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Abstract

“Reuse is Boring!” states the title of the introductory chapter to IEEE Standard 1517,
Software Reuse Processes, published at the turn of the century. Later, it states that “[f]or
years, we have been hearing about the benefit reuse offers, but have yet to see them
realized in practice.” This is certainly debatable as a general statement, and success
stories in the early 1980s counter this, at least for source code. Still, there must be some
reason for such a harsh statement while disregarding types of reuse; after all, loops,
methods, and classes are forms of reuse.

For higher-level reuse, i.e., for activities from the preservation until the reutilization of
knowledge, we can firstly say that activities involved in reuse do not pay off immediately,
but only in the long run. Even worse, all these activities are generally considered
tedious, because they expose no immediate benefit. Thus, starting with the harvesting
of knowledge and storage for later reuse, continuing with looking for suitable harvested
knowledge, i.e., retrieving it, and finishing with reusing (or reutilizing) it, these activities
are perceived as rather unappealing. Fortunately, integrated development environments
for lower-level reuse, e.g., source code, have already demonstrated how to approach
this using completion mechanisms that foster enhanced querying and recommender
systems. This places the experience of whole communities at the fingertips of every
programmer. Yet, there is no such support for modeling.

Instead, in cases of higher-level reuse, i.e., for activities from harvesting until the
reutilization of knowledge, we can secondly state that modelers need to deal with often
unorganized information overflow. Fortunately, the abovementioned approaches can
help, but need proper information organization. This is known as the challenge of data
representation, and can be addressed using a combination of well-suited information
representation with a clever retrieval mechanism to enable model reuse that is tightly
embedded in tooling.

Further, for higher-level reuse, we can thirdly note that recommended models should
be of good quality. Hence, guided assurance in terms of the evolution of harvested
models completes the picture of model reuse activities.

Simply put, the abovementioned points are commonly considered to be unappealing
activities dealing with challenges denoted by representation, harvesting, evolution, and
retrieval. These challenges shall be addressed subsequently. Eventually, we contribute
an approach tailored for modeling with UML or models akin to class diagrams, and this
approach turns out to be a knowledge-based recommender system based on property
graphs and metagraphs suitable for a broader scope. Further, we provide a cookbook for
developing such a system, which includes schema for model recommendation production
for operation-based model recommenders based on our deployment experiences with
HERMES. As we are taking into account contextual information monitored as modeling op-
erations, this too could be denoted as an operation-and-knowledge-based recommender
system that (semi-)automates tedious activities.





Kurzdarstellung

Ein einleitendes Kapitel des IEEE Standards 1517 Softwarewiederverwendungsprozesse
um die Jahrtausendwende heißt „Wiederverwendung ist langweilig!” und später setzt
es fort, dass wir „seit Jahren von den Vorteilen hören, die Wiederverwendung bietet
und doch muss die Praxis sie erst noch zeigen.” Sicherlich ist das als generelle Aus-
sage diskutabel und Berichte aus den frühen Achtzigern zeigen zumindest Erfolge bei
Quelltexten. Dennoch muss es einen Grund für solch eine herbe Aussage geben, selbst
wenn gewisse Typen von Wiederverwendung ignoriert werden; Immerhin sind Schleifen,
Methoden, Klassen und dergleichen auch Formen von Wiederverwendung.
Für Wiederverwendung auf höherem Abstraktionsniveau, d.h. für alle Tätigkeiten Wis-
sen zu konservieren bis hin es als solches wieder einzusetzen, können wir erstens
feststellen, dass beteiligte Tätigkeiten sich nicht kurz- sondern nur langfristig lohnen.
Es ist gar so, dass sie gewöhnlich als lästig erachtet werden, weil sie keinen direkten
Vorteil liefern. Folglich werden diese Tätigkeiten, die mit dem Ernten von Wissen zwecks
späterer Verwendung beginnen, sich mit dem Wiederauffinden solches fortsetzen und
beim Wiedereinsetzen münden, als eher uninteressant wahrgenommen. Glücklicher-
weise gibt es integrierte Entwicklungsumgebungen für Wiederverwendung auf niederem
Abstraktionsniveau, beispielsweise Quelltext, die veranschaulichen, wie Wiederverwen-
dungsmechanismen mittels spezieller Anfragen und Empfehlungssystemen funktionieren.
Damit hat ein Programmierer die Erfahrung von Entwicklergemeinschaften stets unmit-
telbar zur Hand. Für Modellierer gibt es jedoch nichts Vergleichbares.
Stattdessen können wir zweitens für Wiederverwendung auf höherem Abstraktionsniveau,
also alle Tätigkeiten vom Wissen-Ernten bis hin zum Wiedereinsetzen, sagen, dass Model-
lierer oft mit chaotischem Informationsüberfluss fertig werden müssen. Glücklicherweise
können die obigen Ansätze helfen; benötigen aber angemessene Organisation. Diese,
typischerweise als Aufgabe der Datendarstellung bekannte Situation, kann nun mit einer
Mischung aus wohlstrukturierten Informationen zusammen mit klugen Instrumenten
zwecks Wiederfinden angegangen werden und ermöglicht Modellwiederverwendung
eng eingebunden in Modellierungswerkzeuge.
Darüber hinaus können wir drittens anmerken, dass empfohlene Modelle von gute Qualität
sein sollten. Deshalb vervollständigt angeleitete Betreuung im Sinne von Evolution der
geernteten Modelle die Wiederverwendungstätigkeiten.
Nachfolgend gehen wir auf die oben genannten Punkte ein, die üblicherweise als uninter-
essante Tätigkeiten wahrgenommen werden und die wir einfach gesprochen als Aufgaben
hinsichtlich Darstellung, Ernten, Evolution und Wiederauffinden bezeichnen. Letztlich
führt das dazu, dass wir einen Ansatz zugeschnitten für UML Modellierung ähnlich zu
Klassendiagramme einbringen, der ein wissensbasiertes Empfehlungssystem für Attribut-
und Metagrafen umsetzt; aber generischer ist. Zudem stellen wir auf Grundlage unserer
Erfahrungen mit HERMES eine Kochanleitung zur Entwicklung solcher bereit, die Schema
für Erzeugung von Modellempfehlungen für wissensbasierte Modellempfehlungssysteme
enthält. Diese könnten wir letztlich operations- und wissensbasierte Empfehlungssysteme
nennen, da sie Umgebungsinformationen in Form von Operationssequenzen betrachten
und so lästige Tätigkeiten, sofern sinnvoll, (teil-)automatisieren.
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1Approaching Model Reuse

Nothing in this world that’s worth
having comes easy...

Robert Kelso, M.D.

Contents

1.1. In Surroundings of Model Reuse . . . . . . . . . . . . . . . . . . . . 4
1.2. The Challenges of Model Reuse . . . . . . . . . . . . . . . . . . . . . 6
1.3. One Vision of Model Reuse . . . . . . . . . . . . . . . . . . . . . . . 8
1.4. For Accelerated Reading and Quick Navigation . . . . . . . . . . . . . 10

It is quite common to consult relatives, friends, and family on big decisions, and their
recommendations are usually held in high regard. Their advice is sought, after all,
because it is assumed that they know the advice-seeker well and can advise on what
is best for him/her. However, this behavior of “seeking advice from somebody” is not
limited to life-changing decisions such as whether to change jobs or get married—it often
happens on other occasions and might include other circles of people.

These people can be domain experts, who can help in advice-seeking situations by
leveraging their subject-matter knowledge. Sometimes, such as for a dental, legal, or
medical expert, only they can tell whether dental treatment is necessary, if there is a
chance of winning a lawsuit or making an out-of-court settlement, or if it really makes
sense to approach an illness with a particular treatment; after all, they are domain experts
and get paid for such consultations. In other advice-seeking situations, experts are paid
indirectly, e.g., when purchasing certain products.

Picture a shopping experience in a specialized shop: a retailer offers recommendations
on products, and a good retailer will try to sell a suitable package instead of a sole product.
This means the product will be accompanied by recommended convenience goods, which
together make up the package. Thus, hopefully, the customer is happy with, e.g., a new
digital camera package, because it also comprises a memory card and a battery, so
the customer can immediately operate the camera. The dealer knew from experience
that these complementary products would be necessary and appropriate, i.e., that a
particular memory card and particular battery would work with a specific camera.

Moreover, a good retailer will have tried to sell the “most suitable” package in the first
place, and will have done so by evaluating the customer’s needs. The final package
will be a result of the sales pitch, but the chances are that products that have previously
been purchased by this and other customers will also have been helpful in this regard.
In a nutshell, the retailer knows about the products, their relationships, customers,
and purchase histories. In other words, the retailer can make use of knowledge and
experience in sales situations, hopefully to the benefit of the customer and the shop.

The subsequent text transfers the ideas of “how to produce recommendations” to
software engineering, or more precisely, modeling as an attempt at modeling support.
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1. Approaching Model Reuse

Today, web shops try to simulate the recommendation aspect of retailers. Hence, the
customer evaluation mentioned above is done by computer systems. These systems
use modeled relationships between products, but bring about certain obstacles. For
example, computer systems have no means (yet) for face-to-face communication. This
means a customer cannot be assessed on the nonverbal level of communication [MF67;
MW67]. Moreover, extensive customer shopping histories may not be available. How-
ever, computer systems can leverage other sources of information and use them to
learn customers’ general shopping behavior. This knowledge can be used to identify
customers with similar behavior, so the system can produce recommendations for newer
customers. Note that this is just like the retailer who used experience from previous
customers in dealing with new customers. Online streaming services like Netflix [BL07]
or web shops like Amazon use these ideas [LSY03]. They build user behavior profiles
and recommend items that “other customers also liked or bought” in the same fashion
[SKR99]. Furthermore, products that fit together well or which are often “bought in a
set”, called suitable packages above, are recommended. The technical term for these
personalized systems using big data is recommender systems [Ric+11], and they aim to
support users in their decision-making processes while interacting with a large amount of
information. They recommend items of interest to users based on preferences that have
been expressed, either explicitly or implicitly. This means, a user could explicitly state
that the “thriller movies” are their preferred genre, or the system might imply this because
thriller movies have been watched in the past. Altogether, this helps to “overcome the
information overload problem by exposing users to the most interesting items, and by
offering novelty, surprise, and relevance” [RWZ10, RecSys’08].

Considering software engineering, the number of artifacts being dealt with is steadily
increasing (cf. big data), and managing these (cf. personalizing) has become a major
issue in many development projects. The most prominent example of these artifacts is
source code. Hence, state-of-the-art Integrated Development Environments (IDEs) offer
content-assist, code completion, and query functionality to reduce information overflow.
Furthermore, ideas from the abovementioned recommender systems have recently been
adapted to bolster code reuse [JHA14]. For example, an Eclipse project called Code
Recommenders learns from existing code bases to provide best guesses of what the
programmer might want to do next [Bru12], [Ecl14a]. So, if a programmer has just created
a new text object (cf. figure 1.1), the code recommender will offer a selection of methods
that other programmers invoked on such objects along with their respective likelihoods.

However, source code is not the only kind of artifact created in software engineering
tasks. There are also domain models, say models in general, and others. Unfortunately,
compared to source code, no recommendation support for modelers is yet available
[Wal13; Mic+15]. This is surprising, because some effort has been given to researching
model repositories and how to preserve models [FBC06; Alt+08; LFW12; Bas+14]. As a
result, there are numerous ways to put models into repositories, but relatively few ways
to extract them for reuse, i.e., reutilization. If thoroughly arranged in a meta-structure,
models could provide the foundation for a recommender system aimed at model reuse.
For now, let us focus on (software) reuse [FK05].

2



Figure 1.1.: Eclipse Code Recommenders Screenshot [Ecl14a]

In software engineering, a full life cycle of software artifacts comprises many activities.
Only after the customer requirements have been elicited can design and implementation
meet these needs. Hence, developers can decide whether to “make or buy” solutions. In
fact, several components are known as “never ever, ever, ever code yourself”, because
faulty behavior would be fatal. Examples are login mechanism or date calculations
[Sco13a; Sco13b]. Without going into detail, a login mechanism that can properly
authorize and authenticate is considered a task that only a few teams in the world can
implement flawlessly. Moreover, it may take years to construct a system that requires little
or no maintenance. Similarly, date calculations are difficult because of many special cases
like leap years1, leap seconds, and countries skipping years. As a result, programmers
make conscious decisions about reusing existing solutions by importing libraries based
on functionality or based on their experience. Regarding models, as of today, modelers
are nowhere near this, and importing a model from a library is a dream. Why is that?
Are they so different?

Put another way, what are the commonalities between, on the one hand, importing
a program library and reusing a fraction of its functionality, and on the other hand,
considering a model library and importing or reusing a fraction of its models? They
have in common that items need to be altered in the process of reutilization. Hence,
function calls are often wrapped and return values are adapted; e.g., a class from the
Joda-Time library called DateTime might offer desirable functionality, but the returned
format could be incompatible with that required. Therefore, the return values need to
be altered. Likewise, a model from a model library is unlikely to perfectly match a given
requirement, and will need to be altered, e.g., for technical or domain reasons.

Fortunately, programmers usually have a precise idea as to what functionality is
needed; thus, the question arises as to whether a modeler does, too. The answer is
probably not that precisely, but this does not mean that 80% of solutions or examples
cannot assist in regard of some well-cited reuse benefits for early life cycle artifacts
[Cyb+98; Som11, all]: reuse is often considered a time/cost saver because of “better
utilization of available resources”, i.e., reinventing the wheel is not necessary. However,

129.02.2016 Airport software does not recognize leap year Google Translate https://goo.gl/EjD33N
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1. Approaching Model Reuse
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Figure 1.2.: Term Trends on SpringerLink: “Model and X” [Spr15]

efforts at preparing for reuse are not to be neglected, and reuse is only reasonable if
the provided artifacts inherit superior quality compared to being reinvented [BB91; FI94;
GAO95]. Further, systematic reuse, starting right at the beginning of the software life
cycle, encourages reuse for the entire lifecycle. Additionally, it is believed that reuse
improves the overall quality of software engineering artifacts, because it enables reuse
of subsequent artifacts. In addition to that, and more modeling-related, reuse can unveil
model elements that did not occur to the modelers, and vice versa, as consciously deleted
elements state design decisions. Similarly, any renaming expresses the same intention
and requires only adjustments, which are considered quicker than creation. Finally, and
probably most importantly, model reuse is a step toward modeling as an “art”, becoming
an engineering discipline with quality standards and practices that are agreed upon
and applied [Moo05], because “paradigms such as Model-Driven Development and the
Model-Driven Architecture have emphasized the importance of ‘good’ models from the
beginning of the lifecycle” [GPC05].

1.1. In Surroundings of Model Reuse

The terms “model” and “reuse” are vital for the course of this research, and so the
investigation of trends in these terms is reasonable. Hence, two science-related search
engines were queried with both terms. Moreover, it is desirable to combine both terms
with other important terms that often occur in the course of this research, either as
technologies or concepts. All of this provides a picture of the state-of-the-art in the
scientific community and shows whether there is any hype around certain trends at hand.
After all, it seems rather undesirable for extensive research to be chasing rainbows.

The first search engine queried to determine a trend was Google Scholar (not illustrated
in the figure). The numbers peak at 1.5 million hits per year from 2000–2004 regarding
“model”, and decline to 200,000 in 2015. Values for “model based”, which counts hits
containing both terms, are marginally smaller. Regarding “reuse” and “model reuse”,
values peak from 2005–2009 and 2007–2011, respectively, at around 80000 and 50000,

4
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Figure 1.3.: Term Trends on SpringerLink: “Reuse and X” [Spr15]

with a steep decline to 40000 and 30000. These numbers demonstrate that interest in
these terms faded after peaking.

The numbers mentioned above need to be taken with a grain of salt, because they
show no more than the presence of words in publications. This means a term can be
mentioned out of context. For example, an article can be about models, as defined later
or it can be an acoustic model. Furthermore, reuse as a term is so general that a single
mention can easily occur. As an example, a mathematical paper might reuse a definition
or formula. In doing so, this paper is not relevant to the term we are looking for. Still, the
counted numbers provide general trends, and it can be seen that all terms were used
less frequently in recent years. Unfortunately, at the time of writing, Google Scholar
did not allow further filtering. Hence, the decline in occurrences is across all science
subjects, and numbers for computer science had to be drawn from a different source.

A possible source for analysis, which can be limited to computer science, is Springer-
Link [Spr15], and figures 1.2 and 1.3 summarize the results of the noted queries. The
numbers are relative to all annual publications in computer science.

The starting point for the numbers of “model” mentions in figure 1.2 is 778 or 0.4%.
Thereafter, the percentage increases to 0.7% with a total of more than 55000 hits. In
terms of numbers, this is a massive increase, but is only marginal relative to publications
in computer science. The values for “model based” are very similar, but a slight decline
can be noticed after 2010.

“Model reuse” is not as marginal as in the Google Scholar term trends, but numbers
start at 11 and reach approximately 5400; this is 0.006% and 0.07%, with a peak at
0.086% in 2010. Here, “model reuse” is the linking value between figures 1.2 and 1.3.
The latter shows that values and trends for “reuse” are similar to those for “model reuse”.
Extra attention should be paid to the “Unified Modeling Language (UML) reuse” values.
They are notable from 1997, with 16 hits, and hyped from 2005–2011, with around 750
hits. Since 2011, the values have gently declined in absolute and relative terms.

The main point is that there is no massive decline in the term trend analysis at Springer-
Link, as opposed to the Google Scholar analysis. Therefore, while the terms “model” and
“reuse” seem to have become less popular in some disciplines, they are still an important

5
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Figure 1.4.: Model Reuse Workflows similar to [DGL14b]

topic in computer science. Perhaps they are established as research fields, but, again,
there is a need for caution when interpreting these values.

1.2. The Challenges of Model Reuse

Viewed as a development process, software engineering comprises many disciplines.
Often, requirements engineering is the starting point and either deployment or retirement
is the end point. In between, there are many engineering disciplines such as design,
implementation, or testing, as well as supporting disciplines such as project management
or configuration management.

Some engineering disciplines such as implementation can work on top of existing
solutions by performing reutilization or reuse. For example, libraries are often used
in the implementation stage to benefit from quality-assured solutions and reduce the
development time. However, code reuse often goes way beyond this and is supported by
a clever completion mechanism. For example, a programmer includes a library and the
programming environment (IDE) offers relevant completion. This prevents typing errors
and speeds up development.

For many development processes, regardless of whether agile or not [LA12; Kru04],
models became a foundation, but reuse concerning models is still in the early stages. This
is even true for the tools available to support de facto standard modeling languages like
UML and Business Process Modeling Notation (BPMN). At best, a modeling environment
supports modelers with type completion, so that a modeler always needs to start from
scratch or conduct “copy’n’paste reuse”, as shown in figure 1.4a. This is inefficient and
unpleasant in several ways [DGL14b].

In fact, modeling tools are far behind state-of-the-art IDEs in terms of usability and rarely
support modelers, except for model validation and automatically arranging elements
[BR05; SIK15]. Consequently, if modelers seek to integrate models from a model library,
they need to do so manually, as shown in figure 1.4a. The downside of this is that
modelers get distracted each time they want to reuse models from a library, because
they need to change context, i.e., mediate between the modeling tool and the model
library. This not only makes modeling unappealing but also is likely to have a negative
impact on model quality and the time spent modeling.

6



1.2. The Challenges of Model Reuse

Hence, it appears desirable to follow a workflow similar to the abovementioned library
reuse for source code, i.e., first include a model library and then get recommendations
from it, as shown in figure 1.4b. This figure shows that a modeler only interacts with an
IDE and can forget about the underlying model library. However, this is new ground, as
we found out in an initial survey [DGL14b]. Moreover, model libraries intended for reuse
are rarely researched [GL13], and evolution in this domain is not supported by such model
libraries [Gan+13]. This leads to five challenges (marked below) that we will address
subsequently; these are derived and extended to what Janjic, Hummel, and Atkinson
formulated for source code repositories [JHA14]. Altogether, we aim at a complete, some
may say holistic, approach with a character akin to referential architectures based on
operation-based model recommenders by addressing the following challenges (follow-up:
pages 166, 182 and 186; contributions: section 5.4 (p. 182)):

ù Storage Challenge: locating and accessing.

ù Representation Challenge: warehousing and organizing.

ù Harvesting Challenge: identifying and extracting.

ù Evolution Challenge: changing and improving.

ù Retrieval Challenge: querying and retrieving.

First, the storage challenge (called the repository problem by Janjic, Hummel, and
Atkinson [JHA14]) encompasses the quest for libraries that hold beneficial material. This
is as true for model libraries as it is for source code repositories, because accessibility,
quality issues, or copyright might not be appropriate. Note that we use the term library
instead of repository, as explained later in section 3.2 (p. 48). Second, the representation
problem explained by Janjic, Hummel, and Atkinson deals with organization issues
and data representation for source code repositories; this is even more relevant for
model libraries [JHA14; GL13]. Third, the harvesting challenge is partly specific to
our domain and emerges from the necessity that model libraries hold beneficial data
that can be added to the library with an acceptable or controlled degree of redundancy.
Further, this challenge represents the need for harvested data to adjust to the underlying
model library data structure. Fourth, the evolution challenge is specific to our domain
and addresses changes of models in model libraries, especially in regard to quality.
Fifth, the retrieval challenge is about how to acquire the necessary data and leverage
them to get the most suitable model from a model library offered for reutilization. For a
given recommender systems as an approach for solving the retrieval challenge, this is
about “data processing, capturing context, producing recommendations, and presenting
recommendations” [RW14].

The overall aim of this text is to provide a solution and arguments so that the following
question can be countered: Will heavyweight and costly modeling be overtaken by “agile”
approaches? [HM08b, Methodenkonflikt]. Discussions on model reuse are relatively
rare and rudimentary, e.g., for Simulink elements [Hei12a; Hei12b], for BPMN as a
requirements catalog [Mic+15], or for other early lifecycle artifacts [Cyb+98], but as of
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Figure 1.5.: Model Reuse Vision: Searchbox and Preview similar to [GL13]

today, there is no complete approach supporting model reuse, although it is considered
more important than code reuse [Gom+04; Cyb+98; Hei12a]. However, model reuse is
vital for reasons of knowledge transfer [DTC13], as well as for the abovementioned point
of changing modeling into an “art”, becoming an engineering discipline with agreed and
applied quality standards and practices [Moo05].

1.3. One Vision of Model Reuse

The project vision sketched in figure 1.5 was designed as a figurative drive and shows an
excerpt of a class diagram editor with a search box (cf. video [Gan13b]). A user has typed
in some characters, and the underlying system returned some results. These results
are presented as -items in a drop-down box, and the user can step through them
while previews appear to the right as class diagrams. As soon as the user picks an item,
it is applied to the canvas as if the elements, i.e., classes and attributes, were created
manually (cf. figure 1.6). All of this should be easy to use and seamlessly integrated in
an IDE, although “the quest for simple and integrated IDEs” is not new [San78].

At first glance, the realization behind source code completion and model completion
appear to be very similar, but already the data backends differ. While source code
completion can rely on the grammar of the programming language, source codes analyzed
from a given scope, and libraries, the data backends for model completion are mostly
beneficial if a quality-assured model knowledge library is used. This should contain
best practices, patterns, examples, or partial models [DGL14b]. Further, such a model
knowledge library should be able to interlink all this information in an enhanced and
indexed models graph library, also called a model or knowledge library [GL13].

There is no guarantee that a model, which is freshly stored in a model knowledge
library, is of good quality or suits any modeler’s needs. Consequently, an approach
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Figure 1.6.: Model Reuse Vision: Placed Recommendation similar to [GL13]

must deal with model evolution in model knowledge libraries, moving toward high-quality
models. Only then can the requested and postulated “‘good’ models from the beginning
of the lifecycle” be assured [GPC05]. Hence, the approach should track models over
time and guide changes by means of a real-time quality feedback with simple quality
statements [Rot+13; Gan+13]. This, hopefully, would make model reuse more attractive.

The second difference between source code and model completion lies in the retrieval
mechanism, which has received relatively little attention. There is almost no research
on how to find the best, i.e., fitting or matching, model for a given environment, which is
sometimes called the context. The most promising approach is an adaptation of ideas
from recommender systems [Jan+11; Ric+11], because model knowledge libraries tend
to contain information that is not immediately apparent. An environment for experiment-
ing with model recommenders should support retrieval experiments [DGL14a; DGL13].
These experiments could also examine how to apply the selection presented in figure 1.5
in different editors, how to use different sources of data, or how to gain sufficient infor-
mation from the context, e.g., an editing history. Together, this should enable retrieval
mechanisms to produce “fitting or matching” recommendations.

A third difference with respect to source code completion is the means of filling the
model knowledge library or finding models for it. Enhanced source code completion can
use data mining techniques and analyze existing source code repositories to fill databases,
allowing the code completion to be enhanced to code recommenders [WKB09; Bru12;
Ecl14a]. This means that mined data are leveraged to reorder the available completions,
ordered by likelihood, as depicted in figure 1.1. Contrary to that, for models, there is no
mining approach. Still, tool support can help modelers and use a harvesting mechanism
for knowledge that adapts ideas from data mining and graph mining [HKP12; AW12].

The following text draws together the above mentioned issues as a motivation and
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1. Approaching Model Reuse

provides a sound foundation for building a solution for either classical or alternative
recommender systems. Altogether, the subsequent text is based on and extends some of
our previous publications [GL13; DGL13; DGL14b; DGL14a; Rot+13; Gan+13; Gan+16].
We reach conclusions in the form of the contributions in section 5.4 (p. 182) and sec-
tion 6.1 (p. 186), and pick up and address the challenges outlined in section 1.2.

1.4. For Accelerated Reading and Quick Navigation

Some aspects on the style of writing and reading of scientific documents should not
need further mention [CS03; CO09; SF94]; some other aspects of academic English are
mentioned below [OH06]. Further, the structure of this document is a tailored version of
the standard for theses, as explained later.

1.4.1. Style of this Document

This document is written to be read, and thus adheres to certain standards, mostly
called text grammar, which might not be commonly known. First, this means that a
writing technique called “topic sentences” is used throughout this document [OH06].
This fosters quick navigation and reading, because the first sentence of almost every
paragraph provides an exact grasp of what is discussed in the following sentences. The
only exceptions are paragraphs summarizing larger areas such as chapters. Second,
the text is written to adhere to a linear writing style as much as possible by avoiding
backward or forward references within sentences [Pic09]. At the same time, branches
in argumentation are avoided as much as possible. This might appear uncommon to
non-natives, but this eases reading a lot, though it does the exact opposite to the writers.
Certainly, this does not mean that references throughout sections or chapters are avoided.

These references are meant to support readers as much as possible and not to be a
hindrance; hence, they are designed for quick navigation as well. In detail, this means
that references are provided by identifiers only if they are related to a section or within a
chapter, because flipping a few pages back or forth should do the job. However, in case
a reference points further, they are enhanced with a page number for convenience and
quicker lookup. Certainly, literature references do not use this feature because they are
gathered altogether in a designated chapter. The bibliography itself, which is close to
the end of the document, provides a “Cited at page(s)” list that points to all pages on
which this item was referenced. Another option for quick navigation is the reference links
available in the digital format of this document. These are indicated by colored frames.
Citations are framed in Cornflower blue and references to glossary terms or textual points
are framed in Danube blue. Names occur only when citing related work.

The final writing aspect worth mentioning regards the gender discussion. As often as
possible, we make use of the common address “we” or use plurals; sometimes, we need
to address individuals as a role or as a person. In these cases, we do not mean to offend
or demean any gender. If in doubt, we invite both genders to feel equally addressed.
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1.4. For Accelerated Reading and Quick Navigation

Figure 1.7.: The Document Structure

Further, we do not mean to give this document a more colloquial touch by including the
reader with the somewhat casual “we”. Instead, we would like to take readers by the
hand and drag them into the fascination of the course of this document. There is an
interesting discussion coming up that is absolutely worth indulging: enjoy!

Regarding typefaces, we picked two fonts without serifs. The first is very similar to
Helvetica and should foster convenient and pleasant reading. In fact, this font is not
exactly Helvetica, but the almost identical LATEX clone called Nimbus Sans L. The second
font is similar to Courier and called Consolas. We use this for mono-spaced text such
as data types, identifiers, or source code (cf. pseudocode 1.1).
1 public class WelcomeToHERMES {

2 /** The Java Comment Style */

3 public static void main(String[] arguments) {

4 // another comment

5 System.out.println("Hello HERMES! Nice to meet you :-)");

6 }

7 }

Pseudocode 1.1: Welcome to HERMES

Sometimes, we highlight “newly introduced content” or “technical terms” by setting it in
italics, or emphasize that the following should be considered as concepts or source
code by setting it in typewriter. Longer source code is set in a dedicated environment,
as shown in pseudocode 1.1. In the course of this document, many definitions, symbols,
and conventions recur. While we consider this easy for experienced readers, we are
aware of the trouble this can cause for novices. We summarize all notation in a list
of acronyms and symbols (p. 255) as well as in a glossary (p. 257) for convenience.
Further, we track all major terms in an index (p. 261); a hard-copy of the acronyms,
symbols, and glossary may be useful while reading.

We provide more assistance to readers in the form of guiding and summarizing figures.
These are meant to provide a map and guide readers through parts of this document.
Most importantly, our document architecture (cf. figure 1.7) and our project architecture
(cf. figure 1.8) help to emphasize the upcoming parts in gray, as we explain in more
detail below.

1.4.2. Structure of this Document

The architecture of this document comprises four main parts, as depicted in figure 1.7.
The clapperboard, , represents the part used to “set the stage”, i.e., provide background
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1. Approaching Model Reuse

HERMES
HARVEST EVOLVE REUSE

MODELS EASILY AND SEAMLESSLY

Figure 1.8.: The HERMES Project (taken from [Gan14h])

information. A light bulb, , represents the conceptual ideas, defining “operation-based
model recommendations”. In addition, a notebook computer, , indicates that the
“HERMES” product, i.e., the realization, is introduced. Finally, the part inspecting and
“assessing processes, concepts, and HERMES” in chapter 5 (p. 165) is represented by
a weighing scale, . The main document closes with a part that is unmentioned in
figure 1.7: looking at the road ahead while “the curtain falls”. For a better overview, we
present this figure at the beginning of each chapter with the upcoming part highlighted.

Further, the conceptual part could benefit from further guidance. Hence, the archi-
tecture of the HERMES project helps to structure the document in this chapter [Gan13a;
Gan14g]. It comprises four parts related to “harvesting, evolving, and reusing models
easily and seamlessly”, as shown in figure 1.8. This figure recurs as a guide whenever a
part is introduced, with the respective part highlighted. Additionally, the grid is highlighted
to indicate that the foundation, i.e., “operation-based models”, , are introduced.

In detail, the stage is set in chapter 2 by providing an overview (section 2.1 (p. 14))
of formalities (section 2.2 (p. 14)), the conceptual environment (section 2.3 (p. 16)),
use cases (subsection 2.4.1 (p. 24)), and a running example (subsection 2.4.3 (p. 26)).
The recommendations in chapter 3 are built by defining “operation-based models” in
section 3.1 (p. 32), explaining how to work on the “storing of models”, , in
section 3.2 (p. 48), how to perform the “harvesting of models”, , in section 3.3 (p. 73),
how to deal with “evolving models”, , in section 3.4 (p. 94), and how to undertake
the “reusing of models”, , in section 3.5 (p. 117). The product presented in chap-
ter 4 reiterates the project structure in section 4.1 (p. 152) and explains the respective
components. First, the model data framework is introduced in section 4.2 (p. 153),
and then the model mining framework is described in section 4.3 (p. 154). The model
evolution framework is then explained in section 4.4 (p. 155), before the model recom-
mender framework is introduced in section 4.5 (p. 156). The evaluation in chapter 5
provides a brief history in section 5.1 (p. 167), discusses quality assessments in terms
of our development process in subsection 5.2.1 (p. 169), and considers product qual-
ity in subsection 5.2.2 (p. 172) and subsection 5.2.3 (p. 178). In addition, chapter 5
provides an assessment of our contribution to the scientific knowledge base in sec-
tion 5.4 (p. 182). Finally, chapter 6 (p. 185) concludes by discussing the achieved status
in section 6.1 (p. 186), outlining possible further research in section 6.2 (p. 189), and
providing additional notes in section 6.3 (p. 193).
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2Setting the Stage

Don’t panic!

Douglas Adams
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For the course of this document, we set the research stage in the surround-
ings of reuse and models, provide a running example and use cases, and
establish additional foundations. While we consider reuse, by and large, as
a process that starts by identifying parts of a model and continues to the
reutilization of models, we think of models, by and large, as representations
of real-world objects formalized as UML class diagrams. Our running example is in
the notation of such a UML class diagram, and a UML use case diagram provides an
overview of the requirements we should meet. Finally, and with regard to additional
foundations, we, like any other research, base our work on conceptual and technological
approaches for which we now provide an overview and later describe in detail.

In regard to these conceptual foundations, the research environment for the operation-
based model recommenders involves several disciplines in computer science. All of them
are applied in an environment that treats models as first-class citizens to, eventually,
achieve model reuse. Hence, we need to find (harvest) reusable parts, ensure their
quality (evolve), and make them available for reutilization (reuse). All of this requires data
organization in the form of a knowledge library. First, we harvest models, which means
we need to identify beneficial parts of models. The relevant domain in computer science
is mostly data mining [HKP12], and as our models usually inherit a graph structure, we
specifically consider graph mining [AW12]. Second, we evolve models, i.e., support
modelers by enhancing them. This involves software quality [Wag13] as well as software
evolution [MD08]. Third, we reuse models, which requires the identification of models for
reutilizations. This involves ideas from machine learning and related approaches [Mur12;
Bis06]. Most notably, these are recommender systems [Jan+11; Ric+11]. To aid this, we
look at context management [Bet+10].

On a technological basis, the research environment for operation-based model recom-
menders involves manifold technologies. First, the primary programming language is
Java [Gos+13], which limits the choices for IDEs. We picked the Eclipse platform as an
IDE and deployment platform [Vog13], allowing us to benefit from OSGi [OSG14], the
plug-in development environment (PDE), and the Eclipse Modeling Framework (EMF)
[Ste+08], which allows persistence extensions with NoSQL databases [SF13; RWE13].
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2. Setting the Stage

2.1. Scenic Overview

Before we get into details of formalities and terms, we look at the approach at hand from
a more general perspective. The approach we are about to introduce is called “Operation-
Based Model Recommenders”, and considerable thought went into this title. The first
thing to note is that we talk about “recommenders” and not “recommender systems”.
The latter is a well-established term and some realizations, which we enable by means
of our approach, can be classified as recommender systems. However, we intend to
denote the entirety of possible realizations, and can only assert that these produce
suggestions that are not always distinguishable from recommendations. Hence, we
prefer the term recommenders as a summarizing concept and because it is established
for “Code Recommenders” [Ecl14a]. Consequently, our approach could be termed
“Model Recommenders”, because our primary items of consideration are “Models”, as
mentioned in the title. This primarily puts our focus on models as used in software
engineering, and does not neglect their structural nature as graphs. Hence, there are
some similarities to graph-based recommender systems, and we explain how to convert
them into traditional recommender systems by investigating “operation-based models”.
This means that we quite often consider models from an operation sequences point of
view, both while analyzing an editing sequence or reutilizing a model. Overall, we go
into the necessary detail for the relevant formalities, concepts, requirements, and target
environment.

2.2. Scenic Formalities and Conventions

For the sake of comprehensibility and simplicity, we often employ a semi-formal notation
for concepts. They are rooted in mathematics and many of them relate to set and graph
theory, as well as complex analysis. Hence, we reiterate some basic notation [Ros12].

We take the mathematical concept of a set, so we introduce it by providing a definition
and omit examples or derived concepts such as the empty set (H), subsets (Ă), and
cardinality (| ¨ |):

A set is an unordered collection of objects, called elements or members of
the set. A set is said to contain its elements. We write a P A to denote that a
is an element of set A. The notation a R A denotes that a is not an element of
set A. [Ros12]

When discussing an element of a set, we often refer to it as ε and use an index for
further information. For example, we often talk about classes and use the index “C” for
clarification: εC. In other cases, we change the font and denote a special Models with
an index “M”: εM. On top of sets, we use Cartesian products made of more than two sets.

The Cartesian product of the sets A1, A2, ... , An, denoted by A1ˆA2ˆ ...ˆAn,
is the set of ordered n-tuples pa1, a2, ... , anq, where ai belongs to Ai for i “
1, 2, ... , n. In other words, A1 ˆ A2 ˆ ...ˆ An “ tpa1, a2, ... , anq|ai P Ai for i “
1, 2, ... , nu. [Ros12]
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2.2. Scenic Formalities and Conventions

Sometimes, we access individual elements of tuples and employ a dot notation instead
of using a labeling function. For example, consider an element as introduced above, εC,
as a tuple. If we want to examine the second element of this tuple, we simply write εC.2,
or address it as name to refer to the specific element.

Further, set cardinality and intersection play an occasional role. For sets, we say
their cardinality is the number of elements contained within, as usual, and for tuples,
we can define their cardinality as necessary, e.g., considering certain elements only. If
we have a 5-tuple in which each element is a set, we can define the cardinality of this
tuple as the cardinality of the second plus the last set (e.g., equation (3.51) (p. 81)).
With respect to set intersection (X), we take the usual definition for sets and extend it to
tuples if necessary. As an example, we can take two 5-tuples in which each element is a
set and define their intersection as the pairwise intersection of the respective sets (cf.
equation (3.115) (p. 133)). In addition, we use graphs as representations of models (cf.
pseudocode 3.2 (p. 77)):

A graph G “ pV, Eq consists of V, a nonempty set of vertices (or nodes),
and E, a set of edges. Each edge has either one or two associated vertices.
[Ros12]

However, models are rarely undirected graphs. Rather, they are directed graphs, or
digraphs, as we show later in figure 2.4. Further, we can alter graphs with labeling
functions of different forms. These can add information to vertices or edges to form
property or weighted graphs. For all graph types, we can introduce the concepts of
adjacency and neighborhood:

Two vertices u and v in an undirected graph G are called adjacent (or neigh-
bors) in G if u and v are endpoints of an edge e of G. [Ros12]

We will need to adjust this idea of neighborhood later for two reasons. First, because
models expose some unexpected graph structures when only graphical notations are
considered. For example, two related classes in a class diagram are not neighbors, as
we show in figure 2.4. Second, semantics requires us to change terminology to denote
neighbors as successors (succp¨q). Finally, we need the degree of a vertex:

The degree of a vertex in an undirected graph is the number of edges incident
with it, except where a loop at a vertex contributes twice to the degree of that
vertex. The degree of the vertex v is denoted by degpvq. [Ros12]

Again, we need to consider directed graphs and find not only the degree of a vertex, but
also its in-degree and out-degree. The former denotes the edges directed to the vertex
and the latter the edges directed to neighbors. In addition to graphs, and without further
introduction, we sometimes use an alternative, but equivalent, representation called an
adjacency matrix [Ros12]. We use these because an algorithm can access nodes directly
without searching vertex sets, which enhances performance and comprehensibility.
Next to these structural formalities, we need groundwork for the operations that eventually
make up our approach. We postpone a more detailed introduction, but can already
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consider them as similar to functions and relations in mathematics. This means they
either map or relate elements from a domain to a co-domain. Further, we sometimes
design the domain and co-domain to be equal (subsection 3.5.2 (p. 118)), so we can use
concatenation as with functions (˝). In other cases, we take a shortcut and do not define
the domain and co-domain equally for concatenation for the sake of comprehensibility
(subsection 3.1.2 (p. 37)). Still, the semantics are the same and the order of reading or
applying the operations is from right to left:

Let g be a function from set A to set B and let f be a function from set B to set
C. The composition of the functions f and g, denoted for all a P A by f ˝ g, is
defined by pf ˝ gqpaq “ fpgpaqq. [Ros12]

Regarding symbols, we use different typefaces for distinction. First, calligraphic faces
denote related universes. For example, a model such as m is part of the universe of all
models, denoted M. The exception is the universe of all operation-based models (M

Σ

),
which we comment on shortly. Second, fraktur faces denote things worth mentioning that
are beyond the current scope. As an example, we enclose a set of rules in a definition as
R for the sake of completeness. Third, lowercase Greek typefaces represent elementary
operations, e.g., for creating an element (πc) or generating model recommendation
candidates (%gen). Fourth, we use uppercase Greek typefaces for larger operations, e.g.,
querying (Φ). Finally, we introduce some new symbols, e.g., for an operation-based
model ( Σ) or model recommendations production sequences (MP).

2.3. Conceptual Environment

In section 2.1, we gave a brief overview of our approach. More precisely, it is formed of,
but not limited to, class-diagram-type models and touches on topics like repositories, data
mining, evolution, and recommender systems. Moreover, Eclipse is the technological
foundation for the realization. Therefore, we introduce related ideas and provide the
necessary groundwork for subsequent concepts. First, however, we introduce our
understanding of operations, which is derived from [III10, IEEE 1320.2-1998]:

An operation is a mapping from the cross-product of instances of classes,
and similarly arguments, to a cross-product of instances of classes.

The idea behind these operations is the methods in object orientation, because the basis
of our approach will be methods that exist in the Meta Object Facility (MOF) reflective
Application Programming Interface (API) (cf. subsection 3.1.2 (p. 37)) [Obj14]. However,
our approach needs sequences of operations, which represent successive editing, as
we introduce in section 3.1 (p. 32). Given that idea, we can look into the term models.

2.3.1. Models and Persistence

Our overview in section 2.1 mentioned that the objects under consideration are models
and that we mean to produce recommendations based on some kind of persistence.
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Therefore, we provide an understanding of the term model and examine which kinds we
subsequently deal with as well as the types of persistence we take into account.
Models: Models, or better yet their concepts, have been around for quite some time
[Lud03; Zar+14], and we do not mean to go all the way back to their roots (Latin “modulus”),
but start with a more recent and common understanding by a German poet:

B. Brecht: Der Mensch macht sich von den Dingen, mit denen er in Berührung
kommt und auskommen muss, Bilder, kleine Modelle, die ihm verraten, wie
sie funktionieren. [Bre74]

Roughly translated, Brecht states that humans create images, i.e., small models, from
objects they interact with or need to deal with for the purpose of unveiling how these
objects behave/perform. This statement underlines how the expression model has
an intuitive, almost inherent, meaning, which is certainly not scientific. This might be
due to its long heritage and etymology, but this is beyond the scope of this discussion.
Essentially, researchers in many domains have tried to define model, resulting in myriad
disagreements. This is not only true between disciplines, but also within single disciplines
[Mul+12]. As an example, a discussion on the expressions model and metamodel in the
field of computer science resulted in a public discussion which comprises remarks from
others and clarifications by the author [Küh06b; Hes06b; Küh06a].

We do not mean to inject another disturbance to this discussion, but wrap up the current
understanding so that we can work with this term. The term “model” as used in computer
science is often traced back to Stachowiak [Sta73], Ludewig [Lud03], and Muller et al.
[Mul+12]. Stachowiak’s understanding as a philosopher looks at models in regard of
several features, denoted mapping, reduction, and pragmatic features. In the context
of engineering models in computer science, these terms are altered and supplemented
by Selic [Sel03]. Hence, a model must be capable of abstraction, understandable,
accurate, predictive, and inexpensive. Without providing exact definitions, we can learn
from this example how perspectives on models intervene with their definition. Often,
distinctions are drawn for each by introducing new kinds of models, which are both
prescriptive and descriptive [Mul+12; HM08b]. The agreement among them for Model-
Driven Engineering (MDE) lies in their means of engineering, i.e., how they are built in
terms of “representation of”, “element of”, and “conforms to” relationships, which can be
summarized by mega-patterns [Jea05c; Jea05b; Jea05a]. However, models should not
be confused with just another abstraction level or meta-layer [MBC09; Obj11a], although
these are considerable components.

Altogether, we have that a model is a representation of either a real-world object or
an object to be, and comes in incarnations of different dimensions, namely, purpose,
formality, and granularity. For our applications, this maps to an understanding that a
model is a “related collection of instances of meta-objects, representing (describing
or prescribing) an information system or parts thereof, such as a software product”
[III10, ISO/IEC 15474-1:2002]. Note that we deliberately omit the meta-level for now
and consider it no more than a model of a model, i.e., an abstraction or generalization.
Further, we need to breathe life into these dimensions. First, the purpose of our models is
conceptual with the goal of code generation for static parts of systems, i.e., data models.
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Second, this implies a high degree of correctness and formality, so a code generator
can derive source code from a given model. However, this also requires an appropriate
degree of granularity, because a model needs to grasp as much of a domain as possible
so that the generated source code requires few adjustments.

The models that we are working on can be seen in different early phases of the software
development cycle. Hence, they can be any structural model. Still, the focus is clearly
on the design and development phase. This puts emphasis on domain and conceptual
models. The former are the result of domain analysis and the latter explain and comprise
concepts relevant to engineering projects. As both emerge in the early phases of software
development, a remark on their relationship to specifications is probably considerate. We
are aware of the advantages and limitations, but omit a more distinguished discussion
about models and their relationship to specifications [Hes06a; HM08b].

As “UML is the de facto [standard] modeling language used by software developers
during the initial stages of software development” [SA13], we pick Essential MOF (EMOF)
to formalize models in domain analysis or conceptual modeling. We use EMF core
metamodel (Ecore) as the implementation for our realization in section 3.1 (p. 32),
because tool support is well established and the underlying frameworks have been
shown to be mature in industrial projects [Vog13; Ste+08]. This also allows a change
in perspective or treatment for models from either a set, operation, or graph point of
view. We briefly explain models as graphs in subsection 2.4.3 and introduce the set
perspective and operation-based model in greater detail in section 3.1 (p. 32). Thereafter,
we make use of a perspective or treatment as needed. While harvesting models deals
with the status of a model and treats it as a graph, model evolution and reuse come back
to operation-based models. Note that this also changes our understanding of models
to be an Ecore model most of the time, which can often be considered a class diagram
type model.
Persistence: For the sake of simplicity, let us disagree with the statement that “everything
is a model” for a moment [Béz04]. Instead, let us look at just UML models and how they
are organized. There are all-in-one models containing everything, or we can separate
them into files, e.g., XML Metadata Interchange (XMI). Further, we can organize file
structures. Alternatively, we can put models in databases as binary large objects (BLOB)
to replace the file structure or dissolve them in graph databases [BK14]. This makes
models remotely available, and we distinguish these options using the SEVocab [III10].

