ∨ zj).

To prepare our proof for (refutational) completeness, we give Algorithm 3.3 that only
uses the resolution rule to determine the satisfiability of a formula in CNF. The main
idea – which seems to originate in [DP60] – is to eliminate one variable after another
and eventually obtain a formula without variables, either true or false. It does so by
selecting an arbitrary variable x from ϕ splitting the clauses in three parts: ϕx that
contains x, ϕ¬x that contains ¬x, and the rest ϕR. Note that no clause contains both
x and ¬x as such clauses are trivial tautologies that we (implicitly) remove from ϕ.

Refutational completeness. We proved that Algorithm 3.3 is sound for all CNF
formulae. We observe that at the end of the loop, ϕ does no longer contain x as
ϕR did not contain x in the first place and the clauses resulting from performing
resolution on x do neither. Therefore, ϕ eventually contains no variables and we
get either an empty set of clauses (true) or the empty clause (false).

56 CHAPTER 3. CDCL-STYLE SAT SOLVING

Algorithm 3.3: Solving the SAT problem via binary resolution
1 Function Satisfiable(ϕ)
2 for x a variable of ϕ do
3 ϕx := {c ∈ ϕ | x ∈ c}
4 ϕ¬x := {c ∈ ϕ | ¬x ∈ c}
5 ϕR := ϕ \ (ϕx ∪ ϕ¬x)
6 ϕ := ϕR ∪ {Resolutionx(c, c′) | c ∈ ϕx, c

′ ∈ ϕ¬x}
7 if ϕ ≡ true then
8 return SAT

9 else
10 return UNSAT

Note that Algorithm 3.3 does not immediately provide us with a satisfying assignment.
We can, however, create a model based on the intermediate clause sets. Starting with
an (initially empty) partial model, we substitute the model into the intermediate clause
sets and consider the clauses that now only contain the next variable x.
We observe that there are only two (syntactically) possible clauses (x) and (¬x). If
none are present, we choose any value for x. If a single one is present, we choose the
appropriate value for x. The case that both are present is impossible, as it implies the
presence of (¬α, x) and (¬α,¬x) (which evaluate to (x) and (¬x)), which would have
allowed for the resolution with the result (¬α), invalidating the partial model α.
Unfortunately, the elimination of a single variable may incur a quadratic increase of
clauses which may even grow in size. Thus we may exhibit a doubly exponential time
and space complexity.

3.3 Davis–Putman procedure

We have shown that Boolean resolution is an effective technique for working on
propositional formulae on its own, though with limited efficiency. It is oftentimes only
used as one of the ingredients, already [DP60] is actually concerned with deciding
the satisfiability of first-order logic formulae – though with predicates without fixed
semantics – and proposes a method that roughly works as described below.
Firstly, the formula is transformed into what we now call Skolem normal form: we
introduce new function symbols and obtain a formula in prenex normal form with
only universal quantifiers and (implicitly) ask for the existence of the Skolem functions.
Secondly, all (countably many) possibilities to ground the formula are enumerated
to instantiate the universally quantified variables. Finally, after every instantiation,
we check for the satisfiability of the conjunction of all the ground formulae. If we
eventually find one of the formulae to be unsatisfiable, this implies the unsatisfiability
of the original formula.
For our purpose, we focus on the last step only that solves the satisfiability problem
for propositional logic. Three rules are proposed in [DP60, Section 4] that are applied
in a specific order and eventually derive either the empty clause or the empty formula,
yielding unsat or sat.

3.3. DAVIS–PUTMAN PROCEDURE 57

Definition 3.4: Davis–Putnam procedure for propositional logic

Let ϕ be a propositional formula in CNF. We define three rules that we call
One-literal rule, Affirmative rule and Elimination rule.

The One-literal rule comes in three flavors, all aimed at eliminating variables
that occur in clauses that only have a single literal.

One-literal:
(x), (¬x), ϕ

false

(x), ϕ

ϕ[x/true]

(¬x), ϕ
ϕ[x/false]

The Affirmative rule is aimed at eliminating variables, that only occur positively
(or negatively) throughout the whole formula.

Affirmative:
ϕ,¬x 6∈ ϕ

ϕ[x/true]

ϕ, x 6∈ ϕ

ϕ[x/false]

The Elimination rule is aimed at eliminating any variable by pairwise resolution,
similar to Algorithm 3.3. Note that this rule technically uses non-CNF formulae,
but can be implemented on clauses only easily.

Elimination:
(ϕx ∨ x) ∧ (ϕ¬x ∨ ¬x) ∧ ϕR, x 6∈ ϕR,¬x 6∈ ϕR

(ϕx ∨ ϕ¬x) ∧ ϕR

The algorithm presented in [DP60] employs these three rules as follows:
Algorithm 3.4: Davis–Putnam procedure for propositional logic

1 Function Satisfiable(ϕ)
2 while true do
3 if ϕ ∈ {true, false} then
4 return ϕ

5 if One-literal rule is applicable on ϕ then
6 Apply One-literal rule to ϕ
7 else if Affirmative rule is applicable on ϕ then
8 Apply Affirmative rule to ϕ
9 else

10 Select some variable x from ϕ
11 Apply Elimination rule to x in ϕ

This method is interesting to us, as it can be seen as a first combination of the
two paradigms of enumeration and deduction. The Elimination rule implements the
variable elimination idea that we have used in the purely deductive approach. The other
two rules also eliminate variables in a deductive fashion, but in a more constructive
way that allows to immediately extend a (partial) model.

58 CHAPTER 3. CDCL-STYLE SAT SOLVING

3.4 Davis–Putnam–Logemann–Loveland procedure

Shortly after [DP60] put forward a theoretical algorithm that they used to solve the
problem manually, they described their experience with an actual software implemen-
tation in [DLL62]. Though most of this work is actually concerned with considerations
concerning the hardware available at the time, it contains a single change to the abstract
algorithm which proved to be groundbreaking. Let us reconsider the Elimination rule
from [DP60] which is used for eliminating a variable.

Elimination:
(ϕx ∨ x) ∧ (ϕ¬x ∨ ¬x) ∧ ϕR, x 6∈ ϕR,¬x 6∈ ϕR

(ϕx ∨ ϕ¬x) ∧ ϕR

During implementation, the authors realized that this rule has an important catch.
Each clause from ϕx (and ϕ¬x) has one literal less than its origin from ϕ, but when
they get combined in ϕx ∨ϕ¬x the clauses tend to grow significantly in size. This effect
can be mitigated by replacing the Elimination rule by a new Splitting rule:

Splitting:

(ϕx ∨ x) ∧ (ϕ¬x ∨ ¬x) ∧ ϕR, x 6∈ ϕR,¬x 6∈ ϕR

(ϕx ∧ ϕR), (ϕ¬x ∧ ϕR)

This avoids the growth of clauses, indeed clauses will get smaller because the variable
x is removed. However, it comes with the cost of yielding two sub-problems: ϕx ∧ ϕR

and ϕ¬x ∧ϕR that we have to check one after the other. There is an additional benefit,
though: the Splitting rule – producing smaller clauses – tends to allow significantly
more applications of the One-literal rule compared to the Elimination rule.

Algorithm 3.5: Davis–Putman–Logemann–Loveland procedure
1 Function Satisfiable(ϕ)
2 while true do
3 if ϕ ∈ {true, false} then
4 return ϕ

5 if One-literal rule is applicable on ϕ then
6 Apply One-literal rule to ϕ
7 else if Affirmative rule is applicable on ϕ then
8 Apply Affirmative rule to ϕ
9 else

10 Select some variable x from ϕ
11 Apply Splitting rule and obtain ϕ′, ϕ′′

12 if ¬ Satisfiable(ϕ′) then
13 return false

14 if ¬ Satisfiable(ϕ′′) then
15 return false

16 return true

3.5. TOWARDS MODERN DPLL 59

This is what we know as the original DPLL algorithm that is still the (conceptual) basis
of most modern SAT solvers. We observe that, conceptually, we only use the simplest
forms of deductive reasoning here – the One-literal rule and the Affirmative rule.
The Splitting rule can instead be seen as some kind of enumeration as it enumerates
all possible values for the selected variable. In this sense, Algorithm 3.5 is one of the
first effective combinations of deduction and enumeration.

3.5 Towards modern DPLL

The above Algorithm 3.5 has since been improved and extended in various ways that
are standard in most of today’s solvers. We now review the most important innovations.
We observe that the original version stores new formulae ϕ′ and ϕ′′ in memory whenever
the Splitting rule is applied. Though they could replace the original formula ϕ, this
still usually incurs a significant memory overhead, in particular, due to the recursive
nature of this process. We can instead maintain the splits – and the results of the other
rules – separately without actually changing the representation of the formula. We
store them in what is commonly called a trail, essentially a list of variable assignments,
and consider the formula with respect to the trail.
All three rules from [DLL62] essentially assign a value to a variable, though in a slightly
different manner. The One-literal rule identifies a logical implication in the sense
that the variable assignment is enforced by the formula at hand. The Affirmative
rule identifies assignments that are sound in the sense that they are consistent with
the formula. The number of models may reduce, though not to zero. In contrast, the
Splitting rule is merely a guess and we may be forced to consider the other choice as
well. Hence, we distinguish between two types of assignments that we call propagations
and decisions as defined in Definition 3.5.

Definition 3.5: DPLL trail

The DPLL algorithm works on a what we call the trail. A trail M is a sequence
of elements of one of the two forms:

L Boolean decision of literal L
C → L Boolean implication of literal L due to a clause C

We call L a decision and C → L a propagation. We say that a literal L is
assigned to true (false) if L ∈M (¬L ∈M), otherwise L is unassigned.

The notion of considering the formula with respect to a trail – or the partial assignment
represented by the trail – changes how we apply the original DPLL rules. The One-
literal rule only works on clauses with a single literal, but these only rarely exist
if we do not change the formula. Instead, we consider the Boolean constraint
propagation rule as given in Definition 3.6.

Definition 3.6: Boolean constraint propagation

Let M be some DPLL trail and C = (L ∨ L1 ∨ · · · ∨ Lk) a clause. The Boolean
constraint propagation rule infers a variable assignment as follows:

60 CHAPTER 3. CDCL-STYLE SAT SOLVING

Boolean constraint propagation:
M,C

JM,C → LK
if ¬Li ∈M for all i = 1 . . . k

L,¬L 6∈M

Given a trail M and a set of clauses C we define BCP to apply the above rule until
no suitable clause C ∈ C exists anymore. We extend BCP to check for conflicting
clauses – whose literals all evaluate to false – and let it return false if it ever
finds such a conflicting clause and true otherwise.

The Affirmative rule proves to be rather expensive to be employed in practice. In
order to check whether it can be employed, we need to establish a global information
about the number of unsatisfied clauses containing a certain literal. Therefore it is
usually not used in the core of modern DPLL-based SAT solvers. The Splitting rule
creates what we called a decision and is given in Definition 3.7.

Definition 3.7: Decision

Let M be some DPLL trail and L a literal that is unassigned in M . The Decision
rule decides upon a variable assignment as follows:

Decision:
M

JM,LK
if L,¬L 6∈M

Given a trail M , we define Decide to apply the decision rule once and return
true if possible. If the rule is not applicable – because all literals are already
assigned – it returns false.

Now that we store the current partial assignment in a trail, and that parts of this
assignment are only guesses, we need a way to undo assignments. Note that this
idea of undoing assignments is not fundamentally new: Algorithm 3.5 returns from
checking the satisfiability of ϕ′ and continues to explore ϕ′′ afterward. We essentially
only reformulate this process as an iterative procedure, compared to the recursive
formulation of Algorithm 3.5.

Definition 3.8: Backtracking

Let M be some DPLL trail and such that some clause is conflicting, that means
it evaluates to false under M . Furthermore, let us tag decisions with a Boolean
flag, being false by default. We define basic DPLL backtracking as follows:

Backtracking:

JN1, Lfalse , N2K, C = (L1 ∨ · · · ∨ Lk)

JN1,¬LtrueK
if

¬L1, . . . ,¬Lk ∈ JN1, Lfalse , N2K
L is the rightmost decision
that is tagged with false

We define the Backtrack method to apply the above rule and return true if
possible. Otherwise, that is if no such decision can be found and thus the conflict
can not be resolved, it returns false.

3.6. CONFLICT-DRIVEN CLAUSE LEARNING 61

The basic version of backtracking defined in Definition 3.8 exactly models the recursive
exploration from Algorithm 3.5: it simply records whether the opposite branch of the
search has already been explored – by default is has not – and also checks it.
Note that we assume BCP to work in an exhaustive manner. Thus, in any trail a decision
is followed by all propagations that are possible. In particular, the last decision is
always part of the reason for a conflict and changing this decision always resolves this
particular conflict. Of course, changing the decision can still lead to another conflict,
possibly even given by the very same clause, but the list of propagations is different.
Given these reformulations of the DPLL rules, and the specifications of BCP, Decide,
and Backtrack, we now give what we call the DPLL algorithm in Algorithm 3.6.

Algorithm 3.6: DPLL algorithm
1 Function Satisfiable(ϕ)
2 while true do
3 while ¬BCP() do
4 if ¬Backtrack() then
5 return false

6 if ¬Decide() then
7 return true

3.6 Conflict-driven clause learning
Many improvements to the DPLL algorithm from Algorithm 3.6 have been proposed
that we summarize under the term conflict-driven clause learning, fully aware that
clause learning is only one of the techniques we present. Conflict-driven clause learning
– for short CDCL – is the common term used for “modern DPLL-style SAT solving” that
comprises all the other techniques and clause learning is arguably the most important
of them. A fundamental term for CDCL is what we call a decision level.

Definition 3.9: Decision level

Let M be some trail and MD the subsequence of M consisting only of the
decisions from M . We call |MD| the current decision level of M and sometimes
write DL(M).
Let Mk be the longest prefix of M that has decision level k. We say that some
literal L has decision level k if L ∈Mk but L 6∈Mk−1, and something holds at
decision level k if it holds for Mk. We sometimes write DL(L) and DL(C) for
the largest decision level of some literal from a clause C.

3.6.1 Clause learning

We have seen in Definition 3.8 that having a clause evaluate to false somehow implies
the negation of the last decision, though the premise was somewhat vague. Essentially,
we have seen that a decision L did not work out, and thus – under the assumptions
represented by the preceding part of the trail – either ¬L is correct, or said preceding
part of the trail was already incorrect. Clause learning aims to make this reasoning
explicit and persistent so that it can be reused later on.

62 CHAPTER 3. CDCL-STYLE SAT SOLVING

Assume a trail JN1, L,N2K where L is the rightmost decision and some clause C
is conflicting. The goal is to construct a new clause D that represents the logical
implication N1 =⇒ ¬L from C and the information contained in N2. Conceptually,
we can understand the task as eliminating variables from C such that only variables
from N1 remain.

Algorithm 3.7: Conflict resolution
1 Function ConflictResolution(M , C)
2 while M 6= JK do
3 T := removeLastFrom(M)
4 if T = E → L and ¬L ∈ C then
5 C := ResolutionL(C,E)

6 if T = L and ¬L ∈ C then
7 break

8 return C

The given Algorithm 3.7 achieves exactly what we described before: it works its way
backward through the trail, eliminates literals from the conflict clause – by using
Boolean resolution – until we find a decision literal whose negation is part of the clause.
It also already performs the backtracking, exactly as Algorithm 3.6 did.
Note that we usually generalize this method: instead of generating a clause that
implies the negation of some decision we allow to learn any clause that is conflicting
on the current trail and implies some literal after appropriate backtracking. We would
usually stop the resolution process in Algorithm 3.7 as soon as C contains only a
single literal from the last decision level, thereby implying this single literal after we
have backtracked the whole decision level. We call such a clause asserting and the
first literal where the clause becomes asserting is called the first unique implication
point [MMZ+01].
The backtracking checks whether the resulting clause is the empty clause, in which case
it returns false, or returns the clause for propagation. We can go a step further and
learn the clause: we add it to the set of clauses C and thus can use it for propagation
at any point in the future. Slightly varying schemes for clause learning have been
introduced in [SS96] and [BS97].

Algorithm 3.8: Backtracking with clause learning
1 Function Backtrack(M , C)
2 D := ConflictResolution(M, C)
3 if D 6= false then
4 C := C ∪ {D}
5 return D

3.6.2 Non-chronological backtracking

We observe that (intuitively) propagations are never harmful because they only im-
plement logical deductions that are sound. We never have to backtrack because of
a propagation, they may only show that a decision was wrong so that we have to
backtrack because of that decision. Decisions, on the other hand, are hazardous: they

3.6. CONFLICT-DRIVEN CLAUSE LEARNING 63

are just guesses and a bad guess may induce any amount of pointless calculations. This
is already reflected to some degree in our algorithm, as we eagerly perform propagation
exhaustively and only resort to decisions afterward.
When learning a new clause, like when using backtracking with clause learning, it
might be the case that the new clause is already unit at an earlier point in the trail.

Example 3.1: Early propagation of learned clauses

Let ϕ = (¬a∨¬c∨ d)∧ (¬c∨¬d)∧ϕ′ where ϕ′ also contains a Boolean variable
b. Assuming the trail M = Ja, b, c, (¬a ∨ ¬c ∨ d) → dK, BCP finds the conflicting
clause C = (¬c ∨ ¬d).
Algorithm 3.7 would now remove (¬a ∨ ¬c ∨ d) → d from the trail and compute
the new conflict clause C := (¬a ∨ ¬c). In the next step, it finds the decision c
with ¬c ∈ C and, therefore, returns C while the remaining trail is M = Ja, bK.
We observe that C = (¬a ∨ ¬c) is now unit and BCP propagates C → ¬c in
the next step. However, we could backtrack even further and – relative to the
search space exploration – utilize the new propagation earlier. In this case, we
backtrack to M = JaK and already then use C to obtain M = Ja,C → ¬cK.

We can see in Example 3.1 that the clause that results from Algorithm 3.7 can be unit
on a smaller decision level. Hence, it seems reasonable to already use this propagation
on a smaller decision level in the hope to change how the search proceeds (in a positive
way). Of course, backtracking further undoes some work that we may just repeat, but
experimental experience shows that this potentially redundant work is worth it.
It remains to determine which decision level to backtrack to. Given that we want to
utilize the clause C for propagation, C must still be unit and thus all but one literal
must be assigned. If we consider the set of decision levels of the literals of C, we
observe that conflict literal ¬L is the single literal at the highest decision level (say l).
Let now k < l be the largest decision level present in C except for ¬L.
As all literals from C – except for ¬L – have a decision level of at most k, C is still unit
at decision level k. While the above methods only backtrack to decision level l − 1, we
can thus also backtrack to decision level k – actually any decision level between k and
l − 1. This is what we call non-chronological backtracking, first applied to satisfiability
checking in [SS96], and shown in Algorithm 3.9.

Algorithm 3.9: Non-chronological backtracking with clause learning
1 Function Backtrack(M , C)
2 C := ConflictResolution(M, C)
3 if C 6= false then
4 C := C ∪ {C}
5 Backtrack to DL(C \ {¬L})
6 return C

3.6.3 Watched literal scheme

Boolean constraint propagation proves to be incredibly powerful in practice but heavily
depends on the ability to perform it efficiently. In particular, it is not feasible – for
large formulae – to linearly scan the set of clauses to check whether some clause is unit.

64 CHAPTER 3. CDCL-STYLE SAT SOLVING

Instead, we need some way to quickly obtain a (small) set of clauses that might be unit.
One technique that has significantly improved performance of this across the board
is the two watched literal scheme introduced in [MMZ+01]. The fundamental idea is
based on the following two observations: a clause can only become unit if 1. it had (at
least) two unassigned literals and 2. one of these has then been assigned to false. Note
that we conveniently ignore clauses with a single literal here.
Therefore, we watch two literals from each clause and have a closer look at this specific
clause only when one of these literals is assigned to false. In practice, we maintain a
mapping from every literal to a set of clauses and put every clause in the list of two
of its literals. Whenever we assign a literal L (either by decision or propagation), we
review the clauses from the watch list of ¬L, distinguishing whether the other watched
literal which is 1. unassigned, 2. assigned to true, or 3. assigned to false.
If the other watched literal is assigned to true, the clause is satisfied and there is
nothing to do. If the other watched literal is not yet assigned or assigned to false, the
clause could be unit. We consider the remaining literals of this clause and move the
watch if we find another literal that is either unassigned or assigned to true. If such a
literal does not exist, all but the other watched literal are assigned to false and the
considered clause is either suitable for propagation (if the other watched literal is not
yet assigned) or conflicting (if the other watched literal is assigned to false).
We note that the actual implementation of this scheme is very technical and must be
done in a way that is compatible with the backtracking in that the watches must end
up in some consistent state after undoing assignments. As this is highly specific to the
actual implementation, we refer to [MMZ+01] for more details.

3.6.4 Restarts and clause removal

Most of the above techniques aim to accumulate more and better clauses and make use
of available clauses faster. Practical experiments showed, however, that bad decisions
early on in the search sometimes lead to a particularly hard part of the search space.
Allowing the solver to restart – clearing the trail, but retaining the learned clauses –
provides the opportunity to switch to another, easier part of the search space.
The idea to regularly restart the solver is usually attributed to [GSK98], though it
was combined with randomization of the solving process. The concept of restarting
the solver was then decoupled from randomization – for example in [MMZ+01] –
and subsequently the frequency of restarts was made adaptive in [ES03]. Note that
performing restarts without randomization only makes sense if the variable ordering –
that we discuss in the next section – is dynamic. Otherwise, the solver simply replays
the very same decisions and propagations after a restart.
Given that a clause is added to the clause database for every conflict, we might collect
a large number of clauses that eventually slow down the solver. Furthermore, many of
these clauses may be redundant – not only in the theoretical sense (because all learned
clauses are redundant), but in the practical sense that we never use them again.
Assume that some part of the search space (say Ja 7→ false, b 7→ falseK) has been
excluded (by (a ∨ b)) but it required several intermediate conflicts to construct this
clause, for example (a ∨ b ∨ c), (a ∨ b ∨ ¬c ∨ d) and (a ∨ b ∨ ¬c ∨ ¬d). We observe that
the (smaller) clause (a ∨ b) is a much stronger statement than the other clauses, and it

3.6. CONFLICT-DRIVEN CLAUSE LEARNING 65

might make sense to forget the other (larger) clauses. Actual schemes how to determine
which clauses to remove are discussed in [MMZ+01] or [ES03].
Regular restarts, in particular in conjunction with clause removal, have the potential
to lead to nontermination. If all clauses that were learned since the last restart are
removed – and there is no reason why this is not possible in general – we may only
repeat the same reasoning over and over again without any progress that persists
beyond the next restart.
The common solution is already mentioned in [MMZ+01]: the periodicity of restarts is
increased over time so that the whole solving process eventually fits in between two
consecutive restarts. One variant that was proposed in [Hua07] and has become very
popular since is to use a Luby sequence, which intuitively alternates frequent restarts
and increasingly long periods without a restart.

3.6.5 Decision and value heuristics

The methods we have described give rise to several heuristic choices, most prominently
the choice of a decision variable, but also which polarity to decide for, when to restart,
or which clauses to forget.
The importance of the heuristic for selecting the decision variable – usually called
decision heuristic or branching heuristic – was recognized early on and many different
approaches were presented. Prominent examples are heuristics due to Böhm [BB92], the
MOM heuristic [Fre95], dynamic largest individual sum [SS96], or Jeroslow-Wang [JW90].
All of them fall in one of two classes: they are either static – computed once at the
beginning – or dynamic – computed for every decision. While the static ones are very
fast, the dynamic ones tend to make better decisions.
Eventually, a class of heuristics that we call quasi-static was proposed that is both
adaptive and very fast when making a decision. First presented in [MMZ+01] and
subsequently improved in [ES03], we call them (exponential) variable state independent
decaying sum (VSIDS). VSIDS maintains an activity for every variable that is increased
when this variable is part of a conflict and decays over time, such that recent conflict
have a higher weight than older conflicts.
Though it may seem counter-intuitive to aim for conflicts – instead of satisfying assign-
ments – the practical performance of VSIDS is sufficiently convincing so that essentially
all state-of-the-art solvers employ some variant of VSIDS nowadays. Nonetheless,
improvements are still developed, for example in [LGZ+15] or [LGP+16], mostly trying
to exploit structural properties of the formula (like the “community structure”) or
operational properties of the solver (like “global learning rate”).

Satisfiability modulo theories
solving

We have seen how algorithmic approaches to decide the satisfiability of a propositional
logic formula have developed and improved over the years, starting from [DP60] to the
current state-of-the-art CDCL with a large amount of further techniques and heuristics.
We note, however, that these developments have oftentimes been driven by the interest
in richer logics like first-order logic, not least the original work from [DP60].
Aiming for automatic solvers for these richer logics, three fundamentally different
approaches have emerged. Before the rise of efficient SAT solvers, the predominant
approach was to work solely on a set of theory constraints and not bother with the
Boolean structure. The prime examples for this are arguably simplex-based linear
programming solvers, for example, Gurobi or SCIP. In many cases, a certain amount
of Boolean structure can be encoded within the theory as well, which is for example
known as 0-1-programming.
As soon as the propositional satisfiability problem could be solved (sufficiently) quickly,
it was leveraged to help solving richer logics. The early approaches – that we sum-
marize as eager SMT solving – transform the problem at hand into an equisatisfiable
propositional logic formula and solve that one with a SAT solver. At some point, lazy
SMT solving emerged that uses a SAT solver to process the Boolean structure first and
issues theory queries (concerning only conjunctions of theory constraints) to dedicated
theory solvers.

4.1 Eager SMT solving

The first approaches that employed SAT solvers for richer logics used them as simple
black-boxes. In [SSB02], for example, separation logic formulae are encoded into
propositional logic and then solved by some SAT solver (in this case Chaff). This
approach is particularly straightforward in that no modifications to the SAT solver are
necessary and, thus, the core solving engine can be replaced without any problems.

Definition 4.1: Eager SMT solving

Let S be a SAT solver and T a theory reasoning engine that transforms an input
formula with some theory into an equisatisfiable propositional logic formula. We
call a solver that first transforms the input to propositional logic using T and
then determines the satisfiability using S an eager SMT solving program.

68 CHAPTER 4. SATISFIABILITY MODULO THEORIES SOLVING

This approach somewhat restricts what we can argue about in a meaningful way. If the
richer logic is also more expressive, we should not expect an encoding into propositional
logic to exist – at least not a nice one, whatever nice may be. Theories that argue
about real numbers are prime examples where a propositional encoding is notoriously
difficult or impossible.
We observe that a SAT solver only has a finite state space: it only reasons about the
2n possible variable assignments for n propositional variables from the input formula.
For a real variable, however, a single variable induces an infinitely large state space.
Even if we argue that we could do some kind of discretization, it is unclear how to
obtain a suitable discretization and how large its state space would turn out to be.
It is important to realize that this property of being reducible to propositional logic is
not connected to the asymptotic complexity of the problem at hand, all the more if we
aim for practical efficiency. A set of linear real arithmetic constraints – without Boolean
combinations – can be solved in polynomial time and thus asymptotically faster than
propositional logic, but oftentimes the fastest method in practice is the simplex method
– with exponential worst-case complexity – and encoding to propositional logic is not
sensible, as discussed above.
Note that the reduction to propositional logic is – in theory – possible for every
decidable logic. We can simply solve the problem and give the propositional encoding
true or false. We consider it obvious that there is no point in doing this, though. If the
theory admits quantifier elimination – for example cylindrical algebraic decomposition
– we could use that to obtain the (trivial) encoding.
We can, however, also use it to decompose the state space into finitely many regions
– this is what the cylindrical algebraic decomposition does after all – and confer
on the SAT solver to choose a region and make sure that this region satisfies the
Boolean structure. Note that it is probably worthy of discussion whether this would
be considered eager SMT solving, as also considering the Boolean structure could
easily be integrated into the theory reasoning part – the original cylindrical algebraic
decomposition works on arbitrary formulae.
Though our common perception of eager SMT solving is that we transform the formula
and issue a single call to the SAT solver, we can very well craft somewhat more complex
schemes in the spirit of eager SMT solving. Consider for example the approach to
solve first-order logic from [DP60] – which produces a sequence of SAT problems – or
modern CEGAR-style approaches like in [CKS+04], which can arguably be described
as eager methods to answer SMT-like questions.

4.2 Lazy SMT solving

The eager SMT solving scheme quickly became infeasible for richer logics and alternative
structure started to emerge towards the end of the 1990s. In [WW99] the authors
essentially describe what we now call a lazy SMT solver using the simplex method as
a theory solver and even denominate some requirement that we, later on, subsume as
SMT compliancy. Other examples of early solutions that use schemes similar to lazy
SMT include [ACG99; MR02; BDS02] and we refer to [BHM+09] for more details on
both the history and a properly thorough discussion of lazy SMT solving, as we only
give an intuitive explanation now.

4.2. LAZY SMT SOLVING 69

What we consider the modern lazy SMT solving approach consists of a slightly modified
SAT solver and a theory solver that solely works on sets of theory constraints. The
SAT solver works on a Boolean abstraction of the input formula and enumerates models
for this Boolean abstraction. These models are translated to sets of constraints that
should be consistent – if the model translates to the existence of theory assignment –
which is what the theory solver decides upon. If the theory solver deems such a set of
constraints consistent, we have proven that the input formula is satisfiable.

Definition 4.2: Boolean abstraction

Let AT be the set of all theory atoms from some theory T and b a set of fresh
Boolean variables. We call an injective function BT : AT → b an abstraction
function and extend it to arbitrary formulae by point-wise application.
Let ϕ be some formula over a theory T . We call ϕabs = BT (ϕ) the Boolean
abstraction (or sometimes Boolean skeleton) of ϕ.

The Boolean abstraction is an over-approximation of the input formula ϕ in the sense
that it ignores the underlying theory and only retains the Boolean structure of the
formula. The resulting formula ϕabs is now processable for a regular SAT solver which
can search for a model. Note that this satisfying Boolean assignment is not a model
for the input formula ϕ but only for ϕabs.

Definition 4.3: Theory concretization

Let ϕ be some formula over a theory T , ϕabs = BT (ϕ) the Boolean abstraction
of ϕ, and A a model for ϕabs. We define the set of theory atoms that correspond
to A as

Cϕ(A) = {a | A(BT (a)) = true} ∪ {¬a | A(BT (a)) = false}

and call Cϕ(A) the concretization of A over ϕ.

The SMT solver needs to check whether the Boolean assignment corresponds to a
feasible selection of theory atoms. In order to do this, we concretize the Boolean
assignment – essentially we apply the inverse of the abstraction – and feed the resulting
set of theory atoms to a theory solver. This theory solver determines whether a set of
theory atoms is consistent, that is whether there is a theory model that satisfies them.
If the theory solver confirms that the set of theory atoms is consistent, we determine the
satisfiability of ϕ. Otherwise, the current Boolean assignment can not be transformed
into a theory model – and is not a model in this sense – and the SAT solver searches for
another Boolean assignment. Note that the theory solver oftentimes provides the SAT
solver with a reason for unsatisfiability – usually a subset of the set of theory atoms –
which the SAT solver uses as a new conflict clause to perform regular conflict analysis.
Once the SAT solver can not find any further satisfying Boolean assignments – all
Boolean assignments have been rejected by the theory solver – we determine unsatisfi-
ability. Note that a proof for unsatisfiability is much more difficult than just giving
a model in the case of satisfiability. We not only have the Boolean reasoning which
essentially consists of the resolution steps, but also the theory reasoning that rejected
all Boolean assignments.

70 CHAPTER 4. SATISFIABILITY MODULO THEORIES SOLVING

ϕ ϕabs

SAT solver

Theory solver

theory constraints
SAT + witness

or
UNSAT + reason

SAT or UNSAT

Figure 4.1: Schematic overview of CDCL(T)-style SMT solving

The described scheme for an SMT solver is completely agnostic of the theory that we
try to solve, as long as we have a theory solver that can determine the satisfiability of
a set of theory atoms. We call this CDCL(T)-style SMT solving, alluding to the fact
that we usually use a CDCL-style SAT solver and a theory solver for some theory T .
See Figure 4.1 for a schematic overview. Further functionality, like providing a theory
model or a reason for unsatisfiability, can greatly improve practical performance but is
not strictly necessary.
We usually distinguish two variants of lazy SMT solving, namely, full-lazy SMT solving
and less-lazy SMT solving, which differ in when (or how often) the theory solver is
called. A full-lazy SMT solver only issues a theory call if the SAT solver obtained a
full Boolean model, that is if all Boolean variables have been assigned and the Boolean
abstraction is satisfied. In contrast, a less-lazy SMT solver issues theory calls more
frequently – for example after every decision level of the CDCL-style SAT solver – on a
partial Boolean model if the Boolean abstraction is not yet conflicting.
We observe that the two variants only differ if the theory call returns feasibility: if the
Boolean model is a full assignment we derive satisfiability of the whole formula if it is
however only partial we need to let the SAT solver continue.
Note that these variants have a nontrivial trade-off. Less-lazy SMT solvers issue more
theory calls and require a deeper integration into the SAT solver. The hope is that the
additional theory calls are not that expensive – due to what is called “incrementality”
and discussed in the following – but instead allow to detect conflicts earlier, possibly
avoiding certain harder theory calls altogether. In practice, less-lazy SMT solving
seems to beat full-lazy SMT solving, at least for “easier” logics like linear arithmetic.

4.3 SMT compliancy

We discussed the fundamental requirement for theory solvers – being able to decide
upon the consistency of a set of theory atoms – but also mentioned some advanced
properties. While these are not strictly necessary, they can greatly enhance applicability
or practical performance. The common term SMT compliancy usually only subsumes
incrementality, backtracking and the generation of reasons for unsatisfiability. However,
we feel that we expect more properties from a theory solver that are not necessarily
self-evident, and other more advanced properties can be very convenient.

4.3. SMT COMPLIANCY 71

4.3.1 Automation

We usually understand the task of SMT solving as a completely automated process:
given an input formula, we derive whether the formula is satisfiable with no user
interaction, requiring the theory solver to be completely automated as well. This is in
stark contrast to approaches like interactive theorem proving that rely on the user to
impose the general solving strategy. We instead need all components to bring about
decisions on heuristics on their own.

4.3.2 Soundness & completeness

We have not (yet) allowed a solver to fail, either by providing an incorrect result or
being unable to answer the posed question. Statistical approaches for the question of
satisfiability exist, and most of them may be incorrect – though with a small probability.
More commonly, however, certain methods realize that they can not solve a certain
problem or do not terminate in certain cases. For example, virtual substitution may
abort if the degree of some polynomial grows and Gröbner bases may fail to prove
either satisfiability or unsatisfiability. As for termination, regular implementations of
branch and bound have well-known cases that lead to infinite sequences of branching.
The presented CDCL(T) scheme is commonly enhanced such that theory solvers may
also return unknown, making the SAT solver skip this particular assignment. If we
find the formula to be satisfiable later on, the one unknown answer can be ignored.
Otherwise, the solver as a whole is forced to return unknown as well, as we can not be
sure whether the formula is satisfiable.

4.3.3 Model generation

Though we formally ask for the satisfiability of some formula, we usually want to have
a model in case the formula is indeed satisfiable. For most theory solvers, we can
simply read off the model when we determine satisfiability, for example, when using
simplex, interval constraint propagation, virtual substitution, or cylindrical algebraic
decomposition. In other cases, we have to construct a model separately, though the
effort is very low as, for example, for Fourier–Motzkin variable elimination.
We thus essentially assume all theory solvers to support the generation of a model. Of
course, some exceptions exist: most notably this is the case for Gröbner bases, though
some possible approaches have been proposed in [Jun12].

4.3.4 Reasons for unsatisfiability

When a theory solver determines that the given set of theory constraints is unsatisfiable,
the SAT solver uses this fact to advance its own search. We construct a new clause
encoding that the theory query

∧
ci is inconsistent and obtain

∨
¬ci – at least one

constraint needs to be false. Assume the theory query involved k of n theory constraints,
this clause excludes 2n−k possible assignments from the Boolean search space.
Of course, we would like to exclude as many assignments as possible. If we can find a
subset of the theory constraints that is already unsatisfiable, we can construct a smaller
clause. This is a benefit in itself, but also excludes more possible assignments. While
we can find such subsets in theory – we can simply try all of them – it heavily depends
on the theory solver whether there is an efficient way to do so.

72 CHAPTER 4. SATISFIABILITY MODULO THEORIES SOLVING

We call such subsets infeasible subsets and are usually interested in a (locally) minimal
subset. To find a (globally) minimum subset is a hard problem in most cases and not
worth the effort in practice. Hence, we usually use the term minimal infeasible subset.
Note that in general, neither minimal nor minimum infeasible subsets are unique.

Definition 4.4: Minimal infeasible subset

Let C be a set of theory constraints with C |= false. We call C infeasible and
M ⊆ C with M |= false an infeasible subset (of C). We say that M is minimal
if there is no M ′ (M with M ′ |= false. If M is of minimal cardinality among
all infeasible subsets, we call M a minimum infeasible subset.

We have two fundamentally different approaches to obtain an infeasible subset that
mainly depend on the locality of the underlying conflict. We can either enhance the
algorithm at hand in a way that (more or less) immediately yields an infeasible subset,
or we can mount an a-posteriori analysis in a second stage.
The simplex method, for example, finds unsatisfiability with a local criterion – when
some variable can not be pivoted – which conveniently yields a local conflict that can
be used as an infeasible subset as is described for example in [MB08b]. The CAD
method, on the other hand, only determines unsatisfiability when it exhausted all
possible solution candidates, essentially leaving us with no particular information about
the conflict.

4.3.5 Incrementality

In the context of lazy SMT solving – in particular less-lazy SMT solving – a theory
query is not an isolated computation. We can rather understand the sequence of theory
queries as an ever-changing problem that is only extended or restricted by the SAT
solver by adding (or removing) constraints to the current set of constraints.
If the theory solver manages to retain information from the previous theory call and
merely extends its internal state when a new constraint is added, we can significantly
improve practical performance. Gröbner Bases make for a nice example here, as they
essentially only combine existing polynomials to construct new ones until a fixed point
is reached. When adding a new polynomial, we can simply start from the result of the
previous computation without having to replicate any work we have already done.

4.3.6 Backtracking

Backtracking is the inverse process of incrementally adding constraints, we remove
individual constraints from the current set of constraints. Again, we can benefit if we
manage to retain as much information as possible. This usually means that we have to
track which pieces of information originated from which constraints and consequently
remove only what originated from the constraints to be removed.
In most cases, this is arguably the most difficult part when integrating a decision
procedure into SMT. It oftentimes involves a lot of bookkeeping and usually has certain
trade-offs between the granularity or specificity of tracking the origins of data and the
computational overhead. The best strategy is very specific to the decision procedure at
hand, and can be anything from “merely disabling” certain parts of the state like for
simplex [DM06] to completely removing currently unused data as proposed in [KÁ20].

4.4. COMMON THEORY SOLVERS 73

The term “backtracking” oftentimes implicitly means in-order backtracking. It assumes
that constraints are added in a certain order and the removal happens in the inverse
order. This essentially matches how a CDCL-style SAT solver manages assignments on
a trail. We note, however, that practical examples exist that motivate out-of-order
backtracking, allowing for the removal of constraints in an arbitrary order.
Though out-of-order backtracking paves the way for great additional savings, as we
can see in the following Example 4.1, it also proves to be a burden on some theory
solvers that might exploit the ordering of constraints otherwise.

Example 4.1: Benefits of out-of-order backtracking

Consider the following first-order logic formula over a real variable x with p
some difficult polynomial and its abstraction below.

(x < 0 ∨ x > 0) ∧ (x ≥ 0 ∨ p > 0) ∧ (x ≤ 0 ∨ p > 0)

(a ∨ b) ∧ (¬a ∨ c) ∧ (¬b ∨ c)

A typical CDCL-style SAT solver would assign ¬a, b, c and issue a theory call with
{x ≥ 0, x > 0, p > 0}. Assuming that this theory call yields UNSAT, it would
(after conflict resolution) learn the new clause (a) and backtrack all assignments
to revise the decision ¬a. Hence, the next assignments would be a, c and the
following theory call {x < 0, p > 0}.
Note that p > 0 was removed and then added again, just so that the SAT solver
can maintain its trail properly. Instead, we could have removed x > 0 and x ≥ 0,
added x < 0, and not changed p > 0. Assuming that p > 0 gives rise to a lot
of difficult computation in the theory solver, this simple change could provide
significant improvements, given that the theory solver can exploit it.

4.3.7 Lemma generation

Most methods that we use within a theory solver provide more information than we
need to decide upon the satisfiability. It is oftentimes possible to extract some pieces
of information and formulate them as a lemma – or a tautology – that can be used to
teach the SAT solver about the theory. Assuming x2 < 0 being a literal in our formula,
we could teach the SAT solver that ¬(x2 < 0) is a tautology and thus the literal must
be assigned to false, possibly independent of any specific theory query.

4.4 Common theory solvers

Finally, we want to give a rough overview of the techniques that are typically used for
theory solving in modern SMT solvers. Note that the topic of this thesis – nonlinear
arithmetic – is both comparably new and uncommon in the SMT community, and thus
the options we have discussed in Section 1.1 only apply to very few other SMT solvers.
The better part of the SMT community is concerned with linear arithmetic or completely
different theories like uninterpreted functions or bit-precise data types. We briefly
describe them in the following and refer to [KS08] for more explanation and further
literature on these topics.

74 CHAPTER 4. SATISFIABILITY MODULO THEORIES SOLVING

4.4.1 Uninterpreted functions

The theory of (equalities and) uninterpreted functions introduces function symbols
without any semantic other than being a function. They are commonly used to abstract
from the inner workings of some function or to identify possible implementations for a
given specification.
This theory is commonly solved by what is called congruence closure: forming equiv-
alence classes based on the equalities and checking them against any disequalities
afterward. Though this approach is arguably simple, actual implementations require
quite some considerations to make it efficient in practice. Note that this theory predates
the classical SMT framework and thus some common techniques exist that work outside
of the SMT framework, notably the Ackermann reduction and Bryant’s reduction.

4.4.2 Bit-precise data types

In particular, if SMT solvers are used for software verification, it is desirable to be
able to model data in a bit-precise way. Accordingly, theories for fixed-width integers –
commonly known as “bit-vectors” – or fixed-width floating-point numbers exist. While
bit-vector arithmetic has long been supported by many SMT solvers, floating-point
arithmetic has only recently found more widespread adoption, most notably since it
was added to the SMT-LIB standard after [RW10].
Though the solving techniques for both are extremely similar – both are ultimately
reduced to propositional logic in most cases – floating-point arithmetic has proven to
be significantly more difficult in practice for two reasons. While one can oftentimes
ignore most bits for bit-vector arithmetic (assuming that a satisfying model is usually
“small”) this is not the case for floating-point arithmetic. As the interrelations between
different bits are much more involved for floating-point arithmetic, one typically needs
to consider more bits and thus practical run times are much larger. Secondly, floating-
point arithmetic contains way more theory operations – for example, square roots or
fused multiplication and addition – and technical details that need to be considered,
like different rounding modes or values for infinity or “not a number”.

4.4.3 Linear arithmetic

The most common theory that incorporates real arithmetic is linear real arithmetic.
Given its long history in linear optimization (or operations research) many applications
are routinely formulated as linear real formulae and, thus, it is an important theory
for the SMT community as well.
The predominant decision procedure is the simplex method and most current solvers use
an integration in the spirit of [DM06]. Other methods, like Fourier–Motzkin variable
elimination, are mostly used for preprocessing or in special contexts like the one we
describe in Section 8.3.3. More specialized methods exist for restricted theories like
difference logic that even found its way into SMT-LIB [BFT16] as a separate theory.

4.4.4 Theory combination

One sometimes wishes to combine multiple theories, usually because the system that
one wants to analyze makes use of multiple different formalisms: for example, software
may use both native integers and floating-point numbers. Furthermore, uninterpreted

4.5. CDCL(T) AS A PROOF SYSTEM 75

functions are sometimes used to abstract from functionality that is either not relevant
or very hard to argue about, for example, during linearization as described in [CGI+18].
The goal is to have a framework that allows the modular combination of two (or more)
theory solvers for individual theories into a single theory solver for the combined theory.
The first such framework is commonly called Nelson-Oppen theory combination and
goes back to [NO79], but unfortunately, it imposes severe restrictions on the involved
theories that are rather hard to lift. More recently, a more flexible approach called
delayed theory combination was proposed [BBC+05; MB08a] that lifts most of these
and is thus used by most modern SMT solvers.

4.5 CDCL(T) as a proof system

It is sometimes convenient to formulate methods like CDCL(T) differently than as an
algorithm. If we want to argue about certain theoretical properties, we oftentimes use a
more declarative approach that is somewhat similar to the proof rules from Section 3.2.
This gives us a CDCL(T) proof system like presented in [NOT06].
We define CDCL(T) such that its proof rules work on a state, consisting of what we
call a trail – essentially recording the (partial) Boolean assignment – and the set of
clauses that the solver is arguing about. As for the trail, we simply reuse the DPLL
trail from Definition 3.5, which slightly differs from [NOT06] in that it records the
clause that leads to a propagation, though it is not explicitly used in the subsequent
proof system. Furthermore, we allow this clause to be constructed lazily as described
in [NOT06, Section 5]. Note that the DPLL trail contains literals which may now be
theory atoms instead of Boolean variables (or their negation) as well.

Definition 4.5: CDCL(T) state

Let M be a DPLL trail as specified in Definition 3.5. We call the combination of
a DPLL trail and a set of clauses C a CDCL(T) state and write 〈M, C〉.

For CDCL(T), we strictly distinguish between Boolean reasoning and theory reasoning
where the proof system we present is only concerned with Boolean reasoning. If
we write M |= C for a clause C, we claim that L ∈ M for some literal L ∈ C – a
statement arguing only about the Boolean state contained in the trail. In contrast to
that M |=T C denotes entailment in the theory T .
The set of rules presented here is taken from [NOT06], but we allow for strong theory
derivations as presented in [RKG18], which essentially turns the T-Learn rule into
the T-Learn∗ and gives us the stronger CDCL∗(T) proof system. Though we change the
notation a bit, we feel that the equivalence of the rules (to [NOT06]) is straightforward.

Definition 4.6: CDCL(T) and CDCL∗(T) proof systems

The CDCL(T) proof system consists of the following proof rules.

Decide:
〈M, C〉

〈JM,LK, C〉
if L or ¬L occurs in C,

L is undefined in M

76 CHAPTER 4. SATISFIABILITY MODULO THEORIES SOLVING

Fail:
〈M, C ∪ {C}〉
FailState

if M |= ¬C,
M contains no decision literals

UnitPropagate:

〈M, C〉
〈JM,C → LK, C〉

if
C = D ∨ L ∈ C,
M |= ¬D,
L is undefined in M

TheoryPropagate:

〈M, C〉
〈JM, (D ∨ L) → LK, C〉

if
M |=T D ∨ L and M |= ¬D,
L or ¬L occurs in C,
L is undefined in M

As already mentioned, we allow the clause which causes a propagation to be
constructed lazily. Following [NOT06], we assume that (D ∨ L) is usually
only constructed when the T-Backjump rule is applied and merely serves as a
placeholder here and in the trail.