One of the most-used terms for the storage of software-related artifacts is reposi-
tory. Often, these are used for configuration management purposes, and hence provide
version control mechanisms, and some have a dedicated organization. As a further
distinction, repositories can be subdivided into, e.g., data, integrated, master, and soft-
ware repositories. This means they can purely provide a storage function, storing all
available information such as models, tools, and measurements, be the master copy of
everything, or simply provide a permanent archival of software and respective artifacts.
Closely related to this idea of software repositories are software libraries, which have an
additional purpose of aiding in software development or maintenance.

Later, in section 3.2 (p. 48), we will derive the term knowledge library, which picks up
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this “aiding” aspect of software libraries and combines it with aspects of a knowledge
base. The latter is often considered a collection of expertise in a domain with additional
inference rules. As we only consider the expertise and put the knowledge extraction
elsewhere, we build the abovementioned term.

2.3.2. Promising and Supporting Approaches

The abovementioned storage for software-related artifacts, regardless of whether it
eventually forms a knowledge library, must be filled with data for reutilizations. Both
aspects can build on previous research relevant to these issues.
Data and Graph Mining: Data mining is often considered to be data analysis for the
purpose of finding systematic relationships and transferring them to new data [Ama+11;
HKP12; Men14]. Note that we avoid talking about “consistent patterns”, as usually
considered in data mining, because patterns have a different meaning in our software
engineering environment. Regardless, data mining studies datasets using techniques
from machine learning and other fields, so extracted information is more comprehensible.
The classical application area is “big data”, which refers to huge datasets that are
considered difficult to analyze manually (hence the term knowledge discovery and the
saying “separate gold from the rocks” to mean finding something beneficial).

For our application, the data at hand are not necessarily “big data”, but we still aim
to extract information from a potential mess. Thus, techniques from data mining and
machine learning are similarly applicable. As an example, consider a huge model and
the task of extracting beneficial and unknown parts as potentially reusable components.
This involves finding the known parts (in a library) and identifying reusable parts, areas
that have been extensively studied in machine learning and data mining. However, we
must keep in mind that our models inherit a certain structure, as discussed above (also
cf. figure 2.4). In some respects, this makes data mining more like graph data mining.

Hence, one central consideration is clustering, which is the task of grouping and struc-
turing data without taking into account known structures. In data mining, machine learning
algorithms such as k-means clustering or community detection are popular [Ama+11;
AW12]. The former groups a set of data into k partitions with respect to their features.
These can be coordinates and the partitions can be circles in a coordinate system. The
latter tries to find a subset of nodes from a graph such that all nodes in the subset are
strongly connected. We introduce clustering algorithms in subsection 3.3.2 (p. 75), some
of which leverage textual information available in models to give a form of text mining.

With regard to text mining, we apply and base our ideas on two concepts. First, the
term frequency-inverse document frequency (tf-idf) realizes the idea of grasping the
importance of a term in a document. It does so by relating the term occurrence relative to
other term occurrences and documents [Men14]. However, tf-idf is only reasonable after
removing certain words of low entropy, e.g., articles. Hence, we often apply stemming
and stop word removal implicitly without any mention of it [MRS08; Wil06; Por80].

Further, the data mining task, which we call harvesting, retains our knowledge library
regarding both its data and its structure. Therefore, neighborhood relationships from
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data mining, e.g., the k-nearest neighbors (kNN) [Men14], obtain a different meaning, as
introduced for graphs in section 2.2 and as shown in section 3.3 (p. 73).
Recommender Systems: Closely related to data mining and machine learning, recom-
mender systems come into the picture [Ric+11; Jan+11]. They are information filtering
systems that are rooted in decision support [Spr80], but they became popular in recent
years for web systems and shops. In these environments, a recommender system tries
to get the most valuable information out of a mass of information for a customer. The
most popular examples at the time of writing are Amazon and Netflix [LSY03; BL07].
Both use recommender systems to calculate product or movie recommendations based
on user profiles. In more detail, they leverage their experience on what a user liked or
disliked to predict a preference based on how similar users behaved in the past.

Recommender systems produce result lists with so-called (recommendation) items,
and the respective algorithms are commonly subdivided into four types [RRS11]. First,
the abovementioned recommender system is called collaborative-filtering and is con-
sidered the most popular and widely used approach among recommender systems. It
recommends items that other users of similar taste liked. Hence, user ratings and simi-
larity between users are cornerstones. Second, content-based recommender systems
take the similarity between items into account in producing recommendations. They use
user tastes as well as meta-data, often called features, for comparing items. This means
that a learning phase with respect to the features is necessary. Hence, content analysis
and item meta-data are cornerstones [LGS11]. Third, knowledge-based recommender
systems take domain knowledge into account and derive a degree of user need or useful-
ness. Thus, some metric regarding user needs, which is called the “problem description”,
must be matched by recommendations. These may come from a collection of domain
knowledge, like a knowledge library. Fourth, community-based recommender systems
work on the basis of “tell me who your friends are, and I will tell you who you are”. The
idea behind this is that recommendations from friends are taken more seriously. They
are also called social recommender systems, because they are mostly applied in social
networks. Each of these types has its individual drawbacks. Hence, issues like the cold
start problem, when no information about a user is available, are approached by hybrid
recommender systems that combine the above methods.

Shifting the application domain from web systems and shops to software engineering
tasks changes certain considerations. The majority of research in this field is conducted
for source code [Bru12; Hei12a; Wal13; RW14; JHA14], but program transformation,
bug prediction, and assignment recommendation are covered as well [BR14]. By and
large, the issues addressed so far concern information overload and require further
research in respect of the storage, representation, and retrieval problem, as mentioned
in section 1.2 (p. 6) [JHA14].

2.3.3. Software and Model Reuse

It is human nature not to reinvent the wheel and to reuse existing solutions in everyday life
[LL10]. This is also true for computer science and, more precisely, software engineering.
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Here, a common distinction on reuse is made between software reuse and concept reuse
[Som11]. Whereas reuse in general concerns any artifacts of software development, the
more precise software reuse refers to project artifacts, and the more abstract concept
reuse refers to project-independent artifacts. As a very simple example, a source code
run multiple times is already software reuse, and it does not matter if we think of a loop,
method, object, class, component, or subsystem. In contrast, concept reuse looks at
a broader perspective and we can think of design patterns [Gam+95], best practices
[LR07], or reference architectures [TDM10]. All of these are independent of a particular
project and need some effort for application, but provide benefits as well. Note that
we must not confuse this understanding of a concept with that of conceptual modeling,
which refers to terms for domain objects. Hence, we will deal with concept reuse in the
context of conceptual modeling and only marginally in the understanding that contrasts
with software reuse.

To start, we employ some rather general knowledge, rather than scientific understand-
ing of software reuse, and refine it throughout the discussion.

Software reuse refers to using existing software artifacts during the construc-
tion of a new software system. [Kru92]

The important point here is the continuous nature, i.e., an inherent process, and the
use of existing parts in new “wholes”. Other than that, many concerns, e.g., alteration,
are unmentioned. Subsequently, we do not mean to provide an in-depth introduction
to software reuse [Bal01; Som11; LL10], but build up to model reuse. An elaborate
discourse on software reuse is provided by Mili et al. [Mil+02].
Software Reuse: Turning to the attention paid to software reuse, we learn that design
phases in other engineering disciplines encompass a dedicated activity for reuse, i.e.,
build the new products using as many existing parts as reasonable [Som11]. For soft-
ware engineering development processes, no such design activity is mentioned in the
mainstream. Instead, the all-anew paradigm is predominant [Som11]. Further, a clear
indicator of the attention paid to software reuse is the fact that the respective scientific
conference (ICSR - International Conference on Software Reuse) is only biannual. An
even stronger indicator comes from chapter 1 of an introduction to IEEE Standard 1517
“Reuse Processes” for Software Life Cycle Processes [IEE10]—a chapter named “Reuse
is Boring!” [McC01]. After a brief definition, it starts as follows: “Although a potentially
powerful technology, reuse has never been counted among the most interesting software
topics. In truth, most software professionals consider reuse downright boring.” So, is
software reuse deemed to fail? Or is it not of interest, because it has been solved
[Pou99]?

First envisioned in the late 1960s for component libraries [McI68], software reuse proved
successful in terms of productivity and quality in America during the 1970s and in Japan in
the 1980s ([LP79] according to [Pri91], [Mat84]). These success stories concern source
code reuse of several kinds, and the first essay discussing these appeared in the early
1980s [Sta84]. The discussion of reuse activities is streamlined into five problem areas:
information retrieval, software generators, component composition paradigm, program
understanding, and benefit analysis. Another observation made at the same time regards
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concrete hashing implementations: “it is the abstraction and not the concrete instance that
gets reutilized” [Sta84]. Another support for streamlining concerns artifact classification
in terms of abstraction level, customization method, and reusability conditions [LSW87].

Along with the trend for object orientation in the early 1990s, existing software reuse
approaches were assessed and classified in terms of how artifacts are “abstracted,
selected, specialized, and integrated” [Kru92]. This puts more emphasis on software
reuse as a process and fosters a more precise idea, which we gain by fast forwarding to
the understanding at the turn of the century:

Software reuse is the process whereby an organization defines a set of
systematic operating procedures to specify, produce, classify, retrieve, and
adapt software artifacts for the purpose of using them in its development
activities. [Mil+02]

This definition became widely accepted [Som11; LL10], and it will later serve as the foun-
dation for our understanding. However, to our mind, one vital facet included by others is
missing: “Software reuse is the use of [...] software knowledge to construct new software”
[FK05]. Note that knowledge also comprises tacit parts, which surpasses the common
understanding of software artifacts. This is due to the focus of the abovementioned
source on reuse as related to product lines, including so-called domain engineering
(product line engineering), which we consider as closely related to is meant by software
knowledge.

Returning to software libraries [MMM98], another perspective on software knowledge
is as the “wisdom of the crowds” [Bru12]. Here, source code from public libraries, which
are more precisely repositories in this case, is analyzed by means of recommender
systems, and hence, the reuse process is automated in several ways. The goal is to
manage the information overload problem. Similarly, an approach for software libraries
employs ideas of recommender systems [Hei12a]. Therefore, we can conclude that
the information retrieval problem mentioned above has recently been approached in a
different way to traditional methods.

This contrasts with mostly planned software reuse, as defined for an initially introduced
process, but there is another, unplanned side of the coin. This kind of software reuse
goes by many names, e.g., code scavenging, ad hoc, opportunistic, copy-and-paste, or
pragmatic reuse [HW12, for respective references], and it is often a reality in industrial
projects. The fundamental difference from other source code reuse is that “the function-
ality itself is a legitimate target for modification” [HW12]. This will also need to hold true
for our model reuse.
Model Reuse: The models we are dealing with are often results of domain analysis,
and it was stated in the 1980s that “reuse of domain analysis information [...] is the most
powerful brand of reuse” [Nei84; PFW95; Cyb+98]. Only five parts of a related domain
description need updating. In our case, transformations are not source-to-source, but
model-to-text transformations.

Further, we have already learned that reuse can be planned or unplanned, and that the
latter is preferable in our case. Still, there are some lessons to be learned from planned
model reuse. An example alters the UML metamodel and extends it using so-called reuse
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contracts [Luc97; MLS98]. These contracts are explicit documentation between a reuse
provider, who defines how an element can be used, and a reuser, who is supposed to
document how it is used and how it evolved. Certainly, this solves the issue by changing
the game, i.e., change to the foundations of UML. Further, it neglects problems of retrieval
and disregards experience from source code reuse, which shows that unplanned reuse
is industrial reality [HW12]. Therefore, model reuse should serve a pragmatic middle
ground, which is more supporting than enforcing:

Model reuse is a systematic and guided process for preserving modeled
knowledge, avoiding redundancy, and supporting quality assurance, as well
as retrieving and reutilizing modeled knowledge.

This definition alters the definition given by Mili et al. in a few respects [Mil+02]: First, the
software artifacts are restricted to modeled knowledge, which otherwise surpasses mod-
eled artifacts. Second, the organizational perspective is omitted, although model reuse
is more reasonable for cross-project application. Third, we altered the set of systematic
operating procedures to a systematic and guided process, because processes in our
understanding comprise activities that express similar semantics, as for software reuse,
but have been adjusted to modeling and modeled knowledge. Hence, the procedures to
retrieve and adapt, for example, became retrieve and reutilize. Note, that our process
comprises quality assurance as well. This is attributed to the subjective nature of model
quality and a potentially pragmatic nature of preservation [Moo05].

We intentionally include this perspective of pragmatic model reuse, because similar
to pragmatic source code reuse, we see models as a legitimate target for modification.
We think this because we aim at only so-called eighty percent solutions. Contrary to
pragmatic source code reuse, our approach is intended to support localizing models for
reuse [HW12]. This exceeds repository functionality (cf. [Bel99]), and we mean to do so
by building our solution on a knowledge library and employing ideas from recommender
systems for retrieval. Further, browsing functionality is essential, so the classification and
retrieval problem introduced above can be approached in a similar manner to “faceted
schema” [PF87]. In a nutshell, we will investigate pragmatic model reuse subsequently,
but refer to it simply as model reuse, because we see unaltered reutilizations as the
exception rather than the rule.

Altogether, the current efforts in recommender systems for software engineering tasks
focus on the reuse of domain knowledge, but this excludes modeling tasks, as we
showed above. Only some rather brief digressions regarding recommender systems in
modeling have been conducted so far [SA13]. As an example, one approach compares
collaborative filtering and association rules for rather specific modeling tasks in Simulink,
but shows how modelers benefit from element recommendations, and we take this as an
encouraging first demonstration [Hei12a; Hei12b].

Altogether, we do not see the (model) reuse challenge as being solved [Pou99], and
agree that the library (or storing), representation, harvesting, evolution, and retrieval
(or reutilizations) issues have not yet been addressed appropriately, as we explained in
section 1.2 (p. 6) [JHA14]. As a note, this also addresses some known scalability issues
in modeling regarding MDE [KPP09; Béz+05].
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2.4. Requirements and Design

The concepts developed in the course of this research build the foundation for a software
prototype. Hence, we can subsequently formulate requirements in the form of use cases
and a demonstration walkthrough. Further, we derive a subsystem decomposition from
the given use cases, and introduce a running example to demonstrate the concepts.

2.4.1. Top Level Use Cases

As a frame for a potential software prototype, we developed the use cases presented
in the use case diagram in figure 2.1. The actual method used originated in openUMF
[Hof13; HLN09], but we do not provide the full extent here for the sake of brevity. Instead,
we present a more prosaic explanation, a demonstration walkthrough, and a derived
subsystem decomposition. Note that all use cases should be considered with the storage
of models, which we later denote as a knowledge library.

Given a model editor with a model that is currently being edited, we can start har-
vesting potentially beneficial parts, summarized as “Harvest Model” in figure 2.1. This
use case consists of the compulsory use cases Split Model and Store Model. The
former analyzes the currently edited model, proposes potentially beneficial parts, and
presents them to be reviewed and edited by the Modeler. As soon as this is done, the
latter use case represents the actual persistence. This requires the Modeler to provide
additional meta-data and the knowledge library to persist the beneficial parts. An
optional use case concerns Mark Elements, which refers to the identification of elements
already available in the knowledge library and presentation of them to the Modeler.
Regardless of whether this optional use case is executed in Harvest Model, the system
leaves the status of editors opened for each beneficial part for storage in the knowledge

library to start the evolution.
With a model opened in a dedicated evolution perspective, which displays relevant

information, we can start evolving the models. All use cases summarized by “Evolve
Model” are optional. Thus, Edit Model monitors the editing of a Modeler on a model
and provides guidance in case of problems. As soon as the Modeler has finished by
saving the model, a new version is produced and saved in the knowledge library.
Independently, a Review Model describes how a Modeler is guided through an assess-
ment of the currently opened model by focusing on a certain aspect. Further, a Stage

Model denotes how a Modeler can change the quality assessment of a model in the
knowledge library. The system leaves the Evolve Model in case the model editor
is closed. Additionally, an Evolve Model can be started directly from the knowledge

library.
While working on an unrelated model, the Modeler can start the use case “Reuse

Model”. This comprises a compulsory Query Model and a Pick Model. The Query

Model can happen either reactively on the request of the Modeler or proactively by, e.g.,
a timeout. Note that we omit this actor in figure 2.1. In a reactive case, the Modeler

specifies a request, so the knowledge library can be queried. The results from this
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.store.mdf

.harvest.mmf .evolve.mef .reuse.mrf

Figure 2.2.: HERMES Subsystem Decomposition

query are processed and the Modeler can Pick [a] Model. The Modeler may wish to
Preview Models to find a suitable model or cancel the operation. In the latter case, the
system status returns to the initial state; otherwise, the selected model is applied to the
editor canvas.

Altogether, we can summarize our use cases as a demonstration walkthrough: Given
a model, the showcase comprises screenshots of our software prototype, as presented
in section 4.6 (p. 161). These screenshots show how known elements are marked and
that submodels are found during harvesting, as illustrated in figure 4.3 (p. 154). Further,
they illustrate how quality guidance is provided during evolution, as can be seen in
figure 4.4 (p. 155). Finally, the screenshots depict how querying as well as previewing
works during reuse, as depicted in figure 4.6 (p. 157). We have included a screenshot
of our knowledge library browser in figure 4.2 (p. 153) to serve as the starting point for
editing models, which actually starts the evolution.

2.4.2. Subsystem Decomposition

Given the abovementioned use cases, we can undertake a subsystem decomposi-
tion. In fact, each top-level use case from figure 2.1 corresponds to a subsystem in
figure 2.2. Therefore, one will realize the harvesting (.harvest.mmf), one the evolution
(.evolve.mef), one the reuse (.reuse.mrf), and one the knowledge library, which we
later denote as store (.store.mdf). Hence, we postpone more detailed explanations to
section 4.1 (p. 152), where we match the subsystem decomposition with the conceptual
architecture.

2.4.3. Running Example

The course of the following text makes use of numerous examples, and our recurring
running example is depicted in figure 2.3. This is a model concerning three areas, namely
Vehicles, Passengers, and Airports. Each of these terms are related and enriched
with further concepts. Hence, Passengers make up Crew and Travelers, both of which
can be further refined. The same holds true for the Airport, which comprises several
items of infrastructure such as Hangars, Towers, or Runways. Finally, the Vehicles
include Cars or Planes. Note that this model does not contain compositions, which is a
negligible detail, because they do not provide any benefit.
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Figure 2.3.: Running Example: Airport and Surroundings

We will use this running example to demonstrate several concepts. For example, we
will demonstrate how it can be written more formally as a tuple of sets or as a sequence
of operations, and how it can be split up, edited, or recommended for reuse. Many of
these treatments will need a slightly different perspective, but all will be rooted in either a
tuple form or operation-based form, as we explain later. Hence, we will provide more
details later as needed.

One detail regarding the inherent graph structure of class diagrams is worth mentioning
now. Figure 2.4 shows an excerpt of figure 2.3 and its representation as a model graph.
We have already used the notation for vertices and edges common in EMF, but we
ignore the prefixing “E/e” because we will come back to it in section 3.1. For several
reasons, the count of vertices is not obvious. First, the reference between Vehicle

and Engine denoted by an edge becomes a vertex (2) in the model graph, but the
generalization for the Car remains an edge (e). Further, the elements contained in
Vehicle are decomposed into two vertices (4 and 5). We will return to these details of
decomposition relationships and contained elements of models in graphs several times,
and discuss them as required.
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kind : VehicleKind

Engine

Car

Vertices       Edges
EClass  EEnum  EAttribute EReference eReferences eAttributes eType  eSuperTypes
1: Vehicle 5: VehicleKind 4: kind  2:noName a, b  c  d  e
3: Engine
6: Car

1 2 3

4 5

6

a b

e

c
d

Figure 2.4.: Vehicle Excerpt from figure 2.3 as Model Graph

2.5. Realization Environment

Demonstrating the developed concepts by implementing a software prototype requires
an environment, and we opted for what was, at the time of writing, the most popular
development platform available: Eclipse [Vog13]. For some parts, we added software
from other, unrelated environments. In particular, this concerns the point at which we
started distributing our solution.

2.5.1. Eclipse and the Eclipse Modeling Framework

At the time of writing, the Eclipse IDE was the most popular development environment
and had just transitioned from series 3.x to 4.x [Vog13]. This changed some architectural
cornerstones, which means that a system providing core functionality as singletons
was replaced by dependency injection [Gam+95; JF88]. This inversion of control was
intended to ease development, most notably for projects using Eclipse as a Rich Client
Platform (Eclipse) (RCP). In such cases, core functionality like resource handling, bundle
management, or Graphical User Interface (GUI) foundations are now available through
annotations. Still, a compatibility layer allows 3.x development and ensures that legacy
plug-ins run in the Eclipse 4.x series, as illustrated in figure 2.5. We employ Eclipse as
our IDE for development and as a basis platform (RCP) for our HERMES products, i.e.,
the HERMES IDE for demonstration and the HERMES Software Development Kit (SDK) for
sophisticated development (cf. section 4.6 (p. 161)).

Another notable aspect in figure 2.5 is that EMF Core is a fundamental, non-optional
element of the Eclipse 4.x architecture. EMF is short for Eclipse Modeling Framework and
is considered one of the standard tools for model-driven development [Ste+08]. It supports
models in a similar way to class diagrams, which are in fact more akin to EMOF models,
and enable successive code generation. To that end, we can consider EMF models as
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3.x Compatibility Layer

Applictation Model, Rendering Engine, CSS Styling, Dependency Injection, Services

Runtime (Equinox, OSGi) EMF Core UI Core (SWT, JFace)

Help P2 Update Compare Debug Search Text

JDT

PDE

Figure 2.5.: Base Components of Eclipse 4.x RCP Applications [Vog13]

domain models and the generated prototypes as experimental software for incremental
and iterative development. However, EMF Core allows reflective interpretation as well,
which is why it is part of the Eclipse 4.x architecture. The so-called application models
are held as EMF models that can be changed during runtime, which might change the
entire program appearance. Thus, EMF models are essential in Eclipse products and
are used on a daily basis in industry-style applications.

Other than that, EMF models, which we denote as models, are often called metamodels,
because they represent the structure for some instance. Hence, rather abstract concepts
from a model such as “Statemachine” can be instantiated as “Traffic Lights”, “Door
Sensors”, and “Soft Drink Machines”. The important consideration for us is that we use
the EMF description of a modeling language, i.e., Ecore, as our foundation for models.
This is sufficient and does not reduce the generality, because “Essential Meta Object
Facility (EMOF) [...] quite closely resembles Ecore” [Ste+08].

A note on the “meta discourse” [Jea05c; Jea05b; Jea05a]: We generally avoid it
and leave readers to decide whether a model is “meta” enough or needs more ab-
straction. In a sense, the discussion comes down to the question of whether Ecore,
i.e., the ecore.ecore file, is the meta-meta model and the Ecore model, i.e., the
statemachine.ecore, is the metamodel; then, the runtime instance, i.e., the traffi-

clights.xmi, is the model. Alternatively, if Ecore (ecore.ecore) is the metamodel and
the Ecore model (statemachine.ecore) is the model, then the runtime instance (traf-
ficlights.xmi) is just an instance. The Object Management Group (OMG) deliberately
dropped the idea of numbering meta-levels of models and modeling languages [Obj14],
though the figure is still popular and we use it for classification in section 3.1 (p. 32). On
the plus side for the “meta” argument are the phonetics and pretentious sophistication.

2.5.2. Other Software and Tools

Next to the Eclipse IDE and RCP, there are other pieces of software involved in either
realizing or developing our prototype, because the Eclipse ecosystem and orbit do not
provide everything we need. Regarding our prototype, we built our data backend for
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textual files or databases, with the latter being particularly suitable for graph databases
such as Neo4J and Rexster [RWE13; RN10]. Alternatively, the Hibernate ORM served
a MySQL database. For querying purposes, we used either the functionality provided
by MySQL or, for the graph databases, Apache Lucene and elasticsearch [GT15]. In
addition, files in the data backend are under git version control [CS09; LM12].

Regarding our development, there were additional tools, frameworks, and libraries
involved, and we provide a short list of the essential ones grouped according to their
purpose. Almost the entire prototype is written in Java [Gos+13], and this makes Maven a
strong candidate for our build environment. In fact, we use Maven 3 adjusted for Eclipse,
which is called Maven Tycho. This enables continuous integration with a Hudson or
Jenkins server, which is bound to a SonarQube server for quality assurance in terms of
source code metrics and test coverage. The tests themselves are mostly of Hamcrest
style, which is an adapted Junit with fluent interfaces. Further, mockito was used for
mocking and stubbing. The GUI tests were based on SWTBot, which also served as
a screen-shot engine for documentation. In addition to the logging provided by Maven
Tycho and Hudson, we implemented our own logging framework built on SLF4J with
LOGBack as a backend and Beagle as a viewer.

As this environment is rather complex, we simplified the development by virtualization.
This allowed a one-script setup and, hence, a local git clone could start an entire build.
The clone would install a Vagrant and Docker environment, and setup Docker images for
a Jenkins, Nexus, SonarQube, MySQL, Rexster, and elasticsearch server. After that,
the actual build would run in the Jenkins server. All that is necessary for this setup is a
VirtualBox and Maven 3 installation.
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In my righteous own mind
I adore and preach the insanity
you gave to me.

Anders Fridén
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Any course of actions in a systematic process builds on a conceptual foun-
dation. This is as true for business workflows as it is for systematic reuse.
The former might be a simple workflow in which an employee registers for a
holiday with the underlying concepts of organizational roles and tasks, which
eventually leads to approved or rejected holidays. The latter, systematic
reuse [IEE10], also comprises involved roles and tasks, as we subsequently examine,
tailored to model reuse and addressing the issues described in more detail in our mission
statement in section 1.2 (p. 6) and refined in subsection 2.3.3 (p. 20).

Hence, we lay the groundwork for our model reuse approach by establishing two
perspectives on models. First, models as “white-boxes”, which we view as graphs or
sequences of editing operations (cf. subsection 2.3.1 (p. 16) and cf. section 3.1), and
second, models as “gray-boxes”, which concerns how to organize and interlink them in
a model knowledge library (cf. section 3.2). Then, we take this groundwork and walk
through the three tasks of the model reuse process. First, we identify parts of models
and put them away for reuse (section 3.3). Second, we define our model evolution
approach for model knowledge libraries (section 3.4). Third, we describe our model
reutilization approach (section 3.5). Mind that we employ our running example “Airport
and Surroundings” from subsection 2.4.3 (p. 26) to demonstrate the tasks at hand. Hence,
we show how the Airport, Passenger, and Vehicle parts can form a model knowledge
library, i.e., how they are stored; how the central Airport parts can be identified as
beneficial for a model knowledge library, i.e., how they are harvested; how the Airport

model can be enhanced to make them more reusable, i.e., how they are evolved; and
how the Airport model can be retrieved and reutilized, i.e., how they are reused.

Altogether, we formulate an approach for model reuse that is complete and supports the
process of systematic model reuse in its entirety. This comprises semi-formal foundations
and concepts that support the storing, harvesting, evolution, and reuse of models. Further,
we can leverage these foundations to feed properties to widely available recommender
systems, but we go beyond that and provide an additional and extended approach.
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3.1. Operation-Based Models

In subsection 2.3.1 (p. 16), we introduced models and followed an approach
that treats them as directed graphs, or digraphs. These graphs can be
considered as linked trees, which enable intuitive memory and persistence
structures. While the former eases the editing process, the latter are intended

for long-term storage in XMI documents [Ste+08].
However, models are rarely treated as being carved in stone, because iterative and

incremental developments require continuous alteration. This can be rooted in different
causes, which are mainly of syntactic or semantic nature. The syntactic nature mostly
deals with restructurings, which are often called refactorings, although an actual refactor-
ing requires some subsequent validation to be applied [Fow99]. In contrast, the semantic
nature realizes new, changed, or dropped requirements on models.

Together, these alterations lead to editing-support functionality of several kinds. As a
first example, error preserving functionality was sought. This means, e.g., that a checker
was required to ensure that every attribute has a valid type or that no duplicate identifiers
are defined. As a second example, transformation functionality could be required, so
that a model can be used in different environments. For example, a workflow model
could be transformed into a Petri net so that it can be executed by an engine. As a final
example, a modeling environment could require collaborative editing functionality. This
needs asynchronous transactions on a model to retain a valid state. As these examples
differ, their formal foundations do as well.

Hence, many attempts at formalizing model alterations were undertaken for these dif-
ferent purposes. The most intuitive way to formalize model alterations for most computer
scientists and mathematicians is derived from set theory [AS08; MBC09; KE14]. This
formalization is often chosen for reasoning about types and related topics. Focusing on
the structural nature of many models, formalizations based on graph theory are popular
for reasoning about changes and structures [Her11]. Combining this with a membership
equational logic, and treating models as directed graphs, yields formalizations targeted at
high-performance processing and nondeterministic concurrent computations [Rom+07].
Yet another approach for formalizing model alterations with graph theory is aimed at trans-
formations. This solves problems regarding lost updates and bidirectional processing. In
more detail, transformations are formalized by triple graph grammars (TGGs) [Sch95].
A further approach enhances formalization from set theory to an algebra focusing on
collaborative editing, i.e., conjunctive, disjunctive, and negation properties of opera-
tions [Kög11]. Moreover, models can be formalized by operations similar to command
objects [BG93]. Starting from an empty element, a chain of operations describes the
resulting state of a model. We mainly follow this idea and consider models as sequences
of operations, because we can subdivide these with little overhead, as we show below.
An UML-like model in operation-based formalization comprising an airport class looks
something like this:

newPackage(‘AirportModel ’) : newClass(‘Airport ’) : newAttributep‘name’)
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MOF

M1 Layer - Model

M3 Layer - MetaMeta Model

M2 Layer - Metamodel

M0 Layer - Instances

UML
Metamodel

IDL
Metamodel...

...
UML 

Model
IDL

Interface

Figure 3.1.: Example for Metamodel Layers similar to [Obj02] dropped in [Obj14]

Note that this pseudocode notation only sketches the idea. Most importantly, we
will later use the mathematical composition relation, which reverses the order of the
operations to be read from right to left.

Subsequently, we gain operation-based models by, first, defining model elements as
they appear in our target environment. Then, we use these model elements and provide
semi-formal model operations as needed to support model evolution in section 3.4 and
model reuse in section 3.5. While developing elements, relations, and operations, we
postpone some design rationales and observations to subsection 3.1.4 for the sake of
readability.

3.1.1. Model Elements and Relations

Operations in our framework will map elements from a domain to a co-domain, just as
relations can do with real numbers. However, what could be our domain and co-domain
for our operations on models and what could be our modeling layer (cf. figure 3.1)?

The modeling layer we intend to deal with is best depicted as M3 in figure 3.1. This is the
topmost layer, named the meta-metamodel layer in the MOF 1.4.1 specification [Obj02].
It defines MOF and its basic elements of Classifier, Instance or Class, and Object,
which are necessary to define [Obj14], e.g., the UML [Obj11a]. The detailed layering
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shown in figure 3.1 was dropped in MOF 2.0, because the standard should not confuse
users with a specific number. Now, the specification simply states that the number of
abstraction layers is open-ended with a minimum of two [Obj14].

However, MOF as a language is considered to be complex and EMOF, the essential
MOF, was introduced as a lightweight alternative. It is stripped to the minimum subset of
MOF, which is still expressive enough for most scenarios. Additionally, the “Essential
Meta Object Facility (EMOF) [...] quite closely resembles Ecore” [Ste+08], and some tools
demonstrate how to transform back and forth between MOF and Ecore [GR03]. This is
of vital importance for the course of this text, because Ecore, which is the metamodel of
EMF, is the basis for our realization and is often seen as an implementation of EMOF.
Hence, our solution works interchangeably in both with one limitation: a relation in
Ecore metamodels denotes accessor methods [KE14], whereas in UML “[a]n association
describes a set of tuples” [Obj14; Obj11a]. In other words, multiplicities are handled
differently, but with congruent semantics. This difference is negligible for the definition
of our domain and co-domain. Therefore, we can build them with help of the Ecore
metamodel from the EMF handbook [Ste+08].

A reduced version of this metamodel, only depicting the relevant information for our
definitions, is shown in figure 3.2. It comprises model elements, as coined by Wachsmuth
[Wac07], and relationships. Accordingly, we semi-formally define sets for the depicted
elements (Ex ) as follows (cf. table 3.1): EC is the set of all EClasses, EA is the set
of all EAttributes. Note that the element sets in italics are abstract in the sense of
object orientation, which makes our definitions semi-formal. In our case, this means that
they are automatically constructed unions from other sets, which are subelements in
figure 3.2. For example, EClass and EDataType are subelements of EClassifier, and
hence: Ecl :“ EC Y ED or ENamedElements is Ene :“ Ete Y Ecl Y EPK Y EL.

Table 3.1.: Element Sets in Ecore (cf. figure 3.2)
Element Set-ID Element Set-ID Element Set-ID

Classes EC Packages EPK Named Elements1 Ene
Attributes EA Enums EE Classifiers1 Ecl
Operations EO Literals EL Typed Elements1 Ete
Parameters EP DataTypes ED Structural Features1 Est
References ER Model Elements1 Eme

1Element sets in italics (and lowercase index) are abstract

In addition to the definitions derived from figure 3.2, we need the basic data types
expected for ED :“ EBooleanYEIntegerYEStringY... , but note that these are mostly platform-
dependent, e.g., in favor of Java. This breaks the interchangeability between EMOF and
EMF/Ecore. Hence, we did not put them in table 3.1. In EMF/Ecore, these data types
are introduced in models by ED-elements. For example, an ED-element called JString
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could refer to java.lang.String and then enable attributes of type JString, which are
actually real Java strings.

Another “attribute”, or compulsory property, which comes with each element in table 3.1
(cf. the complete figure 3.2 in [Ste+08]) is the name property. In Ecore, this belongs to
the ENamedElement and is, therefore, part of all the elements we define in table 3.1. To
be more precise, the elements become tuples of pEne ˆ Stringq. For the sake of clarity
and comprehensibility, we do not address elements as tuples, but use a superscript
notation. As an example, an EClass, say εC P EC, with name property Airport, i.e.,
pεC, Airportq, is denoted as εAirportC . For contained elements, such as attributes, we
use a path (breadcrumb) notation to maintain uniqueness. Consider, for example, an
εA P EA called name. This could be contained in every εC P EC. Therefore, we use the
name property of the container element as a prefix, e.g., in our case Airport.name, or
for the element εAirport.name

A . Note that the name property is required to identify or index,
as we do in subsection 3.2.2.

Careful readers will have noticed that we omit the Universally Unique Identifiers (UUIDs)
for all the elements. Of course, every Ene-element has such an ID, but we try to keep our
approach simple and readable. Regardless, bear in mind that this provides important
information for identifying elements in models or renamed duplicates. For now, we
consider it ‘just’ a realization detail.

Next to elements, figure 3.2 shows model relationships (ρx ), only a few of which are
named for reasons of clarity and comprehensibility. They are necessary to express how
elements are related. For example, an EClass can be related to another EClass by means
of an eSuperType. This is a notion for generalization between two classes, and might
be expressed as an element in ρeSuperTypes (cf. table 3.2). In the case of two EClasses
named a and b, where a is the superclass of b, the relation is pb, aq P ρeSuperTypes. Note
that some relations have special properties, such as the relation ρeParameters. This is not
binary, because an operation can take several parameters. We unite all relations for
convenience, and denote them as: ρe :“ ρeSuperTypes Y ρeAttributes Y ....

Table 3.2.: Relationship Sets in Ecore (cf. figure 3.2)
Relation-ID | Relation Relation-ID | Relation

ρeSuperTypes Ď EC ˆ EC ρ˚
eExceptions Ď EO ˆ Ecl

ρ˚
eAttributes Ď EC ˆ EA ρ˚

eType Ď Ete ˆ Ecl
ρeOperations Ď EC ˆ EO ρeStrucFeatures Ď EC ˆ Est
ρeParameters Ď EO ˆ p

Ś

EPq ρeClassifiers Ď EPK ˆ Ecl
ρ˚

eReferences Ď EC ˆ ER ρeLiterals Ď EE ˆ EL
ρ˚

eOpposite Ď ER ˆ ER

Considering tables 3.1 and 3.2, a model of all models (m PM) is a tuple of sets:

m :“ pEA, Ecl, EC, ... , ρeAttributes, ρeClassifiers, ... ,Rq, R : constraint rules (3.1)
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As an example for R, figure 3.2 states that an EEnum can only contain EEnumLiterals.
These constraint rules are only mentioned for completeness, they do not play any further
role. Put together, an excerpt of the model from figure 2.3 (p. 27) without a container
package but comprising the classes Airport and Runway could look like this (see
elements and relationship sets in table 3.3):

mfigure 2.3
Ecore :“ pEfigure 2.3

A , ... Efigure 2.3
C , ... Efigure 2.3

R , ... ρfigure 2.3
eAttributes, ... ρfigure 2.3

eReferences, ...q (3.2)

Table 3.3.: Sets build on excerpt from figure 2.3 (p. 27)
Set-ID | Element Set Relation-ID | Relation Set

Efigure 2.3
C = tAirport, Runwayu ρ

figure 2.3
eAttributes = tpAirport, Airport.nameq,

pAirport.name, EStringqu

Efigure 2.3
A = tAirport.nameu ρ

figure 2.3
eReferences = tpAirport, Airport2Runwayqu

Efigure 2.3
R = tAirport2Runwayu ρ

figure 2.3
eType = tpAirport2Runway, Runwayqu

The sets introduced above require further remarks in some respects, because we omitted
some details from figure 3.2 for the sake of simplicity. First, we ignore the relationship
from EPackage to EPackage, because we work solely on a flat-single-package level and
do not need subpackages. Second, we skipped EAnnotations entirely, as they do not
provide any semantic benefit for our approach. Finally, our topmost element type is
ENamedElement and not EObject. EObject in EMF/Ecore is like Object in Java, the root
object of all objects. We could map ENamedElement to EObject, but that would be an
erroneous interpretation of the EMF runtime environment that maps EModelElements to
EObjects. Altogether, these simplifications can be adjusted quickly if needed (cf. [KE14]).

3.1.2. Model Operations

The elements and relations introduced above are suitable for status descriptions of models.
We have demonstrated that with an example comprising an excerpt of figure 2.3 (p. 27).
However, this format does not provide any information about the order of editing steps
used to create the model, unless we compare two other consecutive status descriptions.
An approach preserving each editing step is possible when changing the perspective
to an operation-based view. We do so subsequently, using the elements and relations
introduced above as the foundation for deriving our approach from standards.

The operation-based view on models, which we use throughout this text, uses the MOF
reflective API as a starting point [Obj14]. This provides an idea of a reasonable set of
operations, which can be carried out on models. These work similarly on Ecore models,
because the MOF reflective API was also designed for EMOF and we use Ecore as an
implementation of EMOF, as explained above. This means that we take the operations
defined for MOF and create a conceptual layer for our approach, which works seamlessly
on top of the implemented Ecore API of EMF in the Eclipse platform [Vog13; Ste+08].
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In detail, the combined Complete MOF (CMOF)/MOF reflective API defines operations
to create, get, set, and unset elements. The create operations are provided by a factory
(cf. design patterns [Gam+95]) for elements, which are similar to our elements, and links
akin to our relationships. Regarding additional properties, both are treated as objects, so
they provide the get, set, and unset operations. This deviates from CRUD [Mar83], but
we keep to this notion and define model operations semi-formally:

Π :“ tΠb Y Πsu, Πb : Basic Operations,Πs : Supporting Operations (3.3)

This means that Π in equation (3.3) is our set of semi-formal model operations, which fall
into two subsets. First, the set Πb comprises basic operations with elementary operations
to alter a model. Second, the set Πs contains supporting operations, which are needed
to simplify or rename basic operations. In more detail, Πb is constructed in equation (3.4)
using a create πc , set πpset , associate πrass , and delete πd operation. Further, Πs is defined
in equation (3.9) with a typing Γ, find ϕ, update πu, and revert π´1 operation.

Πb :“ tπc ,πpset ,πrass ,πdu Basic Operations (3.4)
πc :“Mˆ Ene ÑM : pm, εnameq ÞÑ m1, EΓpεq Y tpε, namequ (3.5)

πpset :“Mˆ Ete ˆ
ą

Ene ÑM : pm, ε, νq ÞÑ m1, ν properties (3.6)

πrass :“Mˆ ER ˆ
ą

Ene ÑM : pm, ε, νq ÞÑ m1, ν destinations (3.7)
πd :“Mˆ Ene ÑM : pm, εnameq ÞÑ m1, EΓpεqztpε, namequ (3.8)

Regarding the individual model operations, several things should be noted. Our πc from
equation (3.5) works as a general producer (or factory) for any type of Ene-elements and
takes a parameter in superscript notation, as introduced above. Contrasting with the
MOF reflective API, one operation is responsible for creation instead of two. Moreover,
this operation is semi-formal because it includes a creation process, often referred to as
instantiation [Bor07; Her11; Rom+07], which we do not define in more detail.

Πs :“ tΓ,ϕ,πu,π´1u Supporting Operations (3.9)
Γ :“ Ene Ñ type : ε ÞÑ tEAttribute, ... u (3.10)
ϕ :“Mˆ typeˆ str Ñ Ene : pm, γ, idq ÞÑ εx

γ , x “ id, εx P Ene (3.11)
πu :“Mˆ Ene ˆ

ą

Ene ÑM : pm, ε, νq ÞÑ m1, aka: πpset , πrass (3.12)
π´1 :“Mˆ ΠÑM : pm,πq ÞÑ m1, revert (3.13)

We do not delve into the details of instantiation, but introduce a semi-formal supporting
operation instead. This operation Γ from equation (3.10) returns the type information of a
provided parameter. Using this, πc adds a new element to the correct set of Eγ-elements;
i.e., the type of the new element (γ) determines the set to which it is added.

Another supporting operation is required for operations that expect existing elements
as inputs. For example, πrass in equation (3.7), which acts to assign the referred ends
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of an association, is such an operation. Hence, we need a supporting operation that
takes a query string and returns an Ene-element. Consider as an example Efigure 2.3

C , as
defined in table 3.3. We refer to an element in superscript notation, such as εAirportC .
Then, ϕpm, EC, Airportq should map to this exact class. Note that this is possible because
εAirportC is short for pεC, Airportq and the second part of the tuple uniquely identifies the
tuple because of how we have set the naming conventions. For example, each name
attribute in a class, as in table 3.3 for Airport.name, is referred to with the path notation
introduced above. Thus, we can introduce a find operation as ϕ to serve our needs in
equation (3.11). Again, we introduce a superscript notation as follows:

ϕqueryterm
γ :“ ϕpm, γ, querytermq (3.14)

In addition, we introduce two more supporting operations for convenience. First, an
update operation (πu) redirects to πpset and πrass . All that happens in between is to
determine which operation to direct. This is supported by our type determining operation
Γ. Second, a revert operation (π´1) undoes the last operation. We do not define this
function in more detail here, but mention it to provide a complete picture. The semantics
of this operation are as expected.

3.1.3. Model-Operation Sequences

We can concatenate sequences of operations to rather long sequences, so it makes
sense to introduce some convenient concepts. Operation sequences (σ) summarize
model operations that are carried out successively and which are read from right to
left. Note that, contrary to mathematical convention (cf. section 2.2 (p. 14)), they allow
multiple parameters.

σ :“
n PN
©
i“0

πipmq “ πn ˝ ... ˝ π0pmq πi P Π, and m “ tH, ...u PM (3.15)

Further, we can compose sequences into sequences of sequences, comprising an
arbitrary but finite number of sequences: ©n PN

i“0 σi “ σn ˝ ... ˝ σ0. For example, we
consider operation sequences that are beneficial for the semantic grouping of operations.
Thus, one sequence could contain operations for creating a package, and two more
sequences could contain the operations that create a class each and their attributes. We
will make use of this to semantically group model operations, but essentially consider
it as syntactic sugar. We introduce a final convenient notation called operation-based
models, denoted by a rotated capital sigma, and a respective model universe ( Σ

PM

Σ

):

Σ

:“
n PN
©
i“0

σipmq (3.16)

Example: Putting together our sets and operations, we can present an example with
a stepwise operation-based view for the example presented in table 3.3. We skip the
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operations for creating a basic package and omit the first parameters in our operations,
because they are obvious. Thus, let m :“ pEA, Ecl, EC, ... , ρeAttributes, ρeClassifiers, ... ,Rq be
an empty model. We first create the classes and attributes providing the name property
in superscript notation (remember that “˝” reads from right to left):

σ1 :“ πcpE
Airport.name
A q ˝ πcpE

Runway

C q ˝ πcpE
Airport

C q

This created two classes with name properties Airport and Runway, next to an attribute
Airport.name in path notation, as introduced above. Note the difference between the
name property for the class and the attribute. The latter is meant to contain the actual
name of the airport, whereas the former provides the type information. Next, we create a
relationship element for our reference:

σ2 :“ πcpE
Airport2Runway
R q

Now, we have a relationship to put our elements together, and we can wire the Airport

and Runway class. Observe that we now stop modeling the Airport.name with EString.
From this point on, the runtime takes responsibility, because the name is not set at design
time. Regardless, we first need to put our parts together:

σ3 :“ πpset pϕA...EC
, tϕA...2Runway

ER
uq ˝ πpset pϕA...EC

, tϕA....name
EA

uq ˝ πpset pϕA....name
EA

, tϕEString
ED

uq

At this point, we have an Airport class containing an Airport.name attribute of type
String and an Airport2Runway reference with no target. This means we need to
associate it with the actual destination class Runway:

σ4 :“ πrasspϕAirport2Runway
ER

, tϕRunwayEC
uq

We now have a representation of table 3.3 and figure 3.3 as an operation-based model
( Σ). Subdividing the necessary steps into four operation sequences, we can put together
a sequence of sequences (cf. equation (3.17)). Further, to improve readability, we can
rename the sequences to provide a summary of what each of them does (equation (3.18)):

Σfigure 2.3
Ecore “

4
©
i“1

σipmq “ σ4 ˝ σ3 ˝ σ2 ˝ σ1pmq (3.17)

“ σrelationships ˝ σproperties ˝ σreferences ˝ σbasic elementspmq (3.18)

3.1.4. Design Rationales and Observations

The model elements, relations, and operations introduced above address the “Repre-
sentation Challenge” mentioned in section 1.2 (p. 6) and follow the design rationales we
have sometimes omitted for the sake of simplicity. For a coherent picture, though, we
consider these rationales vital, and provide them subsequently as follow-ups. Further,
we present some more observations in necessarily dry form.

The overall goal in developing operation-based models is to obtain a notation that is
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both comprehensible and sufficiently formal to address two application cases. First, the
notation should foster descriptions of editing sequences built from persisted models, so
they can be applied within editors step by step, as a human would do. This could mean
transforming models as xmi-documents, or more precisely, their document object models,
into operations (denoted m ù

Σ). Second, the notation should be able to represent the
editing steps carried out by a human as they are captured during modeling. We imagine
this as being similar to a macro recorder for GUIs. At the same time, the notation should
hide obvious and simple details. Hence, we came up with a semi-formal notation fulfilling
these requirements.

Careful readers will already have noticed that some EMOF/Ecore aspects are not ex-
pressible with our operations. The details we have omitted are instantiation, cardinalities,
containments, and abstraction. We did so for simplicity reasons, and we are certain that
extensions supporting these details could be developed quickly. For example, the latter
three are properties of relationships, which could be quickly set by additional supporting
operations. For instantiation, we admit the extension will be more complicated and refer
to the work of Boronat and Meseguer, Koshima and Englebert, and Boronat for further
details [BM08a; KE14; Bor07]. In our cases, instantiation does not add any benefit.

Furthermore, we can, at best, call our notation semi-formal, because we neglected to
discuss types and the details of our abstract and concrete sets. To keep things simple,
we work on concrete sets like EC or EA and say that the supersets such as Ecl and
Est are automatic unions of the subsets. Detailed discussions and definitions on type
hierarchies for modeling or the metalanguage ML are provided by, e.g., Alanen and
Porres, Boronat, Leroy, Herrmannsdörfer, or Milner [AP07; Bor07; Ler06; Her11; Mil78].
Further, we changed the topmost element to ENamedElement and did not discuss UUIDs
at all. Moreover, we only introduced πd as a deleting operation without going into any
detail. The issue with this is that certain element deletions could trigger cascades of
deletions, which we do not address on a conceptual level. However, deletions only play
a minor role in capturing modeling activities and can be mostly neglected in our concept.
The same holds true for the undo operation, π´1 , introduced above. Finally, related to
cascading deletions, our set of constraint rules (R) is only mentioned for completeness.
We can do so because the underlying EMF editing framework keeps the model in a
reasonable state at runtime, as we will discuss later. This means that the potentially
“broken references” caused by deletions are not an issue in our case. Finally, our find
operation, ϕ, does not cover the case in which the queried element is not found or
not available. This could lead to erroneous πpset operations and untyped attributes or
erroneous πrass operations, which could result in dangling references.

Next to operations, we sketched several notations for models in the introduction to this
chapter, but opted for operations. The reason for this, next to sequentiality, lies in the
experience gained with operations since they were proposed by Lippe and van Oosterom
for merging textual documents [Lv92]. This keeps the door open for conflict handling in
merging scenarios, because many approaches have since been developed, e.g., in the
area of model evolution by Kögel [Kög11]. Moreover, we could derive our operations from
the EMOF reflective API, which is a well-established foundation for model manipulation,
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as demonstrated by several implementations such as EMF/Ecore. In addition, similar
attempts using the same paths exist for manifold scenarios, e.g., by Berlage and Genau
for document interaction histories [BG93], or by Blanc et al. for inconsistency checks
and Mougenot, Blanc, and Gervais for collaborative editing support [Bla+07; Bla+09;
MBG09]. Further, logic-based operations, to our mind, do not seamlessly integrate
in our EMOF, Ecore environment, and seem to suffer from non-terminating issues
regarding UML, as demonstrated by Mougenot, Blanc, and Gervais [MBG09]. Similarly,
van der Straeten, Ragnhild et al. require a conceptual break for their logistic formula-based
approach [van+03].

Regarding the structure of models, we have not discussed two properties of our
models. First, our elements and relationships describe a linked tree, or rather graph
structure, which can be derived by regarding the elements from table 3.1 as vertices
and the relationships from table 3.2 as edges. The root element is a package containing
classes and enumerations. Note that this is mostly assured by our rule set. Second,
relationships are possible, by definition, only within one model. This means that, in UML
terms, only internal references are allowed. In other words, we can associate classes
as usual within one model, but ban associations with other files, i.e., prohibit distributed
models, sometimes called “clouded models”. We designed this on purpose to ensure
only uncoupled models, and introduce an extension to this later in section 3.2. The usual
way would be to introduce Uniform Resource Identifier (URI) for element prefixes. Note
that there are different kinds, e.g., a Java URI differs from a EMF URI [Ste+08].

Finally, note that we work on flat and uncoupled models only and use a path/breadcrumb
naming convention! The former means that we do not need subpackages or external
references and can put all elements of a model in one package. The reason we can set
this constraint lies in the intended purpose of our models for reuse in an operation-based
manner only. Hence, models need to remain relatively small so they can be reviewed in
a short period of time (roughly a few seconds). Larger models of, say, several dozen
elements need too much time for review. The path/breadcrumb notation means that we
use a naming convention for elements to simplify the readability and establish uniqueness.
For example, every class could hold a name property that would not be unique in our
case. As we avoid using UUIDs, we prefix contained elements with the surrounding
classifier name, which is often the name of the container class followed by a dot. Note
that this cascades.

3.1.5. Related Work

The foundations of our presented approach comprise model elements and operations.
Both have undergone massive term overload, and some early work could be considered
related. For example, Tai explains the editing distance, i.e., similarity, between two
labeled ordered trees with operations, e.g., delete [Tai79], similar to our approach. Still,
we consider this approach unrelated. Hence, we limit the scope of related approaches
and present only exemplary approaches as representatives. In doing so, we subdivide
model elements and operations and discuss which ideas influenced our work.
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Modeling Elements

Amelunxen and Schürr provide a formal definition for MOF 2.0 [AS08]. Their metamodel
definition, MM:=pC, A, firstEnd , secondEndq, comprises two sets and binary associations.
C is a finite set of class identifiers and A is a finite set of association identifiers. Further,
firstEnd is a relation that returns the first class of a given association identifier, secondEnd
the second, and so on. This allows the bootstrapping of metamodels and models, i.e.,
M:=pO, L, class, association, firstObject , secondObjectq. Here, M represents a model
that is roughly related to a given metamodel as follows (for details, see [AS08]): O are
Objects represented as object IDs and L associates objects, just as A does with classes.
Consequently, firstObject and lastObject work similarly to the binary associations above.
Finally, class relates object IDs to classes, i.e., elements P C. Altogether, this notation is
much smaller and more efficient than our notation, but a closer look unveils that both are
congruent if we consider all concepts and all relationships as one set each. We have
simply opted for a more readable notation, so we can more easily distinguish between
concepts and provide an easily comprehensible form. However, the similarities continue
in regard of operations and they formalize MOF 2.0 entirely, even considering multiplicity,
inheritance, and so forth. In our case, these details provide no benefit and so we did
not include them. Instead, we added supporting operations as needed and introduced
operation sequences. Another formal notation provided for UML 2.0 in the form of a
system model for structural data is provided by Broy, Cengarle, and Rumpe [BCR06].
Kim and David and Shroff and France provide an alternative for UML class structures
formulated in (Object) Z [KD99; SF97].

One approach that investigates model merging is Westfechtel [Wes14]. This builds on
a state-based idea instead of an operation-based idea. Still, Westfechtel must define
a model formally, and do so in a more simplified manner than we do, focusing on the
properties of relationships, e.g., cardinalities. Moreover, as this approach is focused on
model merging, the author is more concerned about object IDs than we are.

Boronat and Meseguer employ membership equational logic as the basis for their formal
algebraic semantics of MOF 2.0 [Bor07; BM08a]. This makes their theory executable,
which is beneficial for formal analysis. Eventually, they provide an implementation in
Maude [cf. Rom+07, Maude]. Altogether, membership equational logic requires more
heavy lifting than our approach, and we do not go into more detail about this.

Operation-Based Approaches

Looking at data in an operation-based manner is not a novelty, and we can only discuss
a very limited set of related approaches. We distinguish them by the data on which they
operate. Overall, we look into source code, databases, grammar, and models, although
they cannot always be distinguished as simply as this; source code, database schema,
and grammar can be considered models, after all.
Source Code: Combining two or more software artifacts, such as source code or textual
documents, is often studied in terms of the operation-based merging of these artifacts.
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Lippe and van Oosterom claim to have introduced operation-based merging for “parallel
development activities” in object management systems (OMS), and this “can in principle
be applied to arbitrary abstract data-types, and guarantees that data-type invariants
are respected” [Lv92]. The developed system, called CAMERA, detects conflicts in
merging scenarios. It does so by recording operations as (primitive) transformations
and forwarding them to an OMS, i.e., object-oriented database. This fosters parallel
development, because the recorded transformations can be applied to a remote system.
Though Lippe and van Oosterom do not discuss the details of the involved operations
and we omit the issues associated with merging, their idea of recording and forwarding
operations is very similar to what we eventually do; however, our purpose and the
approaches between recording and forwarding are completely different, as we show in
section 3.3, 3.4, and 3.5.

About a decade after Lippe and van Oosterom introduced operation-based merging,
Mens discussed the state of software merging, stating that “there is a tendency towards
operation-based [software] merging because of its increased expressiveness” [Men02].
This is because, compared to state-based approaches, syntax and semantics are taken
into account. Moreover, the author regards operation-based approaches as flavors of
change-based approaches.

An example for a change-based approach is presented by Berlage and Genau [BG93].
It works by recording operations as transformations, which can be put together to form
sequences. They enable multiple undo/redo mechanisms because they capture the
“interaction history of a document”, here called the command history, as a tree of command
objects. This is similar to our approach, but we work in a different scenario. While they
work in versioning with branching and merging, we focus on model reuse by recommender
systems. Still, the command history, neglecting Prolog, is almost the same as our editing
sequences for our recommender (cf. subsection 3.5.4 (p. 123)).

Steyaert et al. discuss reuse in the context of operation-based merging with reuse
contracts [Ste+96]. Their approach concerns compiled artifacts and when to recompile
them. For example, clients or derived classes might not need recompilation, even if a base
class interface is modified and recompiled. This is achieved through “reuse contracts and
their operators [which] facilitate the propagation of changes”. In detail, the mentioned
operations are extension, refinement, and concretization. This expresses rather high-
level operations on preexisting artifacts, but shows how reuse and an operation-based
approach can work together.
Databases: An early example for an operation-based approach for relational databases
was proposed by Shneiderman and Thomas [ST82a; ST82b]. They propose a set of
fifteen transformations to be applied to schema and their respective data. Another early
example designed for hierarchically ordered tabular data was proposed by Shu, Housel,
and Lum [SHL75] and Shu et al. [Shu+77]. They propose a data definition language
called define and a transformation language called convert, which they demonstrate in
a prototype named express. The realization relies on PL/1 and “compiles a set of PL/1
procedures” from the convert descriptions.

Relating to databases, Ambler and Sadalage integrate recent developments in com-
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puter science into operation-based migrations on databases [AS06]. They subdivide
several rather high-level refactorings, which we can consider as operations, according
to the following categories: architecture, e.g., introduce index, structural, e.g., merge
tables, data quality, e.g., drop non-nullable data, referential integrity, e.g., add foreign key
constraint, method refactorings, e.g., remove method, and transformations, e.g., insert or
update data.

A workbench dedicated to database evolution was proposed by Curino et al. [Cur+09]. A
key concept in this tool is a set of “Schema Modification Operations (SMO)”, which include
the create and drop table operations. The set of SMOs enables “Logical Mapping” and
“Query Rewriting” [CMZ08]. The first of these is derived from SMOs capturing constraints
and relationships between successive versions of database schema in a notation called
“Disjunctive Embedded Dependencies (DED)”. Query Rewriting uses the information in
DED notation to rewrite and update queries.

Casais introduces a taxonomy developed for transformations in object-oriented data-
bases (OODB) [Cas95]. These transformations, e.g., insertion of an attribute, are derived
from four exemplary OODB and discussed with respect to their impact on the database
schema in ORION [cf. Ban+87], GemStone [cf. PS87], and O2 [cf. Fer+95]. Further,
restructurings and refactorings are discussed on these grounds. In a sense, this is
very similar to model evolution and co-evolution, as we see below, if we take the actual
database with instances as the model and the schema as the metamodel with classes,
inheritance relationships, and other properties. In our case, the set of operations is of
interest because it is congruent to ours, but is only provided in textual form.

Similarly to Casais and the methods he employed, Brèche introduces advanced primi-
tives for OODB schema [Brè96]. These include merge, aggregate, and remove, which
are all defined by low-level primitives (LLPs) such as add a new method, defined by
Zicari for OODB schema [Zic91]. The LLPs provide a validation set for our operations,
because they are provided textually. Further, the advanced primitives show application
scenarios that we can proofread our operations against.
Models: With models and metamodels in mind, several areas of operation-based ap-
proaches have been studied. Issues of model evolution, co-evolution, collaborative
editing, or inconsistency detection have been examined, with aspects of algebraic foun-
dations introduced as foundations.

Rose et al. analyze the state of operator-based and other approaches for model
evolution, which is essentially operation-based from our point of view [Ros+09]. Their
point is that operator-based approaches define a set of operators that form a library
for model evolution and co-evolution. Further, they discuss the usefulness of such
libraries regarding their richness versus their complexity by referring to a delete example
in work by Lerner [Ler00]. Our point is that we organize operations in sets and subdivide
them regarding their purpose. Further, Lerner’s compound operations are similar to our
sequences, but Lerner operates on database schema. With respect to richness and
complexity, we do not face the impact analysis issues that they do for co-evolution.

Wachsmuth looks at research conducted in the area of grammar engineering and ports
it to model adaptation [Wac07]. He works on Petri nets and demonstrates how adoptions
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in models and metamodels require co-adoptions. The foundation for his work is MOF
2.0/QVT, and he uses the term concepts for the elements in metamodels. Altogether, he
proposes operations grouped in sets of refactoring, construction, and destruction, which
are richer than our operations, but he implicitly uses a similar set of basic operations,
like introduce class or eliminate property.

Kögel researched model evolution issues in collaborative editing settings [Kög11].
Hence, the tool implementing his approach tracks model changes and forwards them to
a model evolution control system. The tracks are held in an operation-based manner,
so conflict detection and resolution are enabled in merging scenarios. The foundation
for this is an operation-based transformation algebra comprising seven operators, e.g.,
application operator or conflict operator and five axioms, such as element creation or
cancellation. Overall, his approach addresses issues of merging that differ from our
requirements. Hence, we do not need a conflict operator, cancellation axiom, or even a
Boolean algebra as a foundation. In our case, it is more important that we can record
and alter operations.

Herrmannsdörfer investigates model evolution and co-evolution [Her11]. He distin-
guishes between primitives and operations. The former have a structural or non-structural
nature, e.g., create package and rename, respectively. Further, he needs coupled op-
erations for co-evolution aspects and introduces sequential composition. This is all
conceptually similar to our approach, although tailored for model evolution. Further, he
continues and classifies sequences into reusable coupled operations. Altogether, his
approach makes up a library of more than sixty operations grouped in seven sets.

Blanc et al. use operation-based model construction to detect model inconsisten-
cies [Bla+07; Bla+09]. Therefore, they derive operations from the CMOF reflective API,
just as we do, but they feed derived rules and facts to Prolog, unlike us. Their check
engine on top of Prolog can detect structural or methodological inconsistencies. The latter
might be a feature that was created before a corresponding requirement was created.
Similar to that, van der Straeten, Ragnhild et al. use logic formulae to maintain consis-
tency between models [van+03]. They built an EvolutionTrace and an HorizontalTrace to
prevent “incompatible behavior conflicts” using description logics.
Grammars: Designers of programming languages like Java or C++ try to avoid grammar
changes between releases. In the area of domain specific languages, this is different:
migration paths are needed, and some of them are operation-based.

Pizka and Jurgens proposed a divide and conquer approach in their language evolution
concept [PJ07]. This allows multistep rather than one-step compilation and fosters
“improved structuring of DSLs”. Further, their “Grammar Evolution Language (GEL)
comprises statements to declare nonterminals, to create, rename, and delete productions,
to add, modify, and remove (literal, terminal, or nonterminal) production components
and (inherited or synthesized) attribute declarations, to set semantic rules, to change
the order of production components, and to influence priorities and the associativity of
productions.” This is far more complex than our operation set, because not only do
elements need to be considered, but there are also semantic rules and nonterminals. In
contrast, we need to consider relationships in more detail.
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Su et al. introduce a taxonomy for operation-based Extensible Markup Language (XML)
evolution [Su+01]. They operate on graph structures and use primitives like createDTDEl
or destroyDTDEl with formally defined preconditions. Further, they derive operations
like add-attribute from their primitives. They claim to provide a sound but minimal set of
primitives for Document Type Definitions (DTDs) and XML documents, which preserves
the well-formedness and validity of DTDs and their related XML documents. This puts
their work in between databases, models, and grammars, because DTDs, currently
XMLSchema, could be considered as a grammar or schema and DTD-based XML
documents could be seen as databases or models, e.g., XMI documents for EMF/Ecore.
Essentially, their set of six operations is not expressive enough for our purposes, because
no relationships are considered.

3.1.6. Summary of Operation-Based Models

This section has laid out the foundation for how we will develop operation-based model
recommenders. These foundations comprise a semi-formal notation for the model
elements and model relationships we need for modeling. Among them is a set of
Classes denoted as EC or a set of Attributes referred to as EA. For relationships,
we introduced relations like ρeSuperTypes for relating classes, one for the supertype and
one for the subtype. Altogether, this enabled a notation for models as tuples of sets
m :“ pEA, Ecl, EC, ... , ρeAttributes, ρeClassifiers, ... ,Rq of a model universe (M) containing a
set of rules (R) that we only mentioned for the sake of completeness. Further, these
foundations comprise basic operations, which we defined on top of these sets to create
elements (πc) or modify them (πpset ). Moreover, supporting operations help to find
(ϕ) elements or determine types of elements (γ). For convenience, we introduced a
super and subscript notation as shortcuts. For example, ϕqueryterm

γ looks up a name as
given in the queryterm and delimits it by the type provided as γ. Similarly, the found
element is denoted as εname

γ . In addition, we introduced sequences of operations, which
provide syntactic sugar and enable operation-based models denoted as Σ. Finally, we
demonstrated the approach with an example (cf. figure 3.3), and discussed design
rationales as well as shortcomings.

Airport

name : String

Runway

Airport name

Runway

Runway

Airport

name : String

εC
Airportσbasic elements

Runway

σreferences

σrelationships

εA
Airport.name

σproperties

εC
Runway

εR
Airport2Runway

Figure 3.3.: Sketch illustrating Operation Sequence from equation (3.18) (p. 40)
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3.2. Storing Models

One cornerstone for model reuse is a suitable organization for storing them,
as introduced in section 1.2 (p. 6) as the representation challenge. This
goes beyond questions of persistence and distribution. Related considera-
tions comprise questions of the modeling relationships between models, of

extracting information from models for indexing and retrieving them, and of versioning.
Some of these aspects were researched as model repositories or global model manage-

ment. The former mostly concerns versioning or collaborative editing scenarios [Kög11],
whereas the latter often focuses on project-wide model relationships and change impact
analysis [All+06; Béz+05]. Consequently, models are treated as project assets, but they
are not seen in the bigger picture, i.e., their greater potential for reuse is often neglected.

In other fields of software development, general solutions are common practice. For
example, object-oriented design patterns became popular in object-oriented design
[Gam+95]. Today, they are used as a set of principles and as a common language
among developers [ACS13]. Similarly, best practices are often sought as reusable
assets, and, if found, considered valuable [LR07]. For example, many architectural styles
are considered best practices among architects [TDM10], and refactorings are seen as
methodological best practices among programmers [Fow99].

In the case of domain knowledge, efforts toward identifying and storing reusable assets
have faded. Some approaches apply ideas from machine learning techniques [BMM09;
WKB09], ontologies [Obe14b; UG96], or artificial intelligence [MTM09]. However, how to
organize, represent, and retrieve domain knowledge remain open questions [JHA14].

We agree with Chaudron, Heijstek, and Nugroho and consider models as an effective
means of illustrating domain knowledge [CHN12]. Additionally, we think that UML class
diagrams provide a good foundation for domain modeling. Therefore, we seek answers
to the questions mentioned above for domain knowledge modeled as class diagrams.
An example for such a model is depicted in our running example in figure 2.3 (p. 27).

This running example could be roughly transformed into a knowledge library as follows.
We slice the model from figure 2.3 (p. 27) into three models, one for Passenger, one
for Airport, and one for Vehicle and comprising all adjacent elements, i.e., even the
enumerations. Then, we represent each model on a meta-level as a node and connect
them if the respective models were connected to obtain a graph similar to figure 3.4. At
this point, we have lost the relationships between the new models, but we come back to
this later.

Passenger Airport Vehicle

Figure 3.4.: Models Graph Example for Running Example from figure 2.3 (p. 27)

In fact, this only sketches the idea of a knowledge library, but the meta-level and the
model-level appear quite clearly. Later, we will come back to this and explain when to
consider a model as a white box and when as a black box.
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With the sketch above in mind, we propose a knowledge library based on our previous
work and show how models can be related to support model reuse [GL13; TGL13]. More-
over, we discuss issues of indexing and querying in our knowledge library. In addition,
we provide extension points that foster model evolution, as proposed in section 3.4, and
lay the foundations for model reuse, as explained in section 3.5.

3.2.1. Model Data Framework

On a conceptual level, our persistence comprises a central component, which we call
the model data framework, surrounded by four extending parts, as depicted in figure 3.5.
The extending parts are well-known approaches tailored to different extents. First, the
versioning mechanism applied so far is a standard source code version control mechanism
without conceptual alterations. Second, the indexing designed in subsection 3.2.2 uses
well-known concepts tailored to our knowledge library for the purpose of insertion, deletion,
and retrieval. The retrieval goes beyond regular querying, as we show in subsection 3.2.3,
and builds on properties of models, or features in the context of recommender systems,
e.g., their inherent graph structure for structural queries. In addition, a User Interface
(UI), only mentioned for completeness, takes over editing support for the functionality
offered by the data framework.

Versioning Indexing

Data

Framework

Querying

UI

Figure 3.5.: Model Data Framework (MDF)

Subsequently, we describe the data framework from figure 3.5 and explain the meta-
structure it represents. Therefore, we discuss the meta-information provided for every
model stored and examine how models can be categorized, grouped, related, and
interlinked, as summarized in figure 3.6. Altogether, this meta-information builds the
foundation for our knowledge library as we engineered it [GL13].
Disambiguation: The term knowledge library, which is an alias for enhanced models
graph library (cf. table 3.4), is the result of naming the sum of its parts, as we show
subsequently. Starting with models, we can add meta-information to obtain enhanced
models because of the additional information for models. Providing links instead, we
obtain a models graph, because we can regard models as vertices and links as edges
in a graph. If we add indexes to a set of models, we obtain a models library because
of the added querying possibilities. Table 3.4 lists all the possible variations and shows
that an enhanced models graph library is the fully featured result. For convenience, we
introduced the term knowledge library as an alias. Note that we do not claim that an
enhanced models graph is a representation of knowledge.

49



3. Operation-Based Model Recommendations

Table 3.4.: Terminology: Types of Data Sources for MDF
Models Meta Info Links Indexes

Models X
Enhanced Models X X

Models Graph X X
Enhanced Models Graph X X X

Models Library X X
Enhanced Models Library X X X
Models Graph Library X X X
Knowledge Library1 X X X X

1Alias for Enhanced Models Graph Library

Concepts for Representing Models

Our example in figure 3.4 laid out how our running example from figure 2.3 (p. 27) could
form a knowledge library, granted meta-information and an index are provided. This
means that each node in figure 3.4 represents an extract from the running example as a
model as well as respective meta-information. For example, the Airport model, which
is in the middle of figure 3.4, summarizes the relevant elements from figure 2.3 (p. 27)
and respective meta-information as we explain below.

For such elements, our knowledge library provides the LibraryElement element on
the topmost level (cf. figure 3.6). This is meant to represent the reusable artifacts, which
will eventually be provided by the knowledge library. Therefore, it is minimal with respect
to its interface, because the actual reusable artifacts could be of different types, e.g.,
LibraryElements could be models as shown, parts of Domain Specific Language (DSL)
grammars, such as in Xtext [EB10], or source code snippets, such as in Java or a DSL.
For the sake of simplicity, we do not include these extensions in the concept presented
here. The essential point about LibraryElements is that they comprise a compulsory
name and list of files, as well as an optional owner.

The list of files needs to hold at least one element as a reference. We opted for a list of
file references, because some tools split model information in different files. For example,
one file could hold the pure data, another the representation details, and yet another the
underlying grammar. Moreover, the referential nature of the file list enables distribution
in several respects. A model provider, which could be the local file system, a regular
web server, a database server, or a version control system, could hold the model files.
However, even a mixture of these would not break a properly set up remote indexing
engine or graph database, as we explain later. Further, in some of our realizations, we
add a screenshot of the representation, because rendering them during runtime can
cause a considerable delay. For example, one of our tools that produces previews similar
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to our vision in figure 1.5 (p. 8) presents screenshots. A side effect of saved screenshots
is that they can provide highlights, alterations, or annotations. This enriches the preview
with additional information about the previewed model.

Note that some behavior is specific to Models and not available for LibraryElements.
The abovementioned previews are an example, because alternative implementations
for dealing with the actual model platform exist. Common platforms include EcoreTools,
Papyrus, and Sirius. Additionally, the Model elements provide the effective functionality
for dealing with models in detail, i.e., providing them and their content. This could be a file
reference, a file descriptor, or a Resource, in the case of EMF. Moreover, Examples are
specific extensions to Models, as they are scoped accordingly with project information
(cf. figure 3.6).

Another extension, this time for LibraryElements, is meant to enhance the information
available about LibraryElements. Hence, we introduce a MetaInformation element
that serves as a container for further extension regarding quality, as we will see in
section 3.4, and contains extra information about the related LibraryElement on a
meta-level we call Purpose. This is a lightweight specification mechanism meant to
foster quality assurance in section 3.4.

For more general Models, we created extensions called TemplateInformation, as
depicted in figure 3.6. These support modelers while reusing the Model (or rather
instantiating it). Thus, if a modeler wishes to add a façade [Gam+95], the potential
components of the subsystem are offered. Alternatively, if a modeler would like to add a
decorator to a component [Gam+95], the component to be decorated can be chosen from
a list of existing elements, and relationships and subclasses are created automatically.
Altogether, this mechanism offers guided completion for textual or structural elements by
linking variables and providing extension points.

Figure 3.6 depicts faded elements, which we have already alluded to. These are
extensions to our knowledge library in respect of evolution and quality assurance. We
postpone explaining these parts, and come back to them when we discuss evolutionary
aspects in section 3.4. The other parts in figure 3.6 are introduced for the purpose of
grouping, categorizing, and interlinking LibraryElements, as we now demonstrate.

Concepts for Interlinking and Organizing Models

The LibraryElements introduced above are merely a starting point, and represent no
more than isolated Models. This means that they only represent the nodes in figure 3.4,
and, consequently, the relationships between nodes are not yet represented. However, a
knowledge library requires links between Models, and we introduce a concept for that
below. Moreover, we add two mechanisms for organizing LibraryElements.

The interlinking elements introduced for LibraryElements are of two different kinds.
The first comprises indirect associations via categorization and grouping (cf. figure 3.6).
The former uses Category elements to build a set of related elements that fall into one
category, but might be otherwise unrelated. For example, our Airport model extract
from figure 3.4 could fall under a category Transportation Hubs, and other examples
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3.2. Storing Models

for this category could be Station or Harbor, as depicted in figure 3.7. Other than
that, Groups summarize LibraryElements that belong together in a purely semantic
manner. This holds true for our Airport, Passenger, and Vehicle model extracted from
figure 3.4, and a name for the summarizing group could be Airport and Surroundings.
Note that the indirect interlinking elements could be derived from a higher-level concept,
e.g., a concept Links could be the superconcept of Group and Category. This is even
reasonable when regarding the attributes that both contain. We omit this, because we
do not want to clutter our design.

Passenger

Station HarborAirport

Vehicle
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Figure 3.7.: Example: Groups and Categories related to figure 2.3 (p. 27)

The second kind of interlinking element introduced for LibraryElements is a direct
association via Connectors (cf. figure 3.6). These represent that adjacent LibraryEle-
ments were already related in terms of their generic, semantic, and/or syntactic nature.

The generic nature of a Connector represents two related LibraryElements that are
linked somehow, without providing further details. This may be because information
about their relationship is not available, outdated, or deprecated. Thus, the semantics
of a generic nature of a Connector could be read as “these two LibraryElements
have been used together in the past”. Note that this means there is no additional, e.g.,
actual semantic or syntactical, information available, which implies in our example from
figure 3.4 that all three model extracts could be merged back to one model, but the
relationships between the classes Passenger, Airport, and Vehicle would be lost as
well as the design rationales.

The semantic nature for Connectors focuses on design rationales. This means
that information provided by the semantic nature is mostly documentary and can be
used to aid reuse. Consider a Patient from figure 3.8 in the role of an adapter for a
Person [Gam+95], with some associated PatientID. During reuse, a modeler might
find that obvious. However, what if the adapter also prevents access to some properties
of Person that are otherwise publicly exposed, such as religion? This makes our
adapter a proxy as well [Gam+95]; although this is absolutely reasonable, it might not be
obvious. Hence, we added the semantic nature, but still lack syntactic information if we
merge models from two or more LibraryElements.
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Person Clinic
ClinicalRecordPerson

name : String

religion : String

Patient

PatientID : Integer

Figure 3.8.: MDF Example: Cross-link

We designed a syntactic nature for Connectors so that we could restore this informa-
tion. Thus, merging all nodes and edges in our example from figure 3.4 would result in the
original model, as depicted in figure 2.3 (p. 27). However, this feature requires additional
information, which we store in an attribute of a Connector as an URI. Generally, this
URI might point to information that provides more than just an association, as in our
example. It might even contain complete bridging models with references to the adjacent
LibraryElements. This is reasonable if a Connector is supposed to hold a class that
plays the role of an adapter [Gam+95]. An example could be a LibraryElement Per-

son and a LibraryElement Clinic that are interlinked via a Connector Patient, as
illustrated in figure 3.8. Whereas the Person and Clinic model are as expected, the
model in the Patient Connector would enhance the Person with additional information
such as the PatientID. In fact, there is more to this syntactical information, like multiple
involved LibraryElements. We call this syntactic information a cross-link and introduce
it in greater detail in subsection 3.3.3.

Enhanced Models Graphs

Given the concepts in figure 3.6, we assume that LibraryElements and Models form
one set of elements and Connectors form a second. The first set can be considered the
vertices of a graph, and the second set can be considered the edges of a graph. This
graph structure, let alone an index, is almost what we are aiming for, because we want
to store our LibraryElements in an enhanced models graph library (cf. table 3.4).

However, there is slightly more to our enhanced models graph, because we need to
consider Categorys and Groups as vertices, too. Given table 3.5, which corresponds to
the concepts in figure 3.6, we define our set of vertices as EMGV :“ Ele Y ECat Y EC Y EG.
Note that we use LibraryElements as a union of all derived concepts, as we did in
subsection 3.1.1. Further, note that the concepts MetaInformation, TemplateInfor-
mation, and Example are part of neither the vertices nor the edges, because they solely
provide information on a meta-level.

The edges of our enhanced models graph are defined as EMGE :“ ρeSubcategoryYρeCategoryY

ρeConnectorY ρeGroup. In doing so, we also have table 3.5 in mind. This means that we define
relations as tuples of concepts, as can be derived from figure 3.6. For the sake of
simplicity, we omit the names provided as well as whether the relationships are directed.
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Table 3.5.: Concepts and Relationships in MDF
Concept Set-ID Relation-ID | Relation

LibraryElement1 Ele ρeSubcategory Ď ECat ˆ ECat

Models EM

Categorys ECat ρeCategory Ď Ele ˆ ECat

Connectors EC ρeConnector Ď Ele ˆ EC

Groups EG ρeGroup Ď Ele ˆ EG

1Concepts in italics (and lowercase index) are abstract

Altogether, we have two notations for an enhanced models graph (EMG); first, a graph
of vertices and edges, and second, a sequence of concept and relationship tuples:

EMG :“ pEMGV, EMGEq (3.19)
EMG :“ pEle, EC, ECat, ... ρeConnector, ρeCategory, ...q. (3.20)

Example: We can demonstrate the notation given above by writing down our example
from figure 3.4. First, we define the three vertices, which represent the model extracts
from our running example in figure 2.3 (p. 27), and put them in a set Efigure 3.4

M as defined
in table 3.6. If we want to indicate a single element, we can write εAirportM , just as we
did in subsection 3.1.2, using a superscript notation. Second, we define both required
Connectors as follows: Efigure 3.4

C , as given in table 3.6, where we use an abbreviation of
the adjacent elements to build the names for the Connectors. To keep things simple,
we omit the reverse direction, e.g., Airp2Pass and assume undirected edges for this
example. Finally, we establish the given relationships from figure 3.4 and define ρfigure 3.4

eConnector
as given in table 3.6.

Table 3.6.: Sets built for model extracts from figure 3.4 (p. 48)
Set-ID | Set Relation-ID | Set

Efigure 3.4
M = tAirport, ρ

figure 3.4
eConnector = tpPassenger, Pass2Airpq,

Passenger, pPass2Airp, Airportq,
Vehicleu pAirport, Airp2Passq,

Efigure 3.4
C = tPass2Airp, pAirp2Pass, Passengerqu

Airp2Vehiu

Altogether, we obtain EMGfigure 3.4 :“ pEfigure 3.4
le , Efigure 3.4

C , ... ρfigure 3.4
eConnector , ...q, because,

once more, Ele includes EM. Further, if we define EMG
figure 3.4
V and EMG

figure 3.4
E as the

union sets according to the above definition, we can also write down our enhanced

55



3. Operation-Based Model Recommendations

models graph as EMGfigure 3.4 :“ pEMG
figure 3.4
V , EMG

figure 3.4
E q.

Altogether, we have developed an enhanced models graph that maps to property
graphs [RWE13], because we have labeled the vertices and (directed) edges. To enhance
this to a knowledge library, we need to look into two topics: first, add indexing, and second,
provide querying functionality. These are not trivial, and require a semi-formal notation
to keep things simple.

3.2.2. Indexing Model Data

The enhanced models graph presented above provides organization and additional
meta-information, but no support for finding content using a given keyword, i.e., lacks
indexes (cf. table 3.4). Finding content is a task for a querying mechanism built on
indexes, which could use naïve or advanced approaches depending on the strength of
the indexes [Mul12]. We postpone our discussion of querying to subsection 3.2.3, but
prepare the foundations for it in the form of several indexes and respective operations.

In a nutshell, we require our indexes to support queries for a given keyword and
additional parameters as type information. For our example in figure 3.4, an index
could comprise tuples for a dedicated kind, e.g., for the name of a Model. This index is
then denoted as IName and our Airport Model could be roughly represented as a tuple
(“Airport”, εAirportM ), meaning that the keyword “Airport” is the name attribute of our Model
εAirportM .

This will allow us to improve our enhanced models graph from the above to a knowledge
library (KL P KL) by simply adding the set of indexes (KLI). Hence, in this case, we take
into account this set and rename our vertices as well as our edges from our enhanced
models graph, and obtain a knowledge library denoted by:

KL :“ pKLV, KLE, KLIq with KLV :“ EMGV, KLE :“ EMGE, and KLI :“ p... , IName, ...q (3.21)

This raises two questions: what would an indexing approach that improves our enhanced
models graph to a knowledge library actually look like? Furthermore, what requirements
does it need to meet?

First, the indexing is required to work seamlessly in a given environment, i.e., it needs
to provide a reasonable level of abstraction and process data automatically. In terms
of a later realization, this means that one method for indexing any element and one
for unindexing should be sufficient. In addition, changes should affect all the indexes
involved as soon as elements, e.g., Models, are inserted, updated, or deleted. Further,
the realization should be able to determine the proper actions itself, which means it needs
to detect the properties of elements to be indexed itself, e.g., whether it is of type Model

or Group, and behave accordingly for each.
This leads to the need for data to be treated “right”, because a particular index might not

contain each and every detail of an element. In the case of indexing a model, this leads
to the exclusion of data, because some properties might not be relevant. Consider two
references between two classes, with one marked as the opposite of the other. Thus far,
we have not considered the property of “being opposite” worth indexing. Similarly, treating
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data in the “right” manner might lead to implicit data. Consider the category “Finance”
(εFinanceCat ) and its type Category. This should be reflected in determining the proper index
set, i.e., ICat, but not in a new keyword “category”. In addition, structural information
about models should be reflected during indexing. This could be class hierarchies or
delegation sequences, which enable graph-isomorphism queries. An exemplary query
could be: “Find models which extend the inheritance hierarchy ‘Creature, Human’”. This
query could result in a model containing Female and Male as subclasses of Human.

Additionally, some data we would like to see in our indexes results from plain text,
which naturally inherits irregularities. Such text occurs in our description or purpose,
and could contain noise words like articles, and prepositions (e.g., “the” or “to”). These
should be considered as stop words and ignored [MRS08]. Words of different forms, like
plurals, should be treated equally. This is commonly known as stemming [MRS08; Wil06;
Por80].

However, this does not complete our indexing, which might be impacted by changes in
requirements or by an altered / enhanced models graph. In other words, new requirements
for queries, which might be induced by a new reuse approach, could require additional
indexed information from model features. For instance, structural information should be
leveraged and the length of circles is important. This would require a new index that simply
addresses the lengths of circles in a Model. Further, new children of LibraryElements
should not necessarily be ignored, and their treatment is likely to be different compared
to Models, because the extraction of data will be different. Considering a new child
Snippet, which represents parts of textual DSLs, extracting valuable data from plain text
for an index certainly differs from doing so using an XMI document.

Table 3.7.: Index Sets
Indexed Element Index-ID Indexed Property Index-ID

Category ICat Words Occurrence1 Iwoccur
Group IG Words in description IWDescr
Model Properties IMP Words in model (m) IWModel
Concept names IName Words in name IWName
Concept Types IType Words in purpose IWPurp

1Concepts in italics (and lowercase index) are abstract

We address the given requirements by providing several indexes, summarized in ta-
ble 3.7, produced by the respective strategies, as illustrated in figure 3.9 [Gam+95]. All of
them will be placed in a registry and eventually handled by a service (section 4.2 (p. 153))
that delegates the elements to be indexed to the appropriate strategies. We opted for this
solution for reasons of “separation of concerns”, and because some indexes consider
more than one property at a time. This could scatter calls to indexes across all setters
and degenerate our solution, as well as increase the risk of lost updates in the case of
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careless realizations. In more detail, our indexing service forwards a new, changed, or
deleted instance of a concept from figure 3.6 to all registered IndexingStrategies. An
overview is illustrated in figure 3.9, and we will elaborate on these strategies subsequently.

The topmost concept is the IndexingStrategy, which denotes a common represen-
tative for all subsequent Indexers. Basically, this provides canHandle(Vertex) and
getIndexMap(Vertex), both of which are required for further processing by the service,
as we explain in section 4.2 (p. 153). We postpone the implementation details of why the
methods take parameters of type Vertex.

IndexingStrategy

canHandle ( )

getIndexMap ( )

NameIndexer

ModelPropertiesIndexer

TypeIndexer

WordsOccurrenceIndexer

WordsInNameIndexer

WordsInModelIndexer

WordsInPurposeIndexer

WordsInDescriptionIndexer

CategoryIndexer

GroupIndexer

Figure 3.9.: MDF Indexing

The Indexer, as summarized in figure 3.9, can be subdivided into word occurrences
and other Indexers. The WordsOccurrenceIndexer itself is a superconcept summariz-
ing the Indexer according to the WordsIn<property>Indexer naming convention. This
means that all these Indexers extract words from the <property> to work on. They all
base their data processing on the stemming and stop words removal provided by the
WordsOccurrenceIndexer. As an example, the WordsInDescriptionIndexer parses
the description attribute of a Group element, as mentioned above, and provides a list of
words to be indexed along with this Group element. Note that this Indexer is built to work
on other elements containing a description attribute as well, e.g., Category elements
or LibraryElement elements. Other types of WordsOccurrenceIndexer treat Model
elements, i.e., extract words from models or process name attributes, e.g., split and parse
camel-cased text in a similar manner to that mentioned above.

The Indexer denoted above as “other” is comprised of several supporting Indexers.
First, the CategoryIndexer and GroupIndexer treat Category and Group elements,
as expected. They roughly associate their name with the given element. Similarly, the
NameIndexer treats name attributes as they are in a separate index. Note that this is
different to the WordsInNameindexer, which does some extra processing. Next, the
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TypeIndexer relates a given element to its type, which is similar to “typing by adjacency”.
For example, a Group element is associated with a keyword identifying it, e.g., simply
“group”. Note that this TypeIndexer must not exclude any correct given element and that
Connector elements are also treated. Finally, the ModelPropertiesIndexer associates
calculated or derived properties to the given element. These might be the number of
classes, depth of inheritance paths, and so on. These model properties are of vital
importance in our similarity searches and model isomorphism in subsection 3.2.3.

Overall, each IndexerStrategy provides direct or indirect (derived) data to the set
of indexes (KLI). For example, the CategoryIndexer provides an index denoted as ICat
with data taken from an element, whereas the WordsInModelIndexer contributes to the
index named IWModel with words taken from the model after omitting stop words. Table 3.7
contains all indexes and a short description; the subsequent list provides a more detailed
overview. Further, we introduce a set of index identifiers (IIDs). To summarize, we gain a
set of indexes representing the direct and indirect (derived) properties of our concept,
and denote it as:

IIDs :“ tCat, G, MP, Name, Type, WDesc, WModel, WName, WPurpu (3.22)
KLI :“ pICat, IG, IMP, IName, IType, IWDescr, IWModel, IWName, IWPurpq with details: (3.23)

ICat tuples of name attributes and Cate-

gory elements

IG tuples of name attributes and Group

elements

IMP tuples of several model properties of
Models, e.g., number of classes, and
Model elements

IName tuples of name properties of a concept
and, if available, related elements,
e.g., for Group or LibraryElement

IType tuples of concept types and related
elements (typing mechanism)

IWDescr tuples of words from descriptions
extracted, e.g., from Group or Cate-
gory elements, and related elements

IWModel tuples of words from models of
Models and related elements (e.g.,
words that are class names, at-
tributes)

IWName tuples of words extracted from name

attributes, e.g., from LibraryEle-

ments or Groups, and related ele-
ments

IWPurp tuples of words from purpose at-
tributes related to LibraryElements
and related elements

To provide a notation, we introduce an operation for indexing (I): IpKL, elementq. The
parameters are a knowledge library (KL) and any element from figure 3.6 to be indexed.
The indexing is then processed according to the explanations above. An abbreviated
notation, similar to equation (3.14) (p. 39) with the subscript providing the scope and the
superscript taking the element, is:

IεKL :“ IpKL, εq, with ε P KLV (3.24)
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Example: As an example for our defined indexes, we can combine our running example
from figure 2.3 and our group/category example from figure 3.7. This results in the
following Model, Category, and Group elements:

Efigure 3.7
M :“ tεAirportM , εHarborM , εPassengerM , εStationM , εVehicleM u (3.25)

Efigure 3.7
Cat :“ tεTransHubsCat u (3.26)

Efigure 3.7
G :“ tεAirp&SurrG u (3.27)

To keep things comprehensible, this example is rather incomplete. We treat the Har-

bor and the Station models as empty and make the following assumptions: (i) The
superscript is the name attribute and its expansion the description, e.g., “Airport and
Surroundings” for Airp&Surr. Hence, our Model elements have no description or
purpose, but we demonstrate the related mechanism with the Category and Group

elements provided, at least for the description. (ii) Moreover, we provide only exem-
plary information for the calculated properties in IMP, e.g., depth of inheritance tree (DIT)
[CK94]. (iii) Finally, note the alternative formulation for the tuples with an extra identifier:

I
figure 3.7
Cat “tpTransHubs, εTransHubsCat qu

or
“ tpCat, TransHubs, εTransHubsCat qu (3.28)

I
figure 3.7
G “tpAirp&Surr, εAirp&SurrG qu

or
“ tpG, Airp&Surr, εAirp&SurrG qu (3.29)

I
figure 3.7
MP “tpdit, 0, εAirportM q, pdit, 1, εPassengerM q, pdit, 1, εVehicleM q,

pnoClasses, 9, εAirportM q, pnoClasses, 7, εPassengerM q, pnoClasses, 8, εVehicleM q,

pnoRefs, 8, εAirportM q, pnoRefs, 2, εPassengerM q, pnoRefs, 2, εVehicleM qu (3.30)
I
figure 3.7
Name “tpAirp&Surr, εAirp&SurrG q, pAirport, εAirportM q, pHarbor, εHarborM q,

pPassenger, εPassengerM q, pTransHubs, εTransHubsCat q, pVehicle, εVehicleM qu (3.31)
I
figure 3.7
Type “tpGroup, εAirp&SurrG q, pModel, εAirportM q, pModel, εHarborM q, pModel, εPassengerM q,

pModel, εStationM q, pCategory, εTransHubsCat q, pModel, εVehicleM qu
or
“ tp... (3.32)

I
figure 3.7
WDescr “tpAirport, εAirp&SurrG q, pHub, εTransHubsCat q, pTransportation, εTransHubsCat q,

pSurrounding, εAirp&SurrG qu
or
“ tpWDesc, Airport, εAirp&SurrG q, ... (3.33)

I
figure 3.7
WModel “tpAirport, εAirportM q, pATL, εAirportM q, pBus, εVehicleM q, pBusiness, εPassengerM q,

pBreak, εVehicleM q, pCar, εVehicleM q, ... see figure 2.3u or
“ tpWModel, ... (3.34)

I
figure 3.7
WName “tpAirp, εAirp&SurrG q, pAirport, εAirportM q, pHarbor, εHarborM q, pHub, εTransHubsCat q,

pPassenger, εPassengerM q, pTrans, εTransHubsCat q, pSurr, εAirp&SurrG q,

pVehicle, εVehicleM qu
or
“ tpWName, Airp, εAirp&SurrG q, ... (3.35)

I
figure 3.7
WPurp “tHu (3.36)

Note how, in I
figure 3.7
WDescr , “Airport and Surroundings” became “Airport, Surrounding” with the
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“and” and the plural removed. Similarly, notice how BusinessTraveler was omitted in
I
figure 3.7
WModel , because it is split into Business and Traveler (Business is also a literal of the
enumeration TravelClass). In I

figure 3.7
WName , the “Airp&Surr” was also split to become “Airp,

Surr”. In contrast, the I
figure 3.7
Name took the name attributes as they are. Finally, notice how

typing in I
figure 3.7
Type and I

figure 3.7
MP requires no index identifier to enable flattening, because

the identifiers are already predetermined by the model property. Overall, the set of
available index identifiers (IIDs) is as follows:

I
figure 3.7
IDs :“tCat, dit, G, Name, noClasses, noRefs, Type,

WDesc, WMmodel, WName, WPurpu (3.37)

Altogether, we have an example knowledge library from combining figures 2.3 and 3.7 as
follows: KLfigure 3.7 with the details from equation (3.38) and table 3.6 (Efigure 3.4

C , ρfigure 3.4
eConnector ).