T-Backjump:

〈JM,L,NK, C〉
〈JM, (C ′ ∨ L′) → L′K, C〉

if

C ∈ C with JM,L,NK |= ¬C,
there is some clause C ′ ∨ L′ such that:

C |=T C
′ ∨ L′ and M |= ¬C ′,

L′ is undefined in M ,
L′ or ¬L′ occurs in C or in JM,L,NK

T-Learn:
〈M, C〉

〈M, C ∪ {C}〉
if each atom of C occurs in C or in M ,

C |=T C

T-Forget:
〈M, C ∪ C〉
〈M, C〉

if C |=T C

Restart:
〈M, C〉
〈JK, C〉

We call the proof system obtained by replacing T-Learn by the following T-
Learn∗ rule the CDCL∗(T) proof system.

T-Learn∗:
〈M, C〉

〈M, C ∪ C〉
if C |=T C

The CDCL(T) proof system (as well as CDCL∗(T)) either ends up in FailState – indicating
that the input formula is unsatisfiable – or any other state where no further rule can
be applied – indicating that the input formula is satisfiable and the trail contains a
complete Boolean model (but not the theory model).

Part II

Cylindrical Algebraic
Decomposition for SMT solving

Cylindrical Algebraic
Decomposition

As already discussed, the cylindrical algebraic decomposition (CAD) is the most popular
complete method to deal with nonlinear real arithmetic problems. For some background
on its history and alternative approaches we refer to Section 1.1. We now go into some
more detail on what CAD is about, how we compute it, and what we can do with
the results. As always, we put special emphasis on parts relevant for embedding CAD
into an SMT solver and pass over many theoretical issues here. We encourage anyone
interested in the mathematical details to study the papers mentioned throughout this
chapter and hope to at least mention all noteworthy issues.
The term “cylindrical algebraic decomposition” describes both a mathematical object
with certain interesting properties and an algorithm to construct such objects. We thus
use this term for either and usually rely on the context for which of the two we mean.

5.1 General idea

The fundamental idea of the CAD is to reduce a question that is concerned with Rn

to an equivalent question about a finite number of “things”. We observe that R has
uncountably many elements and, therefore, any naive approach – one that fails to
abstract from a single element from R – is doomed to fail as it is already impossible
to enumerate all candidates, not to mention the issues of termination or run time
complexity. By producing an equivalent problem over a finite number of representatives
(for certain subsets of R), the solutions to many questions get more approachable.
We already used the term representative, and it indicates a general idea of how to
obtain such a finite set. We decompose Rn into finitely many subsets such that all
elements of a particular subset are in some sense the same (equivalent) for the question
we want to answer. Intuitively, we may expect these subsets to look reasonable in some
sense, for example, they should be connected, disjoint, together cover Rn (thus we also
call them a partition), and be somewhat smooth.
The smallest decomposition – in the number of subsets – is induced by the equivalence
classes given by the above notion of equivalence. Obtaining it may, however, be costly
and not worth the effort in practice, and CAD usually gives us a finer decomposition that
exhibits further structural properties. We also note that an incomplete decomposition
– in which elements that we consider different in general are in the same subset – may
also be sufficient to solve certain problems, in particular satisfiability.

80 CHAPTER 5. CYLINDRICAL ALGEBRAIC DECOMPOSITION

There are two fundamentally different ways to represent a partition of Rn and it heavily
depends on the application which of these is preferable. As already indicated, we can
choose a representative for every partition as a single point. We may also want to store
the borders of the partition – assuming that a partition is a connected set – which tends
to give us a lot more information. The CAD works with representatives internally, but
we can also extract full cell representations consisting of the description of the borders
without a lot of additional effort.
To approach the question of how to obtain such a decomposition, we start with a quick
look at the equivalence relation that we use to partition Rn in our application. We
consider how many equivalence classes exist in theory and how we can identify the
border between two subsets.
Any (first-order logic) real arithmetic question of the form Does X hold? results in a
statement (a logical sentence) that evaluates to either true or false, thereby splitting
Rn into the part where X holds and the rest where X does not hold. When we only
consider this logical level, the equivalence at its core is discrete: there is no “process”
that makes the evaluation less true when moving from a satisfying assignment towards
a conflicting assignment, but only a sudden change from satisfiability to unsatisfiability.
In this sense, there are only two equivalence classes: the true set and the false set.

Definition 5.1: Equivalence classes of a formula

Let ϕ be a quantifier-free first-order logic real arithmetic formula. We define the
equivalence classes of ϕ for true and false inductively by

true∼ (ϕ) :=

Rn if ϕ = true

∅ if ϕ = false

{A | A(x) ≡ true} if ϕ = x ∈ B
{A | A(p) ≡ true} if ϕ = p ∈ A
false∼ (ϕ′) if ϕ = ¬ϕ′

true∼ (ϕ1) ∪
true∼ (ϕ2) if ϕ = ϕ1 ∨ ϕ2

and false∼ (ϕ) := Rn \ true∼ (ϕ).

This somewhat changes if we peek into the statement X, or more precisely the quantifier-
free part of X. We assume that we pick a certain variable assignment – we instantiate
all quantifiers – and analyze how our equivalence relation is composed for each of
the possible ways to construct a formula. We observe that we still have this binary
decomposition for Boolean variables and predicates, but we may very well have changes
for the evaluation of parts of the formula (for individual predicates or subformulae)
without changing the overall evaluation of X.
We observe, maybe not particularly unexpected, that the equivalence classes of a
formula are separated only when a predicate changes its evaluation result (discarding
the separation due to Boolean variables). Hence, we can obtain the borders of all
partitions that (possibly) separate the equivalence classes by considering all points
where any of the predicates change their evaluation.
Constructing a decomposition based on where predicates change their evaluation might
not yield the smallest decomposition as discussed before, but may very well result in

5.1. GENERAL IDEA 81

more partitions than necessary. If a predicate changing its evaluation does not change
the evaluation of the whole formula, we construct separate partitions that could both
be merged into the same equivalence class.
We oftentimes chose not to do this for two reasons: firstly, once we have the two
partitions and checked their evaluation result, we are done working on these partitions
and merging them is only additional work without any benefit. Secondly, we usually
assume certain structural properties about these partitions – for example, cylindricity –
that oftentimes get lost when merging. For an example where merging actually makes
sense, and a discussion of what needs to be considered, we refer to [Neu18a].
Reviewing the type of constraints we consider here finally brings us to the notion
of sign-invariant regions. Recall that constraints are of the form p σ 0 where p is a
polynomial and σ is a sign condition or relation symbol. A constraint may thus change
its evaluation only at variable assignments where the evaluation of the polynomial
changes its sign, which are exactly the real roots of the polynomial. We call the
partitions where no polynomial from a given set changes its sign-invariant regions.

Definition 5.2: Sign-invariant regions

Let P ⊂ Q[x] be a set of polynomials. We call R ⊆ Rn a sign-invariant region
of P if ∀p ∈ P. ∀r1, r2 ∈ Rn. sgn(p(r1)) = sgn(p(r2)).

This gives us a way to construct a decomposition of the real space by constructing
all real roots of the considered polynomials. Furthermore, it shows why a finite
decomposition of Rn that represents the equivalence classes exists in the first place:
every set of points that is not separated by a root of some polynomial is equivalent,
every one of the finitely many polynomials only has a finite number of (connected) root
surfaces, and, being polynomials, their root surfaces only cross finitely many times. As
we further observe that sign-invariance with respect to all polynomials from a given
formula immediately implies truth-invariance of the formula, we can use this not only
to study sets of polynomials but arbitrary formulae involving such polynomials.
This reduction of a problem about formulae to a problem dealing with polynomials
introduces an abstraction that may force us to consider more partitions than required:
though a polynomial changes its sign, the formula might not. Reconsidering that we
study formulae may be beneficial later on for what we call a truth-table invariant
CAD [Bro98; BDE+16], possibly paving the way for future optimizations. For now,
we only consider a CAD arguing about polynomials which is sufficient and defer this
point, for example to Section 6.6.
The CAD method provides an algorithmic framework for how to construct such a finite
decomposition effectively. It proceeds dimension-wise and constructs a CAD in some
dimension in a way such that it can be extended to a higher-dimensional CAD. This
extension is done in a very direct way: given the representatives of a k-dimensional
CAD, we obtain the representatives of the (k+1)-dimensional CAD by extending every
representative with one or more values from the (k + 1)st dimension.
In other words, the representatives of the k-dimensional CAD are exactly the repre-
sentatives of the (k + 1)-dimensional CAD projected onto Rk. Similarly, the full-cell
representations of a k-dimensional cell can directly be extended to the representations
of the corresponding (k + 1)-dimensional cells.

82 CHAPTER 5. CYLINDRICAL ALGEBRAIC DECOMPOSITION

Of course, we want to construct the (k + 1)-dimensional CAD, irrespective of which
sample points were used for the k-dimensional CAD. As we argued that all sample
points from one region are equivalent, it should not make a difference which one was
selected. This immediately yields that the projections of two (k + 1)-dimensional
CAD cells onto Rk must be either identical or disjoint. The intuitive argument is as
follows: if the projections of two cells C1, C2 overlap but are not identical, it would be
possible to select a representative sk ∈ C1 \ C2 – recall that all samples within a cell
are supposed to be equivalent. However, this representative can not be extended to a
sample point sk+1 ∈ C2 and, thus, we may not obtain a sample point from C2 at all.

5.1.1 Cylindricity and delineability

The above observation about how two CAD cells relate results in two crucial concepts
that describe how a CAD is built: cylindricity and delineability. While cylindricity
describes how the cells look like and how they are arranged relative to each other,
delineability gives a criterion to identify such cells. We now give very brief definitions
and some intuitive descriptions of these concepts here and refer to any of [Col75;
ACM84; McC88] for more detailed definitions and more extensive discussions. As we
have already argued, the projections of two (k + 1)-dimensional CAD cells onto Rk

must be either identical or disjoint, and we formalize this statement in Definition 5.3.

Definition 5.3: Cylinders and cylindrically arranged cells

Let C be a set of k-dimensional cells. We say that the cells C are arranged in
cylinders (or simply are cylindrical) if

∀c1, c2 ∈ C.
(
projk−1(c1) = projk−1(c2)

)
∨
(
projk−1(c1) ∩ projk−1(c2) = ∅

)
where projk−1 denotes projection onto (k− 1)-dimensional space. For any c ∈ C,
we call c× R a (k-dimensional) cylinder over c.

For cells that are arranged in cylinders, sample points for all (k + 1)-dimensional cells
from a particular cylinder can be obtained by extending any sample point from the
k-dimensional cell underlying this cylinder, as the projection of every cell from this
cylinder onto Rk is identical.
To obtain a set of cells that is cylindrical, we need some way to identify cells C such
that their sign-invariant regions over C are arranged cylindrically – in particular C
must be so that the projection onto Rk of every sign-invariant cell that intersects C×R
is C, and not only some subset of C. We can reformulate this in terms of the root
surfaces of the involved polynomials as what we call delineability: we can use a cell C
if the number and order of roots of all polynomials are invariant over C.

Definition 5.4: Delineability

Let P (R[x1, . . . , xk + 1] be a set of polynomial over k + 1 variables and C a
k-dimensional cell. We call P delineable over C if the number of real roots of
polynomials from P and their multiplicities are constant on C.

Intuitively, a set of polynomials is delineable over a cell if their root surfaces are
properly “stacked” above this cell in the sense that every two root surfaces are either
identical (over this cell) or do not touch each other (over this cell).

5.1. GENERAL IDEA 83

x

y

p1

p2

true∼ (ϕ)

(a) Solutions of ϕ

x

y

x

p1

p2

C1

C2

(b) Projection of cells onto x-axis

Figure 5.1: Decompositions based on two constraints

Apparently, we need some way to construct such a lower-dimensional CAD, in particular,
we need to obtain an appropriate set of lower-dimensional polynomials that induce
the lower-dimensional CAD. The characterization of delineability paves the way to a
constructive method by identifying polynomials that have roots where the number or
order of roots of any polynomials change. We discuss how we identify and characterize
these places (or rather borders) in the following Section 5.2.
Inspired by the relation between the CAD cells – defined via the projection of higher-
dimensional cells – we call this process projection, while the stepwise construction of
sample points is called lifting. In literature, the terms elimination and construction are
sometimes used as well. Before we continue with more detailed descriptions of these
individual components, let us consider a full example for a CAD that illustrates the
aforementioned concepts.

5.1.2 CAD by example

We now show the construction of a full CAD by the example of the two constraints
y− x2 +1 > 0 and 2y− x− 2 < 0, combined into the input formula ϕ := (y− x2 +1 >
0) ∧ (2y − x − 2 < 0). In the following figures, we show the root surfaces of the
corresponding polynomials p1 := y − x2 + 1 and p2 := 2y − x− 2.
The satisfying regions for each constraint are depicted in Figure 5.1a as striped areas
and we observe that the whole formula is satisfied by the region in between the two
curves. Note that we only consider what are commonly called full-dimensional (or
open) cells in this example.
We discussed that every CAD cell is sign-invariant with respect to the polynomials
from ϕ, or at least truth-table invariant with respect to ϕ. A first attempt might be
to construct two cells: one for the satisfying region and one for the rest as depicted
in Figure 5.1b. Considering the projections of these cells C1 and C2 onto the x-axis,
however, we observe that they are not arranged cylindrically as their projections onto
the x axis intersect but are not identical.

84 CHAPTER 5. CYLINDRICAL ALGEBRAIC DECOMPOSITION

x

y

p1

p2

C1

C2

C3

C4 C5

(a) Truth-table invariant cells

x

y

p1

p2

C1

C2

C3

C4

C5

C6

C7

C8

C9

(b) Sign-invariant cells

Figure 5.2: CAD cells based on two constraints

To obtain a cylindrical arrangement of cells, we need to split C2 at the boundaries
of C1 into multiple cells as shown in Figure 5.2a. This already yields five cells that
are now cylindrically arranged and truth-table invariant. Note how both C1 and C5

are not sign-invariant as both c1 and c2 have root surfaces within these cells. A
sign-invariant CAD thus has both C1 and C5 separated into multiple cells by the root
surfaces of c1 and c2 as shown in Figure 5.2b. Also note that we have ignored the fact
that sign-invariance also recognizes the root surfaces as cells themselves and instead
assumed the notion of open CAD (as described in Section 5.2.9.1).
It is usually difficult to obtain a truth-table invariant CAD directly, at least if no
equational constraints as described in Section 5.2.8 are present and allow for techniques
like the ones from [BDE+16]. We would need to compute a sign-invariant CAD first and
then merge adjacent cells, if appropriate. We thus assume to work with sign-invariant
CADs for most of this work as the effort of merging cells is not necessary to decide
upon the satisfiability of a formula. A notable exception is quantifier elimination as
described in Section 6.9, where merging cells allows for smaller resulting formulae.
The algorithmic construction of this CAD proceeds in the aforementioned two stages:
projection and lifting. While the projection constructs lower-dimensional polynomials
from the input polynomials, the lifting uses these dimension-wise to build sample
points that represent the regions depicted in Figure 5.2b. As we give more detailed
descriptions of both the projection and the lifting in the two subsequent sections, we
only give a very brief overview here.
From ϕ we extract the polynomials P = {y − x2 + 1, 2y − x − 2}. The projection
additionally yields Proj(P) = {2x2 − x − 4} which has real roots exactly at the
boundaries of the projections of the cells that we identified in Figure 5.1b: ≈ −1.19
and ≈ 1.69. The lifting procedure now constructs a 1-dimensional CAD, represented
by 1-dimensional sample points, as shown in Figure 5.3a.
The first step is to construct 2-dimensional cylinders over the 1-dimensional CAD
cells, as depicted in Figure 5.3b. Note how every sample that represents a cell of the
1-dimensional CAD induces a line in every 2-dimensional cylinder: all representatives
of 2-dimensional cells will be constructed on the corresponding line. To subdivide the
cylinders into 2-dimensional cells, we consider the root surfaces of every 2-dimensional

5.2. PROJECTION OPERATORS 85

xC1 C2 C3

(a) 1-dimensional CAD

x

y

x

p1

p2

C1×R C2×R C3×R

C1 C2 C3

(b) 2-dimensional cylinders

x

y

x

p1

p2

(c) 2-dimensional CAD

Figure 5.3: Building a 2-dimensional CAD

polynomial. As we ensure delineability, we know that for every representative of the
1-dimensional CAD – and thereby every line in the 2-dimensional cylinder – the real
roots of the polynomials over this representative – or its intersections with the line –
are equivalent in the sense that their number and order remains the same.
The construction of these representatives is shown in Figure 5.3c. We start by computing
the real roots of every 2-dimensional polynomial over every 1-dimensional representative
– recall Section 2.5.3 for how to do this – and additionally select sample points below
the smallest root, between every two consecutive roots, and above the largest root.
Altogether, we obtain 21 sample points (of dimension 2) for this example, including
two sample points for the rightmost cylinder that lie outside of Figure 5.3c.
In the following, we present different existing methods for the projection operator we
denoted by Proj in Section 5.2 and provide some more details on the lifting procedure
in the subsequent Section 5.3.

5.2 Projection operators

We discussed that – given a set of “input” polynomials – we want to construct a set of
lower-dimensional polynomials that induce a lower-dimensional CAD, and then use
the sample points of this lower-dimensional CAD to construct sample points for our
current problem. The main requirement for the lower-dimensional polynomials is that
they should have roots wherever the number or order of the input polynomials real
roots change, that is where they “stop being delineable”. To construct these lower-
dimensional polynomials, we now make use of reducta, resultants and discriminants as
already defined in Section 2.2.

86 CHAPTER 5. CYLINDRICAL ALGEBRAIC DECOMPOSITION

Since CAD was proposed in [Col75], several methods to compute such lower-dimensional
polynomials have been developed and we call them projection operators. We focus on
the projection operators suitable for arbitrary inputs and briefly mention a few more
that are intended for more specialized cases at the end of this section.
The first projection operator is due to Collins in [Col74], but Collins himself already
notes in [Col75, Section 5] that many polynomials are unnecessary in most cases. Hong
showed in [Hon90] how to reduce Collins’ projection operator significantly to what we
call Hong’s projection operator.
McCallum used a rather different mathematical point of view in [McC88] to moti-
vate another projection operator. Though it uses the same ingredients, it is again
substantially smaller than the ones due to Collins or Hong. McCallum’s projection
operator however has an important caveat: for problems of dimension larger than three,
the CAD construction may fail or be incomplete in the sense that some cells may be
missing from the result – or rather cells are incorrectly “merged” and in this sense a
representative is missing. We refer to this issue as completeness (or incompleteness) of a
projection operator. Brown improved upon McCallum’s operator again in [Bro01] with
respect to the number of constructed polynomials, but still suffers from the deficiency
of McCallum’s operator and even adds additional sources of incompleteness.
Lazard published another improvement on McCallum’s projection operator in [Laz94].
In contrast to McCallum’s and Brown’s operators, Lazard ensured correctness for all
degrees by a slight modification in the lifting process. However, it never came into
widespread use as a gap in his proof was noticed in [Col98] and [Bro01]. Lazard’s
projection operator only came to the fore when McCallum and Hong closed this gap
in [MH16] – a full proof was just proposed in [MPP19] – and thereby provide us with
a complete projection operator that essentially supersedes all but Brown’s operator.

5.2.1 Intuition

Though we do not dive into the strict mathematical reasoning behind the different
projection operators, we give some intuition on what a projection operator does and
what it means geometrically. For the purpose of this section, we consider McCallum’s
projection operator – ignoring preconditions and the question of completeness. This
projection operator is (roughly) defined as follows.

Proj(P) = {coeffs(p), disc(p) | p ∈ P} ∪ {res(p, q) | p, q ∈ P}

We observe that we essentially have three components: coefficients of a polynomial,
the discriminant of a polynomial, and the resultant of two polynomials, and give some
intuition on the role of these components in Example 5.1.

Example 5.1: CAD projection

We consider an input formula with the two polynomials p = (y + 1)2−x3+3x−2
and q = (x+ 1) · y − 3. We observe that the roots of the first polynomial form a
tie-like shape, while the second polynomial is responsible for the two hyperbolas.

5.2. PROJECTION OPERATORS 87

x

y

x

y

x
−3 −2 −1 0 1 2 3

In the x-dimension (that is shown at the bottom of the right figure) we can
identify four points where the number or order of roots change, and thus separate
sign-invariant regions, which fall into the following four categories: 1. x = 2
because p and q intersect at (2, 1), 2. x = 1 because p intersects with itself at
(1,−1), 3. x = −2 because p turns around at (−2,−1), and 4. x = −1 because
q has an asymptote at x = −1. Let us consider the individual components of
the projection set Proj({p, q}), cleaned from constant and multiple factors as
described at the end of Section 2.2:

Proj(P) ={ coeffs(p) = {x3 − 3x+ 1},
coeffs(q) = {x+ 1},
disc(p) = (x− 1)2 · (x+ 2),

disc(q) = 1,

res(p, q) = (x− 2) · (x4 + 4x3 + 6x2 + 7x+ 7) }

We observe that the resultant covers all intersections of p and q – note that
the second factor of the resultant has no real roots. The discriminant, on the
other hand, covers the cases where a polynomial induces a separation by itself,
either by self-intersection or by turning around. Roots in the coefficients finally
indicate singularities, in this case at −1.
The sets of cylinder boundaries may very well overlap if some of these components
happen to share common polynomial factors, for example, because multiple of
the above criteria coincide. Note, however, that all projection operators may
also be subject to imprecision in the sense that polynomial factors are generated
that indeed yield new cell boundaries that are spurious.

5.2.2 Collins’ projection operator

In the first publications on the cylindrical algebraic decomposition, multiple (improving)
projection operators were proposed. Though the authorship is not completely clear, we
attribute this first group of projection operators to Collins. We call all of them Collins’
projection operator and mean the last of them in Definition 5.7 if not further specified.

88 CHAPTER 5. CYLINDRICAL ALGEBRAIC DECOMPOSITION

We start with the formulation of Collins’ projection operator from the first paper [Col74].
Having already seen the general structure of more recent projection operators in the last
section, it is the only one that does not follow the pattern we have outlined. Instead,
it really looks like the first working solution to finding a projection operator at all,
essentially including everything that might be useful.

Definition 5.5: First version of Collins’ projection operator

Let P ⊂ Z[x] and Q = P ∪ {p · q | p, q ∈ P, p 6= q}. Collins’ first projection
operator as of [Col74] is defined as follows:

ProjCollins(P) =
⋃

q∈RED(Q)

PSC(q, q′)

In the very next year, [Col75] already contains a significantly improved version that
starts to show the features we have highlighted above: the separation into coefficients,
something for every polynomial individually and as well for every pair of polynomials.
In particular, note that we get rid of the multiplication of polynomials that usually
leads to an expensive degree growth – though of course another degree growth is hidden
within the principal subresultant coefficients.

Definition 5.6: Second version of Collins’ projection operator

Let P ⊂ Z[x]. Collins’ second projection operator is defined as follows:

ProjCollins(P) ={lcoeff(p) | p ∈ RED(P)}

∪
⋃

p∈RED(P)

PSC(p, p′)

∪
⋃

p,q∈RED(P)

PSC(p, q)

Later on, yet another variant was presented in [ACM84] that again features an improve-
ment, though much more subtle than the previous one. Observe that the combination
of lcoeff(p) and PSC(p, p′) is really just a rewriting, but the modification in the last
part actually removes PSC(p∗, q∗) where p∗ and q∗ are from the reducta set of the
same polynomial.

Definition 5.7: Third version of Collins’ projection operator

Let P ⊂ Z[x]. Collins’ projection operator is defined as follows:

ProjCollins(P) =
⋃

p∈RED(P)

({lcoeff(p)} ∪ PSC(p, p′))

∪
⋃

p,q∈P
p<q

⋃
p∗∈RED(p)
q∗∈RED(q)

PSC(p∗, q∗)

This last version from Definition 5.7 is what is usually considered to be the projection
operator due to Collins and we use it as such for the following experiments.

5.2. PROJECTION OPERATORS 89

5.2.3 Hong’s projection operator

A few years later, Hong managed to improve Collins’ projection operator in [Hon90]
in a seemingly small but (in practice) significant way. Note that we can use the
essentially same proofs for this modified construction, also retaining full theoretical
completeness and the same mathematical foundations. Hong showed that for the
pairwise computations of the pseudo resultant coefficients, we only need to consider
the whole reducta set for one of the polynomials.
An interesting remark appears in [SS03], noting that “the construction of the chain of
reducta can be stopped as soon as the first constant leading coefficient appears”. This
observation immediately transfers to leading coefficients that do not vanish anywhere
(like x2 + 1) and also holds for Collins’ projection operator. Furthermore, the same
argument also applies to McCallum’s projection operator that is shown below.

Definition 5.8: Hong’s projection operator

Let P ⊂ Z[x]. Hong’s projection operator is defined as follows:

ProjHong(P) =
⋃

p∈RED(P)

({lcoeff(p)} ∪ PSC(p, p′))

∪
⋃

p,q∈P
p<q

⋃
p∗∈RED(p)

PSC(p∗, q)

5.2.4 McCallum’s projection operator

Around the same time, McCallum devised another improvement in [McC84] and –
only for dimension three – in [McC88]. This time the projection is approached from a
different mathematical angle, namely from complex analytic geometry, based on [Zar65].
We previously considered the whole set of principal subresultant coefficients for every
polynomial (and its derivative) from the reducta set and for every pair of polynomials
(where one is from the reducta set). McCallum showed that we can replace all these by
a single discriminant (for every polynomial) and a single resultant (for every pair of
polynomials). We observe that this construction is not fundamentally different though,
as we know that psc0(p, q) = res(p, q), but “only” allows us to consider the polynomial
(instead of its reducta set) and the resultant (instead of the set of principal subresultant
coefficients), yielding way fewer polynomials in most cases.

Definition 5.9: McCallum’s projection operator

Let P ⊂ Z[x] be a set of polynomials, cont(P) their content and P ′ the finest
square-free basis of their primitive parts prim(P). McCallum’s projection opera-
tor is defined as follows:

ProjMcCallum(P) ={coeffs(p),disc(p) | p ∈ P ′}
∪ {res(p, q) | p, q ∈ P ′} ∪ cont(P)

This greatly simplified projection operator has a significant drawback compared to
those of Hong or Collins. In certain cases, the projection is incomplete in the sense
that we may not be able to do the lifting process properly. We discuss the reasons and

90 CHAPTER 5. CYLINDRICAL ALGEBRAIC DECOMPOSITION

consequences in Section 5.3.1. Furthermore, this projection operator assumes that P is
not some arbitrary set of polynomials, but a finest square-free basis. We discuss this
issue briefly in Section 6.5.3 and note that it can be achieved by completely factorizing
all polynomials, which appears reasonable anyway. This even yields an irreducible basis,
which is in some sense even stronger than a square-free basis.
Similar to the remark about Hong’s projection operator from [SS03], it is sufficient to
consider the coefficients in McCallum’s projection operator only until a constant (or
rather not vanishing anywhere) coefficient appears, starting from the leading coefficient.
We call this variant partial McCallum’s projection operator.

5.2.5 Brown’s projection operator

Brown improved on McCallum’s projection operator in [Bro01] and showed that it is
oftentimes enough to consider only the leading coefficient instead of all coefficients.
Naturally, it inherits the downsides of McCallum’s projection operator concerning its
incompleteness. Removing all other coefficients from the projection may even lead to
additional problems in the lifting phase, though a method is given to detect and handle
these cases in [Bro01].

Definition 5.10: Brown’s projection operator

Let P ⊂ Z[x] be a set of polynomials, cont(P) their content, and P ′ the finest
square-free basis of their primitive parts prim(P). Brown’s projection operator
is defined as follows:

ProjBrown(P) ={lcoeff(p),disc(p) | p ∈ P ′}
∪ {res(p, q) | p, q ∈ P ′} ∪ cont(P)

5.2.6 Lazard’s projection operator

Lastly, Lazard’s projection operator was published in [Laz94] but it was mostly dis-
regarded as its correctness proof contained a flaw that was only corrected more than
twenty years later in [MH16; MPP19]. The projection operator itself is very similar to
McCallum’s and Brown’s projection operators – it uses the leading and the trailing
coefficient. One could very well argue that Lazard’s main contribution is a slight change
in the lifting process that resolves the incompleteness issue.

Definition 5.11: Lazard’s projection operator

Let P ⊂ Z[x] be a set of polynomials, cont(P) their content, and P ′ the finest
square-free basis of their primitive parts prim(P). Lazard’s projection operator
is defined as follows:

ProjLazard(P) ={lcoeff(p), tcoeff(p),disc(p) | p ∈ P ′}
∪ {res(p, q) | p, q ∈ P ′} ∪ cont(P)

Similar to the projection operators due to McCallum and Brown, a problem – in the
correctness proof – arises if we substitute a partial sample point into a polynomial to
compute new sample points and this polynomial vanishes identically on this partial

5.2. PROJECTION OPERATORS 91

sample point. The solution to this, at least for Lazard’s projection operator, is rather
simple at first glance. We substitute one variable at a time (say x 7→ αx) and if the
polynomial vanishes identically we know that (x− αx) divides the polynomial q. In
this case we simply replace q by q/(x− αx) and continue from there. We discuss the
details of this approach in Section 5.3.2.

5.2.7 Relation between projection operators

We have presented five different, though roughly similar, projection operators which
naturally yields the questions of how they relate to each other. We give some brief results
on their qualitative relation of the resulting sets of polynomials and the (theoretical)
applicability in a complete way, as well as a quantitative comparison of the resulting
projection sets. We acknowledge that there are further questions of possible interest,
ranging from a comparative analysis of their mathematical background and motivation
over a more detailed quantitative comparison to the actual impact on the overall
performance for a practical solver that we do not consider here.
We observe that ProjHong(P) ⊆ ProjCollins(P) as the only difference is that Hong’s
projection operator only includes psck(p, q) for q ∈ P instead of q ∈ RED(P), and we
know that P ⊆ RED(P). The case is even easier for the projection operators based on
McCallum. ProjBrown(P), ProjLazard(P), and ProjMcCallum(P) only differ in which
coefficients are included: we have the leading coefficient for ProjBrown, leading and
trailing coefficient for ProjLazard, and all coefficients for ProjMcCallum.
To relate ProjHong(P) and ProjMcCallum(P), we note that the first principal subre-
sultant coefficient is the resultant – this is why we can use the principal subresultant
coefficients to compute the resultant in the first place – and thus we always have
res(p, q) ∈ PSC(p, q). Combined with how we defined the reducta set, this almost
immediately yields that ProjMcCallum(P) is included in ProjHong(P). Thus, we get

ProjBrown(P) ⊆ ProjLazard(P)

⊆ ProjMcCallum(P)

⊆ ProjHong(P)

⊆ ProjCollins(P)

Recall, however, that ProjBrown and ProjMcCallum have the important unpleasant
property that they may be incomplete on certain examples, even if these are rather
pathological. In [Laz94], alongside ProjLazard, a (slightly) modified lifting procedure
was introduced that resolves any incompleteness issues with ProjLazard – and thereby
also ProjMcCallum, at least if the trailing coefficient is retained and not removed as
proposed in [SS03] – which we discuss in Section 5.3.2. ProjBrown still suffers from
other sources of incompleteness, though.
This mix and match approach to combining projection operators, special techniques
(like equational constraints as shown in Section 5.2.8), and changes to the lifting
process allows to quickly come up with interesting variants of CAD. It is, however,
important to keep in mind that the theoretical foundation for the correctness hangs
by a thread: while it is oftentimes retained by rather simple arguments, it can be
invalidated by seemingly innocent changes. For example, ProjMcCallum can be used

92 CHAPTER 5. CYLINDRICAL ALGEBRAIC DECOMPOSITION

0k 2k 4k 6k 8k
100
101
102
103
104
105
106

problems

Collins Hong
McCallum Lazard
Brown Input

Figure 5.4: Overall projection size

to form a complete CAD when we employ Lazard’s lifting scheme. However, while
removing coefficients as proposed in [SS03] for ProjMcCallum is “safe” (it stays “as
incomplete” as it is), it destroys the theoretical foundation of ProjLazard and thereby
the reasoning why Lazard’s lifting scheme makes ProjMcCallum complete as well.
The above discussion points to three possible directions for future research on projection
operators: 1. finding new projection operators that are sound without an adapted lifting,
most probably between Hong’s and McCallum’s projection operators, 2. exploiting
special cases or specific structures of constraints and formulae like equational constraints
that we discuss in the following or 3. employ new basic building blocks that replace
(sub-)resultants. Current work mostly focuses on the second one, as research on CAD,
in general, seems to focus more on integrating CAD into specific applications recently.
After all, the whole work of this thesis arguably falls into this category.
While we performed some more extensive analysis about the shape and size of projections
for different projection operators in [Vie16; VKÁ17], we give a brief overview here
to get a rough feeling for the magnitude of differences in size. In Figure 5.4, we
show the results of computing a full projection of all polynomials within a formula
for all nonlinear real formulae from SMT-LIB and extracting the overall number of
polynomials (if possible within at most 30min and 8GB). While this estimate is rather
pessimistic – usually the Boolean structure does not require having all polynomials in
a CAD at once – it gives a pretty good handle on the approximate size.
Following the previous discussion, the results in Figure 5.4 show that the overall sizes of
the projection sets follow a strict ordering. Also, the distances between the individual
curves roughly match our expectation: both moving from Collins’ to Hong’s and
from Hong’s to McCallum’s projection operator makes a significant difference while
McCallum’s, Lazard’s, and Brown’s projection operators are pretty close to each other.
As we discuss at various places, for example, in [VKÁ17; KÁ20], having a smaller
projection in terms of the number of polynomials does not automatically make the
overall solving process faster. For example, it may be beneficial to have additional
polynomials with smaller degrees that are preferred for the lifting. Additionally, the
actual run time depends on several other factors that have nothing at all to do with the
projection. Some experimental results on the impact of different projection operators
in practice are given in Section 6.4.

5.2. PROJECTION OPERATORS 93

0k 2k 4k 6k 8k
100
101
102
103
104
105
106

problems

Collins Hong
McCallum Lazard
Brown Input

Figure 5.5: Polynomial degrees of projections

We show another indicator in Figure 5.5, namely the sum of the degrees of all polyno-
mials. For comparison with the input problems, the dotted line shows the sum of the
degrees of all input polynomials. As we can see, the number of polynomials, as well as
their degrees, starts growing quickly at some point although the degree of the input
stays comparably small. Hence the steep growth is not due to large input problems,
but rather indicates an “algebraic hardness” of some kind.
Altogether, these observations roughly match conventional wisdom about CAD, com-
bined with our analysis of the benchmark set: many problems can be solved reasonably
fast, but it is not uncommon to see (near) worst-case behavior in practice. Also keep
in mind, that this only considers two contributing factors – the number of polynomials
and their degree – while we have not looked at coefficient growth and how these effects
multiply once we use these polynomials to construct algebraic numbers in the lifting.

5.2.8 Equational constraints

We observer that the aforementioned projection operators solely work on polynomials
and completely ignore the sign conditions attached to the input polynomials. They
provide everything needed to produce a sign-invariant CAD for the input polynomials,
though we usually construct a CAD with respect to input constraints, or even a
formula containing constraints. In these cases it is sufficient to construct a CAD that
is truth-invariant (or truth-table-invariant) with respect to the input constraints.
In general, we can avoid lifting partial sample points that falsify the input formula as
described in [Hon90], but this, unfortunately, does nothing to simplify the projection.
Collins found a way to do exactly that in [Col98] by exploiting equational constraints –
equations that are implied by the input formula. Essentially, we not only avoid lifting
sample points that falsify an equation but also skip certain projection steps whose
results can not contribute to a satisfying sample for this equation.
While Collins’s proposal in [Col98] contains the important ideas but is somewhat vague
on the details, McCallum subsequently provided correctness proofs and more details
in [McC99] and [McC01]. Let p be the polynomial of an equational constraint, then the
fundamental observation is that we only need to work on the cells that satisfy p = 0
and can safely ignore cells where p 6= 0 – and in particular higher-dimensional cells
and cell boundaries within these.

94 CHAPTER 5. CYLINDRICAL ALGEBRAIC DECOMPOSITION

Considering the role of the individual components of the projection operators as
described in Example 5.1, Collins essentially observed the following: the projection of
p alone is sufficient to describe the cells where p = 0 and considering the resultants
of p and the remaining polynomials also allows us to take care of all intersections of
these other polynomials with p. This immediately motivates the restricted projection
as defined in [Col98] and analyzed more closely in [McC99] and [McC01].

Definition 5.12: Restricted projection operator

Let P ⊂ Z[x] be a set of polynomials, cont(P) their content, and P ′ the finest
square-free basis of their primitive parts prim(P). Furthermore, let E ∈ P ′

be an equational constraint polynomial. The restricted projection operator is
defined as follows:

Projrestricted(P) = cont(P) ∪ coeffs(E) ∪ {disc(E)} ∪
⋃
p∈P ′

res(E, p)

Note that the restricted projection operator is based on McCallum’s projection operator,
but can be defined analogously for all projection operators defined above (with the
exception of Collins’ first projection operator). The rigorous proof in [McC99] works
for up to three dimensions only, but [McC01] generalizes to more dimensions with a
small caveat. For any dimension, we can safely use the restricted projection operator
for the first and the last projection step. For all projection steps between, however,
we need to use the semi-restricted projection operator instead. Furthermore, we can
only use the (semi-) restricted projection operator if it has already been used for all
preceding dimensions. Interruptions – using a regular projection operator at some point
and continuing using the restricted one again in a lower dimension – are technically
possible, but not shown to be sound.

Definition 5.13: Semi-restricted projection operator

Let P ⊂ Z[x] be a set of polynomials, cont(P) their content, and P ′ the finest
square-free basis of their primitive parts prim(P). Furthermore let E ∈ P ′ be
an equational constraint polynomial. The semi-restricted projection operator is
defined as follows:

Projsemi(P) = cont(P) ∪ coeffs(E) ∪
⋃
p∈P ′

(disc(p) ∪ res(E, p))

The possibility to use the (semi-) restricted projection operator, of course, depends
on the existence of an equational constraint in the correct dimension. While there is
nothing we can do if no equational constraint is present, Collins already presented a
way to exploit two equational constraints in the same dimension by using them to
infer an equational constraint in a lower dimension – that is not part of the input.
Let E1 = 0 and E2 = 0 be two equational constraints in the same dimension. We
observe that every satisfying sample point must thus satisfy E1 = 0 and E2 = 0, and,
furthermore, that the resultant of two polynomials describes the common roots of
these polynomials. Hence, res(E1, E2) = 0 can be used as an equational constraint,
something that Collins calls the resultant rule in [Col98].

5.2. PROJECTION OPERATORS 95

Definition 5.14: Resultant rule

Let E1 = 0, E2 = 0 be two equational constraints and x some variable. Then

(E1 = 0 ∧ E2 = 0) =⇒ resx(E1, E2) = 0

and, in particular, resx(E1, E2) can be used as an equational constraint in the
(semi-) restricted projection.

Note that using the (semi-) restricted projection operator in some dimension reduces
the (asymptotic) size of the resulting set of polynomials from quadratically many (due
to the pairwise resultants) to linearly many polynomials. This essentially moves the
complexity of CAD due to the number of polynomials from 22

n to 22
n−1 , as shown

in [EBD15]. The practical effect of the usage of equational constraints in the context
of SMT solving has been studied in [Hae18] and [HKÁ18], though the resultant rule
has not been considered there.
We observe that the resultant rule is not specific to using equational constraints in
CAD projections, but is a general scheme to infer additional equalities from a given set
of equality constraints. However, it needs some guidance which variable to compute the
resultant for, which is why we can nicely integrate it in a CAD method that inherently
works with respect to some variable ordering.
The theory about equational constraints that we have discussed here is only proven to
be sound for McCallum’s projection operator. Though it is generally expected that it
can be transferred to the other projection operators, no formal proof has been given so
far. Some first results to do exactly this for Lazard’s projection operator have been
presented in [NDS19] that justify a reasonable hope that the restricted projection can
be used as a generic template for all projection operators. In our implementation, the
restricted projection operator is exactly that: a generic template that can be used
for all projection operators, possibly even with interruptions and using the restricted
projection operator for all dimensions, disregarding all warranted concerns on the
formal correctness of the implementation.

5.2.9 More projection operators

Besides the (more or less) well-known projection operators presented above, other
projection operators have been proposed that we consider less relevant here, mostly
because they are not meant for constructing a general cylindrical algebraic decomposi-
tion. All of the projection operators below are instead targeted at special applications
like open CAD, CAD for parameterized systems, or the generation of single CAD cells.

5.2.9.1 Projection for open CAD

For some applications it is sufficient to only consider open regions – regions that have
full dimension – and discard regions where a polynomial vanishes that have volume zero
(in the sense of the Lesbesgue measure). The reasoning is usually that open regions
capture almost all solutions, or that such regions where a polynomial vanishes represent
a tipping point that is either unstable or at the edge of the permissible parameter space,
and thus not of interest. This variant of CAD is sometimes called open CAD and we
refer to [McC93; Str00] for a more thorough discussion.

96 CHAPTER 5. CYLINDRICAL ALGEBRAIC DECOMPOSITION

Most importantly, open CAD allows for two significant simplifications compared to a
regular CAD computation. Firstly, as we discard the sample points that correspond
to polynomial roots, all our sample points are rational and thus all the difficulties
concerning the handling of and working with real algebraic numbers disappear. Secondly,
all the issues that cause incompleteness for some of the projection operators manifest
over regions where a polynomial vanishes and we can thus greatly simplify the projection
operator while retaining completeness as shown in [Str00].

Definition 5.15: Strzeboński’s projection operator for open CAD

Let P ⊂ Z[x] be a set of polynomials, cont(P) their content, and P ′ the finest
square-free basis of their primitive parts prim(P). Strzeboński’s projection
operator for open CAD is defined as follows:

ProjStrzOpen(P) ={lcoeff(p), disc(p) | p ∈ P}
∪ {res(p, q) | p, q ∈ P}

5.2.9.2 Seidl and Sturm’s projection operator

Seidl and Sturm in [SS03] make the case that for the application of general quantifier
elimination we can essentially add assumptions to our formula in an ad-hoc manner.
We explore their reasoning and the resulting simplifications in the following.
When doing general quantifier elimination, we assume a quantified formula ϕ from
which we want to eliminate some variables x while we keep other variables y. We
usually call y parameters. We would apply CAD such that we project x first and
extract a description of the solutions of ϕ in y only after lifting y.
The authors argue that it is sensible to allow our projection to assume certain polynomi-
als in y not to vanish, as these assumptions directly correspond to “easily interpretable”
theory assumptions that the user had assumed anyway in most cases. These theory
assumptions are generated in an ad-hoc manner to validate the following simplified
projection operator based on Hong’s projection operator.

Definition 5.16: Seidl and Sturm’s projection operator

Let P ⊂ Z[x]. Seidl and Sturm’s projection operator is defined as follows:

ProjS&S(P) =
⋃

p∈GRED(P)

({lcoeff(p)} ∪GPSC(p, p′))

∪
⋃

p,q∈P
p<q

⋃
p∗∈GRED(p)

GPSC(p∗, q)

where we refer to [SS03] for the exact definitions of GRED and GPSC.

The essential idea is to stop collecting the reducta for the reducta set as soon as the
leading coefficient is only defined over y, and, equivalently, do the same for the principal
subresultant coefficients. These reducta (or principal subresultant coefficients) are then
only defined over y, and the authors argue that they should not vanish due to the
implicit theory assumptions of the user.

5.2. PROJECTION OPERATORS 97

Note that the underlying idea has already been discussed for Hong’s projection operator,
but we could only exploit it when we could show that the respective coefficient would
not vanish – for example, for constants.
In the context of general quantifier elimination, this approach provides the user with
two pieces of information. Firstly, a list of the automatically generated algebraic
assumptions, and secondly, a formula that is equivalent to the input formula under
these assumptions. The authors argue that the assumptions are “easily interpretable”
and their examples suggest that they mostly characterize degenerate cases that the
user did not care for anyway.
For the purpose of SMT solving, however, we aim at determining satisfiability for
a specific formula in a fully automated way. Handing assumptions back to the user
during the solving is not desirable here, because this might happen very frequently –
for every theory call – and there may not even be a user involved. Hence, we do not
consider this projection operator in this work.

5.2.9.3 Local projections

In some applications, we may only want to look at a very specific part of a CAD –
usually, a single region that is identified by a given sample point. In such a scenario, it
seems natural to remove polynomials from the projection that do not contribute to the
“interesting” part of the CAD.
The question of generating a generalization or an abstraction of a single point to a
single CAD cell was first motivated in [JM12] – a special case of the MCSAT approach
that we present in Chapter 7 – but was adopted as an interesting question in general,
for example, in [Bro13; Str14; BK15].
Multiple variants of local projections have been proposed with various benefits and
downsides, and we only give a rough overview here. A more thorough description of
the ones we use in Chapter 7 is given there. Note that most of the lifting phase is
essentially skipped here because the partial assignment is already given. We only need
to “lift” a single sample point in every dimension to obtain the borders of the cell we
want to construct.

Jovanović and de Moura’s model-based projection operator. The proposal
of NLSAT in [JM12] – the instantiation of MCSAT with a CAD-based explanation function
– sparked the need for a method that explains why a partial assignment is unsatisfiable.
One possible implementation, the one proposed in [JM12], is using a CAD-based
method to obtain the region that contains the partial assignment.
Their version of a local projection essentially takes Collins’ projection operator and
for every component – that is the coefficients, principal subresultant coefficients of a
polynomial and its derivative, and the pairwise principal subresultant coefficients –
only considers the first one that does not vanish on the given partial assignment.

Brown and Košta’s single-cell method. With [Bro13], Brown departs from the
traditional separation into projection and lifting, but instead understands the problem
as refining the cell incrementally using the input constraints, where every refinement is
done by adding a polynomial to the projection. In this approach, the projections may
be smaller and also the region may be larger – conceivably beneficial for NLSAT that

98 CHAPTER 5. CYLINDRICAL ALGEBRAIC DECOMPOSITION

can exclude a larger region from its search space. The original method from [Bro13]
only considers the case of open cells, but [BK15] extends it to work for all cells – at
the cost of various special cases and additional algorithmic complexity.

Strzeboński’s local projection operator. Given the above ideas, Strzeboński
proposed another projection operator in [Str14] that adaptively uses either McCallum’s
or Hong’s projection operator, depending on whether a source of incompleteness was
detected while using McCallum’s projection operator. Additionally, it is complemented
with the use of equational constraints.