KLfigure 3.7 :“ pKLfigure 3.7
V , KLfigure 3.7

E , KLfigure 3.7
I q, with (3.38)

KL
figure 3.7
V “ Efigure 3.7

M Y Efigure 3.7
Cat Y Efigure 3.7

G ,YEfigure 3.4
C

KL
figure 3.7
E “ ρ

figure 3.4
eConnector from table 3.6, and

KL
figure 3.7
I q “ pI

figure 3.7
Cat , ... Ifigure 3.7

WPurp q

3.2.3. Querying Model Data

The knowledge library (KL) introduced above comprises vertices (KLV), edges (KLE), and
indexes (KLI), which altogether build the foundation to query for information. For now, we
discuss the concept of leveraging the indexed information, as depicted in figure 3.10.
We will not discuss realization details, but the composite structure in figure 3.10 already
implies that we can think of a combination of a builder and factory pattern for constructing
compound queries [Gam+95].

We subdivide Querys into composing, non-structural, and structural Querys. The
first type comprises operations in an expression logic sense, and we offer conjunctive,
disjunctive, and not operators. These are binary or unary, as expected, take other Querys
as parameters, and can be used to build more complex, in our terms, CompoundQuerys.
The structure in figure 3.10 already signals that our realization will employ a composite
pattern [Gam+95]. The second and third types, i.e., the non-structural and structural
Querys, make use of data that has actually been indexed, such as words extracted from
content and countable properties extracted from structural information, as we now show.

The non-structural Querys depicted in figure 3.10 comprise simple and complex Querys.
The simplest Query is a TypeQuery, which takes a type from figure 3.6 and returns all of
the matching elements. In doing so, we obtain all Group elements from I

figure 3.7
Type in equa-

tion (3.32), i.e., εAirp&SurrG . Note that some TypeQuerys might result in a large number
of results. This holds true for some ModelPropertyQuerys, because the values for the
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Figure 3.10.: MDF Querying

“depth of inheritance tree” range in small single-digit numbers . We counter this with a
selection mechanism that will be explained later. A more complicated Query is a Mod-

elPropertyQuery, which can leverage IMP given a model property as a “keyword”. For
instance, if we need a model with exactly two references, our Ifigure 3.7

MP (cf. equation (3.30))
provides εPassengerM and εVehicleM . Certainly, this makes more sense if we use this type of
query in combination with other Querys, as we later show for structural queries. Finally,
the PropertyQuerys access multiple indexes looking for queried information using the
triples we introduced as alternative formulations. This indicates how the realization works
by offering a set of property indicators (cf. section 4.2 (p. 153)). In detail, we can query
I
figure 3.7
WModel (cf. equation (3.34)) in a flattened index comprising triples given by “WModel”
and “Break” to get εVehicleM (later queryterm:= “:wmodel Break”).

With this functionality in mind, we can semi-formally define a querying operation built on
PropertyQuerys. This takes a knowledge library, an index identifier, and a queryterm
as input and provides a set of vertices from the knowledge base. We denote a Query to
our knowledge library with the uppercase (Φ) of our find symbol for elements in Ecore
models (ϕ) from equation (3.11) (p. 38). Additionally, Ψ maps an index to its identifier.
This mapping omits the identifiers for model properties (IMP), because they are solely
used by structural Querys, as we show later.

Ψ :“ KLIzIMP Ñ IIDs : (3.39)
ε ÞÑ ψ,ψ P IIDsztdit, noClass, noRefsu

Φ :“ KLˆ IIDs ˆ str Ñ KLV : (3.40)
pKL,ψ, querytermq ÞÑ tpψ, x , εqu, x “ queryterm, ε P KLV

Once again, we introduce a shortcut notation for this querying operation. Similar to
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equation (3.14) (p. 39), the subscript provides the scope, which is the knowledge library,
and the superscript holds the actual queryterm. For a given KL, we can write:

Φqueryterm
KL :“ΦpKL, IType, Groupq, (3.41)

queryterm “ pΨpITypeq, Groupq or “:Type Group”

This allows us to rewrite our exemplary queries from above for Group and “Break”:

Φqueryterm
KLfigure 3.7 :“ΦpKLfigure 3.7, Ifigure 3.7

Type , Groupq, (3.42)

queryterm “ pΨpIfigure 3.7
Type q, Groupq

Φqueryterm
KLfigure 3.7 :“ΦpKLfigure 3.7, Ifigure 3.7

MP , “Break”q, (3.43)

queryterm “ pΨpIfigure 3.7
MP q, Breakq

As a note, each CompoundQuery can be split up into separate Querys as far as possible,
and then evaluated individually and combined again using set operators. This excludes
NotQuerys, unions of DisjunctiveQuerys, and so on. For example, the Query “and
(:noRefs 2) not (:name ‘Vehicle’)” evaluates the results in εPassengerM .

Structural Querys are IsomorphicQuerys in our approach, and can take models
as inputs. They transform these models into simple dependency graphs (cf. pseu-
docode 3.2 (p. 77)), which are congruent to class diagrams, and process them in two
steps. First, ModelProperyQuerys generate a rough list of models candidates that fulfill
at least the basic properties of the given models. The (partial) graph isomorphism algo-
rithm is then executed with the given candidates to determine whether the given graph is
an isomorphic graph or subgraph. This is a good example for a PostSelectionQuery,
because it operates after candidates have already been found. Regarding the actual
algorithm, we could use random walks for approximate graph matchings or an improved
version of the VF algorithm called VF2. As we expect our graphs to be rather small, we
opt for the exact version using the VF2 algorithm.

The idea behind the VF2 algorithm, as sketched in pseudocode 3.1, is to experiment
with vertex mappings between two graphs. Given a mapping, the algorithm calculates
candidate vertices for the current mapping, as shown in in line 4 of pseudocode 3.1.
These candidates lead to derived edges (cf. line 5), which are tested as shown in line 7.
If an edge helps to extend a partial isomorphism, the candidate is added to the mapping
in line 9 and the algorithm is executed again (cf. line 10).

The candidate generation works as illustrated in figure 3.11, which shows two sets of
vertices as hexagons, denoted as the domain and co-domain, which are mapped by a
function m (our Map<V,V> mapping in pseudocode 3.1). Further in- and outgoing edges
for both sets are shown. They represent adjacent candidates, because they can extend
the existing mapping. The algorithm calculates potential candidates in three steps. First,
the in- and outgoing edges are calculated and their adjacent vertices that are not in a
mapping are distinguished in out-terminal sets, e.g., “a” or “z”, and in-terminal sets, e.g.,
“b, d” or “w, y”. Second, possible candidate pairs are built from the out-terminal sets by a
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certain Cartesian product, e.g., for “a” and “z” [Cor+01; Cor+04]. Alternatively, if empty,
the in-terminal sets are used, e.g., “b, d” and “w, x”; if these are also empty, the certain
Cartesian product is built by considering the edges minus the current mapping.

The pairs of candidates are then tested as follows. All candidate edges with adjacent
vertices in the current mapping are tested if they have already been mapped. In addi-
tion, an edge must be compatible in terms of other requirements, e.g., the weight. If
these requirements are satisfied, the pair of candidates extends the current mapping
successfully, but not necessarily ultimately, because some backtracking might occur.
1 boolean runVF2Algorithm(Map<V,V> mapping) {

2 if (mapping.containsAllVertices(subgraph))

3 return true; // mapping congruent with subGraph

4 Map<V,V> candidates = getCandidatePairs(mapping);

5 for (V superGraphCandidate : getSuperGraphVertices(candidates)) {

6 V subGraphCandidate = candidates.oposiOf(superGraphCandidate);

7 if (isFeasible(mapping, // new (partial) solution?

8 superGraphCandidate,subGraphCandidate)) {

9 mapping.add(superGraphCandidate,subGraphCandidate);

10 if (runVF2Algorithm(mapping))

11 return true; // solution found for this descendant

12 mapping.remove(superGraphCandidate);// no descending solution

13 }

14 }

15 return false; // no solution, for neither descendants

16 }

Pseudocode 3.1: VF2 Sketch

The aspects that require tailoring in our case are the candidate generation in in line 4 of
pseudocode 3.1 and the edge testing in line 7. Both operations must consider model
characteristics, i.e., our different kinds of vertices and edges. First, the candidate
generation must only produce candidates comprising either EClass (EC) or EEnum (EE)
vertices (cf. table 3.1 (p. 34)). Second, the candidate test must acknowledge that edges
are either ρeSuperTypes or ρeReferences (table 3.2 (p. 36)). In addition, other vertices like
EAttributes (EA) and their respective edges (ρeAttributes) need to be treated transparently.

d

a

domain
   co-
domain

w

z

x

b

m

Figure 3.11.: VF2 Candidate Generation for existing mapping m
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3.2.4. Design Rationales and Observations

The knowledge library introduced above addresses the “Storage” and “Representation
Challenge” discussed in section 1.2 (p. 6), and in terms of Petro, Fotta, and Weisman,
we build a domain-specific software architecture (DSSA) and map our requirements to
concepts [PFW95]. The guide for this taxonomy for software reuse libraries is Mili, Mili,
and Mittermeir, which was later refined by Mili et al. [MMM98; Mil+02]. They discuss
storage and retrieval mechanism among other aspects. In this regard, they look into
the properties of software libraries as the nature of assets, scope of the library, asset
representation, storage structure, or navigation schema. We use this as a checklist
during the development of our knowledge library, but most importantly, we attempt to
counter the “obstacles to software assets classification” [Mil+02]. Therefore, we first
discuss these obstacles and our conclusions with regard to our fool’s errands, design
alternatives, and decisions on the enhanced models graph of our knowledge library (cf.
table 3.4). We then take into account our Querys and Indexer. Finally, we contrast our
knowledge library, i.e., enhanced models graph library (cf. table 3.4), with ontology.

The structure for our enhanced models graph, as presented in figure 3.6, is the result
of several attempts to provide a sound foundation for a model recommender system
(cf. the MoCCa second system effect in section 5.1 (p. 167) [Bro75]). Our reasons for
explaining the difficulties of this encounter spring from the abovementioned “obstacles
to software assets classification” [Mil+02]. Hence, we first counter the information-
rich nature of our assets, i.e., models. Detaching them from their scenario of use
means losing information that we could either use or try to map in our enhanced models
graph. We opt for the latter and create Categorys, Groups, and Connectors. Further,
we experiment with patterns as additional means for further structuring, but do not
obtain the anticipated benefit (cf. second prototype section 5.1 (p. 167) and storing
models section 6.2 (p. 189)) [Fuc11]. Similarly, so-called best practices are beyond
the scope of this study. In addition, the TemplateInformation could potentially be
used, but this is not explained in detail here (cf. storing models section 6.2 (p. 189))
[Hu13]. Overall, our approach attempts to find a middle ground that we can leverage
for model recommendation production (cf. equation (3.76) (p. 120) and schema from
subsection 3.5.7 (p. 138), as detailed in figure 3.35 (p. 140)). Note that this model
recommendation production is only methodologically possible because of our enhanced
models graph combined with indexing and querying.

The second obstacle we face is that our models may be arbitrarily similar [Mil+02].
This could lead to redundancy in our enhanced models graph. Although we do not
mean to forbid that at all cost, it is important to control the degree and structure of the
similarity. Hence, a distinguishing concept, our Groups at last resort, can help distinguish
two otherwise equal models for their different usage scenarios. Put differently, they are
different in our enhanced models graph because they have different neighbors. Certainly,
that must be determined in the process of identifying a submodel candidate, as we
discuss later (cf. section 3.3 (p. 73)).

Relating LibraryElements or Models also means that we could ease the “lack of
meaningful relations between assets”, although we do not mean to provide an equivalence
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or ordering relation [Mil+02]. Instead, Categorys, Groups, and Connectors provide differ-
ent ways to define the distance between Models, as employed for model recommendation
production (cf. equation (3.76) (p. 120) and schema from subsection 3.5.7 (p. 138), as
detailed in figure 3.35 (p. 140)). Once again, this allows methodological model recom-
mendation production and, considering distances and fallback strategies, it is possible to
tailor a model recommendation production in a template format using simple configuration
parameters, as sketched in appendix A (p. 195).

The rationale above raises the question if a graph is the most suitable data structure
for our meta-data, or if we could use other alternatives. These could go in two directions,
and either be more heavyweight or more lightweight. The former could be an ontology,
and we will deal with this separately. The latter could be matrices, as used by recom-
mender systems, or relation-centered storage such as relational databases. Further, no
organization at all could be possible, as machine learning provides a means for arranging
seemingly chaotic data. This suggests that we need to make a decision on a continuum
from unordered meta-data to structured meta-data according to our requirements.

Unordered data on a meta-level were never an option, because we should provide
at least rudimentary browsing functionality from the beginning. This means that, even
for a few Models, we need a way to present them. Hence, categories are the minimum
requirement to avoid brute-force navigation, and a faceted library could satisfy this need
[Sch+10]. This could be realized with matrices as well.

However, matrices are not sufficient in our case, because we aim for model reuse by
means of model recommendations. What happens if a model is in use already? Should
we recommend this model as it is stored in our knowledge library, or generate another
model from the same category? These options should only be selected if we cannot do
any better. In fact, we will later deal with a threshold of completion degree, because it
makes no sense to recommend a model that is already present to, say, 80%. Still, we
need means to provide something beneficial, e.g., some relationship to another Model
in our knowledge library. This is where our Groups come into play. However, we can
persist with Categorys and Groups in separate matrices without loss of generality.

What we cannot yet do is produce so-called chain model recommendations [GL13],
i.e., quick follow-up model recommendations. This is what Connectors with syntactic
information are for. They provide a middle ground for separating models during harvesting
and putting them together easily during reutilization. This is not possible without Groups
and Connectors. In addition, and as a side benefit, the combination of Categorys,
Groups, and Connectors allows for an intuitive graph-walk algorithm. For us, that means
we can experiment with recommendation operations using graph query languages instead
of implementing yet another algorithm.

Finally, we found a design that had minimal impact on computation times during model
recommendation production (cf. subsection 3.5.2 (p. 118)). This is important, because
isomorphism queries can become computationally expensive.

This raises the question of why we are not storing all information in a single graph. A
so-called “Model Repository” bursts EMF models in a graph database for further pro-
cessing [Eli+10]. Moreover, it recently became popular for huge models (larger than
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several thousand elements) to use the EMF proxy mechanism for lazy loading from graph
databases [Ben+14; Góm+15]. However, this means two things in our case. First, we
would have all data for models and meta-data in one graph database, which would require
further organizational effort and run counter to our desired separation of concerns for
these data sources, e.g. for versioning models in evolution (cf. section 3.4 (p. 94)). Sec-
ond, drawing boundaries for what to recommend would become another organizational
issue. Certainly, graph walk algorithms could help, but arranging information according
to its purpose blends nicely with our conceptual Models as well as with the reviews we
introduce in section 3.4 (p. 94).

Other than that, the Querys described above will provide a toolbox for producing
recommendations, and we will make use of many more Querys in section 3.3 (p. 73)
and section 3.5 (p. 117). We will then explore the possibilities of our graph structure,
which means taking into account Categorys, Groups, and Connectors for the purpose
of graph traversal, as briefly mentioned above. We do so in the case of reuse, because
a similar Model in our knowledge library would not contribute much to a recommender
system, but neighbors of this Model probably would. However, this will require us to
consider a detailed evaluation of the results, i.e., ranking.

Other aspects that careful readers will already have observed involve the ordering of
components of CompoundQuerys. In particular, ConjunctiveQuerys allow for optimiza-
tion, because the second Query only limits the results of the first. However, we deploy
specific platforms with built-in mechanisms for optimization, e.g., elasticsearch [GT15].

Further, we attempt to develop a concept that is not only designed for a single tech-
nology, although, admittedly, our figures are UML class diagrams. This might induce a
single platform, but manifold knowledge preserving approaches are possible. Certainly,
this does not prove that our approach works for all methods such as ontologies, (RDF)
triplestores, graph databases, or relational databases [DGD05].

Moreover, we build some redundancy into our indexes (KLI) for convenience, because it
eases the Query writing. For example, Category elements can be found in at least two
ways. Considering our indexes example from page 60, εTransHubsCat is, first, listed in I

figure 3.7
Cat

from equation (3.28), and an unlimited PropertyQuery returns εTransHubsCat . Second, the
same element results from a PropertyQuery to I

figure 3.7
Type from equation (3.32) with the

provided “Category”. In other words, these equivalent Querys look as follows:

Φqueryterm1
KL , with queryterm1 = Cat (3.44)
“

Φqueryterm2
KL , with queryterm2 = Type Category (3.45)

A closer look at PropertyQuerys shows that, given the index identifiers (IIDs), all non-
structural Querys are possible. Hence, they can be considered shortcuts, but structural
and composing Querys are not. Yet the insight of this reaches further, because it explains
that indexing requires an individual Indexer for properties or elements in our knowledge
graph. This does not necessarily require a new kind of Query, let alone structural and
logical types, as long the index identifier is fed to a PropertyQuery. Consider, for
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example, an extended ModelPropertiesIndexer adding information about the number
of children. This could lead to two (actually one) entries as follows: pnoc, 2, εPassengerM q.
While this requires the metric to be implemented, the Query needs no more than the
index identifier and a number to retrieve the information.

As we deploy our approach in reuse for conceptual modeling, it makes sense to contrast
our knowledge library with ontology [Hes02], because it is believed that they could also
bolster the modeling [Obe14b; Obe14a]. First, we must establish at least a rough
understanding of what “ontology” means, though there is no common understanding
[Bus+14]. This is because the term is used in many domains [Fur14], so we keep to
computer science and limit our understanding. A more elaborate discussion covering
even cognitive sciences and philosophy is provided by Stuckenschmidt [Stu09].

Gruber states that “[a]n ontology is a formal, explicit specification of a shared con-
ceptualization” [Gru93], whereas Herre et al. considers that “an ontology is a shared
understanding of some domain of interest, which is represented as a set of concepts (e.g.
entities, attributes, and processes)” [Her+06]. Alternatively, [UG96] gives the following
definition: “Formal Ontology is the science that is concerned with the systematic develop-
ment of axiomatic theories describing forms, modes, and views of being at different levels
of abstraction and granularity.” Altogether, Pickert concludes that “ontologies should
enhance machine to machine communication and machine to human communication”
(translated from [Pic03]).

Hence, the Web Ontology Language (OWL) (abbreviated like this because it sounds
nicer) provides a machine-readable format for formalizing ontology. Thus, an increasing
amount of domain knowledge, e.g., genome sequences, semantic descriptions of images,
laws, sentences, professional articles, is formalized in OWL. As a marginal note, this
recurs in section 3.5, where we will touch on OWL DL, a decidable version that is also
transformable to Ecore [ROD10].

Therefore, altogether, conceptual modeling and ontology are quite close and, regarding
transformations, closely resemble one another. Generally, both suit the purpose of
categorizing and relating entities [Rei83]. However, we undertake conceptual modeling
for the purpose of code, or at least prototype, generation rather than knowledge deduction.
This is a benefit compared to knowledge engineering [Fur14].

3.2.5. Related Work

Approaches for collections of software artifacts have been the subject of research for
almost 40 years [MMM98], but comparable solutions focusing on reuse in object ori-
entation only emerged in the 1990s. These considered either software components or
prototypes. An early example of the former is presented by Goguen et al., who lever-
age interface information for retrieving software components [Gog+96]. We took some
inspiration from their formal definitions but, for comprehensibility reasons, we remain
semi-formal. Another example is that given by Macchini, who developed ESTRO to
provide architectural and data flow ideas for their system [Mac92]. An example for the
latter is AGORA [SHW98], which offers prototype searches based on component models.
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Both solutions, though tailored for different artifacts, follow similar paths with respect to
architecture and information retrieval, let alone structural queries.

For more recent work, we can take a different perspective on our persistence and dis-
tinguish our approach accordingly. Hence, we subdivide the related and complementary
approaches into repositories, libraries, and other knowledge-preserving systems, e.g.,
ontologies. We conclude with some observations about model management.
Model Repositories: There is no agreement on the term model (cf. subsection 2.3.1 (p.
17)), nor is there a consensus on the definition of a repository (cf. subsection 2.3.1 (p.
18)). Hence, we consider the subsequent approaches as repositories, though the terms
indicate otherwise.

Altmanninger et al. provide a reasoning for why research on model versioning is
needed, and indicate that the solution is a repository for models providing operation-
and semantic-based conflict detection [Alt+09]. Their solution is AMOR, the “adaptable
model versioning repository”, which overcomes the shortcomings of XMI serializations
[Alt+08]. Closely related projects (and partly predecessors) are modelCVS, the “model
concurrent versions system” [Kap+06], and SMoVer, the “semantic model version control
system” [Alt+07; Alt08]. These repositories cohere with our understanding of the term,
because they offer storage, versioning, and conflict-resolution functionality, but indexing
or querying is not an issue.

France Telecom developed a UML model repository implementing the MOF stack as a
central storage service [Bel99]. They store metamodels and models in this repository
and have developed a suitable meta-metamodel for that the purpose. The reason for
developing this repository was to unify data representation. This puts reuse of models in
focus, as we do, but there are no details regarding a search functionality, though this
realization would be useless if it did not support a search operation.

Other realizations of model repositories exist in the Eclipse ecosystem. The first
is called EMFStore [KH10]. Developed by Kögel, this supports model evolution in a
central repository through operations [Kög11]. Although there are options for finding
models, the purpose does not lie in reuse, but supporting collaborative work, and hence,
version control and change propagation. The second is the CDO Model Repository
(connected data objects), which provides a framework for multiple backends to store and
manage large models [Ecl10]. Hence, it focuses on efficiency aspects rather than reuse
or querying. Finally, the “Model Repository” at the University of Leipzig is a project that
uses graph databases [Eli+10]. To that end, it migrates Ecore models to graphs and
offers editing functionality including merge operations. It does so by persisting classes
as vertices and relationships as edges in the graph database. We mention this repository
to provide a more coherent picture, although the project has been abandoned for more
than five years and its precise goals are not clear.
Model Libraries: According to our understanding of the term repository, an indexing
and querying mechanism can enhance it to become a library. Consequently, projects
concerning indexing and querying could make EMFStore or CDO into model libraries.
Examples for such projects are EMF Search (discontinued [Ecl12b]), EMFIndex (archived
[Ecl12a]), EMF Query [Ecl15a], and EMF-IncQuery [Ujh+15]. These projects provide
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querying and some indexing support for EMF/Ecore models. Alternatively, a single
technology, e.g., Object Constraint Language (OCL), can induce querying, as proposed
by Akehurst and Bordbar [AB01]. However, none of the above offers structural Querys.

Academia-related projects with built-in indexing and querying fostering web technolo-
gies include MOOGLE [LFW12], ReMoDD [FBC06], and MDEForge [Bas+14]. MOOGLE
was first developed by Lucrédio, Fortes, and Whittle and, as the name suggests, is a web
search engine for models; it is not publicly available. MOOGLE works on XMI-persisted
models and extracts beneficial information for more accurate means of searching [LFW12].
The frontend, which supports fuzzy searches, ranked results, and provides previews, is
designed to be user-friendly, according to the authors. ReMoDD is built and maintained at
Colorado State University by France, Bieman, and Cheng, and is focused on community
building and documentation [FBC06]. Hence, many models are in PDF or screen-shot
format, which means they are not directly editable or machine processable. ReMoDD
is often used as a platform for exchanging models and related examples, such as case
studies or educational-level models. Finally, MDEForge is a community-based repository
for models realized with web technologies by Basciani et al. [Bas+14]. It is meant for
“development, analysis, and reuse”. This summarizes the functionality of MOOGLE and
ReMoDD to some extent, and should be seen as a model-management tool offering
software-as-a-service.

Still in the domain of web technologies, but working on web application models, Bis-
limovska et al. have laid out a development process for finding reusable models across
project repositories [Bis+14]. They start by presenting a conceptual architecture, which
matches ours, and discuss common information retrieval mechanisms, i.e., indexing
and querying words, as well as aspects of ranking results [BBF10]. They then enhance
their approach using structural queries, similar to our IsomorphicQuerys, which they
denote as “content-based queries” or “query by example” [Bis+11]. The inputs they use
for querying are rather sketched ideas of what might be useful. Hence, they are more
concerned with similarity than exact matches, and employ different preprocessing and
algorithms than us. Hence, they first need to transform project repository content into
graphs and index them properly. Then, they can use a tailored A-star algorithm for “error
correcting subgraph isomorphism”, enabling similarity searches for a given graph edit
distance. This unveils another difference to our approach, which always works in two
steps to minimize the number of candidates for the structural Querys.

Shao, Sun, and Chen studied the reuse of workflow models and presented the WISE
search engine [SSC09]. Their approach considers workflow hierarchies that are “three-
dimensional object[s] containing multi-resolution views on the same workflow”. They
mean to say that workflow tasks can resolve to other tasks, services, calls, and queries
(multi-resolution) in their otherwise two-dimensional graph structure, i.e., tasks and
subtasks. This makes indexing and querying challenging, as they demonstrate in an
exemplary workflow. Compared to our approach, the proposed data processing steps,
e.g., index builder, and the conceptual architecture are similar, though our focus lies on
extendability.

A slightly different approach for libraries uses facets that are the result of domain
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engineering and could be seen as categories. However, they are more elaborate, because
a standard catalog of facets always serves as a starting point. Schmidt et al. developed
a facet library for arbitrary software components and explain how facets enable more
efficient development. To some extent, this is similar to categories, but actually goes
beyond, albeit not as far as our Groups. Still, it allows for the browsing of artifacts, as we
allow in our graphs.

Keeping in mind that there is a path from OWL to Ecore [ROD10], we should also look
into ontology reuse. Given an ontology repository, Fernandez, Cantador, and Castells
derived a method for gathering a set of terms, evaluating them with respect to the
repository, and presenting a ranked list for manual reevaluation by the user [FCC06].
Note that the evaluation step corresponds to our Query, but evaluating an ontology
is different. It might mean “comparing to a Golden Set”, installing and measuring the
resulting quality, comparing to unstructured data, or evaluating manually by human
interaction. Additionally, collaborative filtering and other techniques from recommender
systems are applied, but we do not go into further detail here and postpone our discussion
to subsection 3.5.9. For now, the sequence of data processing steps in their CORE tool,
including the natural language processing, is equivalent to our approach, but our ranking
and evaluation produce different results.
Model Knowledge Libraries: The “Model Intelligence approach” presented by White
and Schmidt is a framework for domain-specific modeling languages on a conceptual
level [WS06]. They focus on establishing domain-specific knowledge bases and algo-
rithms so they can map models in what they call “combinatorically challenging domains”.
For example, they semi-automatically map logical models to deployment models for car
electronic control units. Hence, their modeling language is AUTomotive Open System
ARchitecture (AUTOSAR) and their knowledge base employs Prolog for inference. The
most notable difference to our lies in the artifacts we deal with—while White and Schmidt
focus on mappings, we are concerned with models and their relationships.
Model Management: According to Bharadwaj et al. and others, the term “model man-
agement” was coined by Will [Wil75], and is not exclusive to computer science. Rather, it
has been used for mathematical models in decision making, as surveyed by Bharadwaj
et al. [Bha+92]. The models dealt with are intended “to maximize or minimize a set of
mathematical constraints that capture the conditions under which the decisions have to be
made”. Therefore, several equations with constraints are solved and the solutions have
a numerical nature. Hence, “[t]he goal of a model management system is to provide a
modeling environment which can conceive, represent, manipulate, integrate, and control
a variety of models in an organization”. From our perspective, this holds true, even today,
though the models under consideration in computer science have changed.

At the time, however, model management already existed in computer science, and
Blanning provides, at roughly the same time as Bharadwaj et al., an overview of model
management systems in computer science [Bla93]. This shows how work in both disci-
plines is rooted in the same foundations. Whereas decision support systems (DSS) play
a major role in both texts, the latter turns toward database management. Eventually, this
leads to the ideas presented by Melnik for general model management [Mel04].
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More recently, a change in the terms for model management occurred, and an approach
called “megamodeling” emerged [Béz+05]. This concept aims at a different application
than our knowledge library, instead trying to adapt ideas from programming-in-the-large,
which implements the module interconnection language (MIL) introduced by DeRemer
and Kron, to modeling [DK75]. This means that modeling-in-the-large is proposed with a
distinct model that plays the role of the MIL at the meta-modeling level. This distinct model
stores the relationships between project assets, which are also models, and holds all of
them together. This allows for traceability and enables transformations as well as weaving,
which are key aspects of modeling environments according to Allilaire et al. [All+06].
Alternative formulations of issues and concepts are provided by Herrmannsdörfer and
Hummel [HH10] and Krishnan and Chari [KC00] [Lev+11].

3.2.6. Summary of Storing Models

This section introduced a knowledge library (KL) in the form of concepts that build a graph
structure with indexing and querying functionality. The concepts constitute three kinds of
vertices (KLV). The first kind represents the actual information, e.g., LibraryElements,
the second kind provides meta-structures, e.g., Categorys and Groups, and the third kind
emulates connections, e.g., Connectors. The edges (KLE) relate the abovementioned
concepts, i.e., vertices. In addition, the knowledge library comprises MetaInformation

and an index (KLI). This allows information to be added to the indexes (I) and retrieved
by querying (Φ). For a given knowledge library, KL:“ pKLV, KLE, KLIq, an element (εAirportM )
can be indexed (Ielement

KL ) and queried for (Φ:WModel Airport
KL ). On top of that, our knowledge

library offers more sophisticated indexing and querying, including ComposedQuerys and
IsomorphicQuerys. Hence, several Querys can be composed with basic set operations
such as DisjunctiveQuery, ConjunctiveQuery, or NotQuery, and models can serve
as both the content and structure-wise input for a Query.
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Figure 3.12.: Example Summarizing Knowledge Library (cf. figure 3.7),
Index (cf. equation (3.24)), and Query (cf. equation (3.41))

72



3.3. Harvesting Models

3.3. Harvesting Models

Any data storage is only as useful as the data it has to offer, and our knowl-
edge library from section 3.2 can only serve useful data if it is well fed. This
feeding of data into storage is often considered a tedious task, and our
knowledge library is no exception. Hence, an approach for harvesting useful
data with IDEs should meet the modelers halfway, offering good integration into existing
IDEs, automation, and basic quality standards for harvested models.

Of these, the most challenging requirement appears to be automation, which is related
to data mining or knowledge discovery from data [HKP12]. Data mining approaches
have been developed for several domains and types of data: software repositories have
a long history in the mining of data for several purposes, e.g., analyzing version control
systems in combination with an issue tracker for project health statements [KCM07;
Hem+13]. Similarly, business processes have been identified by analyzing event data,
e.g., from logging or emails, with approaches called business process mining [van+07;
Aal11; AUv12]. On a more structural level for data, approaches that analyze graph data,
called mining graph data, can successfully derive topological descriptors for chemical
compounds, help localize software bugs, and so forth [AW12]. These approaches appear
promising, because models inherit a graph structure, as we discussed in subsection 2.4.3.

Related considerations for mining graph data comprise questions of heuristics and
metrics. Some metrics for models and graphs have been proposed, but processing
models as graphs for harvesting sets of elements has not been extensively studied.
Often, these approaches tend to dissect entire models in a predefined number of new
models [Str+13], which does not help much in terms of harvesting. Thus, well-studied
graph partitioning and clustering approaches for non-semantic graphs require some
revision; but can algorithms produce good proposals for models?

In section 3.2 (figure 3.4 (p. 48)), we magically came up with three extracts from our
running example from figure 2.3 (p. 27), but did not discuss how. An idea for how to
harvest elements from models could work in three steps. First, chunks of elements
could be built. Second, these could be extracted to represent new models. Finally,
relationships between chunks in the original model could be extracted to represent
relationships between the new models. A sketch for harvesting the Airport, related
classes, and “adjacent relationships” from our running example may look as follows:

Passenger

Airport

Vehicle

Airport

travelClass : TravelClass

name : String

code : AirportCode

kind : VehicleKind

Figure 3.13.: Harvesting for the Running Example from figure 2.3 (p. 27)
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This example implies that all three parts are extracted at the same time, but what
would happen if the Passenger Model was already present in a knowledge library?
Then, the steps undertaken might be as follows. First, known parts would be found
and matched to a set of known parts. Second, chunks that are potentially beneficial
for harvesting would be identified. Third, user interaction would insert corrections and
alterations. Fourth, the finished chunks would be separated to become Models and
build the syntactic Connectors. Finally, the Models would be stored and related via the
Connectors with attached syntactic information, i.e., cross-links.

3.3.1. The Model Mining Framework

From the example above, we can deduce some of the components required for our model
mining framework that is responsible for harvesting [Sew13]. Figure 3.14 provides an
overview and indicates that several extensions foster harvesting. First, identifying known
parts in a model under consideration might follow different approaches because of the
differing intentions of modelers. Therefore, figure 3.14 shows the marker components
intended for these different purposes. Second, one of several splitter is responsible for
building sets of model elements, called chunks above, which are intended for reuse.
Once more, the intention of a modeler determines how the sets of model elements are
built. Should they be built regarding the underlying structure? Or is it worth striving
for semantic dissection? Finally, the persistence is considered by saver components,
because backends vary from directories to databases.

Harvesting

Framework

Marker N

Saver P

Splitter O

UI

Marker 1

Splitter 1

Saver 1

...

...

...

Figure 3.14.: Model Mining Framework (MMF)

We now describe how to identify beneficial parts, dissect them in new sets of elements,
relate them to each other, i.e., maintain “bridging” relationships, and provide an overview
of how this blends into our operation-based view of models. Note that we do not mean to
fully automate this process and we have no intention of harvesting entire models, so the
design of our approach is suitable for user interaction. For example, we allow users to
decide on the exact dissection or degree of redundancy related to a knowledge library.
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3.3.2. Identifying Submodel Candidates

Given a model (m), there are two steps involved in identifying sets of elements for
reuse. First, the known elements should be identified, or marked, with respect to a given
persistence unit. Though this is possible for shared directories or databases, we keep
to a knowledge library. Second, the given model should be analyzed for candidates
that appear beneficial for reuse, bearing in mind that known elements could lead to
redundancy in a knowledge library.

The first step comprises querying a knowledge library at a given level of detail. This
could take into account everything from the model, i.e., all names of classes, attributes,
operations, and literals or the granularity of queries could be set to class names only.
Our indexes provide options for both, but we opt for the latter for now. Hence, finding
known elements involves querying a given model (m) and a knowledge library (KL). We
define the set of known classes (KC) as follows:

KC :“ tε P Em
C : ΦεKL ‰ Hu (3.46)

Note how we use EC in equation (3.46) instead of Ene (cf. table 3.1 (p. 34)), thus
limiting queries to classes for KC. A set containing all known named elements, i.e.,
known elements (Kne), uses the aforementioned Ene from m for querying. Another,
very reasonable, set comprises all terms (KT ), i.e., class names, enumerations, and
relationships. The latter are important, bearing in mind that relationships are often
used for modeling roles. In the second step, we analyze a given model and derive
sets of elements that could be considered candidates for a knowledge library. Several
formulations for this task are possible. First, it can be described as a restriction function;
second, as a constraint satisfaction problem; and third, as an optimization problem. We
will explain the first in greater detail and briefly provide backgrounds to options two and
three later, because some internals, and possible extensions, use these formulations.

We call the abovementioned sets of elements submodels for as long as they are
undergoing harvesting, and provide a semi-formal definition. Later, as soon as they are
stored in a knowledge library, we refer to them as models of Models. Thus, given our
model definition in equation (3.1) (p. 36), we can define a submodel relative to a model (m
:“ pEA, Ecl, EC, ... , ρeAttributes, ρeClassifiers, ... ,Rq) and denote that “s is a submodel of m”
or “s is a submodel relative to m” (s Ď m) (note tables 3.1 and 3.2 on pages 34 and 36):

m :“pEA, Ecl, EC, ... , ρeAttributes, ρeClassifiers, ... ,Rq given
s :“pEA|s , Ecl|s , EC|s , ... , ρeAttributes|s , ρeClassifiers|s , ... ,Rq exists, with (3.47)

EA|s Ď EA, Ecl|s Ď Ecl, EC|s Ď EC, ...
ρeAttributes|s Ď ρeAttributes, ρeClassifiers|s Ď ρeClassifiers, ... provided

id :“ D Ñ C : x ÞÑ x so that
id|D1 :“ D1 Ñ C : x ÞÑ x D1 Ď D is a restriction. (3.48)
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Note how the submodel (s) comprises a subset of the model sets, e.g., EA|s Ď EA for the
attributes. We gain the subset by means of our restriction function (id) in equation (3.48),
which limits the domain of an identity function, so that not all of the elements that occurred
in the original function get mapped to the co-domain. Other than that, the submodel (s)
is a complete and sound model. We call this a submodel related to the model, but it
becomes an independent model once it is added to the knowledge library.

Given the definition of a submodel in equation (3.47), we may wonder how to obtain
submodel candidates that are beneficial for our knowledge library for reuse. Respecting
equation (3.47), this means altering the identity function in equation (3.48), which we
introduced to restrict elements. In fact, we define restriction functions for “strategies of
building submodels”. This means that we provide an extensible selection of possible
restriction functions from which users can choose.
Graph Clustering: In terms of graph theory, our restriction functions, which we simply
call algorithms for now, produce tuples of sets, building graph clusters that maximize
“intra-cluster density” and “inter-cluster sparsity” [Gör+13]. Some algorithms work bottom-
up, i.e., agglomerative algorithms, and some work top-down, i.e., divisive algorithms
[For10]. None of them processes models immediately, but instead work on dependency
graphs, which are not to be confused with model dependency graphs (MDGs) or class
dependency graphs (CDGs) [LM08; LM09]. The resulting clusters are evaluated using
different metrics for cluster performance, conductance, coverage, density, or modularity.
Subsequently, we must keep in mind that (optimization) algorithms for graph clustering
and modularity are NP-complete [Bra+08].

The basis for our graph clustering is the dependency graphs (DG= (V, E)). These
are graph representations with model elements as vertices (V) and model relationships
as edges (E). For example, classes or enumerations are represented as vertices and
attributes such as inheritance or association relationships are represented as edges.
The term “dependency” results from the idea that two vertices depend on each other in a
relationship manner, e.g., a subclass depends on a superclass, or a composite depends
on a part. Further, attributes and operation parameters establish dependencies, although
they are elements in our model definition from equation (3.1) (p. 36).

Thus, given a model (m), we run pseudocode 3.2 to gain a simple or regular depen-
dency graph. The latter is simply denoted as a dependency graph. These graphs are
distinguished from each other in respect of how much information is used for building their
edges. Both build vertices from classes and enumerations, but the simple dependency
graph only comprises edges for inheritances and references. Hence, the simple depen-
dency graph is congruent to a class diagram figure transformed into a graph. However,
a class diagram can contain more structural information, e.g., attributes and operation
parameters. Contrary to Sun, France, and Ray [SFR13], these are only transformed into
edges in a dependency graph, as shown after line 15 in pseudocode 3.2.

Regarding the elements and relationships processed in pseudocode 3.2, all of them
can be found in our model definition (m). This means that all calls are designed according
to elements in table 3.1 (p. 34) or relationships in table 3.2 (p. 36). For example, in line 2
of pseudocode 3.2 returns exactly the EClassifiers defined in table 3.1 (p. 34), so we
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can rewrite with Ecl, and later ρeSuperTypes, EA, EA, EO, EP.
A closer look at table 3.2 (p. 36) reveals that we did not process all relationships in

pseudocode 3.2. In detail, we omitted information about exceptions (ρeExceptions) for the
sake of simplicity and because we do not expect further semantics. The same holds for
the type information contained otherwise (ρeType, ρeStrucFeatures). In addition, we excluded
relationships to literals (ρeLiterals) and opposing references (ρeOpposite). The former are
considered irrelevant for structural processing, because either an enumeration is included
or not, disregarding the literals, and similarly a reference is structurally relevant or not
(again, independent of the opposing relationship).
1 DependencyGraph createDependencyGraph(Model model, Boolean simple){

2 for (E e : model.getEClassifier()) { // classes, enums

3 Vertex v = createVertex(e); vertices.add(v); // vertices

4 modelMapping.add(v); // for reverse mapping

5 }

6 for (S s : model.getESuperTypes()) { // inheritance edges

7 Edge e = createEdge(s); edges.add(e); modelMapping.add(e);

8 }

9 for (R r : model.getEReferences()) // reference edges

10 Edge e = createEdge(r); edges.add(e); modelMapping.add(e);

11 }

12 if (simple)

13 return buildDependencyGraph(vertices, edges); /** DG=(V,E)*/

14

15 for (A a : model.getEAttributes()) { // attribute edges

16 Edge e = createEdge(determineAdjacents(a)); edges.add(e);

17 modelMapping.add(e);

18 }

19 for (O o : model.getEOperations()) { // operation edges

20 for (P p : o.getEParameters()) { // per parameter

21 Edge e = createEdge(determineAdjacents(p)); edges.add(e);

22 modelMapping.add(e);

23 }

24 }

25 return buildDependencyGraph(vertices, edges); /** DG=(V,E)*/

26 }

Pseudocode 3.2: Dependency Graph

Some of the graph clustering algorithms that will be introduced work on structural graphs
only, while others process weighted graphs with additional weight information, which
we have not provided in pseudocode 3.2. However, we can alter the algorithm and add
a parameter, which represents the corresponding weights. We can do so for edges in
lines 7, 10, 16 and 21 of pseudocode 3.2 and use weights as depicted in table 3.8 for
aggregation, association, composition, and inheritance relationships [Str+14]. Further,
we can add weights to vertices by altering in line 3 of pseudocode 3.2 for known elements.

Note that we sometimes need to convert a dependency graph (DG) into an adjacency
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Table 3.8.: Edge Weights similar [Str+14]
Edge Type Aggregation Association Composition Inheritance

Weight 0.05 0.15 0.3 0.5

matrix. Though this simplifies the algorithm, it increases the space requirements.
Associates Clustering: Possibly the simplest approach for calculating submodel candi-
dates applies counting and graph walking. We mark leaves in a dependency graph with
values of one and sum the children’s values by walking up inheritances and against asso-
ciations. Then, we calculate a threshold as the square root of the number of classes and
enumerations. Finally, we build submodels of all classes that exceed the threshold and all
their associates. In our example, Airport scores 9, Passenger scores 16, and Vehicle

scores 18. The threshold is about 5 (
?

27). As a result, we gain three submodels, as
shown in figure 3.4 (p. 48). Note that this is a very naïve approach that may not always
succeed, e.g., consider a triangle of classes with undirected associations. For reasons
of brevity, we omit a formal definition of the restriction function, because it requires us to
introduce and apply a more expressive logic for formulating tree expressions. Instead,
we provide a semi-formal definition that provides a set L of tuples relating vertices and
their respective levels, and an extract comprising the central classes (C) that exceed the
threshold, which form the basis for associates clustering.

L :={(v, l)} : v P V, l “
"

1 out-deg(v) “ 0
Σ li out-deg(v) ‰ 0, li : (vi , li ) P succ(v), (3.49)

C :={(v, l)} : (v, l) P L, l ě
a

| V | (3.50)

Girvan-Newman Clustering: Opposing the bottom-up approach described above, an
algorithm employing ideas from the Girvan-Newman algorithm (pseudocode 3.3) uses a
top-down, i.e., divisive, approach for clustering [NG04]. This method is normally applied
to community structures, which are similar to our submodel candidates, in graphs. Hence,
the algorithm processes a graph by removing edges based on “vertex betweenness”
[NG04]. This is the number of all shortest paths running through this edge, and in each
iteration the edge with the highest betweenness is removed. This divides a graph into
smaller graphs until either single vertices remain or a termination criterion is met.

This termination criterion in line 3 of pseudocode 3.3 is one of the few adjustments we
need to undertake to apply the Girvan-Newman algorithm to our dependency graph. We
could consider the size of the achieved graphs or the number of graphs built from the
initial graph as such a criterion. Next, we need to set the directions of the edges, which
are the opposite of those indicated in a class diagram. Further, we need to treat multiple
edges between vertices as “equal” for betweenness, because the algorithm is not defined
for multi-graphs. Finally, the algorithm works best for graphs without anomalies, but our
dependency graphs expose a structure that is similar to trees, i.e., with many leaves.
These leaves are likely to be isolated by the algorithm, because the betweenness for
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adjacent edges is often high, as they are frequently required for the shortest path to
other vertices. For example, the classes in our Vehicle Model, except for the Vehicle

class itself, score 11 in our running example from figure 2.3 (p. 27). Fortunately, the
relationships that we actually want to cut off score 17, so in this example, there is no
problem. However, it is reasonable to set a lower bound for the minimal number of
elements in a submodel. With these adjustments in mind, we can cluster our running
example from figure 2.3 (p. 27) and obtain the submodels as already known and depicted
in figure 3.4 (p. 48).
1 Set<Model> clusterGirvanNewman(DependencyGraph dg) {

2 Matrix<V,V> bet = calculateBetweenness(dg);

3 until (shallStop(dg, bet)) { // bridging edges

4 Edge e = removeEdgeWithHighestBetweenness(dg, bet);

5 bet = adjustBetweenness(dg, bet, e);

6 }

7 return buildClusters(dg, bet);

8 }

Pseudocode 3.3: Girvan-Newman Clustering

God-Class Clustering: A trait often considered harmful in object-oriented programming
inspired the name and idea for finding god-class clustered submodel candidates [Rie96;
Mar01]. This approach makes use of metrics for object-oriented systems to determine
essential or central elements in models, so they can be considered the centers of a
submodel candidates [CK94; GPC05; SM13]. A combination of metrics can detect
suspects in source code [Mar01], namely weighted methods per class (WMC) [CK94],
tight class cohesion (TCC) [BK95], and access of foreign data (AOFD) [Mar01]. The latter
is helpful for finding god-class candidates [Mar01], and is also applicable for UML class
diagrams, whereas the others are not so well applicable in our case [GPC05]. God-class
clustering counts the number of relationships relative to the total number of classifiers and
ranks the top 20% as candidates. The semantic explanation is that these classes tend to
summarize or provide an entry point to an area of modeling. In conceptual modeling,
this is sometimes of a technical nature, because root elements ease data processing.