5.3 Lifting
Recall that we aim to construct a CAD and decided to represent a single cell using
what we called a sample point. This sample point is a representative for a cell, as
the cell is sign-invariant on the set of input polynomials (or at least truth-invariant
under the input formula). We already devised projection operators that project certain
properties of our CAD into lower dimensions and now describe how we can effectively
construct a set of sample points that finally represent a CAD.
The fundamental intuition is the following: given a k-dimensional CAD Ck, every cell
C ∈ Ck induces a cylinder C × R which is separated in (k + 1)-dimensional cells by
the roots of the (k + 1)-dimensional polynomials in a nice way – they are delineable as
described in Section 5.1.1. Having delineable cells yields that it does not matter which
k-dimensional point we select from a cell, they all yield an equivalent set of (k + 1)-
dimensional sample points. The (k + 1)-dimensional CAD Ck+1 consists of exactly
these (k + 1)-dimensional cells over every k-dimensional cell from Ck, represented by
(k + 1)-dimensional sample points.
Furthermore, delineability (and cylindricity of the cells) implies a particularly nice
relation between k-dimensional and (k + 1)-dimensional sample points. Given sk ∈
C ∈ Ck, we can construct sample points sk+1 ∈ C × R by simply appending certain
values for dimension k + 1 to sk, and these values are derived from the roots of the
(k + 1)-dimensional polynomials of the projection.
Our goal is to select one sample point from each sign-invariant region of the polynomials
over some C ∈ Ck represented by some sample point sk. As we have already identified
the roots of polynomials as boundaries of these sign-invariant regions, the selection is
rather natural: apart from the roots themselves – representing all regions where some
polynomial vanishes – we select one sample point between every two consecutive roots,
as well as one value below the smallest root and above the largest root.

Definition 5.17: Lifting operator

Let P ⊂ Q[x1, . . . xk+1] be a set of polynomials and sk a k-dimensional sample
point. The result of the lifting operator of P with sk is the following set of
(k + 1)-dimensional sample points where α1, . . . αm are the (ordered) real roots
of P with respect to the model induced by sk.

{sk} × {α1, . . . αm, r0, . . . pm | r0 < α1 < r1 < α2 < · · · < αm < rm}

We sometimes call αi the root samples and ri the non-root samples or intermediate
samples of sk over P .

5.3. LIFTING 99

The delineability of P ensures that all sk from a particular k-dimensional cell yield an
equivalent – though not necessarily identical – result in the sense that the number or
roots m remains constant, the αi from each sk belongs to the same surface, and the
pi for every sk belongs to the same open sign-invariant region. We can also see this
graphically in the following Example 5.2.

Example 5.2: CAD lifting

x

y

0 1 2 3

Recall the polynomials p = (y + 1)2 − x3 + 3x− 2 and q = (x+ 1) · y − 3 from
Example 5.1. We focus on the one-dimensional cell (1, 2) in the x-dimension
and the cylinder above it. We chose x = 1.5 as indicated by a vertical line.
To lift it, we substitute x = 1.5 into all polynomials and obtain p[x/1.5] =
(y + 1)2 − 0.875 and q[x/1.5] = 2.5 · y − 3. The roots of these polynomials are
−0.065, −1.94, and 1.2, respectively, indicated by the red crosses. Note that
by construction, these are exactly the intersections of the vertical line and the
polynomials’ varieties.
Assume we instead lift other values for x, as indicated by the paler lines. Though
the resulting sample points change (in general the intermediate sample points
might change as well), there is a direct one-to-one correspondence to the sample
points for every other value for x. Observe that the roots converge (and eventually
collapse) when we move towards the cylinder boundary x = 1, thus changing the
number of roots and posing a boundary to the region to maintain delineability.

5.3.1 Incompleteness of projection operators

We already discussed that some projection operators are what we called “incomplete”
for certain inputs. While it is not that easy to construe an example that witnesses
incompleteness (by provoking an incorrect result) – after all, we need at least four
variables – it is reasonably easy to get a rough feeling for the fundamental problem.
The main idea is that under special circumstances we may lose roots during the lifting
because a polynomial vanishes identically. If we lift x = 0 with p = x · y we obviously
“lose” the root y = 0 because p[x/0] vanishes identically. Of course, this example
would not lead to incorrect results, simply because it actually is irrelevant how we

100 CHAPTER 5. CYLINDRICAL ALGEBRAIC DECOMPOSITION

choose y for x = 0 in this example. More complex examples exist, however, where
roots are lost in this way and consequently we fail to compute a full CAD and may
return incorrect results. Note, however, that this case is very rare in practice: for a
regular SMT strategy we have not observed any incorrect results due to this issue; the
MCSAT approach discussed later, in particular the approach presented in Section 8.3.1,
however, triggered this issue in our experiments.
It may be interesting to realize that the underlying mathematical effects and their
consequences for the respective proofs of correctness differ for different projection
operators: the term “well-orientedness” – and in particular the scenarios that break
it – are substantially different in [McC84; McC88] and in [Bro01], and for equational
constraints in [McC99; McC01] the notion is different once again. Essentially it seems
that “well-orientedness” is always used for “everything is fine” for whatever this means
for the projection operator at hand.
This is also reflected by how these issues can be resolved or at least mitigated. For
McCallum’s projection operator, we can oftentimes resolve the issue by adding so-called
delineating polynomials, for example, based on partial derivatives of the vanishing
polynomial. While the modified lifting process due to Lazard – which we discuss in the
following Section 5.3.2 – resolves these cases even without the need for such delineating
polynomials, Brown’s projection operators adds additional sources of incompleteness.

5.3.2 Lazard’s lifting process

As already mentioned in Section 5.2.6 and presented in [Laz94], Lazard’s projection
operator requires a change to the regular lifting process to maintain correctness. We
have seen that for the regular lifting we take a partial assignment over {x1, . . . , xk}
and a polynomial q over {x1, . . . , xk+1} and consider isolating the real roots of q in
xk+1 with respect to the partial assignment as a single, atomic operation.
Unfortunately, q may vanish identically on the partial assignment, thus leaving no
polynomial – or, more specifically, the zero polynomial – to compute the roots of. This
is the underlying reason for the incompleteness of McCallum’s projection operator and
Brown’s projection operator that we discussed in Section 5.3.1.
The proposed modification to the lifting aims to directly avoid this nullification: we
substitute the assignment αx for every x ∈ {x1, . . . , xk} individually and check whether
the polynomial already vanishes identically. If so, we know that x − αx divides the
polynomial and we replace q by q/(x− αx), as shown in Algorithm 5.1. Ultimately, we
thereby discover real roots of all factors of q, even if they would usually be “shadowed”
by other factors that vanish identically over the given variable assignment. The order
in which we consider the variables is crucial for the correctness of the whole procedure
and needs to coincide with the variable ordering or the current CAD computation,
following [MH16; MPP19].
As already discussed in Section 2.5, we can not easily compute with real algebraic
numbers (unless we work in some powerful computer algebra system). Algorithm 5.1
suggests to compute with polynomials whose coefficients stem from some extension
field Q(α) to perform the polynomial division, but it is not immediately clear how
to properly work with such coefficients. Just like in Section 2.5, we exploit that
Q(α) is isomorphic to Q[ξ]/〈pα〉 and perform these operations in Q[ξ]/〈pα〉[x] instead,
representing α symbolically in our polynomials using a fresh variable ξ.

5.3. LIFTING 101

Algorithm 5.1: Lifting with Lazard’s projection
1 Function LazardLifting(α, q)
2 for x 7→ αx ∈ A do
3 while q[x/αx] ≡ 0 do
4 q := q/(x− αx)

5 q := q[x/αx]

6 return roots(q)

Note that we only care about whether q vanishes identically and it is thus sufficient to
consider what we called algebraic cancellation in Section 2.5 in the loop of Algorithm 5.1.
Hence, we only need to slightly extend Algorithm 2.2 to adapt Algorithm 5.1 as shown
in the following Algorithm 5.2.
Instead of directly constructing the next extension field like in Line 8 of Algorithm 2.2,
we need to split this process into multiple steps. We check whether q would vanish
identically over the next extension field Q∗[ξx]/〈f〉 but perform the division over the
current extension field Q∗. Only when q no longer vanishes identically (over Q∗[ξx]/〈f〉),
we actually update Q∗ to move to the next extension field in Lines 11 and 12.

Algorithm 5.2: Lifting with Lazard’s projection
1 Function Lazard(A, q)
2 Q∗ := Q, A∗ := ∅
3 for x 7→ αx ∈ A do
4 Let px be the minimal polynomial of αx . px in variable ξx
5 Let f ∈ factors(px,Q∗[ξx]) such that f(A∗, ξx 7→ αx) = 0
6 if f is linear in ξx then
7 Substitute ξx − f for x in q

8 else
9 Let q := q[x/ξx]

10 while idQ∗[ξx]/〈f〉(q) ≡ 0 do
11 Let q := q/p . Calculation in Q∗

12 Let Q∗ := Q∗[ξx]/〈f〉
13 Let q := idQ∗(q) . Embedding q into new Q∗

14 Let A∗ := A∗ ∪ {ξx 7→ αx}

15 return roots(q,A∗)

Given that Algorithm 5.2 is one of the main building blocks of a CAD implementation,
we should try to make it as efficient as possible in practice. First of all, we can greatly
simplify the process if αx is rational. Another interesting idea is to cache the sequence
of extension fields for consecutive lifting steps on the same variable assignment or
variable assignments with a common prefix. This of course only works if a static
variable ordering is used.
It seems tempting to try to modify the variable ordering, hoping to simplify the algebraic
operations. For example, one could try to substitute rational assignments first, leaving
polynomials with less variables for computationally more expensive algebraic operations.

102 CHAPTER 5. CYLINDRICAL ALGEBRAIC DECOMPOSITION

However, the whole theory behind the modified lifting procedure relies on a single static
variable ordering. We can directly see that modifying the variable ordering changes
the results in the following – not overly contrived – Example 5.3.

Example 5.3: Different variable orderings

Let A = {x1 7→ 0, x2 7→ 0} be the current variable assignment and p = x21x2x3 +
x1x

2
2(x3− 1) the polynomial we want to use for lifting. We now use the modified

lifting procedure due to Lazard with the two different variable orderings x1 <
x2 < x3 and x2 < x1 < x3. In both cases, we aim to extend the sample point
represented by A to the third dimension.
For x1 < x2, we first consider p with respect to x1 7→ 0, realize that p vanishes
identically and divide by x1 to obtain x1x2x3 + x22(x3 − 1). After substitution,
we have x22(x3 − 1) and substituting x2 in the same way leaves us with x3 − 1
such that we obtain 1 as the single real root of p in x3 over A.
For x2 < x1, we first consider p with respect to x2 7→ 0 and see that p vanishes
identically as well. We divide by x2 to obtain x21x3 + x1x2(x3 − 1). Substitution
leaves the other part of the polynomial which is x21x3 and substituting x1 in the
same way results in x3. Now, the single real root of p over A is 0.

Example 5.3 shows that the results of the modified lifting scheme depend on the
variable ordering. The underlying theory from [Laz94; MH16; MPP19] only guarantees
correctness if the variable ordering used by the entire CAD is employed, and we thus
need to stick to the single static variable ordering.

Cylindrical Algebraic
Decomposition for SMT solving

We have seen in the previous chapter that the cylindrical algebraic decomposition can
be a powerful tool to analyze nonlinear arithmetic formulae. Our aim is to leverage it
to allow for reasonably efficient SMT solving for nonlinear arithmetic formulae. Given
what we have described so far, the naive approach is straightforward: upon a theory
query, construct the corresponding CAD and figure out whether some cell is satisfying.
Within this chapter, we first work on how we understand CAD and go from a monolithic
black-box to a modular incremental proof system. Furthermore, we propose a whole
range of optimizations to improve upon the naive solution in terms of practical per-
formance and applicability. This includes supporting incrementality and backtracking,
generating reasons for unsatisfiability, but also extending CAD to integer problems.
The majority of the underlying ideas are already contained in [KÁ20], though we focus
on algorithms and data structures for a practical implementation there while we aim
for a more conceptual description here.

6.1 Changing perception
We have introduced and understood CAD as a rather monolithic method to decompose
the solution space into regions that are invariant with respect to the evaluation of the
input formula. These regions then allowed us to answer certain questions about the
formula, including whether it is satisfiable.
In this section, we build another intuition about the nature of CAD, which helps us
motivate what we call incremental CAD. We restrict to the case of SMT solving, that
is our formula is purely existentially quantified. The main insight to gain is that we are
looking for a method that produces a satisfying witness, and once we have obtained
such a satisfying assignment, we discard all the other information a CAD offers.
Recall the two components of CAD (projection and lifting) and their intuitive meanings.
The projection accumulates polynomials that induce borders of sign-invariant regions
and as such holds the algebraic information about the solution space. The lifting, on
the other hand, constructs individual sample points that represent these regions.
Slightly twisting our view on the lifting process, we can also understand it as a heuristic
process of guessing and the projection as merely guiding it. Adopting this notion, we
can understand the entire CAD method as a procedure to guess sample points that is
guided by the algebraic structure of the input, yielding some interesting observations.

104 CHAPTER 6. CAD FOR SMT SOLVING

For once, we can terminate the CAD method as soon as the lifting has found a single
satisfying sample point because the formula is only quantified existentially. We do not
have to care about all the other regions and sample points as a single satisfying sample
point is all we need to infer satisfiability. This is essentially an application of [CH91]
to the purely existential case.
Furthermore, we could hope to find the satisfying sample point without even considering
a (full) projection. If only a few polynomials in the projection are enough to guide
the lifting towards a satisfying sample point, we can happily ignore the rest of the
projection. Finally, having identified the lifting as the central component for our
purpose, we can turn the program flow of the CAD method around. We start with
the lifting process and occasionally – for example, when no or only expensive lifting
steps can be done – spend a bit of work on the projection and thereby try to avoid
computing a full projection altogether.
We can summarize our approach with three goals that seem pretty simple: 1. if a
satisfying sample point exists, find it as fast as possible and avoid any additional work,
2. if no satisfying sample point exists, eventually produce a regular CAD and inherit
all formal guarantees, 3. do this in a way that allows for incremental computations
and backtracking (in the spirit of Section 4.3).
In the following, we use this intuition to define a proof system for nonlinear real
arithmetic constraints based on CAD. The following presentation does not shed a lot of
light on how to implement this approach efficiently, thus we refer to [KÁ20] for details
on efficient data structures.

6.2 Proof system

The incremental nature of the CAD method proposed here heavily relies on postponing
operations by putting them in a queue and trying to terminate without executing all
operations that are still enqueued. Following our observation from Example 5.1, we
decompose the projection into projection steps, while the lifting is naturally separated
into lifting steps, as defined in the following.

Definition 6.1: Projection step

Let P be a set of polynomials and Proj some CAD projection operator. We
call the execution of Proj({p, q}) with p, q ∈ P a projection step. We denote a
projection candidate – representing a future, not yet executed, projection step –
by (p, q) and call it single (paired) if p = q (p 6= q).

Note that (almost) all the projection operators we presented in Section 5.2 naturally
decompose into a sequence of projection steps. It is important to realize that the notion
of projection candidates immediately leads to an incremental building of the projection
as executing (or evaluating) projection candidates (usually) yields new polynomials
that then give rise to new projection candidates.

Definition 6.2: Lifting step

Let s be a (partial) sample point of dimension k and p a polynomial (from the
projection) of dimension k + 1. In particular, we also allow k = 0 and thus s be

6.2. PROOF SYSTEM 105

the empty sample point. We call the process of substituting s into p and using the
real roots of the resulting polynomial to extend s to a set of (k+ 1)-dimensional
sample points a lifting step. Similar to a projection candidate, we call (s, p) a
lifting candidate, representing a future, not yet executed, lifting step.

Note that the generation of (k + 1)-dimensional sample points needs to be performed
with respect to the already existing sample points over s. As we assume that the
sample points are stored within some tree structure, the existing sample points over s
are easily accessible without additional overhead.
As for projection candidates, the notion of lifting candidates immediately yields
an incremental method to compute the lifting. Making both the projection and
lifting incremental yields a system that always has to choose 1. whether to perform a
projection step or a lifting step and 2. which projection (or lifting) step to perform. We
conceptually combine projection candidates and lifting candidates in a single queue to
obtain maximum flexibility and discuss how to implement this heuristic in Section 6.5.
In order to properly support the removal of constraints, we also need some way to track
various dependencies: which polynomials originate from a certain constraint, which
polynomials are the result of which projection candidates, and which sample points
were produced by lifting of which sample point with which polynomial.
As for the sample points producing other sample points by means of lifting steps, we
propose to store them in a lifting tree. Every sample point has a parent – the sample
point that was used to construct it – with the empty sample point being the (unique)
root and removing a sample point implicitly removes the whole subtree rooted in it.
Though multiple sample points may produce the same value on a higher dimension,
we consider these different as we identify a sample point in our tree with the full
k-dimensional variable assignment.
All other dependencies do not come in a nice tree structure: multiple different projection
steps may produce the same polynomial and there is no point in storing them separately.
Therefore, we propose the concept of origins which essentially list all the reasons for a
projection polynomial (or a sample point) to exist and thereby also allow to recognize
when it can be removed.

Definition 6.3: Origins of polynomials and sample points

Let p be a polynomial and s a sample point. We call o an origin of a projection
polynomial p if either o = {p} and p σ 0 is an input constraint or o is a set of
polynomials and p ∈ Proj(o). We call o = {p} an origin of a sample point s if p
is a polynomial and s is the result of a lifting step involving p.
We denote the set of multiple such origins for p (or s) by origins(·). We denote
adding an origin o to this set by origins(·) += o. We write origins(·) -= p for the
removal of all origins that contain the polynomial p.
If origins(p) = ∅ (or origins(s) = ∅) we say that p (or s) has no origins, implying
that we can remove it from the state of our proof system.

Intuitively, an origin is the reason for something to exist in our proof system and
origins collect several of these. If the origins are empty, any reason for this projection
polynomial (or sample point) ceased to exist and we can (and maybe should) remove
it. Note that when we remove a projection polynomial, we also need to remove this

106 CHAPTER 6. CAD FOR SMT SOLVING

polynomial from the origins of all other polynomials (and sample points), possibly
triggering a whole series of removals that descends through the levels.
Intermediate sample points are a notable exception to this intuition. Their reason
to exist is not simply a polynomial, but the existence of (neighboring) root sample
points. We thus do not assign origins to intermediate sample points, but instead
create (and remove) them as we create (and remove) root sample points. We trust
that the handling of intermediate sample points is simple enough for anyone aiming to
implement this, so that we only give a rather superficial description of what needs to
be done in the following proof system, in particular in the rules Add-Sample-Finished
and Delete-Poly-Finished.
For the presentation of the proof system for CAD, we now fix a common notation.
We denote the set of input constraints by C and use P and S for sets of polynomials
and sample points, respectively. As in the above definitions, (p, q) denotes projection
candidates while (s, p) denotes lifting candidates and we call the queue containing all
of them Q.
Our proof system can be in one of the following states, always starting in the default
state. The Add-P (Remove-P) states are used do model some details of adding
(removing) polynomials to (from) our system while Add-S does the same for adding
sample points. We have additional states SAT and UNSAT to indicate satisfiability
and unsatisfiability.

Default: 〈C,P, S,Q〉 Default state
Add-P: 〈C,P, S,Q〉+o P

′ Add polynomials P ′ with origins o
Remove-P: 〈C,P, S,Q〉 − P ′ Remove polynomials P ′

Add-S: 〈C,P, S,Q〉+o S
′ Add samples S′ with origins o

SAT: 〈C,P, S,Q〉 ` SAT Found constraints to be consistent
UNSAT: 〈C,P, S,Q〉 ` UNSAT Found constraints to be inconsistent

Note that we deliberately did not define the SAT and UNSAT states to be final.
Instead, we allow our proof system to continue from there by adding new constraints
or removing existing constraints to form a new set of input constraints. This, of course,
requires our proof system to be able to continue from an already computed CAD –
possibly incompletely computed in the case of SAT.
Compared to most other proof systems, we allow for two extensions, namely the
composition of rules and taking external input as described in Section 2.4. We define our
initial state to be 〈∅, ∅, ∅, ∅〉 which requires adding constraints before any computation
can take place. We now present the actual proof rules, starting with the ones to add
and remove constraints.

Initial:

〈∅, ∅, ∅, ∅〉
Continue from SAT:

〈C,P, S,Q〉 ` SAT
〈C,P, S,Q〉

6.2. PROOF SYSTEM 107

Continue from UNSAT:
〈C,P, S,Q〉 ` UNSAT

〈C,P, S,Q〉
Add-Constraint c:

〈C,P, S,Q〉
〈C ∪ {c}, P, S,Q〉+c P

′ if P ′ = {p | c = p σ 0}

Delete-Constraint c:
〈C ·∪{c}, P, S,Q〉
〈C,P, S,Q〉 − P ′ if P ′ = {p | c = p σ 0}

These rules allow to continue from the SAT and UNSAT states, usually to modify
the set of constraints and then solve the modified problem. Note that we technically
allow to add and remove constraints whenever we are in the default state – essentially
anytime. Though this is possible and sound, we usually assume that constraints are
only added and removed directly after we left the SAT or UNSAT state and before any
other reasoning takes place.

Project:

〈C,P, S,Q ·∪{(p, q)}〉
〈C,P, S,Q〉+(p,q) P

′ if P ′ = Proj(p, q)

Add-Poly:

〈C,P, S,Q〉+o P
′ ·∪{p}

〈C,P ∪ {p}, S,Q′〉+o P
′ if

origins(p) += o
QP = {(p, q) | q ∈ P ∪ {p} ∧ level(p) = level(q)}
QL = {(s, p) | s ∈ S ∧ level(s) = level(p)}
Q′ = Q ∪QP ∪QL

Add-Poly-Finished:

〈C,P, S,Q〉+o ∅
〈C,P, S,Q〉

The execution of a projection candidate is performed by the Project rule which
switches to the Add-P state. Add-Poly (leading to Add-Poly-Finished eventually)
takes care of actually inserting the polynomials into P and adding the appropriate
queue entries.

Lift:
〈C,P, S,Q ·∪{(s, p)}〉
〈C,P, S,Q〉+p R

if R = roots(p, s)

Add-Sample:

〈C,P, S,Q〉+p S
′ ·∪{s}

〈C,P, S ∪ {s}, Q′〉+p S
′ if origins(s) += p

Q′ = Q ∪ {(s, q) | q ∈ P ∧ level(s) = level(q)}
Add-Sample-Finished:

〈C,P, S,Q〉+p ∅
〈C,P, S ∪ S′, Q ∪Q′〉

if S′ = missing intermediate sample points
Q′ = {(s, p) | s ∈ S′, p ∈ P ∧ level(s) = level(p)}

108 CHAPTER 6. CAD FOR SMT SOLVING

Executing a lifting step is rather similar to executing a projection step in that we
immediately execute the lifting step and then process the set of root sample points
that should be added. The intermediate sample points that need to be considered in
addition to the real roots R are generated with respect to the already existing sample
points from S and inserted after all root sample points have been processed. Note that
the intermediate sample points have no origins themselves.

Delete-Poly:

〈C,P ∪ {p}, S,Q〉 − P ′ ·∪{p}
〈C,P, S,Q〉 − P ′ ∪ P ′′ if

∀p ∈ P. origins(p) -= p
∀s ∈ S. origins(s) -= p
P ′′ = {p ∈ P | origins(o) = ∅}

Delete-Poly-Finished:

〈C,P, S,Q〉 − ∅
〈C,P, S′, Q′〉

if

SO = {s ∈ S | origins(s) 6= ∅}
SI = intermediate sample points
Prune obsolete sample points from SI
S′ = SI ∪ SO
Q′ = Q ∩ ((P × P) ∪ (S′ × P))

As discussed before, the removal of polynomials is mainly organized using the origins.
To remove a single polynomial p, we remove it from the set of projection polynomials p
and prune it from the origins of all other polynomials and all sample points. We then
add all polynomials with empty origins to the set of polynomials that are still to be
removed. Once all polynomials have been removed, we remove all sample points with
empty origins together with all intermediate sample points that are now obsolete, and
additionally remove all queue entries that contain a polynomial or a sample point that
has been removed.
Remember that we implicitly remove the whole subtree of a sample point, though we
denote the removal of sample points using sets here.

SAT:
〈C,P, S,Q〉

〈C,P, S,Q〉 ` SAT
if ∃s ∈ S. s |= C

Considering that we regard CAD as a search method for a satisfying sample, detecting
satisfiability is conceptually simple. As soon as some sample point that satisfies all
input constraints exists, we allow to switch to the SAT state immediately. Note that we
retain the computed state in order to continue with adding (or removing) constraints.

UNSAT:
〈C,P, S, ∅〉

〈C,P, S, ∅〉 ` UNSAT
if ¬∃s ∈ S. s |= C

The UNSAT rule is based on the claim that this proof system eventually produces a full
CAD which we discuss in the following Section 6.2.1 in more detail. Once the queue is
empty, the underlying CAD is complete and we can soundly conclude unsatisfiability
from the absence of a satisfying sample point. Once again, we retain the computed
state to be able to continue after adding (or removing) constraints.

6.2. PROOF SYSTEM 109

Most simple optimizations can be integrated into this rule system, and we showcase
this for the example of adding polynomials as their set of factors. We first define two
additional proof rules to factorize polynomials before adding (or deleting) them.

Add-Poly-Factorized:
〈C,P, S,Q〉+o P

′

〈C,P, S,Q〉+o P
′′ if P ′ 6= P ′′ = ∪p∈P ′ factors(p)

Delete-Poly-Factorized:
〈C,P, S,Q〉 − P ′

〈C,P, S,Q〉 − P ′′ if P ′ 6= P ′′ = ∪p∈P ′ factors(p)

The integration works by constructing a new proof system by replacing some of the
old proof rules by new composed proof rules as follows:

Add-Constraint → Add-Constraint ◦ Add-Poly-Factorized
Project → Project ◦ Add-Poly-Factorized

Delete-Constraint → Delete-Constraint ◦ Delete-Poly-Factorized

6.2.1 Correctness and completeness

For the presented proof system to be useful, we want it to be correct and complete.
While correctness means that the answer is correct if we terminate, (refutational)
completeness ensures the existence of a finite proof for every finite input, and thus
termination on every (finite) input. For this proof system, we thus need to prove that
1. the input is satisfiable if we enter the SAT state, 2. the input is unsatisfiable if we
enter the UNSAT state, and 3. we always eventually enter the SAT or UNSAT state.
We observe that the proof system allows for multiple satisfiability checks in a sequential
manner. For the purpose of this proof, we only consider starting from a default state
and disallowing adding or removing constraints until we enter either the SAT state or
the UNSAT state. The whole argument that follows rests on the following claim: the
internal state of the proof system – the polynomials in P and the sample points in S –
converges against a full CAD and eventually is a full CAD, once the queue Q is empty.
This claim rests on the observation that the presented proof system performs a regular
CAD computation where the individual computations are merely reordered. If we
indeed perform the very same computations – only in a different order – we inherit
all formal guarantees, in particular, that the problem is unsatisfiable if no satisfying
sample point has been found. Of course, we inherit all limitations as well, in particular,
the incompleteness due to the projection operators of McCallum or Brown.
The basic steps of CAD are 1. compute all projection polynomials, 2. lift all sample
points with all projection polynomials, and 3. check for satisfying sample points. We
observe that our definition of projection steps and projection candidates were defined
such that they merely decompose any of the existing projection operators and allow for
an incremental execution where the queue stores the current progress. Hence, once the
queue is empty, the projection operator has been completely executed. Similarly, lifting
steps and lifting candidates only decompose the (usually recursive) lifting process, and
once the queue is depleted all sample points have been constructed.

110 CHAPTER 6. CAD FOR SMT SOLVING

We can easily conclude the above properties from here. If we enter the SAT state
then we have found a satisfying sample point. If we enter the UNSAT state then there
is no satisfying sample point and, as at this point Q = ∅, the CAD is complete. As
we compute a full CAD – in particular nothing more – we eventually terminate, and
once we have Q = ∅ the only two remaining options are to enter the SAT state or the
UNSAT state (in the slightly restricted scenario we consider for this argument).

6.3 Variants of incrementality

While the proof system presented before provides a very flexible framework, it might
make sense to restrict it, allowing for a simpler implementation. The choice of which
level of incrementality to allow has by far the largest impact, and we discuss this issue
in more depth in [KÁ20]. Note that we always assume that the lifting is performed
incrementally (or rather partially in the spirit of [CH91]), but vary which constraints
are considered and how the projection is performed.
The easiest variant would be to compute a full CAD from scratch for every theory call,
using no form of incrementality at all. This variant not only avoids any bookkeeping –
like origins that we described before – but also allows integrating external tools that are
not built with incremental operations in mind. We call this variant no incrementality
(CAD-None). Please consider [Kre18] for some experiences with integrating external
tools for this purpose.
Secondly, we can compute a full CAD for every individual theory call but retain the
information from the previous theory call and only extend it. This approach exploits
that consecutive theory calls are usually very similar, but ignores the possibility to
only consider part of the constraints to obtain a conclusive answer. We call this variant
naive incrementality (CAD-Naive).
The next step is to only consider the constraints one after another. In what we call
simple incrementality (CAD-Simple) we only add a single constraint, complete the
CAD, and check whether a solution can be found. This allows to avoid considering
hard constraints in some cases.
Finally, we have implemented the fully incremental projection from the above proof
system which we call full incrementality (CAD-Full) and a variant where polynomials
are only hidden instead of removed (CAD-Full-hide). The latter one was implemented
primarily to mitigate frequent recomputations when using equational constraints as
described in Section 6.6, though equational constraints are not exploited here.
Note that we may also consider to allow backtracking constraints in a different order
than how they were added. We call this non-chronological backtracking and discuss
it in some depth in [KÁ20]. It comes rather naturally with the presented notion of
origins but has only a negligible impact on practical performance.
Some results for these different variants of incrementality are presented in Table 6.1,
showing that the benefits of incremental CAD computations significantly outweigh the
costs of additional bookkeeping.
We can see from Figure 6.1 that the gain is much more substantial for unsatisfiable
problems. This may be surprising, considering that we need to compute a full CAD in
the case of unsatisfiability which can not benefit from incrementality at all. However,
unsatisfiable problem instances oftentimes yield a sequence of theory calls (of which

6.4. PROJECTION OPERATORS 111

Solver SAT UNSAT overall

CAD-Naive 4285 0.34 s 3496 1.33 s 7781 67.7%
CAD-None 4293 0.35 s 3507 1.40 s 7800 67.9%
CAD-Simple 4281 0.39 s 3889 1.68 s 8170 71.1%
CAD-Full 4328 0.37 s 4250 1.69 s 8578 74.7%
CAD-Full-hide 4328 0.35 s 4255 1.60 s 8583 74.7%

Table 6.1: Experimental results for different variants of incrementality.

0 2,000 4,000

10−2

100

102

solved problems

ru
n

tim
e

(s
)

CAD-Naive sat
CAD-Naive unsat
CAD-Simple sat
CAD-Simple unsat
CAD-Full sat
CAD-Full unsat

Figure 6.1: Experimental results for CAD-Full for SAT and UNSAT.

many are satisfiable individually) which can benefit significantly from incrementality.
Satisfiable problem instances, on the other hand, are usually either solved very quickly
or never and thus the improvements due to incrementality are not that significant here.
One view could be that one needs to be “lucky” to find a satisfying assignment while
unsatisfiability is often found more systematically.
Figure 6.1 shows that after more than one second, only very few problems are found to
be satisfiable (less than 2%) but a significant number of unsatisfiable problems are still
solved (more than 14%). Naturally, only instances that take a considerable time to
solve in the first place can be subject to significant run time improvements.

6.4 Projection operators

There exists quite a variety of different projection operators, and we have presented the
most important ones in Section 5.2. It is well-known that different projection operators
produce sets of polynomials that differ significantly in their size for a traditional
cylindrical algebraic decomposition, oftentimes making a huge difference in whether a
particular problem can be solved in practice. In general, a smaller set of polynomials
not only reduces the computational effort in the projection itself but also yields less
sample points that need to be computed. We have given some results on the overall
size of the projection in Section 5.2.7.
In our scenario, the same arguments hold in case of unsatisfiability – as we need
to generate a full CAD – but whether satisfiable instances can benefit from this, in
general, is not immediately obvious. While one might argue that a smaller projection
is beneficial as we can exclude unsatisfiable cells faster, it may very well be better to

112 CHAPTER 6. CAD FOR SMT SOLVING

Solver SAT UNSAT overall

CAD-Collins 4292 0.30 s 4150 1.26 s 8442 73.5%
CAD-Hong 4301 0.29 s 4189 1.46 s 8490 73.9%
CAD-McCallum 4320 0.34 s 4216 1.52 s 8536 74.3%
CAD-Lazard 4322 0.32 s 4229 1.55 s 8551 74.4%
CAD-McCallum-partial 4322 0.30 s 4237 1.64 s 8559 74.5%
CAD-Brown 4328 0.37 s 4250 1.69 s 8578 74.7%

Table 6.2: Experimental results for different projection operators.

0 30 60 90 120
0

30

60

90

120

M T

M
T

run time of CAD-Hong (s)

ru
n

tim
e

of
CA

D-
Mc

Ca
ll

um
(s

)

(a) CAD-Hong vs. CAD-McCallum

0 30 60 90 120
0

30

60

90

120

M T

M
T

run time of CAD-McCallum (s)

ru
n

tim
e

of
CA

D-
Br

ow
n

(s
)

(b) CAD-McCallum vs. CAD-Brown

Figure 6.2: Comparison of projection operators.

have more polynomials of which some are “easy” if these easy polynomials are sufficient
to heuristically guide the lifting process towards a satisfying cell.
Some further discussion, as well as experiments on the effects of the different projection
operators for SMT solving in practice, can be found in [Vie16; VKÁ17], though we
need to caution that some implementation issues were discovered after the publication
of [Vie16] that affect the last section of the experimental results. An overall summary
of the solver performance with varying projection operators is shown in Table 6.2.
These results support the theory that the solver benefits from smaller projection sets,
though the impact may not be as strong as expected. A more detailed analysis in
Figure 6.2 shows no surprising behavior – contrary to the first (erroneous) findings
in [Vie16, Chapter 6]. We see that for the most part CAD-Hong, CAD-McCallum, and
CAD-Brown solve the same problem instances in a similar amount of time. As always, a
limited number of outliers exist that benefit from a larger projection set in some way.
Another issue we already discussed in Section 5.2 is the problem of completeness,
or rather incompleteness, of some projection operators. Examples that provoke this
behavior exist in the literature, but as we have already noted in [VKÁ17], this does
not seem to be a real issue on our benchmark set. Recall that using McCallum’s or
Brown’s projection operators may lead to missing certain sample points and thereby
determining unsatisfiability though a satisfying solution exists.

6.5. HEURISTIC CHOICES 113

A key contribution of Lazard is not only its projection operator but also its modified
lifting process we discussed in Section 5.3.2. Using this lifting process, McCallum’s
projection operator (as a superset of Lazard’s projection operator, if the optimization
from [SS03] is not used) immediately becomes complete as well, and thus only Brown’s
projection operator is left as incomplete.
Note that we do not implement the “mitigations” discussed in Section 5.3.1 (for example
adding delineating polynomials) but simply rely on Lazard’s lifting procedure for all
projection operators and accept the theoretical incompleteness of Brown’s projection
operator, verifying that it does not lead to incorrect results on our benchmark set.

6.5 Heuristic choices

The proof system presented before provides a framework to determine the satisfiability
of a sequence of sets of constraints by employing a CAD-style method. However, it
does not yet yield a deterministic method as it leaves a number of choices how to use
the proof system. We now discuss these choices, present some possible heuristics, and
evaluate their impact in practice.
For an experimental comparison, we use one particular combination of heuristics as a
baseline and vary one single heuristic in every experiment. This particular baseline
solver considers only the degree for the projection order and both the level and the
type for the lifting order, denoted by CAD-PO-D and CAD-LO-lt, respectively.

6.5.1 Variable ordering

While most of the presented heuristics have no notable effect if one aims for a complete
CAD anyway, the variable ordering is known to have a significant impact on the size
of a complete CAD. The problem of selecting a good variable ordering has already
been studied in the literature, for example, in [Bro04; DSS04; HEW+14; EBD+14].
Though we carried out our own experiments here, we would generously describe them
as fruitless: we could mostly confirm that the complexity of CAD seems to grow with
some “inherent algebraic hardness”.
In most cases, changing the variable order does not change the solver behavior, and if it
does the effects are extremely difficult to predict. In our view, this is also reflected by
the fact that current research on this topic makes use of machine learning techniques,
which could be interpreted malignly as surrendering to an inherently difficult problem.
Beyond that, we have an additional level of complications in our scenario: we not only
want to compute one complete CAD but a sequence of possibly incomplete CADs.
Even worse, we can not even say beforehand which CADs we need to compute as
this depends on how the SAT solver behaves, which in turn depends on the infeasible
subsets we generate. We discuss these issues to some degree in [NKÁ19], though in the
context of MCSAT, but the underlying problem is essentially the same.
Therefore, we refrain from further analysis of variable orderings here and just note
that we use what is called the triangular ordering in [EBD+14] based on all constraints
from the formula and keep it static over the whole run. We acknowledge that this
heuristic was suggested in the context of the RegularChains library we briefly described
in Section 1.1.4 and thus it is not clear whether it is a particularly good heuristic for a
regular CAD projection.

114 CHAPTER 6. CAD FOR SMT SOLVING

Solver SAT UNSAT overall

CAD-PO-LD 4323 0.31 s 4224 1.50 s 8547 74.4%
CAD-PO-lD 4315 0.35 s 4245 1.55 s 8560 74.5%
CAD-PO-PD 4326 0.32 s 4248 1.62 s 8574 74.6%
CAD-PO-SD 4327 0.34 s 4249 1.62 s 8576 74.6%
CAD-PO-D 4328 0.37 s 4250 1.69 s 8578 74.7%

Table 6.3: Experimental results for different projection orders.

Solver SAT UNSAT overall

CAD-LO-s 4312 0.30 s 4247 1.58 s 8559 74.5%
CAD-LO-tsa 4319 0.50 s 4247 1.61 s 8566 74.6%
CAD-LO-ts 4320 0.51 s 4248 1.60 s 8568 74.6%
CAD-LO-ls 4326 0.44 s 4249 1.64 s 8575 74.6%
CAD-LO-lta 4328 0.44 s 4248 1.65 s 8576 74.6%
CAD-LO-ltsa 4328 0.46 s 4248 1.62 s 8576 74.6%
CAD-LO-tlsa 4329 0.48 s 4247 1.59 s 8576 74.6%
CAD-LO-lts 4328 0.49 s 4249 1.65 s 8577 74.7%
CAD-LO-t 4329 0.35 s 4248 1.58 s 8577 74.7%
CAD-LO-lt 4328 0.37 s 4250 1.69 s 8578 74.7%

Table 6.4: Experimental results for different lifting orders.

6.5.2 Queue ordering

Another major heuristic is of course when to work on which queue element from Q,
that is when to apply Project or Lift on which projection or lifting candidate. We
model this as a global ordering on the elements in Q and call this ordering the CAD
scheduler. In practice, we usually decompose this scheduler into one part that decides
whether we should project or lift and separate orderings on the projection candidates
and lifting candidates. Our current (rather naive) heuristic is to always perform a
complete lifting before the next projection step is computed.
We also experimented with other heuristics – for example, completing lifting on all
rational sample points before computing a projection step and only considering real
algebraic sample points when the projection is complete, and some variants thereof –
but contrary to our expectations, we could not match the performance of the naive
approach. We thus only show results for this naive variant here, still convinced, though,
that significant improvements are possible, in particular on restricted inputs.
Within this general ordering that one could describe as lifting first, we can now impose
an ordering on the projection candidates and the lifting candidates separately. Our
approach is to apply lexicographical orderings to combine multiple properties of each
candidate into one consistent ordering.
For projection candidates, we consider the level of the involved polynomials (L and
l prefer high and low levels), their type (P and S prefer paired and single projection
candidates), and finally their degree (D). Some results for varying projection orders
based on these properties are shown in Table 6.3.

6.5. HEURISTIC CHOICES 115

For the lifting candidate, or rather its sample points, we consider the absolute value
(a), the level (l), the approximate size of its representation in memory (s), and its
type (t, preferring integers over rationals over real algebraic numbers). The respective
experimental results for some combinations of these properties are shown in Table 6.4.
As we can see, both orderings have a limited but noticeable impact on the overall
performance of the solver. However, our experience shows that the differences do not
persist over time – or rather implementation and configuration changes – but seem to
correlate with other components of the solver in obscure ways. In [KÁ20], we evaluated
the very same orderings on projection and lifting candidates, but of course, the solver
around it has changed since, as well as the benchmarks that are considered. While we
noted in [KÁ20] that using the level of a projection candidate seems to be beneficial,
the most recent results shown in Table 6.3 suggest the opposite conclusion.

6.5.3 Other heuristics

Apart from these obvious heuristics, one must make a number of further choices when
implementing the presented proof system.

Syntactic variable elimination. The main driver of the asymptotic complexity
of the CAD method is the number of variables. Hence, eliminating variables should
improve the performance drastically, at least if we can do so cheaply. Therefore, we
propose to check for equalities that yield a unique solution for one variable (usually
equalities that are linear in this variable) and use them to eliminate this variable from
the set of constraints before starting the actual CAD computation.
However, changing the set of variables is fundamentally opposed to the idea of incre-
mentality. We thus propose to keep the full variable ordering intact and simply let the
polynomials skip the levels that correspond to eliminated variables.

Factorization. As already mentioned, it can make sense to factorize every polynomial
and add the factors to the projection instead of the original polynomial. Given that
we need to make the set of polynomials a finest square-free basis anyway for most
projection operators – notably McCallum’s, Lazard’s, and Brown’s – we always factorize
all polynomials and thereby get a finest irreducible basis.
We used to simply ignore that we need a finest square-free basis in the past and note
that this did neither cause incorrect results nor did the overall performance seem to
degrade significantly. Obtaining a finest square-free basis without computing a full
factorization turns out to be much more difficult than one would think, mostly because
of the incremental nature of our projection and in particular the removal of polynomials
as we already note in [KÁ20]. We thus now always use full factorization as it not only
resolves all theoretical issues but also provides a (very small) performance increase.

Sample point generation. The proof system features the Lift rule that vaguely
states that one should construct the “samples for R”, R being a list of real roots. While
the samples need to cover all sign-invariant regions – one below the smallest root, one
above the largest root, and one between every two consecutive roots – it is not clear
how exactly to select them.

116 CHAPTER 6. CAD FOR SMT SOLVING

While a number of possible heuristics may seem reasonable – the midpoint, an integer
or more towards zero, maybe even selecting more than a single point – the more
important question is whether it actually makes a difference. We have looked at this
in [KÁ20] and concluded that the effect of this selection seems to be negligible.

Subroutines. Most parts of the proof system make use of more or less complex
subroutines that all come with their own heuristics that influence their exact result (or
at least their performance) and how they should be chosen in the context of CAD – or
even in combination with the other heuristics – is mostly unclear. We briefly mention
a few of them to give a rough feeling for the breadth of this problem.
Even for storing numbers as our most basic elements, there is a significant variety of
possible options. We have already discussed the representation of real algebraic numbers
in Section 2.5, which implicitly assumed some way to store rationals. Multiple options
exist here, either based on fractions of arbitrarily large integers as in GMP [Gt19] or
CLN [HK96], or based on arbitrarily large floating-point numbers as in MPFR [FHL+07].
For certain applications, binary rationals or dyadic rationals (with denominators being
powers of two) have been shown to be particularly efficient as well [MP13]. We use
rationals from GMP unless explicitly stated otherwise.
The basic objects we use in CAD are polynomials, which again feature a vast amount
of different representations, each with technical implementation details that are crucial
for practical performance. Even well-established software packages like Maple still
change their internal representations for multivariate polynomials significantly from
time to time, as witnessed by [MP14].
For more specialized cases like univariate polynomials or fully factored polynomials (as
used by QEPCAD B), other representations are usually preferred. Our implementation
features sparse multivariate polynomials (as a list of terms with sparse exponent vectors)
and dense univariate polynomials (with possibly multivariate coefficients).
Resultants and discriminants can be obtained in a variety of ways. They are usually
defined as determinants of the Sylvester matrix – or some of its variants or the Bézout
matrix – but are usually computed more efficiently via subresultant sequences. Methods
to compute them have a long history and are continuously improved, for example [Col67;
Col71a; GCL92; Duc00], though with sometimes unclear benefits and trade-offs. Our
current implementation is based on [Duc00].
Real root isolation is used in the Lift rule to construct new sample points. A range of
different possibilities was explored in [Kre13], mostly aiming to exploit approximative
methods as preconditioning to arguably naive bisection in the spirit of [CA76] or [Sag12].
Many questions arise in this context: should we fully factor a polynomial before isolating
its roots? Where should we perform splits for bisection? Is it worth using numerical
approximations beforehand? How should we count the roots within an interval?
Given the sheer number of design decisions that must be made, combined with the
many side effects that any of these could have on all the others, one quickly realizes that
it is essentially hopeless to obtain an optimal configuration. We rather try to optimize
every issue “locally” – or in combination with a very limited number of other heuristics
– and simply hope that the side effects on uncared for subroutines are negligible.

6.6. EQUATIONAL CONSTRAINTS 117

6.6 Equational constraints

An important optimization for CAD that we already discussed in Section 5.2.8 are
equational constraints as initially described in [Col98]. Essentially, we employ equalities
to not only simplify the lifting process – by removing sample points that do not satisfy
the equalities – but also to avoid certain projection steps. Given the significant practical
impact on some formulae, we now integrate this optimization into the CAD proof
system.
We have already discussed some details of using equational constraints in Section 5.2.8,
in particular the existence of both the restricted and semi-restricted projection operator
and the restrictions on their applicability. We do not aim to incorporate these in detail
here, but rather give a rough template on how to do so.
The main idea is to store which equalities are used as equational constraints in a
new part of the state we call EQ and to maintain a separate queue called Q∗ that
contains everything that is disabled due to the equational constraints used to simplify
the projection. For the sake of an easy presentation, we now present a simple –
and probably suboptimal – scheme to deal with this issue and refer more efficient
implementations to the reader. We assume that making the following adaptions
reasonably efficient is rather straightforward for anyone implementing an incremental
CAD along the lines of what was described before.

Algorithm 6.1: Reduce projection based on equational constraints
Input: constraints C, polynomials P , equational constraints EQ ⊆ C

1 Function ReduceProjection(C, P , EQ)
2 P ′ = P ∩ {p | p σ 0 ∈ C} . polynomials from input constraints
3 while P ′ changed do
4 Let O = {{p}, {p, q} | p ∈ P ′, q ∈ EQ}
5 P ′ = P ′ ∪ {p ∈ P | origins(p) ∩O 6= ∅}
6 return P ′

Let us first define a helper method to remove polynomials from the projection due to
equational constraints in Algorithm 6.1. This method, that we call ReduceProjection,
iteratively collects polynomials that are still active under a restricted set of origins,
consisting of single projection steps or projection steps involving one of the equational
constraint polynomials.

Algorithm 6.2: Reduce queue based on equational constraints
Input: polynomials P , sample points S, queue Q,

equational constraints EQ ⊆ C
1 Function ReduceQueue(P , S, Q, EQ)
2 return Q ∩ ({(p, p) | p ∈ P} ∪ (P × EQ) ∪ (EQ× P) ∪ (S × P))

Similarly, we define the helper method ReduceQueue in Algorithm 6.2 that restricts the
queue to all elements consistent with the new set of projection polynomials and sample
points and also removes projection candidates that would yield inactive projection
polynomials due to the equational constraint polynomials.

118 CHAPTER 6. CAD FOR SMT SOLVING

This now allows us to define the new proof rule EqC-Cleanup that moves everything
from either P , S, or Q to Q∗ which should be disabled due to the active equational
constraint polynomials EQ. We also define the inverse rule EqC-Restore to restore all
elements from Q∗, intended to be called when a polynomial is removed from EQ.

EqC-Cleanup:

〈C,P, S,Q,Q∗, EQ〉
〈C,P ′, S′ ∪ SI , Q′, Q′

∗, EQ〉
if

P ′ = ReduceProjection(C, P, EQ)
S′ = {s ∈ S | ∃o ∈ origins(s). o ⊆ P ′}
SI = intermediate samples from S required for S′

Q′ = ReduceQueue(P’, S′ ∪ SI , Q, EQ)
Q′

∗ = Q∗ ∪ (P \ P ′) ∪ (S \ (S′ ∪ SI)) ∪ (Q \Q′)

EqC-Restore:

〈C,P, S,Q,Q∗, EQ〉
〈C,P ′, S′, Q′, ∅, EQ〉

if
P ′ = P ∪ polynomials(Q∗)
S′ = S ∪ samples(Q∗)
Q′ = Q ∪ (Q∗ \ (P ′ ∪ S′))

To actually make use of this technique, we invoke the new proof rule EqC-Cleanup
whenever Add-Poly-Finished was used and let any invocation of EqC-Restore be
followed by EqC-Cleanup:

Add-Poly-Finished → Add-Poly-Finished ◦ EqC-Cleanup
EqC-Restore → EqC-Restore ◦ EqC-Cleanup

Note that we did not yet define how the set of equational constraint polynomials
EQ should be maintained. We define a new proof rule EqC-Select that enables as
many equational constraints from C as possible by adding their polynomials to EQ
and analogously a proof rule to deactivate a given equational constraint polynomial.
Both are designed to be integrated with Add-Constraint and Delete-Constraint,
respectively.

EqC-Select:

〈C,P, S,Q,Q∗, EQ〉
〈C,P, S,Q,Q∗, EQ ∪N〉

if
L(P) := {level(p) | p ∈ P}
N = {p | p = 0 ∈ C} such that
|L(EQ ∪N)| = |EQ ∪N |

EqC-Unselect c:
〈C,P, S,Q,Q∗, EQ〉
〈C,P, S,Q,Q∗, EQ

′〉
if EQ′ = EQ \ {p | c = p σ 0}

Consequently, we invoke EqC-Select after Add-Constraint and forward the removed
constraint from Delete-Constraint to EqC-Unselect. Note that after unselecting an
equational constraint polynomial we may be able to select another one on the same
level and we therefore invoke EqC-Select again. Additionally, we add the new state
components Q∗ and EQ to all other proof rules and let them be the empty set initially.

Add-Constraint → Add-Constraint ◦ EqC-Select
Delete-Constraint c→ Delete-Constraint c ◦ EqC-Unselect c ◦ EqC-Select

6.6. EQUATIONAL CONSTRAINTS 119

Solver SAT UNSAT overall

CAD-ECS-Hong 4303 0.25 s 4200 1.47 s 8503 74 %
CAD-Hong 4304 0.28 s 4199 1.46 s 8503 74 %
CAD-EC-Hong 4304 0.30 s 4201 1.55 s 8505 74 %
CAD-ECS-McCallum 4320 0.33 s 4227 1.56 s 8547 74.4%
CAD-McCallum 4321 0.35 s 4226 1.53 s 8547 74.4%
CAD-EC-McCallum 4320 0.33 s 4228 1.59 s 8548 74.4%
CAD-EC-Brown 4327 0.32 s 4256 1.63 s 8583 74.7%
CAD-Brown 4328 0.35 s 4255 1.60 s 8583 74.7%
CAD-ECS-Brown 4328 0.35 s 4257 1.64 s 8585 74.7%

Table 6.5: Experimental results for equational constraints.

As we have already mentioned, the actual implementation may look somewhat differ-
ent. In particular, one might want to employ a more efficient mechanism to restore
elements from Q∗ – instead of restoring everything and filtering again – and implement
ReduceProjection level-by-level instead of a generic fixed-point iteration. Another
interesting question is which heuristic should be implemented to select an equational
constraint in EqC-Select.
A brief overview of the impact of using equational constraints as implemented in [Hae18;
HKÁ18] is given in Table 6.5. We compare (for Hong’s, McCallum’s, and Brown’s
projection operators) our implementation without equational constraints, with the
restricted projection operator (EC), and the semi-restricted projection operator (ECS).
Though literature indicates that equational constraints can have a substantial impact,
it makes no consistent difference in our use case. We conjecture that the possible effect
of equational constraints is reduced by the incremental setting and superseded by the
syntactic variable elimination that we describe in the following Section 6.6.1.

6.6.1 Variable elimination and the resultant rule

An interesting topic concerning equational constraints is the resultant rule as described
in Definition 5.14, taken from [Col98]. We could integrate the resultant rule into the
proof system defined above, as well as into an actual implementation thereof. Following
the idea of postponing all computations as long as possible, it seems tempting to apply
the resultant rule lazily and generate new equational constraints dynamically.
However, we want to caution everyone planning to go down this road for several reasons.
First of all, this adds a whole new layer of complexity that we have to deal with. To
just give one example, enabling an equational constraint may invalidate origins of
another equational constraint on a lower level and thus lead to disabling another one
– which in turn might reactivate yet another one even further down. Getting all this
right – on top of all the bookkeeping we have to do anyway – is anything but trivial.
Secondly, we observe a very fundamental issue in the interaction of equational con-
straints and incrementality. Adding constraints only leads to things being added to
our CAD and removing constraints only leads to things being removed from our CAD.
Also, we only remove polynomials (and sample points) that we are sure we do not need
anymore (except if the constraint is later added again). When adding an equational
constraint, however, we also remove, and when removing an equational constraint

120 CHAPTER 6. CAD FOR SMT SOLVING

Solver SAT UNSAT overall

CAD-hide 4323 0.31 s 3887 2.34 s 8210 71.5%
CAD-ECS 4323 0.31 s 3890 2.41 s 8213 71.5%
CAD+RR-hide 4325 0.31 s 3921 2.26 s 8246 71.8%
CAD-ECS+RR 4326 0.36 s 3922 2.27 s 8248 71.8%
CAD+VE+RR-hide 4328 0.35 s 4255 1.60 s 8583 74.7%
CAD-ECS+VE+RR 4328 0.35 s 4257 1.64 s 8585 74.7%
CAD+VE-hide 4332 0.35 s 4346 1.91 s 8678 75.5%
CAD-ECS+VE 4333 0.35 s 4348 1.90 s 8681 75.6%

Table 6.6: Experimental results for the resultant rule.

we restore what we removed before. This significantly raises the amount of “induced
changes”, and possibly the amount of information we need to recompute.
Finally, we may very well argue that eagerly applying the resultant rule can be very
beneficial, even if we disregard the advantages due to less bookkeeping and simpler
code or even using equational constraints at all. The resultant rule gives rise to
new equational constraints that might allow to syntactically eliminate variables as
mentioned in Section 6.5.3 and shown in Example 6.1, and the number of variables is
one of the main drivers of run-time complexity in CAD. An eagerly applied combination
of the resultant rule and syntactic variable elimination may thus be very beneficial and
outweigh the possible benefits of incrementality by far, also allowing to be applied to
CAD implementations that do not exploit equational constraints internally.

Example 6.1: Variable elimination with the resultant rule

Consider the input formula ϕ ≡ y2x2 = 0 ∧ y2 − 1 = 0 and assume that we
eliminate y first. The resultant rule states that

(y2x2 = 0 ∧ y2 − 1 = 0) =⇒ resy(y
2x2, y2 − 1) = 0

Observe that neither y2x2 = 0 nor y2 − 1 = 0 can be used to syntactically
eliminate y (or x) because neither defines a unique solution for either variable.
While y2x2 = 0 yields a solution of the form y = 0 ∨ x = 0, y2 − 1 = 0 gives
y = 1∨y = −1. The resultant rule however gives x4 = 0 with the unique solution
x = 0 that we can use to eliminate x and obtain ϕ′ ≡ y2 − 1 = 0.

We thus devise four variants to evaluate the impact when equational constraints are
used and when they are not: without any preprocessing (CAD and CAD-ECS); with the
resultant rule only (CAD+RR and CAD-ECS+RR); with syntactic variable elimination only
(CAD+VE and CAD-ECS+VE); with the resultant rule and syntactic variable elimination
(CAD+VE+RR and CAD-ECS+VE+RR).
Additionally, we show results for the regular (fully incremental) CAD and when
equational constraints are used. We see in Table 6.6 that these preprocessing techniques
have essentially no impact for satisfiable instances but can make a big difference in case
of unsatisfiability. Both, the resultant rule and the variable elimination, improve the
solver significantly, combining them however yields worse results than using variable
elimination alone.

6.6. EQUATIONAL CONSTRAINTS 121

0 30 60 90 120
0

30

60

90

120

M T

M
T

run time of CAD+RR (s)

ru
n

tim
e

of
CA

D
(s

)

(a) CAD vs. CAD+RR

0 30 60 90 120
0

30

60

90

120

M T

M
T

run time of CAD+VE (s)

ru
n

tim
e

of
CA

D+
RR

(s
)

(b) CAD+RR vs. CAD+VE

0 30 60 90 120
0

30

60

90

120

M T

M
T

run time of CAD+VE+RR (s)

ru
n

tim
e

of
CA

D+
RR

(s
)

(c) CAD+RR vs. CAD+VE+RR

0 30 60 90 120
0

30

60

90

120

M T

M
T

run time of CAD+VE (s)

ru
n

tim
e

of
CA

D+
VE

+R
R

(s
)

(d) CAD+VE+RR vs. CAD+VE

Figure 6.3: Comparison of unsatisfiable instances.

Furthermore, the comparisons in Figure 6.3 show that these different heuristics es-
sentially follow a strict order in that a “worse” heuristic solves almost no examples a
“better” heuristic can solve. We see this from the fact that only very few benchmark
instances end up in the lower right triangle.
We observe that the resultant rule in some way emulates variable elimination in that
computing the resultant of the form resx(x− p, q) – where p does not contain x – is
essentially equivalent to substituting x = p into q. The performance of the resultant
rule – compared to variable elimination – thus seems to suggest that it merely does a
poor job at simulating variable elimination, but has no real benefit on its own, at least
on this benchmark set and if (syntactic) variable elimination is performed.
This even holds true when equational constraints are used, which should benefit in
particular from new equalities generated by the resultant rule. We thus consider the
resultant rule a nice tool that one should consider for particular problem classes, but
not beneficial in general for our use case.

122 CHAPTER 6. CAD FOR SMT SOLVING

6.7 Infeasible subsets

In the case of an inconsistent set of constraints, we would like to provide the SAT
solver with an infeasible subset of constraints as already discussed in Section 4.3.4.
Unfortunately, we can not easily derive any information from our state when we
determine unsatisfiability, mostly because we have no “constructive” criterion that
we check – like we would, for example, for the simplex method – but only run out
of solution candidates. In this sense, we can only perform an a-posteriori analysis
of an (almost) regular CAD computation. Therefore, we employ a technique that is
very similar to the one described in [JDF15] and directly based on the work presented
in [Hen17]. In the following, we assume that our CAD method has run to completion
and found no sample points to be satisfying.
When we found the problem to be unsatisfiable, we have for every leaf node in the
sample tree at least one constraint that evaluates to false on this leaf node. Note that
the leaves may not be of full dimension: we may stop lifting a partial sample point
if it is already invalidated by a constraint, roughly following [CH91]. Fundamentally,
an infeasible subset is any subset of constraints such that every sample point is still
invalidated (or “covered”) by this subset.
We approach this problem in the spirit of a set cover problem and note the similarity
to minimal infeasible subsets from Definition 4.4.

Definition 6.4: Set cover problem

Let Ω be a finite set and S ⊆ P(Ω). We call C ⊆ S a set cover of Ω if⋃
s∈C

s = Ω or equivalently ∀o ∈ Ω. ∃s ∈ S. o ∈ s

We call C a minimum set cover if it has minimal cardinality among all set covers
and a minimal set cover if no proper subset of C is a set cover. Finding a
minimum set cover C for some Ω and S is called the set cover problem SC(Ω, S).

The set cover problem is one of the classical NP-hard problems from [Kar72], suggesting
that computing an optimal solution is oftentimes infeasible. There is, however, a simple
greedy heuristic which achieves an essentially optimal approximation [Chv79]. We use
the set cover problem to compute infeasible subsets as follows.

Definition 6.5: Infeasible subsets by set covers

Let C be constraints and S the sample points constructed by CAD. We know
that ∀s ∈ S. ∃c ∈ C. c(s) = false which essentially matches the alternative
formulation of the set cover problem. Let Sc = {s ∈ S | c(s) = false} for every
c ∈ C, then finding an infeasible subset is equivalent to the set cover problem
SC(S, {Sc | c ∈ C}).

Theorem 6.1: Correctness of infeasible subsets by set covers

Any set cover X that is a solution to SC(S, {Cc | c ∈ C}) is a proper infeasible
subset. If X is a minimal (minimum) set cover, it is a minimal (minimum)
infeasible subset.

6.7. INFEASIBLE SUBSETS 123

Proof. We defined the set cover problem such that the elements of the universe
are sample points and a sample point is covered if a constraint evaluating to
false for this sample point is selected. As a set cover covers all sample points, no
sample point is satisfiable and the selection of constraints is an infeasible subset.
If X is a minimal set cover, for each of its proper subsets some sample point
remains uncovered and thus is satisfiable. Hence, X has no proper subset that is
an infeasible subset and X is a minimal infeasible subset. Analogously, if X is a
minimum set cover, it is also a minimum infeasible subset.

As we have transformed our SMT specific question for infeasible subsets into a rather
simple and well-understood set cover problem, we can now use this new formalization
to actually compute infeasible subsets. As already argued, minimum infeasible subsets
may be hard to compute as they are one of the original NP-hard problems, so we
instead use heuristics in the spirit of [Chv79] to obtain minimal infeasible subsets.
Though this gives us a nice way to obtain infeasible subsets, there are still a few open
questions when integrating this approach with an actual CAD implementation. First
of all, we need to obtain the sets Cc from our CAD and may realize that our CAD, in
fact, does not evaluate all constraints on every sample point. We usually only evaluate
until we find a single constraint that invalidates a particular sample point and avoid
further evaluations to eliminate unnecessary overhead.
We could go ahead and use these partial sets, accepting some interesting consequences.
In this case, all sets are singleton sets and thus we essentially have no combinatorial
problem. We can simply collect all constraints that are used at some point to invalidate
a sample point and are done, potentially saving a lot of work. It however also means
that which constraints are part of the infeasible subset is determined by the order in
which we evaluate constraints on a sample point.
Alternatively, we can evaluate all sample points with all constraints and use the full sets.
This gives us full flexibility on which covers to compute and allows finding minimal
infeasible subsets of the actual problem. We find that these additional evaluations are
not that costly in practice, at least when compared to the effort we put in the CAD
computation in the first place.
We can also understand this problem as a linear programming problem as described
in [JDF15]. We want to note, however, that the set cover formulation is quite promising
as we usually have a large number of sample points and only a few constraints, thus
also the underlying implementation of [JDF15] employs a set cover heuristic.
We finally observe that the set cover problem is usually very regular and has a lot
of redundancies. It is common, that only a single constraint invalidates a particular
sample point. Such an essential constraint must be part of any infeasible subset and
we can thus eliminate it from the set cover problem, as well as all sample points that
are covered by it. We also know that the CAD usually has multiple sample points for
a single sign-invariant region, and these sample points should be completely identical
within the set cover problem. We can thus remove such duplicate columns, conceding
that this may very well change the selections of the greedy heuristics from [Chv79].
Systematically applying these techniques is surprisingly powerful in practice, sufficiently
reducing the problem size to allow for an optimal brute force solution of the set cover
problem instead of the heuristic approach referenced above, as shown in [Hen17].

124 CHAPTER 6. CAD FOR SMT SOLVING

Solver SAT UNSAT overall

CAD-MIS-Greedy-PP 4327 0.32 s 4249 1.67 s 8576 74.6%
CAD-MIS-Greedy-Weighted 4329 0.36 s 4247 1.60 s 8576 74.6%
CAD-MIS-Hybrid 4328 0.33 s 4248 1.62 s 8576 74.6%
CAD-MIS-Trivial 4325 0.32 s 4251 1.66 s 8576 74.6%
CAD-MIS-Exact 4328 0.34 s 4249 1.66 s 8577 74.7%
CAD-MIS-Greedy 4328 0.37 s 4250 1.69 s 8578 74.7%

Table 6.7: Experimental results for heuristics for minimal infeasible subsets.

A classical question in the context of infeasible subsets is whether the size of the
infeasible subset is the best ranking criterion. One could imagine that selecting easy
constraints is beneficial – as this increases their activity in the SAT solver and thus
encourages working on easier parts of the problem – or selecting constraints of small
decision level could speed up the search – by excluding larger parts of the Boolean
search space. We can easily enhance the set cover problem to a weighted set cover
problem to allow for arbitrary weights of the constraints, and appropriate heuristics
exist for the weighted variant as well.
Note, however, that this might only end up as a proxy to modify the SAT solvers
decision heuristic. Past research – as well as our practical experience – suggests that it
is usually a bad idea to mess with the decision heuristic. Adding these criteria almost
consistently either does not change the overall performance at all or even impairs it.
This should not come as a surprise as recent progress on SAT decision heuristics points
towards structural properties of the clauses (like literal block distance [AS09]) or the
whole formula (like community structure [LGZ+15]) or even optimizing for behavioral
properties of the solver (like learning rate [LGP+16]), but away from properties of the
individual literals. It is not clear to us, however, how such structural properties can be
properly integrated into the approach described above and we, therefore, leave it for
future research.
Another interesting direction would be to investigate whether adding multiple infeasible
subsets at once can be beneficial. It could be possible to construct different infeasible
subsets and provide the SAT solver with more diverse knowledge. We conjecture,
however, that it might be difficult to have multiple infeasible subsets that do not
introduce a lot of redundant information.
To evaluate these different possibilities, we propose the following different heuristics
for computing infeasible subsets where “preprocessing” includes selecting essential
constraints and removing duplicate columns as described in [Hen17]: CAD-MIS-Trivial
returns the trivial infeasible subset; CAD-MIS-Greedy employs the standard greedy
heuristic from [Chv79]; CAD-MIS-Greedy-PP applies preprocessing before using the
greedy heuristic; CAD-MIS-Greedy-Weighted uses the standard greedy heuristic where
constraints are weighted according to their complexity; CAD-MIS-Exact computes a
minimum covering after preprocessing; CAD-MIS-Hybrid first uses preprocessing, then
the greedy heuristic until at most 12 constraints are left, and then computes a minimum
covering. The threshold of 12 constraints is taken from [Hen17] and makes sure that
we only compute a minimum covering if it is sufficiently fast.
We see the impact of the different heuristics – or rather the lack thereof – in Table 6.7.

6.8. INTEGER PROBLEMS 125

As already noted, the choice of the heuristic is almost irrelevant on the considered
benchmark set and the differences do not seem to be statistically significant. Therefore,
we refrain from a deeper analysis here and refer to [Hen17] which contains some
interesting observations: for example, in these experiments the number of required
theory calls decreased significantly with CAD-MIS-Hybrid (compared to CAD-MIS-
Greedy), though this is not reflected in the overall solver performance.
We note that many interesting questions and possible further heuristics are left open
and untested here. The impact of heuristics for infeasible subsets have proven to be
minor at best on our benchmarks – mostly due to the low Boolean complexity – but
some results from [Hen17] and practical experience with other theories indicate that
one should nevertheless keep this topic in mind for future research.

6.8 Integer problems

We have presented and understood CAD as a decision procedure for nonlinear real
problems. A common requirement in practice is that assignments should be integral,
and it is well-known that the theory of nonlinear integer arithmetic is undecidable
– though the search space becomes smaller. This is somewhat similar to the linear
case, where polynomial algorithms exist for the reals, but linear integer problems have
exponential complexity (if we assume P 6= NP).
Arguably the most common approach to tackle linear integer problems is called branch
and bound. It essentially computes a real solution and – if this solution is not integral –
excludes some region around this solution so that the removed part does not contain
any integral solution.
The simplest variant of branch and bound roughly works as follows: Assume the real
solution to our formula ϕ is x = 0.5, we perform two recursive calls with ϕ ∧ x ≤ 0
and ϕ ∧ x ≥ 1, respectively. This recursion either eventually finds an integer solution,
excludes the whole search space, or continues indefinitely.
The exponential growth due to the recursive calls can be a problem for which we
essentially have two approaches. Instead of issuing recursive calls, we can lift the
lemma x ≤ 0 ∨ x ≥ 1 to the SAT solver and let the SAT solver decide, providing the
possibility to retain knowledge from different parts of the search space. Alternatively,
there are other ways to create cuts that do not (necessarily) induce case splits like
Gomory cuts or cutting planes. However, these other cuts usually have other issues
concerning termination.
For nonlinear integer problems, however, a completely different approach is commonly
used. Most solvers employ bit blasting in the spirit of [FGM+07] in some fashion,
essentially using a bit-precise encoding of the integer variables – up to a certain number
of bits – into propositional logic. This approach is conceptually simple and impressively
efficient if a small satisfying assignment exists (in terms of the bits necessary to represent
it), but also has significant drawbacks: finding large models requires a large number
of bits which entails a superlinear growth of the propositional formula; determining
unsatisfiability is all but trivial and requires additional machinery, if possible at all.
We have presented an integration of nonlinear decision procedures (including CAD) into
branch and bound in [KCÁ16] and showed that it nicely complements bit blasting. Most
prominently, algebraic procedures can find unsatisfiability which is only rarely possible

126 CHAPTER 6. CAD FOR SMT SOLVING

Solver SAT UNSAT overall

NIA-B&B 1044 1.63 s 518 4.48 s 1562 6.5%
NIA-Blast 4367 13.11 s 26 0.68 s 4393 18.4%
NIA-Full 4490 13.12 s 508 7.68 s 4998 20.9%

Table 6.8: Experimental results for integer problems.

using bit blasting. Furthermore, problem instances whose satisfying assignments are
large but have a comparably simple algebraic structure can significantly benefit from
algebraic procedures. While our variant lifts splits (or branches) to the SAT solver,
it might be an interesting direction for future research to look for possibilities more
similar to cutting planes to avoid case splits.
Some experimental results – on the SMT-LIB QF_NIA benchmark set – are shown
in Table 6.8. Though the branch-and-bound approach on its own is inferior to bit
blasting, it complements bit blasting well. In particular, it allows solving a significant
number of unsatisfiable problem instances but also helps in case of satisfiability. For a
more thorough analysis that also discusses the other theory methods involved – both
NIA-B&B and NIA-Full also employ simplex and virtual substitution equipped with
branch and bound – we refer to [KCÁ16]. Please note that the results in [KCÁ16] were
obtained on the set of SMT-LIB QF_NIA benchmarks of the day which have significantly
changed since.

6.9 Quantifier elimination

The CAD proof system we presented is concerned with determining the satisfiability
of a given problem, as is the overwhelming part of this whole thesis. However, the
informed reader may remark that CAD was originally devised to solve a more general
problem, namely quantifier elimination, and ask whether the presented techniques can
be employed for tackling such a quantifier elimination problem.

Definition 6.6: Quantifier elimination

Let ϕ = Qx. Qy. ϕ′ be a formula where y is quantified (existentially or uni-
versally). The (single) quantifier elimination problem is to construct a new
quantifier-free formula ψ such that Qx. ψ is equivalent to ϕ.
The general quantifier elimination problem is to eliminate some or all quantifiers
from an arbitrary formula in prenex normal form.

Most importantly, quantifier elimination does not search for a single satisfying sample
point but indeed needs a decomposition – unless all quantifiers are existential quantifiers.
Therefore, most presented ideas that aim for early termination and avoiding projection
steps do not work here as a full CAD is needed anyway. It is nevertheless valuable to
know that an implementation of CAD implementing all these techniques can still be
used for quantifier elimination, and we do not need to duplicate multiple versions of
the projection and lifting mechanisms.
Our solver SMT-RAT was enhanced in [Neu18a] to support quantifier elimination based
on the incremental CAD computations. The implemented approach is mostly based

6.10. OPTIMIZATION 127

on the descriptions from [Bro99]. Though we can not benefit from most features at
the core of SMT-RAT, the quantifier elimination part performs reasonably well when
compared to other tools like QEPCAD B or Maple.
Furthermore, we see striking similarities between the inner workings and practical
problems of this form of quantifier elimination and local cell constructions like One-
Cell CAD from [Bro13], non-uniform CAD [Bro15] (that we both already mentioned in
Section 1.1.4), or MCSAT-style explanations as described in Section 8.3.
We mostly think of the process of extracting a particular cell from the CAD and either
finding a proper formalism to represent it – like extended polynomial constraints as
defined in Section 2.3.1 or “extended Tarski formulae” with indexed root expressions
from [Bro99] – or converting it to an expression in our standard first-order language –
called “simple solution formulae” in [Bro99]. We thus think that future work on this
connection could provide additional synergies.

6.10 Optimization

Another extension that gained substantial popularity in the SMT community recently
is the support for optimization queries, for example, in [BPF15; ST15b]. Instead of
looking for some feasible solution to a first-order logic formula, the goal is to find an
optimal solution with respect to a given objective function. This task is oftentimes
called optimization modulo theories and expands the applicability of SMT (or rather
OMT) significantly.
The most popular approach extends both the SAT solver and the theory solver as
presented in [ST15a]. In particular, it requires the theory solver to compute an optimal
solution with respect to the given set of constraints. While the simplex method –
being a method meant for optimization tasks in the first place – provides for this
naturally, optimization within this framework for nonlinear problems has not found a
lot of traction yet.
Though we never made time to implement the following approach, we propose to employ
CAD for this task. It not only allows for a complete method that does not rely on
convergence or special problem properties (like convexity) but also permits interesting
ways to obtain almost-optimal solutions more quickly with strong guarantees on the
quality of those.
Let us assume that our objective function is a single variable instead of an arbitrary
function. We can simply reduce any objective function f by adding an equality v = f
to the set of constraints with v being a fresh variable that we use as a new objective.
Let us furthermore assume, without loss of generality, that we always minimize.
The fundamental idea is very simple. We first impose a variable ordering where v is
the last variable in the projection, and thus the first to be lifted, and compute a full
projection. We then split the lifting into two parts: for v we select the smallest cell
(we have not tried yet) and afterward perform the regular lifting procedure above this
selection of v. As soon as we find a solution, it is optimal in the sense that it comes
from the optimal cell for v.
If we are only looking for a very good solution we can simply select a sample point that
is very close to the lower bound of the cell and give extremely strong guarantees on
the value of the objective. For s a satisfying sample point with sv ∈ (α1, α2) we can

128 CHAPTER 6. CAD FOR SMT SOLVING

give an absolute bound on the quality of the solution, namely sv − α1. We can even
allow the user to provide an acceptable error and simply select an appropriate sv, all
without the need for any approximation.
Of course, we can even give exact values if the optimal satisfying cell is a closed cell.
In this case, the optimal value sv is exactly at a root, and the regular CAD lifting
provides us with an optimal assignment. Unboundedness can also be detected easily
when the very first cell – that is unbounded – is satisfiable. With this, we claim to be
on a par with other optimization techniques, at least in terms of expressivity.
We additionally would like to compute solutions for unbounded cells and exact optima
from open cells. While we have not investigated this issue deeply, we propose to borrow
terminology and machinery from virtual substitution, which allows computing with
±∞ as well as terms of the form r ± ε. These are eliminated within the individual
rules of virtual substitution, and we assume that similar techniques can be applied
within a lifting step.

Part III

Model-Constructing Satisfiability
Calculus

Proof system

The lazy SMT solving approach presented so far is guided by the idea to have a clear
separation between the Boolean reasoning and the theory reasoning. It is possible to
implement a Boolean SAT solver that can be used for lazy SMT solving completely
irrespective of the theory we use it with. The theory reasoning, on the other hand,
does not need to bother with clauses and logical connectives, but purely focuses on
sets of theory constraints.
While this has been the predominant approach for two decades and this separation of
concerns simplifies the implementation, it is by no means the only conceivable solution.
Eager SMT solving is still viable for certain logics and has been used a lot in the past,
even [DP60] can be seen as an eager approach to solve first-order logic problems.
In [JM12] and [MJ13], a new approach called MCSAT was presented that makes a certain
part of the theory reasoning a first-class citizen in the – beforehand only Boolean –
core reasoning engine. Similar to how a SAT solver builds a Boolean model for the
formula over time, the MCSAT solver also builds a theory model. There is still a theory
reasoning component that is decoupled from the core MCSAT solver, but it only needs
to explain why a certain (partial) theory model is not feasible.
We first give a proper definition and introduction to the MCSAT proof system. Afterward,
we discuss our main contributions concerning MCSAT, consisting of some adaptations to
the proof system, both improved and completely novel methods for theory reasoning,
how to implement it within an existing SMT solver, and how to select proper heuristics.
The implementation is then experimentally evaluated. Finally, we compare the MCSAT
proof system to other proof systems from a theoretic perspective, firstly using the
notion of proof complexity in comparison to the resolution proof system and secondly
using the notion of polynomial simulation in comparison to the CDCL(T) proof system.

7.1 Definition

MCSAT is given as a proof system in [MJ13] and we start with this presentation as well.
Our work on MCSAT includes the integration of MCSAT into a regular SAT solver, and
we give an algorithmic description later on.
As we later see, the common termination argument for the MCSAT proof system relies
on the finite basis property. Essentially, we require that all new theory constraints
come from some finite set of constraints. We call such a set a finite basis B and note
that it usually depends not only on the input constraints but also on which theory
methods are employed for the explanation function that we discuss in Section 8.3.

132 CHAPTER 7. PROOF SYSTEM

Similar to CDCL(T) in Section 4.5 and, in particular, Definition 4.5, MCSAT works on a
MCSAT state as defined below. The proof rules look similar to the ones from Section 4.5
but have some notable differences. We start with a few special notations and then
define the MCSAT proof system.

Definition 7.1: MCSAT state and trail

Let an MCSAT trail extend a DPLL trail with an additional type of elements:

x 7→ αx Theory assignment of x to theory value αx

Following Definition 2.6, we use the following notation for a trail M :

M = JN,L1, C1 → L2,¬L3, x 7→ 2K

where N is the prefix of M and itself a trail, L1 and ¬L3 are Boolean decisions,
C → L2 is a Boolean propagation and x 7→ 2 is a theory assignment. We call a
trail complete if it contains assignments for all (Boolean and theory) variables.
We call a trail satisfying if its model satisfies the formula, usually implying
that it is also complete. We call the combination of an MCSAT trail and a set of
clauses C a MCSAT state. We distinguish two types of states, an MCSAT search
state denoted as 〈M, C〉 and a MCSAT conflict state denoted as 〈M, C〉 C where
C is a clause such that M |= ¬C.

In regular CDCL (and CDCL(T)), a literal’s value is always determined by a Boolean
assignment – either a decision or propagation – unless it is still unassigned. As MCSAT
incorporates a theory model, a literal can now also have a value due to the theory
model if it evaluates to true or false over this theory model. This carries the risk
of having conflicting assignments: having a literal that is propagated to be true but
evaluating to false on the theory model. We impose a certain consistency on the trail
to avoid such a case.

Definition 7.2: MCSAT evaluation of literals

Let M be a trail and L a literal. We call valueB(L,M) and valueT (L,M) the
Boolean value of L (under M) and the theory value of L (under M), respectively,
and define them accordingly.

valueB(L,M) =

true if L ∈M

false if ¬L ∈M

undef otherwise

valueT (L,M) =

true if v[M](L) = true

false if v[M](L) = false

undef otherwise

We call a trail consistent if it represents a proper partial assignment and the
Boolean value and the theory value are compatible:

∀L ∈M. (¬L 6∈M ∧ valueT (L,M) 6= false)

7.1. DEFINITION 133

This allows us to soundly define the value of L value(L,M):

value(L,M) =

{
valueB(L,M) if valueB(L,M) 6= undef

valueT (L,M) otherwise

We extend this function to obtain the value of a clause C and analogously the
the value of a set of clauses C as follows:

value(C,M) =
∨
l∈C

value(l,M) value(C,M) =
∧
C∈C

value(C,M)

Another interesting property that is checked at multiple places in the proof system we
are about to define is infeasibility. Informally, we say that a trail is infeasible if it can
not be extended to contain a full model (both Boolean and theory) in a consistent way.

Definition 7.3: MCSAT trail infeasibility

Let M be an MCSAT trail. We call M feasible if it can be extended to a trail
N = JM, . . .K such that N is consistent and satisfying.

We already note here that this definition has a global view on feasibility in that
deciding upon the feasibility of a (possibly empty) trail is effectively identical to our
original problem of deciding upon the satisfiability of a formula. Therefore, practical
implementations usually perform a partial check for feasibility only, where partial refers
to the “lookahead”: like proposed in [JM12], we only check whether the next theory
variable (according to some ordering) can be assigned properly. When we advance
towards a complete trail this partial check eventually becomes a complete check. For a
more detailed discussion of this, we refer to Section 9.3.
We now define the MCSAT proof system. Similar to [MJ13], we split the proof rules into
multiple parts that we call Boolean reasoning, conflict analysis, and theory reasoning.

Definition 7.4: MCSAT – Boolean reasoning

The MCSAT proof rules for Boolean reasoning are defined as follows.

Decide:
〈M, C〉

〈JM,LK, C〉
if L ∈ B and value(L,M) = undef

Propagate:

〈M, C〉
〈JM,C → LK, C〉

if
C = (L1 ∨ · · · ∨ Ln ∨ L) ∈ C,
∀i. value(Li,M) = false,
value(L,M) = undef

Conflict:
〈M, C〉

〈M, C〉 C
if C ∈ C, value(C) = false

Sat:
〈M, C〉
sat

if value(C,M) = true

134 CHAPTER 7. PROOF SYSTEM

Forget:
〈M, C〉

〈M, C \ {C}〉
if C ∈ C is a learned clause

Restart:
〈M, C〉
〈JK, C〉

The part of the MCSAT proof system shown in Definition 7.4 takes care of Boolean
exploration (Boolean decisions and propagations), detecting conflicts or satisfiability,
and “maintenance tasks” such as removing learned clauses or restarting the solver.
Note that the original presentation in [JM12] does not contain the Restart rule. Once
a conflict has been detected we switch from the search state to the conflict state.

Definition 7.5: MCSAT – Conflict analysis

The MCSAT proof rules for conflict analysis are defined as follows.

Resolve:
〈JM,D → LK, C〉 C

〈M, C〉 R
if ¬L ∈ C,

R = ResolutionL(C,D)

Consume1:
〈JM,D → LK, C〉 C

〈M, C〉 C
if ¬L 6∈ C

Consume2:
〈JM,LK, C〉 C

〈M, C〉 C
if ¬L 6∈ C

Backjump:

〈JM,NK, C〉 C

〈JM,C → LK, C〉
if

C = (L1 ∨ · · · ∨ Ln ∨ L),
∀i. value(Li,M) = false,
value(L,M) = undef ,
N starts with a decision

Unsat:
〈M, C〉 false

unsat

Learn:
〈M, C〉 C

〈M, C ∪ {C}〉 C
if C 6∈ C

Contrary to CDCL(T) where conflict resolution is essentially unspecified, we provide
reasonably detailed rules for how to perform conflict resolution in Definition 7.5.
However, these rules specify exactly what modern CDCL-style SAT solvers do: resolution-
based backtracking until the first unique implication point with clause learning – though
the clause learning is technically optional here.

7.2. INTUITION 135

Definition 7.6: MCSAT – Theory reasoning

The MCSAT proof rules for theory reasoning are defined as follows.

T-Propagate:

〈M, C〉
〈JM,E → LK, C〉

if
L ∈ B, value(L,M) = undef ,
infeasible(JM,¬LK),
E = explain(JM,¬LK)

T-Decide:

〈M, C〉
〈JM,x 7→ αxK, C〉

if
x is a theory variable from C,
v[M](x) = undef ,
consistent(JM,x 7→ αxK)

T-Conflict:
〈M, C〉

〈M, C〉 E
if infeasible(M),

E = explain(M)

T-Consume:
〈JM,x 7→ αxK, C〉 C

〈M, C〉 C
if value(C,M) = false

T-Backjump-Decide:

〈JM,x 7→ αx, NK, C〉 C

〈JM,LK, C〉
if

C = (L1 ∨ · · · ∨ Ln ∨ L),
∃i. value(Li,M) = undef ,
value(L,M) = undef

Definition 7.6 finally enhances this proof system with theory-specific reasoning. The
T-Propagate rule enables us to inject new implications when the current theory model
implies a theory constraint. T-Decide performs a theory decision and thereby extends
the theory model. T-Conflict recognizes clauses that are conflicting in the theory,
rather than on the Boolean level. Finally, T-Consume and T-Backjump-Decide extend
the conflict resolution from Definition 7.5 to gracefully handle theory decisions.

Definition 7.7: MCSAT proof system

The MCSAT proof system consists of the proof rules for Boolean reasoning, conflict
analysis,ysy and theory reasoning as defined above.

7.2 Intuition

The MCSAT proof system is rather similar to CDCL(T) in that it incorporates all the
techniques for Boolean reasoning, but it adds theory reasoning into the core solving
engine. We try to give some insight into the main ideas of MCSAT and how it may help
in practical solving tasks.
Let us first recall how CDCL(T) deals with its theory. The CDCL(T) proof system almost
exclusively deals with the Boolean reasoning and offloads all theory reasoning to a few
very abstract proof rules. In practice, a CDCL(T) solver regularly calls out to a theory
solver to check whether the current trail is consistent in the theory. In the case of
inconsistency, the negation of a subset of the trail – an infeasible subset – is learned as
a conflict clause and triggers the conflict analysis.

136 CHAPTER 7. PROOF SYSTEM

Any other form of theory learning through the generation of lemmas is pretty difficult,
as the theory solver has no indication of what to generate. Literally, the task is generate
something we do not know yet. Practical experience shows that there is only a fine line
between not being able to construct any lemmas and flooding the Boolean reasoning
with large amounts of irrelevant or essentially redundant lemmas.
MCSAT moves some part of the theory reasoning into the core solving component: it
integrates the construction of a (partial) theory model. Now, the solver does not only
work its way through the Boolean search space but at the same time explores the space
of theory solutions. This allows the solver to guide the Boolean search using knowledge
(or assumptions) about the theory fairly easily, hopefully avoiding dead ends that are
easy to see in the theory. Furthermore, the partial model provides a hint to the theory
solver what lemmas to generate.

7.3 Constructing theory assignments

The first novel component of MCSAT, compared to regular CDCL(T)-style SMT solving,
is the creation of theory assignments. Note that we do not allow to add any theory
assignment but require the resulting trail to be consistent – the theory assignment
should at least be consistent with the theory literals already present in the trail. In
general, we define an assignment finder as follows:

Definition 7.8: Assignment finder

Let M be an MCSAT trail and v a theory variable with domain D such that v is
the smallest variable that is unassigned in M . We call a function

f(M, v) → D ∪P(M)

an assignment finder if the following holds: If JM, v → αvK is consistent for some
αv ∈ D, such an αv is returned. Otherwise some P ∈ P(M) that is already
infeasible over the partial model induced by M is returned.

We observe that simply guessing some value – for example by random sampling – may
not be a good idea as we need to realize if no value exists. Instead, we need a way to
ensure that we find a suitable value – if one exists – but can also detect if no suitable
value exists with certainty. In this case, the assignment finder should not only indicate
infeasibility but provide a witness P which is very similar to an infeasible subset.
Though we discuss the practical implementation of such an assignment finder in more
detail later, we give a brief idea of the fundamental concept here, at least for a
minimalistic assignment finder for an arithmetic theory.
Let us assume that we want to assign v – all smaller variables are already assigned
and all larger variables are still unassigned. We observe that we only need to consider
constraints that involve v and – possibly – smaller variables. We can then (at least
conceptually) substitute the model for the smaller variables into these constraints and
obtain a univariate problem.
Decomposing the possible values for v into finitely many regions through real root
isolation is then essentially a lifting step in CAD as discussed in Section 5.3. Thus, many
concepts we discussed in the context of CAD carry over as well, in particular, the notion

7.4. EXPLANATION FUNCTIONS AND TERMINATION 137

of sign-invariant regions and the idea that sample points are seen as representatives of
such sign-invariant regions. In this sense, an assignment finder is looking for a satisfying
region that can be used to construct a feasible assignment, or certifies infeasibility if
no satisfying region exists.

7.4 Explanation functions and termination
MCSAT itself is agnostic of the theory being used and the most important component
that performs theory reasoning is the explanation function. We define an explanation
function, roughly following [MJ13], as follows.

Definition 7.9: MCSAT explanation function

Let M be an MCSAT trail that is infeasible. We call

E(M) → ΦT

an explanation function if for every infeasible trail M it generates a valid theory
lemma that is inconsistent with M . We call E incomplete if it fails to generate
a valid theory lemma under certain conditions. Unless stated otherwise, we
assume all explanation functions to be complete.

Let us illustrate this definition using a few examples. What the explanation looks like
mainly depends on the theory and why the trail is infeasible. The easiest case occurs if
the trail is infeasible only due to theory literals from the trail as shown in Example 7.1.
Here we essentially employ the same reasoning as in a regular lazy SMT-style theory
solver: we certify infeasibility of a set of theory atoms using an infeasible subset of
these theory atoms.

Example 7.1: Boolean conflict in a trail

Let M = Jy < 0, x2 > 2, x 7→ 3, y > 1K and observe that M is consistent but
infeasible. A suitable explanation is (y ≥ 0 ∨ y ≤ 1).
In general, if literals L1 ∧ · · · ∧ Lk are infeasible with L1, . . . , Lk ∈ M then
(¬L1 ∨ · · · ∨ ¬Lk) is a suitable explanation.

Unfortunately, it may get more complicated if theory assignments need to be considered.
Let us first review the effects of blindly applying the above technique to a slightly
changed input problem in Example 7.2.

Example 7.2: Naive handling of theory conflicts

Let M = Jx+ y < 0, x2 > 2, x 7→ 3, y > 1K and observe that M is consistent but
infeasible: we substitute x 7→ 3 into x+ y < 0 and obtain y < −3 which conflicts
with y > 1. Generating a suitable explanation as before – where we use x 6= 3
as the negation of x 7→ 3 – we obtain (x+ y ≥ 0 ∨ x 6= 3 ∨ y ≤ 1). We observe
that we can satisfy the new explanation clause easily, for example, by x 7→ 3.1.
However, this not only leads us into the same conflict, it also indicates that we
can do this infinitely often by slightly changing the assignment for x:

x 7→ 3.1, x 7→ 3.01, x 7→ 3.001, . . .

138 CHAPTER 7. PROOF SYSTEM

Toherefore, simply negating a theory assignment x 7→ 3 by constructing a disequality
x 6= 3 is insufficient, as it might pave the way to nontermination. Let us reconsider
the conceptual idea of finding the assignment x 7→ 3 in Section 7.3, in particular the
idea that we identify a satisfying sign-invariant region and only select x 7→ 3 as a
representative from this region.
Following this intuition, the negation of the theory assignment x 7→ 3 should cover a
whole region of assignments (though not necessarily the same region that we constructed
in the assignment finder). Let us rework the last example and try to find such a region
we can exclude in Example 7.3.

Example 7.3: Regions for theory conflicts

As before, let M = Jx + y < 0, x2 > 2, x 7→ 3, y > 1K
and observe that M is still consistent but infeasible due
to x+y < 0, x 7→ 3 and y > 1. Let us now identify the
underlying conflict here, independent of the concrete
assignment of x. We rewrite y > 1 to −y < −1 and
add it to x+ y < 0 to obtain x < −1 which conflicts
with x 7→ 3. x

y

We can also deduce this graphically from the plot on the right. Observe that
the common solution space of the two inequalities x+ y < 0 and y > 1 expands
to the left starting at (but not including) x = −1, nicely coinciding with the
constraint we obtained algebraically.
Following this line of argument, we can thus infer that x < −1 and generate a
new explanation (x+ y ≥ 0 ∨ y ≤ 1 ∨ x < −1).

Excluding some region instead of a single assignment is not enough, as we could still
come across an infinite sequence of such regions as we show in Example 7.4 and – for
an arguably more plausible explanation function – Example 7.5.

Example 7.4: Regions of minimal size for theory conflicts

As before, let M = Jx+ y < 0, x2 > 2, x 7→ 3, y > 1K and observe that M is still
consistent but infeasible due to x+ y < 0, x 7→ 3 and y > 1.
Let us assume the explanation function tries to avoid sequences like x 7→ 3.1,
x 7→ 3.01, x 7→ 3.001, … by excluding regions of a certain minimum size, say 1. For
x 7→ 3 we could generate the valid explanation (x+y ≥ 0∨y ≤ 1∨x < 3∨x > 4).
This however only shifts the problem a bit, allowing for a sequence like x 7→ 3,
x 7→ 5, x 7→ 7, … and, furthermore, may fail if the region we could exclude is
smaller than the minimum size we impose.

While the very simple explanation function from Example 7.4 highlights the fundamental
problem, one might argue that it is not only naive but also rather contrived to make
the point. Therefore, we propose another explanation function that we hope looks
somewhat more reasonable. We already observed that real roots separate the sign-
invariant regions and our approach allows us to argue about univariate problems, and,
thus, it might seem promising to employ the numerical go-to tool for such problems:
Newton’s method.