Given a set of god classes, we need to find out which elements to cluster into which
god class. We can do so by applying a modified Floyd–Warshall algorithm. The basic
version of Floyd’s algorithm calculates the shortest paths in a graph [Flo62], whereas
Warshall’s version determines reachability [War62]. We can adjust Floyd’s algorithm
to deliver an additional adjacency matrix providing weights instead of distances. This
enables us to separate the found god classes with respect to their most-coupled classes,
i.e., traversing the heaviest edges until a threshold is reached. Floyd’s algorithm works
in three cascaded loops over an adjacency matrix initialized with either the weight of a
connecting edge or zero. Then, it processes each pair of vertices, with one set fixed (first
loop), trying to find the shortest path to the other (second loop) by optimizing the path
with the previously calculated information (third loop). Note that we need to process the
entire matrix because we have a weighted multi-graph. This also means that we need
to deal with multiple associations between vertices. An adjustment is to add the values
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from table 3.8, which requires us to convert our algorithm to a maximization problem.
Kernighan–Lin Clustering: A semi-semantic approach for clustering uses the Kernighan–
Lin heuristic algorithm for graph partitioning [KL70]. This is a hill-climbing approach that
works in two cascaded loops for a given initial partition, which provides balanced sets
of vertices. The outer loop always starts calculating the costs for vertices with adjacent
vertices in opposing sets. These are the costs of the edges bridging to other sets and
the costs for remaining edges. The former are often called external costs and the latter
are internal costs. Hence, we can tell whether it is beneficial for a vertex to swap sets
(d(v)=cext (v)-cint (v)). This is considered in the inner loop, which takes the maximal value
of adjacent vertices establishing a bridge between the two sets (max(d(v)+d(w)-2c(v,w)))
with a corrective term (explained later). The two chosen vertices v and w are then placed
in one set and marked as having been processed. This inner loop continues until no
better solution can be found for the current edges bridging the sets or until the list of
edges bridging sets has been processed, i.e., all adjacent vertices are marked. Then,
the markings are released and the outer loop continues. The corrective term mentioned
above is required because the bridging edge is counted twice, i.e., in d(v) and d(w), and
does not contribute to a better cut because both v and w are then in the same set.
1 Set<Model> clusterKernighanLinHeuristic(DependencyGraph dg) {

2 Model m1, m2; buildBalancedSets(dg, m1, m2);

3 until (!improved) {

4 Set<V, int> c_ext = externalCosts(dg, m1, m2);// bridging edges

5 Set<V, int> c_int = internalCosts(dg, m1, m2);// internal edges

6 Set<V, int> d = calculateD(dg, c_ext, c_int); // benefit

7 for (i = 1 ... nrOfBridgingEdges(dg, m1, m2)) {

8 Edge e = getMostBeneficialUnmarkedBridgingEdge(dg, m1, m2)

9 markBridgedVerticesProcessed(e);

10 swapAdjacentVertex(dg, m1, m2, e);

11 d = adjustD(dg, d, e);

12 }

13 clearMarkedVertices();

14 }

15 return new Set<Model>().add(m1).add(m2);

16 }

Pseudocode 3.4: Kernighan–Lin Clustering

The adjustments applied to the heuristic algorithm are as follows. First, the dependency
graph (DG) we provide is a multi-graph with potentially many edges between two vertices.
Hence, we need to change the corrective term to take this into account and remove
double the cost of all edges relating to these two particular vertices. Second, the depen-
dency graph should provide weights, as introduced in table 3.8, for simple dependency
graphs. In addition, a regular dependency graph needs to provide weights for attributes
and parameters. For now, we set this weight as equal to compositions, because their
semantics are similar. Third, the heuristic algorithm must be adjusted for cuts between
more than two sets. This alters the calculations for external costs, as there are more
values for external costs per vertex, i.e., one for each adjacent set. This will potentially
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change the runtime complexity.
As an example, figure 3.15 shows two sets with five edges to cut, where the cost for

cutting like this is the sum of the edge weights. The external costs for vertex v consist of
the sum for edges to the adjacent vertices vx and vy , and the internal costs comprise
only those for the edge to the faded vertex. Further, d(v) is calculated from these values,
and the same values can be calculated for d(vx ) and d(vy ). However, our simplified figure
makes no statement about the edge weights, because table 3.8 provides an idea of how
they are encoded. Assuming that v is selected to be moved to Set 2, as indicated by the
black arrow, then it is cheaper to cut the edge to the faded vertex than the two to vx and
vy in Set 2.

Set 1 Set 2

v
vx

vy

Figure 3.15.: Kernighan–Lin Vertex Exchange

Cluster Parameters: Determining a suitable number of submodel candidates for a given
model (m) should be configurable and adhere to constraints that ensure comprehensibility.
This means that submodels need to be understood quickly, i.e., in a matter of seconds.
Hence, submodel candidates should not exceed a certain complexity, which we measure
as the number of classes and enumerations (|m|) of a submodel or model (m), as shown
in equation (3.51). Consequently, we can determine the minimum number of submodel
candidates for a given threshold (cmax) using a function (c) defined in equation (3.52).
Further, a lower bound is beneficial for some algorithms, e.g., the Girvan–Newman
clustering, and we denote this minimum as (cmin).

|m| :“MÑ N : m ÞÑ |EC| ` |EE| m PM (3.51)

c :“R` Ñ N : x ÞÑ
R

1
cmax

x
V

cmax P N (3.52)

Thus, algorithms are required to satisfy equation (3.53) for a given model (m) and
boundaries (cmin and cmax). The equation states that the number of submodel candidates
does not exceed a certain number and that the content remains within bounds with
respect to the number of classes and enumerations (cf. equation (3.51)).

cmin ď |si | ď cmax si Ď m, m,si PM, i=1, ... n, n = c(|m|), cmin, cmax P N (3.53)

Example: Let us assume that the threshold for the maximum number of classes and
enumerations is 10 (cmax = 10). Then, equation (3.52) gives values of 2 for x = 20 and 3
for x = 21, as expected. The reason for this lies in the “ceil” function (rs), which always
rounds up decimal fractions. In our first example, cmaxp20q gives 20

10= 2 and cmaxp21q
gives 21

10 , which is rounded up to 3, as desired. Note that we set this threshold to 10 for
the moment, but will investigate this value further with regard to quality considerations of
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models in subsection 3.4.4 (p. 101).
General Problem: Many aspects of producing submodel candidates and equation (3.53)
hint at a more general problem behind graph clustering or building submodel candidates.
On the one hand, during harvesting, this step can be seen as an optimization problem
[Gör+13], whereas, on the other hand, it can be dealt with as a constraint satisfaction
problem [LV02]. We provide an overview for the former without going into detail, as some
realizations rely on these ideas. For the latter, we simply mention that the boundaries,
number of submodel candidates, and strategy for distributing elements are constraints
on any solution.

However, regarding the clustering approaches described above, the most obvious
formulation for finding submodel candidates is an optimization problem. Our goal is
to find a solution for clustering a given dependency graph (DG) while optimizing the
intra-cluster density and inter-cluster sparsity. Hence, the optimization problem can
be formulated as a bicriteria optimization problem that optimizes one objective while
achieving a minimal quality requirement with respect to the other [Gör+13]. Often, the
former is density, because cluster expansion is considered NP-complete.

3.3.3. Separating Submodels with Cross-Links

Thus far, we can build submodels from a given model, but cannot relate them to each
other. This would induce a loss of information when the original model contains valuable
information. Hence, our knowledge library provides the concept of Connectors to relate
submodels stored as independent Models. In our running example from figure 2.3 (p. 27),
we extracted three Models and some relationships were cut off. As an example, take the
classes Airport and Passenger. They were related in our running example with the
source and destination relationships shown in figure 3.16, but so far we have only
associated the Models in our knowledge library. Hence, we aim to store the relationships
in a Connector, as indicated by the dashed lines in figure 3.16.

Passenger Airport

Passenger

travelClass : TravelClass

Airport

name : String

code : AirportCode

source
destination

Figure 3.16.: Cross-links Example: Overview of two adjacent Models

This syntactical association of information between two Models is added to the syntactic
attributes of a Connector, which we call cross-links [Rag11]. Figure 3.17 shows how this
could be illustrated, and we define cross-links as sets for storing syntactic information.
For our example, this means that the associations source and destination are put
in a cross-link, as shown in figure 3.17. A cross-link (cl), for a given model (m :“
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pEA, Ecl, EC, ... , ρeAttributes, ρeClassifiers, ... ,Rq) and two disjunctive submodels (s1 and s2)
can be written as:

s1 :“pEA|s1 , Ecl|s1 , EC|s1 , ... , ρeAttributes|s1 , ρeClassifiers|s1 , ... ,Rq
s2 :“pEA|s2 , Ecl|s2 , EC|s2 , ... , ρeAttributes|s2 , ρeClassifiers|s2 , ... ,Rq
cl :“pEA|s1 s2 , Ecl|s1 s2 , EC|s1 s2 , ... , ρeAttributes|s1 s2 , ρeClassifiers|s1 s2 , ...q, with (3.54)

@pεi , εq, pε, εjq P ρe, εi P Ecl|si , ε P Ete, εj P Ecl|sj (3.55)
ñ EΓpεi q

|s1 s2 Y tεiu, EΓpεq|s1 s2 Y tεu, EΓpεj q
|s1 s2 Y tεju,

ρΓpεi ,εq|s1 s2 Y tpεi , εqu, ρΓpε,εj q
|s1 s2 Y tpε, εjqu i,j P {1, 2 },

Passenger Airport
Airport

name : String

code : AirportCode

Passenger

travelClass : TravelClass

source
destination

Figure 3.17.: Cross-links Example: Two adjacent Models

We use the “between” symbol ( ) for the restriction function (cf. equation (3.48)) to
indicate that we refer to the elements between s1 and s2. These elements are EType-

dElements in our models, according to figure 3.2 and table 3.1 on pages 34 and 35,
which is a superconcept for attributes, parameters, and references. Hence, equation
line 3.55 considers these typed elements (ε) as elements-in-the-middle, bridging two
Models, and they belong in a cross-link if one of the associated elements is not in the
same submodel. For our example, a cross-link clfigure 3.17 could look like this:

clfigure 3.17 :“pEA|sVehi sAirp , Ecl|sVehi sAirp , ... , ρeAttributes|sVehi sAirp , ...q (3.56)

Efigure 3.17
C :“tεPassengerC , εAirportC u

Efigure 3.17
R :“tεPass2Airp

R , εPass2Airp1

R u

ρ
figure 3.17
eReferences :“tpεPassengerC , εPass2Airp

R q, pεPass2Airp
R , εAirportC q,

pεPassengerC , εPass2Airp1

R q, pεPass2Airp1

R , εAirportC qu

The reality suggests that ETypedElement is also the supertype to operations, so the
simple Connectors we have provided are not enough. For example, picture a Passenger

who embarks from a Gate to a Vehicle. This involves all three Models in our knowledge
library in figure 3.4 (p. 48), and hence one Connector could not represent this information.
Specifically, consider an additional method embark() for a Passenger with a Gate and
a Vehicle. This parameter is shown in figure 3.18.

We can add the missing information by changing the cardinality of our Connectors.
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Passenger

travelClass : TravelClass

embark (Gate: gate,
            Vehicle: vehicle)

embark (Gate: gate, Vehicle: vehicle)

Passenger Airport Vehicle

Figure 3.18.: Cross-links Example: Three adjacent Models

This is possible because they are represented as elements and not as relationships in
our knowledge library (cf. figure 3.6 (p. 51)). Hence, separating our running example
as above would no longer lead to an undetermined Connector for the embark method.
Instead, this so called hyperedge allows a connection between multiple vertices [RWE13].
We can now relate all involved Models as shown in figure 3.19 and give a general definition
of cross-links for a given model (m :“ pEA, Ecl, EC, ... , ρeAttributes, ρeClassifiers, ... ,Rq) and
a set of submodels (si ):

si :“pEA|si , Ecl|si , EC|si , ... , ρeAttributes|si , ρeClassifiers|si , ... ,Rq, i P {1, …},
cl :“pEA| si

, Ecl| si
, EC| si

, ... , ρeAttributes| si
, ρeClassifiers| si

, ...q, with (3.57)
@pε1, εq, pε, εjq P ρe, ε1 P Ecl|s1 , ε P Ete, εj P Ecl|sj (3.58)
ñ EΓpε1q| si

Y tε1u, EΓpεq| si
Y tεu, EΓpεj q

| si
Y tεju,

ρΓpε1,εq| si
Y tpε1, εqu, ρΓpε,εj q

| si
Y tpε, εjqu j P {2, …},

_ @pε1, εq, pε, εxq, pεx , εjq P ρe, ε1 P Ecl|s1 , ε P EO, εx P EP, εj P Ecl|sj (3.59)
ñ EΓpε1q| si

Y tε1u, EΓpεq| si
Y tεu, EΓpεx q| si

Y tεxu, EΓpεj q
| si
Y tεju,

ρΓpε1,εq| si
Y tpε1, εqu, ρΓpε,εx q| si

Y tpε, εxqu, ρΓpεx ,εj q
| si
Y tpεx , εjqu j P {1, …}

Passenger

travelClass : TravelClass

embark (Gate: gate,
            Vehicle: vehicle)

embark (Gate: gate, Vehicle: vehicle)

Gate

Vehicle

kind : VehicleKind

Passenger Airport

Vehicle

Figure 3.19.: Cross-links Example: “Hyperedge” with three adjacent Models

This time, we have a given set of submodels (si ) and denote the restriction function
as ( si ), meaning that all elements are taken into account. Further, we fix the first
submodel without loss of generality. We can do so because ETypedElements (Ete) can
be treated as if they are contained by one EClassifier (Ecl). For example, a method
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always belongs to a class, so we can take this submodel and denote it as s1, as in line
3.58. All referenced EClassifiers (Ecl) now provide a bridge to related submodels,
e.g., as an EReference (ER). However, in our example, the additional condition is of
interest, because it introduces operations. Here, ε is the operation and εx represents an
EParameter (EP); i.e., the Gate and Vehicle classes are parameters for the operation.

Finally, our cross-links are meant for more than pure relationships, and they should
also allow for additional elements. For example, a cross-link could mediate between two
Models as an adapter [Gam+95], which could be explained using the semantic information
of a Connector (cf. figure 3.6 (p. 51)). Reiterating our example from figure 3.20, we
find that a Person could hold a certain role in a ClinicalRecord, e.g., as a Patient.
This adapter class provides additional information, e.g., a PatientID. This property
is certainly specific to a Patient, but other classes could also adapt a person to a
ClinicalRecord, e.g., a Physician. Exactly how a cross-link is defined is a design
decision. The term Physician already implies that there are many kinds of them. Hence,
it might be reasonable to store a hierarchy of Physicians in a Model instead. To the
best of our understanding, there is no automatic way to determine classes that could
play such a role, so we leave the editing of cross-links to the modeler.

Person Clinic
ClinicalRecordPerson

name : String

religion : String

Patient

PatientID : Integer

Figure 3.20.: Cross-links Example: Class between two Models (cf. figure 3.8 (p. 54))

Operation-Based Cross-links: An essential part of our approach is the interchangeable
use of Connectors, either those that are persisted or in an operation-based manner. The
latter is of particular importance for the reutilization of adjacent models. Here, the find
operations (ϕ) prove beneficial, because they provide queried elements and forward them
as parameters for other operations. Returning to the example discussed in figure 3.19,
we can transform the Connector in an operation-based format (ù) and apply it to the
given or created Models. For instance, if we need the models first:

ΦAirport
KLfigure 3.7 “ εAirportM ù

ΣAirport
Ecore

ΦPassenger
KLfigure 3.7 “ εPassengerM ù

ΣPassenger
Ecore

ΦVehicle
KLfigure 3.7 “ εVehicleM ù

ΣVehicle
Ecore

Note that the knowledge library provides a Model element, and this contains the actual
model that we implicitly transform into an operation-based form ( Σ). A detailed operation
sequence for our Connector applied on these models then takes place (cf. last line in

85



3. Operation-Based Model Recommendations

equation (3.60)). This sequence could proceed as follows (note equations (3.4) and (3.9)
on page 38):

Σfigure 3.18
Ecore “πpset pϕ

Passenger

EC
, tϕembarkEO

uq ˝

πpset pϕembarkEO
, tϕGateEP

,ϕVehicleEP
uq ˝ πcpEembark

O q ˝

πcpEPpϕ
Gate
EC

qq ˝ πcpEPpϕ
Vehicle
EC

qq ˝

ΣPassenger
Ecore ˝

ΣAirport
Ecore ˝

ΣVehicle
Ecore (3.60)

Equation (3.60) can be broken up into four steps. First, the last line of equation (3.60)
uses results from our knowledge library (KLfigure 3.7) and is only provided to complete
the example, but creates the models Vehicle, Airport, and Passenger. If these three
models already existed, this line could be dropped. We will come back to this point later
in subsection 3.5.5 (p. 127) and subsection 3.5.6 (p. 132), because only one of the three
models may already exist. The other two will be created, which is sufficient because
all our models in Models are complete in themselves and have no external references.
The penultimate line creates the parameters. The second line of equation (3.60) creates
our operation for the class and sets the parameters that have been created; finally, the
operation is tight to the Passenger class. Note that we make excessive use of our short
notation.

3.3.4. Saving Models

The final step in harvesting models deals with saving the separated submodels to a
given destination handled by a saver (cf. figure 3.14). In our case, we consider a saver
for a knowledge library that can handle Models, Connectors, cross-links, and MetaIn-

formation (cf. figure 3.6 (p. 51)). Given Models with a user-input name, description,
and purpose, each representing a respective submodel, we can employ our indexing
(I) in equation (3.61) to place each submodel in our knowledge library (KL) and add
Connectors in equation (3.63). Further, we add a Group in equation (3.62). Note that
information on Categorys can only be established if given by the user, so we omit this
here. More formally, the sets and indexing look like:

EM “EM Y Enew
M , IpKL, εname-ile q, εname-ile P Enew

M (3.61)
EG “EG Y ε

new
G , IpKL, εnewG q (3.62)

EC “EC Y Enew
C (3.63)

Next to indexing, equations (3.61) to (3.63) produce no more than the unions of sets by
postponing an explanation of the newly created sets. However, the individual elements
of these sets need further explanation, as given in equation (3.64), for the Models:

Enew
M :“Y εname-iM , with εname-iM , name-i P str, (3.64)

εname-iM .files :“ si , εname-iM .description, εname-iM .“purpose” P str
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We have selected a middle ground between concept and realization here by assigning
the submodel to the files attribute, whereas it should actually be a URI. Further, for
simplicity, we have used a very basic notation for the purpose, because this information
belongs to the MetaInformation that we will introduce in subsection 3.4.3 (p. 98).
Additionally, we take elements for granted, i.e., given without instantiating them explicitly.
We should introduce Connectors enhanced with cross-links if available:

Enew
C “Y εname-iC , with εname-iC , name-i P str, (3.65)

εname-iC .source :“ εi
M, εname-iC .target :“ εj

M, εi
M, εj

M P Enew
M , 0 ďi < j ď|Enew

M |

εname-iC .syntactics :“ cl for εi
M.files and εj

M.files cf. equation (3.54) given m

Again, we have selected a middle ground for the cross-link assigned to the syntactics

attribute, and leave it there instead of the URI. Note that a cross-link might be empty
(H) if there are no elements between the submodels with respect to their model, as
explained in the last line of equation (3.65). In subsection 3.5.5 (p. 127), this will become
an important distinction for determining whether a cross-link is available. Other than
that, we have not yet included the necessary relationships. However, we would like
our knowledge library to maintain a graph structure and not contain isolated Models. A
semi-formal notation for building the relationships that define the new Group and interlink
the submodels stored as Models is as follows:

ρeGroup :“ρeGroup YYpεi
M, εnewG q, εi

M P Enew
M

ρeConnector :“ρeConnector YYpεi
M, εj

Cq,

εi
M “ εj

C.source_ εi
M “ εj

C.target, εi
M P Enew

M , εj
C P Enew

C

Keen observers will have noticed how the equations above digressed with respect to
notation. First, we cannot denote general terms that are provided by user input, e.g.,
names for Models and Groups. Hence, expressions like name-i will have to do for now.
Second, we changed the notation compared to operation-based models ( Σ) with respect
to structure. Before, we were stricter with the graph structure inherited by models. For
example, we created a class and an attribute and had to assign them via a relationship.
Here, we consider this level of semi-formal notation sufficient, because the knowledge
library is, contrary to models, eventually generated as code.

Our remarks above consider a given knowledge library, but our harvesting framework
also allows other persistence destinations. In practice, a migration to a knowledge library
might start from dedicated and indexed folders, go to shared folders on some server or
version control repository, until a meta-structure like our knowledge library is introduced.
A simple starting point would be a mega-model approach with querying functionality,
and a final outcome could be a distributed knowledge library like ours with a dedicated
graph server for structural information, an indexing server, and a version control server
exposing the actual content, i.e., the models and meta-information.
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3.3.5. Design Rationales and Observations

Our approach for harvesting models, which we introduced above, addresses the “Har-
vesting Challenge” described in section 1.2 (p. 6) and inherits some obvious drawbacks.
These can be induced by the design decisions we outlined earlier, e.g., on our operation-
based models or knowledge library, constrained by our project goals, e.g., the E, i.e.,
“easily” in HERMES, or others. We now discuss these, starting with the most pressing
observations.
The most important observations concern scale and data format. First, and most pressing,
is that this harvesting approach does not scale, but it is not meant to. We are comfortable
with this, because models put away for reuse should not exceed a certain complexity, as
mentioned in equation (3.52) in terms of cmax. This is intended to ensure the models can
be understood more quickly, which, to our mind, eases reusability. Second, the format
we use for submodels digresses from the perspective of operation-based models. This
is for reasons of comprehensibility and because the tuple form is quickly transformable
to an operation-based model. In fact, this will be necessary for applying a model after it
has been picked for reutilization, as we show in subsection 3.5.8 (p. 142). Similarly, a
transformation for cross-links is required, as we show in subsection 3.4.6 (p. 106), for
aspects of evolution.
In discussing less pressing observations, we must keep in mind that our approach
is meant to provide options to modelers and common grounds for extendability. In
this respect, we locate our approach in software engineering with a focus on enabling
modelers, and not in terms of providing a one-size-fits-all solution. The reason for this
lies in the subjective manner of harvesting, whereby modelers need to make up their
minds. We can, at best, support in one way or another by offering options and proposals.
With regard to the algorithms we have introduced, we mentioned agglomerative (i.e.,
bottom-up) and divisive (i.e., top-down) approaches without discussing details. This
means we skipped any elaborate discussion on runtime analysis, semantics, or charac-
teristics. Runtime is certainly of importance when harvesting from models with thousands
of elements. Still, we consider this beyond the scope of this project, as it is a topic for
software engineering or software construction, and harvesting only serves the purpose
of completing the picture for this project (cf. section 6.2 (p. 189)). Nevertheless, the
algorithms we have modified remain in the same class of complexity regarding big-O
notation [Flo62; War62; KL70; NG04], and our own proposal only concerns elements
once after creating a dependency graph.

Furthermore, our goal is for the modeler to have the last word, yet we could incorpo-
rate semantics, e.g., by means of scenario walks or model footprints [Sen+09; JGB11].
However, we consider these fields too large for a detailed discourse, and we gener-
ally have not involved related software in our prototype because of its unavailability or
incompatibility, e.g., proprietary and closed-source software.

In addition, top-down or bottom-up algorithms lead to results with different character-
istics depending on the evaluation criteria used to achieve “intra-cluster density” and
“inter-cluster sparsity”. Consider four graphs: a linked list, circle, binary tree, and a star
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of n vertices. Now, combine them and place the circle and star at the end or in the
middle of the linked list. Finally, consider a complete graph (Kn). Applying both kinds
of algorithm provides a good sense of the strengths and weaknesses with respect to
individual evaluation criteria. We omit this for the sake of brevity and because graph
theory provides further details [AW12].

Additionally, hill-climbing algorithms, e.g., Kernighan–Lin clustering, might become
trapped around local extrema, preventing the desired results, i.e., global extrema, from
being attained. However, we did not include a randomizer, e.g., to achieve different
balanced sets in the case of Kernighan–Lin clustering, as this is beyond the scope of the
current project.

The important point about the algorithms introduced earlier is the way we treat models
as dependency graphs and that this allows the application of well-known graph mining
algorithms [AW12]. In addition, this enables other algorithms: without including further
details, we could have delved into spectral clustering or quasi-clique clustering, but
we prefer a simple approach that is functional without limiting its extensions. Further,
we should keep in mind that we can use adjacency matrices interchangeably with the
dependency graphs we have introduced.

Additionally, the introduced algorithms rely on certain cluster parameters. One example
is the weights adjusted from Struber et al. [Str+14]. These are not our contributions
and are left as parameters for adjustment. Our tests with the provided parameters
demonstrate that they are reasonable choices, as also evaluated by the original authors.
Note that other parameters, e.g., the threshold for submodel candidates (cmax), are
generally meant to be set to counter information overflow and ensure that the eventual
models are appealing [Stö14]. We will return to this point in subsection 3.4.4 (p. 101).
With regard to the way we model data, we have already distinguished our knowledge
library with an ontology in subsection 3.2.4 (p. 65), but have only recently introduced
some additional details. These details mostly comprise our cross-links, i.e., Connectors
with syntactic information, how we build them, and what purpose they serve. In doing
so, we underlined the importance of the information being preserved, because it is the
Connectors that interlink with strong semantics. This is, to the best of our knowledge,
not possible in other approaches, e.g., ontology. In addition, as soon as we introduce
generations in subsection 3.4.6 (p. 106), we add more semantics to Connectors with
syntactical information. Further, we will see how change propagation is handled. An
alternative to our Connectors with cross-links could have been to drop this interlinking
information during harvesting or have larger models in our knowledge library. This, of
course, would make reutilization more tedious or less appealing [Stö14]. However, this
option has been explored elsewhere, as we already elaborated when discussing the
“Model Repository” in subsection 3.2.4 (p. 65) [Eli+10].
On a methodological note, which we largely omit (except in section 6.2 (p. 189)), some
decisions leave the door open for migration to a knowledge library with cross-links serving
operation-based model recommender systems. The starting point need be no more than
a set of model files stored in a directory. Hence, our models stored in Models must be
independent for the separation of concerns and model size.
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Finally, we alluded to but did not elaborate on functions for determining the benefit or
redundancy of models to a knowledge library. Combining both in a mechanism we
could denote as “recommend-in” would be of interest, as we explain in our outlook
(section 6.2 (p. 189)). For now, we exclude both because of their subjective nature given
the approach explained so far. We provide the list of known elements (KC) and the
modeler makes a conscious decision on whether to introduce redundancy or not. As a
knowledge library grows in size, it is almost inevitable that the redundancy will also grow.

3.3.6. Related Work

Previous research approaches submodel extraction as a means of simplifying from a
perspective of abstraction; this was summarized in the 1990s by Frantz [Fra95]. Further,
the decomposition of ontologies was studied in the same decade by Wand and Weber
[WW90].

Regarding the actual UML-model-slicing techniques, the roots are often attributed
to program slicing by Weiser [Wei84], and a recent literature review on model slicing
is provided by Blouin et al. [Blo+15]. For us, this paves the way for the embedding of
other approaches as well as proposing our own solution. A closer look at model slicing
approaches shows that several perspectives can be taken—some emerged from program
slicing and others from transformations, grouping, graph traversal, crawling, matching, or
clustering [Gör+13]. Strictly speaking, even the model footprints developed by Jeanneret,
Glinz, and Baudry enable model slicing [JGB11].

Kagdi, Maletic, and Sutton were among the first to investigate UML-model slicing, and
did so for large models from a maintenance perspective [KMS05]. They introduced the
notion of context-free model slicing, because the class diagrams they investigated did
not comprise behavioral information. The actual slicing is undertaken by an algorithm
that terminates according to some given slicing criteria. These are formulated as a set
of constraints, comprising an initial set, selected elements, and a dimension. The latter
could be a maximum path length for a graph walk. Altogether, the slicing criteria control
the given algorithm, and Kagdi, Maletic, and Sutton discuss a total of eleven properties
regarding slices, e.g., a slice might contain gaps under certain conditions. Further, they
discuss aspects of fault localization, metrics, and others. Many of their rationales guided
our development, but the lack of interaction in their approach and their fundamentally
different technological basis are not acceptable in our framework. They use an in-house
open modeling framework tailored to UML built with Python.

Lano and Kolahdouz-Rahimi researched model slicing in terms of maintaining semantic
equality while reducing complexity [LK10]. Hence, their results can be semantically
isomorphic or structurally amorphous. They demonstrate their approach with UML-RSDS,
which is a subset of UML with a focus on reactive systems that holds entrance entities
called controllers. This provides a starting point for slicing, and additional constraints are
given in OCL. They define data dependencies and write frames to ensure the validity of
outcomes as required for UML. We return to the work of Ma, Kelsen, and Glodt [MKG15].
Their overall goal is model analysis, factoring, and enhanced comprehension. They go
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into further detail regarding operation-based class diagrams, which are class diagrams
aided by sequence diagrams, and state machines [LK11].

Another approach, which is built around UML models enhanced with OCL, is that
presented by Sun, France, and Ray [SFR13]. They consider class diagrams in attempting
to develop a quicker evaluation of OCL constraints in smaller models. To do so, they
transform inputs in dependency graphs, derive slicing criteria, and extract fragments,
which are submodels in terms of other related work and their figures. These fragments
can contain redundancy, as they explain by an example modeling a location-aware
role-based access control model. Altogether, they transform a class diagram with OCL
constraints in a dependency graph, remove irrelevant elements, perform issue analysis,
and decompose the dependency graph. These aspects proved valuable for our design,
but the extent of redundancy they considered exceeds our requirements, which is not
surprising given their desire to speed up OCL evaluation.

An approach that combines available UML models of all kinds into a Model Dependency
Graph (MDG) has been presented by Lallchandani and Mall [LM08]; an extended version
of their contributions introduces Class Dependency Graphs (CDGs) [LM09]. MDG
“integrates various UML diagrams into a single system model” [LM08], which is presented
by class diagrams and sequence diagrams. The graph structure is quite congruent to
the results of CMOF and enables architectural model slices to be computed by means
of an algorithm. Their algorithm basically traverses the MDG and produces static or
dynamic slices. The latter is an extract of the MDG produced by means of a scenario.
CDG focuses on transformed class diagrams with the exception of associations, because
Lallchandani and Mall claim that those are represented by calls modeled in sequence
diagrams that impact on Sequence Dependency Graphs (SDG). Further, they present a
Static Slicer for UML Architectural Models (SSUAM) that implements their approach and
provide measures regarding the runtime overhead produced by transforming models into
CDGs/SDGs [LM09]. Compared to our approach, they provide automated model slicing
with few means of interaction. This contradicts our assumption that semantic aspects
are vital for submodel creation.

Sen et al. ease the “meta-muddle” by pruning, whereby they restrict a model and its
respective metamodel to the bare minimum [Sen+09]. This is motivated by scenarios
they provide that mostly focus on transformation. The limited models and metamodels
they are looking for are called “effective metamodels”, and are gained by their proposed
pruning algorithm. Working with MOF and EMF/Ecore, their implementation is based
on Kermeta, a modeling framework for aspect-oriented modeling [MFJ05]. Kermeta and
transformations explain why our approaches are incompatible.

Similarly, Bae, Lee, and Chae proposed a slicing approach for the UML metamodel
with respect to diagram types [BLC08]. They propose to transform the UML model into
a directed multi-graph that can be modularized for, e.g., use-case diagrams and class
diagrams. This fosters comprehensibility and tool development through simpler models.
To that end, they work solely on generic information and not the actual models that we
consider. This means they provide ready-to-use sets, which is not an option in our case.

In terms of scalability by partitioning leading to formal verification checks, Shaikh et al.
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investigated model slicing given a property [Sha+10]. In a sense, they take a model and
OCL constraints, slice them, check them more or less independently, and combine the
verification results to give an overall result. This explains why different approaches are
required to solve this verification task, although, similar to our approach, submodels are
built. The slices that are built hold logical properties, which are different to our syntactical
and structural properties.

Struber et al. incrementally split a model into submodels, concentrating more on
semantics than graph structure [Str+13; Str+14]. In their example, they give a model and
leverage textual descriptions to enable semantic splits through an information retrieval
mechanism. The results are enhanced by model crawling with experimental weights for
relationships, so users can adjust the proposed set of submodels. We use their weights
for traversal, but have no textual descriptions, so their information retrieval approach
cannot be applied in our case. Otherwise, the steps and formalities lead in a similar
direction, though our purpose and operation-based view builds a different foundation.
Further, we offer cross-links and do not harvest entire models. We will return to term
frequency and inverse-document frequency when describing reuse.

Becker and Gruhn envision a grouping mechanism for models, so reuse is simplified
and encouraged [BG10]. They adapt approaches from natural language processing
and classify the identification of model characteristics in text, structure, semantics, and
automatic feature deduction. Their environment is the SAP R/3 reference model, so
further publications are sparse and follow-ups appear to have changed to component-
based service modeling.

Kompren is a DSML that enables model slicing by means of Kermeta for arbitrary
metamodels and was constructed by Blouin et al. [Blo+11]. To that end, it is a generic
approach, including automatic generation of model slicers, and is meant for three use
cases: first, determining the effective metamodel of a model; second, semantic zoom
with regard to a given aspect; and third, runtime model monitoring to highlight currently
used elements. Therefore, slicing considers metamodels and their instances by offering
two different modes for slicing: strict and soft. The former retains all structural constraints,
whereas the latter allows some to be weakened. Further, a radius can determine the
distance from a selected class that is to be considered. Blouin et al. extended and refined
their work in several respects, e.g., properties of generated slicers and related work
[Blo+15]. Our approach does not deal with different levels of models, and the metamodels
in their method are dealt with as models in our approach.

On a more formal level, there are approaches similar to our enhanced knowledge graph.
For example, Konrad Voigt follows the idea of separating large models for the purpose of
model matching [Kon11]. Hence, clustering approaches employing divide-and-conquer
techniques for graphs are implemented. For example, Planar Edge Separator (PES) is
adjusted to solve metamodel matching by means of relationship weights. Compared to our
approach, Konrad Voigt focuses on automation and avoids adjustments for submodels,
i.e., skips the candidate adjustment step.

Kelsen, Ma, and Glodt provide a formal foundation for metamodels, models, and
submodels, as we do, but simplify submodels to be subsets of models adhering to
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constraints [KMG11]. These are the type compatibility regarding metamodel constraints,
called forward constraints, and multiplicity with respect to source and target cardinality.
They prove the correctness and soundness of their approach by means of fragmentable
links, which establish correspondences between types in models and their use, similar to
parameters, attributes, or associations. The same group generalized and extended this
work to be more generic and aimed for “model management by decomposing complex
models into smaller submodels” [MKG15]. Their realization is bound to EMF, so they
include formalities tailored for Ecore, called EMF metamodels, for models and submodels.
Once more, they prove the soundness and correctness. It is useful that EMOF and Ecore
differ in the respect discussed in subsection 3.1.1 (p. 33), because this renders all
attributes and references fragmentable.

3.3.7. Summary of Harvesting Models

Harvesting models, as introduced in this section, comprises four steps. First, finding
known parts; second, building submodel candidates; third, user alteration; and fourth,
separating and storing submodels as Models. Therefore, we introduced the set of known
elements (K) to work with, and semi-formally defined the term submodel (s) and a
relationship (s Ďm). We then introduced dependency graphs (DG) as the foundation
for submodel candidate generation, i.e., graph clustering. We offered several simple
algorithms for building submodel candidates, some using common algorithms from graph
or network theory, and discussed the common problem behind this, including related
parameters. We deliberately kept this discussion simple, because semantics is important
for the final submodels and user opinion seems more important than digging into more
sophisticated approaches, e.g., applying spectral clustering, quasi-clique clustering, or
others [AW12]. After that, we introduced cross-links (cl) as a restriction function ( si ) and
provided an operation-based view on cross-links. Aspects that have not been discussed,
though they are important for a realization, include stop words and stemming [Por80;
Wil06; MRS08]. These techniques allow us to reduce redundancy and simplify the
indexing, as mentioned in subsection 3.2.2.
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Figure 3.21.: Harvesting Example Summarizing equations (3.61) to (3.63) for figure 2.3
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3.4. Evolving Models

According to the Encyclopaedia Britannica, evolution is a “theory in biology
postulating that the various types of plants, animals, and other living things on
Earth have their origin in other preexisting types and that the distinguishable
differences are due to modifications in successive generations” [Saf14].

However, biology is not the only science researching evolution, and chemistry, linguistics,
and others postulate their very own theories for various aspects under investigation.

For evolution in computer science [MFP06], artifacts “have their origin in other preex-
isting types” and similarly expose “distinguishable differences [] due to modifications”
[Saf14]. Here, two terms emerged as virtual synonyms in the 1960s [GG08]: mainte-
nance and evolution. In the 1980s, the former was grouped into perfective, corrective,
and adaptive changes [LS80]. Eventually, this led to the ISO/IEC standard 14764:2006
adopting these classifications [III06]. The latter, evolution, was researched at the same
time, leading to “Laws of Software Evolution” for different types of software [Leh80].

Maintenance and evolution are still often used synonymously, but experts agree there
is at least a fine line of distinction [BR00; Cha+01; GG08]. Whereas maintenance is
considered to cover activities in deployment scenarios, evolution, initially thought of
as unexpected [BL76], includes the construction of new and enhanced versions, i.e.,
development that replaces artifacts in maintenance. A more recent understanding of
maintenance and evolution builds on the “staged model” of software lifespan [GG08;
Raj14], which puts evolution chronologically before maintenance [BR00]. In other words,
maintenance makes no major enhancements, but only small fixes to prevent phase-out.

On a more specific note for software artifacts, evolution is studied in terms of models
and metamodels [WK08; Kög11; Lev+11]. This introduces aspects of co-evolution for
models, as respective metamodels change [Cic+08; Her11]. Fortunately, this is not an
issue for our knowledge library, but the idea is inspiring, as we show later.

For now, we note that evolution is no longer regarded as unexpected, but is often seen
as undirected, being determined by unanticipated new requirements [BR00; Cha+01;
GG08]. For a knowledge library, this is a hindrance, because requirements, once set,
must persist. This allows a change of focus to quality and guidance for model evolution.
If a model is placed in our knowledge library as a Model, then editing sequences (σ)
change and hopefully improve its quality and overall correctness. This can go on for
some time, continuously changing the quality for better or worse, which we summarize
in a status (´,˝,`). A Model, as timed snapshots evolving in our knowledge library, could
roughly be sketched as follows:

AirprotAirp Airport

S1
S2 S3

σ1 σ2

Figure 3.22.: Evolution Sequence Example for Airport from figure 2.3 (p. 27)
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Although the sketch above omits an actual representation of a model, one is indicated
with no more than a box. Further, the only indicator for change is a reedited name. Still,
this should convey the general idea we lay out below, where we adapt and expand our
previous work to the framework we have presented so far [Rot+13; Gan+13; Gan+16].

3.4.1. The Model Evolution Framework

On a conceptual level, our evolution approach comprises a central component, which
we call the model evolution framework. This is surrounded by four supporting parts,
as depicted in figure 3.23. The versioning we employ is shared with the data frame-
work introduced in subsection 3.2.1, but is enhanced with additional semantics, as we
show later. The reviews and metrics are supporting mechanisms in regard of quality
assessment, which is required for guidance, as introduced in subsection 3.4.5. Finally,
a UI exposes the concepts developed and provides user assistance, as we show in
section 4.4 (p. 155).

Evolution

Framework

MetricsReviewsVersioning

UI

Figure 3.23.: Model Evolution Framework (MEF)

Subsequently, we go into further detail regarding the evolution framework from fig-
ure 3.23 and explain the concepts it comprises. Therefore, we establish an understanding
for evolution in knowledge libraries, add quality aspects, and use them to introduce
proactive quality guidance for knowledge libraries by extending the concepts from fig-
ure 3.6 (p. 51) with those depicted in figure 3.30. We illustrate this with an excerpt from
our running example in figure 2.3 (p. 27) as an evolved sequence in figure 3.24.

3.4.2. Model Evolution in Knowledge Libraries

We started this section with a definition of evolution that emphasized “modifications
in successive generations” [Saf14]. This is true for biology, but was put differently by
Lehman, who describes evolution for software artifacts as a “process of changes” [Leh80].
For models, this was narrowed to the change primitives “add”, “delete”, “rename”, and
“retype” by Keienburg and Rausch [KR01]. We can map these to the operations introduced
in subsection 3.1.2 (p. 37), i.e., πc , πd , πpset , and πrass . For the sake of convenience, we
define the scope of this section as πadd :“ πc , πdel :“ πd , πren :“ πpset , and πret :“ πrass .
However, Keienburg and Rausch pursue and regard a new model version, as the result of
“proceeding [an] ordered list of model change primitives on an existing [] model” [KR01].
For us, this list is equivalent to a sequence of operations (σ) and the version is a model
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snapshot (S). Both are illustrated as an overview in figure 3.22 and detailed in figure 3.24.
In other words, model snapshots represent different versions of a model, and figure 3.22
or figure 3.24 depict three model snapshots denoted S1, S2, and S3. Note that the
indexes are formally numerical version identifiers in ascending order, but can be replaced
with something semantically stronger, as we show later.

Providing more semantics for the sequences of operations, we introduce the term
model evolution steps. These are the transitions between snapshots representing the
operations applied to a model snapshot to become a successive snapshot. Figure 3.24
shows two evolution steps, denoted σ1 and σ2. Again, the indexing with numbers is
ascending, although semantic values could be used, as introduced for sequences of
operations in equation (3.18) (p. 40) for operation-based models ( Σ).

Together, an alternating sequence of arbitrarily many model snapshots and evolution
steps (Si , σi , Sj , σj , Sk , σk , ...) forms model evolution. A model snapshot with no
successive operation sequence (S1, H) represents a lack of evolution as much as an
empty model snapshot does (H, H). For figure 3.24, this means that model snapshot S1
has evolved by means of πadd and πret operations to snapshot S2, and, eventually, to S3.

Careful readers might have noticed that the model snapshots in figure 3.24 look
like vertices and the model evolution steps are represented as edges, just as in a
graph. We did so to introduce model evolution represented as model evolution graphs
pV , E , snap, stepq, where V is a set of vertices, E is a set of edges, and snap and
step are labeling functions. The first, snap : V Ñ idx, labels each vertex to some
co-domain idx – N, i.e., is countable and ordered. The second, step : E Ñ©n PN

i“0 πip¨q

(cf. equation (3.15) (p. 39) given an undetermined operation-based model), labels each
edge with a sequence of operations, i.e., forming an evolution step.
Example: For our example from figure 3.24, omitting the required model parameter for
the labeling functions, we obtain the following:

V :“ tS1, S2, S3u

E :“ tpS1, S2q, pS2, S3qu

snap :“ tpS1 ÞÑ 1q, pS2 ÞÑ 2q, pS3 ÞÑ 3qu

step :“ tpσ1 ÞÑ πretpϕ
Airport.name
EA

, tϕEString
ED

uq ˝ πaddpE
Runway

C q ˝ ... ˝ πaddpETower
C q, (3.66)

pσ2 ÞÑ πdelpϕ
Person
EC

q ˝ ... ˝ πretpϕ
Terminal2Checkin
ER

, tϕCheckinEC
uq ˝

πpset pϕTerminalEC
, tϕTerminal2Checkin

ER
uq ˝ πaddpETerminal2Checkin

R qu

Note that operation sequences for the step function read from right to left. Further,
we have omitted some obvious operations if a similar one is shown. For example, in
equation (3.66) for σ1, only two of the four elements are added, while for σ2, only one
out of three new relationships is added, which already requires three operations. Finally,
the labeling function snap is not surprising, as it simply unveils the index of a snapshot
identifier, but this is just a matter of notation.
Discussion: At the start of this section, we learned that evolution can be easily con-
fused with maintenance, but model evolution, as introduced above, differs from model
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maintenance in several respects. First, the latter succeeds evolution, summarizing only
small fixes without major enhancements, because maintenance ought to preserve in-
terface integrity as much as possible [JFC04; Bri+06; Eic+01; MFP06]. However, for
a knowledge library, this is not an issue. Changes might and must be radical if the
reusability of elements requires improvement. Second, maintenance leads, eventually, to
phase-out and retirement, whereas evolution always allows new versions. Still, models
represented as Models in a knowledge library might deprecate by virtue of not being
used anymore. Moreover, we learned that the reasons for evolution are threefold [JFC04].
First, it might be to adapt to changed requirements. Second, it might be to correct or fix
issues. Third, it might be to perfect the design or quality. We will come back to each
of these reasons later, because the model evolution graph introduced so far is almost
equivalent to version control graphs, but does not support quality assurance functionality.
For that, we will traverse the evolution graphs and label vertices with both numbers and
quality statements.

3.4.3. Model Evolution Stages

Biology distinguishes evolution between species and their branches. For example,
the timeline of human evolution comprises several such branches until homo sapiens
emerged. Though not always perfectly distinguishable, branches provide points in time
for successive generations. For models, we introduce a similar mechanism to provide a
statement about the quality of a model represented by a Model. In a nutshell, we will take
a model evolution graph and add a quality statement to each and every model snapshot
given the associated Model it represents.

The main quality concern for our knowledge library is reusability, so we have developed
an assessment representing three respective degrees (´,˝,`) [Gan+16]. We used this
notation in figure 3.22, with “´”, “˝”, and “`” denoting low, medium, and high reusability.
As an additional representation, we chose the traffic light metaphor to keep the cognitive
load low. This is because the number is small and traffic lights are well known and widely
accepted. Thus, “´” can be represented by red, “˝” by amber, and “`” by green. However,
for a good representation in terms of Moody’s “‘Physics’ of Notation”, we added a textual
representation to each [Moo09]. Hence, we consider the reusability denoted by “´” as
vague or sketchy, “˝” as decent or provisional, and “`” as fine or stable.

We refer to model reusability that is vague, decent, or fine as the model reusability
stage, or simply stage, of a Model. In more detail, a Model in the vague stage is
undetermined regarding its reusability and is, therefore, labeled red. This is the case
for freshly added Models, because they have not yet been assessed. Often, this means
that some processing is required to make the Model easier to reuse. For example, a
model that has been freshly added to a knowledge library as a Model might be sketchy
and expose unnecessary prefixes or suffixes, technology-induced elements, e.g., DAOs,
or errors might need fixing. Hence, a Model in the vague stage is often the starting
point for evolution and might be reused, but only with extra caution. Next, a Model in
the decent stage represents a Model in which the major issues have been fixed, and is
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considered generally reusable in most cases. Some issues may not have been dealt
with, hence the amber label indicating that it is provisional and caution is necessary.
For example, the purpose, which we see as a lightweight specification, might not be
perfectly in line with the actual requirements of this respective model, the layout might be
chaotic, or some design decisions could be improved. Altogether, a Model in the decent

stage has reasonable reusability. Finally, a Model in the fine stage is labeled green
for a good reason—it is considered stable and “almost perfectly reusable”. Now, the
purpose matches the intention of the respective model and all issues are resolved. Still,
this does not guarantee that this model needs no alteration for reuse. It may require a
design pattern [Gam+95], or could come with template information that needs to be filled
in (cf. figure 3.6 (p. 51)).