7.4. EXPLANATION FUNCTIONS AND TERMINATION 139

Example 7.5: Employing Newton iteration for theory conflicts

Let us consider M = Jy = x2, y ≤ 0, x 7→ 10K. We observe that M is consistent
but infeasible. It might seem reasonable to employ a classical method for such a
problem like the Newton method.
We propose two possibilities to employ Newton-style reasoning. Let f(x) = x2

and x∗ = 10 and observe that we must cross a root of f(x) in order to reach a
satisfiable region due to y ≤ 0.
We first consider how to exclude the half-open spaces towards −∞ and ∞. If
we can show that no root exists for any x > x∗ (or x < x∗) we can exclude
[x∗,∞) (or (−∞, x∗]) by reasoning that f(x∗) 6= 0 and f ′(x) 6= 0 for all x > x∗

(or x < x∗). Here, we can generate the explanation (y 6= x2 ∨ y > 0 ∨ x < 10).
From x∗ towards the roots of f(x) we can employ the Newton iteration as follows.
If we can show that we did not step over a root of f(x) with a single Newton
step, we can exclude the interval between the last and the current x value:

x′ = x∗ − f(x∗)

f ′(x∗)
= 10− 102

2 · 10
= 5

To certify that f(x) has no root for x ∈ [5, 10], we can employ interval arithmetic
to see that 0 6∈ f([5, 10]) = [25, 100], use the intermediate value theorem giving
us f(5) > 0, f(10) > 0, f ′([5, 10]) > 0, and thus f(x) 6= 0 for all x ∈ [5, 10], or
even algebraic tools like Sturm’s theorem. Consequently, we can provide the
explanation (y 6= x2 ∨ y > 0 ∨ x < 5 ∨ 10 < x).
Subsequent Newton steps could however yield smaller and smaller intervals that
converge towards x = 0, but never actually reach it. The sequence

x 7→ 4 x′ = 4− f(4)

f ′(4)
= 4− 16

8
= 2 0 6∈ f([2, 4])

x 7→ 1 x′ = 1− f(1)

f ′(1)
= 1− 1

2
= 0.5 0 6∈ f([0.5, 1])

x 7→ 0.25 x′ = 0.25− f(0.25)

f ′(0.25)
= 0.25− 0.0625

0.5
= 0.125 0 6∈ f([0.125, 0.25])

excludes the intervals [2, 4], [0.5, 1], [0.125, 0.25] and may continue indefinitely,
but never actually reach zero.

Considering the previous examples of unsatisfactory explanation functions, we now give
a criterion that ensures termination and is met by most of the explanation function
that we present afterward. It comes back to one of the first concepts introduced
in Section 7.1, the finite basis. In all of the above examples, we failed to construct
explanations from such a finite basis but instead allowed the explanation function to
construct infinitely many different theory atoms for a single input formula.

Definition 7.10: Finite-basis property

Let E be an explanation function and ϕ some input formula. We say that E
satisfies the finite-basis property if for every ϕ all new theory atoms that E may
generate for this ϕ come from a finite basis B.

140 CHAPTER 7. PROOF SYSTEM

The intuition is essentially that an explanation function may not use the (partial) model
to construct the explanation, but only to guide which explanation (that is constructed
from the formula) should be returned. Theories over finite domains are an exception
here, as only finitely many models exist anyway and, thus, it is sufficient to exclude
models individually – though we probably could achieve significant improvements by
excluding whole regions.
Note that an explanation function that satisfies the finite-basis property ensures
termination of MCSAT, formalized in the following Theorem 7.1. We refer to [MJ13,
Theorem 1] for a proof.

Theorem 7.1: Finite-basis property implies termination

Let E be a (complete) explanation function that satisfies the finite basis property.
Then MCSAT equipped with E always terminates.

We feel that discussing what methods may be usable as an explanation function
and which properties imply the finite-basis property can be rather insightful. Very
abstractly, we can characterize the task of an explanation function as follows: given a
problem in n variables and a model in k < n variables that falsifies the input problem,
provide a formula in these k variables that 1. follows from the given problem and 2. is
still falsified by the model.
This closely resembles problems like finding interpolants or quantifier elimination
in general, and, in fact, most explanation functions we present later are based on
quantifier elimination procedures. The fundamental idea is to eliminate the variables
not contained in the model and let the resulting formula describe a region around the
model to generalize from a single theory assignment.
All quantifier elimination methods – at least all that we discuss in this context – share
an interesting property: they heavily rely on a fixed variable ordering to iteratively
eliminate these variables. Furthermore, the (partial) theory model is not used in the
quantifier elimination process itself, but only selects the appropriate part of the resulting
formula that is then used for the explanation. Thus, we can give a meta-argument for
termination, based on this observation.

Theorem 7.2: Finite-basis property by quantifier elimination

Let Ex be a quantifier elimination procedure that eliminates x from a given
formula and A a theory model. We assume that Ex returns a finite formula and
only uses constraints of a higher theory dimension to create new constraints of a
lower theory dimension. An explanation function based on Ex can be obtained
as follows: 1. apply Ex for every x 6∈ A, 2. convert the resulting formula to
conjunctive normal form, and 3. select a clause C such that A 6|= C.
Such an explanation function satisfies the finite basis property.

Proof. We observe that every application of Ex only creates new constraints
that no longer contain x and are thus on a lower theory level. Furthermore, the
set of new constraints is finite – as Ex returns a finite formula – and Ex works
independently of A and only constraints of a higher decision level contribute to
new constraints of a lower decision level.

7.5. MODEL-REFINING SATISFIABILITY CALCULUS 141

We immediately derive that Ex never constructs new constraints on the highest
theory level. Thus we can obtain all possible constraints on the second-highest
decision level by applying Ex on all (finitely many) possible combinations of the
input constraints. Applying this argument iteratively gives all constraints on all
lower theory levels. As the result of Ex is always finite, we obtain finitely many
constraints that constitute our finite basis.

Intuitively, we exploited that information flows downwards with respect to the theory
levels, thus simply “letting any information flow down” allows us to compute all
constraints that may ever come up. Also note that this argument is not necessarily
specific to quantifier elimination procedures, but could be applied more generally to
explanation functions that exhibit this kind of information flow.
This discussion immediately gives us some insight into when the finite-basis property
may break: if constraints are, whatever reason, constructed using other constraints
from a lower level. While this may just be how the method works, we can also end up
in such a case if we (repeatedly) change the variable ordering.

7.5 Model-Refining Satisfiability Calculus

While many different factors contribute to the practical efficiency of modern solving
technologies like SAT solvers, one important one is the ability to pick up valuable
information when its cheap to obtain and then use it again afterward. In particular,
Boolean constraint propagation, but also conflict resolution with clause learning, collects
such information when it is easy to do and makes it explicit to the other components
of the solver – either by adding it to the trail or crafting a new clause.
Of course, one would like to have similar options in MCSAT to learn new facts in the
theory cheaply. While T-Propagate aims to do this, we found it hard to apply and
computationally expensive in many cases. One major shortcoming in practice that we
did not seem to be able to overcome was that any theory reasoning was restricted to
the theory variables already assigned (and the next one due to be assigned). We thus
propose to extend MCSAT, allowing not only to construct the theory model but also to
refine the not yet assigned parts of the model.

Definition 7.11: Model-refinement satisfiability calculus

Let CDx ⊆ Dx be the current domain of a variable x, implying that for every
satisfying assignment α we have that αx ∈ CDx, and write x ∈ CDx. We
introduce a new type of trail elements of the form E → x ∈ CDx where E is a
subset of the preceding trail and add the following proof rule:

Refine-Model:
〈M, C〉

〈JM,E → x ∈ CD′
xK, D, C〉

if E ⊆M such that
E =⇒ x ∈ CD′

x (CDx ∈M

We allow to use the information that x ∈ CDx throughout the remaining proof
system, in particular when evaluating literals with not yet assigned variables in
the value function or to detect conflicts if a current domain becomes empty.

142 CHAPTER 7. PROOF SYSTEM

This extension from Definition 7.11 that we call model-refinement satisfiability calculus
shall maintain a current domain for every variable, usually an interval (for arithmetic
variables). In regular MCSAT, this current domain is (∞,∞) and becomes a point
interval once we invoke T-Decide for this variable.
We note that the propagations added to the trail integrate seamlessly with conflict
resolution, but may introduce problems with the issue of termination. In particular,
we need to impose an equivalent of the finite-basis property on the implementation of
the Refine-Model rule as well, even worse on the combination of the Refine-Model
rule and the explain function.
An implementation of the Refine-Model rule could use interval constraint propagation
(ICP) in the spirit of [BG06; MKC09; Sch13] on the current domains, refining them based
on constraints and theory decisions from the trail. Apart from regular propagations,
one could even implement splits as decisions of new literals in Decide. Note, however,
that ICP-style refinements most probably do not satisfy such a finite-basis property.
We can finally exploit this information in multiple ways. If any current domain becomes
empty, we immediately have a Boolean conflict consisting of the propagations that
imply the empty set. Whenever we perform a theory decision, we can restrict the search
for a feasible assignment to the current domain of the respective variable. Whenever
we evaluate constraints – either to find conflicts, perform theory propagations, or check
for semantic propagations – we can not only evaluate over the theory model but also
over the current domains for not yet assigned variables.
One can very well argue that this only integrates ICP into MCSAT or that we only make
knowledge explicit that is already there. While this may be true, both of this can be
very valuable: after all, making existing knowledge explicit is the whole point of these
kinds of solvers and the integration of ICP into MCSAT might give us the power to
reason about not yet assigned variables as well, making our solver more robust against
possibly bad variable orderings.
Furthermore, this technique is more general than iteratively restricting the model with
ICP. It could, for example, 1. allow to decide meaningful new literals in Decide based on
the current domain (other than splits), 2. integrate other propagation schemes beyond
ICP, for example taking into account the Boolean structure of the problem, or 3. be
applied to any other theory that is beyond ICP. Note that we have not implemented
any of this yet, and thus any claims about the benefits and possible improvements are
only (more or less informed) guesses.

7.6 Optimization

As already noted in Section 6.10, extending SMT approaches to support optimization
tasks is both interesting in itself, but also greatly beneficial for practical applications.
Having seen MCSAT as an alternative approach to SMT, we propose to extend MCSAT to
optimization queries as well. As before, we assume optimization to mean minimization.
Similar to what we presented in Section 6.10, we propose a rather simple approach that
we have not yet implemented, though. When using regular CAD, we could exploit global
knowledge about the problem – in the form of a full projection – to immediately select
an optimal assignment. We can not do that in MCSAT, but rather have to iteratively
search for an optimal solution.

7.6. OPTIMIZATION 143

We keep the idea to reduce our objective function to a single variable and assign this
objective variable first. Also note that the fundamental issue concerning unboundedness
and optimal solutions from open cells remain. To perform optimization, we propose an
adapted version of MCSAT as shown in Algorithm 7.1.

Algorithm 7.1: Optimization with MCSAT
1 Function OptMCSAT(ϕ, v)
2 while true do
3 Select optimal feasible region R for v with T-Decide
4 if no feasible region exists then
5 return UNSAT
6 else if R is bounded then
7 T-Decide v 7→ r (almost) optimal from R
8 if MCSAT finds satisfiability then
9 return SAT and (almost) optimal assignment

10 else
11 repeat
12 Backtrack until v is unassigned
13 Let last be the last assignment to v
14 T-Decide v 7→ r ∈ R with r = 2 ·min{R̃, last ,−1}
15 if threshold reached then
16 return UNBOUNDED

17 until MCSAT finds unsatisfiability
18 MCSAT Restart to empty the trail

The method shown in Algorithm 7.1 proceeds as follows. We first obtain the optimal
feasible region for the objective variable with respect to the univariate constraints. If
no such region exists we determine infeasibility in Line 5, otherwise, we have a region
R that contains the optimal solution. If R is bounded we can use T-Decide to assign
v 7→ r where r is the optimal – or “a good” – value and return SAT in case this
assignment leads to a full model. Otherwise MCSAT automatically discards the region
around r and we continue with selecting a new region R.
We need to make sure that the excluded regions for the objective variable – for example
if MCSAT does not find satisfiability in Line 8 – are “visible” when we identify the
currently optimal region. Otherwise, we may enter an infinite loop, selecting the same
region over and over again. To ensure this, we need to employ a variable ordering
that at least processes univariate literals as Boolean decisions before performing a
theory decision on v. Though this may seem self-evident, it conflicts with some of the
heuristics we present in Section 8.5.
The region R may, however, be unbounded as well. In this case, we enter a nested
loop in Line 11 that assigns v to exponentially growing values r until we either find
the assignment to be unsatisfiable – in this case we let MCSAT exclude a region around
this r and try with a new optimal region in the hope that the new optimal region is
bounded now – or reach a threshold and consider the problem to be unbounded. The
exact value for r can be one of three variants: if we just started testing values we start
with the upper bound of the region (the lower bound is −∞); if we already did some

144 CHAPTER 7. PROOF SYSTEM

iterations, we continue with the last assigned values and only make it smaller; finally,
we make sure that we start with a negative value so that we have a proper initial value
and “making it smaller” works by simply multiplying it with a constant.
Note that the threshold may bound the size of r (possibly depending on the coefficients
of the constraints) but could also consider the number of iterations or similar indicators.
Finally, after we have processed a particular region R we restart MCSAT and start over
with a new optimal region.
Given a fixed threshold for the case of unboundedness, this method terminates as
it only explores finitely many regions R – following the argument for termination of
regular MCSAT – and the inner loop only checks finitely many values as well.

Implementation

We defined MCSAT to be agnostic of the actual theory that is being used, given that
appropriate subroutines for the theory reasoning are provided. Due to the scope of this
thesis, and to ease the presentation, we now focus on the case of real arithmetic. Hence,
all theory variables range over R and only subroutines for (linear or nonlinear) real
arithmetic are discussed. Implementations for other theories exist, though, for example,
for the theory of uninterpreted functions as described in [JBM13], for nonlinear integer
arithmetic in [Jov17], for bit-vectors in [ZWR16; GJ17], or generic improvements for
theory combination in [BGM+18].
We have already observed in the definition of MCSAT in Section 7.1 that one major
part of MCSAT is the Boolean reasoning which essentially is a CDCL-style SAT solver.
Over time, all competitive implementations of SAT solvers have accumulated many
techniques that make their usage fast in practice that are not (directly) mentioned in
this definition. Well-known examples of this are decision heuristics (see Section 3.6.5),
restarts and clause removal (see Section 3.6.4), or the two watched literal scheme (see
Section 3.6.3) – not to mention low-level implementation tricks to make all this (for
example) cache efficient.
It seems both pointless and infeasible to replicate all this in the context of a novel
MCSAT solver. Instead, we propose to enhance an existing CDCL-style SAT solver – or
even a CDCL(T)-style SMT solver – to support MCSAT-style SMT solving. Thereby, we
can simply inherit all the infrastructure and implementation for the SAT-solving part
and “only” need to extend it appropriately.
We concede that we are giving up some flexibility in how we integrate the Boolean
reasoning within the MCSAT proof system. Furthermore, we may inherit a certain
amount of technical debt or simply design decisions that were appropriate for a SAT
solver, but may not be for an MCSAT solver. However, we hope to profit from a mature
implementation of the Boolean reasoning.
In the following, we discuss how we extended SMT-RAT, usually used as a CDCL(T)-style
SMT solver as described in [CKJ+15], for the MCSAT framework. This discussion
includes not only our current implementation but also future extensions and alternative
design choices (that we rejected for certain reasons). Subsequently, we discuss our
methods for finding assignments and generating explanations and, finally, present a
selection of experimental results.

146 CHAPTER 8. IMPLEMENTATION

8.1 Extending CDCL to MCSAT

The SAT solver in SMT-RAT consists of the MiniSAT solver presented in [ES03], adapted
for CDCL(T)-style SMT solving so that it incorporates most state-of-the-art techniques
for SAT solving and supports working with theory constraints. It thus implements all
rules from Definitions 7.4 and 7.5 and combines them in the usual way.

Algorithm 8.1: MiniSAT implementation
1 while true do
2 while ¬BCP() do
3 if CDCL-style conflict resolution fails then
4 return UNSAT

5 restart heuristically
6 if unassigned Boolean variable exists then
7 var := pick Boolean decision variable
8 perform Boolean decision on var

9 else
10 all variables are assigned, return SAT

We show how this solver works internally – abstracted and simplified – in Algorithm 8.1.
It essentially corresponds to the MiniSAT method search that implements the search
procedure and makes use of Boolean constraint propagation (BCP), heuristic restarts,
heuristic variable decisions, and CDCL(T)-style conflict resolution. Some technical
details have been removed, for example, what MiniSAT calls assumptions (clauses with
only a single literal) or the occasional removal of rarely used learned clauses.
Compared to the MCSAT proof system from Definition 7.7, Algorithm 8.1 implements
the proof rules from Definitions 7.4 and 7.5 as follows: Decide in Lines 7 and 8;
Propagate and Conflict in Line 2; Sat in Line 10; Restart in Line 5; Resolve,
Consume, Backjump, Unsat and Learn in Line 3. We now add the proof rules from
Definition 7.6 to this algorithm to obtain Algorithm 8.2.
The first rule T-Propagate is very generic and can, in theory, be used to inject theory
lemmas at any time. While one may very well think about other possibilities to do so,
we only check whether a constraint can be propagated after it has been selected for a
Boolean decision in Line 17 right now.
The variable selection in Line 9 has been extended to select either a Boolean or a theory
variable. In the latter case we perform a theory decision as specified by T-Decide if
a suitable assignment exists in Line 12 or recognise a conflict using T-Conflict in
Line 14. The last two rules T-Consume and T-Backjump-Decide are integrated into
the conflict analysis and are thus not explicitly shown here.
To take care of the proper integration of theory reasoning into the Boolean reasoning,
we perform two additional checks that do not directly correspond to any of the proof
rules. In Line 6 we check whether any constraint fully evaluates over the current theory
model but is not yet assigned in the Boolean model. If so, we inject a decision for this
constraint. Note that one could also aim to perform some kind of propagation here,
however simply using decisions worked well enough in our setting.

8.2. ASSIGNMENT FINDER 147

Algorithm 8.2: MCSAT implementation
1 while true do
2 while ¬BCP() do
3 if CDCL-style conflict resolution fails then
4 return UNSAT

5 restart heuristically
6 Check for semantic propagations
7 Check for inconsistent trail (due to BCP)
8 if unassigned variable exists then
9 var := pick decision variable

10 if var is theory variable then
11 if feasible assignment for var exists then
12 perform theory decision

13 else
14 CDCL-style conflict resolution on explanation

15 else if var is Boolean variable then
16 if var or ¬var can be propagated (in the theory) then
17 use explanation to propagate var or ¬var
18 else
19 perform Boolean decision

20 else
21 All variables are assigned, return SAT

Additionally, we need to check in Line 7 whether the trail became inconsistent. This
may be somewhat surprising at first glance, given that the Boolean assignment is
always chosen to be compatible with the theory value and the theory decision always
respects the Boolean assignment. How can the trail become inconsistent in the first
place under these circumstances?
Note that the theory decision (usually) considers only constraints that are univariate
over the current theory model, but the assignment might fully evaluate a “not-yet-
univariate” constraint as well. Consider for example x · y 6= 0 being assigned to true,
and a theory decision setting x 7→ 0 as no univariate constraint is available. Though we
could leave this issue to the theory decision to detect, it has proven to be significantly
easier to do this explicitly beforehand.
In contrast to the more theoretic definition in [MJ13], and also the description of an
actual implementation in [JBM13], Algorithm 8.2 gives a more detailed description of
how the proof rules interact and how they are scheduled.

8.2 Assignment finder

The first novel subroutine we need for MCSAT is for generating a new assignment in the
T-Decide rule such that consistent(JM,x 7→ αxK). We have given some intuition on
how such an assignment finder could work in Section 7.3.

148 CHAPTER 8. IMPLEMENTATION

We first present a variant that employs real root isolation to explore all sign-invariant
regions of univariate constraints similar to the CAD lifting process. Then we show an
alternative based on a general SMT solving engine that allows us to explore multiple
variables at once.
Note that we allow considering constraints that are not syntactically univariate here.
While implicitly forbidden in [JM12] – as only syntactically univariate clauses can
be selected – we allow to use them in line with [MJ13]. Though this implies some
interesting corner cases that the assignment finder has to deal with, it also enables
significant improvements as the following Example 8.1 shows. Of course, it only makes
sense to enhance assignment finders if we also reason about these non-univariate literals
in Boolean decisions and propagations – otherwise, non-univariate literals are never
added to the trail.

Example 8.1: Non-univariate literals in assignment finding

Let M = Jx1 · xn + x2 > 0, x1 7→ 0K and assume that we try to apply T-Decide
to find an assignment for x2 next.
If we were to ignore the constraint – following [JM12] as it is not univariate –
we might select x2 7→ 0 and may further spend a lot of effort on theory variables
x3 . . . xn−1 until we eventually realize that x2 7→ 0 gives rise to a conflict that is
only due to x1 7→ 0 and x2 7→ 0.
If we instead consider the constraint right away, we can make use of x2 > 0 and
avoid a lot of theory reasoning for a case we can already prove to be infeasible.
This case may even be more obvious if the non-univariate constraint leads to a
direct conflict as for M = Jx1 · xn > 0, x1 7→ 0K.
We can immediately enter conflict resolution if the constraint is added to the
trail while [JM12] would wait for theory level n to even look at the constraint
and realize its erroneous theory decision early on.

8.2.1 Assignment finding based on real root isolation

Considering the knowledge about CAD from the previous part of this work, we propose
to find assignments as described in the following. Note that we assume this to be how
other implementations work as well – for example [JM12; JBM13] – though they do
not provide many details on this point.
The approach consists of the following three steps: 1. partially evaluate all theory
literals from M over the partial model induced by M and select those whose result
is a univariate constraint in the theory variable v that is to be assigned, 2. compute
all real roots of these univariate constraints to obtain a sign-invariant decomposition
of the real space for v, and 3. either identify a sign-invariant region that satisfies all
constraints or realize that no such region exists and compute an infeasible subset, very
similar to what is shown in Section 6.7.
The first two steps are essentially equivalent to a single lifting step in CAD and we,
therefore, refer to Section 5.3 for a more detailed description. If the model contains
real algebraic numbers, it may not be possible to directly substitute the model into a
constraint – see the discussion in Section 2.5 – and the underlying method to isolate
real roots should also be able to deal with the case that the polynomial turns out not
to be univariate. We abstract from this detail to simplify the presentation.

8.2. ASSIGNMENT FINDER 149

If a satisfying region exists in the third step, we only need to return some value from
this region. If it does not exist, though, we need to find an infeasible subset and we refer
to Section 6.7 for more details on this issue. This yields the following Algorithm 8.3.

Algorithm 8.3: Find an assignment by real root isolation
1 Function FindAssignmentRRI(M, v)
2 α := model from M
3 C := {L ∈M | L[α] is univariate in v}
4 R := roots(P, α) where P are all polynomials from C
5 S := sample points based on R
6 if satisfying s ∈ S then
7 return s

8 else
9 return cover of C for S

8.2.2 Generic SMT-based assignment finding

Let us take a step back and abstract a bit from what we defined to be an assignment
finder. We try to find a new theory assignment for some variable that satisfies some
set of constraints or gives a subset of these constraints that certifies that no such
assignment exists. A more general formulation of this would be to extend the model for
a set of constraints or produce an infeasible subset – which is almost what we called a
theory query in the regular SMT framework.
Therefore, we propose to use an appropriate SMT compliant theory solver for this task,
slightly enhanced by a wrapper that takes care of the partial model we already have.
Note that if the constraints contain more than just a single unassigned variable we
technically invest more work than necessary as we also obtain a model for all other
unassigned variables. We might, however, be able to leverage this additional work as
well. If we obtain a model, we can perform multiple theory decisions at once – though
it is not clear whether this is beneficial – or cache the additional assignments and use
them for the next theory decision if they are still consistent with the trail.
We may, however, also be able to identify a conflict earlier now as we essentially have a
lookahead into further theory variables and thus can avoid some work, as the following
Example 8.2 illustrates.

Example 8.2: Benefits of an assignment finder with lookahead

Let M = Jx1 > 0, xn > 0, x1 + xn < 0K and assume we try to invoke T-Decide
on x1 next. A regular assignment finder without lookahead could select x1 7→ 1
and continue from there, possibly with a lot of unnecessary reasoning about
x2, . . . xn−1, until we eventually realize that we have a conflict due to this
assignment. An assignment finder with lookahead, however, could try to find a
full model for these three constraints and immediately identify a conflict.

We formulate the following Algorithm 8.4 as a thin wrapper around an arbitrary theory
solver. We deliberately do not specify how the model α is combined with the theory
literals C, as this depends on the exact model and the capabilities of the theory solver.

150 CHAPTER 8. IMPLEMENTATION

We usually try to substitute α into C if possible, however, we may leave the realm of
our constraints – for example, due to real algebraic numbers in our model. In this case,
we may need to inject new constraints that explicitly state equality to real algebraic
numbers if the theory solver supports these constraints. We may also be forced to fail
and fall back to the regular assignment finder FindAssignmentRRI .

Algorithm 8.4: Find an assignment by theory solving
1 Function FindAssignmentSMT(M, v)
2 α := model from M
3 C := theory literals from M
4 return call_theory(C ∧ α)

As already indicated, it could make sense to combine different methods for finding
assignments. Different instantiations of FindAssignmentSMT – with different theory
solvers – could be used that fail if the model is not compatible with the respective
theory solver and hand the task over to the next assignment finder, or ultimately
FindAssignmentRRI . However, we could also employ a whole theory solving strategy,
for example, as described in [CKJ+15], to instantiate FindAssignmentSMT .

8.3 Explanation functions
MCSAT itself is theory-agnostic but requires an explanation function as described in
Section 7.4 as an important theory reasoning component. We now describe several
different explanation methods (for arithmetic theories) that we have implemented. As
already noted, some explanation functions are incomplete (for example, restricted to
linear constraints) and we let such explanation functions return ⊥ if they are unable to
construct an explanation. Recall that we required an assignment finder to produce a set
of conflicting constraints in case of infeasibility, and thus we assume any explanation
function to work on a minimal infeasible set of constraints.

8.3.1 CAD-based explanations

The first explanation method, that was originally proposed in [JM12], is based on the
idea to construct a single CAD cell around the current (partial) model. An example of
such a single CAD cell is depicted in Example 8.3.

Example 8.3: A single CAD cell

Consider the CAD cell depicted in Figure 8.1. The first variable x1 is bounded by
constants (0 < x1 < 1) illustrated by the bold line at the bottom. In the second
dimension, x2 is bounded by polynomials in terms of x1 (x31−2x21 < x2 < 2−x21)
and the resulting two-dimensional CAD cell is shown by the blue area.
In the third dimension, x3 is bounded by polynomials in x1 and x2 – here we have
0 < x3 < 2− 0.2x21 − 0.2x22. The lower bound 0 is illustrated by the yellow plane
while the red surface represents the upper bound. The full three-dimensional
CAD cell is thus the space between the yellow and red surfaces.
Note how the projection of the higher-dimensional cells onto the lower dimensions
are identical to the lower-dimensional cells. A possible model within this cell
would be (0.5, 0.25, 1), indicated by the black dot.

8.3. EXPLANATION FUNCTIONS 151

(0.5, 0.25, 1)

x1

x2

x
3

0 < x1 < 1 x31 − 2x21 < x2 < 2− x21

0 < x3 < 2− 0.2x21 − 0.2x22

Figure 8.1: Example of a single CAD cell

To generate such a CAD cell, we use a somewhat reduced projection and then only
explore the lifting around the partial model to obtain the borders of the cell that
contains the partial model. An algorithmic description is given in Algorithm 8.5.

Algorithm 8.5: CAD-based explanation function
1 Function ExplainCAD(M)
2 α := model from M
3 L := literals that cause the infeasibility of M
4 P := model based projection of polynomials from L
5 C := true
6 for k = 1, 2, . . . do
7 Z := real roots of Pk[α1, . . . , αk−1]
8 if αk ∈ Z then
9 C := (C ∧ xk = αk)

10 else
11 l, u := closest roots from Z below and above αk

12 C := (C ∧ l < xk ∧ xk < u)

13 return L =⇒ ¬C

Note that the constraints constructed in Lines 9 and 12 are denoted as regular con-
straints, comparing xk with the root of some polynomial. However, we actually need to
construct extended polynomial constraints as defined in Section 2.3.1 from the respective
roots, and we only use the above notation to make the algorithm more concise.

152 CHAPTER 8. IMPLEMENTATION

In [JM12], an adaptation of Collins’ projection operator is presented that makes use of
the partial model to avoid certain projection factors. We instead decided to employ
Lazard’s projection operator here (in combination with the modified lifting) and exploit
the partial model in the spirit of [BK15], that is we only compute resultants that
involve those polynomials that yield the closest bounds l and u.
Note that we initially used McCallum’s projection operator instead, but occasionally
observed incorrect explanations (excluding a region that was too large) witnessing the
incompleteness of this projection operator – something we did not observe in the wild
for regular SMT-style theory solving. Before switching to Lazard’s projection operator,
we used Hong’s projection operator to obtain a sound explanation, which proved to be
not significantly worse in terms of the overall solver performance.
This explanation function satisfies the finite-basis property following Theorem 7.2, as
it only ever introduces new constraints whose polynomials are from the projection of
the input constraints. If the variable order is never changed, all new constraints ever
introduced stem from the (finite) full projection of all input polynomials.

8.3.2 OneCell explanations

Shortly after [JM12] motivated the need to efficiently construct individual CAD cells,
another possibility we call OneCell was proposed. While the first version in [Bro13]
only considered the case of open cells, all corner cases are covered in [BK15]. Though
the fundamental idea of restricting the projection using the knowledge of the partial
model is still similar to the previous approach, OneCell rather resembles a depth-first
search traversing the projection polynomials. In many cases, OneCell needs to consider
significantly less polynomials and thus yields larger cells.
We refrain from a more detailed explanation here and refer to [Bro13] for a somewhat
gentle introduction and [BK15] for a full technical description of the method. Our own
implementation – being the first complete implementation of [BK15] to the best of our
knowledge – is described in [Neu18b].
We can use the same argument for termination as for the general CAD-based explanation
function: as all new constraints are based on polynomials from the full projection of
the input polynomials the finite-basis property holds, following Theorem 7.2.

8.3.3 Fourier–Motzkin variable elimination

Practical experience shows that we can identify a linear conflict in many cases, even if
the overall input is nonlinear. In such cases, we might want to use a method suited for
linear problems instead of calling a rather time-consuming method based on CAD. The
somewhat obvious choice – that is also suggested in [MJ13] and used in [JBM13] – is
the Fourier–Motzkin variable elimination. While we assume a fundamental knowledge
of this method in general, we feel that it is work noting a few interesting issues.
Analogously to the argument for CAD-based explanation functions, the finite-basis
property is once again satisfied due to Theorem 7.2 as all constraints stem from the set
of constraints obtained by performing Fourier–Motzkin variable elimination, as long as
the variable ordering remains unchanged.

8.3. EXPLANATION FUNCTIONS 153

x
)[

x ≥ 1x < −1
x

)(

x ≤ 0x ≥ 0
x 6= 0

Figure 8.2: Possible linear conflicts

8.3.3.1 Nonlinear constraints

The Fourier–Motzkin approach is not technically constrained to linear problems, but
only to those where the variable that is to be eliminated only occurs linearly. This
allows to extend it to an interesting subclass of nonlinear arithmetic where we can
compute explanations without relying on more expensive methods like CAD or VS.
Considering two bounds q1 < p1 · x and p2 · x < q2 we can eliminate x, resulting in
q1 · p2 < q2 · p1. Additionally, we need to make sure that p1 and p2 do not change
their sign by adding side conditions like p1 < 0 and p2 > 0. This comparably simple
extension of Fourier–Motzkin variable elimination covers many cases where the variable
that could not be assigned is only used linearly within nonlinear constraints.
Note that there are two possible improvements: firstly, generating an explanation with
Fourier–Motzkin should be significantly faster compared to a VS-based or CAD-based
method; secondly, the explanations due to Fourier–Motzkin tend to cover larger regions
and thus possibly reduce the overall number of theory conflicts we need to process.

8.3.3.2 Disequality constraints

The Fourier–Motzkin variable elimination, in general, only works on sets of linear
inequalities. While equalities can easily be converted to two weak inequalities, a
disequality essentially introduces a case split and can thus not be dealt with. The
previously suggested approach from [JBM13] introduces an explicit case split that is
lifted to the Boolean reasoning engine. Though this solution looks nice and clean at
first sight, it has a significant drawback: it does not enforce a Boolean decision but
rather “offers” it to the SAT solver which may very well ignore it.
We instead propose another (a bit more technical) variant. Let us inspect the covered
region of a constraint, that is the part of the real line that conflicts with this constraint.
The (minimal) set of conflicting constraints has an interesting property: given that the
variable we consider only occurs linearly, every inequality constraint covers a region
that is bounded on one side but unbounded on the other. Equality constraints, on the
other hand, exclude everything but a single point and disequality constraints exclude
only a single point. Thus a conflict can only have one of two forms as Figure 8.2
illustrates: 1. two regions overlap or 2. two regions with strict bounds meet (possibly
an equality) and the remaining point interval is excluded by a disequality.
If the two inequalities stem from an equality – we have x 6= p and x = q where p and q
evaluate to the same value under the theory model – we propose to use the explanation
(x 6= p ∧ x = q) =⇒ p 6= q. Otherwise – with x 6= p and two weak inequalities x ≤ q1
and x ≥ q2 where p, q1, and q2 all evaluate to the same value under the theory model –
we construct the explanation (x 6= p ∧ x ≤ q1 ∧ x ≥ q2 ∧ q1 = q2) =⇒ q1 6= p. In both
cases, we push the conflict to a lower theory level, forcing the solver to backtrack the
previous theory decision or the assignment of one of the constraints.

154 CHAPTER 8. IMPLEMENTATION

8.3.4 Virtual substitution

Another possibility that is in some sense between Fourier–Motzkin for linear constraints
and CAD for nonlinear constraints is the virtual substitution. Virtual substitution is a
quantifier elimination method for constraints of bounded degrees. The common virtual
substitution is based on the existence of solution formulae and thus only works up to
degree four [Abe26], though implementations tend to provide only support for up to
degree two due to the complexity of the solution formulae of higher degree.
Virtual substitution can also be adapted to be used as an explanation function as
shown in [ÁNK17] and [Nal17]. Our implementation fully supports constraints up to
degree two and allows for (limited) cooperation with CAD-based explanation functions
in that it supports root expressions of low degree. Once again, this approach satisfies
the finite-basis property due to Theorem 7.2.
Note that variants of the virtual substitution exist that employ a symbolical representa-
tion of polynomial roots. Thereby, the need for an explicit solution formula is avoided
and the method can be extended to arbitrary – but fixed – degrees. More on this topic
can be found in [KS15] and [Koš16], though this is not used in our implementation.

8.3.5 Interval constraint propagation

We have already mentioned interval constraint propagation (ICP) as a generic method
for solving constraint systems using domain propagation by interval arithmetic. Though
it is not a quantifier elimination method, we can adapt it for an explanation function
anyway and use it as an example of how to employ regular SMT-style theory solvers.
For this, we depart from the notion of constructing new constraints that describe a cell
and rather return to the regular notion of SMT-style theory solving. We simply take
all constraints from the trail and hope that they yield a conflict independent of the
theory model. If this is the case, we argue that obtaining a conflict consisting solely of
existing constraints is in general preferable to an explanation with new constraints.
Our reasoning is that introducing new literals grows the Boolean search space and
should, therefore, be avoided, if possible. If we can instead resolve the current conflict
by purely Boolean reasoning, we should do so. We acknowledge that this goes against
the idea of MCSAT to some degree, but we rather see it as a supplementary solving
technique, in some sense running MCSAT explanations and regular SMT-style theory
solving in parallel.
We chose ICP for this experiment as we can easily integrate limited reasoning specific
to the theory model in addition to regular SMT-style theory solving. In particular,
we do not need to determine infeasibility but can also check easily whether the theory
model has been excluded. Furthermore, we hope that its ability to reason across all
variables, independent of any variable ordering, may be a valuable addition to the other
explanation functions that are heavily oriented towards a common variable ordering.
For ICP, in particular, we collect all constraints from the trail and run standard
propagations in the spirit of [BG06; Sch13] until we either exclude the current theory
model or find infeasibility of the whole constraint set, roughly as shown in Algorithm 8.6.
The experimental results we present in the following show that interval constraint
propagation is a valuable addition to the other explanation functions which are mostly
based on algebraic methods.

8.3. EXPLANATION FUNCTIONS 155

Algorithm 8.6: ICP-based explanation function
1 Function ExplainICP(M)
2 α := model from M
3 Iv := (−∞,∞) for every variable v
4 Q := {(c, 1) for every constraint c}
5 while true do
6 if Q = ∅ then
7 return ⊥
8 if Iv = ∅ for some v then
9 return all c that contributed to Iv = ∅

10 if αv 6∈ Iv for some v then
11 Let e be a constraint that separates αv from Iv
12 return e and all c that contributed to αv 6∈ Iv

13 if |Iv| < threshold for some v then
14 return ⊥
15 Remove some (c, priority) from Q
16 if priority ≥ threshold then
17 Use c to contract some Iv
18 Update priority accordingly
19 Insert (c, priority) into Q

Note that interval constraint propagation is notorious for its parameters and their
intricate intra-dependencies, and we did not spend a lot of effort on tuning them for
this purpose yet. In particular, we rely on thresholds for the size of the intervals and
the priorities of the constraints for termination, but also need to properly update these
priorities and select which variable should be updated by a specific constraint.
We attribute the improvements in practice mostly to the ability to argue independently
of the variable ordering, considering not yet assigned variables as well. As we consider
this a fundamental flaw – or rather a potential for improvement – in MCSAT, we propose
an alternative, more fundamental, integration of interval constraint propagation into
MCSAT in Section 7.5 that we think is even more promising.

8.3.6 Composition of explanation functions

Following the spirit of [CKJ+15], we aim to combine different solving techniques in the
hope to employ the best method for every individual task. We propose two possible
compositions of multiple explanation functions detailed in the following.

Definition 8.1: Sequential composition

Let E1, . . . , Ek be explanation functions and allow all but Ek to fail under certain
conditions. Let E be a new explanation function defined as follows:

E(M) := Ei(M) with i = min{i | Ei(M) does not fail }

We call E the sequential composition of E1, . . . , Ek.

156 CHAPTER 8. IMPLEMENTATION

Sequential composition can be used for multiple explanations that have a clear priority.
For example, we might want to try Fourier–Motzkin first, continue with virtual
substitution if nonlinear constraints are present, and finally resort to a CAD-based
explanation if high degrees are present.

Definition 8.2: Parallel composition

Let E1, . . . , Ek be explanation functions and E a new explanation function
defined as follows:

E(M) := Ei(M) with i = argmin
i

{run time of Ei(M)}

We call E the parallel composition of E1, . . . , Ek.

Parallel composition aims to use the fastest result in a multi-threaded setting. We
could, for example, run multiple versions of the Fourier–Motzkin explanation with
different selections of constraints. Note that this composition can easily be changed to
use the simplest explanation (instead of the fastest).
Under certain conditions, the composition of multiple explanation functions preserves
the finite-basis property – given that the variable order remains unchanged. We
formalize this in the following Theorem 8.1 based on Theorem 7.2.

Theorem 8.1: Finite-basis property of compositions

Let E1, . . . , Ek be explanation functions that satisfy the finite-basis property for
the reasons described in Theorem 7.2 with equivalent variable orderings and E
their (sequential or parallel) composition. Then, E also satisfies the finite-basis
property for a static variable order.

Proof. We resume the proof of Theorem 7.2 and change the iterative application
of the explanation function as follows: instead of applying a single explanation
function, we apply all explanation functions E1, . . . Ek in parallel and afterwards
conjoin their results. By the same reasoning as before, the combined explanation
function satisfies the finite-basis property.

8.4 Heuristics

As already discussed, the MCSAT proof system is rather a framework than an actual
algorithm and we need to implement various heuristics. These include the overall
scheduling of rules, the choice of an assignment finder, and an explanation function, but
also topics we have not covered yet, in particular the variable ordering. Of course, a
wide range of further heuristics is present, much like what we presented in Section 6.5.3,
that we do not discuss here.

8.4.1 Variable ordering

In Line 9 of Algorithm 8.2 we pick a decision variable without any further specification
other than that it can be either a Boolean or a theory variable and is not yet assigned.
One possible implementation can be found in [JM12] with a static theory ordering

8.4. HEURISTICS 157

and an ordering on Boolean variables governed by whether the respective constraint
is univariate under the partial theory model. Another possibility that is used for
linear arithmetic only in [JBM13] treats theory variables and Boolean variables more
uniformly and allows the (theory) variable ordering to change.
We analyzed those and more variants in [NKÁ19], showing that selecting a proper
variable ordering – or rather a dynamic heuristic to select one – is both an important
factor for practical performance and all but trivial. In fact, we find in [NKÁ19] – which
contains a more detailed discussion of these issues than presented here – that our two
best heuristics perform almost equally good, but for apparently different reasons as a
hybrid between the two shows rather poor results.
While a dynamic ordering of theory variables seems to be beneficial, it also brings
new problems for the MCSAT framework itself. As already discussed in Section 2.3.1,
we might see extended polynomial constraints that can not be evaluated as the only
remaining variable is not its left-hand side, but one from its root expression. Under a
static variable ordering – like described in [JM12] – the left-hand side is always the
largest among all involved variables, preventing this issue. Our approach to resolving
this issue is to disable constraints from an incompatible variable ordering and reactivate
them once the variable ordering is compatible again as described in [NKÁ19].
Furthermore, all arguments for the (refutational) completeness of MCSAT depend on a
static theory variable ordering, which, in fact, is not just a technicality. Considering
the following Example 8.4 we see that a dynamic ordering on the theory variables
indeed has the potential to produce infinite loops.

Example 8.4: Incompleteness under dynamic theory ordering

Let x1 = 2 ∧ x1 = 2x2 ∧ x2 = 2x1 be the input formula and assume we use
an explanation function based on Fourier–Motzkin variable elimination (from
Section 8.3.3) or virtual substitution (from Section 8.3.4). Consider the following
sequence of explanations:

Jx1 = 2x2, x1 = 2, x2 7→ 2K =⇒ x2 = 1

Jx2 = 2x1, x2 = 1, x1 7→ 2K =⇒ x1 = 0.5

Jx1 = 2x2, x1 = 0.5, x2 7→ 2K =⇒ x2 = 0.25

Jx2 = 2x1, x2 = 0.25, x1 7→ 2K =⇒ x1 = 0.125

We trust the reader to realize that we can continue this sequence arbitrarily
and that it is only made possible because we can switch arbitrarily between the
variable ordering x1 < x2 and x2 < x1.

On a practical note, we neither observed such issues in practice nor do they seem
particular likely. On the contrary, we rather expect a dynamic theory variable ordering
to settle on some ordering that stays (almost) static instead of changing over and over
again. To settle this issue in theory, we suggest to impose a restriction on when the
variable ordering may change similar to when we may restart the whole solver. If we
force the variable ordering to stay constant for growing periods of time, the solver is
bound to eventually solve the problem within one such period, following the argument
from Section 3.6.4.

158 CHAPTER 8. IMPLEMENTATION

8.5 Experimental results

We have identified three major heuristics for MCSAT: the assignment finder, the explana-
tion function, and the variable ordering. Most of the issues discussed in Section 6.5.3 –
factorizing polynomials, how to generate sample points, and many heuristics in various
subroutines – apply to MCSAT as well, in particular to the different explanation functions.
However, we focus on the aforementioned three issues now.
For these experiments, we use one base solver and analyze the effects of changing every
heuristic individually. As this evidently fails to explore the whole range of possibilities,
a more extensive analysis seems meaningful. Our base solver uses the assignment finder
based on real root isolation, combines the explanations based on Fourier–Motzkin
variable elimination, OneCell, and CAD and uses the Theory first variable ordering. It
is called MCSAT-RRI, MCSAT-FMOCCAD, and MCSAT-Tf in the three comparisons.

8.5.1 Assignment finder

We have described two possible implementations for an assignment finder in Section 8.2.
The first one – which we call simply the assignment finder and denote by MCSAT-RRI
– considering only univariate constraints, uses real root isolation to identify a region
that satisfies all constraints and samples some value from this region. The second one
– called SMT assignment finder amd denoted by MCSAT-SMT – employs an arbitrary
SMT strategy for theory calls.
We have made the experience that using a full-fledged strategy for the SMT assignment
finder essentially bypasses MCSAT and thereby worsens performance, thus we propose
to use an incomplete strategy. We are simply using a linear theory solver – based on
the simplex method – which constructs an assignment based on the linear constraints,
falling back to the regular assignment finder if this linear model does not satisfy the
nonlinear constraints.

Solver SAT UNSAT overall

MCSAT-SMT 4606 0.43 s 4558 1.43 s 9164 79.8%
MCSAT-RRI 4694 0.47 s 4696 1.35 s 9390 81.7%

Table 8.1: Experimental results for different assignment finders.

We show a comparison of MCSAT solvers with the two different assignment finders
in Table 8.1 and, as already indicated, MCSAT-SMT performs significantly worse than
MCSAT-RRI on both satisfiable and unsatisfiable inputs – at least on the benchmark set
we consider. Nevertheless, we conjecture that a more careful adaption of an SMT-based
assignment finder, or any other scheme that employs a larger lookahead, could provide
improvements in other scenarios.

8.5.2 Explanation functions

Apart from all the explanation functions, we have also discussed how to combine them.
Given that this work is not concerned with concurrency (or parallelism) within an SMT
solver, we ignore the possibility of parallel composition and only consider sequentially
composed explanation backends.

8.5. EXPERIMENTAL RESULTS 159

Solver SAT UNSAT overall

MCSAT-CAD 4610 0.40 s 4597 1.15 s 9207 80.1%
MCSAT-OCCAD 4647 0.44 s 4613 1.16 s 9260 80.6%
MCSAT-FMOCCAD 4694 0.47 s 4696 1.35 s 9390 81.7%
MCSAT-FMICPOCCAD 4693 0.52 s 4781 1.19 s 9474 82.5%
MCSAT-FMVSOCCAD 4724 0.68 s 4819 1.47 s 9543 83.1%
MCSAT-FMICPVSOCCAD 4723 0.67 s 4884 1.41 s 9607 83.6%

Table 8.2: Experimental results for different explanation functions.

In our implementation, the CAD-based explanation function is the only complete
method for nonlinear arithmetic. The OneCell explanation uses McCallum’s projection,
following [BK15], and fails in cases where correctness can not be ensured. We consider
all other explanation functions to be easy shortcuts to the CAD-based explanations
and thus all proposed explanation backends eventually fall back to them.
For this evaluation, we consider the following explanation backends: 1. CAD (MCSAT-
CAD), 2. OneCell and CAD (MCSAT-OCCAD), 3. Fourier–Motzkin, OneCell and CAD
(MCSAT-FMOCCAD), 4. Fourier–Motzkin, ICP, OneCell and CAD (MCSAT-FMICPOCCAD),
5. Fourier–Motzkin, VS, OneCell and CAD (MCSAT-FMVSOCCAD), and 6. Fourier–
Motzkin, ICP, VS, OneCell and CAD (MCSAT-FMICPVSOCCAD).
A comparison of these explanation backends is given in Table 8.2, highlighting significant
differences in practical performance. First and foremost, it appears to be extremely
beneficial to combine multiple explanation backends as proposed earlier. We doubt
that these major improvements are due to better performance, but rather think that
“easier” explanation backends like the Fourier–Motzin-based one construct both easier
but also more powerful explanations that exclude larger regions. One reason might be
the fact that CAD-based explanations always construct fully-dimensional explanations
while Fourier–Motzkin-based explanations only perform a single elimination step.

8.5.3 Variable orderings

As discussed in Section 8.4.1, the variable ordering of both Boolean and theory variables
is of major importance and allows for many variants. We have analyzed the impact of
different variable orderings in [NKÁ19] and mostly repeat those experiments.
The different orderings are mostly based on the following ingredients: strictly preferring
Boolean or theory over the other; employing a strict ordering or an activity-based
dynamic ordering in the spirit of VSIDS as discussed in Section 3.6.5; restricting the
ordering to only consider active literals (or constraints) which are univariate over the
current theory model. For some more aspects and a somewhat more detailed discussion,
we refer to [NKÁ19]. We consider the following heuristics:

Random (MCSAT-Rnd) uses a random static ordering across all variables. This is
only meant as a reference and naturally not intended for a serious solver.

Boolean first (MCSAT-Bf) strictly prefers Boolean variables using a dynamic order-
ing for Boolean variables and a static ordering for theory variables.

Theory first (MCSAT-Tf) strictly prefers theory variables using a static ordering
for theory variables and a dynamic ordering for Boolean variables. Note that due

160 CHAPTER 8. IMPLEMENTATION

Solver SAT UNSAT overall

MCSAT-Rnd 4436 0.33 s 4579 0.67 s 9015 78.5%
MCSAT-Bf 4467 0.29 s 4602 0.94 s 9069 78.9%
MCSAT-Univar 4548 0.36 s 4630 0.96 s 9178 79.9%
MCSAT-Univar-active 4576 0.46 s 4659 1.08 s 9235 80.4%
MCSAT-Uniform-Tf 4639 0.76 s 4668 1.42 s 9307 81 %
MCSAT-Tf-dynamic 4653 1.04 s 4657 1.46 s 9310 81 %
MCSAT-NLSAT 4668 0.81 s 4671 1.49 s 9339 81.3%
MCSAT-Tf 4694 0.47 s 4696 1.35 s 9390 81.7%
MCSAT-Uniform 4664 1.03 s 4768 1.13 s 9432 82.1%

Table 8.3: Experimental results for different variable orderings.

to semantic propagations only Boolean variables that do not represent theory
constraints are decided.

Theory first dynamic (MCSAT-Tf-dynamic) strictly prefers theory variables like
Theory first, but uses a dynamic ordering for theory variables.

Uniform (MCSAT-Uniform) uses a uniform dynamic ordering for all variables, in-
creasing the variable activity for both Boolean and theory variables once for
every conflict.

Uniform + Theory first (MCSAT-Uniform-Tf) follows Uniform by using a uni-
form dynamic ordering for all variables, but strictly prefers theory variables if
two variables have the same activity.

Univariate (MCSAT-Univar) employs a static ordering for theory variables and
a dynamic ordering for Boolean variables. Boolean variables are considered
for a decision only if the respective theory constraint is univariate under the
theory model and the next theory decision is performed when all eligible Boolean
variables are assigned.

Univariate + active (MCSAT-Univar-active) uses the same strategy as Univari-
ate, but considers only Boolean variables whose theory constraint is univariate
and in addition occur in a not yet satisfied clause.

NLSAT (MCSAT-NLSAT) implements our understanding of the heuristic of [JM12].
Compared to Univariate + active, it additionally restricts the Boolean variables
to those that occur in univariate clauses.

Experimental results for all strategies are given in Table 8.3 and are consistent with
what we observed in [NKÁ19]. Note that the results in [NKÁ19] were obtained while
preprocessing was enabled while we compare only the MCSAT solver itself.
We are still somewhat puzzled here as we obtain the best results by either strictly
preferring theory variables in a fixed order (MCSAT-Tf) or using uniform variable
activities (MCSAT-Uniform). All our attempts to find some middle ground and reconcile
these strategies yield worse results as we can see at the examples of MCSAT-Uniform-Tf
and MCSAT-Tf-dynamic.
We can think of two possible resolutions here: there could be multiple significantly
different strategies that yield somewhat similar results; alternatively, we are looking at
a single (yet unknown) strategy that is nontrivially simulated by both MCSAT-Tf and
MCSAT-Uniform while the other strategies for some reason fail to do so.

Theoretical aspects

We have seen MCSAT as a proof system and provided some insights on how to implement
it. Given that we employ very similar techniques in our MCSAT solver as for the regular
SMT solver before, it is certainly interesting to compare these two variants. While we
can do so by benchmarking, we may also want to leverage theoretic tools to assess
them. In the following, we compare the proof systems of MCSAT (from Definition 7.7)
and CDCL∗(T) (from Definition 4.6).
The first part is based on the notion of proof complexity, roughly following [RKG18]
– which relates CDCL∗(T) and Res∗(T) that we define in Definition 9.3 – and our own
paper on this issue [KÁG19], relating MCSAT and Res∗(T). The second part then
directly compares CDCL∗(T) and MCSAT, establishing that these two approaches are
essentially equivalent. Both, however, rely on a pretty theoretical view, making rather
strong assumptions about the proof systems that usually do not apply to actual
implementations, and we discuss these issues as well. Throughout this work, we can
draw some interesting conclusions about the nature of MCSAT, mostly furthering our
intuition, that we present in a final section.

9.1 Proof complexity
When having different methods to solve the same problem – for example CDCL∗(T)
and MCSAT – one would like to have a solid mathematical way to compare them in a
meaningful way. The most fundamental properties are soundness and completeness,
accompanied by more pragmatic measures like asymptotic complexity of (average case
or worst case) run time or memory consumption.
In the case of CDCL∗(T) and MCSAT, we know that both of them are sound and complete,
and assuming that the Boolean satisfiability problem indeed has exponential complexity
(P 6= NP), these two proof systems have the same asymptotic complexity. Note that
this asymptotic complexity is – at least in the case of nonlinear real arithmetic –
dominated by the theory queries and thus the above claim only holds if both the
number and complexity of theory queries are comparable among the two proof systems.
Note that MCSAT allows for the introduction of new theory atoms, and we, therefore,
consider CDCL∗(T) instead of CDCL(T).
The notion of proof complexity provides another angle at this, essentially asking for the
asymptotic size of the smallest proof for a given class of problems that an algorithm
– formulated as a proof system – can construct. We observe that we defined both
MCSAT and CDCL∗(T) as deductive proof systems as presented in Section 2.4 and use
these formulations here.

162 CHAPTER 9. THEORETICAL ASPECTS

Given that we argue about the smallest proof, this approach assumes that all heuristic
decisions are nondeterministic – given by some all-knowing oracle – transforming a
proof system into a (nondeterministic) algorithm. Furthermore, at least in our scenario,
it only deals with unsatisfiable instances since a proof for satisfiability is always short,
simply given by a variable assignment or rather the construction thereof.

9.1.1 A primer on proof complexity

Using proof complexity as a measure for proof systems dates back at least as far
as [Tse68] where it is used for the resolution proof system for propositional logic –
though it is still called the annihilation rule. In contrast to Tseitin’s work, however,
who measured the size of the proof in terms of the number of clauses, we consider the
number of rule applications. The following discussion is based on the definition of proof
systems and proofs from Section 2.4.

Definition 9.1: Proof complexity

Let ϕ be an unsatisfiable formula and Pϕ ⊂ P` the set of proofs for ϕ |= false
from a proof system P . We call P ∈ Pϕ with |P| minimal among Pϕ the shortest
proof for ϕ (in P) and |P| the (proof) complexity of ϕ, also denoted as P(ϕ).

Note that while the (proof) complexity of ϕ is unique, the shortest proof is not. If we
consider the resolution proof system for propositional logic, a proof can be seen as a
sequential representation of a resolution tree. While there can be multiple different
resolution trees that prove the same formula unsatisfiable, there can also be multiple
serializations of one such tree which all result in proofs of the same length.
Though the above definition specifies the proof complexity as a natural number n,
we usually use it as an asymptotic measure with respect to the size of formulae
from a certain class of formulae. Thus, we usually talk about polynomially sized or
exponentially sized proofs and (ab)use the big O notation we know from run-time
analysis. We always assume the asymptotic measure to be relative to the size of the
formula, usually in terms of the number of symbols used when writing it down.
There are usually two different types of statements about the proof complexity of some
formula classes: 1. the formula class has a certain proof complexity within P or 2. the
formula class has a smaller proof complexity within P1 than within P2. While the
first assertion provides some insight into a single proof system, the second is suited
to compare the power of two different proof systems. We formally define the relation
between two proof systems by introducing the notion of simulation of proof systems.

Definition 9.2: Simulation of proof systems

Let P1 and P2 be two proof systems and Φ a set of formulae. We say that P1

(polynomially) simulates P2 if for every ϕ ∈ Φ we have that P1(ϕ) is at most
polynomially longer than P2(ϕ) and write P13ΦP2. Conversely, if P1 63Φ P2

we know that there is some subclass Φ′ ⊂ Φ such that P1(ϕ) is superpolynomially
longer than P2(ϕ) for all ϕ ∈ Φ′. We then write P2�Φ′ P1. If P13ΦP2 and
P23ΦP1 we say that P1 and P2 are bisimilar and write P2uΦP1.
If Φ is the whole set of formulae from the respective logic, or if the set of formulae
is clear from the context, we only write 3, �, and u.

9.1. PROOF COMPLEXITY 163

Note that the relations 3 and � indicate relations of the (expressive) power of proof
systems which is reciprocal to the relation of the lengths of the respective proofs. Also
note that the simulation relations do not induce a total ordering on proof systems in
general (on any meaningful class of formulae Φ). There may very well be two proof
systems P1, P2 such that P1 63 P2 and P2 63 P1. Of course, we usually have at least
either P13ΦP2 or P23ΦP1 for any sufficiently small class Φ.

9.1.2 Proof complexity of Res∗(T) and MCSAT

We now assess the proof complexity of MCSAT by comparing it to another proof system
called Res∗(T) which has already been studied in [RKG18], and in particular been
related to CDCL∗(T). Note that most of what is presented in this section originates
from [KÁG19] with little to no changes.
We have already given the basic resolution proof system that only deals with proposi-
tional logic in Definition 3.3. To cope with first-order logic theories, this proof system
is commonly enhanced to what we call the Res(T) proof system.

Definition 9.3: Res(T) and Res∗(T) proof systems

Let ϕ be an input formula in conjunctive normal form. Assume two clauses
from ϕ that share some theory atom y, though with opposite polarity. The
Resolution rule looks as follows:

Resolution:
(x1 ∨ · · · ∨ xi ∨ y), (¬y ∨ z1 ∨ · · · ∨ zj)

(x1 ∨ · · · ∨ xi ∨ z1 ∨ · · · ∨ zj)
Additionally, we can derive tautologies (in the theory) using the Theory
derivation rule or the Strong theory derivation rule:
Theory derivation:

ϕ

ϕ ∧ C
if T |= C,

l ∈ ϕ for all l ∈ C

Strong theory derivation:
ϕ

ϕ ∧ C
if T |= C

The Res(T) proof system consists of the Resolution rule and the Theory
derivation rule. The Res∗(T) proof system consists of the Resolution rule
and the Strong theory derivation rule.

Similar to how we extended CDCL(T) to CDCL∗(T) in Definition 4.6, we can extend
Res(T) to Res∗(T), allowing the introduction of new theory atoms. We can observe that
Res∗(T)3 Res(T) immediately, and [RKG18] even suggests that Res∗(T)� Res(T).
We know from [RKG18] that Res(T)u CDCL(T) and as well Res∗(T)u CDCL∗(T) – being
called DPLL(T) and DPLL∗(T) in spite of their own note that encourages to properly
distinguish between DPLL and CDCL. Having observed certain similarities of CDCL∗(T)
and MCSAT, we now aim to compare MCSAT and Res∗(T) to state the following theorem
for MCSAT, similar to the one given in [RKG18] for CDCL∗(T).

164 CHAPTER 9. THEORETICAL ASPECTS

Theorem 9.1: Proof complexity of Res∗(T) and MCSAT

The Res∗(T) proof system and the MCSAT proof system are bisimilar with respect
to their proof complexity on first-order logic with any theory.

We prove Theorem 9.1 in two steps: firstly, we show MCSAT3 Res∗(T) and, secondly,
show that Res∗(T)3 MCSAT. In both cases, we show that we can simulate every rule
individually, which actually proves a slightly stronger statement: we not only construct
some other proof (with polynomial overhead) but essentially the same proof. This
observation is the starting point of the subsequent comparison in Section 9.2.

Proof. To show that MCSAT3 Res∗(T), it suffices to show that MCSAT can simulate
both the Resolution rule and the Strong theory derivation rule with only
polynomial overhead. Note that both proof systems operate on the same input
formula ϕ in conjunctive normal form, seen as a set of clauses C.

Simulating the Resolution rule. Assuming that the set of clauses C contains
both (C ∨ L) and (D ∨ ¬L), we need to add (C ∨D) to C.
Let us first handle a special case. Assume that we have some literal in C whose
negation is contained in D. In this case, (C ∨D) ≡ true and there is nothing to
do. Similarly, if (C ∨D) ∈ C we do not need to learn the clause. From here on
we assume that (C ∨D) 6≡ true and (C ∨D) 6∈ C. Starting from an empty trail,
the clause (C ∨D) can be learned using the MCSAT proof rules as follows:

We start by applying the Decide rule for all literals Li ∈ C ∪D. Note that all
Li ∈ B and all Li are undefined in M as M = JK initially.
Decide:

〈M, C〉
〈JM,¬LiK, C〉

if Li ∈ B,
value(Li,M) = undef

Now both C andD evaluate to false over the trail and we can apply the Propagate
rule with (C ∨ L) to propagate L.
Propagate:

〈M, C〉
〈JM, (C ∨ L) → LK, C〉

if value(C,M) = false,
value(L,M) = undef

Due to value(L,M) = true, and thus value(¬L,M) = false, the second clause
(D ∨ ¬L) is conflicting and we apply the Conflict rule.
Conflict:

〈JM, (C ∨ L) → LK, C〉
〈JM, (C ∨ L) → LK, C〉 (D ∨ ¬L)

if (D ∨ ¬L) ∈ C,
value(D ∨ ¬L) = false

We perform conflict resolution using the Resolve rule and obtain (C ∨D).
Resolve:

〈JM, (C ∨ L) → LK, C〉 (D ∨ ¬L)
〈M, C〉 (C ∨D)

if L ∈ (C ∨ L),
R = ResolutionL(C ∨ L,D ∨ ¬L)

To add this clause to the set of clauses C, we use the Learn rule.

9.1. PROOF COMPLEXITY 165

Learn:
〈M, C〉 (C ∨D)

〈M, C ∪ {(C ∨D)}〉 (C ∨D)
if (C ∨D) 6∈ C

We have achieved our goal of adding (C ∨D) to C and return to the initial state
with the Restart rule.
Restart:

〈M, C ∪ {(C ∨D)}〉 (C ∨D)

〈JK, C ∪ {(C ∨D)}〉

We observe that this sequence of proof rules is polynomial in the size of the
clause (C ∨D) (we need |C|+ |D|+ 5 rule applications) and we return to the
same initial state afterward. No theory reasoning was used in the MCSAT rule
applications and we thus pay no hidden costs in the form of theory reasoning.

Simulating the Strong theory derivation rule. We need to create some
arbitrary clause C which is valid in the theory T , that is T |= C. Similar to the
previous simulation, we assume that C 6≡ true and C 6∈ C as there is nothing to
do in these cases.
Our main hurdle is that MCSAT does not allow for learning arbitrary clauses but
only the current conflict clause. Therefore, we have to construct an (artificial)
conflict that yields the desired clause. We assume that our finite basis B includes
all literals that ever occur in the (finite) Res∗(T) proof. We can construct and
learn an arbitrary (valid) clause C using the MCSAT proof rules as follows:

We use the Decide rule repeatedly to add ¬L for every L ∈ C to the trail. Note
that the Decide rule allows to decide any literal from B, independent of whether
they appear in the input formula.
Decide:

〈M, C〉
〈JM,¬LK, C〉

if L ∈ B,
value(L,M) = undef

As T |= C but value(C,M) = false, we now have infeasible(M) and can apply
the T-Conflict rule with E = C. Note that infeasible(M) might not be
capable of detecting this conflict in practical implementations, and we discuss
this issue later in Section 9.3.
T-Conflict:

〈M, C〉
〈M, C〉 C

if infeasible(M),
C = explain(M)

Now we can learn the desired clause C using the Learn rule.
Learn:

〈M, C〉 C

〈M, C ∪ {C}〉 C
if C 6∈ C

Finally, we return to the initial state with the Restart rule.

166 CHAPTER 9. THEORETICAL ASPECTS

Restart:
〈M, C ∪ {C}〉 C

〈JK, C ∪ {C}〉

We observe that we need |C| + 3 proof rule applications to learn an arbitrary
clause (that is neither true nor already present in C) and return to the initial
state. This concludes our proof that MCSAT3 Res∗(T).

We now continue with the second part of the proof and show Res∗(T)3 MCSAT by
simulating all (relevant) proof rules from MCSAT within Res∗(T).

Proof. We observe that clauses can exist in three separate places within MCSAT:
the set of clauses C, the trail M , and the current conflict clause C. When
simulating MCSAT with Res∗(T), we make sure that the set of clauses that Res∗(T)
operates on includes the set of clauses C, all clauses from M , and the conflict
clause C. Thus, when MCSAT concludes unsatisfiability by inferring the empty
clause, we can do the same within Res∗(T).
Note that Res∗(T) retains all clauses that it constructs as it is not designed
to forget clauses while MCSAT may drop clauses occasionally with the Forget
rule. Though removing clauses can bring advantages in practice, the number
of additional clauses is linear in the number of rule applications – MCSAT needs
at least one rule to construct every rule in the first place – and the practical
overhead of additional clauses – for example, due to larger lookup tables – are
polynomial at most if proper data structures are used.
To prove that Res∗(T) simulates MCSAT, it thus suffices to show that all clauses
that ever occur in the MCSAT derivation can also be constructed using the Res∗(T)
proof rules. We assume that, initially, both proof systems start with the same set
of input clauses and identify the rules where the MCSAT rule system constructs
new clauses: Resolve, T-Propagate and T-Conflict.
All other rules either do not manipulate any clauses at all (Decide, Sat, Consume,
Unsat, T-Decide, T-Consume), move clauses between any of the three places
(Propagate, Conflict, Backjump, Learn), or drop existing clauses (Forget, T-
Backjump-Decide). All those can be ignored for the purpose of this proof, as we
only aim to provide Res∗(T) with the same clause set.

Simulating the Resolve rule. The Resolve rule takes the two clauses C (the
current conflict clause) and D (from the trail M) and produces the resolvent
with respect to some literal L. By construction, we know that Res∗(T) has both
C and D available and can thus apply its own Resolution rule to produce the
same resolvent.

Simulating the T-Propagate and T-Conflict rules. Both the T-Propagate
rule and the T-Conflict rule construct a new clause E by calling the MCSAT
explain method. This method produces “a valid theory lemma” (as specified
in [MJ13]), thus we have T |= E and can obtain these clauses using the Strong
theory derivation rule.
As we have simulated all MCSAT rules that can be used to construct new clauses,

9.2. ALGORITHMIC EQUIVALENCY TO CDCL∗(T) 167

we can now take any MCSAT proof and convert it into a Res∗(T) proof by using
the presented simulations for the Resolve, T-Propagate, and T-Conflict rule
and removing all other proof steps. The simulations shown above only require a
single proof step each in Res∗(T), and thus the proof in Res∗(T) is at most as
long as the MCSAT proof.

We have shown MCSAT3 Res∗(T) and Res∗(T)3 MCSAT, and thus Res∗(T)u MCSAT, con-
cluding the proof for Theorem 9.1. Note that this is yet another indication that MCSAT
is essentially equivalent to CDCL∗(T), as they are both bisimilar to Res∗(T) (in terms
of proof complexity) for arbitrary first-order logics. As we already noted, this proof
requires the infeasible method to be more powerful than it usually is in practical
implementations, and we discuss this issue in Section 9.3.

9.2 Algorithmic equivalency to CDCL∗(T)

Given that MCSAT and CDCL∗(T) aim to solve the same problem and arguably share
many algorithmic ideas, we now discuss how these two methods relate to each other.
We have already shown that MCSAT is bisimilar to Res∗(T) – and thus also to CDCL∗(T)
as shown in [RKG18] – in terms of proof complexity.
However, we have already noted that the relation between MCSAT and Res∗(T) is even
stronger. They not only construct some proof (with polynomial overhead) but a
logically equivalent proof and we thus call them algorithmically equivalent. Of course,
the proofs are not identical – after all, the proof rules of MCSAT and Res∗(T) argue
about different objects – but the core reasoning steps are equivalent. We concretize
this fuzzy notion of algorithmic equivalency in Definition 9.4.

Definition 9.4: Algorithmic equivalency

Let P1 and P2 be two proof systems and w a relation on the states of P1 and
P2 indicating that two states are logically equivalent. Let P1 = Φ0 ` · · · ` Φk

and P2 = Ψ0 ` · · · ` Ψk be proofs in P1 and P2, respectively. We say that P1

and P2 are equivalent if ΦiwΨi for all i = 0, . . . k.
We extend this notion of equivalence to proofs that differ in their length. Let P1

as before and

P2 = Ψ0 ` · · · ` Ψj−1 ` Ψ0
j ` · · · ` Ψm

j ` Ψj+1 ` · · · ` Ψk

such that ΦiwΨi for all i = 0, . . . j−1, j+1, . . . k and Φj wΨi
j for all i = 0, . . .m.

If m is at most polynomially larger than k we consider P1 and P2 equivalent
and thereby essentially allow P1 to squash multiple proof steps (of P2) into one.
Let P2 such that it allows for an equivalent proof for every proof in P1. We say
that P2 algorithmically simulates P1 and write P2�P1. If both P1�P2 and
P2�P1, we call P1 and P2 algorithmically equivalent and write P1'P2.

Recalling the proof for the bisimilarity of Res∗(T) and MCSAT, we observe that we
provided simulations for all rules individually and thus essentially already showed
algorithmic equivalency. Let us now, however, turn to the actual topic of interest, the
relation of MCSAT and CDCL∗(T). Given that we have MCSATu Res∗(T)u CDCL∗(T) and
MCSAT' Res∗(T), it seems only reasonable to assume that, in fact, MCSAT' CDCL∗(T).

168 CHAPTER 9. THEORETICAL ASPECTS

Theorem 9.2: Algorithmic equivalence of CDCL∗(T) and MCSAT

CDCL∗(T) and MCSAT are algorithmically equivalent.

Our approach to prove Theorem 9.2 is as follows: we define the equivalence relation w
on the states of both proof systems as an equivalence relation on the respective trails
and then show how they can algorithmically simulate each other. For every rule in one
of the two proof systems, we give a polynomial sequence of rule applications in the
other proof system that ends in a state that is equivalent according to w .

9.2.1 Equivalence of states

Recall the definitions of the trails that are used in CDCL∗(T) and MCSAT, respectively.

Reminder 9.1: DPLL and MCSAT trails

A DPLL trail contains the following elements:
L Boolean decision of literal L

C → L Boolean implication of literal L due to clause C
An MCSAT trail additionally contains the following elements:

x 7→ αx Theory assignment of x to theory value αx

We claim that the theory model is only a heuristic way to guide the solver to meaningful
rule applications – which in no way should diminish its importance in practice. Our
equivalence, therefore, ignores all theory assignments from the MCSAT trail.

Definition 9.5: Equivalence of trails

Let MDPLL be a DPLL trail and MMCSAT an MCSAT trail. We define the reduced
MCSAT trail red(MMCSAT) as follows:

red(JK) = JK
red(JM,LK) = Jred(M), LK

red(JM,C → LK) = Jred(M), C → LK
red(JM,x 7→ αxK) = red(M)

We call two trails equivalent if MDPLL = red(MMCSAT) and write MDPLL wMMCSAT.

We now use this notion of equivalence on trails to induce equivalence on states. Observe
that states of CDCL∗(T) and MCSAT are almost identical (consisting of a trail and a set
of clauses) with the exception of the MCSAT conflict state that also includes a conflict
clause. As the whole process of conflict resolution is squashed anyway, the equivalence
in the following Definition 9.6 ignores the conflict clause.

Definition 9.6: Equivalence of states

Let 〈MDPLL, C〉 be a CDCL∗(T) state, 〈MMCSAT, C〉 an MCSAT search state, and
〈MMCSAT, C〉 C an MCSAT conflict state. If MDPLL wMMCSAT we call the CDCL∗(T)
state equivalent to the MCSAT search state (or MCSAT conflict state) and write
〈MDPLL, C〉w 〈MMCSAT, C〉 (or 〈MDPLL, C〉w 〈MMCSAT, C〉 C).

9.2. ALGORITHMIC EQUIVALENCY TO CDCL∗(T) 169

9.2.2 MCSAT algorithmically simulates CDCL∗(T)

We show that the MCSAT proof system algorithmically simulates the CDCL∗(T) proof
system. Similar to the proof in Section 9.1.2, we proceed by giving MCSAT rule
applications for every CDCL∗(T) rule that can be combined to transform any CDCL∗(T)
proof into an MCSAT proof following Definition 9.4.

Proof. We show that every rule from CDCL∗(T) can be algorithmically simulated
in MCSAT with only polynomial overhead. We do not use the T-Decide rule
during the simulation of CDCL∗(T) proof rules and thus never obtain MCSAT trails
that contain theory assignments. This implies value(L,M) = valueB(L,M) and
valueB(L,M) = undef if and only if L,¬L 6∈M .

CDCL∗(T) Decide:
〈M, C〉

〈JM,LK, C〉
if L or ¬L occurs in C,

L is undefined in M

This rule is directly simulated by the MCSAT Decide rule after some reformulation
on the condition. We observe that B contains all literals from C and L is undefined
in M exactly if value(L,M) = undef .

〈M, C〉
〈JM,LK, C〉

if L ∈ B,
value(L,M) = undef

CDCL∗(T) Fail:
〈M, C ∪ {C}〉
FailState

if M |= ¬C,
M contains no decision literals

The Fail rule can be applied whenever a clause C evaluates to false and there
is no decision in the trail. We eventually want to apply the MCSAT Unsat rule
which, however, requires a conflict state and the conflict clause to be the empty
clause. We start by applying the Conflict rule to enter conflict resolution.
Conflict:

〈M, C〉
〈M, C〉 C

if C ∈ C, value(C) = false

Now we transform the current conflict clause to the empty clause. M contains no
decision literals and thus only propagations, and, furthermore, for every L ∈ C
we have one propagation ¬L in our trail, as we have M |= ¬C. Formally:

M = JL1, . . . , LnK, C = (K1 ∨ · · · ∨Km),∀Ki. ¬Ki ∈ {L1, . . . , Ln}
Therefore, we can apply either the Resolve rule – if the last propagation from
the trail is a literal from C – or the Consume rule until the trail is empty. Note
that the above statement – the negation of every element from C is in the trail –
is invariant under these rules: the Resolve rule eliminates L from C and only
adds literals that are false in M and thus have negations in M while the Consume
rule only removes propagations from the trail that do not appear in C.
Consume:

〈JM,D → LK, C〉 C

〈M, C〉 C
if ¬L 6∈ C

170 CHAPTER 9. THEORETICAL ASPECTS

Resolve:
〈JM,D → LK, C〉 C

〈M, C〉 R
if ¬L ∈ C,

R = ResolutionL(C,D)

As argued before, these rules are applicable until the trail is empty. Furthermore,
we know that M contains the negation of every literal from C. As M = JK, we
know that C = () ≡ false and we can, therefore, apply the Unsat rule.
Unsat:

〈JK, C〉 false

unsat

We note that we apply the Consume and Resolve rules as many times as we have
propagations in our trail, that is at most n times for n variables in the input
formula, and thus get a linear overhead.

CDCL∗(T) UnitPropagate:

〈M, C〉
〈JM,C → LK, C〉

if
C = D ∨ L ∈ C,
M |= ¬D,
L is undefined in M

This rule is directly simulated by the MCSAT Propagate rule and the conditions
are equivalent after reformulation.
Propagate:

〈M, C〉
〈JM,C → LK, C〉

if
C = (L1 ∨ · · · ∨ Ln ∨ L) ∈ C,
∀i. value(Li,M) = false,
value(L,M) = undef

Note that the clause C that we use as the explanation (or reason) for the
propagation is not necessarily unique, but the one used by CDCL∗(T) is always
part of C so that we can perform the same propagation.

CDCL∗(T) TheoryPropagate:

〈M, C〉
〈JM, (D ∨ L) → LK, C〉

if
M |=T D ∨ L, M |= ¬D,
L or ¬L occurs in C,
L is undefined in M

We simulate this rule by the MCSAT T-Propagate rule which essentially serves the
same purpose, though the details of how we show the propagation to be sound
differ. As above, the CDCL∗(T) conditions imply L ∈ B and value(L,M) = undef .
Furthermore, we observe that

M |=T L⇔M 6|=T ¬L⇔M,¬L |=T false ⇔ infeasible(JM,¬LK)

and can thus apply T-Propagate.
T-Propagate:

〈M, C〉
〈JM,E → LK, C〉

if
L ∈ B, value(L,M) = undef ,
infeasible(JM,¬LK),
E = explain(JM,¬LK)

9.2. ALGORITHMIC EQUIVALENCY TO CDCL∗(T) 171

We note that the original definition of the TheoryPropagate rule from [NOT06]
seems to avoid the burden of actually coming up with a reason for the propagation.
In theory, this does not matter as we consider the theory reasoning to have zero
cost. In practice, however, this burden is only moved to the CDCL∗(T) T-Backjump
rule (that we show later) where CDCL∗(T) needs to find some clause with this
property – if it is needed for the backtracking. Note that the original presentation
of MCSAT [JM12] proposes to essentially do the same by only calculating the
explanations lazily when they are actually needed in the conflict analysis phase.
Also note that infeasible is commonly implemented with a finite lookahead,
checking whether the theory model can be extended by another single theory
variable without rendering the trail inconsistent. The authors of [MJ13] state, how-
ever, that infeasible(M) is equivalent to the literals from M being unsatisfiable
together with the partial model from M . While having a finite lookahead tech-
nically violates the above equivalence M,¬L |=T false ⇔ infeasible(JM,¬LK),
it only defers the detection of theory conflicts, but never misses them. As soon
as the last variable is to be assigned, infeasible is complete and detects all
possible conflicts, and the MCSAT proof system is robust enough to deal with such
conflicts that are found later than expected.
This practical issue may very well make our proofs longer – due to the reasoning
we have to perform until we eventually detect the conflict in practice – and we
discuss this issue in Section 9.3.

CDCL∗(T) T-Backjump:

〈JM,L,NK, C〉
〈JM, (C ′ ∨ L′) → L′K, C〉

if

C ∈ C with JM,L,NK |= ¬C,
there is some clause C ′ ∨ L′ such that:
C |=T C

′ ∨ L′ and M |= ¬C ′,
L′ is undefined in M ,
L′ or ¬L′ occurs in C or in JM,L,NK

This rule encapsulates the whole process of conflict analysis and backtracking
in one rule whereas MCSAT details how conflict analysis works by giving a whole
set of rules for this case. CDCL∗(T), on the other hand, does not specify how the
conflict analysis should proceed and – in theory – allows for a completely different
scheme for conflict analysis and resolution.
This leaves us in a tight spot: the straightforward simulation using the MCSAT
conflict analysis rules will only be able to simulate resolution-based approaches,
and while this (should) be able to simulate any other approach – due to the
(refutational) completeness of resolution – it may fail to do so in polynomial time.
We feel that this is, however, the meaningful simulation, as it simulates what
CDCL∗(T) solvers do in practice.
We can avoid this issue by going for a more general solution: we can eliminate
the T-Backjump rule from the CDCL∗(T) proof system and essentially replace it
by the T-Learn and UnitPropagate rules. However, this departs from what we
think happens in actual solvers in practice. We thus consider the straightforward
variant by far more relevant and instructive, but propose the more general variant
as well for theoretical completeness. Therefore, we provide both reductions in
this order.

172 CHAPTER 9. THEORETICAL ASPECTS

Let us assume now that the clause C ′ ∨ L′ is obtained by means of resolution
on the propagated literals in N and L is the first unique implication point,
implying that N only contains propagations and decisions that are not relevant
for the conflict. To employ the regular conflict analysis scheme, we first need to
enter conflict resolution using the Conflict rule. Then, we apply the Resolve or
Consume rules to construct the conflict clause C ′ and eventually use the Backjump
rule to leave conflict resolution and perform propagation on the literal L′.

Conflict:
〈JM,L,NK, C〉

〈JM,L,NK, C〉 C
if C ∈ C, value(C) = false

We already noted that N only contains propagations or decisions that are not
relevant for the conflict. This is almost the same situation as when simulating
the CDCL∗(T) Fail rule and with essentially the same argument we can apply
the Consume rule – in this case either for propagations or decisions – and the
Resolve rule until N = JK to obtain some conflict clause C ′ ∨ L′.
Consume:

〈JM,D → LK, C〉 C

〈M, C〉 C
if ¬L 6∈ C

Consume:
〈JM,LK, C〉 C

〈M, C〉 C
if ¬L 6∈ C

Resolve:
〈JM,D → LK, C〉 C

〈M, C〉 R
if ¬L ∈ C,

R = ResolutionL(C,D)

Now, we can apply the Backjump rule, given that N = JLK starts with a decision
and the other conditions hold as L is the first unique implication point.
Backjump:

〈JM,NK, C〉 C

〈JM,C → LK, C〉
if

C = (L1 ∨ · · · ∨ Ln ∨ L),
∀i. value(Li,M) = false,
value(L,M) = undef ,
N starts with a decision

For the more general case, we observe that we can eliminate the T-Backjump rule
from the CDCL∗(T) proof system and simulate it by applying the T-Learn and
Restart rules, restoring the trail M and finally the UnitPropagate rule. Note
that this is not far off our intuition: We somehow learn a new clause, backtrack –
by removing something from the trail – and use the learned fact for propagation.
We observe that the new clause C ′ ∨L′ used by the T-Backjump rule only allows
for literals from the current formula as M |= ¬C ′ and L′ ∈ atoms(C).
Given the MCSAT equivalents for all the rules used here, we implicitly get a
simulation for the T-Backjump rule. The number of rule applications is linear in
the size of the trail and thus in the number of variables. Restoring the trail relies
on the optimal scheduler to properly rebuild whatever was on the trail before
applying the Restart rule, using the Decide and UnitPropagate rules.

9.2. ALGORITHMIC EQUIVALENCY TO CDCL∗(T) 173

CDCL∗(T) T-Learn∗:

〈M, C〉
〈M, C ∪ {C}〉

if C |=T C

MCSAT does not allow for learning arbitrary clauses, instead it allows for learning
the current conflict clause only. Our approach is, therefore, to restart the solver,
construct an (artificial) conflict that yields the desired clause, learn it, and finally
reconstruct the trail.
Restart:

〈M, C〉
〈JK, C〉

We use the Decide rule repeatedly to add ¬Li for all Li ∈ C to the trail. We
then have infeasible(M) and apply the T-Conflict rule with E = C.
Decide:

〈JK, C〉
〈J¬Li, . . .K, C〉

T-Conflict:
〈J¬Li, . . .K, C〉

〈J¬Li, . . .K, C〉 C

Now, we only need to apply the Learn rule to add the conflict clause to C, restart
again, and restore the trail.

By simulating the T-Learn∗ rule, we can also easily simulate the special case
T-Learn, exactly as described before.

CDCL∗(T) T-Forget:

〈M, C ∪ C〉
〈M, C〉

if C |=T C

We observe that this rule almost corresponds to the MCSAT Forget rule, except
that MCSAT only allows to forget learned clauses. CDCL∗(T) instead allows to forget
any redundant clauses – in the sense that they may be recovered by the T-Learn
rule – irrespective of whether they were part of the original clause set.
If the clause to forget happens to be a learned clause, we can simply apply the
MCSAT Forget rule. Otherwise, we do nothing and keep the clause. We keep at
most as many additional clauses as we had in the original formula and thus the
overhead is polynomial. As all clauses are still entailed by the current clause set
C, keeping redundant clauses does not change the semantics of |= or |=T .

CDCL∗(T) Restart:

〈M, C〉
〈JK, C〉

This rule is identical to the MCSAT Restart rule.

174 CHAPTER 9. THEORETICAL ASPECTS

We have shown how to algorithmically simulate every individual CDCL∗(T) proof
rule within the MCSAT proof system and have thus shown that MCSAT algorith-
mically simulates CDCL∗(T). We observe that we did not use any of the rules
that deal with theory assignments – T-Decide, T-Consume and T-Backjump-
Decide – which indicates that this component of MCSAT does not contribute to
its (theoretical) power. We give some more thoughts to this in Section 9.3.4.

9.2.3 CDCL∗(T) algorithmically simulates MCSAT

We have seen in the previous section that MCSAT is at least as powerful as CDCL∗(T) in
the sense that it algorithmically simulates any CDCL∗(T) proof rule. This leaves the
possibility that MCSAT is a stronger proof system than CDCL∗(T). We now show that
they are in fact algorithmically equivalent, as CDCL∗(T) algorithmically simulates every
MCSAT proof rule.

Proof. We have seen that MCSAT does not rely on theory assignments to simulate
CDCL∗(T), and this observation motivates how we deal with MCSAT proof rules
that use theory assignments: we simply ignore them and show that it is safe to
do. A closer look at the MCSAT proof system reveals that theory assignments only
restrict the applicability of certain rules, but do not contribute to new clauses in
an explicit way.
Furthermore, we have already observed that the level of detail for the specification
of the conflict analysis is very different. While MCSAT gives detailed rules on how
to perform the conflict analysis, CDCL∗(T) just contains a single rule which does
everything. We can thus ignore all MCSAT steps that deal with conflict resolution
and perform everything within a single application of the T-Backjump rule – or
the Fail rule if we determine unsatisfiability – when MCSAT leaves the conflict
resolution state. The only exception to this is the Learn rule which does not
change the trail or the conflict clause, but the formula and we can trivially
simulate it with the T-Learn∗ rule.
MCSAT may introduce new literals occasionally, in particular when explain is
called, from the finite basis B. Whenever a new literal L 6∈ atoms(C) is used, we
use the T-Learn∗ rule to learn the clause L ∨ ¬L and get L ∈ atoms(C).

MCSAT Decide:
〈M, C〉

〈JM,LK, C〉
if L ∈ B,

value(L,M) = undef

If the decision literal L is a new literal, we use the above technique to add L∨¬L
to C and ensure that L ∈ atoms(C). Now, we can apply the Decide rule to
perform the equivalent task in CDCL∗(T).

MCSAT Propagate:

〈M, C〉
〈JM,C → LK, C〉

if
C = (L1 ∨ · · · ∨ Ln ∨ L) ∈ C,
∀i. value(Li,M) = false,
value(L,M) = undef

This rule is identical to the UnitPropagate rule up to the usual reformulations.

9.2. ALGORITHMIC EQUIVALENCY TO CDCL∗(T) 175

MCSAT Conflict: We ignore this rule as argued above. We process the whole
subsequent conflict analysis when we leave the conflict analysis state with the
Backjump, Unsat, or T-Backjump-Decide rules.

MCSAT Sat:

〈M, C〉
sat

if satisfied(C,M)

Instead of a special sat state, CDCL∗(T) signals satisfiability by terminating in
any state other than FailState when no further rule can be applied. Therefore,
we do nothing in this case.

MCSAT Forget:

〈M, C〉
〈M, C \ {C}〉

if C ∈ C is a learned clause

This rule is a special case of the CDCL∗(T) Forget rule, restricted to learned
clauses. We can thus apply the Forget rule.

MCSAT Restart: The Restart rules of MCSAT and CDCL∗(T) are identical.

MCSAT Resolve: We ignore this rule as argued above. We process the whole
subsequent conflict analysis when we leave the conflict analysis state with the
Backjump, Unsat, or T-Backjump-Decide rules.

MCSAT Consume: We ignore this rule as argued above. We process the whole
subsequent conflict analysis when we leave the conflict analysis state with the
Backjump, Unsat, or T-Backjump-Decide rules.

MCSAT Backjump:

〈JM,NK, C〉 C

〈JM,C → LK, C〉
if

C = (L1 ∨ · · · ∨ Ln ∨ L),
∀i. value(Li,M) = false,
value(L,M) = undef ,
N starts with a decision

We can simulate this rule by the T-Backjump rule. We have L in the trail as for
MCSAT N starts with a decision. Furthermore, the clause C ′ ∨L′ can be chosen to
be the MCSAT conflict clause C and has the required properties: it is entailed by
C as it was constructed by resolution from C, M |= ¬C ′ holds, L′ is not assigned,
and all literals are from atoms(C) – after we added them as described above.
T-Backjump:

〈JM,L,NK, C〉
〈JM, (C ′ ∨ L′) → L′K, C〉

if

C ∈ C with JM,L,NK |= ¬C,
there is some clause C ′ ∨ L′ such that:
C |=T C

′ ∨ L′ and M |= ¬C ′,
L′ is undefined in M ,
L′ or ¬L′ occurs in C or in JM,L,NK

176 CHAPTER 9. THEORETICAL ASPECTS

MCSAT Unsat:

〈M, C〉 false

unsat

As we would expect, this is essentially a special case of the Fail rule with
C = false. We first add the conflict clause () to C using the T-Learn rule, restart
the solver, and finally apply the Fail rule with the newly added empty clause.

MCSAT Learn:

〈M, C〉 C

〈M, C ∪ {C}〉
if C 6∈ C

As argued above, the current conflict clause of MCSAT is a logical consequence of
C at any given time. Hence we can apply the T-Learn∗ rule to add C to C.

MCSAT T-Propagate:

〈M, C〉
〈JM,E → LK, C〉

if
L ∈ B, value(L,M) = undef ,
infeasible(JM,¬LK),
E = explain(JM,¬LK)

We recall that explain always returns a valid theory lemma – a tautology – and
thus every clause returned by explain is a logical consequence of C. We can,
thus, use the T-Learn∗ rule to add the clause E to C and then perform a Boolean
propagation via the UnitPropagate rule instead of the theory propagation.
We can also, alternatively, eliminate the T-Propagate rule within MCSAT itself.
Given that value(L,M) = undef , we can apply the Decide rule to add ¬L to
the trail and as infeasible(JM,¬LK) we can apply the T-Conflict rule. The
Backjump rule immediately resolves this conflict and replaces the decision ¬L by
the propagation E → L.
Decide:

〈M, C〉
〈JM,¬LK, C〉

T-Conflict:
〈JM,¬LK, C〉

〈JM,¬LK, C〉 E

Backjump:
〈JM,¬LK, C〉 E

〈JM,E → LK, C〉

MCSAT T-Decide: We ignore this rule as argued above. Theory assignments are
not needed to simulate MCSAT.

MCSAT T-Conflict: We ignore this rule as argued above. We process the whole
subsequent conflict analysis when we leave the conflict analysis state with the
Backjump, Unsat, or T-Backjump-Decide rules.

9.3. THEORY REASONING IN PRACTICE 177

MCSAT T-Consume: We ignore this rule as argued above. We process the whole
subsequent conflict analysis when we leave the conflict analysis state with the
Backjump, Unsat, or T-Backjump-Decide rules.

MCSAT T-Backjump-Decide:

〈JM,x 7→ αx, NK, C〉 C

〈JM,LK, C〉
if

C = (L1 ∨ · · · ∨ Ln ∨ L),
∃i. value(Li,M) = undef ,
value(L,M) = undef

As we ignore theory assignments, we simulate this rule as follows. First, we
remove N from the trail – restarting the solver and restoring M – and then use
the Decide rule on L, which is possible as value(L,M) = undef .

We have shown how to simulate every MCSAT proof rule with the CDCL∗(T) proof
system and thereby how to algorithmically simulate MCSAT with CDCL∗(T), con-
cluding the proof for Theorem 9.2. This proof not only completely ignored
theory assignments, but also did not need to bother with the details of conflict
analysis.

This concludes our proof of Theorem 9.2, showing that MCSAT is, in fact, algorithmically
equivalent to CDCL∗(T).

9.3 Theory reasoning in practice

The simulations we presented in Section 9.1 and Section 9.2 have a few shortcomings
(or rather only hold true under certain assumptions), some of which have already
been mentioned. We now discuss these issues, how they affect the theory or practical
implementations, and how one might mitigate them.

9.3.1 Completeness of infeasibility check

We have already issued warnings that the constructions shown in Section 9.1 and
Section 9.2 require a level of power by the MCSAT subroutines – in particular infeasible
– that is backed by the MCSAT framework, but not by any practical implementation.
The definition from [MJ13] uses the predicate infeasible to state that a trail M is
not satisfiable in the sense that the literals from M are not satisfiable together with the
theory model induced by M . Note that the previous version from [JM12] still used a
slightly different version: feasibility only considered the constraints that are univariate
over the theory model. Though seemingly small, this is a pivotal difference here.
The presented simulations all require the more general notion of infeasibility from [MJ13]
to ensure that feasibility of the trail coincides with the trail implying false. Practical
implementations, however, all follow [JM12] where we only consider univariate con-
straints for feasibility. As far as we know, the SMT-based assignment finder from
Section 8.2.2 is the only exception to this, though with rather disappointing results.
One might even reasonably argue that this restriction to only consider univariate
constraints is not a technical one, but is a fundamental idea in MCSAT that allows

178 CHAPTER 9. THEORETICAL ASPECTS

the theory exploration in the first place. A complete implementation of infeasible
would essentially prevent the theory exploration and move the whole process of theory
exploration into infeasible that turns into a regular theory solver – just like the
SMT-based assignment finder from Section 8.2.2.
Let us first observe that employing an “incomplete” version of infeasible does not
make MCSAT incomplete. It only requires theory exploration whenever infeasible
ignores non-univariate constraints, but by gradually exploring the whole space of theory
models one eventually correctly determines infeasibility. We thus claim – without proof
– that all simulations can be adapted accordingly to accommodate for an incomplete
implementation of infeasible.
The basic idea is as follows: instead of immediately finding infeasibility, we guess a
partial theory assignment (via the T-Decide rule) until it becomes infeasible – note
that infeasible is definitely complete once all but one variable are assigned – exclude
a region (via the T-Conflict rule) around the partial assignment (in the space of
theory assignments) and backtrack. This usually happens multiple times for a certain
variable until the whole space is excluded for this variable and we have to change the
assignment of the previous variable. We thereby accumulate witnesses for infeasibility
and combine them to contain less and less variables until we eventually get back to our
starting point and can derive infeasibility from univariate constraints.
While this might only seem like an issue of reformulating the proofs and making them
(a lot) more technical and arguably ugly, it gives rise to a fundamental problem. We
required the lengths of equivalent proofs to only differ polynomially. However, the
theory exploration described above essentially enumerates invariant regions – we usually
think about CAD cells here – and there can be exponentially many of them.
This, unfortunately, conflicts with our hope of a polynomial reduction. However, this
was to be expected: the whole idea of MCSAT is to move parts of the theory reasoning
into the core proof system while Res∗(T) and CDCL∗(T) both hide any theory reasoning
within their proof rules (of constant cost). Thus, our core proof system of course
exhibits bad asymptotic behavior if we consider a hard theory, while the proof system
we compare it to completely hides any theory reasoning from its asymptotic complexity.
While the theoretical result still remains if infeasible is complete, we also argue that
it is relevant in practice as well when infeasible is incomplete. We observed that the
computational effort spent on theory reasoning is not new but is only made explicit in
MCSAT, and thus the overall computational effort stays (about) the same.