Note that our example in figure 3.22 simplifies model reusability stages and shows a
different stage per snapshot. In reality, sequences of snapshots with the same model
stage might occur. In fact, this is likely given the quality assurance mechanism we
introduce later, because reviews might urge a Model to remain in a particular stage until
certain issues are resolved.

Sometimes, however, issues might not be resolvable or a model may no longer be
intended for reuse if an alternative has emerged. In such cases, the Model remains in its
reusability stage, but gets an extra flag signifying it has been deprecated. The semantics
is similar to programming libraries, and denotes that the item is either already or soon to
be replaced. Release notes often state this, and we introduce our mechanism later. Other
than that, unresolvable issues, as mentioned above, might serve as counterexamples.
Evolution Stage Automaton: The model reusability stages introduced above inherit
dependencies. Some of them can be derived from the explanations above, and the
intended order between vague, decent, and fine is already implied by the meaning
of low, medium, and high reusability or, in other words, by the connotations of sketchy,
provisional, and stable. Thus, a linear order is apparent. Further, we have already
mentioned that open tasks and issues might keep a Model in one stage, but what
other transitions can be drawn between the reusability stages? We now describe the
relationships depicted in figure 3.25.

Relationships are divided into those that are allowed and those that are prohibited.
First, the semantics of stages implies that some decay can occur. This is possible in
the opposite direction, as explained above, as well as from a fine stage to vague. For
example, a Model in the fine stage may have grown to the extent that some parts have
been extracted to another Model. This must leave both the remainder and the new Model

in the vague stage. Second, one transition between stages must be prohibited, namely
from the vague to the fine stage. We will go into further detail about the reasoning later,
but we can now state that a model needs to undergo some quality assurance mechanism
in terms of purpose and design rationale checks to become highly reusable, i.e., a Model

in the fine stage.
Altogether, we have the evolution stage automaton depicted in figure 3.25. Formally,

this comprises Astaged “ pQ,Σ, Z , δ, q0, F q, where Q :“ tvague, decent, fineu is the
set of vertices, Σ :“ Q ˆ pS Y tidMuq, with S :“ tπadd ,πdel ,πren,πretu is the set of input
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symbols, q0 (q0 :“ vague) is the starting state, and F (F :“ H) is the empty set, as we do
not consider evolution terminating. The set of transitions (δ) comprises δ :“ δv Y δd Y δf ,
with sets of transitions for each stage:

δv :“tpvague,πiq ÞÑ vague | πi P Su Y tpvague, idMq ÞÑ decentu, (3.67)
δd :“tpdecent,πjq ÞÑ decent | πj P Su Y tpdecent, idMq ÞÑ vagueuY

tpdecent, idMq ÞÑ fineu, and (3.68)
δf :“tpfine,πk q ÞÑ fine | πk P tπren,πretuu Y tpfine, idMq ÞÑ decentuY

tpfine, idMq ÞÑ vagueu (3.69)

Any model added to our knowledge library as a Model starts in the vague stage (q0),
as mentioned above. Then, as the model is edited, i.e., operations (π) are applied, the
Model remains in this stage until an identity operation (idM ) transfers it to the next stage.
Alternatively, an identity operation can keep a Model in its current stage. We build in this
non-determinism as a technicality. It serves two purposes: first, it is a means to create a
snapshot if a Model remains in an stage, and second, it serves as a basis for the quality
gates we introduce later. Quality is also the reason why a Model that has progressed
to the fine stage can only remain in this stage if rename and retype operations are
applied. The other operations, i.e., add and delete, place it in the vague or decent stage,
because they can alter the respective model substantially, as we explain later.

vague decent

fine

jσi

idM

idM

idMσ
m

σk

σ l

σ

Figure 3.25.: Evolution Stage Automaton similar to [Gan+16]

Example: We can look at our model evolution graphs, or rather sequence, from fig-
ure 3.24 with the overview given in figure 3.22 and picture it as a settlement of an evolution
stage automaton. The Model starts in a vague stage when it is added to the knowledge
library and operations (σ1) are applied (cf. equation (3.66)). The Model then progresses
by means of an identity operation to the decent stage and so on. Note how the indicators
(´,˝,`) and symbols between figures 3.22 and 3.25 match.

More specifically, operations from σ1 (cf. equation (3.66)) add classes and fix an
issue with the name attribute by correcting the type to String. With the Model in the
decent stage, operations from σ2 add more classes and correct some semantic issues
by removing the Person class, because this does not contribute to the model’s purpose.
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3.4.4. Quality for Model Evolution Stages

The measurement of software artifacts has a long history with a wide tradition of discus-
sion and disagreement [Arb11]. For conceptual models, this is attributed to evaluation
that “is by nature a ‘social’ rather than a technical process [and] inherently subjective”
[Moo05]. In addition, quality characteristics and measurements are “designed for partic-
ular purposes” in general and “need to be calibrated” [Arb11].

Given a knowledge library with evolving models for reuse, we have a restricting en-
vironment for quality and measurement with specific requirements. This allows the
development of a quality model with reuse as a primary quality goal and the tailoring
of quality characteristics. As an example, we can set bounds on the size of models,
because those too complex become unappealing for reuse [Stö14].

To design our quality model, we use a common framework comprising three quality
dimensions, namely syntactic, semantic, and pragmatic quality [LSS94]. In addition to
the common framework, we add emotional quality to our quality dimensions. Each quality
dimension can be decomposed as depicted in figure 3.26.

Syntactic quality refers to errors in the sense of misspelling. This can either be a
typographic error or a malformed keyword. While the former requires a spell checker for
a given language, which might not be sufficient, the latter can be automatically processed
in the following respects, i.e., quality characteristics. First, metamodel conformity states
whether a model is valid in the sense that it uses words of the given metamodel to form a
model. For EMF models, this means that they conform to Ecore. Second, transformability
requires a generator that can transform a model into another representation, e.g., source
code, or our operations in a graphical sense [DGL13]. This is important because certain
rules must be followed, but these are sometimes not expressed in the respective grammar.
In EMF, some constructs of collections are better expressed as lists instead of arrays.
Finally, defect-freeness requires a well-formed model in the sense that the syntax is
correct. For XMI models, this means that all opening elements have corresponding
closing elements, e.g., each “ă” is eventually followed by a respective “ą”.

Semantic quality comprises quality characteristics that try to grasp whether a model
conveys the content it should, for example, whether the statements of a model correspond
to its domain. First, semantic validity means that all statements of a model are valid with
respect to the given domain, and invalidity occurs for statements where their removal
is more beneficial than their retention. In a sense, this means that deletion must be
better. Second, completeness means that, in contrast, for any potential statement, the
disadvantages of not including it are outweighed by the advantages of doing so. In a
sense, this means inclusion must be better. Third, confinement states that a model
comprises enough valid statements to convey an intention or solution for a given problem.
In a sense, this means it works as an idea.

Pragmatic quality relates to the comprehension of model content. First, understandabil-
ity is the degree to which a modeler’s interpretation is congruent to the model’s intention.
Second, maintainability denotes the degree to which a model can be understood so
that it can be reused in a new environment. Third, purpose extraction reflects whether
the model’s intended purpose corresponds to the formulated purpose, our lightweight
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Figure 3.26.: Quality Model similar to [Gan+16]

specification. Emotional quality is, admittedly, a fuzzy quality dimension that grasps the
attitudes towards a model. We believe that the appearance of models is an indicator
for that, because appealing models are more likely to be reused. Hence, we count the
actual reuses and “Likes” we gather from the UI. We distinguish the representation of
emotional quality in figure 3.26, because we are aware of its subjective nature.
Quality Gates: The quality model presented above serves as a first enabler and elimi-
nates some of the non-determinism introduced in the evolution stage automaton as a
technicality. We do so by introducing checkpoints that require certain quality characteris-
tics to be met in order to be passed. Figure 3.27 provides an idea of how we enrich our
evolution stage automaton from figure 3.25 with such checkpoints.

These checkpoints are called quality gates (QG) in our approach, and are meant to
structure and guide model evolution in knowledge libraries. This is possible by defining
a quality gate to be a set of quality characteristics from our quality model that must be
satisfied to be passed. Figure 3.26 depicts our symbols for reusability stages next to
each quality characteristic, which means that this quality characteristic is a requirement
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QG 2
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QG: Quality Gate

Figure 3.27.: Quality Gates similar to [Gan+16]

before a model can reach either the decent or fine stage. Of course, all characteristics
required for a model to obtain the decent stage are also required to reach the fine

stage.
From figure 3.25, we know that every model represented by a Model starts its evolution

in the vague stage with, hopefully, the goal of reaching the fine stage. Though the
former does not require any quality characteristics to be met, the latter requires all of
them. Thus, the distinguishing quality gates, according to figure 3.27, are QG 1 and QG 3.
The former requires metamodel conformity, transformability, defect-freeness, semantic
validity, and confinement. In other words, a model represented by a Model passing QG 1
is valid, can be an input for a code-generator, is well-formed, does not contain too many
domain statements, and is sufficient to provide a decent or provisional solution (amber).
The latter requires a Model to be in the decent stage, i.e., meet all requirements for
QG 1, and also requires completeness, understandability, maintainability, and purpose

extraction to hold. Put differently, a Model passing QG 3 comprises everything necessary
to solve the intended problem, conveys what it intends to solve, is adaptable to intended
environments, and has a purpose describing exactly the model’s intention. As a result,
it can be considered a fine or stable solution (green).

However, Models need not progress in a linear direction as described. In case a Model

is in the decent stage and no longer meets the requirements for QG 1, it passes QG 2,
which means that it falls back to the vague stage. The same holds true for a Model in
the fine stage if it no longer meets the requirements for QG 3. Then, it passes QG 4
and falls back to the decent stage. In the case that it also fails to meet the requirements
for QG 1, e.g., confinement, it passes QG 5 and falls back to the vague stage. This
might happen after massive changes that go beyond πren or πret operations, or when
it is decided to split the Model into two, which then requires them to start the quality
assurance process as freshly added Models in the vague stage.

Altogether, we achieve quality support for guiding model evolution in knowledge libraries
(cf. QualityLevelType in figure 3.30), but this should never be fully automated. Hence,
a modeler always needs to have the last word, as we will see later. For now, a change in
stages requires confirmation of a pending indicator, making quality gates a semantic but
semi-automatable concept. Still, we have clear sets of quality requirements that must be
met for each stage. This counters quality as seen “‘social’ [... and] inherently subjective”
[Moo05]. Next, we address measurement and calibration [Arb11].
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Quality Measures: We designed our evolution stage automaton with quality gates to
reduce some of the non-determinism that is initially required. However, we can only
support some of our quality dimensions, because not all of them are measurable. Hence,
we introduce properties that offer a different perspective on the characteristics that make
up our syntactic, semantic, and pragmatic qualities [LSS94].

According to the degree to which the associated quality measures are inherently
objective and automatable, we distinguish between strong, medium, and weak quality
characteristics. The first is a fully automatable and objective means of measurement.
For example, a syntax check can detect syntactic errors with absolute certainty. Further,
some metrics and validators for models can provide exact quality assessments [Wüs14;
GPC02; GPC05; Ste+08]. As an example, a class without a name or an attribute without
a type are errors and are not only detectable by validators, but can also be helped in
terms of feedback for users. We consider metamodel conformity, transformability, and
defect-freeness in figure 3.26 as strong quality characteristics. The second, medium,
quality characteristics have fully automatable means of measurement, but lack the ability
for objective interpretation. For example, the count of classes in a model should be
limited by a threshold in a knowledge library for appeal reasons. However, a count
exceeding a given threshold does not automatically indicate a defect. Instead, we favor
the term “smell” as a well-established notion for something that is not quite right and
needs improvement [Fow99]. Hence, if a smell occurs, a modeler is notified about it
but does not need to take action. Instead, the smell can be marked as ignored. To
us, the medium quality characteristics in figure 3.26 are confinement, understandability,
and maintainability. Finally, weak quality characteristics have neither automatable nor
objective means of measurement, but heuristics can help. They can support modelers in
spotting issues, but cannot provide thresholds or other guidelines. For example, purpose
extraction can be checked by keyword extraction and comparison, but this only provides
data for the modeler to make a decision. Our weak quality characteristics in figure 3.26
are semantic validity, completeness, and purpose extraction.

Unfortunately, this makes our quality assessment “inherently subjective” [Moo05], but
we can support evaluations using reviews. We implement a system of simple reviews
with five different perspectives [Bon99], called thinking hats, that have a particular focus
and each disregard a reviewer’s expertise. Figure 3.28 sketches the idea and shows
how five differently colored hats, symbolizing the types of review, assess a model. The
main goal is to really focus on this kind of review and not to digress in other directions.

We present the short review types in alphabetical order (cf. ReviewType in figure 3.30
with respective CommentTypes): A black hat review, aka bad points judgment, is similar to
the commonly known feedback, which often focuses on bad points. It requires immediate
patches; hence, a high number of black hat reviews implies poor quality. A green hat
review, or creativity judgment, considers alternative and new ideas as well as possible
improvements. This would be one positive part of the commonly known feedback, if
expressed. For Models, a green hat review might support a novice modeler in improving
a model through inputs from a more experienced modeler who provides a green hat
review. A red hat review, or emotional judgment, considers the preferences or dislikes
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A

BC
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Yellow

White

Black

Green

Model

Figure 3.28.: Review Hats similar to [Gan+16]

that might result from experience. Sometimes, this is beneficial for stimulating discussion
on questionable points that clearly need to be stated emotionally. A white hat review, or
informational judgment, is a means of providing information not given by the model itself.
At times, Models inherit limitations or expire for some reason, and a white hat review can
retain this information. A yellow hat review, or good points judgment, is the other positive
part of the commonly known feedback. This time, the information is not about possible
improvements, but mentioning good points. With regard to quality, we can expect good
quality if many yellow hat reviews exist.

3.4.5. Proactive Guidance for Model Evolution Stages

The quality model, quality gates, and evolution stage automaton build the foundation
for our proactive quality guidance. Assessments are used during the editing process to
provide feedback on a regular basis. This is beneficial for our knowledge library, because
there are numerous error reports generated on request, which might be demotivating for
modelers. Although this is an implementation detail, we mention some aspects here.

Our approach for proactive quality guidance comprises continuous measurement and
feedback, including working instructions. The measurement triggers the calculation of
metrics assigned to quality characteristics on a regular basis, so the modeler does not
forget about triggering the measurements. The latter are derived instructions that are
subdivided into instructions for either metrics or smells. This follows our classification
of medium and weak quality characteristics and results in either clear instructions or
proposals. The latter might be ignored. Note that the smell metrics may also be reported
and discussed by the review hats discussed above. For the defects and smells, we only
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show an excerpt of the defects from the complete list in table 3.9 [Rot13].

Table 3.9.: Excerpt of Model Defect and Smell Metrics [Rot12]
Name Description Reference

AttrNameOvr Class defines a property of the same name as an
inherited attribute. During code generation, this
may inadvertently hide the attribute of the parent
class. Consider changing the name of the attribute
in the child class.

[Re04]

CyclicInheritance Class inherits from itself directly or indirectly. The
inheritance graph must be a tree; no cycles are
allowed.

[Wüs14]

DupAttrNames Class has two or more properties with identical names.
Attribute names must be unique within the class.

[Wüs14]

DupOps Class has duplicate operations. There are two or
more operations with identical signatures (operation
name and list of parameter types).

[Wüs14]

3.4.6. Model Evolution Stages and Generations

We have extracted several models from our running example in figure 2.3 (p. 27) so far.
For example, we started section 3.2 (p. 48) by extracting three models as Models, namely
Airport, Passenger, and Vehicle, and related them as shown in figure 3.4 (p. 48). In
terms of versioning, they start from the same baseline, and in terms of evolution, they
start in the vague stage. This groups them in respect of our knowledge library and in
terms of evolution.

This continues our model evolution approach and extends it with the biological idea of
“successive generations” mentioned at the beginning of this section [Saf14]. Figure 3.29
shows an example of a generation highlighted with a gray background made from
our running example in figure 2.3 (p. 27). This has been subdivided into three models,
omitting the enumerations. These three models, as Models in our knowledge library, form
a generation in our terms because they are related by Connectors of syntactical type, i.e.,
cross-link (cf. subsection 3.3.3 and figure 3.17). Note that the models are syntactically
correct and that cross-links contain “dangling” references referring to elements in models.

Moreover, cross-links between Models are a means of supporting chain recommenda-
tions, which raises the question of how to attribute an evolution stage to a generation.
In figure 3.29, there exist several snapshots of each model, which could imply that the
corresponding Models are in different stages. For instance, Airport may be in the fine

stage while Passenger and Vehicle are in the decent stage. Then, the generation
should be in the decent stage, or the lowest stage of all Models in a generation. Further,
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a generation with one Model flagged as deprecated should render the entire generation
so, but not the other Models. Hence, the chain recommendations are not affected.
Impact Analysis: An altered model can lead to erroneous cross-links, so an impact
analysis is required [MD00; LFR12]. Our knowledge library does not hold references
to reused models, so upgrade and merge conflicts are not an issue. Further, we lock
models and prevent multiple versions of one Model, so merging issues should not occur
in our case. What remains are structural and compositional conflicts [MD00]. The former
are syntactically erroneous models, leading to larger erroneous models if merged. This
is handled by our quality characteristic “Defect-Freeness”. Compositional conflicts occur
when the merger of models leads to semantically changed models, which is part of
semantic quality. Hence, syntactic and semantic consistency are taken care of [MvS05].

The remaining changes we need to investigate are additions, connections, disconnec-
tions, and removals [MD00; MvS05]. First, adding an element to a model cannot harm
our knowledge library and reusability of models, because the worst scenario would be a
duplicate element in an adjacent model. This potential issue requires no action because
reutilization covers the case where both are reused within the same scope. The easiest
solution is to prefix one of the duplicates and let the modeler decide. This also holds true
for the connections case. In the case of disconnecting elements, no harm can occur
because extracting one from another model could at worst introduce a smell. Altogether,
the remaining conflicts result from removals, which require a little more effort to analyze.

We approach the removal of elements in models in two steps. First, we conduct a
change impact analysis [BA96]. Second, we locate the impact destination, i.e., if changes
need to be made to the cross-link or the adjacent model [Vác97]:
1 IssueSet impactAnalysis(Model model, CrossLink crossLink){

2 adjacentModel = getAdjacentModel(model, crossLink);

3 assertSyntaxOK(model, adjacentModel, crossLink); // Error before

4 mergedModel = merge(model, adjacentModel, crossLink);

5 if (isValid(mergedModel))

6 return emptySet; // No harm done

7 leftLinks = modelSetDifference(crossLink, model);

8 if (!isEmpty(leftLinks))

9 return leftLinks; // Issues found in links to model

10 rightLinks = modelSetDifference(crossLink, adjacentModel);

11 if (!isEmpty(rightLinks))

12 return rightLinks; // Issues found in links to adjacent model

13 return emptySet;

14 }

Pseudocode 3.5: Change Impact Analysis

The impact analysis from pseudocode 3.5 is checked for all cross-links associated with a
Model. Initially, we assume that the respective model and the cross-link are syntactically
correct. Then, we conduct a merge test by attempting to merge the changed model with
the adjacent model using the cross-link. If this results in a syntactically correct model,
this change is harmless. If the result is syntactically defective, the error lies either in the
cross-link or the adjacent cross-link. We can analyze this by building the set difference
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of the changed model and the cross-link. If this set difference is empty, then the error
must result from the adjacent model and we can locate it by building the set difference of
the adjacent model and the cross-link. However, this must not result in anything other
than the empty set, because the adjacent model was syntactically correct to begin with
(or it was in the vague stage). Note that we can analyze the impact of this change during
runtime to immediately notify the modeler.

If the impact analysis has located any issues, the change propagation needs to be
conducted by the modeler. This is necessarily a manual task, because changes can alter
the semantics of models and we cannot automatically fix such issues. In fact, identifiers
allow for some support, even for more complex scenarios, but this is out of scope.
Example: Consider the change πrenpϕ

Airport

EC
, tAPTuq in figure 3.29, i.e., renaming the

class Airport. This results in an erroneous cross-link (clfigure 3.29), because the desti-
nation of one relationship was an Airport class. Given the Airport model (ma), the
cross-link, and the Vehicle model (mv ) as tuples (equations (3.1) and (3.54)) we have:

clfigure 3.29 :“pEA|ma mv , Ecl|ma mv , EC|ma mv , ... , ρeAttributes|ma mv , ...q, with
ER|ma mv “ tAirport2Vehicle, Vehicle2Airportu,
ρeType|ma mv “ tpAirport2Vehicle, Vehicleq,

pVehicle2Airport, Airportqu,

ρeReferences|ma mv “ tpAirport, Airport2Vehicleq,
pVehicle, Vehicle2Airportqu

mfigure 3.29
a :“pEfigure 3.29Airport

A , Efigure 3.29Airport
cl , tεAPTEC

, ...u, ... q

We can find a dangling element in our cross-link, because a model merge is not valid (cf.
in line 5 of pseudocode 3.5) and the set difference results in:

clfigure 3.29
zpmfigure 3.29

a Ymfigure 3.29
v q “ pEA, ... , ρeAttributes, ...q, with

Efigure 3.29
R “ tAirport2Vehicleu,

ρeType “ tpAirport2Vehicle, Vehiclequ,

ρ
figure 3.29
eReferences “ tpAirport, Airport2Vehiclequ

This shows that the “Airport”, which is first in all elements, cannot be removed, because
it is not in the union set of ma and mv . Note that the undefined sets, e.g., EA, are empty.

With operation-based cross-links from equation (3.60) (p. 86), we can also demonstrate:
Given Airport and Vehicle in operation-based form ( ΣAirport

Ecore , ΣVehicle
Ecore ), we obtain:

Σfigure 3.29
Ecore “πrasspϕVehicleEC

, tϕVehicle2Airport
ER

uq ˝ πrasspϕ
:Airport:
EC

, tϕAirport2Vehicle
ER

uq ˝

πcpE
Airport2Vehicle
R q ˝ πcpE

Vehicle2Airport
R q ˝

πrenpϕ
Airport

EC
, tAPTuq ˝ ΣAirport

Ecore ˝

ΣVehicle
Ecore (3.70)

109



3. Operation-Based Model Recommendations

We can see how two Models were created and a renaming took place in the last line
of equation (3.70). The references were created in the penultimate line and, after that,
the assignment fails, because ϕAirportEC

cannot be resolved in the first line, as indicated
by :. Nevertheless, we could rewrite pseudocode 3.5 by means of find operations. We
omit this for the sake of brevity, but mention that this view is particularly useful for a
knowledge library with support for hyperedges.

3.4.7. Design Rationales and Observations

The approach for model evolution, which we introduced above, directly addresses the
“Evolution Challenge” discussed in section 1.2 (p. 6), and is intended to support reuse,
as we explain in section 3.5 (p. 117). Hence, the major goal was an approach in line with
our project goals, i.e., the E and S denoting “easily and seamlessly” in HERMES.

Our initial thinking while designing an easy model evolution approach was that satisfied
customers are those who come back, and that quality makes a large contribution to
customer satisfaction. Nevertheless, our harvesting, which must also be easy, does
not overburden modelers with quality concerns. Hence, we decided to place quality
concerns in a separate, successive task. This way, we avoid annoying modelers with
lengthy mining operations, which potentially leave models in our knowledge library with
quite some potential for improvement. At the same time, we are cautious of changing the
requirements of models that are in our knowledge library. This means, even if a perfectly
quality assured model makes it into our knowledge library, it is likely to face “aging”
without change, a phenomenon observed in software [Par94]. As a result, our thinking in
iterations, i.e., “first we do things, and then we do them right”, makes perfect sense, and
we first place models in our knowledge library and then start quality assurance. In other
words, we accept that requirement changes happen to models in our knowledge library
and support them independently of deployment scenarios, while allowing and enabling
feedback enhancement loops.

With this separation of concerns established, we seek an easy solution for quality
assurance in terms of comprehensibility. Therefore, we root our three stages, which
eventually aggregate to quality statements, in the traffic light metaphor with commonly
known colors and exactly three stages. This also fosters simple filtering regarding user
expertise, i.e., novice users can only use models in the fine stage, more advanced
users can also use models in the decent stage, and expert users can use all models.
Simply put, experts are the jaywalkers in our approach, because they might need to work
with defective models.

Now the question arises whether fewer or more stages could have sufficed and we
tested that but could not come up with an alternative of appropriate complexity [Rot12].
Discussing this, we need to keep in mind that the stages are not the only complexity
contributing to cognitive load concerning our model evolution approach. There are review
hats, quality attributes, and other concepts as well.

This raises the question of their complexity and why we designed all these concepts as
we did. Firstly, the review hats are those proposed by Bono, because our testing did not
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require us to alter an established approach [Rot12]. Secondly, our quality model describes
a basis, as we explained above, but in discussing this, it is more important to ask why we
did not provide a tailoring mechanism similar to profiles for bi-directional quality models
[Hil10]. Certainly, there is room for bi-directional quality models, because the metrics that
we gather could be assessed quite differently from our approach. This induces another
dimension of complexity, because we require an abstraction level that maps subjective
perception of quality via so-called indicators to metrics [Sch10]. Further, a mechanism
similar to using profiles, i.e., requiring only a few of the quality characteristics of a quality
model, can be appropriate. However, that is exactly what our stages represent and gates
ensure. Hence, without going into detail, we use this idea without explicitly referring to it.
There has been extensive research on quality models in computer science, and we restrict
ourselves to pragmatism in this respect. Thirdly, we need to address our deprecation flag
and why we did not introduce it as another stage. This is an attempt to persist knowledge
in the final stage. This explicitly keeps the last stage and only marks a model as out of
service. Hence, it can still serve several purposes, e.g., alternative or historic examples.
In fact, any production should document the reasons for deprecation and the alternatives
that replace the deprecated model. Put differently, this makes our stages include a
deprecation flag that is very similar to software release cycles, from vague all the way to
fine, which a recommender can use to become a so-called persuasive recommender,
i.e., provide information about why something is recommended [YGZ13]. This not only
holds true for, e.g., matching terms as rations, but also for counterexamples for historic
reasons. Finally, our evolution stage automaton and the quality gates have this kind
of formality because we eventually require code generation (cf. section 4.4 (p. 155)).
Further, our line of discourse requires some concepts that eventually (mostly) disappear,
e.g., the non-determinism in our automaton.

As another attempt to lower complexity and further enhance usability, we designed
proactive quality guidance as a means of easing quality assurance. We will pick up on
the idea of proactive support while discussing user interaction in subsection 3.5.3 (p. 122)
for model recommendation production. In addition, we will discuss operation-based
models and how they fit into the bigger picture.

For reasons of clarity, we omit some aspects from our approach. First, we omit
comment types in figure 3.30, but do not explicitly encompass them in our explanations;
in fact, they are enclosed with each review. Reviews imply CommentTypes, and this is
encouraged by our GUI. We omit a more detailed discussion because the derived types
are intuitive and this approach makes no conceptual difference, but helps users. Second,
we have neither roles nor user management implemented in the approach or realization.
As a result, any user can change any stage and boost a freshly added model to the fine

stage with a few clicks. We consider this beyond the scope of this approach, and keep
track of the users who change anything by adding a name field to be filled in. Finally,
we do not consider the model metrics in our contribution, so we provide no more than a
reference to what previous methods are employed. Indeed, this part is designed and
built to be exchangeable, as indicated in the explanations concerning figure 3.23. The
same holds true for the versioning underlying this approach.
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3.4.8. Related Work

Research on evolution and model evolution has been conducted for some time, so we
first examine some meta-research with the intention of classifying our approach. First,
“the four different dimensions of evolution in model-driven development” by van Deursen,
Visser, and Warmer places us in regular evolution [vVW07]. Note that we cannot be
categorized as abstract evolution, because our knowledge library is detached from the
reused models and change propagation in that direction is not under consideration.
Second, “the two orthogonal model-evolution dimensions” proposed by Biehl would
classify our approach as content-related changes and local evolution [Bie10]. Our
framework is local, because we do not take the abstract syntax into account, and we are
content-related because we isolate ripple effects and do not propagate changes between
related models. Third, regarding “the three types of changes in software model evolution”
by Levendovszky et al., we deal with requirements and style [Lev+11]. The former results
from our purpose and its extraction, and the latter comes from our quality characteristics
regarding understandability and maintainability. Other types of changes we deal with are
corrective and perfective, as proposed by Swanson [Swa76].

Bearing these classifications in mind, we can contrast our approach with other research
regarding model evolution, quality in modeling, and change propagation.
Model Evolution: The evolution of software artifacts goes back to Lehman [Leh80], and
Godfrey and German state that this reaches back even further [GG08]. A more recent
research roadmap was provided by Bennett and Rajlich [BR00], but there was little to no
research on evolution for knowledge libraries comprising models.

Model evolution is usually researched with “evolution as a goal” that needs to be
automated, e.g., in tools for model-driven development. The first related approach
is called COPE and was presented by Herrmannsdörfer [Her11]. It deals with model
co-evolution in an operation-based way and uses editing traces in sequences, as in
our framework. Further, these sequences can be held in central repositories, so they
can be forwarded to other models. In a sense, this puts model migration in focus, and
this best explains the difference from our approach. Herrmannsdörfer provides more
formally defined operations derived from experiences or gained from object-oriented
database-schema migrations and object-oriented source-code refactorings. In more
detail, some high-level operations are refined to structural and non-structural primitives,
which make up a catalogue. Examples are operations for specialization and delegation,
or operations for replacement and merge-split [HVW11]. We use CMOF API [Obj14], but
many ideas could be beneficial in our approach.

The second related approach is called MoDisco [Ecl14b]. Currently, this is jointly hosted
with AM3 and provides model management functionality [All+06]. However, the roots
of MoDisco lie in support for the evolution of legacy systems by means of model-driven
development. To that end, MoDisco supports re-engineering and co-evolution. Our
approach differs in the sense that we support guided evolution with quality assessments.

SiDiff, developed by Wenzel, Hutter, and Kelter, traces model elements in version
control systems [WHK07]. Hence, the authors put their approach in the category of
repositories, but SiDiff can monitor model changes to find commonalities and differences.
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This is almost identical to our ideas about snapshots and evolution steps, but unlike us,
Wenzel, Hutter, and Kelter do not research staging and quality guidance.

Sun, White, and Gray take an alternative perspective for model evolution, consid-
ering model transformation by demonstration with a tool called MT-Scribe [SWG09].
Here, demonstrations are a means of supporting users in finding model-evolution tasks
automatically [Tay+11]. Hence, a user who is not a modeling expert demonstrates a
change, and MT-Scribe derives tasks from this demonstration while keeping in mind
model-evolution. This is fundamentally different to our approach, because reuse is not in
focus, but results in end-users seeing evolution in small, unguided steps.
Quality in Modeling: Our approach profoundly relies on quality in modeling, and we are
aware of difficulties beyond those discussed at length by Moody [Moo05]. Therefore, we
tried to overcome the discussed subjective manner by subdividing quality into a syntactic,
semantic, and pragmatic dimension, as proposed by Lindland, Sindre, and Solvberg
[LSS94], while keeping in mind that these dimensions might interfere with each other, as
explained by Bansiya and Davis [BD02].

Many quality models exist for UML modeling, and we base our work on Lange’s contri-
butions with additions from McQuillan and Power and Kim and Boldyreff [Lan06; MP06;
KB02]. Further, we considered work by Genero et al., Wedemeijer, and Mohagheghi and
Dehlen for our metrics catalog [Gen+03; Wed01; MD09]. In particular, Mohagheghi and
Dehlen provide the linkage between quality characteristics and metrics for special goals,
i.e., purposes, which was beneficial for our metrics catalog.

In addition, Mohagheghi and Dehlen mention challenges in measurement [MD09]. We
approach these challenges, considering that evolution in a knowledge library eases them
already, with the Six Thinking Hats of Bono, which we adapted to our needs [Bon99].

Regarding implementations, the MetricViewEvolution software is the most similar we
have found [LWC07b]. This was developed by Lange, Wijns, and Chaudron and offers
different views on evolving models. The six views illustrate context, evolution, meta,
metric, UML-city, and quality. This separates information as a single concern, hiding other
conceptual details. The approach itself is presented by Lange, Wijns, and Chaudron
[LWC07a]. We do the same with review hats for concepts and lightweight UIs without
dedicated views on certain aspects.

The EMFMetrics implementation, by Arendt, Stepiena, and Taentzer [AST10] and
now merged with EMF Refactor by Arendt, Mantz, and Taentzer [AMT10], provides a
measurement environment for modeling [AT13], which we also use. This offers model
metrics and defines model smells, which now became a reasoning platform for refac-
torings [AT12]. In contrast to EMF Refactor, we offer edit-time assessment and provide
more detailed means of guiding changes and reviewing defects, smells, and hunches.
Change Propagation: We do change impact analysis and propagation with changes
in model generations. This is different from the ripple effects in model-consistency
management, model-change propagation, or model synchronization [PvM15], because
our approach is local and content-related, i.e., our cross-links serve as borders for change
propagation. In terms of Levendovszky et al., we employ intra- and inter-model changes in
a single modeling domain [Lev+11]. For more generic software change type foundations,
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consult Lehnert, Farooq, and Riebisch [LFR12].
An approach that adapts ideas from reuse contracts to evolution contracts is that of

Mens and D’Hondt [MD00]. This extends the UML metamodel using a mechanism for
disciplined change tracking and guidance [Obj11b]. Further, the impact analysis, change
propagation, and consistency verification are taken into account by the “framework for
managing the consistency of evolving UML models” by Mens, van der Straeten, Ragnhild,
and Simmonds [MvS05]. This ensures “safe model evolution”, but for us, an extension of
Ecore was not an option.

Odyssey-VCS by Murta et al. implements mechanisms from source-code and version-
control systems in models by detecting change traces through model-mining [Mur+07;
DMW05]. The approach is presented by Dantas, Murta, and Werner and the realization
of Odyssey-VCS identifies changes in several diagram types and link traces. Compared
to our approach, the model-mining techniques are not necessary, because we perform
edit-time monitoring for operations.

Regarding the “consistency between UML models”, Mens, van der Straeten, Ragnhild,
and Simmonds use description logics [MvS03]. They take XMI exports, transform
them into their representation in description logics, and distinguish between “horizontal
and evolution consistency”. These regard consistency between models of the same
version and between versions of one model, respectively. Hence, we consider horizontal
consistency with our generations, but, as we showed in our example, we do not require
the elements of our generation to be from the same version.

Briand et al. studied the “automated impact analysis of UML models” [Bri+06] and
proposed a change taxonomy and a methodological framework. Their realization is
founded in OCL, so the approach is based on a formal foundation given for model
changes, change impact, and “bag[s] of impacted elements”. These are basically sets
of elements impacted by changes. Further, they develop distance measures between
changed and affected elements, all of which is automated. For us, a realization in OCL
was not an option, and our solution could not be fully automatable for semantic reasons.

The final domain that can be regarded as related is model refactoring, for which Boger,
Sturm, and Fragemann provide an overview [BSF03]. An example of such an approach
using OAW/OCL queries is presented by Enckevort [Enc09], and Astels provide an
approach for larger systems [Ast02]. Also in this category is the “Operation Recorder”
developed by Brosch et al. [Bro+09]. This subdivides a set of refactorings into eight
steps, starting with “creating the initial model” and proceeding until the “generation of a
specific artifact”. They demonstrate their approach with an example dealing with state
machines. Their work on conflict detection is similar to ours, but their domain differs, so
we have only picked up certain ideas.

3.4.9. Summary of Evolving Models

The previous section introduced an evolution concept for knowledge libraries. We defined
snapshots (S) of models (cf. top of figure 3.31) and how sequences of operations perform
evolution steps (σ at the top of figure 3.31). These, as alternating sequences of model

115



3. Operation-Based Model Recommendations

snapshots and evolution steps (Si , σi , Sj , σj , Sk , σk , ...) represent our understanding
of model evolution. However, the alternating sequences can be looked at as model
evolution graphs, and we defined vertices as a set of snapshots (S), with the connecting
edges made of pairs of snapshots (Si , Sj ). Further, we introduced two labeling functions
for assigning snapshots to identifiers and edges to evolution steps (σ), i.e., sequences of
operations. This allowed us to introduce evolution stages (´,˝,` subscripts throughout
figure 3.31) for labeling the reusability of models as low, medium, or high (low also
means sketchy, medium also means provisional, and high also means stable). As a
formality, we introduced an evolution stage automaton denoting the low stages as vaguely
reusable, medium as decently reusable, and high as finely reusable. We then added
quality gates (QG in figure 3.31) to the evolution stage automaton (cf. bottom right in
figure 3.31) to prepare proactive quality guidance. We achieved this by assigning the
quality characteristics of a quality model (cf. left of figure 3.31) to the quality gates,
which serve as semantic checkpoints. Then, we implemented the exemplary quality
characteristics with weak, medium, and strong quality measures. The latter are non-
negotiable errors that need fixing, e.g., syntactical errors. The medium measures are
negotiable metrics with thresholds that should not, but can, be exceeded. Finally, the weak
quality measures are of semantic nature and their measurement is neither automatable
nor objective, so we provide a short review mechanism based on review hats to assess
these. In addition, we declared a deprecated flag to indicate when a Model had become
out of service without losing its stage. Finally, we looked into generations of models, how
to determine their degree of reusability, and how to conduct change impact analysis.

QG 1

Q
G 3

S1 S2 S3
σ1 σ2

Figure 3.31.: Evolution Example Summarizing figures 3.22, 3.26 and 3.27
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3.5. Reusing Models

Content-assist systems and other completion mechanisms are built into
almost every state-of-the-art IDE. They allow developers, or more general
users, to have information at their fingertips that would otherwise be woven
into the complexity of tasks and their environment. In programming, that
could limit the possible completions by taking into account what has already been typed
as a prefix. By reducing such potential information overflow and guiding users, IDEs
reduce the cognitive load and improve quality by preventing typographic errors.

However, complex systems induce manifold completion options that are not chosen
equally often. In popular examples, several hundred options are available for a program-
mer to choose from [Ecl14a], but few of these options are actually picked. At least, this is
what a recommender system learned from studying available source code. This means
that an approach already successfully applied by online shops [LSY03], video streaming
services [BL07], and Internet searches [SCB11] was successfully transferred to IDEs.

On a more general note, these recommender systems for software engineering
(RSSEs) help unveil or discover previously unknown information [Wal13]. Thus far,
the research areas comprise requirements engineering [Fel+13], programming [Mas+05;
WKB09], predictive component selection [MLA04], and issue management [BR14]. Al-
together, efforts are being made to ease information overflow in project landscapes for
present or new members, particularly for knowledge-intensive tasks [Dag+10].

Another knowledge-intensive task is modeling, but efforts at transferring ideas from
recommender systems to modeling activities as a means of approaching the retrieval
challenge discussed in section 1.2 (p. 6) have been sparse [DGL14a]. We have developed
a knowledge library that is capable of providing models, but it remains to produce
meaningful recommendations. Note that we address reuse foremost, because “[e]fficient
reuse must be done within a higher level of abstraction; [since] the design level is more
important then[sic] the coding one” [Gom+04]. Further, because we aim for “good
models”, we commit to “the importance of ‘good’ models from the beginning” [GPC05].

How is it possible to produce model recommendations? Given our knowledge library
(KLfigure 3.7) from equation (3.38) (p. 61), we can, initially, think of several cases for
recommending the Airport Model (εAirportM ) sketched in figure 3.32. First, an explicit
Airport Query (Φqueryterm

KLfigure 3.7 ) could gain this Model. Second, an already-present Airport
class could automatically initiate this result. Third, an already-present part similar to
our Vehicle Model could determine (εAirportM ) as a neighbor in our knowledge library
and provide it automatically. Fourth, a just-placed Passenger Model could lead to an
automatically produced follow-up. Altogether, we can sketch the resulting scenario, as
illustrated in figure 3.32, denoting the chosen Model by a “thumbs up” icon, , and the
rejected Models by faded text and a border:

Passenger Airport Vehicle

Figure 3.32.: Recommendation Example for Airport from figure 3.4 (p. 48)
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In fact, this example only scratches the surface of the possibilities, as we will elaborate
after we have laid the necessary groundwork. So far, we can deduce from our exam-
ples regarding figure 3.32 that a querying and an editing context might be involved in
producing recommendations from our knowledge library. Further, relationships in this
knowledge library and the granularity of elements are directions to explore, as explained
above. This also encompasses compound elements or parts of them. Subsequently, we
elaborate on our experiences and previous work [DGL13; DGL14a; DGL14b].

3.5.1. The Model Recommender Framework

Our examples regarding figure 3.32 as well as our experience and explanations above
already indicate that a model recommender framework comprises several parts [DGL14a].
These are depicted in figure 3.33. They show the UIs, which could be triggered either
explicitly (reactively) by a user action or implicitly (proactively). Further, the parts show that
many contexts are present, and these could contain editing traces, IDE canvas analysis
and transformations, or project specifics. Finally, multiple recommender strategies are
shown in figure 3.33. Each could leverage different data for inputs or data sources for
producing recommendations. We elaborate on details of all parts, but first outline the
foundations.

UIStrategy1 UIStrategyM

Context1

ContextN

Recommender
Strategy1

Recommender
StrategyO

Recommender

Framework

...

...

...

Figure 3.33.: Model Recommender Framework (MRF) similar to [DGL14a]

3.5.2. Model Recommendations, Operations, and Dimensions

At the heart of our subsequent discourse are model recommendations and candidates.
We build these terms using the ideas introduced in subsection 2.3.2 (p. 19) for general
recommender systems, and adjust them with a term built for RSSEs. In doing so, we
agree that, even after years of discussion, the following definition is “the most useful for
distinguishing RSSEs from other software engineering tools” [RW14]):
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An RSSE is a software application that provides information items estimated
to be valuable for a software engineering task in a given context [RWZ10].

This definition sets our roadmap for approaching model recommendations and respective
systems, because it comprises the essential required parts. These parts also map to
figure 3.33 as follows: First, our “engineering task” is modeling pursued by UIs; we limit
this to UML class diagrams, because we investigate conceptual modeling. Note that the
focus is on the “task”, which makes RSSEs “task-centric, as opposed to the user-centric
nature of traditional recommendation systems” [RW14]. This limits the other aspects
from the definition accordingly. Second, the “given context” subsumes information that is
indirectly relevant for data processing by the “software application”, and we can consider
this context as the immediate environment or the related surroundings, as explained
above. This means that, third, the effective “software application” can be viewed as the
entire figure 3.33, and we need only explain what we alluded to as the heart above.

This heart is intended “to provide information items [] valuable” for modeling, which we
can subdivide into three parts. First, “to provide” information items is the responsibility
of recommender strategies in figure 3.33, and they are meant to do so by means of
evaluating the contextual information, i.e., attempt to provide, second, “valuable” items.
This means they need to expose characteristics for evaluation such as “(1) novelty and
surprise [...] and (2) familiarity and reinforcement” [RW14]. We will come back to this in
subsection 3.5.6. Finally, “information items” are model recommendations for us:

A model recommendation (item) is a ranked and valuable information item
produced by an RSSE for modeling given constraint dimensions.

Neglecting dimensions for a moment, producing model recommendations can be sub-
divided into four recommendation operations, which work on model recommendation
candidates [LGS11]. We summarize the operations as a set denoted by a capital % (P) in
equation (3.71). Given a knowledge library (KL P KL), they are a model (m PM) as part
of a context (c P C) and a queryterm (P str), and are described as follows: First, the
provided data are analyzed (%ana equation (3.72)). Second, candidate sets are generated
(%gen equation (3.73)). Third, elements of these candidate sets are ranked (%rnk equa-
tion (3.74)) and finally filtered (%fil equation (3.75)) to become model recommendations,
i.e., results. We dedicate subsections to these operations and introduce them in detail in
equations (3.72) to (3.75).

P :“ t%ana, %gen, %rnk , %filu Recommendation Operations (3.71)
%ana :“ KLˆ C ˆ str Ñ KLˆ C ˆ strˆMRC : subsection 3.5.4 (3.72)
%gen :“ KLˆ C ˆ strˆMRC Ñ KLˆ C ˆ strˆMRC : subsection 3.5.5 (3.73)
%rnk :“ KLˆ C ˆ strˆMRC Ñ C ˆMR : subsection 3.5.6 (3.74)
%fil :“ C ˆMRÑ

ą

pEM ˆ R`q : subsection 3.5.6 (3.75)

Note that %gen has an identical domain and co-domain. This allows successive %gen
operations, which can take into account the provided model recommendation candidates
(MRC cf. subsection 3.5.5) and, e.g., consider neighbors. Accordingly, our analysis
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operation (%ana) has an adjusted co-domain with an additional set for model recommenda-
tion candidates, which, eventually, comprises a tuple of empty sets. Further, note that the
domains and co-domains in P induce a processing order. Combining these aspects, we
can denote model recommendation production as MP in equation (3.76) and explain the
production sequence of model recommendation operations as shown in equation (3.76).
The result is a set of tuples made of models and their respective ranks:

MP :“KLˆ C ˆ str Ñ
ą

pMˆ R`q :

pKL, c, querytermq ÞÑ %fil ˝ %rnk ˝
nPN
©
i“0

%geni ˝ %ana (3.76)

For the sake of simplicity, we introduce a shortcut notation for this model recommen-
dation production operation (MP). Similar to our find operation in models (ϕ equa-
tion (3.14) (p. 39)) or Query operation for knowledge libraries (Φ equation (3.41) (p. 63)),
the subscript provides the scope and the superscript denotes the query term. In addition,
the middle holds the contextual information. For a given KL P KL, we can write:

MPqueryterm
c
KL

:“ MPpKL, c, querytermq, c P C, queryterm P str (3.77)

Given this understanding of model recommendations, we can turn to constraint dimen-
sions and their affected properties, omitting their structural nature for a moment. The
dimensions stretch in three directions, and we discuss each in terms of the limitations
they impose on model recommendation production. We can regard these limitations as
degrees of freedom for “how a recommendation could be produced with these properties”
or “which turns an algorithm might take to yield this recommendation”. Altogether, this
frame helps structure model recommendation production in subsection 3.5.5, granted
that a context as in figure 3.33 delivers additional data and a recommender strategy as
in figure 3.33 can rely on a knowledge library.