9.3.2 Theory-aware equivalency

We now want to argue that the length of proofs is not a satisfactory measure to assess
the computational complexity of performing proofs. The foregoing discussion essentially
shows that we can make a proof system arbitrarily more powerful – in the sense of
proof complexity or algorithmic simulation – if we make its proof rules more powerful.
Conversely, we can make a proof system less powerful by making its proof rules ever
more detailed, possibly executing individual processor instructions.
It is, thus, of utmost importance for a meaningful comparison that the proof systems
operate on a similar level of abstraction if we assume that all proof rules take a fixed
amount of time. We propose to treat proof rules that involve theory queries – whatever
a theory query may be – in a special way. To call proof systems equivalent (either

9.3. THEORY REASONING IN PRACTICE 179

bisimilar or algorithmically equivalent) we require the number of theory queries to be
(about) the same and let all theory queries have (about) the same computational effort.
Reconsidering the proofs for bisimilarity and algorithmic equivalency, we observe that
the number of theory queries is always identical. Every proof rule that involves a theory
query is simulated by a set of proof rule applications that involve exactly one theory
query as well. Thus we do not need to worry about the number of theory queries.
A closer look at the reductions involving theory queries reveals that they are used to
construct the exact same clauses from the exact same theory constraints. We can thus
argue that any method that would improve upon a particular implementation of the
MCSAT theory queries can directly be used to improve the CDCL∗(T) theory queries, and
the other way round.

9.3.3 Impact of new literals

MCSAT has the ability to add new literals via its explain method that is used in the
T-Propagate and T-Conflict rules. Though we could theoretically restrict explain
to only use existing literals, it would forbid all existing instantiations of MCSAT we know
of, in particular the CAD-based NLSAT [JM12]. The way explain is meant to work –
by eliminating all unassigned variables – inherently generates new literals.
We know that adding strong theory derivations to CDCL(T) brings us from Res(T) to
Res∗(T) in theory. Restricting explain to what we described above, that is a quantifier
elimination procedure that removes the unassigned variables, gives us something
between: it provides a way to generate theory lemmas with additional literals, which
may make it stronger than CDCL(T) without strong theory derivations, but it remains
unclear whether we can practically generate any arbitrary clause or an equivalent clause
– whatever equivalent would mean – like we assume in our simulation of the Learn rule.
Note that we do not consider the simulation of strong theory derivations in the reduction
from CDCL∗(T) to MCSAT practical in that sense. We have shown that we can instrument
MCSAT to construct any valid clause that we already know. The reduction, however,
did not provide a constructive way to find novel clauses, just like CDCL∗(T). Finding
meaningful lemmas is a difficult problem and actual implementations of CDCL∗(T) have
a hard time leveraging the power of strong theory derivations.
This might suggest that real-world implementations of MCSAT are less powerful than
CDCL∗(T). Instead, MCSAT might have found a sweet spot between CDCL(T) and CDCL∗(T)
– and thus between Res(T) and Res∗(T) – in that it shows how to generate certain
meaningful lemmas from a restricted class, but not a general scheme to generate all
valid lemmas.

9.3.4 Impact of theory decisions

We have seen that theory decisions were not used when we showed the equivalence of
CDCL∗(T) and MCSAT. We did not need them to be as powerful as CDCL∗(T) and could
simply ignore them when simulating MCSAT with CDCL∗(T) without harm. This suggests
that they are not an essential theoretical part of MCSAT after all. They seem to be
no more than a tool to steer decisions and the generation of new clauses to a good
direction in a heuristic way – a very effective one in practice though.

Conclusion

In this work, we presented various techniques for SMT solving of nonlinear real
arithmetic with a special focus on CAD-based procedures for theory solving. Our work
mainly centered around an embedding of CAD as a theory solver for traditional (lazy)
SMT solving as presented in Chapter 6 and the implementation of the more recent
MCSAT framework with explanation functions based on CAD in Chapter 8.
For both subjects, we recalled basic definitions and techniques, proposed novel tech-
niques concerning both the theoretical framework and an actual implementation, and
extended it beyond the traditional scope of SMT solving. In the following, we give
some more details on the contributions of this thesis, differentiating it from previous
work, and the future work that was (in part) already brought up within this work, but
neither implemented nor properly dealt with yet.

10.1 Contributions
We already gave a brief overview of our contributions in Section 1.2 that we extend
now that we have seen the details of this work. Note that we include the author’s
contributions to published work here, but also make explicit where the presentation in
this thesis exceeds the published works listed in Section 1.2.1. Unless stated otherwise,
everything mentioned below has been implemented in SMT-RAT [CKJ+15] which we
consider a contribution in itself.
The author’s contributions already start in Section 2.5 on the topic of real algebraic
numbers, a crucial part of a sufficiently efficient implementation of CAD and most
CAD-based methods. Given this importance, it has already been studied quite a bit and,
thus, our presentation does not contain any fundamentally novel techniques or insights.
However, discussions of how to implement the important methods are extremely
sparse: algebraic works tend to simply assume knowledge about how to implement real
algebraic numbers while others merely use it as a starting point like [MP13]. In this
sense, our presentation is unique in that it discusses how to actually implement real
algebraic numbers from building blocks that are easy enough for a computer scientist
to understand and implement.
Similarly, Chapter 5 (and in particular Section 5.2) does not contain novel techniques
for CAD, but a yet not written summary of existing methods for CAD, in particular
projection operators and a comparative analysis thereof which is in parts based on [Vie16;
VKÁ17]. Again, we did not focus on the theoretical background (which is both
mathematically deep and very diverse) but aimed at making the discussion sufficiently
easy to understand, giving a feeling for the impact of the different methods in practice.

182 CHAPTER 10. CONCLUSION

In Chapter 6 we first presented a novel formulation of CAD as a proof system that
aims to bridge the gap between the mathematical presentations of CAD that prevail
in the computer algebra community and the much more practical and algorithmic
description from [KÁ20]. These formulations of CAD aim to make an incremental
implementation as easy as possible to allow using it as a theory solver in the sense
of [KÁ18]. Of course, the proof system is heavily based on [KÁ20] and could be seen
as a mere reformulation of the algorithms presented there.
This proof system was then extended using known techniques like full factorization,
equational constraints, equation inference based on the resultant rule, infeasible subset
generation, or branch and bound for integer problems. While all of these techniques
are more or less well-known, we combined them into a single framework that allows for
a seamless combination of them. This of course based on previously published work
on equational constraints [Hae18; HKÁ18], infeasible subsets [Hen17] and nonlinear
integer arithmetic [KCÁ16].
Furthermore, the implementation – which was targeted at SMT problems and heavily
focussed on incrementality – was applied to quantifier elimination and an adaptation
for optimization was presented. While quantifier elimination found its way into our
actual implementation in [Neu18a], the work on optimization has not, but still waits
to be implemented.
We then turned towards the MCSAT framework, a comparably recent alternative to
what we called (lazy) SMT solving, that yielded particularly good results with its
implementation for nonlinear real arithmetic in Z3 [JM12]. Starting from a slightly
revised definition of the underlying proof system (compared to [MJ13]), we introduced
a novel variant we call model-refining satisfiability calculus and proposed a way to
employ MCSAT for optimization problems, though both have not been implemented yet.
In Chapter 8, we discussed our implementation of MCSAT, the only MCSAT-based imple-
mentation targeted at nonlinear arithmetic apart from Yices and Z3 [JM12] (which
arguably can be considered the same, given that the same author implemented them
in close succession).
We proposed a novel embedding of MCSAT into a CDCL-style SAT solver – in some sense
approaching implementations of regular SMT solving and MCSAT – and proposed a
novel assignment finder as well as multiple novel explanation functions and methods
to compose them. Again, some of these were already published in [Nal17; ÁNK17;
Neu18b]. This novel implementation of MCSAT was evaluated, in particular, for varying
explanation functions and varying variable orderings in Section 8.5, in parts based
on [NKÁ19].
Finally, we picked up a thread concerning a more theoretical view on proof systems
(like CDCL(T) or MCSAT) from [RKG18] and studied the theoretical power of MCSAT in
comparison to Res∗(T) and CDCL∗(T). The first part is concerned with the notion of
proof complexity and establishes the equivalence of MCSAT and Res∗(T) in this context,
closely based on [KÁG19]. In the second part, we depart from proof complexity and
directly show what we call algorithmic equivalency between MCSAT and CDCL∗(T). Finally,
we discuss certain shortcomings of our proof when compared to actual implementations
and how this affects the power of MCSAT implementations in comparison to the CDCL∗(T)
proof system and implementations thereof, as well as the importance of the novel
concepts in MCSAT for its practical and theoretical performance.

10.2. FUTURE WORK 183

10.2 Future work
We can easily imagine improvements and adaptations for almost all of the presented
concepts and techniques and the scope of this thesis is limited due to restrictions in
space and time, but not for the lack of open questions or (more or less) novel ideas
that deserve thorough consideration. We thus only give a few directions for future
research that we feel are particularly promising and important (in no specific order).
In Section 6.5.2, we discussed how we can arbitrarily interleave the projection and
lifting process in an incremental CAD. Though we did some brief experiments on this
issue, the most effective heuristic in practice was to strictly prefer lifting steps. We
feel that this does not align with concepts like open CAD and our general idea of
incrementality, speculating that better schedulers should exist.
The proof system of MCSAT feels somewhat convoluted and cumbersome and we propose
to aim for a more elegant version of MCSAT. Our understanding of MCSAT is to treat the
theory reasoning much like the Boolean reasoning, but the proof system handles them
very differently, though we do not see a fundamental reason for this. Furthermore, we
propose to simplify the proof system with respect to conflict analysis and define it
more alike to CDCL∗(T).
The discussion in Section 9.3 indicate that the main reason for the practical effectiveness
of MCSAT might be that it provides a constructive way to obtain useful lemmas while
this is a notoriously hard problem within CDCL∗(T). It might thus be interesting whether
we can embed parts of MCSAT into CDCL∗(T), purely to generate such useful lemmas. On
the other hand, approaching a theory problem in a conflict-driven manner may yield
interesting new decision procedures. Both NuCAD [Bro15] and the cylindrical algebraic
coverings approach from [ÁDE+20] indicate that such methods are competitive in first
experiments and deserve more research.
Finally, we observe that the growing number of industrial applications leads to the
wish to extend SMT solving beyond the question of satisfiability. While “SMT solving”
has always incorporated the question for a model and unsatisfiable cores have long been
studied for propositional problems and are slowly adapted for SMT solving as well, one
important component for real-world applications is optimization. While several groups
work on optimization modulo theories, no approach has gained any traction for nonlinear
optimization yet. We have laid out how to use a CAD-based theory solver as well as
MCSAT for optimization, and note that the CAD-based method gives strong guarantees
on the results, arguably even stronger than other methods for nonlinear optimizations
as we discuss in Section 1.1.6.2. We thus expect that an effective optimization based
on CAD may be extremely useful in practice if it scales sufficiently, which is, of course,
a notoriously hard problem for any CAD-based approach.

Bibliography

[AB19] John Abbott and Anna M. Bigatti. CoCoALib: a C++ library for doing
Computations in Commutative Algebra. 2019. url: http://cocoa.dima.
unige.it/cocoalib.

[ABP18] John Abbott, Anna M. Bigatti, and Elisa Palezzato. “New in CoCoA-5.2.4
and CoCoALib-0.99600 for SC-Square”. In: Satisfiability Checking and
Symbolic Computation (SC2 2018) at FLoC. CEUR Workshop Proceedings
vol. 2189, pp. 88–94. url: http://ceur-ws.org/Vol-2189/paper4.pdf.

[Abe26] Niels H. Abel. “Beweis der Unmöglichkeit, algebraische Gleichungen von
höheren Graden als dem vierten allgemein aufzulösen.” In: Journal für
die reine und angewandte Mathematik 1 (1826), pp. 65–84. doi: 10.1515/
crll.1826.1.65.

[ÁCJ+16] Erika Ábrahám, Florian Corzilius, Einar Broch Johnsen, Gereon Kremer,
and Jacopo Mauro. “Zephyrus2: On the Fly Deployment Optimization
Using SMT and CP Technologies”. In: Dependable Software Engineering:
Theories, Tools, and Applications (SETTA 2016). LNCS vol. 9984, pp. 229–
245. doi: 10.1007/978-3-319-47677-3_15.

[ÁDE+20] Erika Ábrahám, James H. Davenport, Matthew England, and Gereon Kre-
mer. “Deciding the Consistency of Non-Linear Real Arithmetic Constraints
with a Conflict Driven Search Using Cylindrical Algebraic Coverings”.
In: arXiv e-prints (2020). Accepted at Journal of Logical and Algebraic
Methods in Programming. arXiv: 2003.05633.

[ÁK16] Erika Ábrahám and Gereon Kremer. “Satisfiability Checking: Theory
and Applications”. In: Software Engineering and Formal Methods (SEFM
2016). LNCS vol. 9763, pp. 9–23. doi: 10.1007/978-3-319-41591-8_2.

[ÁK17] Erika Ábrahám and Gereon Kremer. “SMT Solving for Arithmetic Theo-
ries: Theory and Tool Support”. In: Symbolic and Numeric Algorithms for
Scientific Computing (SYNASC 2017), pp. 1–8. doi: 10.1109/SYNASC.
2017.00009.

[ÁK18] Erika Ábrahám and Gereon Kremer. “Incremental CAD”. Presented at
International Congress on Mathematical Software. 2018.

[ÁNK17] Erika Ábrahám, Jasper Nalbach, and Gereon Kremer. “Embedding the
Virtual Substitution Method in the Model Constructing Satisfiability
Calculus Framework”. In: Satisfiability Checking and Symbolic Computa-
tion (SC2 2017) at ISSAC. CEUR Workshop Proceedings vol. 1974. url:
http://ceur-ws.org/Vol-1974/EAb.pdf.

http://cocoa.dima.unige.it/cocoalib
http://cocoa.dima.unige.it/cocoalib
http://ceur-ws.org/Vol-2189/paper4.pdf
https://doi.org/10.1515/crll.1826.1.65
https://doi.org/10.1515/crll.1826.1.65
https://doi.org/10.1007/978-3-319-47677-3_15
https://arxiv.org/abs/2003.05633
https://doi.org/10.1007/978-3-319-41591-8_2
https://doi.org/10.1109/SYNASC.2017.00009
https://doi.org/10.1109/SYNASC.2017.00009
http://ceur-ws.org/Vol-1974/EAb.pdf

186 BIBLIOGRAPHY

[ACG99] Alessandro Armando, Claudio Castellini, and Enrico Giunchiglia. “SAT-
Based Procedures for Temporal Reasoning”. In: Recent Advances in AI
Planning (ECP 1999). LNCS vol. 1809, pp. 97–108. doi: 10 . 1007 /
10720246_8.

[Arn81] Dennis S. Arnon. “Algorithms for the Geometry of Semi-Algebraic Sets”.
PhD thesis. University of Wisconsin-Madison, 1981. url: https : / /
digital.library.wisc.edu/1793/58310.

[ACM84] Dennis S. Arnon, George E. Collins, and Scott McCallum. “Cylindrical
Algebraic Decomposition I: The Basic Algorithm”. In: SIAM Journal on
Computing 13 (4 1984), pp. 865–877. doi: 10.1137/0213054.

[Art91] Michael Artin. Algebra. Prentice Hall Inc., 1991.
[ADG07] Eugene Asarin, Thao Dang, and Antoine Girard. “Hybridization methods

for the analysis of nonlinear systems”. In: Acta Informatica 43 (7 2007),
pp. 451–476. doi: 10.1007/s00236-006-0035-7.

[AS09] Gilles Audemard and Laurent Simon. “Predicting Learnt Clauses Quality
in Modern SAT Solvers”. In: International Joint Conference on Artificial
Intelligence (IJCAI 2009), pp. 399–404. url: https : / / ijcai . org /
Proceedings/09/Papers/074.pdf.

[BCD+11] Clark Barrett, Christopher L. Conway, Morgan Deters, Liana Hadarean,
Dejan Jovanović, Tim King, Andrew Reynolds, and Cesare Tinelli. “CVC4”.
In: Computer Aided Verification (CAV 2011). LNCS vol. 6806, pp. 171–
177. doi: 10.1007/978-3-642-22110-1_14.

[BMS05] Clark Barrett, Leonardo de Moura, and Aaron Stump. “Design and Results
of the First Satisfiability Modulo Theories Competition (SMT-COMP
2005)”. In: Journal of Automated Reasoning 35 (4 2005), pp. 373–390. doi:
10.1007/s10817-006-9026-1.

[BDS02] Clark W. Barrett, David L. Dill, and Aaron Stump. “Checking Satisfiability
of First-Order Formulas by Incremental Translation to SAT”. In: Computer
Aided Verification (CAV 2002). LNCS vol. 2404, pp. 236–249. doi: 10.
1007/3-540-45657-0_18.

[BFT16] Clark W. Barrett, Pascal Fontaine, and Cesare Tinelli. The Satisfiability
Modulo Theories Library (SMT-LIB). 2016. url: http://www.smt-
lib.org.

[Bar18] Lorena Calvo Bartolomé. “Using Fourier-Motzkin Variable Elimination for
MCSAT Explanations in SMT-RAT”. Bachelor’s thesis. RWTH Aachen
University, 2018.

[BPR96] Saugata Basu, Richard Pollack, and Marie-Françoise Roy. “On the Combi-
natorial and Algebraic Complexity of Quantifier Elimination”. In: Journal
of the ACM 43 (6 1996), pp. 1002–1045. doi: 10.1145/235809.235813.

[BPR10] Saugata Basu, Richard Pollack, and Marie-Françoise Roy. Algorithms in
Real Algebraic Geometry. 2nd ed. Vol. 10. Algorithms and Computation
in Mathematics. Springer, 2010. doi: 10.1007/3-540-33099-2.

https://doi.org/10.1007/10720246_8
https://doi.org/10.1007/10720246_8
https://digital.library.wisc.edu/1793/58310
https://digital.library.wisc.edu/1793/58310
https://doi.org/10.1137/0213054
https://doi.org/10.1007/s00236-006-0035-7
https://ijcai.org/Proceedings/09/Papers/074.pdf
https://ijcai.org/Proceedings/09/Papers/074.pdf
https://doi.org/10.1007/978-3-642-22110-1_14
https://doi.org/10.1007/s10817-006-9026-1
https://doi.org/10.1007/3-540-45657-0_18
https://doi.org/10.1007/3-540-45657-0_18
http://www.smt-lib.org
http://www.smt-lib.org
https://doi.org/10.1145/235809.235813
https://doi.org/10.1007/3-540-33099-2

BIBLIOGRAPHY 187

[BS97] Roberto J. Bayardo Jr. and Robert Schrag. “Using CSP Look-Back
Techniques to Solve Real-World SAT Instances”. In: National Confer-
ence on Artificial Intelligence (AAAI 1997), pp. 203–208. url: https:
//www.aaai.org/Papers/AAAI/1997/AAAI97-032.pdf.

[BG06] Frédéric Benhamou and Laurent Granvilliers. “Continuous and Interval
Constraints”. In: Handbook of Constraint Programming. Ed. by Francesca
Rossi, Peter van Beek, and Toby Walsh. Vol. 2. Foundations of Artificial
Intelligence. Elsevier, 2006, pp. 571–603. doi: 10.1016/S1574-6526(06)
80020-9.

[BHM+09] Armin Biere, Marijn Heule, Hans van Maaren, and Toby Walsh, eds.
Handbook of Satisfiability. Vol. 185. Frontiers in Artificial Intelligence and
Applications. IOS Press, 2009.

[BPF15] Nikolaj Bjørner, Anh-Dung Phan, and Lars Fleckenstein. “νZ - An Opti-
mizing SMT Solver”. In: Tools and Algorithms for the Construction and
Analysis of Systems (TACAS 2015). LNCS vol. 9035, pp. 194–199. doi:
10.1007/978-3-662-46681-0_14.

[BGM+18] François Bobot, Stéphane Graham-Lengrand, Bruno Marre, and Guil-
laume Bury. “Centralizing equality reasoning in MCSAT”. In: Satisfiability
Modulo Theories (SMT 2018) at FLoC. url: https://hal.archives-
ouvertes.fr/hal-01935591.

[Boo19] Boost development team. The Boost C++ Library. 2019. url: https:
//boost.org.

[BM90] Robert S. Boyer and J. Strother Moore. “A Theorem Prover for a Compu-
tational Logic”. In: Automated Deduction (CADE-10 1990). LNCS vol. 449,
pp. 1–15. doi: 10.1007/3-540-52885-7_75.

[BBC+05] Marco Bozzano, Roberto Bruttomesso, Alessandro Cimatti, Tommi Junt-
tila, Silvio Ranise, Peter van Rossum, and Roberto Sebastiani. “Efficient
Satisfiability Modulo Theories via Delayed Theory Combination”. In: Com-
puter Aided Verification (CAV 2005). LNCS vol. 3576, pp. 335–349. doi:
10.1007/11513988_34.

[BDE+16] Russell Bradford, James H. Davenport, Matthew England, Scott Mc-
Callum, and David Wilson. “Truth table invariant cylindrical algebraic
decomposition”. In: Journal of Symbolic Computation 76 (2016), pp. 1–35.
doi: 10.1016/j.jsc.2015.11.002.

[Bro98] Christopher W. Brown. “Simplification of Truth-Invariant Cylindrical
Algebraic Decompositions”. In: International Symposium on Symbolic and
Algebraic Computation (ISSAC 1998), pp. 295–301. doi: 10.1145/281508.
281652.

[Bro99] Christopher W. Brown. “Solution Formula Construction for Truth In-
variant CADs”. PhD thesis. University of Delaware, 1999. url: https:
//www.usna.edu/Users/cs/wcbrown/research/Thesis.html.

[Bro01] Christopher W. Brown. “Improved Projection for Cylindrical Algebraic
Decomposition”. In: Journal of Symbolic Computation 32 (5 2001), pp. 447–
465. doi: 10.1006/jsco.2001.0463.

https://www.aaai.org/Papers/AAAI/1997/AAAI97-032.pdf
https://www.aaai.org/Papers/AAAI/1997/AAAI97-032.pdf
https://doi.org/10.1016/S1574-6526(06)80020-9
https://doi.org/10.1016/S1574-6526(06)80020-9
https://doi.org/10.1007/978-3-662-46681-0_14
https://hal.archives-ouvertes.fr/hal-01935591
https://hal.archives-ouvertes.fr/hal-01935591
https://boost.org
https://boost.org
https://doi.org/10.1007/3-540-52885-7_75
https://doi.org/10.1007/11513988_34
https://doi.org/10.1016/j.jsc.2015.11.002
https://doi.org/10.1145/281508.281652
https://doi.org/10.1145/281508.281652
https://www.usna.edu/Users/cs/wcbrown/research/Thesis.html
https://www.usna.edu/Users/cs/wcbrown/research/Thesis.html
https://doi.org/10.1006/jsco.2001.0463

188 BIBLIOGRAPHY

[Bro03] Christopher W. Brown. “Qepcad b: A program for computing with
semi-algebraic sets using CADs”. In: ACM SIGSAM Bulletin 37 (4 2003),
pp. 97–108. doi: 10.1145/968708.968710.

[Bro04] Christopher W. Brown. Companion to the Tutorial Cylindrical Algebraic
Decomposition. Presented at ISSAC. 2004.

[Bro13] Christopher W. Brown. “Constructing a Single Open Cell in a Cylindri-
cal Algebraic Decomposition”. In: International Symposium on Symbolic
and Algebraic Computation (ISSAC 2013), pp. 133–140. doi: 10.1145/
2465506.2465952.

[Bro15] Christopher W. Brown. “Open Non-uniform Cylindrical Algebraic De-
compositions”. In: International Symposium on Symbolic and Algebraic
Computation (ISSAC 2015), pp. 85–92. doi: 10.1145/2755996.2756654.

[BK15] Christopher W. Brown and Marek Košta. “Constructing a single cell in
cylindrical algebraic decomposition”. In: Journal of Symbolic Computation
70 (2015), pp. 14–48. doi: 10.1016/j.jsc.2014.09.024.

[BGV99] Randal E. Bryant, Steven German, and Miroslav N. Velev. “Exploiting
Positive Equality in a Logic of Equality with Uninterpreted Functions”. In:
Computer Aided Verification (CAV 1999). LNCS vol. 1633, pp. 470–482.
doi: 10.1007/3-540-48683-6_40.

[Buc65] Bruno Buchberger. “Ein Algorithmus zum Auffinden der Basiselemente
des Restklassenringes nach einem nulldimensionalen Polynomideal”. PhD
thesis. University of Innsbruck, 1965.

[BB92] Michael Buro and Hans Kleine Büning. Report on a SAT competition. Tech.
rep. Fachbereich Mathematik-Informatik, 1992. url: https://stamm-
wilbrandt.de/en/Report_on_a_SAT_competition.pdf.

[Cau28] Augustin Louis Baron Cauchy. Exercices de mathématiques. Vol. 3. Bure
frères, 1828.

[CJ98] Bob Forrester Caviness and Jeremy R. Johnson. Quantifier Elimination
and Cylindrical Algebraic Decomposition. Springer, 1998. doi: 10.1007/
978-3-7091-9459-1.

[CMX+09] Changbo Chen, Marc Moreno Maza, Bican Xia, and Lu Yang. “Computing
Cylindrical Algebraic Decomposition via Triangular Decomposition”. In:
International Symposium on Symbolic and Algebraic Computation (ISSAC
2009), pp. 95–102. doi: 10.1145/1576702.1576718.

[Chu36] Alonzo Church. “An Unsolvable Problem of Elementary Number Theory”.
In: American Journal of Mathematics 58.2 (1936), pp. 345–363. doi:
10.2307/2371045.

[Chu69] Alonzo Church. “Alfred Tarski. The completeness of elementary algebra
and geometry”. Review. In: Journal of Symbolic Logic 34 (2 1969), p. 302.
doi: 10.2307/2271123.

[Chv79] Vasek Chvátal. “A Greedy Heuristic for the Set-Covering Problem”. In:
Mathematics of Operations Research 4.3 (1979), pp. 233–235. doi: 10.
1287/moor.4.3.233.

https://doi.org/10.1145/968708.968710
https://doi.org/10.1145/2465506.2465952
https://doi.org/10.1145/2465506.2465952
https://doi.org/10.1145/2755996.2756654
https://doi.org/10.1016/j.jsc.2014.09.024
https://doi.org/10.1007/3-540-48683-6_40
https://stamm-wilbrandt.de/en/Report_on_a_SAT_competition.pdf
https://stamm-wilbrandt.de/en/Report_on_a_SAT_competition.pdf
https://doi.org/10.1007/978-3-7091-9459-1
https://doi.org/10.1007/978-3-7091-9459-1
https://doi.org/10.1145/1576702.1576718
https://doi.org/10.2307/2371045
https://doi.org/10.2307/2271123
https://doi.org/10.1287/moor.4.3.233
https://doi.org/10.1287/moor.4.3.233

BIBLIOGRAPHY 189

[CGI+18] Alessandro Cimatti, Alberto Griggio, Ahmed Irfan, Marco Roveri, and
Roberto Sebastiani. “Incremental Linearization for Satisfiability and Veri-
fication Modulo Nonlinear Arithmetic and Transcendental Functions”. In:
ACM Transactions on Computational Logic 19 (3 2018), 19:1–19:52. doi:
10.1145/3230639.

[CGS+13] Alessandro Cimatti, Alberto Griggio, Bastiaan Schaafsma, and Roberto
Sebastiani. “The MathSAT5 SMT Solver”. In: Tools and Algorithms for
the Construction and Analysis of Systems (TACAS 2013). LNCS vol. 7795.
doi: 10.1007/978-3-642-36742-7_7.

[CKS+04] Edmund M. Clarke, Daniel Kroening, Natasha Sharygina, and Karen
Yorav. “Predicate Abstraction of ANSI-C Programs Using SAT”. In:
Formal Methods in System Design 25 (2–3 2004), pp. 105–127. doi:
10.1023/B:FORM.0000040025.89719.f3.

[Col56] George E. Collins. “The Tarski decision procedure”. In: Proceedings of
the 1956 11th ACM National Meeting (ACM 1956), pp. 162–164. doi:
10.1145/800258.808975.

[Col60] George E. Collins. “A Method for Overlapping and Erasure of Lists”. In:
Communications of the ACM 3 (12 1960), pp. 655–657. doi: 10.1145/
367487.367501.

[Col66] George E. Collins. “PM, A System for Polynomial Manipulation”. In:
Communications of the ACM 9 (8 1966), pp. 578–589. doi: 10.1145/
365758.365770.

[Col67] George E. Collins. “Subresultants and Reduced Polynomial Remainder
Sequences”. In: Journal of the ACM 14 (1 1967), pp. 128–142. doi:
10.1145/321371.321381.

[Col71a] George E. Collins. “The Calculation of Multivariate Polynomial Resul-
tants”. In: Journal of the ACM 18 (4 1971), pp. 515–532. doi: 10.1145/
321662.321666.

[Col71b] George E. Collins. “The SAC-1 System: An Introduction and Survey”.
In: ACM Symposium on Symbolic and Algebraic Manipulation (SYMSAC
1971), pp. 144–152. doi: 10.1145/800204.806279.

[Col73] George E. Collins. “Efficient Quantifier Elimination for Elementary Alge-
bra”. Presented at Symposium on Complexity of Sequential and Parallel
Numerical Algorithms. 1973.

[Col74] George E. Collins. “Quantifier Elimination for Real Closed Fields by Cylin-
drical Algebraic Decomposition–Preliminary Report”. In: ACM SIGSAM
Bulletin 8 (3 1974), pp. 80–90. doi: 10.1145/1086837.1086852.

[Col75] George E. Collins. “Quantifier Elimination for Real Closed Fields by
Cylindrical Algebraic Decomposition”. In: Automata Theory and Formal
Languages (2nd GI Conference 1975). LNCS vol. 33, pp. 134–183. doi:
10.1007/3-540-07407-4_17.

[Col85] George E. Collins. “The SAC-2 Computer Algebra System”. In: European
Conference on Computer Algebra (EUROCAL 1985). LNCS vol. 204,
pp. 34–35. doi: 10.1007/3-540-15984-3_235.

https://doi.org/10.1145/3230639
https://doi.org/10.1007/978-3-642-36742-7_7
https://doi.org/10.1023/B:FORM.0000040025.89719.f3
https://doi.org/10.1145/800258.808975
https://doi.org/10.1145/367487.367501
https://doi.org/10.1145/367487.367501
https://doi.org/10.1145/365758.365770
https://doi.org/10.1145/365758.365770
https://doi.org/10.1145/321371.321381
https://doi.org/10.1145/321662.321666
https://doi.org/10.1145/321662.321666
https://doi.org/10.1145/800204.806279
https://doi.org/10.1145/1086837.1086852
https://doi.org/10.1007/3-540-07407-4_17
https://doi.org/10.1007/3-540-15984-3_235

190 BIBLIOGRAPHY

[Col98] George E. Collins. “Quantifier Elimination by Cylindrical Algebraic De-
composition — Twenty Years of Progress”. In: Quantifier Elimination and
Cylindrical Algebraic Decomposition. Ed. by Bob F. Caviness and Jeremy R.
Johnson. Springer, 1998, pp. 8–23. doi: 10.1007/978-3-7091-9459-1_2.

[CA76] George E. Collins and Alkiviadis G. Akritas. “Polynomial Real Root
Isolation Using Descarte’s Rule of Signs”. In: ACM Symposium on Symbolic
and Algebraic Computation (SYMSAC 1976), pp. 272–275. doi: 10.1145/
800205.806346.

[CH91] George E. Collins and Hoon Hong. “Partial Cylindrical Algebraic Decom-
position for Quantifier Elimination”. In: Journal of Symbolic Computation
12 (3 1991), pp. 299–328. doi: 10.1016/S0747-7171(08)80152-6.

[CKJ+15] Florian Corzilius, Gereon Kremer, Sebastian Junges, Stefan Schupp, and
Erika Ábrahám. “SMT-RAT: An Open Source C++ Toolbox for Strategic
and Parallel SMT Solving”. In: Theory and Applications of Satisfiability
Testing (SAT 2015). LNCS vol. 9340, pp. 360–368. doi: 10.1007/978-3-
319-24318-4_26.

[CLJ+12] Florian Corzilius, Ulrich Loup, Sebastian Junges, and Erika Ábrahám.
“SMT-RAT: An SMT-Compliant Nonlinear Real Arithmetic Toolbox (Tool
Presentation)”. In: Theory and Applications of Satisfiability Testing (SAT
2012). LNCS vol. 7317. doi: 10.1007/978-3-642-31612-8_35.

[Cro75] John N. Crossley. “Reminiscences of Logicians”. In: Algebra and Logic
1975. LNM vol. 450, pp. 1–62. doi: 10.1007/BFb0062850.

[DH88] James H. Davenport and Joos Heintz. “Real Quantifier Elimination is
Doubly Exponential”. In: Journal of Symbolic Computation 5 (1–2 1988),
pp. 29–35. doi: 10.1016/S0747-7171(88)80004-X.

[DLL62] Martin Davis, George Logemann, and Donald Loveland. “A Machine
Program for Theorem-Proving”. In: Communications of the ACM 5 (7
1962), pp. 394–397. doi: 10.1145/368273.368557.

[DP60] Martin Davis and Hilary Putnam. “A Computing Procedure for Quan-
tification Theory”. In: Journal of the ACM 7 (3 1960), pp. 201–215. doi:
10.1145/321033.321034.

[Des37] René Descartes. La Géométrie. 1637. url: https : / / journals .
openedition.org/bibnum/635.

[Din19] Lloyd L. Dines. “Systems of Linear Inequalities”. In: Annals of Mathematics
20.3 (1919), pp. 191–199. doi: 10.2307/1967869.

[DSS04] Andreas Dolzmann, Andreas Seidl, and Thomas Sturm. “Efficient Projec-
tion Orders for CAD”. In: International Symposium on Symbolic and Al-
gebraic Computation (ISSAC 2004), pp. 111–118. doi: 10.1145/1005285.
1005303.

[DS97] Andreas Dolzmann and Thomas Sturm. “REDLOG: Computer Algebra
Meets Computer Logic”. In: ACM SIGSAM Bulletin 31 (2 1997), pp. 2–9.
doi: 10.1145/261320.261324.

[Dri88] Lou van den Dries. “Alfred Tarski’s Elimination Theory for Real Closed
Fields”. In: The Journal of Symbolic Logic 53.1 (1988), pp. 7–19. doi:
10.2307/2274424.

https://doi.org/10.1007/978-3-7091-9459-1_2
https://doi.org/10.1145/800205.806346
https://doi.org/10.1145/800205.806346
https://doi.org/10.1016/S0747-7171(08)80152-6
https://doi.org/10.1007/978-3-319-24318-4_26
https://doi.org/10.1007/978-3-319-24318-4_26
https://doi.org/10.1007/978-3-642-31612-8_35
https://doi.org/10.1007/BFb0062850
https://doi.org/10.1016/S0747-7171(88)80004-X
https://doi.org/10.1145/368273.368557
https://doi.org/10.1145/321033.321034
https://journals.openedition.org/bibnum/635
https://journals.openedition.org/bibnum/635
https://doi.org/10.2307/1967869
https://doi.org/10.1145/1005285.1005303
https://doi.org/10.1145/1005285.1005303
https://doi.org/10.1145/261320.261324
https://doi.org/10.2307/2274424

BIBLIOGRAPHY 191

[Duc00] Lionel Ducos. “Optimizations of the subresultant algorithm”. In: Journal of
Pure and Applied Algebra 145 (2 2000), pp. 149–163. doi: 10.1016/S0022-
4049(98)00081-4.

[Dut14] Bruno Dutertre. “Yices 2.2”. In: Computer Aided Verification (CAV 2014).
LNCS vol. 8559, pp. 737–744. doi: 10.1007/978-3-319-08867-9_49.

[DM06] Bruno Dutertre and Leonardo de Moura. “A Fast Linear-Arithmetic Solver
for DPLL(T)”. In: Computer Aided Verification (CAV 2006), pp. 81–94.
doi: 10.1007/11817963_11.

[ES03] Niklas Eén and Niklas Sörensson. “An Extensible SAT-solver”. In: Theory
and Applications of Satisfiability Testing (SAT 2003). LNCS vol. 2919,
pp. 502–518. doi: 10.1007/978-3-540-24605-3_37.

[EBD15] Matthew England, Russell Bradford, and James H. Davenport. “Improving
the Use of Equational Constraints in Cylindrical Algebraic Decomposition”.
In: International Symposium on Symbolic and Algebraic Computation
(ISSAC 2015), pp. 165–172. doi: 10.1145/2755996.2756678.

[EBD+14] Matthew England, Russell Bradford, James H. Davenport, and David Wil-
son. “Choosing a Variable Ordering for Truth-Table Invariant Cylindrical
Algebraic Decomposition by Incremental Triangular Decomposition”. In:
International Congress on Mathematical Software (ICMS 2014). LNCS
vol. 8592. doi: 10.1007/978-3-662-44199-2_68.

[FOS+18] Pascal Fontaine, Mizuhito Ogawa, Thomas Sturm, Van Khanh To, and
Xuan Tung Vu. “Wrapping Computer Algebra is Surprisingly Successful for
Non-Linear SMT”. In: Satisfiability Checking and Symbolic Computation
(SC2 2018) at FLoC. CEUR Workshop Proceedings vol. 2189, pp. 110–117.
url: http://ceur-ws.org/Vol-2189/paper3.pdf.

[Fou25] Jean Baptiste Joseph Fourier. “Sur le Calcul des conditions d’inégalité”. In:
Nouveau Bulletin des Sciences par la Société philomathique de Paris (1825),
pp. 66–68. url: https://biodiversitylibrary.org/page/4153058.

[Fou26] Jean Baptiste Joseph Fourier. “Solution d’une question particulière
du calcul des inégalités”. In: Nouveau Bulletin des Sciences par la
Société philomathique de Paris (1826), pp. 99–100. url: https : / /
biodiversitylibrary.org/page/4453516.

[FHL+07] Laurent Fousse, Guillaume Hanrot, Vincent Lefèvre, Patrick Pélissier, and
Paul Zimmermann. “MPFR: A Multiple-Precision Binary Floating-Point
Library With Correct ounding”. In: ACM Transactions on Mathematical
Software 33 (2 2007). doi: 10.1145/1236463.1236468.

[Fra20] Hanna Franzen. “Conflict Driven Cylindrical Algebraic Coverings for
Nonlinear Arithmetic in SMT Solving”. Master’s thesis. RWTH Aachen
University, 2020.

[Fre95] Jon William Freeman. “Improvements to Propositional Satisfiability
Search Algorithms”. PhD thesis. Philadelphia, PA, USA: University
of Pennsylvania, 1995. url: https : / / repository . upenn . edu /
dissertations/AAI9532175.

https://doi.org/10.1016/S0022-4049(98)00081-4
https://doi.org/10.1016/S0022-4049(98)00081-4
https://doi.org/10.1007/978-3-319-08867-9_49
https://doi.org/10.1007/11817963_11
https://doi.org/10.1007/978-3-540-24605-3_37
https://doi.org/10.1145/2755996.2756678
https://doi.org/10.1007/978-3-662-44199-2_68
http://ceur-ws.org/Vol-2189/paper3.pdf
https://biodiversitylibrary.org/page/4153058
https://biodiversitylibrary.org/page/4453516
https://biodiversitylibrary.org/page/4453516
https://doi.org/10.1145/1236463.1236468
https://repository.upenn.edu/dissertations/AAI9532175
https://repository.upenn.edu/dissertations/AAI9532175

192 BIBLIOGRAPHY

[FGM+07] Carsten Fuhs, Jürgen Giesl, Aart Middeldorp, Peter Schneider-Kamp,
René Thiemann, and Harald Zankl. “SAT Solving for Termination Anal-
ysis with Polynomial Interpretations”. In: Theory and Applications of
Satisfiability Testing (SAT 2007). LNCS vol. 4501, pp. 340–354. doi:
10.1007/978-3-540-72788-0_33.

[Fuj16] Matsusaburô Fujiwara. “Über die obere Schranke des absoluten Betrages
der Wurzeln einer algebraischen Gleichung”. In: Tohoku Mathematical
Journal, First Series 10 (1916), pp. 167–171. url: https://www.jstage.
jst.go.jp/article/tmj1911/10/0/10_0_167/_article.

[GKC13] Sicun Gao, Soonho Kong, and Edmund M. Clarke. “dReal: An SMT
Solver for Nonlinear Theories over the Reals”. In: Automated Deduction
(CADE-24 2013). LNCS vol. 7898, pp. 208–214. doi: 10.1007/978-3-
642-38574-2_14.

[GCL92] Keith O. Geddes, Stephen R. Czapor, and George Labahn. Algorithms
for Computer Algebra. Kluwer Academic Publishers, 1992. doi: 10.1007/
b102438.

[GS96] Fausto Giunchiglia and Roberto Sebastiani. “Building Decision Procedures
for Modal Logics from Propositional Decision Procedures – The Case
Study of Modal K”. In: Automated Deduction (CADE-13 1996). LNCS
vol. 1104, pp. 583–597. doi: 10.1007/3-540-61511-3_115.

[Gt19] Torbjörn Granlund and the GMP development team. The GNU Multiple
Precision Arithmetic Library. 2019. url: https://gmplib.org.

[Göd31] Kurt Gödel. “Über formal unentscheidbare Sätze der Principia Mathe-
matica und verwandter Systeme I”. In: Monatshefte für Mathematik und
Physik 38 (1 1931), pp. 173–198. doi: 10.1007/BF01700692.

[GSK98] Carla P. Gomes, Bart Selman, and Henry A. Kautz. “Boosting Combi-
natorial Search Through Randomization”. In: National Conference on
Artificial Intelligence (AAAI 1998), pp. 431–437. url: https://www.aaai.
org/Papers/AAAI/1998/AAAI98-061.pdf.

[GJ17] Stéphane Graham-Lengrand and Dejan Jovanović. “An MCSAT treatment
of Bit-Vectors (preliminary report)”. In: Satisfiability Modulo Theories
(SMT 2017) at CAV. url: https://hal.archives-ouvertes.fr/hal-
01615837.

[GV88] D. Yu. Grigor’ev and N.N. Vorobjov. “Solving Systems of Polynomial
Inequalities in Subexponential Time”. In: Journal of Symbolic Computation
5 (1–2 1988), pp. 37–64. doi: 10.1016/S0747-7171(88)80005-1.

[Gro17] Marta Grobelna. “Solving Pseudo-Boolean Constraints”. Bachelor’s thesis.
RWTH Aachen University, 2017.

[GJ+10] Gaël Guennebaud, Benoît Jacob, et al. Eigen v3. 2010. url: https:
//eigen.tuxfamily.org.

[Hae18] Rebecca Haehn. “Using Equational Constraints in an Incremental CAD
Projection”. Master’s thesis. RWTH Aachen University, 2018.

https://doi.org/10.1007/978-3-540-72788-0_33
https://www.jstage.jst.go.jp/article/tmj1911/10/0/10_0_167/_article
https://www.jstage.jst.go.jp/article/tmj1911/10/0/10_0_167/_article
https://doi.org/10.1007/978-3-642-38574-2_14
https://doi.org/10.1007/978-3-642-38574-2_14
https://doi.org/10.1007/b102438
https://doi.org/10.1007/b102438
https://doi.org/10.1007/3-540-61511-3_115
https://gmplib.org
https://doi.org/10.1007/BF01700692
https://www.aaai.org/Papers/AAAI/1998/AAAI98-061.pdf
https://www.aaai.org/Papers/AAAI/1998/AAAI98-061.pdf
https://hal.archives-ouvertes.fr/hal-01615837
https://hal.archives-ouvertes.fr/hal-01615837
https://doi.org/10.1016/S0747-7171(88)80005-1
https://eigen.tuxfamily.org
https://eigen.tuxfamily.org

BIBLIOGRAPHY 193

[HKÁ18] Rebecca Haehn, Gereon Kremer, and Erika Ábrahám. “Evaluation of
Equational Constraints for CAD in SMT Solving”. In: Satisfiability Check-
ing and Symbolic Computation (SC2 2018) at FLoC. CEUR Workshop
Proceedings vol. 2189, pp. 19–32. url: http://ceur-ws.org/Vol-
2189/paper10.pdf.

[HK96] Bruno Haible and Richard Kreckel. CLN – Class Library for Numbers.
1996. url: https://ginac.de/CLN.

[Hei70] Lee E. Heindel. “Algorithms for exact Polynomial Root Calculation”. PhD
thesis. University of Wisconsin, 1970. url: https://search.library.
wisc.edu/catalog/999840854302121.

[Hen17] Wanja Hentze. “Computing minimal infeasible subsets for the Cylindrical
Algebraic Decomposition”. Bachelor’s thesis. RWTH Aachen University,
2017.

[HM97] Holly P. Hirst and Wade T. Macey. “Bounding the Roots of Polynomials”.
In: The College Mathematics Journal 28 (4 1997), pp. 292–295. doi:
10.1080/07468342.1997.11973878.

[Hon90] Hoon Hong. “An Improvement of the Projection Operator in Cylindrical
Algebraic Decomposition”. In: International Symposium on Symbolic and
Algebraic Computation (ISSAC 1990), pp. 261–264. doi: 10.1145/96877.
96943.

[Hon91] Hoon Hong. Comparison of Several Decision Algorithms for the Existential
Theory of the Reals. Research rep. Johannes Kepler University, 1991, pp. 1–
33.

[Hua07] Jinbo Huang. “The Effect of Restarts on the Efficiency of Clause Learning”.
In: International Joint Conference on Artifical Intelligence (IJCAI 2007),
pp. 2318–2323. url: http://dl.acm.org/citation.cfm?id=1625275.
1625649.

[HEW+14] Zongyan Huang, Matthew England, David Wilson, James H. Davenport,
Lawrence C. Paulson, and James Bridge. “Applying Machine Learning to
the Problem of Choosing a Heuristic to Select the Variable Ordering for Cy-
lindrical Algebraic Decomposition”. In: Intelligent Computer Mathematics
(CICM 2014), pp. 92–107. doi: 10.1007/978-3-319-08434-3_8.

[IEE08] IEEE. “IEEE Standard for Floating-Point Arithmetic”. In: IEEE Std
754-2008 (2008), pp. 1–70. doi: 10.1109/IEEESTD.2008.4610935.

[Irf18] Ahmed Irfan. “Incremental Linearization for Satisfiability and Verification
Modulo Nonlinear Arithmetic and Transcendental Functions”. PhD thesis.
University of Trento, 2018. url: http://eprints-phd.biblio.unitn.
it/2952/.

[Isi95] Alberto Isidori. Nonlinear Control Systems. Springer, 1995. doi: 10.1007/
978-1-84628-615-5.