The dimensions of the constraints are user interaction, available data, and permitted
scope, as listed in table 3.10. The first might lead to different model recommendations,
because explicit (reactive) triggering is task-intrusive, whereas implicit (proactive) trig-
gering is not. Similarly, GUIs might limit the extent of the presented or preview-able
recommendations [DGL14b]. We elaborate on UI and GUI considerations in subsec-
tion 3.5.3. Next, available data allow for the production of more precise recommendations,
as they enable more specific querying and feature leverage. Whereas simple querying
might rely on search terms, contextual information can enhance the sensitivity (precision)
of model recommendation production. For example, an active model or editing sequence
can provide beneficial data, as we show in subsection 3.5.5. Further, a context analysis,
which might include information from a requirements document, could provide further
sensitivity enhancements. Finally, the permitted scope, which is allowed or taken into
account, changes the results. Consider a query that results in only one recommendation.
This could be extended, and also comprise a list with neighbors (cf. table 3.11), which
are Models linked via a Connector, e.g., Passenger or Vehicle in figure 3.32.
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Table 3.10.: Constraint Dimensions of Model Recommendation (Item) Production
Constraint Spread Affected Property Explanation

User Interface pro-/reactive trigger extent see table 3.11
Available Data context, library sensitivity extend of data used
Permitted Scope immediate, implicit results granularity see table 3.11

relatedness see table 3.11
impact extending, ... deleting

The dimensions introduced above affect the model recommendation properties, namely,
sensitivity, impact, and extent. We subdivide the latter into granularity and relatedness.
Altogether, we can look at these properties, which reappear during model recommenda-
tion candidate generation in subsection 3.5.5, as follows: For a given context (sensitivity),
we query our knowledge library (granularity, relatedness), generate model recommen-
dation candidates (extent), and possibly apply them (impact). In other words, we can
see the freedom of model recommendations on scales (de-)limited by granularity and
relatedness, (un-)deduced by sensitivity, and (un-)filtered for extent (cf. Configuration in
appendix A (p. 195)).

Table 3.11.: Model Recommendation (Item) Extent: Granularity and Relatedness
Name Gra. Rel. Explanation Example

element X element of model (m) table 3.3 (p. 37)
submodel X part, submodel (s) of a model (m) equation (3.47) (p. 75)
complete X model (m) as is equation (3.1) (p. 36)
chain X (X) Connector with(-out) cross-link (cl) figure 3.17 (p. 83)
grouped X Group between Models figure 3.7 (p. 53)
categorized X Category between Models figure 3.7 (p. 53)

In more detail, the first property, which we call sensitivity, relates to how much a context
is involved while producing a model recommendation. Whether the edited model, an
editing sequence, or other aspects, which are not immediately related to a query term,
are taken into account for producing recommendations impacts on this property. Hence,
we could perceive this as a context-sensitivity of model recommendations. Second,
relatedness expresses the degree to which the environment of an item in our knowledge
library is considered as an option for generating model recommendation candidates.
Imagine a Model from our knowledge library considered as a model recommendation
candidate. Further, imagine this Model with adjacent Models linked by Connectors,
grouped by Groups, or categorized by Categorys, e.g., εAirportM in figure 3.7 (p. 53).
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Relatedness now expresses the degree to which the adjacent or related Model should
be considered as additional model recommendations candidate. This also means that
relatedness is determined by the permitted scope, as introduced above. Third, granularity
expresses the opposite of relatedness, i.e., not aspects provided by a knowledge library,
but the syntactic content of a model. Hence, the smallest elements in granularity are
the model elements of sets introduced in table 3.1 (p. 34), and larger parts are the
submodels explained in equation (3.47) (p. 75). Additionally, we consider entire models
and even joined models, e.g., built by two models and a cross-link, as a granularity. In
other words, we speak of element, submodel, complete, and chain granularity. This
is also summarized for relatedness and granularity in table 3.11. Finally, impact is a
property related to the expected change in a model recommendation if reutilized. It can
range from idempotent, i.e., non-altering, to introducing, i.e., adding new content. In
between lie the attributes of extending and altering. The latter is considered as a form of
restructuring, which is often called “refactoring” [SU13; KM14]. In addition, the impact of
a model recommendation could also restrict or delete information. We mention this just
for completeness and do not go into further detail, because model recommendations
should provide valuable information, not just restructuring.

3.5.3. User Interface Considerations

With an understanding of model recommendations and their granularity established, we
can discuss UIs based on guidelines for recommender systems and their delivery in
more detail [Pu+11; MM14]. These cover the topics of an interaction-model, triggering,
and representation limitation. Many of these can constrain model recommendation
production, as we have introduced above.

We can apply common interaction models to provide a bigger frame for our model
recommendation operations from equation (3.71) in figure 3.34 [Pu+11]. As a first step, an
initial preference specification is undertaken. In our case, this is an entered queryterm,
e.g., in equation (3.77), but it can also include additional contextual information. In the
next step, data processing takes place. This means that a production sequence, as
shown in equation (3.76), is performed and yields a set of recommendations. In the third
step, either a recommendation is picked from the set or the initial preference specification
is revised. In short, the interaction is: specify preference, produce recommendation
result set (MP), either pick recommendation or revise preference [Pu+11].

What has not been considered in this observation is the initiation of this interaction,
which can be proactive or reactive. The former takes place if “[recommendations are
presented when deemed appropriate]”, i.e., automatically, and the latter occurs if “[recom-
mendations are presented only when requested]”, i.e., manually [Rob+14, both Glossary].
For reactively triggered interactions, this means that a search field could be filled in and
an action button explicitly triggers the interaction. However, for a proactive interaction, the
question arises of how the system determines the “appropriate” time. Possible answers
are timeouts or a completed editing. An example for the latter could be a created class or
a selection of classes [DGL14b]. This leads to the interaction model shown in figure 3.34.
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Specify 
Preferences

Produce Recommen-
dation Result Set

Pick
Recommendation

Revise
Preferences

proactive

reactive

Figure 3.34.: Recommender Framework Interaction Model adopted from [Pu+11]

In discussing this interaction model, we do not consider alternative production se-
quences of model recommendation operations or multiple concurrent ones. In the former
case, interaction remains the same, because we can consider variants of equation (3.76)
as black boxes. This is different for multiple and concurrent production sequences of
model recommendation operations if they are not joint before completion. Then, the
interaction model changes marginally, because concurrent recommender strategies that
started simultaneously but finished separately require an altered presentation. This
presentation needs to keep up with successively delivered recommendations and re-
arrange them as new recommendations [DGL14b]. This imposes an alteration on UI
implementations and makes it necessary to monitor the recommender strategies, as we
illustrate in figure 3.37 in subsection 3.5.5.

Other UI aspects that are relevant for user interaction occur at the graphical design
level. They deal with different graphical querying options such as search boxes or
preview functionality such as overlays. These place limitations on interactions and GUIs
in terms of screen space constraints or comprehensibility. The impacts are interrelated,
because more extensive and complex graphical representations are often more difficult
to comprehend. This is counterproductive for an “easy” reuse approach. We omit further
details of our previous work for brevity [DGL14b].

3.5.4. Recommendation Context and Analysis

Data processing is often context sensitive and the results depend on contextual infor-
mation provided as inputs. The research area of “context modeling and reasoning”
focuses on these in respect of environmental contextual information, i.e., raw sensor data
[Bet+10]. Combining this with recommender systems leads to location-based services,
which fall into a broader category called, second, “context-aware recommender systems
(CARS)”. We can consider this as the initiation of contextual analysis for recommender
systems, the value of which is often underestimated [AT11]. At the core of CARS are
three-dimensional prediction functions similar to our MP operation. However, introduc-
ing model recommendations, we find that they are task-centric rather than user-centric
activities. Thus, contextual information for software engineering tasks comes with dif-
ferent characteristics. This guides us to the third research area that is often found in
source-code related environments, e.g., programming in Eclipse supported by Mylyn
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[KM05; KM06]. Subsequently, we bring these areas together and explain our universe of
contexts (C), its dimensions, and our context analysis operation (%ana in equation (3.72)).

Various definitions of the term context have been given, and 150 of these were analyzed
in more detail [BB05]. The domains range from social to natural and engineering sciences,
and lead to many dimensions. Without going into detail, we alter and adjust the concluding
remarks from [BB05] and define:

The context in modeling comprises static environmental data that might influ-
ence system behavior in producing or reutilizing model recommendations.

The static in this definition implies that we take a moment in time of a modeling activity
and capture the present data. This data is environmental because it gathers the current
state of tools and the recent actions which led to it. However, the impact of these data
on system behavior is not guaranteed, because each individual model recommendation
candidate generation (%gen) determines whether the data are used. Finally, the produced
model recommendations must suit the context and, because environmental data comprise
tool information, this means that a context enables reutilizations. Concretely, a model
given in operation-based format is transformed so that it can be applied to or inserted
into the tool. In a sense, we can subdivide contexts into querying and inserting contexts.
The former are as mentioned above, whereas the latter are transformation engines. This
makes our context universe (C):

C :“ toolˆ viewˆ τ ˆmˆmpropertiesˆ editingˆ ... (3.78)
τ P treactive, proactiveu (3.79)

m :“ pEA, Ecl, EC, ... , ρeAttributes, ρeClassifiers, ... ,Rq PM (3.80)
mproperties :“ tpdit, vq, ... ptermi , <itemname>q, ...u, termi P str, v , i P N (3.81)

editing :“ t

Σall,

Σcre,

Σdel,

Σselu,

Σall,

Σcre,

Σdel,

Σsel PM

Σ

(3.82)
terms :“

ą

ptermi , valiq, termi P str, vali , i P N (3.83)

Note that we consider this context data to be extendable, as indicated by the context
components in figure 3.33, and that some data in equation (3.78) depend on implemen-
tation details. For example, a tool in equation (3.78) is derived at runtime as some
identifier. For our realization, EMF Ecore editors are supported by individual contexts,
because a context component in figure 3.33 can deliver a context c P C. Further, many
modeling tools gather content information in one place and allow several perspectives,
which are often called views. These views are represented by an identifier denoted as
view. This is also derived at runtime. We do not go into detail regarding how the actual
data are monitored or captured, and consider it given. Instead, we focus on conceptually
relevant parts, such as the trigger method (τ ) in equation (3.79). This represents how a
context is evaluated, i.e., an explicit trigger of a recommender strategy leads to a reactive
context, whereas an implicit trigger, e.g., timeout or select, is represented by a proactive
context. Other than that, the model (m PM cf. equation (3.1) (p. 36)) is the model in
tuple form that is currently being edited. Subsequently, we go into further detail regarding
the mproperties, editing, and terms of our universe of contexts (C).
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mproperties characterize the features of models (cf. equation (3.30) (p. 60)), though
recommender strategies could conduct the same calculations. In detail, the properties
provided are mostly related to model metrics and graph clustering, as explained in
subsection 3.3.2 (p. 75). For example, associate and god-class clustering provide
potentially essential features for further processing, and we put them in mproperties
as follows: pterm, <itemname>q. Note that mproperties are not meant for optimization,
because extracting the computationally expensive Girvan–Newman or Kernighan–Lin
clustering (cf. subsection 3.3.2 (p. 75)) from recommender strategies would break the
separation of concerns.

The editing, which we declared in equation (3.82), comprises sequences in operation-
based format, as explained in equation (3.16) (p. 39), i.e., the sequences are PM

Σ

but
contain some unique properties. As the names indicate, each sequence only contains
edits related to its name, e.g., create operations (πc cf. equation (3.5) (p. 38)). However,
persisting a sequence of redundant operations, which have already been “applied” to a
model, is of little help in our case, so the monitoring stores find operations (ϕ) instead.
Note that this also solves the question of how to represent select operations. Further, it
is a non-intrusive representation, so a recommender strategy can immediately use this
for analysis, given the model (m).

Although we do not go into detail about monitoring operations, note that operations
generally cannot be gleaned from tools easily, and we approach this by monitoring
and then investigating raw interactions in tiers, as done for raw sensor data in context
management [Fra01; Bet+10]. “Tier 0” is the level of sensors that capture actions as
clicks. On “Tier 1”, the raw data that have been captured are described. In our case,
this can be an interaction for creating a class (πcpEname

C q). These raw data differ with
the implementation, because editors often create prototype objects [Gam+95] that are
adjusted in successive steps. Hence, “Tier 2” filters such noise, so that “Tier 3” can alter
them to ϕ operations and assign them to the right sequence. Hence, in our example,
πcpEname

C q becomes ϕname
EC

in Σcre. Finally, “Tier 4” adds semantic meaning, which we
postpone and leave to the recommender strategies. For now, consider a mouse release
with several selections. A recommender strategy can take this as a starting point for a
reactive isomorphic Query with the selected elements.

The terms introduced in equation (3.83) are the result of additional environmental
analysis. Indirectly related files are taken into account and prepared for further processing.
For example, requirements documents, glossaries, or other project files can provide
grounds for term analysis and determine potentially valuable information. Tag clouds are
prominent examples, and we provide a tuple form of terms comprising the term and a
respective inverse document frequency as a value [LGS11]: pterm, <value>q.

As a marginal note, we should contrast our context universe (C) with “interaction data”
defined as “a record of actions taken by a user with a tool” [MFR14]. In our case, the
defined “types of data” are as follows: “actions” are editing sequences ( Σall, ...), the
“artifacts” are models (m), and the “tools” are a single tool, i.e., editor. For the “type
of data” denoted as “context” [MFR14], which is seen as an active issue or task, we
introduce terms, but could consider Mylyn tasks as well. For now, this is out of scope.
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With our universe of contexts (C) and our context analysis operation (%ana) declared
in equation (3.72), we can explain how this operation works. In terms of context-aware
recommender systems, it is a contextual-prefiltering [AT11]. Hence, it alters (αalt) the
monitored context (c) for a given queryterm, and adjusts (αadj) the latter as shown in
equation (3.84), regardless of stemming and stop word removal [Por80; Wil06; MRS08].
In the case of proactive triggering (cf. equation (3.86)), the most recent operation is used
to initialize a queryterm. We distinguish three cases: First, a create operation leads to
a regular queryterm built by the given name. Second, a select operation results in an
isomorphic queryterm by means of the name and related selections. Third, a delete
operation induces a neighbor queryterm by name (intra- or inter-model). Equation (3.87)
exemplifies this in a semi-formal notation. It looks at the last operation added ( Σall) and
determines which editing sequence it belongs to, then builds the corresponding add-on
denoted q’. If the last operation was a create operation, q’ becomes “:wname ‘<name>’”
or “ΨpIWNameq, <name>” and uses the index for “words in names” (IWName), as introduced
in table 3.7 (p. 57). We leverage editing sequences from a given context (c) and discuss
this in more detail, especially how to build q’, in subsection 3.5.7.

%ana :“KLˆ C ˆ str Ñ KLˆ C ˆ strˆMRC :
pKL, c, querytermq ÞÑ pKL,αaltpcq,αadjpc, querytermq, tpH, ...quq (3.84)

αalt :“C Ñ C :
pcq ÞÑ c1, with mproperties as in equation (3.81) (3.85)

αadj :“C ˆ str Ñ str :

pc, querytermq ÞÑ qt’, qt’ :“ queryterm`
"

””, τ “ reactive
q’, τ “ proactive (3.86)

Σall “
nPN
©
i“0

πi Ñ πn “

$

&

%

πc Ð©cPN
i“0 πi “

Σcre ñ q’ :“ ΨpIWNameq, “name”
πs Ð©sPN

i“0 πi “

Σsel ñ q’ :“ :iso “name”
πd Ð©dPN

i“0 πi “

Σdel ñ q’ :“  pΨpIWNameq, “name”q
(3.87)

Let us now skip forward to the moment after an entire model recommendation production
has been completed, e.g., %fil ˝ %rnk ˝ %gen ˝ %ana, and a recommendation is picked
for reutilization. This might require a final contextual-postfiltering [AT11], because our
model (m) is then provided in operation-based format ( Σ) for the purpose of platform
independence. However, this means that the operations need to be transformed to
the given target platform, i.e., tool, so that the model can be reutilized regardless of
whether a textual, tree, or graphical editor is the application target. In addition, a view of
a model can differ from its content. Hence, elements that were taken into account during
the recommendation process might not be contained in a view but are necessary for
reutilizations. The context components in figure 3.33 take care of both. We go into some
detail about this when discussing our realization in section 4.5 (p. 156).
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3.5.5. Recommendation Candidate Generation

Given a knowledge library, we study the field of knowledge-based recommender systems,
and extend this to contextual knowledge-based recommender systems as soon as we
leverage a context. This subdivides model recommendation candidate generation (%gen
cf. equation (3.73)) depending on whether we use one or the other, so we need to
provide operations for both. This forms the basis for a complete model recommendation
generation algorithm (%gen) matching our domain and fostering a model recommendation
candidates universe (MRC) [BR11]. Hence, we first describe the investigation of basic
knowledge-base results called model recommendation candidates. These are results
from our knowledge library without using its structural form, but based on the Query

capabilities by means of a given context. Second, we further process these model
recommendation candidates by employing the structural features of our knowledge library
for the granularity and relatedness properties of model recommendation candidates.

A starting point for the model recommendation generation algorithm or its results is a
lightweight requirements specification, which we call purpose. This is meant to grasp
the intention of a model recommendation as model purposes for model evolution in
subsection 3.4.4 (p. 101). However, this time, the purpose does not rely on the quality
model, but on the model recommendation properties introduced in table 3.10. As the
extent is subdivided into granularity and relatedness, and because impact is irrelevant
in our case, we can denote a purpose as a triple containing the queryterm, leveraged
context, and the range regarding extent. In other words, the queryterm is accompanied
by statements of sensitivity and extent pqueryterm, c, tid, id, ...uq.

For example, pairport, c, telement, complete, chain no crosslinkuq with a considered
context c “ t””, ””, ””, m, tH, ...u, termsu relies on a queryterm for Airport, a given
model (m), and some terms. It generates model recommendations candidates of size
element, complete, and chain without cross-links. Later, we will denote the sizes with
identifiers, e.g., el, c, ch´. Other contextual information that is possibly provided but not
used is, e.g., the editing or mproperties. In subsection 3.5.6, we will discuss possible
purposes in more detail and describe the impact of contexts. For example, the trigger (τ )
impacts the extent because proactive model recommendation should provide smaller
recommendations.

An addition to that starting point is a universe of model recommendation candidates
(MRC). The tracking of candidates is supported in rounds of generation. The layout is
in line with granularity and relatedness, as introduced in table 3.11. Each comprised set
is meant for a specific tracking purpose (cf. identifiers in equation (3.88)), so candidate
origins can support ranking and filtering in subsection 3.5.6. In detail, each set contains
tuples as shown in equation (3.89). The last two elements contain the Model and its
respective queryterm; these lead to the candidate, which is the first element.

MRC :“
ą

MRC id (3.88)

MRC id :“
ą

pEM, EM, strq, id P cand-ids (3.89)
cand-ids :“tel, s, c, ch`, ch´, g, catu (3.90)
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Sensitivity: For a given knowledge library (KL P KL), consider the search for model
recommendation candidates for a queryterm “ΨpIWModelq, name” (Φqueryterm

KL ). This
is probably the simplest and most intuitive way to use our knowledge library, and it
will provide a set of Models matching “name”. However, we should leverage rather
more of the index and Query functionality available (see subsection 3.2.2 (p. 56) and
subsection 3.2.3 (p. 61)), given that we have more information at hand, i.e., contextual
information (c P C). Thus, we look into model recommendation candidate generation
(%gen) and refine equation (3.73) as follows:

%x´sens
gen :“KLˆ C ˆ strˆMRC Ñ KLˆ C ˆ strˆMRC : (3.91)

pKL, c, queryterm, mrcq ÞÑ pKL, c, queryterm, mrc’q, (3.92)
@εM P Φ

queryterm
KL ñ mrc’c :“ mrcc Y tpH, εM, querytermqu, mrc’c P mrc’

The “x ´ sens” for x-“sensitivity” in this operation already indicates that we mean to
summarize several generation operations. The results only alter the set of model rec-
ommendation candidates (mrc’) according to the requested sensitivity, and do so by
using a different queryterm that largely relies on one index. We could employ the other
indexes introduced for our knowledge library or graph walk strategies, and this will be
part of the discussion in subsection 3.5.7. For example, we will then think of fallback
strategies in case the number of model recommendation candidates is too low. For now,
we approach candidate generation from the perspective of queryterms and contextual
information, and use the abovementioned x in equation (3.92) as a link between the
name of the generation operation and its respective queryterm in equations (3.93)
to (3.98). For example, a basic-sensitivity generation operation uses the queryterm
given in equation (3.93).

%basic-sens
gen : queryterm :“p:wmodel “queryterm”q (3.93)
%syno-sens

gen : queryterm :“por (:wmodel “synonym-1”) ...q (3.94)
%prop-sens

gen : queryterm :“por (:wmodel term1) ...q, (3.95)
ptermi , <itemname>q P mproperties : i P N

%terms-sens
gen : queryterm :“p(:wmodel termj ) ...q, (3.96)

ptermj , valjq P terms : @k P Nñ valk ď valj
%iso-sens

gen : queryterm :“p:iso (or (:wmodel name-1 ) ...q, (3.97)
εname-iC P EC, i “ 1, ...|EC|, EC P m

%edit-sens
gen : queryterm :“p:iso (or (:wmodel name-1 ) ...q, (3.98)

name-i P str,ϕname-iγ “ πi Ð
sPN
©
j“0

πj of Σsel ,

γ “ EC, 0 ď s ď | Σsel |

%prop-terms-sens
gen : queryterm :“por( equation (3.95) ) ( equation (3.96) ) (3.99)
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The most basic model recommendation candidate generation operation, which we denote
basic-sens, is introduced by means of its “queryterm” in equation (3.93). It uses the
“words in model” index and queries the knowledge library, i.e., builds a queryterm from a
given input “queryterm” as follows: “:wmodel ‘queryterm’”. Hence, it results in candidates
with the query term in nothing but the model. This means that no meta-information is
considered. A slightly altered version of the basic-sens generation queryterm is also
prefixed by “:wmodel”, but changes the “queryterm” and substitutes it with synonyms.
We do not go into detail about synonyms here, but note that this often leads to multiple
rounds of candidate generation, i.e., Querys, or a disjunctive queryterm, as shown in
equation (3.94). Note that these two generation operations rely on given query terms,
which are particularly suited to reactive model recommendation production.

In contrast, and better-suited to proactive model recommendation production, the
prop-sens operation is introduced by means of its queryterm in equation (3.95), using
terms derived from mproperties. These are class names that are considered “central”
and are expected to be supportive for model recommendation candidate generation.
Hence, the queryterm is disjunctive and built by these terms employing the “:wmodel”
index. An alternative to this generation operation is the terms-sens operation, which we
introduced by means of a queryterm in equation (3.96). This uses the terms provided
by a context, taking the most highly ranked term and building a queryterm from it using
the “:wmodel” index. Hence, it looks at models of Models only and ignores meta-data.
Note that both of these queryterms depend on the number of terms employed, and we
build an example for the latter using only one term. A realization might consider several
directions, as we discuss in subsection 3.5.7. For now, note that the disjunctive nature of
these queryterms can lead to many model recommendation candidates.

Another model recommendation candidate generation operation, which is mostly suited
to proactive use, approaches the structural comparison of model graph structures, i.e.,
isomorphism. This operation builds on a queryterm comprising the names of the classes
in the currently edited model, as shown in equation (3.97). It is prefixed by “:iso”, which is
not an index but a Query leveraging several indexes as necessary. In fact, a realization
(i.e., Query) building on this type of queryterm takes a model as a parameter: recall
that an IsomorphicQuery on a knowledge library for an iso-sens generation operation
involves more processing than the other queryterms we have introduced so far. As we
explained in subsection 3.2.3 (p. 61), the structural information, i.e., IsomorphicQuery,
works in two rounds. In the first round, isomorphic candidates are queried using the
class names. Structural information is then leveraged on these isomorphic candidates to
find actual isomorphic (sub-)models. This is possible, because structural information is
available in our context through the currently edited model (m). Similarly, the queryterm
built in equation (3.98) leverages the “:iso” index, but builds it on the elements recently
selected from the model that is currently being edited. These can be extracted from the
find operations in the select sequence ( Σsel). Note that the upper bound remains to be
set.

Finally, we combined two generation operations in a queryterm for a prop-terms-sens
operation. The disjunction in equation (3.99) indicates the substitution of two successive
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operations, i.e., %prop-sens
gen ˝ %terms-sens

gen . This is an example of combining generation
operations, which we will do with a “sensitivity extension schema” in subsection 3.5.7.
Granularity and Relatedness: Consider the model recommendation candidates (mrc P
MRC) gained by means of a queryterm “ΨpIWModelq, name” (Φqueryterm

KL ), i.e., %basic-sens
gen ,

given a knowledge library (KL P KL). This makes all the candidates in mrc, i.e., “complete
candidates” (mrcc), so the Models represent entire models. At times, we seek a different
size of model recommendation candidates, as introduced in table 3.11. We can derive
these new model recommendation candidates of different granularity or relatedness for
each model recommendation candidate εM (cf. table 3.5 (p. 55)) semi-formally:

%id
gen :“KLˆ C ˆ strˆMRC Ñ KLˆ C ˆ strˆMRC :

pKL, c, queryterm, mrcq ÞÑ pKL, c, queryterm, mrc’q, (3.100)
mrc’:=( ... mrc’c ... ),@pH, εM, querytermq P mrcc

ñ mrc’id :“ mrcid Ymrc’id Y setid, id P cand-ids
and setid as in equations (3.102) to (3.107) and (3.109)

This rather abstract operation delivers a set of tuples in a model recommendation candi-
dates set (mrc’) containing the result as a triple, as we explain shortly. Further, we keep
track of the origin of each model recommendation candidate (εM) with a set identifier (id),
and even forward the origin as its respective queryterm. An example of an identifier
is el for element candidates. These types of candidates can be of single size only,
as attributes or classes (EA or EC). Other candidates can be larger, e.g., g for sets
of group-related candidates. This additional information will aid the ranking of model
recommendation candidates in subsection 3.5.6. In detail, equation (3.100) denotes
several operations, e.g., for %el

gen or %cl`

gen , which use the following sets for fixed εM:

With m := εM.files, as pEA, Ecl, EC, ... , ρeAttributes, ρeClassifiers, ... ,Rq
element: setel := see equation (3.109) (3.101)

submodel: sets := Ypεi , εM, querytermq, (3.102)
si :“ pEA|s , Ecl|s , EC|s , ... , ρeAttributes|s , ρeClassifiers|s , ... ,Rq,
εi .files:=si Ď m, by restriction cf. subsection 3.3.2 (p. 75)

complete: setc := tpεM, εM, querytermqu, (3.103)
chain: setch` := Ypεi , εM, querytermq, (3.104)

εi P tε P EM : DεC P EC, εC.syntactics‰””, pε, εCq, pεC, εMq P KLEu
chain: setch´ := Ypεi , εM, querytermq, (3.105)

εi P tε P EM : DεC P EC, εC.syntactics=””, pε, εCq, pεC, εMq P KLEu
grouped: setg := Ypεi , εM, querytermq, (3.106)

εi P tε P EM : DεG P EG, pε, εGq, pεG, εMq P KLEu
categorized: setcat := Ypεi , εM, querytermq, (3.107)

εi P tε P EM : DεCat P ECat, pε, εCatq, pεCat, εMq P KLEu
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The above equations make use of several semi-formal notations. First, we use the dot
notation to access parts of LibraryElements, e.g., εM.files, which is actually a URI, to
get the underlying model in tuple notation or check whether a cross-link is available, i.e.,
syntactic information in a Connector (εC.syntactics‰””).

Furthermore, most of the sets from equations (3.102) to (3.107) and (3.109) determine
related parts through an intermediate element. For example, grouped Models need a
Group in between, so this Group must exist and relate to another Model, as in equa-
tion (3.106). Though this is similar for Categorys and Connectors, i.e., cross-links,
the intermediate elements differ for model internal model recommendation candidate
generation. For submodel model recommendation candidates, this applies the algorithm
in terms of restricting functions and clustering, as we defined in subsection 3.3.2 (p. 75).
For elements, the details are given below.

We outsourced equation (3.101) to equation (3.109) to highlight its specialty. There
is one additional parameter that must be taken into account when generating these
recommendations: γ. We can obtain this parameter from a queryterm or determine
it in a proactive triggering from our context editing sequence, as in equation (3.108).
In the latter case, we can get the necessary type information by means of the last
operation applied. This is contained in Σall as a find operation (ϕ), which provides the
last-used element, and we can use our type determining operation (Γ). Let an attribute
(EA) be the last element created. Then, the element recommendation should be of
the same type. Note that this does not forbid model recommendation candidates of
other granularity from being generated at the same time. The former case regarding the
additional parameter with queryterm is only mentioned for the sake of completeness,
because its application is rather theoretical. This is because of the proactive nature
of this size of model recommendation candidates. In case an attribute has just been
created, it makes sense to proceed as explained above, but in the case of reactive model
recommendation production, the quicker way is simply to create the intended element.
Bearing in mind that our editing from equation (3.82) keeps finding operations for the
respective models, we can determine γ and generate model recommendation candidates
of element granularity (cf. table 3.1 (p. 34) and table 3.2 (p. 36)):

with γ :=
"

Γpπnq,πn Ð©nPN
i“0 πi “

Σall, τ “ proactive
given by queryterm, τ “ reactive (3.108)

and εγ := πn,Ð
nPN
©
i“0

πi “

Σall we can get:

element: setel := Ypεi , εM, querytermq, (3.109)
@εj P tε P Eγ : Dεne P Ene, pε, εneq, pεne, εγq P ρeu

Y tε P EC : pε, εγq P ρeSuperTypesu

ñ ej := pEA|e, Ecl|e, EC|e, ... , ρeAttributes|e, ρeClassifiers|e, ... ,Rq,
Eγ |e “ tεju, εi .files:=ej

Once again, the sought elements are related to the query, so the intermediate elements
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need to be found. We do so by allowing Ene and, in the case where Γ is EA, the generated
elements are as well, because the container is a class that is an Ene. Note that this also
works for EC, because ER “bridge”, but superclasses are filtered out. Hence, EC directly
related by ρeSuperTypes are allowed, because only elements of EC have such relations.

Altogether, the number of model recommendation candidates that can be generated
by means of our %gen operations can become quite large. Hence, reasonable ranking
and filtering is necessary, and we introduce these operations in subsection 3.5.6.
Example: Given our knowledge library (KLfigure 3.7) from equation (3.38) (p. 61), as
depicted in figure 3.7 (p. 53), we can illustrate %gen as shown in table 3.12. For %el

gen, an
Airport class is used as input and results in all classes except εAirportC . Note that this
class is part of the tuple anyway, because it was part of the queryterm. Further, the
tuple contains the Model (εAirportM ), because this is the source of the respective elements.
The other exemplary queryterms use an index and Airport. Hence, Airport is part
of the tuples, as is the εAirportM . The latter is of particular importance for cross-links, i.e.,
%ch`

gen , because it eases processing. Finally, note that %ch´

gen leads to an empty set because
syntactic information is provided in our example. This means that the εAirportM has no
Connectors without syntactic information.

Table 3.12.: Examples for %gen operation as in
equations (3.102) to (3.107) and (3.109) for figure 3.7 (p. 53)

Operation queryterm Result

%el
gen εAirportC tpεCheckinC , εAirportM , εAirportC q, ...

pεTowerC , εAirportM , εAirportC qu

%s
gen ΨpINameq, Airport see figure 2.3 (p. 27) and subsection 3.3.2 (p. 75)
%c

gen ΨpINameq, Airport tpεAirportM , εAirportM , Airportqu
%ch`

gen ΨpINameq, Airport tpεPassengerM , εAirportM , Airportq,
pεVehicleM , εAirportM , Airportqu

%ch`

gen ΨpINameq, Airport tHu

%g
gen ΨpINameq, Airport tpεPassengerM , εAirportM , Airportq,

pεVehicleM , εAirportM , Airportqu
%cat

gen ΨpINameq, Airport tpεStationM , εAirportM , Airportq,
pεHarborM , εAirportM , Airportqu

3.5.6. Recommending the Appropriate

Regular content recommender systems often employ heuristics or metrics such as term
frequency-inverse document frequency (tf-idf) to assess candidates [Men14]. These
approaches often rely on term redundancy, which is not feasible in our case because
redundancy rarely happens in models. Hence, any ranking for our approach will need to
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use contextual information as well as the queryterm to assess, and eventually rank,
model recommendation candidates so they can become model recommendations.

This ranking narrows down each model recommendation candidate to a value, which
means that we transform candidate tuples of the form pEM, EM, strq to actual model
recommendations by assigning them with a real number. Thereafter, we add a rank-
ing value to this tuple and call it a model recommendation. These all belong to the
model recommendations universe (MR), which is similar to the model recommendations
candidates universe from equation (3.89) and uses the known candidate identifiers:

MR :“
ą

MRid (3.110)

MRid :“
ą

pEM, rnk, EM, strq, id P rec-ids, rnk P R` (3.111)
rec-ids :“cand-ids cf. equation (3.90) (3.112)

Bear in mind that we retain the structure, i.e., every model recommendation in its granu-
larity and sensitivity identifying set. This will simplify the ranking and filtering, especially in
contextual-postfiltering, as we explain later. Additionally, we rename the set of candidate
identifiers for comprehensibility.
Ranking: The ranking (%rnk in equation (3.74)) that we introduce works in steps and
has a more algorithmic nature than the previous explanations. Therefore, we eventually
digress from our previous format of illustration and provide pseudocode 3.6. Still, we
build up to this overview through a given environment: for ranking, we can leverage a
given queryterm, context c (P C), and set of model recommendation candidates mrc (P
MRC) to gain model recommendations mr “ pmrel, ...q (PMR):

%rnk :“KLˆ C ˆ strˆMRC Ñ C ˆMR :
KL, c, queryterm, pmrcel, mrcs, mrcc, ...q ÞÑ c, pmrel, mrs, mrc, ...q (3.113)
mrid :“Ypεid

M , rnk, εM, querytermq, pεid
M , εM, querytermq P mrcid, (3.114)

rnk :“ sid ¨
|mtXm|
|m| ` s’id ¨

|mtX cm|
|cm| , m “ εM.files, cm “ εid

M .files (3.115)

sid, s’id cf. Appendix A (p. 195), mt cf. equation (3.116), id P rec-ids

The operation we provide in equation (3.113) relies on some extra information while pro-
cessing the model recommendation candidate sets given by subsection 3.5.5 and building
model recommendations as given by equation (3.110). This extra information comprises
a set of matching terms mt and a scaling denoted as scaleid in equation (3.115). In addi-
tion, an operation related to the candidate ranking is included, because equation (3.115)
is only based on the original model so far. Other than that, equation (3.114) relies on
known information about candidate sets and expresses how the model recommendation
sets are built. This eventually translates into in line 17 of pseudocode 3.6.

The first step in the ranking operation is to derive a set of matching terms wrapped in
a model, which will support the matching of the given terms with model recommendation
candidates or, to be more specific, their origin, as we explain later. Given a queryterm
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and context (c P C), we can semi-formally create a model of matching terms (mt). In
doing so, we must bear in mind that m, terms, and Σall with Σdel are part of the context.

mt :“pEA, Ecl, EC, ... , ρeAttributes, ρeClassifiers, ... ,Rq, (3.116)
EC :“ m-wordsY t-wordszd-wordsY qt-words

m-words :“tstr P str : εstr
C P m.ECu (3.117)

t-words :“tstr P str : pstr, valq P termsu (3.118)
qt-words :“tstr P str : str P queryterm.normalizedSplit()u (3.119)

d-words :“tstr P str : ϕstr
γ “ πd Ð

dPN
©
i“0

πi of Σdel , d = 0, ... , |

Σdel |u (3.120)

This model of match terms is semi-formally only, because we used some roughly provided
functionality. We still opt for this, because it eases comprehensibility and our further
explanations. Hence, we omit exact operations, which analyze the given queryterm
providing single strings in equation (3.119), or specific operations from a delete sequence
( Σdel) in equation (3.120).

With respect to comprehensibility, the first thing to note in equation (3.116) is the order
in which the sets are constructed. This is of particular importance for the set-minus
and the set added after that. In a sense, this overrides the removal and re-adds strings.
Consider a model and its set of strings as given in equation (3.117). It does not contain
any strings, i.e., names of elements, which were recently deleted, but the terms given
by the context (c) might. Hence, these strings are removed by means of the set build in
equation (3.120). In thinking of regular recommender systems, this expresses rejected
items and should work in our approach unless a user opts otherwise. Therefore, the last
set in equation (3.119) adds them again, though we do not describe how a queryterm
is subdivided into different terms, which are not keywords for the Querys (“:wmodel”). In
our overview, this is reflected in in lines 10 to 13 of pseudocode 3.6, although the set is
neither built explicitly nor is the matching target clear at this point.

The matching target used in the second step of the ranking operation is the original
model. The idea behind this is to take the value as a ranking basis for the actual candidate
in the same way it was generated from a basis (cf. %x´sens

gen and %id
gen). Thus, a value for the

original model (εM P EM) is first computed and then a scaling (sid) adjusts this value to the
candidate type. In detail, the fraction of two set cardinalities (cf. equation (3.51) (p. 81))
is built and scaled. The basis for the nominator is the intersection between the matching
terms and the original model, and the basis for the denominator is the original model,
as expressed in equation (3.115) and later in line 14 of pseudocode 3.6. Hence, the
value without scaling is between one and zero. Similarly, the actual candidate is treated
in equation (3.115). Hence, the same matching terms are used for a fraction with the
candidate, but then a different scaling (s’id) is applied and the sum without scaling is
between zero and two.

Finding the appropriate scaling factors for the original and candidate is an experimental
task, as it is for regular knowledge-based recommender systems. For now, we set sid “ 1
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and s’id “ 0.5 without further explanation. In appendix A, we provide some pointers
that might help develop scalars or functions that take into account the purpose of the
recommender strategy under development. In general, we require the values to respect
a certain order, and their summation is given as follows:

1 ě
1

sel
ě

1
ss
ě

1
sc
ě

1
s`

ch
ě

1
s´

ch
ě

1
sg
ě

1
scat

ě 0 (3.121)
ÿ 1

sid
“ 1, id P rec-ids (3.122)

Altogether, we have introduced a ranking operation (%rnk ) that derives a rank from contex-
tual information and has some similarity to the term frequency (tf), but not to the inverse
document frequency (idf). The former comes from how we work with the terms in the
fractions of equation (3.113) and the latter is because we do not consider all documents,
i.e., all Models of our knowledge library. A summarizing and more algorithmic illustration
of our ranking is provided in pseudocode 3.6.
1 Set<ModelRecommendations> rank(Context ctx, QueryTerm qt,

2 Set<ModelRecommendationCandidates> mrc){

3 Set<ModelRecommendations> mr = new ... ; // format: (rel, mrs, mrc, ... )
4 for (ModelRecommendationCandidates rc : mrc) {

5 for (ModelRecommendationCandidate r : rc) {

6 // r is pεidM , εM, querytermq with format pEM, EM, strq
7 // semantics: (candidateModel, originalModel, queryterm)

8 Model m = r.originalModel;

9 Set<String> mt; // for matching terms with originalModel

10 mt.add(matchingTerms(ctx.model, m)) // currently edited model

11 .add(matchingTerms(ctx.terms, m)) // contextual words

12 .remove(mathchingTerms(ctx.

Σdel, m)); // no deleted elements

13 .add(matchingTerms(qt.getTermList(), m)); // but qt's words

14 double rank = scale(r.candidate, m, mt.size() / r.size());

15 ModelRecommendation rankedRecommendation =

16 (r.candidateModel, rank, r.originalModel, r.queryterm);

17 mr.getRecommendationsSetFor(rc).add(rankedRecommendation);

18 }

19 }

20 return mr;

21 }

Pseudocode 3.6: Ranking Model Recommendation Candidates

As a final remark, the ranking we have introduced uses our understanding of granularity
and relatedness in the same way that the original model provides the basis value and
the generated candidate adds value on top. This might lead to the doubling of values
in the case of complete model recommendation, but this is expected. Other, probably
unexpected, behavior is: Consider element candidates with an original model, which is
entirely part of the model kept in the context. This leads to a maximum score, as for the
submodel and complete case. However, this is also the behavior we need for filtering.
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Filtering: In terms of context-aware recommender systems, we started model recom-
mendation production in subsection 3.5.4 with contextual-prefiltering and now conclude
it with contextual-postfiltering [AT11]. Hence, we use our given context c (P C) and
queryterm to work on model recommendations mr “ pmrel, ...q (PMR). This means
that we provide more details for the filtering operation (%fil ) declared in equation (3.75):

%fil :“C ˆMRÑ
ą

pEM ˆ R`q : pc, mrq ÞÑ r
r :“ tpεr

M, rnkq : pεmr
M , rnk, εM, querytermq P mrid, id P rec-idsu

εr
M :“ see equations (3.124) to (3.126) (3.123)

The elements (εr
M) that make up the result set (r) in equation (3.123) have certain proper-

ties. These properties can be of external nature or stem from contextual information. The
former is often a program setting and could be the maximum degree of allowed similarity
or a minimum required model quality. The latter is a more precise use of the contextual
information introduced in subsection 3.5.4, and could remove model recommendations
that have been allowed so far, because they aid the derivation of further model recom-
mendations or because they are generated automatically. Subsequently, we introduce
the notation for result sets that satisfy the filter properties without providing operations.

Automatically “over”generated model recommendations occur, particularly for un-
matched model quality (cf. subsection 3.4.4 (p. 101)) or for element recommendations
(rel) in cases when this exact element was recently deleted. In both cases, we can
conclude that this model recommendation is not wanted. This is why we use either model
quality or words derived from our delete sequence ( Σdel), as shown in equation (3.120)
for filtering. The latter, denoted d-words in equation (3.124), limits the allowed elements
as follows:

r :“ tpεr
M, rnkq : pεmr

M , rnk, εM, querytermq P mrelu

@εmr
M P rel : pγ, strq :“ εmr

M .files.Ene,

str R d-words (from Σdel) cf. equation (3.120) (3.124)
ñ εr

M “ εmr
M

Note that sets adhering to specific quality levels look quite similar, but foster MetaIn-
formation and the semantics contained in VersionInfo of a Model, as shown in
figure 3.30 (cf. figure 3.27). We omit a more formal notation for this case, because
the cascaded class structure, though well-structured for an implementation, makes the
formula too incomprehensible. Further, it does not provide any additional benefit.

The equation introduced above is semi-formal in two respects. First, it uses a dot
notation to refer to the model in the ranked model recommendation and to the named
elements in the model. The same holds true for the deleted words, which we build in
equation (3.120). Other than that, we use our common type symbol (γ) for an arbitrary
type, because the type we operate on is of no interest here.

Turning to the maximal degree of allowed redundancy, consider the model currently
being edited to already contain a model recommendation completely. This results in a
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high ranking for this model recommendation without it providing any real benefit. We
can treat this in one of two ways, both relying on a threshold for the completion degree,
denoted by c-degmax. The first alternative simply drops (or does not include) each model
recommendation that does not adhere to | ¨ | ď c-degmax, similar to equation (3.125). We
use this as a fallback for the second case (cf. equation (3.126)), which leverages this
model recommendation and replaces εmr

M with its highest-ranked “neighbor” (εx
M). This

is a model recommendation with the same original Model εM in rid, but a different first
element in place of the result tuple, as shown in equation (3.126) (εx

M). This breaks the
former ranking in terms of purpose by “boosting” the neighbor. The result set (r) is:

r :“ tpεr
M, rnkq : pεmr

M , rnk, εM, querytermq P mrid, id P rec-idsu

@εmr
M P rid :

|mXmr.c|
|mr.c| ě c-degmax, mr.c :“ εmr

M .files (3.125)

ñ εr
M “ εx

M,

#

max
rnk’
pεx

M, rnk1, εM, strq P rid, εx
M ‰ εmr

M and drop used.
H otherwise

(3.126)

This filtering requires further explanation in two respects, one for typical use and one
regarding the notation we have used. The most typical application of equation (3.126)
is for “complete” model recommendations, because the original Models are the best
matching results regarding contextual information and queryterms. Hence, they result
in high scores and we could limit the given formula accordingly. However, we keep to the
more general approach, though we should not expect many other cases in practice. This
also has the side-effect of filtering element model recommendations if their contribution
is already present in the currently edited model. With respect to the notation we have
used, we omit a more formal introduction of how to drop a model recommendation that
was used as part of a replacement. Instead, we rather sloppily write “and drop used” in
equation (3.126). Similarly, we set the case otherwise, i.e., the case when no “neighbor”
was found, to the empty set, though we should drop it entirely.

Although our approach is built to have independent UIs and recommender strategies,
some filtering could be part of model recommendation production. First, the employed
trigger method (τ ) could be used, because we may expect proactive methods to benefit
from smaller model recommendations when they are run after the creation of elements.
For example, a created class results in recommending classes, or a created attribute
results in recommending attributes, as in equation (3.109). However, in the case of
many successive select operations, a proactive method benefits from larger model
recommendations, e.g., achieved by “:iso” queries, which lead to complete model rec-
ommendations. Detecting such interaction patterns is beyond the current scope, but
support for trigger-derived filtering can be developed from our concept of purposes for
model recommendation candidate generation, as introduced in subsection 3.5.5.

Another goal in filtering is to introduce surprises, and an otherwise filtered model
recommendation could be included at a fixed position in the result list of model rec-
ommendations. Alternatively, the select sequence ( Σsel) can bolster selection for this
purpose. We mention these only as ideas, because we consider both as options for UIs,
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which should offer and request them as properties.
Putting together subsections 3.5.4 to 3.5.6, we have all the necessary operations for

model recommendation production (MP: %ana, %gen, %rnk , %fil ), but, as we alluded to in
equation (3.76), there is more to come. In particular, the candidate generation (%gen)
offers options for building different recommender strategies, as depicted in figure 3.33.

3.5.7. Schema of Recommendation Production and Candidate Generation

Producing model recommendations follows the production sequences of operations we
introduced by means of equation (3.76), and we illustrate recommender strategies in
figure 3.33 that adhere to certain schema. On the one hand, these schema for model
recommendation production can be condition-adhering production or condition-altering
generation. Both foster the introduced operations to different extents, as we show below
and summarize in figure 3.35. On the other hand, the schema can be on a higher level.