[IYA+09] Hidenao Iwane, Hitoshi Yanami, Hirokazu Anai, and Kazuhiro Yokoyama.
“An Effective Implementation of a Symbolic-Numeric Cylindrical Alge-
braic Decomposition for Quantifier Elimination”. In: Symbolic Numeric
Computation (SNC 2009), pp. 55–64. doi: 10.1145/1577190.1577203.

http://ceur-ws.org/Vol-2189/paper10.pdf
http://ceur-ws.org/Vol-2189/paper10.pdf
https://ginac.de/CLN
https://search.library.wisc.edu/catalog/999840854302121
https://search.library.wisc.edu/catalog/999840854302121
https://doi.org/10.1080/07468342.1997.11973878
https://doi.org/10.1145/96877.96943
https://doi.org/10.1145/96877.96943
http://dl.acm.org/citation.cfm?id=1625275.1625649
http://dl.acm.org/citation.cfm?id=1625275.1625649
https://doi.org/10.1007/978-3-319-08434-3_8
https://doi.org/10.1109/IEEESTD.2008.4610935
http://eprints-phd.biblio.unitn.it/2952/
http://eprints-phd.biblio.unitn.it/2952/
https://doi.org/10.1007/978-1-84628-615-5
https://doi.org/10.1007/978-1-84628-615-5
https://doi.org/10.1145/1577190.1577203

194 BIBLIOGRAPHY

[JDF15] Maximilian Jaroschek, Pablo Federico Dobal, and Pascal Fontaine. “Adapt-
ing Real Quantifier Elimination Methods for Conflict Set Computation”.
In: Frontiers of Combining Systems (FroCoS 2015). LNCS vol. 9322,
pp. 151–166. doi: 10.1007/978-3-319-24246-0_10.

[JW90] Robert G. Jeroslow and Jinchang Wang. “Solving Propositional Satisfia-
bility Problems”. In: Annals of Mathematics and Artificial Intelligence 1
(1–4 1990), pp. 167–187. doi: 10.1007/bf01531077.

[JD17] Dejan Jovanovic and Bruno Dutertre. “LibPoly: A Library for Reasoning
about Polynomials”. In: Satisfiability Modulo Theories (SMT 2017) at CAV.
CEUR Workshop Proceedings vol. 1889. url: http://ceur-ws.org/Vol-
1889/paper3.pdf.

[Jov17] Dejan Jovanović. “Solving Nonlinear Integer Arithmetic with MCSAT”. In:
Verification, Model Checking, and Abstract Interpretation (VMCAI 2017).
LNCS vol. 10145, pp. 330–346. doi: 10.1007/978-3-319-52234-0_18.

[JBM13] Dejan Jovanović, Clark Barrett, and Leonardo de Moura. “The Design
and Implementation of the Model Constructing Satisfiability Calculus”. In:
Formal Methods in Computer-Aided Design (FMCAD 2013), pp. 173–180.
doi: 10.1109/FMCAD.2013.7027033.

[JM12] Dejan Jovanović and Leonardo de Moura. “Solving Non-linear Arithmetic”.
In: Automated Reasoning (IJCAR 2012). LNCS vol. 7364, pp. 339–354.
doi: 10.1007/978-3-642-31365-3_27.

[Jun12] Sebastian Junges. “On Gröbner Bases in SMT-Compliant Decision Proce-
dures”. Bachelor’s thesis. RWTH Aachen University, 2012.

[Kar72] Richard M. Karp. “Reducibility Among Combinatorial Problems”. In:
Complexity of Computer Computations 1972, pp. 85–103. doi: 10.1007/
978-1-4684-2001-2_9.

[Kor17] Leonard Korp. “SMT-based Planning for Autonomous Robot Fleets”.
Bachelor’s thesis. RWTH Aachen University, 2017.

[Koš16] Marek Košta. “New Concepts for Real Quantifier Elimination by Virtual
Substitution”. PhD thesis. Saarland University, Saarbrücken, Germany,
2016. doi: 10.22028/D291-26679.

[KS15] Marek Košta and Thomas Sturm. “A Generalized Framework for Virtual
Substitution”. In: arXiv e-prints (2015). arXiv: 1501.05826.

[Kre13] Gereon Kremer. “Isolating Real Roots Using Adaptable-Precision Interval
Arithmetic”. Master’s thesis. RWTH Aachen University, 2013.

[Kre18] Gereon Kremer. “Computer Algebra and Computer Science”. In: Applica-
tions of Computer Algebra (ACA 2018). Abstract, p. 27. doi: 10.15304/
9788416954872.

[Kre+20a] Gereon Kremer et al. Computer Arithmetic and Logic library (CArL).
2020. url: https://github.com/smtrat/carl.

[Kre+20b] Gereon Kremer et al. Satisfiability-Modulo-Theories Real Algebra Toolbox
(SMT-RAT). 2020. url: https://github.com/smtrat/smtrat.

[KÁ18] Gereon Kremer and Erika Ábrahám. “Modular strategic SMT solving
with SMT-RAT”. In: Acta Universitatis Sapientiae, Informatica 10 (1
2018), pp. 5–25. doi: 10.2478/ausi-2018-0001.

https://doi.org/10.1007/978-3-319-24246-0_10
https://doi.org/10.1007/bf01531077
http://ceur-ws.org/Vol-1889/paper3.pdf
http://ceur-ws.org/Vol-1889/paper3.pdf
https://doi.org/10.1007/978-3-319-52234-0_18
https://doi.org/10.1109/FMCAD.2013.7027033
https://doi.org/10.1007/978-3-642-31365-3_27
https://doi.org/10.1007/978-1-4684-2001-2_9
https://doi.org/10.1007/978-1-4684-2001-2_9
https://doi.org/10.22028/D291-26679
https://arxiv.org/abs/1501.05826
https://doi.org/10.15304/9788416954872
https://doi.org/10.15304/9788416954872
https://github.com/smtrat/carl
https://github.com/smtrat/smtrat
https://doi.org/10.2478/ausi-2018-0001

BIBLIOGRAPHY 195

[KÁ20] Gereon Kremer and Erika Ábrahám. “Fully Incremental Cylindrical Alge-
braic Decomposition”. In: Journal of Symbolic Computation 100 (2020),
pp. 11–37. doi: 10.1016/j.jsc.2019.07.018.

[KÁG19] Gereon Kremer, Erika Ábrahám, and Vijay Ganesh. “On the Proof Com-
plexity of MCSAT”. In: Satisfiability Checking and Symbolic Computation
(SC2 2019) at SIAM AG. CEUR Workshop Proceedings vol. 2460. url:
http://ceur-ws.org/Vol-2460/paper3.pdf.

[KCÁ16] Gereon Kremer, Florian Corzilius, and Erika Ábrahám. “A Generalised
Branch-and-Bound Approach and Its Application in SAT Modulo Nonlin-
ear Integer Arithmetic”. In: Computer Algebra in Scientific Computing
(CASC 2016). LNCS vol. 9890, pp. 315–335. doi: 10.1007/978-3-319-
45641-6_21.

[KS08] Daniel Kroening and Ofer Strichman. Decision Procedures. An Algorithmic
Point of View. Springer, 2008. doi: 10.1007/978-3-540-74105-3.

[Krü15] Andreas Krüger. “Bitvectors in SMT-RAT and Their Application To
Integer Arithmetics”. Master’s thesis. RWTH Aachen University, 2015.

[Kuk19] Denis Kuksaus. “SMT-basierte Lösung reell-algebraischer Probleme mit-
tels Linearisierung”. Bachelor’s thesis. RWTH Aachen University, 2019.

[Lag08] Joseph-Louis Lagrange. Traité de la résolution des équations numériques.
Courcier, 1808. url: https : / / gallica . bnf . fr / ark : /12148 /
bpt6k1042793z.

[Laz94] Daniel Lazard. “An Improved Projection for Cylindrical Algebraic De-
composition”. In: Algebraic Geometry and its Applications. Springer, 1994.
Chap. 29, pp. 467–476. doi: 10.1007/978-1-4612-2628-4_29.

[LGP+16] Jia Hui Liang, Vijay Ganesh, Pascal Poupart, and Krzysztof Czarnecki.
“Learning Rate Based Branching Heuristic for SAT Solvers”. In: Theory
and Applications of Satisfiability Testing (SAT 2016). LNCS vol. 9710,
pp. 123–140. doi: 10.1007/978-3-319-40970-2_9.

[LGZ+15] Jia Hui Liang, Vijay Ganesh, Ed Zulkoski, Atulan Zaman, and Krzysztof
Czarnecki. “Understanding VSIDS Branching Heuristics in Conflict-
Driven Clause-Learning SAT Solvers”. In: Hardware and Software: Ver-
ification and Testing (HVC 2015). LNCS vol. 9434, pp. 225–241. doi:
10.1007/978-3-319-26287-1_14.

[LW93] Rüdiger Loos and Volker Weispfenning. “Applying Linear Quantifier
Elimination”. In: The Computer Journal 36 (5 1993). doi: 10.1093/
comjnl/36.5.450.

[Lös18] Christopher Lösbrock. “Implementing an Incremental Solver for Difference
Logic”. Bachelor’s thesis. RWTH Aachen University, 2018.

[Lot18] Henri Lotze. “Automated Optimization in Production Planning”. Master’s
thesis. RWTH Aachen University, 2018.

[Lou18] Ulrich Loup. “On Solving Real-algebraic Formulas in a Satisfiability-
modulo-theories Framework”. PhD thesis. RWTH Aachen University,
2018. doi: 10.18154/RWTH-2018-231963.

https://doi.org/10.1016/j.jsc.2019.07.018
http://ceur-ws.org/Vol-2460/paper3.pdf
https://doi.org/10.1007/978-3-319-45641-6_21
https://doi.org/10.1007/978-3-319-45641-6_21
https://doi.org/10.1007/978-3-540-74105-3
https://gallica.bnf.fr/ark:/12148/bpt6k1042793z
https://gallica.bnf.fr/ark:/12148/bpt6k1042793z
https://doi.org/10.1007/978-1-4612-2628-4_29
https://doi.org/10.1007/978-3-319-40970-2_9
https://doi.org/10.1007/978-3-319-26287-1_14
https://doi.org/10.1093/comjnl/36.5.450
https://doi.org/10.1093/comjnl/36.5.450
https://doi.org/10.18154/RWTH-2018-231963

196 BIBLIOGRAPHY

[LÁ11] Ulrich Loup and Erika Ábrahám. “GiNaCRA: A C++ Library for Real
Algebraic Computations”. In: NASA Formal Methods (NFM 2011). LNCS
vol. 6617. doi: 10.1007/978-3-642-20398-5_41.

[LSC+13] Ulrich Loup, Karsten Scheibler, Florian Corzilius, Erika Ábrahám, and
Bernd Becker. “A Symbiosis of Interval Constraint Propagation and
Cylindrical Algebraic Decomposition”. In: Automated Deduction (CADE-
24 2013). LNCS vol. 7898, pp. 193–207. doi: 10.1007/978-3-642-38574-
2_13.

[Mah07] Assia Mahboubi. “Implementing the cylindrical algebraic decomposition
within the Coq system”. In: Mathematical Structures in Computer Science
17 (1 2007), pp. 99–127. doi: 10.1017/S096012950600586X.

[McC84] Scott McCallum. “An Improved Projection Operation for Cylindrical
Algebraic Decomposition”. PhD thesis. University of Wisconsin-Madison,
1984. url: https://research.cs.wisc.edu/techreports/1985/TR578.
pdf.

[McC85] Scott McCallum. “An Improved Projection Operation for Cylindrical
Algebraic Decomposition”. In: European Conference on Computer Algebra
(EUROCAL 1985). LNCS vol. 204, pp. 277–278. doi: 10.1007/3-540-
15984-3_277.

[McC88] Scott McCallum. “An Improved Projection Operation for Cylindrical
Algebraic Decomposition of Three-dimensional Space”. In: Journal of
Symbolic Computation 5 (1–2 1988), pp. 141–161. doi: 10.1016/S0747-
7171(88)80010-5.

[McC93] Scott McCallum. “Solving Polynomial Strict Inequalities Using Cylindrical
Algebraic Decomposition”. In: The Computer Journal 36 (5 1993), pp. 432–
438. doi: 10.1093/comjnl/36.5.432.

[McC99] Scott McCallum. “On Projection in CAD-based Quantifier Elimination
with Equational Constraint”. In: International Symposium on Symbolic
and Algebraic Computation (ISSAC 1999), pp. 145–149. doi: 10.1145/
309831.309892.

[McC01] Scott McCallum. “On Propagation of Equational Constraints in CAD-
based Quantifier Elimination”. In: International Symposium on Symbolic
and Algebraic Computation (ISSAC 2001), pp. 223–231. doi: 10.1145/
384101.384132.

[MH16] Scott McCallum and Hoon Hong. “On using Lazard’s projection in CAD
construction”. In: Journal of Symbolic Computation 72 (2016), pp. 65–81.
doi: 10.1016/j.jsc.2015.02.001.

[MPP19] Scott McCallum, Adam Parusiński, and Laurentiu Paunescu. “Validity
proof of Lazard’s method for CAD construction”. In: Journal of Symbolic
Computation 92 (2019), pp. 52–69. doi: 10.1016/j.jsc.2017.12.002.

[McC56] Edward J. McCluskey. “Minimization of Boolean functions”. In: The
Bell System Technical Journal 35 (6 1956). doi: 10 . 1002 / j . 1538 -
7305.1956.tb03835.x.

https://doi.org/10.1007/978-3-642-20398-5_41
https://doi.org/10.1007/978-3-642-38574-2_13
https://doi.org/10.1007/978-3-642-38574-2_13
https://doi.org/10.1017/S096012950600586X
https://research.cs.wisc.edu/techreports/1985/TR578.pdf
https://research.cs.wisc.edu/techreports/1985/TR578.pdf
https://doi.org/10.1007/3-540-15984-3_277
https://doi.org/10.1007/3-540-15984-3_277
https://doi.org/10.1016/S0747-7171(88)80010-5
https://doi.org/10.1016/S0747-7171(88)80010-5
https://doi.org/10.1093/comjnl/36.5.432
https://doi.org/10.1145/309831.309892
https://doi.org/10.1145/309831.309892
https://doi.org/10.1145/384101.384132
https://doi.org/10.1145/384101.384132
https://doi.org/10.1016/j.jsc.2015.02.001
https://doi.org/10.1016/j.jsc.2017.12.002
https://doi.org/10.1002/j.1538-7305.1956.tb03835.x
https://doi.org/10.1002/j.1538-7305.1956.tb03835.x

BIBLIOGRAPHY 197

[MS02] Maurice Mignotte and Doru Stefanescu. “On an estimation of polynomial
roots by Lagrange”. Research rep. 2002. url: https://hal.archives-
ouvertes.fr/hal-00129675.

[MP14] Michael Monagan and Roman Pearce. “POLY: A New Polynomial Data
Structure for Maple 17”. In: Computer Mathematics 2014, pp. 325–348.
doi: 10.1007/978-3-662-43799-5_24.

[MKC09] Ramon E. Moore, R. Baker Kearfott, and Michael J. Cloud. Introduction
to Interval Analysis. SIAM, 2009. doi: 10.1137/1.9780898717716.

[MMZ+01] Matthew W. Moskewicz, Conor F. Madigan, Ying Zhao, Lintao Zhang,
and Sharad Malik. “Chaff: Engineering an Efficient SAT Solver”. In: Design
Automation Conference (DAC 2001), pp. 530–535. doi: 10.1145/378239.
379017.

[Mot36] Theodor Samuel Motzkin. “Beiträge zur Theorie der Linearen Ungleichun-
gen”. PhD thesis. Universität Basel, 1936.

[MB08a] Leonardo de Moura and Nikolaj Bjørner. “Model-based Theory Combina-
tion”. In: Electronic Notes in Theoretical Computer Science 198 (2 2008),
pp. 37–49. doi: 10.1016/j.entcs.2008.04.079.

[MB08b] Leonardo de Moura and Nikolaj Bjørner. “Proofs and Refutations, and Z3”.
In: Logic for Programming, Artificial Intelligence and Reasoning (LPAR
Workshops 2008). CEUR Workshop Proceedings vol. 418, pp. 123–132.
url: http://ceur-ws.org/Vol-418/paper10.pdf.

[MB08c] Leonardo de Moura and Nikolaj Bjørner. “Z3: An Efficient SMT Solver”.
In: Tools and Algorithms for the Construction and Analysis of Systems
(TACAS 2008). LNCS vol. 4963, pp. 337–340. doi: 10.1007/978-3-540-
78800-3_24.

[MJ13] Leonardo de Moura and Dejan Jovanović. “A Model-Constructing Satisfi-
ability Calculus”. In: Verification, Model Checking, and Abstract Interpre-
tation (VMCAI 2013). LNCS vol. 7737, pp. 1–12. doi: 10.1007/978-3-
642-35873-9_1.

[MP13] Leonardo de Moura and Grant Olney Passmore. “Computation in Real
Closed Infinitesimal and Transcendental Extensions of the Rationals”. In:
Automated Deduction (CADE-24 2013). LNCS vol. 7898, pp. 178–192.
doi: 10.1007/978-3-642-38574-2_12.

[MR02] Leonardo de Moura and Harald Rueß. “Lemmas on Demand for Satisfia-
bility Solvers”. In: Theory and Applications of Satisfiability Testing (SAT
2002). url: https://leodemoura.github.io/files/sat02.pdf.

[Mül78] Franz Müller. Ein exakter Algorithmus zur nichtlinearen Optimierung für
beliebige Polynome mit mehreren Veränderlichen. Hain, 1978.

[NDS19] Akshar Nair, James Davenport, and Gregory Sankaran. “On Benefits
of Equality Constraints in Lex-Least Invariant CAD”. In: Satisfiability
Checking and Symbolic Computation (SC2 2019) at SIAM AG. CEUR
Workshop Proceedings vol. 2460. url: http : / / ceur - ws . org / Vol -
2460/paper6.pdf.

[Nal17] Jasper Nalbach. “Embedding the Virtual Substitution in the MCSAT
Framework”. Bachelor’s thesis. RWTH Aachen University, 2017.

https://hal.archives-ouvertes.fr/hal-00129675
https://hal.archives-ouvertes.fr/hal-00129675
https://doi.org/10.1007/978-3-662-43799-5_24
https://doi.org/10.1137/1.9780898717716
https://doi.org/10.1145/378239.379017
https://doi.org/10.1145/378239.379017
https://doi.org/10.1016/j.entcs.2008.04.079
http://ceur-ws.org/Vol-418/paper10.pdf
https://doi.org/10.1007/978-3-540-78800-3_24
https://doi.org/10.1007/978-3-540-78800-3_24
https://doi.org/10.1007/978-3-642-35873-9_1
https://doi.org/10.1007/978-3-642-35873-9_1
https://doi.org/10.1007/978-3-642-38574-2_12
https://leodemoura.github.io/files/sat02.pdf
http://ceur-ws.org/Vol-2460/paper6.pdf
http://ceur-ws.org/Vol-2460/paper6.pdf

198 BIBLIOGRAPHY

[Nal20] Jasper Nalbach. “A novel adaption of the Simplex algorithm for linear
real arithetic”. Master’s thesis. RWTH Aachen University, 2020.

[NKÁ19] Jasper Nalbach, Gereon Kremer, and Erika Ábrahám. “On Variable
Orderings in MCSAT for Non-linear Real Arithmetic (extended abstract)”.
In: Satisfiability Checking and Symbolic Computation (SC2 2019) at SIAM
AG. CEUR Workshop Proceedings vol. 2460. url: http://ceur-ws.org/
Vol-2460/paper5.pdf.

[NO79] Greg Nelson and Derek C. Oppen. “Simplification by Cooperating Decision
Procedures”. In: ACM Transactions on Programming Languages and
Systems 1 (2 1979), pp. 245–257. doi: 10.1145/357073.357079.

[NO80] Greg Nelson and Derek C. Oppen. “Fast Decision Procedures Based on
Congruence Closure”. In: Journal of the ACM 27.2 (1980), pp. 356–364.
doi: 10.1145/322186.322198.

[Neu15] Lukas Neuberger. “Generation of Infeasible Subsets in Less-Lazy SMT-
Solving for the Theory of Uninterpreted Functions”. Bachelor’s thesis.
RWTH Aachen University, 2015.

[Neu18a] Tom Neuhäuser. “Quantifier Elimination by Cylindrical Algebraic Decom-
position”. Bachelor’s thesis. RWTH Aachen University, 2018.

[Neu18b] Malte Neuß. “Using Single CAD Cells as Explanations in MCSAT-style
SMT Solving”. Master’s thesis. RWTH Aachen University, 2018.

[NOT06] Robert Nieuwenhuis, Albert Oliveras, and Cesare Tinelli. “Solv-
ing SAT and SAT Modulo Theories: From an Abstract Davis–
Putnam–Logemann–Loveland Procedure to DPLL(T)”. In: Journal of the
ACM 53 (6 2006), pp. 937–977. doi: 10.1145/1217856.1217859.

[PRS+99] Amir Pnueli, Yoav Rodeh, Ofer Shtrichman, and Michael Siegel. “Deciding
Equality Formulas by Small Domains Instantiations”. In: Computer Aided
Verification (CAV 1999). LNCS vol. 1633, pp. 455–469. doi: 10.1007/3-
540-48683-6_39.

[Pre30] Mojżesz Presburger. “Über die Vollständigkeit eines gewissen Systems
der Arithmetik ganzer Zahlen, in welchen die Addition als einzige Oper-
ation hervortritt”. In: Sprawozdanie z I Kongresu Matematików Krajów
Słowiańskich (Comptes-rendus du Ier Congrès des Mathématiciens des
Pays Slaves) 1930, pp. 92–101 and 395.

[Ren88] James Renegar. “A Faster PSPACE Algorithm for Deciding the Existential
Theory of the Reals”. In: Symposium on Foundations of Computer Science
(SFCS 1988), pp. 291–295. doi: 10.1109/SFCS.1988.21945.

[RKG18] Robert Robere, Antonina Kolokolova, and Vijay Ganesh. “The Proof
Complexity of SMT Solvers”. In: Computer Aided Verification (CAV 2018).
LNCS vol. 10982, pp. 275–293. doi: 10.1007/978-3-319-96142-2_18.

[Ros36] J. Barkley Rosser. “Extensions of some Theorems of Gödel and Church”.
In: The Journal of Symbolic Logic 1.3 (1936), pp. 87–91. doi: 10.2307/
2269028.

http://ceur-ws.org/Vol-2460/paper5.pdf
http://ceur-ws.org/Vol-2460/paper5.pdf
https://doi.org/10.1145/357073.357079
https://doi.org/10.1145/322186.322198
https://doi.org/10.1145/1217856.1217859
https://doi.org/10.1007/3-540-48683-6_39
https://doi.org/10.1007/3-540-48683-6_39
https://doi.org/10.1109/SFCS.1988.21945
https://doi.org/10.1007/978-3-319-96142-2_18
https://doi.org/10.2307/2269028
https://doi.org/10.2307/2269028

BIBLIOGRAPHY 199

[RW10] Philipp Rümmer and Thomas Wahl. “An SMT-LIB Theory of Binary
Floating-Point Arithmetic”. In: Satisfiability Modulo Theories (SMT 2010)
at FLoC. url: http://www.philipp.ruemmer.org/publications/smt-
fpa.pdf.

[SYZ18] Mohab Safey El Din, Zhi-Hong Yang, and Lihong Zhi. “On the Com-
plexity of Computing Real Radicals of Polynomial Systems”. In: Interna-
tional Symposium on Symbolic and Algebraic Computation (ISSAC 2018),
pp. 351–358. doi: 10.1145/3208976.3209002.

[Sag12] Michael Sagraloff. “When Newton Meets Descartes: A Simple and Fast Al-
gorithm to Isolate the Real Roots of a Polynomial”. In: International Sym-
posium on Symbolic and Algebraic Computation (ISSAC 2012), pp. 297–
304. doi: 10.1145/2442829.2442872.

[Sal18] Ömer Sali. “Linearization Techniques for Nonlinear Arithmetic Problems
in SMT”. Master’s thesis. RWTH Aachen University, 2018.

[SKB13] Karsten Scheibler, Stefan Kupferschmid, and Bernd Becker. “Recent
Improvements in the SMT Solver iSAT”. In: Methoden und Beschrei-
bungssprachen zur Modellierung und Verifikation von Schaltungen und
Systemen (MBMV 2013). Vol. 13, pp. 231–241.

[Sch13] Stefan Schupp. “Interval Constraint Propagation in SMT Compliant
Decision Procedures”. Master’s thesis. RWTH Aachen University, 2013.

[ST15a] Roberto Sebastiani and Silvia Tomasi. “Optimization Modulo Theories
with Linear Rational Costs”. In: ACM Transactions on Computational
Logic 16 (2 2015), 12:1–12:43. doi: 10.1145/2699915.

[ST15b] Roberto Sebastiani and Patrick Trentin. “OptiMathSAT: A Tool for
Optimization Modulo Theories”. In: Computer Aided Verification (CAV
2015). LNCS vol. 9206, pp. 447–454. doi: 10.1007/978-3-319-21690-
4_27.

[Sei54] Abraham Seidenberg. “A New Decision Method for Elementary Algebra”.
In: Annals of Mathematics, Second Series 60.2 (1954), pp. 365–374. doi:
10.2307/1969640.

[SS03] Andreas Seidl and Thomas Sturm. “A Generic Projection Operator for
Partial Cylindrical Algebraic Decomposition”. In: International Symposium
on Symbolic and Algebraic Computation (ISSAC 2003), pp. 240–247. doi:
10.1145/860854.860903.

[Sho79] Robert E. Shostak. “A Practical Decision Procedure for Arithmetic with
Function Symbols”. In: Journal of the ACM 26 (2 1979), pp. 351–360.
doi: 10.1145/322123.322137.

[SS96] João P. Marques Silva and Karem A. Sakallah. “GRASP: a New Search
Algorithm for Satisfiability”. In: IEEE/ACM International Conference
on Computer-aided Design (ICCAD 1996), pp. 220–227. doi: 10.1109/
ICCAD.1996.569607.

[Sta84] Ryan Stansifer. Presburger’s Article on Integer Arithmetic: Remarks and
Translation. Tech. rep. Cornell University, 1984. url: https://hdl.
handle.net/1813/6478.

http://www.philipp.ruemmer.org/publications/smt-fpa.pdf
http://www.philipp.ruemmer.org/publications/smt-fpa.pdf
https://doi.org/10.1145/3208976.3209002
https://doi.org/10.1145/2442829.2442872
https://doi.org/10.1145/2699915
https://doi.org/10.1007/978-3-319-21690-4_27
https://doi.org/10.1007/978-3-319-21690-4_27
https://doi.org/10.2307/1969640
https://doi.org/10.1145/860854.860903
https://doi.org/10.1145/322123.322137
https://doi.org/10.1109/ICCAD.1996.569607
https://doi.org/10.1109/ICCAD.1996.569607
https://hdl.handle.net/1813/6478
https://hdl.handle.net/1813/6478

200 BIBLIOGRAPHY

[SSB02] Ofer Strichman, Sanjit A. Seshia, and Randal E. Bryant. “Deciding
Separation Formulas with SAT”. In: Computer Aided Verification (CAV
2002). LNCS vol. 2404, pp. 209–222. doi: 10.1007/3-540-45657-0_16.

[Str00] Adam W. Strzeboński. “Solving Systems of Strict Polynomial Inequalities”.
In: Journal of Symbolic Computation 29 (3 2000), pp. 471–480. doi:
10.1006/jsco.1999.0327.

[Str14] Adam W. Strzeboński. “Cylindrical Algebraic Decomposition Using Local
Projections”. In: 39th International Symposium on Symbolic and Alge-
braic Computation (ISSAC 2014), pp. 389–396. doi: 10.1145/2608628.
2608633.

[Stu29] Jacques C. F. Sturm. “Analyse d’un Mémoire sur la résolution des équa-
tions numériques”. In: Bulletin de Férussac. 271st ed. Vol. XI. 1829,
pp. 419–422. doi: 10.1007/978-3-7643-7990-2_24.

[Tar51] Alfred Tarski. A Decision Method for Elementary Algebra and Geometry.
Research rep. RAND Corporation, 1951. url: https://www.rand.org/
pubs/reports/R109.html.

[Tse68] Grigori S. Tseitin. “On the Complexity of Derivation in Propositional
Calculus”. In: Studies in Constructive Mathematics and Mathematical
Logic (1968), pp. 115–125. url: http://www.decision-procedures.
org/handouts/Tseitin70.pdf.

[TKO17] Vu Xuan Tung, To Van Khanh, and Mizuhito Ogawa. “raSAT: an SMT
solver for polynomial constraints”. In: Formal Methods in System Design
51 (3 2017), pp. 462–499. doi: 10.1007/s10703-017-0284-9.

[Vie16] Tarik Viehmann. “Comparing different projection operators in the Cy-
lindrical Algebraic Decomposition for SMT solving”. Bachelor’s thesis.
RWTH Aachen University, 2016.

[VKÁ17] Tarik Viehmann, Gereon Kremer, and Erika Ábrahám. “Comparing Dif-
ferent Projection Operators in the Cylindrical Algebraic Decomposition
for SMT Solving”. In: Satisfiability Checking and Symbolic Computa-
tion (SC2 2017) at ISSAC. CEUR Workshop Proceedings vol. 1974. url:
http://ceur-ws.org/Vol-1974/RP2.pdf.

[Vol15] Matthias Volk. “Using SAT Solvers for Industrial Combinatorial Problems”.
Master’s thesis. RWTH Aachen University, 2015.

[Wei88] Volker Weispfenning. “The Complexity of Linear Problems in Fields”. In:
Journal of Symbolic Computation 5 (1–2 1988), pp. 3–27. doi: 10.1016/
S0747-7171(88)80003-8.

[Wei97] Volker Weispfenning. “Quantifier Elimination for Real Algebra — the
Quadratic Case and Beyond”. In: Applicable Algebra in Engineering,
Communication and Computing 8 (2 1997), pp. 85–101. doi: 10.1007/
s002000050055.

[Win16] Tobias Winkler. “Using Thom Encodings for Real Algebraic Numbers
in the Cylindrical Algebraic Decomposition”. Bachelor’s thesis. RWTH
Aachen University, 2016.

https://doi.org/10.1007/3-540-45657-0_16
https://doi.org/10.1006/jsco.1999.0327
https://doi.org/10.1145/2608628.2608633
https://doi.org/10.1145/2608628.2608633
https://doi.org/10.1007/978-3-7643-7990-2_24
https://www.rand.org/pubs/reports/R109.html
https://www.rand.org/pubs/reports/R109.html
http://www.decision-procedures.org/handouts/Tseitin70.pdf
http://www.decision-procedures.org/handouts/Tseitin70.pdf
https://doi.org/10.1007/s10703-017-0284-9
http://ceur-ws.org/Vol-1974/RP2.pdf
https://doi.org/10.1016/S0747-7171(88)80003-8
https://doi.org/10.1016/S0747-7171(88)80003-8
https://doi.org/10.1007/s002000050055
https://doi.org/10.1007/s002000050055

BIBLIOGRAPHY 201

[WW99] Steven A. Wolfman and Daniel S. Weld. “The LPSAT Engine & its
Application to Resource Planning”. In: International Joint Conference on
Artificial Intelligence (IJCAI 1999), pp. 310–316. url: https://ijcai.
org/Proceedings/99-1/Papers/046.pdf.

[Zam19] Aklima Zaman. “Incremental Linearization for SAT Modulo Real Arith-
metic Solving”. Master’s thesis. RWTH Aachen University, 2019.

[Zar65] Oscar Zariski. “Studies in Equisingularity II. Equisingularity in Codimen-
sion 1 (and Characteristic Zero)”. In: American Journal of Mathematics
87.4 (1965), pp. 972–1006. doi: 10.2307/2373257.

[ZWR16] Aleksandar Zeljić, Christoph M. Wintersteiger, and Philipp Rümmer.
“Deciding Bit-Vector Formulas with mcSAT”. In: Theory and Applications
of Satisfiability Testing (SAT 2016). LNCS vol. 9710, pp. 249–266. doi:
10.1007/978-3-319-40970-2_16.

https://ijcai.org/Proceedings/99-1/Papers/046.pdf
https://ijcai.org/Proceedings/99-1/Papers/046.pdf
https://doi.org/10.2307/2373257
https://doi.org/10.1007/978-3-319-40970-2_16

Index

Backtracking, 60
non-chronological, 62

Boolean
abstraction, 69
constraint propagation, 59

Conflict-driven clause learning, 61
backtracking, 62, 63
clause learning, 61
restarts, 64
CDCL state, 75
watched literal scheme, 63

Constraint, 25
extended polynomial, 29

Cylindrical algebraic decomposition
cylindricity, 82
delineability, 82
infeasible subsets, 122
Lazard’s lifting, 100
lifting, 98
lifting step, 104
open, 95
origins, 105
projection, 85, 111
projection step, 104
proof system, 104
queue ordering, 114
resultant rule, 119

Decision, 60
heuristic, 65
level, 61

Deduction, 54
Discriminant, 25
DP procedure, 57
DPLL, 58

algorithm, 61
backtracking, 60
decision rule, 60
trail, 59

Enumeration, 54
Equational constraints, 117

Gröbner basis, 10, 42

Indexed sets, 20
Integer problems, 125
Integral domain, 19
Interval constraint propagation, 9

Linearization, 8
Logic

first-order, 26
propositional, 53

MCSAT, 131
Boolean reasoning, 133
conflict analysis, 134
embedding in MiniSAT, 146
evaluation of literals, 132
finite basis property, 139, 156
infeasibility, 133
intuition, 135
equivalency to CDCL∗(T), 167
implementation, 145
proof system, 135
state, 132
theory reasoning, 135
trail, 132

MCSAT assignment finder, 136, 147, 158
real root isolation, 148
SMT-based, 149

MCSAT explanation function, 137, 150, 158
CAD, 150
composition, 155
Fourier–Motzkin, 152
interval constraint propagation, 154
OneCell, 152
virtual substitution, 154

Minimal infeasible subset, 72, 122
by set cover, 122

204 INDEX

Model-refining satisfiability calculus, 141

Nonlinear real arithmetic, 28
Normal form

Conjunctive, 27
Negation, 27
Prenex, 27

Numbers N,Q,R,R,Z, 19
Numerical algorithms, 8

Optimization
by CAD, 127
by MCSAT, 142

Polynomial, 21
Multivariate, 22
Univariate, 22

Powerset P , 20
Projection operator, 85, 111

Brown’s, 90, 100
Collins’, 88, 152
Collins’ first, 88
Collins’ second, 88
Hong’s, 89, 152
Lazard’s, 90, 152
local, 97
McCallum’s, 89, 100, 152
other, 95
restricted, 94
semi-restricted, 94

Proof P, 32
complexity, 162

Proof rule, 30
composition, 31
soundness, 30
with input, 31

Proof system P , 31
algorithmic equivalency, 167
CAD, 104
CDCL(T), 75
CDCL∗(T), 75, 76, 168
completeness, 32, 55
MCSAT, 135, 164, 168
resolution, 55
Res∗(T), 163, 164
simulation, 162
soundness, 32, 55

state equivalence, 168
trail equivalence, 168

Quantifier elimination, 4, 126

Real algebraic number, 33
comparison, 45
evaluation, 46
indexed representation, 48
partial evaluation, 38
real root isolation, 47
refinement, 44
representation, 34
sampling, 46
Thom representation, 48

Real roots, 23
isolation, 35

Reducta, 23
Resolution

proof system, 55
rule, 55

Restart, 64, 134
Resultant, 24, 43

rule, 95, 119
Ring, 19

Satisfiability, 28, 53
Satisfiability modulo theories, 11, 70

compliancy, 70
eager solving, 67, 68
lazy solving, 68, 69

Semantic deduction, 26
Sequence, 20
Set cover, 122
Sign condition, 25
Sign invariant region, 81

Theory concretization, 69
Total order, 19
Tseitin’s transformation, 28

Variable, 20
assignment A, 21
ordering, 20

in CAD, 113
in MCSAT, 156

Virtual substitution, 10

Publication list

This list contains all other publications that the author of this thesis contributed to.
Please see Section 1.2.1 for a summary of the authors contributions to the relevant
publications.

[ÁCJ+16] Erika Ábrahám, Florian Corzilius, Einar Broch Johnsen, Gereon Kremer,
and Jacopo Mauro. “Zephyrus2: On the Fly Deployment Optimization Using
SMT and CP Technologies”. In: Dependable Software Engineering: Theories,
Tools, and Applications (SETTA 2016). LNCS vol. 9984, pp. 229–245. doi:
10.1007/978-3-319-47677-3_15.

[ÁDE+20] Erika Ábrahám, James H. Davenport, Matthew England, and Gereon Kre-
mer. “Deciding the Consistency of Non-Linear Real Arithmetic Constraints
with a Conflict Driven Search Using Cylindrical Algebraic Coverings”. In:
arXiv e-prints (2020). Accepted at Journal of Logical and Algebraic Methods
in Programming. arXiv: 2003.05633.

[ÁK16] Erika Ábrahám and Gereon Kremer. “Satisfiability Checking: Theory and
Applications”. In: Software Engineering and Formal Methods (SEFM 2016).
LNCS vol. 9763, pp. 9–23. doi: 10.1007/978-3-319-41591-8_2.

[ÁK17] Erika Ábrahám and Gereon Kremer. “SMT Solving for Arithmetic Theories:
Theory and Tool Support”. In: Symbolic and Numeric Algorithms for Sci-
entific Computing (SYNASC 2017), pp. 1–8. doi: 10.1109/SYNASC.2017.
00009.

[ÁNK17] Erika Ábrahám, Jasper Nalbach, and Gereon Kremer. “Embedding the
Virtual Substitution Method in the Model Constructing Satisfiability Cal-
culus Framework”. In: Satisfiability Checking and Symbolic Computation
(SC2 2017) at ISSAC. CEUR Workshop Proceedings vol. 1974. url: http:
//ceur-ws.org/Vol-1974/EAb.pdf.

[CKJ+15] Florian Corzilius, Gereon Kremer, Sebastian Junges, Stefan Schupp, and
Erika Ábrahám. “SMT-RAT: An Open Source C++ Toolbox for Strategic
and Parallel SMT Solving”. In: Theory and Applications of Satisfiability
Testing (SAT 2015). LNCS vol. 9340, pp. 360–368. doi: 10.1007/978-3-
319-24318-4_26.

[HKÁ18] Rebecca Haehn, Gereon Kremer, and Erika Ábrahám. “Evaluation of Equa-
tional Constraints for CAD in SMT Solving”. In: Satisfiability Checking and
Symbolic Computation (SC2 2018) at FLoC. CEUR Workshop Proceedings
vol. 2189, pp. 19–32. url: http://ceur-ws.org/Vol-2189/paper10.pdf.

https://doi.org/10.1007/978-3-319-47677-3_15
https://arxiv.org/abs/2003.05633
https://doi.org/10.1007/978-3-319-41591-8_2
https://doi.org/10.1109/SYNASC.2017.00009
https://doi.org/10.1109/SYNASC.2017.00009
http://ceur-ws.org/Vol-1974/EAb.pdf
http://ceur-ws.org/Vol-1974/EAb.pdf
https://doi.org/10.1007/978-3-319-24318-4_26
https://doi.org/10.1007/978-3-319-24318-4_26
http://ceur-ws.org/Vol-2189/paper10.pdf

206 PUBLICATION LIST

[Kre18] Gereon Kremer. “Computer Algebra and Computer Science”. In: Applica-
tions of Computer Algebra (ACA 2018). Abstract, p. 27. doi: 10.15304/
9788416954872.

[KÁ18] Gereon Kremer and Erika Ábrahám. “Modular strategic SMT solving with
SMT-RAT”. In: Acta Universitatis Sapientiae, Informatica 10 (1 2018),
pp. 5–25. doi: 10.2478/ausi-2018-0001.

[KÁ20] Gereon Kremer and Erika Ábrahám. “Fully Incremental Cylindrical Al-
gebraic Decomposition”. In: Journal of Symbolic Computation 100 (2020),
pp. 11–37. doi: 10.1016/j.jsc.2019.07.018.

[KÁG19] Gereon Kremer, Erika Ábrahám, and Vijay Ganesh. “On the Proof Com-
plexity of MCSAT”. In: Satisfiability Checking and Symbolic Computation
(SC2 2019) at SIAM AG. CEUR Workshop Proceedings vol. 2460. url:
http://ceur-ws.org/Vol-2460/paper3.pdf.

[KCÁ16] Gereon Kremer, Florian Corzilius, and Erika Ábrahám. “A Generalised
Branch-and-Bound Approach and Its Application in SAT Modulo Nonlinear
Integer Arithmetic”. In: Computer Algebra in Scientific Computing (CASC
2016). LNCS vol. 9890, pp. 315–335. doi: 10.1007/978-3-319-45641-6_21.

[NKÁ19] Jasper Nalbach, Gereon Kremer, and Erika Ábrahám. “On Variable Order-
ings in MCSAT for Non-linear Real Arithmetic (extended abstract)”. In:
Satisfiability Checking and Symbolic Computation (SC2 2019) at SIAM AG.
CEUR Workshop Proceedings vol. 2460. url: http://ceur-ws.org/Vol-
2460/paper5.pdf.

[VKÁ17] Tarik Viehmann, Gereon Kremer, and Erika Ábrahám. “Comparing Different
Projection Operators in the Cylindrical Algebraic Decomposition for SMT
Solving”. In: Satisfiability Checking and Symbolic Computation (SC2 2017)
at ISSAC. CEUR Workshop Proceedings vol. 1974. url: http://ceur-
ws.org/Vol-1974/RP2.pdf.

https://doi.org/10.15304/9788416954872
https://doi.org/10.15304/9788416954872
https://doi.org/10.2478/ausi-2018-0001
https://doi.org/10.1016/j.jsc.2019.07.018
http://ceur-ws.org/Vol-2460/paper3.pdf
https://doi.org/10.1007/978-3-319-45641-6_21
http://ceur-ws.org/Vol-2460/paper5.pdf
http://ceur-ws.org/Vol-2460/paper5.pdf
http://ceur-ws.org/Vol-1974/RP2.pdf
http://ceur-ws.org/Vol-1974/RP2.pdf

208 AACHENER INFORMATIK-BERICHTE

This list contains all technical reports published during the past three years. A complete
list of reports dating back to 1987 is available from:

http://aib.informatik.rwth-aachen.de/

To obtain copies please consult the above URL or send your request to:
Informatik-Bibliothek, RWTH Aachen, Ahornstr. 55, 52056 Aachen,

Email: biblio@informatik.rwth-aachen.de

2017-01 ∗ Fachgruppe Informatik: Annual Report 2017
2017-02 Florian Frohn and Jürgen Giesl: Analyzing Runtime Complexity via

Innermost Runtime Complexity
2017-04 Florian Frohn and Jürgen Giesl: Complexity Analysis for Java with

AProVE
2017-05 Matthias Naaf, Florian Frohn, Marc Brockschmidt, Carsten Fuhs, and

Jürgen Giesl: Complexity Analysis for Term Rewriting by Integer
Transition Systems

2017-06 Oliver Kautz, Shahar Maoz, Jan Oliver Ringert, and Bernhard Rumpe:
CD2Alloy: A Translation of Class Diagrams to Alloy

2017-07 Klaus Leppkes, Johannes Lotz, Uwe Naumann, and Jacques du Toit:
Meta Adjoint Programming in C++

2017-08 Thomas Gerlitz: Incremental Integration and Static Analysis of Model-
Based Automotive Software Artifacts

2017-09 Muhammad Hamad Alizai, Jan Beutel, Jó Ágila Bitsch, Olaf Landsiedel,
Luca Mottola, Przemyslaw Pawelczak, Klaus Wehrle, and Kasim Sinan
Yildirim: Proc. IDEA League Doctoral School on Transiently Powered
Computing

2018-01 ∗ Fachgruppe Informatik: Annual Report 2018
2018-02 Jens Deussen, Viktor Mosenkis, and Uwe Naumann: Ansatz zur vari-

antenreichen und modellbasierten Entwicklung von eingebetteten Sys-
temen unter Berücksichtigung regelungs- und softwaretechnischer An-
forderungen

2018-03 Igor Kalkov: A Real-time Capable, Open-Source-based Platform for
Off-the-Shelf Embedded Devices

2018-04 Andreas Ganser: Operation-Based Model Recommenders
2018-05 Matthias Terber: Real-World Deployment and Evaluation of Syn-

chronous Programming in Reactive Embedded Systems
2018-06 Christian Hensel: The Probabilistic Model Checker Storm - Symbolic

Methods for Probabilistic Model Checking
2019-01 ∗ Fachgruppe Informatik: Annual Report 2019
2019-02 Tim Felix Lange: IC3 Software Model Checking
2019-03 Sebastian Patrick Grobosch: Formale Methoden für die Entwicklung

von eingebetteter Software in kleinen und mittleren Unternehmen
2019-05 Florian Göbe: Runtime Supervision of PLC Programs Using Discrete-

Event Systems
2020-01 ∗ Fachgruppe Informatik: Annual Report 2020
2020-02 Jens Christoph Bürger, Hendrik Kausch, Deni Raco, Jan Oliver Ringert,

Bernhard Rumpe, Sebastian Stüber, and Marc Wiartalla: Towards an
Isabelle Theory for distributed, interactive systems - the untimed case

∗ These reports are only available as a printed version.
Please contact biblio@informatik.rwth-aachen.de to obtain copies.

http://aib.informatik.rwth-aachen.de/
biblio@informatik.rwth-aachen.de
biblio@informatik.rwth-aachen.de

	Introduction
	Introduction
	Related work
	Contributions
	Implementation

	Preliminaries
	Fundamentals
	Polynomials
	First-order logic
	Deductive proof systems
	Real algebraic numbers
	Benchmarks and methodology

	CDCL -style SAT solving
	Satisfiability via enumeration
	Satisfiability via deduction
	Davis–Putman procedure
	Davis–Putnam–Logemann–Loveland procedure
	Towards modern DPLL
	Conflict-driven clause learning

	Satisfiability modulo theories solving
	Eager SMT solving
	Lazy SMT solving
	SMT compliancy
	Common theory solvers
	CDCL(T) as a proof system

	Cylindrical Algebraic Decomposition for SMT solving
	Cylindrical Algebraic Decomposition
	General idea
	Projection operators
	Lifting

	Cylindrical Algebraic Decomposition for SMT solving
	Changing perception
	Proof system
	Variants of incrementality
	Projection operators
	Heuristic choices
	Equational constraints
	Infeasible subsets
	Integer problems
	Quantifier elimination
	Optimization

	Model-Constructing Satisfiability Calculus
	Proof system
	Definition
	Intuition
	Constructing theory assignments
	Explanation functions and termination
	Model-Refining Satisfiability Calculus
	Optimization

	Implementation
	Extending CDCL to MCSAT
	Assignment finder
	Explanation functions
	Heuristics
	Experimental results

	Theoretical aspects
	Proof complexity
	Algorithmic equivalency to CDCL*(T)
	Theory reasoning in practice

	Conclusion
	Contributions
	Future work

	Bibliography
	Index