Condition-adhering schema for model recommendation production rely on given infor-
mation and do not alter these conditions for reasons of potentially insufficient results (cf.
table 3.13). The most straightforward schema is the “default production schema”. This
comprises a reactive trigger (τ ), uses basic sensitivity (basic-sens) for a given context (c),
and performs ranking and filtering operations considering the given completion degree
(c-degmax). More precisely, we could call this schema default reactive production to
contrast it with the other two condition-adhering schema, which are proactive. First,
the proactive-create production schema builds on our default production schema, but
comprises a proactive trigger (τ ) for the case in which the most recent operation (in

Σall) was a create operation (in Σcre). This information is used to produce model recom-
mendations of element granularity that match the last-created element. For example, if
the last operation was to create a class, then classes are recommended. Second, the
proactive-select production schema also builds on our default production schema, but
has a proactive trigger (τ ) for the case in which the last operation (in Σall) was a select
(in Σsel). Then, the recent sequence of select operations (in Σall) is used for isomorphic
sensitivity (edit-sens), gaining complete model recommendations. The application sce-
nario looks as follows: if successive selects or a drag-select are succeeded by a timeout,
then complete model recommendation is recommended.

Table 3.13.: Condition Adhering Production Schema
Schema Name Trigger (τ) Leveraged Generation (%gen) Filtering (%fil)

Default Reactive reactive queryterm %c
gen ˝ %

basic-sens
gen c-degmax

Proactive-Create proactive Σcre %el
genp˝%

basic-sens
gen q c-degmax

Proactive-Select proactive Σsel %c
gen ˝ %

edit-sens
gen

Condition-altering schema for model recommendation candidate generation is a means
to generate more model recommendations and comes in two flavors, without considering
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stemming or stop word removal. The first flavor comprises alternative generation opera-
tions, as introduced in this section, i.e., replacing one operation with a less restrictive one.
The second flavor deals with queries to a given knowledge library in which the indexes
are leveraged, i.e., replacing an index with fewer restrictions or a larger scope.

The generation extension schema approaches the problem of insufficient model recom-
mendations by building on the sensitivity or granularity and relatedness (cf. table 3.14).
The first, called sensitivity extension generation schema, extends the information used
for generation. Hence, if a basic sensitivity (basic-sens) does not generate enough
candidates, the properties sensitivity (prop-sens) or terms sensitivity (terms-sens)
might. Note that this is possible because our generate operation (%gen) allows successive
generations. In fact, this is the reason why the prop-terms-sens introduced in equa-
tion (3.99) is not really necessary, as we have explained already. The second, called
fallback extension generation schema, uses more approximate than precise data for
generation. Our example is the synonym sensitivity (syn-sens). The last generation
extension schema, called extent extension generation schema, makes use of additional
information provided by a knowledge library. Thus, if the candidate generation requires
enhancement, the available sensitivity, e.g., grouped or categorized Models, is consid-
ered. Note that this is not necessarily helpful for smaller granularity, and only makes
sense for cross-links granularity or relatedness. Further, it is important to bear in mind
that this might undermine the given purpose.

Table 3.14.: Condition Altering: Generation Extension Schema
Schema Name Insufficient Result Leveraged Generation (%gen)

Sensitivity Extension %basic-sens
gen c %term-sens

gen ˝ %prop-sens
gen ˝ ¨ ¨ ¨

Fall-back Extension %basic-sens
gen queryterm %syno-sens

gen ˝ ¨ ¨ ¨

Extent Extension %basic-sens
gen KL %cat

gen ˝ ¨ ¨ ¨ ˝ %
c
gen ˝ ¨ ¨ ¨

The last condition-altering schema concerns the indexes leveraged in querying a
knowledge library (cf. table 3.15). Thus far, all sensitivity-related generation is built on
a queryterm such as “ΨpIWModelq, name” querying Φqueryterm

KL for a given name. This
means that a term from the queryterm must match a term, i.e., word, from a model.
However, our knowledge library provides more indexes for querying, e.g., for the given
Model purpose (ΨpIWPurpq) or its name (ΨpIWNameq) and description (ΨpIWDescrq) (see
equation (3.23) (p. 59)). Hence, the first schema, called queryterm index adjustment
schema, simply adds another queryterm with the index replaced. In our example above,
“ΨpIWModelq, name” is extended by “ΨpIWNameq, name”. Note that an index might not be
suitable for every source of information, but here the “words in name” index is a possible
addition. The second schema is a context index adjustment schema, which is well-suited
to contextual information. Hence, a queryterm derived, e.g., for prop-sens sensitivity,
can be altered accordingly. This can hinder ranking, because the Models might not
contain rankable information. The reason is that the terms were found as matches for
Model purpose or description, which are not yet considered in the ranking.

139



3. Operation-Based Model Recommendations

Table 3.15.: Condition Altering: Index Adjustment Schema
Schema Name Suitable for Adjustment

Queryterm Index Adjustment queryterm ΨpIWNameq
Context Index Adjustment c ΨpIWDescrq,ΨpIWPurpq

The schema for model recommendation production introduced above are solutions
for potentially insufficient numbers of model recommendations, but the opposite might
also hold true. In other words, a result set could exceed a maximum number of possible
model recommendations, and this is exactly the issue we approach in filtering.

In terms of regular recommender systems, contextual information, i.e., context-aware
recommenders that leverage “neighborhood approaches”, is one way to extend a two-
dimensional recommender to a three-dimensional system [AT11]. We illustrate this in
figure 3.35 and note that granularity is not a “neighborhood”. This is one reason why we
deliberately distinguish the extent of granularity from that of relatedness. Other than that,
the dimension of the extent is discrete, whereas those of sensitivity and indexes are not.
This is because of the extensibility of the latter. Other levels of extent are possible, but
they require more effort by our knowledge library and other concepts. Compared to this,
a new index for model features or sensitivity operation are quick changes.

X-SE
NSΨ( .)

Figure 3.35.: Dimensions of Model Recommendation Production

Another important perspective and term for our approach stems from regular rec-
ommender system and is called the dual mixed recommender approach. For regular
recommender systems, this is illustrated in figure 3.36 and shows two (for now) inde-
pendent recommender systems. One is content-based, the other is an item-to-item
recommender. Both operate following the steps introduced above, and finally combine
their ranked lists. The notable point in this illustration is how the candidate set is fed to
the item-to-item recommender. This is depicted with an emphasized line. The difference
between our approach and the regular recommender system is denoted by the dashed
lines. Whereas a regular recommender needs them, they are not necessary in our case.
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Figure 3.36.: Dual Mixed Recommender Approach Altered from [Nag13]

However, if we allow the composition of recommender strategies in figure 3.33, we can
build a dual mixed recommender as depicted in figure 3.36 and require a job scheduling
concept for recommender strategies. In subsection 3.5.3, we introduced the idea of
scheduling concurrent recommender strategies and discussed the impact on our inter-
action model. Now, we realize this by requiring our recommender strategies to provide
status information given by job scheduling. The top-level states for controlling are en-

abled, disabled, and defect as depicted in figure 3.37. Moreover, this figure shows
the more fine-grained states that a recommender strategy can hold while data processing
is enabled. In detail, a recommender strategy is ready if the initial checks on the setup
were passed, e.g., database connections are validated. The recommender strategy
remains in this state until it is requested to search. This puts it in a running state and,
if everything works well, it signifies that the task is finished by moving to the done state.
Otherwise, two alternatives are possible: first, the recommender strategy is prompted
to cancel its current work by the controlling framework, or, second, the task failed

for some reason, e.g., network timeout. In this case, a reset might help, returning the
system to the ready state. However, if this is not possible, the recommender strategy
can also reach the defect state. Note that this can also happen during initialization, e.g.,
if a required system is not reachable. As a final remark, note that composed concurrent
recommender strategies are possible in our approach, because we provide a common
foundation for ranking and can postpone filtering in the composing recommender strategy.
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Figure 3.37.: Recommender Strategy States similar to [DGL14a]

3.5.8. Design Rationales and Observations

The approach for model recommendation production, which we introduced above, directly
addresses the “Retrieval Challenge” described in section 1.2 (p. 6) and aims to provide
model reutilization. At this point, we should state the grounds for achieving the major
project goals, i.e., the E and S representing “easily and seamlessly” in HERMES. Note that
these grounds are rather complex compared to those discussed in sections 3.1 to 3.4,
because they build on these sections while combining and generalizing them, so we
gain an approach in a cookbook or schema style with blanks that must be filled in (cf.
appendix A (p. 195)).

The starting point for our rationales were typical sequences of recommendation pro-
duction (cf. figure 3.36 left part) and asking what does not fit our case of model rec-
ommendation production. Bearing in mind that we are dealing with task-centric rather
than user-centric environments and with item-to-item rather than collaborative filtering,
we found that the available algorithms lack certain capabilities. This is because of the
absence of semantic strength in the data used; we could leverage our knowledge li-
brary for this purpose and provide additional semantics and structures than in classic
recommender systems.

However, we still need to provide the explicit reason why we should do so, and this lies in
a slightly different goal for a model recommender system. Whereas classic recommender
systems implementing collaborative filtering provide items based on similar user behavior,
this does not make sense in our case, because in the extreme, we could end up with
another identical model. Hence, we do not focus on the similarity of items at first, but on
the item-to-item relationships we find in our knowledge library. In addition, we do not
obtain much by analyzing user behavior, because long traces of modeling behavior are
obviously less relevant than project information or actual contextual information, as we
discussed earlier. Put together, we have the task-centric and item-to-item requirement
for leveraging some (big) data.

Hence, the question is how much we can obtain from unstructured data: our answer,
as the above discourse illustrates, lies in the semantically structured data leveraged from
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our knowledge library. This enables our model recommender system to provide items
even in the case of sparse results, which come from the fallback mechanism discussed
for our model recommendation production schema.

But how did we find these schema? Certainly, the environment and the iterative ap-
proach we have developed played a role, but the central pieces of information were
derived from implementing our experience and deploying several model recommender
strategies. As a result, we found commonalities and common approaches for performing
model recommendation production, which we also added to our dashboard (cf. sec-
tion 4.5 (p. 156)). We also found that some variables for adjustment must remain as
parameters, e.g., the completion degree introduced as c-degmax. In addition, one of the
main findings is that an ease-in is often necessary. In other words, an existing deployment
environment, e.g., a directory of models for reuse, must be migrated to form a reasonable
knowledge library. Note that we do not mean to say that a fully developed knowledge
library is the only way! However, there is no harm in rolling it out incrementally, which
requires support from model recommendation strategies, and our method of formulating
schema (cf. appendix A (p. 195)) enables this incremental approach.

Unfortunately, this cookbook or schema requires a rather formal notation, but the
upside is that it quickly translates in deployment scenarios. This holds true for both graph
walk and model query mechanisms; the first is an approach for a given knowledge library
and the second is an approach for granularity and relatedness.

Thus far, our explanations remain at the conceptual level for many aspects, with many real-
world issues omitted. First, context analysis faces such issues. For example, graphical
modeling often exposes element rearrangement. In this case, elements often appear
in a select sequence ( Σsel) without providing any benefit for model recommendation
production. Certainly, such patterns should be detected and omitted. Second, it is
commonly believed that a recommender like ours should support model fixing and
refactorings [SU13; KMR13; RSA13]. Though we do not appreciate the term in modeling,
we can formulate the necessary sequences and a recommender strategy leveraging our
context. In particular, the delete and create sequences ( Σdel, Σcre) in combination with
the currently edited model makes this possible. However, we wonder what the entropy of
these changes might be. Certainly, the structure should be enhanced, but the content is
not, i.e., no additional information (novelty) is gained.

Third, when a model recommendation is picked (cf. figure 3.34), the actual reutilizations
takes place. This is not part of the model recommendation production, but the context
component from figure 3.33 plays a major role in reutilization. This is because of the
platform independence of models, which must be transformed into model operations
applicable to the current editor. Further, some additional aspects need to be kept in
mind. When an element recommendation is picked, the order of an application sequence
is crucial. As created elements should be inserted properly, e.g., “connected”, the
first operation should be a find operation that delivers the proper container. Only after
this should the element be added and finally related. For example, reutilizing an EA
should first determine the proper EC in the currently edited model, and only add it after
that. Another approach is to build the element model recommendations employing the
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submodel operation introduced in subsection 3.3.2 (p. 75). We can then create two
models and a cross-link that can be applied as follows: (i) the element is created, (ii)
the cross-link is applied. The above explanations did not consider this for simplicity and
because it is an implementation detail. To the best of our knowledge, the latter approach
is the most straightforward.

In addition, the ranking can be only a proposal, and there are approaches that might
be worth exploring. First, degree-of-interest models are popular in other implementations
[MMA14], e.g., Mylyn [BR11; KM05; KM06]. Second, analyzing content, as already
indicated at the start of subsection 3.5.6 for tf-idf, may be worth exploring [Arb11].

3.5.9. Related Work

The roots of recommender systems can be traced back to Information Management
Systems and Decision Support Systems (DSS) in the 1980s [Spr80], and some ideas
might be worth revising, although, for the sake of brevity, we keep to recommender
systems and the recent terminology. Moreover, we look into more recent frameworks
without contrasting them with DSS. Until recently, most recommender systems were
tied to the web, e.g., as part of commercial systems [SKR99], such as Amazon’s recom-
menders [LSY03]. However, recommender systems specific to software engineering
have emerged to assist software developers in a wide range of activities, including code
reuse [RWZ10]. Most of these systems are integrated in an IDE and suggest software
artifacts, such as code snippets, while focusing on “you might like what similar developers
like” scenarios. A detailed discourse is provided by Happel and Maalej [HM08a], and
we subdivide our discussion into source code related recommender systems, modeling
related recommender systems, and other recommender systems.

Source Code Related Recommender Systems: Five code recommenders and rec-
ommender systems have inspired us. First, the project Code Recommenders by Bruch
is a recommender system for the Java programming language and is integrated into
the Eclipse IDE [Bru12; BSM08; BM08b; Bru08; WKB09; Ecl14a]. It comprises various
intelligent code completion engines and documentation providers. For example, its
intelligent call completion recommends only methods that are most likely to be called
at the current editing position (cf. figure 1.1 (p. 3)). Code Recommenders’ dynamic
template completion takes this to the next level by recommending a complete sequence
of method calls. To this end, it uses available open-source code repositories to analyze
common code structures. These code templates can serve as additional documentation
that quickly shows how an API can be used, thus saving developers’ time when using
APIs they are not familiar with. Second, SnipMatch recommends common code snippets,
similar to Code Recommenders’ dynamic templates. However, the developer queries the
system describing the task they want to accomplish (cf. figure 3.38) [Ecl15b]. SnipMatch
is now part of the Code Recommenders project. Third, Code Conjurer by Hummel,
Janjic, and Atkinson is a recommender system that uses code-search engines to deliver
high-relevance software-reuse recommendations with minimal disturbance to a devel-
oper’s workflow [HJA08]. It seamlessly integrates code search and reuse functionality
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into the Eclipse Java development environment, thereby allowing developers to search
for reusable code, e.g., by defining unit tests (test-driven search). Code Conjurer delivers
code recommendations as results that satisfy certain tests and even generates adapter
classes to match the interface specified in the tests, if needed. Altogether, it uses a source
code search engine based on Merobase by Janjic et al. [Jan+13]. Fourth, Strathcona is
a proactive recommender system developed by Holmes, Walker, and Murphy for source
code examples [HWM06]. Their approach takes the current editing context into account
to perform a structurally approximate context matching with the aim of finding full-text
examples that support developers. Finally, WitchDoctor by Foster, Griswold, and Lerner
can detect editing patterns and recommend refactorings [FGL12].

Figure 3.38.: Querying SnipMatch [Ecl15b]

Modeling Related Recommender Systems: Modeling support exceeding simple reuse
[SA13], with recommender systems and the like, can be subdivided into three groups
of approaches. The first is based on logical programming, namely Prolog. White and
Schmidt presented a framework for domain-specific modeling languages on a concep-
tual level [WS06]. They focus on establishing domain-specific knowledge bases and
algorithms so they can work in what they call “combinatorically challenging domains”.
For example, they semi-automatically map logical models to deployment models for car
electronic control units using a Prolog knowledge base. As the modeling language in
their example, they use AUTOSAR. In contrast to their solution, we do not seek to map
elements of different models for modeling support, but provide additional content. An-
other solution that uses Prolog is that of Sen, Baudry, and Vangheluwe [SBP07; SBV08;
SBV10]. They demonstrate their “partial model completion” with finite state machines
and offer a brief methodological overview of how to synthesize a model editor from a
metamodel in declarative form, constraints, and a visual syntax. Their knowledge base
holds a constraint logic program derived from several models and is meant to deduce
recommendations. Our work differs in that we do not have a knowledge base we can
draw conclusions from. Further, we do not aim to synthesize model editors, but extend
existing editors with our approach and use expert-validated models.

The second group of approaches uses the Triple Graph Grammars (TGG) proposed
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by Schürr, although these were initially meant for model-to-model transformations or
model synchronization [Sch95; KW07]. For example, Mazanek, Maier, and Minas use
TGGs to provide syntactic auto-complete functionality for Nassi–Shneiderman diagrams
[MMM08b]. They use an approach that can transform “possibly incomplete graphs” into
graphs that are members of a graph grammar [MMM08a]. This is useful for comple-
tion mechanisms in diagram editors in terms of the auto-complete functionality. Their
example demonstrates this using two isolated statements that need to be composed to
form a correct diagram. Three possible solutions are given, and these could be called
recommendations. They benefit from TGG characteristics, i.e., all transformations are
bidirectional and allow batch and incremental transformation. For us, the question is what
might be “possibly incomplete”? Looking at syntactic links in our enhanced knowledge
graph and the adjacent node, the stored syntactic link plays exactly this role. Furthermore,
the adjacent node and its related model are the second part. Hence, we do not need
TGGs, but can start including the syntactic link to gain an extended model.

The last group of modeling support with recommender systems and the like concen-
trates on modeling languages rather than the underlying concepts. First, a UML-related
recommender system proposed by Kuhn produces “meaningful names” [Kuh10]. These
are meant for naming methods and other textual elements in UML models, and rely on
numerous other language processing systems, “real” recommender systems, or sup-
porting systems that produce names for (mostly) source code editors, as mentioned
above. Another UML-related modeling support system built on patterns is that devel-
oped by Kuschke, Mäder, and Rempel [KMR13] and Kuschke and Mäder [KM14]. Their
rather general 38 modeling activities are made up of 19 modeling patterns that, when
started, can be detected by their system and automatically completed. An example for
a modeling activity is “Replacing an association between two classes by an interface
realization (ap6)”, which needs to be tailored before it can be applied to a modeling
canvas. Hence, they offer editing for the remainder of sequences before it can be applied.
Altogether, their approach is extremely similar to that offered by our strategies. The
significant difference is that we offer more specific knowledge, such as design patterns
and semantically meaningful models. Hence, we can build real recommender systems
because our recommendations add genuinely new content and do not just restructure
the model at hand. Still, we could run their system in our framework, but their realization
is not freely available. Next, Palma et al. presented a recommendation system for sup-
porting their design pattern recommender [Pal+12]. Their approach facilitates Basili’s
goal question metric [Bas92], and they define which GoF pattern (goal) [Gam+95] should
be recommended according to the refactoring statements (question), and found their
reasoning on metrics. Another UML-tailored approach that helps modelers is “model
assist”, as described by Steimann and Ulke [SU13]. This is very similar to the code- and
content-assist methods for source code, and is meant to lead to syntactically correct
models or fix malformed models. For example, circular inheritance is considered to be
illegal. To detect such cases, model completion is formally defined to the extent that
a constraint solver can detect potentially malformed models, meaning that editing can
only lead to well-formed models. Hence, the approach itself does not consider semantic
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contributions to a model. In other words, a new class representing a new concept could
never be suggested by the approach, but this is exactly what we are aiming for and
providing with our model repositories. Berardi, Calvanese, and Giacomo also worked on
the correctness and soundness of UML class diagrams, for which they used description
logics [BCG05]. Again, modeling support is provided, though this is computationally
expensive . Similarly, the approach described by Queralt and Teniente works on aspects
like redundancy or class liveness to leverage OCL constraints [QT06].

Second, more extensive research regarding recommender system and the like in terms
of modeling languages was conducted for business process models and BPMN. However,
Michael Fellmann et al. state that “recommendation systems [...] have not been exploited
for business process modeling although implementation strategies have already been
suggested” [Mic+15]. This means that no real-world deployment has been undertaken
as of 2015. Still, they propose a requirements catalog for business model recommender
systems [Mic+15]. These requirements are more or less congruent with our findings,
but we aim for more flexibility in terms of architecture [GL13; DGL14a]. While we both
aim to “Ensure recommendations with a high semantic quality” and provide “Multiple
recommendation strategies”, or “Multiple ways of displaying recommendations”, flexibility
in regard of contextual information is not their focus. The closest to that would be the
“Compatibility to existing tools and languages”. The abovementioned Mazanek, Maier,
and Minas extended their approach from Nassi–Shneiderman diagrams to work with
TGGs and business process models in BPMN 2.0 [MM09]. Here, they calculate potential
combinations or completions for model fragments. They inspect these as graphs and
provide so-called hypergraph patches, which comprise merge and add actions. For
example, a gateway with one branch modeled is completed by adding another branch
and merging the gateways, i.e., adding a BPMN activity and connecting it to the opening
and closing gateways. Wieloch, Filipowska, and Kaczmarek presented an approach and
a prototype for semantic autocompletion [WFK11]. They analyze the editing context with
a tool they call FragmentMatcher, and use this information to derive potentially semantical
autocompletions. Certainly, previously fragmented and indexed models are required to
allow FragmentMatcher to find a MatchSequence. Altogether, their architecture is similar
to our recommender search strategies and model mining. However, we opted for the
separation of concerns and built distinct frameworks for model mining and model reuse.
Additionally, we aim for real recommender systems in our recommender search strategies.
Although they never mention this term, their approach works almost like a recommender
system. Hornung, Koschmider, and Lausen use signatures called virtual documents,
which comprise tags or semantic annotations, to find models in repositories [HKL08].
Therefore, they first extract keywords from existing models to enable querying through
their query interface. Moreover, they facilitate scoring to identify the best matching
model, which makes their approach very similar to recommender systems. The only
part they do not name is context consideration, but they describe how “the ranking
mechanism changes [...] once [...] modeled process elements [are] in [the] workspace”.
They do not elaborate on the architecture of their solution. Koschmider, Hornung, and
Oberweis deal with the novice issue in modeling by providing a recommender-based
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editor that offers strong interaction alternatives and metrics [Kos07; KO10; KHO11]. An
autocompletion mechanism for executable business process models was proposed by
Born et al. [Bor+09]. This undertakes context analysis by means of a Business Functional
Ontology and checks for pre- and post-conditions in logic formulas for the potential
completions. Furthermore, it performs a nonfunctional evaluation of availability and
quality for the proposed services.

Third, Simulink has been a playground for recommender systems in model-driven
development, and research has been conducted in this field by Heinemann [Hei12b;
Hei12a]. He uses public Simulink model libraries and feeds their models to his recom-
mender system. Comparing the results of collaborative filtering and association rules
indicates that the former works better in his case.

Other Aspects of Recommender Systems: Some parts of our contribution are archi-
tectural, because not much attention has yet been paid to these aspects. For example,
Fabiana Lorenzi, Ana L. C. Bazzan, and Mara Abel and Wohltorf, Cissee, and Rieger
discuss architectural aspects for recommender systems, but only for data sources, i.e.,
knowledge libraries [FAM06; WCR05; Woh+04]. Both use agents, i.e., multi-agent
systems, to gather data, and this is somewhat similar to our recommender search strate-
gies. However, in our case, they are passive and meant to produce recommendations.
This means they should perform steps including ranking and filtering, as recommender
systems should do. Moreover, our solution is flexible in regard to UIs and contexts.

A more top-level editing approach is provided by the recommender system presented
by Murphy-Hill, Jiresal, and Murphy [MJM12]. They monitor interactions with the Eclipse
IDE, e.g., “Open Editor”, and then analyze them and recommend possible next steps if
they are available as Eclipse commands. Our approach differs in respect of the types of
commands being used. While Murphy-Hill, Jiresal, and Murphy work with declarative
commands registered to the Eclipse IDE/Framework, we only use EMF commands,
which are designed for model editing purposes. Furthermore, their mining and ranking
algorithm needs user editing histories, which are not necessarily transferable between
users. We aim to provide models, i.e., sequences of EMF commands, which we can use
to “automatically” edit the current model.

3.5.10. Summary of Reusing Models

The previous section leveraged the concepts introduced before in several ways to build
recommendation concepts for model reuse. Therefore, recommender systems for soft-
ware engineering (RSSE) and model recommendations were discussed, and we explored
how our knowledge library can foster model recommendation production. We subdi-
vided this into recommendation operations (equation (3.71)), which can form a model
recommendation production sequence (MP cf. equation (3.76) and figure 3.39). In more
detail, production was subdivided into operations to analyze the provided data (%ana),
generate model recommendation candidates (%gen), rank these candidates to become
model recommendations (%rnk ), and eventually filter these model recommendations (%fil )
to produce a final set of results. In these respects, we introduced sets representing
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the information at hand. For example, the results of model recommendation generation
were denoted by mrc (PMRC equation (3.88)) and the results from ranking were written
as mr (PMR equation (3.110)), so the result set could be r. These operations can be
concatenated to read from right to left, which is contrary to the illustration in figure 3.39.

Many of the observations in developing this approach are based on the constraint
dimensions of model recommendation production. Namely, these are the UI, available
data, and permitted scope (table 3.10). They affect model recommendation properties
called the extent, granularity, relatedness, sensitivity, and impact. In particular, the
extent is subdivided into granularity and relatedness, which are important for model
recommendations (table 3.11). This is because of the interaction model we introduced
to provide ideas for triggering methods, called reactive and proactive (cf. figure 3.39).
This information, denoted τ , was also contained in our understanding of context (c P C
equation (3.78)), which also comprised the currently edited model, the editing sequence
(e.g., Σall, Σcre), and other contextual information. Other observations were at a higher
level, and we introduced schema for model recommendation production and generation.
These are either condition-adhering or condition-altering (tables 3.13 to 3.15). The latter
fall into schema for model recommendation generation extension and schema for model
recommendation index adjustment. Finally, we discussed the reutilization of model
recommendations.

Produce Recommen-
dation Result Setproactive

reactive

�
ana

�
gen

�
rnk

�
fil

MRMRC R
MP :

sets involved

operations involved

Specify 
Preferences

Pick
Recommendation

Revise
Preferences

Figure 3.39.: Recommendation Production Overview (cf. figure 3.34 and equation (3.71))

3.6. Summary

Admittedly, this chapter deserves an extensive summary of the numerous operations,
concepts, and ideas developed. We opt otherwise and postpone a full discussion until
chapter 4 (p. 151), because we require a tailored version of a summary to begin with
the concepts required for a realization. Still, we provide an overview of this chapter in
figure 3.40.
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4HERMES

If you think good architecture is
expensive, try bad architecture.

Brian Foote and
Joseph Yoder
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The project name “Harvest, Evolve, and Reuse Models Easily and Seam-
lessly”, abbreviated as HERMES, inspired the name for our software prototype.
Similarly, the ideas and concepts developed in chapter 3 (p. 31) were trans-
formed into this software prototype, matching the respective parts of its
conceptual architecture. For easier comprehension and because of the lack
of an overall summary for the previous chapter, we reiterate the concepts above while
concentrating on the aspects vital for a software prototype. We then go into more detail
concerning the realization.

The root for our concept is operation-based models ( Σ

PM
Σ

) and we provide a notation
for constructing models (m) as sequences of operations (σ) made up of operations, e.g.,
πc for create or ϕqueryterm

γ for find. Further, we have introduced a knowledge library (KL)
for storing models, wrapped in Models. These are enhanced with MetaInformation,
interlinked by Connectors, and organized by Categorys as well as Groups. Conse-
quently, a knowledge library has a graph structure. We can operate on it by indexing
(I) and querying (Φ) elements with simple and complex indexes and queryterms. We
obtain models wrapped in Models for our knowledge library by harvesting the models
that are currently being edited. This happens in several steps: finding sets of already
known elements (K) from a knowledge library, building submodels (s) and cross-links
(cl) between them ( si ), and storing them. As we do not consider harvested models to be
perfect for reuse, we allow them to evolve in a knowledge library. Therefore, we assign
one of three quality stages to Models denoting sketchy, provisional, and high quality
as vague, decent, and fine reusability. All this builds on a quality model with related
metrics combined with an evolution stage automaton, which is partially automatable. The
parts that are not automatable are supported with a special lightweight review mechanism.
The final reuse requires models to be found and provided by our knowledge library, which
is supported by approaches adapted from knowledge-based content recommender sys-
tems. Such model recommendation production follows processing steps called analysis,
generation, ranking, and filtering. We have provided an operation each, denoted %ana,
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%gen, %rnk , and %fil . As intermediates, we introduced model recommendation candidates
mrc (PMRC) as outcomes for %gen, model recommendations mr (PMR) as outcomes
for %rnk , and results r as the final outcome. Finally, we have discussed schema for model
recommendation production and generation as well as the impacts of the trigger (τ ) and
editing sequences (e.g., Σcre).

4.1. Conceptual Architecture

The conceptual chapter repeatedly referred to the underlying project overview from fig-
ure 1.8 (p. 12) for structuring its content in sections. We can now use this overview for
bridging concepts to our software architecture. Figure 4.1 shows a version of our project
overview with some parts faded and additional text. The text next to each respective
conceptual part allows navigation within our realization, because we place features,
fragments, and plug-ins in respective packages. Hence, the discussion of our realization
follows this schematic. For example, .store.mdf comprises all realized “storing con-
cepts” discussed in section 3.2 (p. 48) and alluded to in introducing figure 3.5 (p. 49).
The exceptions to this are “operation-based models” from section 3.1 (p. 32), which are
wrapped and adjusted “EMF Edit Commands”, e.g., in section 4.5.

In bridging the concepts to realizations, one thing is striking: the change of terms we
have undertaken. Whereas the conceptual level refers to “storing” models, the realization
of the framework requires .mdf, which stands for “model data framework”. Hence, the
packaging denotes content store.mdf. In general, this change of terms is attributed to
applied approaches. This becomes more apparent when looking at our “harvesting” of
models, which is implemented as a framework denoted by .mmf, short for “model mining
framework”. Note that “evolving” the models remains the same in .mef, but “reusing”
the models is realized as a “model recommender framework”, abbreviated as .mrf in
package reuse.mrf.

STORE   

.mmf

.mdf

.mef .mrf
HARVEST EVOLVE REUSE

Figure 4.1.: HERMES Overview and Top Level Packages cf. figure 1.8 (p. 12)

With the given conceptual architecture, we can turn to the use cases, which we
introduced as requirements for our project in figure 2.1 (p. 25). Other than the use
cases for each framework, certain constraints hold true for each framework. General
requirements are manifested in the project name “HERMES” and require the prototype to
be (1) easy to use and (2) seamlessly integrated (cf. figure 1.4b (p. 6)). In other words,
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Figure 4.2.: Model Store Browsing the Knowledge Graph

we strive for simplicity, comprehensibility, and usability. Further, we require our prototype
(3) to offer extendability concerning the architectures of respective project parts, i.e.,
for the data framework shown in figure 3.5 (p. 49), for the model mining framework in
figure 3.14 (p. 74), for the model evolution framework shown in figure 3.23 (p. 95), and
for the model recommender framework depicted in figure 3.33 (p. 118). Altogether, the
prototype we will introduce incorporates some of the experiences described in the context
of this document. For example, we have already summarized some experiences for our
model data framework [GL13; TGL13], model evolution framework [Rot+13; Gan+13;
Gan+16], and model recommender framework [DGL13; DGL14a; DGL14b].

4.2. .store.mdf

The backbone of every recommender system is the data it can use for model recommen-
dation production, and one part of this is data organization as a knowledge library, as
introduced in section 3.2 (p. 48). Hence, the major requirement is to provide potentially
beneficial data for model recommendation production, e.g., through an API (Φ, Ψ), and
simple editing functionality interlinked with our model evolution framework.

At the time of writing, there are two realizations in service as part of .store.mdf. The
first is called MoCCa, which is an acronym for “Model Combination and Composition
Vault”. Figure 4.2 shows a GUI for searching and exploring the knowledge graph. In addi-
tion, it enables (Category, Group, or Model) browsing of editing properties or contained
models, and can relate different properties and terms. However, the more important
functionality is API accessibility, because this is what the recommender strategies are
built upon. This is realized in a service provider manner, so one entry point unveils
functionality for storing, editing, and querying. In brief, the realization employs a Neo4J
graph database with a Lucene search engine [RWE13; Mul12] and git version control
system [CS09; LM12]. The second realization available as part of .store.mdf is called
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Figure 4.3.: Model Mining for Models with Known Elements

store and offers roughly the same functionality as a distributed system derived from fig-
ure 3.6 (p. 51). Therefore, we only mention a few realization aspects. First, the resource
strategies for the generated parts of the knowledge library are not tightly linked to graph
databases anymore and allow relational databases [TGL13]. Similarly, the version control
system is not bound to git and information retrieval is not tied to elasticsearch [GT15].

4.3. .harvest.mmf

The other backbone of a model recommender system is the actual data available for
model recommendation production. We have introduced an approach that supports
users while harvesting models (see section 3.3 (p. 73)). The main requirement was to
provide suggestions of what to store for reuse, but identifying reusable parts in a model
under consideration is a rather subjective matter. Thus, the focus of our approach is
threefold. First, already known elements should be identified; second, a model under
consideration should be subdivided into beneficial parts; and third, these parts should
be integrated in a knowledge library. However, apart from all this tool support, a modeler
must always have the last word and provide the required MetaInformation.

Having a closer look at the prototype, the abovementioned parts belong to three
different packages [Sew13]. First, identifying known parts belongs to our package for
markers in harvest.mmf.marker and can be of different granularity. Second, splitting the
remaining parts is done by a selected splitter, which originates in harvest.mmf.split-

ter. Generally, the splitting realizes a graph clustering algorithm, as introduced in
subsection 3.3.2 (p. 75). Third, storing the identified clusters is part of the saver in
harvest.mmf.saver, and this is tightly linked to possible persistence, as introduced in
section 4.2. Regarding UIs, figure 4.3 shows the harvesting view on the right, with a tool
bar offering add, remove, mark, split, and save operations (from left to right). Certainly,
elements can be rearranged, and with meta-data provided and everything persisted in a
knowledge library, the model evolution framework takes over for further processing.
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Figure 4.4.: Model Evolution with Alabaster Model and Stage Monitor

4.4. .evolve.mef

For our approach, the model evolution framework is considered an add-on that has
special requirements, because operation-based model recommendations would not
fall apart if evolution support was missing. However, this places extra requirements
on its realization: any extra effort for users getting familiar with the prototype must be
avoided. This means simplicity and supporting users in every possible way are the
highest priorities. Hence, we opted for a prototype with a guidance mechanism to help
modelers through the stages of model evolution, and use a restricted representation of
our evolution stage automaton from figure 3.27 (p. 103) in our prototype (cf. figure 4.4).
This was done in recognition of the use cases introduced in figure 2.1 (p. 25).

We call this simplified quality stage model the stage monitor, and use it to encompass
additional information. We have already mentioned that stages also come with coloring,
but now the deprecated flag finds its way into the stage monitor. If activated, the model is
frozen in its current stage, which is still shown, and the deprecated symbol is highlighted.
If deprecation is not activated, the current stage is highlighted along with the possible
transitions and whether a stage is pending, i.e., if a stage requires manual confirmation.
Further, information about measures subdivided into defects and smells are present.
Recall that the former are errors in models similar to code smells, which may require
improvement [Fow99]. Finally, we present information about reviews and their respective
concerns and issues. It is simple to create new reviews limited to a desired type, as
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shown in figure 4.5, and assign certain existing concerns or issues.

Figure 4.5.: Simple Review

All this serves to increase
the guidance provided to mod-
elers, as do the numerous tool
tips, hints, information boxes,
and wizards. They are all
kept short, informative, and
constructive, so violations of
metrics can be resolved in a
guided fashion. Further, mod-
elers receive continuous feed-
back on violations (proactively
in terms of our recommender
systems) without it being obtru-
sive. Called proactive quality
guidance [Gan+13], this should
prevent violations and defects
from piling up, which could be
perceived as annoying and re-
sult in issues being ignored.

Concerning our implementa-
tion, the concept is depicted in
figure 4.11, which shows how
the StageMonitor holds the
MetricManager and the Re-

viewManager together. The
former calculates metrics for
the model under consideration.

Note that this allows for extension by new ConcreteMetrics, all of which are located in
a top-level package called evolve.mef.metrics. The latter is responsible for Reviews
and is potentially extensible, but introducing another ConcreteReview next to the ex-
isting ones from figure 3.28 (p. 105) should be well thought through. Other than that,
the details provided in section 3.4 (p. 94) already imply many implementation details,
e.g., how to realize a stage monitor with quality gates. Finally, note that, compared to
figure 3.23 (p. 95), we do not describe the use of versioning, i.e., a version control system,
because it is shared with the model data framework. However, we do allow resource
strategies in a top-level package called evolve.mef.vcs.

4.5. .reuse.mrf

The essence of our prototype is contained in our model recommender framework, which
was targeted at some functional and non-functional requirements. We introduced the
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Figure 4.6.: Model Reuse with Proactive View and Reactive Query Box

former as use cases in figure 2.1 and implied the latter as constraints in section 3.5 (see
also [DGL14a]). Hence, we pick up and summarize the non-functional requirements:
Figure 3.33 (p. 118) shows potentially many recommender strategies, and we have
already mentioned that each can use different sources of data. All that matters is that the
framework needs no information about the object content except for how to apply it, so a
context component can be integrated. Therefore, the recommender strategies that use
these data backends should have the freedom to realize different algorithms according
to the purpose, as introduced in subsection 3.5.5. This implies that different context
components must be leveraged for querying and inserting in model recommendation
production [DGL13], as well as different UIs [DGL14b]. Hence, we strive for a flexible
architecture, because we found that the “[a]rchitectures of the surveyed [recommender]
systems are inflexible and do not allow for extensions” [HM08a]. Finally, usability is key
again, and we aim for non-blocking UIs that require threaded recommender strategy runs
started by a job framework (cf. figure 3.37 (p. 142)).

Examples for the extension points are as follows: First, user interfaces are often
graphical, so a UIStrategy can be a query box, as shown in figure 4.6 for reactive
triggering (τ ), or it can be a view that proactively updates following timeouts, as shown
in figure 4.6 on the right. Second, contexts can monitor or access editors to provide
a generalized format of information per editor, as defined in subsection 3.5.4 (p. 123).
Thus, no matter whether an EMF, EcoreTools, Graphiti, or Sirius Editor is used, a context
component performs the proper analysis because it is built for this dialect of modeling
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Figure 4.7.: Model Recommender Framework Dashboard similar to [Sch13]

language or representation. Further, it knows how to handle recommendations, if picked.
That is, how to apply a model in operation-based format. Third, recommender strategies
can be algorithms that fulfill a purpose while leveraging a knowledge library, as in our
case, model repositories such as ReMoDD [FBC06] or MOOGLE [LFW12], or other data
backends.

An implementation realizing the abovementioned requirements is sketched in fig-
ure 4.12 [DGL14a; Dyc12b]. The essence of it lies in the classes of Recommendation
and RecommenderSearchStrategy. They build the framework hotspot (cf. [Pre96]),
allowing the framework to be extended. The responsible extensions, which are prefixed
Concrete, then represent the actual implementations. Concerning our concepts from
section 3.5 (p. 117), a Recommendation is an element of a result list and a Recommender-

SearchStrategy, as part of the top-level package resuse.mrf.strategies, realizes
a sequence of model recommendation operations. These are threaded, because they
inherit Thread. For differentiation and inspection reasons, each Recommendation can
be represented by a distinguishing icon as defined by a UIContributer and can be pre-
viewed. Often, this functionality is needed for RecommendationUIs while a result list is
revised, e.g., while stepping through a dropdown window that presents the result list under
a query box. Note that, in this example, the query box is the actual RecommendationUI
and is placed in a top-level package called reuse.mrf.ui.

The part that is missing deals with the RecommendationContexts from the top-level
package reuse.mrf.context, and we extend figure 4.12 by figure 4.13 [Dol14]. This
enables the editing sequences for our context by means of a ContextHistoryManager,
which is accessible for RecommenderStategys. It offers the editing sequences introduced
in subsection 3.5.4 (p. 123) and supports the finding of RelatedElements. In addition,
the filtering of sensor data in tiers, which we mentioned in subsection 3.5.4 (p. 123),
takes place here, e.g., for dummy elements.

For a more elaborate understanding of the model recommender framework, it is
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Figure 4.8.: Model Recommender Simulation Environment similar to [DGL14a]

beneficial to glance at object flows, i.e., a sequence diagram [DGL13]. We omit this for the
sake of brevity and provide an idea only. A RecommenderUI starts a search(), and then
delegates it to RecommenderSearch, which commences the startSearch(), initiating
all registered RecommenderSearchStrategys. In case a produced Recommendation is
picked, it is applied() in a RecommendationContext. Note that the actual sequence
diagram is slightly more complex because it includes notification, threading, and context
determination for picks [DGL13].
Dashboard: Getting started with our framework in new environments or with recom-
mender strategies requires some manual tasks, which we can automate with a dash-
board. This includes a whole set of Eclipse plug-ins that must be registered, and provides
skeleton source codes that we consider a good starting point. The latter comprise our
observations from section 3.5 with respect to operation sequences, schema, and states.
Further, it offers guidance and basic configuration options for recurring scenarios. As an
example, consider a RecommenderSearchStrategy querying a relational database.

Not only can we generate new RecommenderSearchStrategies, which are simply
called Strategies in our dashboard, but we can also provide starting points for GUIs and
context components, as shown in figure 4.7, as well as for so-called launch configurations.
They take care of all settings necessary for starting a new environment with all the just-
created plug-ins running. This means that a developer simply needs to build the actual
algorithm, i.e., model recommendation operation sequence.
Simulation Environment: Simulations can help build a model recommender, because
often developing them entails some common difficulties regarding the Recommendations
and RecommendationContexts. These may be difficulties in building well-formed content
or in transforming content to an operation-based format that matches the editor dialect.
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Figure 4.9.: HERMES Welcome

Many issues, which might appear while developing, can be detected through logging
methods.

Therefore, the simulation environment hooks into the framework and controls involved
elements [Nim13]. This finds erroneous operations that a context produces while applying
a Recommendation or their irregular content while hiding other framework internals. We
build this on the large theory of simulation that is available and define our simulation
environment and the simulation model [Ban98; DGL14a]. Without going into too much
detail, the simulation cornerstones are as follows: The objects under simulation are
Recommendations and how they are produced by a RecommenderSearchStrategy.
The simulation environment is the simulator, as shown in section 4.5, which looks like a
graphical class diagram editor. In terms of xUnit test patterns, this simulator works similar
to a test spy and records all operations before and after execution [Mes10]. This allows
erroneous Recommendations and operations to be identified. Finally, the simulation
model is Ecore as the least common divider of models that we consider (alternatively
EMOF). In addition, the simulation protocols are textual descriptions of attempts to apply
recommendations. This categorizes our simulations as activity scanning [Ban98].
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HERMESH

HERMES
HARVEST EVOLVE REUSE

MODELS EASILY AND SEAMLESSLY

Figure 4.10.: HERMES Icon, Symbol, and Overview (cf. figure 1.8 (p. 12) and see figure 4.1)

4.6. HERMES Demo, IDE, SDK, and Design

Careful readers will have noticed that some screenshots above comprise instruction notes
in models. For example, these exist for .store.mdf (in figure 4.2), for .harvest.mmf
(in figure 4.3), for .evolve.mef (in figure 4.4), and for .reuse.mrf (in figure 4.6). They
result from demonstration setups in our HERMES prototype, which users can chose for
experiments. All that users need to do is choose the respective TRY in the welcome
page shown in figure 4.9. Immediately after the setup is complete, the user will face
the screenshots mentioned above, and can carry out the steps explained in the note.
These are also illustrated in videos with complementary comments for each of these
parts [Gan14f], which can be reached by choosing the video on the welcome page (cf.
figure 4.9): for Harvest [Gan14b], Evolve [Gan14c], Reuse [Gan14d], and Store [Gan14e].
In addition, a video on the installation process is provided [Gan14a].

Next to these experiments on demonstration data, the HERMES IDE product features the
dashboard and simulator, as introduced above [Gan14g]. Hence, we can implement new
context components, GUIs, and recommender strategies. However, for further insights,
the HERMES SDK is necessary. This ships all the source code, which allows insights to all
the other parts, either via debugging or source code review.

As a final note on our realization, note how the design of HERMES is conclusive and
coherent, as indicated in figure 4.10. Reading this figure from left to right, the icon is
just an H and the symbol reduces the essential parts. These reappear in our project
overview, which also functions as our means of structuring concepts. Further, we derive
our conceptual and technical architecture from it (cf. figure 4.1). Other than that, the
design of the website, welcome page, and project documentation adheres to a guideline
[Gan14h]. For example, the welcome page of the HERMES IDE matches the style of the
website, with very few adjustments.
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5Assessing Processes, Concepts, and HERMES

There are no facts,
only interpretations.
(Es gibt keine Tatsachen,
nur Interpretationen.)

Friedrich Nietzsche
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The approach presented in this text is the result of research conducted in
software engineering. Hence, any validation requires an understanding
of what “software engineering” actually is [Woh+12b]. The ISO, IEC, and
IEEE explain it as “the application of a systematic, disciplined, quantifiable
approach to the development, operation, and maintenance of software; that
is, the application of engineering to software” [III10]. Note how this deals with realization
within a process, cf., “application of x to <phase>”, and how it emphasizes the product
characteristics of software, cf., “application of x to software”, because everything refers to
it. Finally, note the word “quantifiable”. We can roughly translate this as “measurable” for
our validation purposes. Hence, we can focus on the process and product characteristics,
or the process and product quality.

Given this understanding, we can attempt to find means of assessment. Some methods
that have become popular in software engineering research concern empirical studies to
counter the perceived lack of them in software engineering research [Tic+95; GVR02].
For example, (controlled) experiments, case studies, and surveys became more popular
as means of assessments [Woh+12a; Run+12], although they have been questioned
as “an academic exercise” [Seg03]. This is because of the one-to-one transfer of these
approaches from the social sciences to software engineering research. Hence, “case
studies have been criticized for being of less value, being impossible to generalize from,
being biased by researchers” [Run+12]. Contrary to that, social sciences and psychology
have a large body of knowledge about confounding variables, which are expected to
interfere with the controlled variable. For example, the Hawthorne and Rosenthal Effects
[RD39; RF63] (Pygmalion Effect [FP79]), whereby subjects behave differently because
they are being watched and self-fulfilling prophecies that occur because researchers
want a certain outcome, are countered using approaches such as double-blind studies
or control groups. We are not aware of reasonable practices for software engineering
research that scale studies to the extent that statements can be derived from them. This
is not to say that we should not assess software engineering research empirically, but
that we need to emphasize the grain of salt we should take the results with!
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Hence, our big picture of assessment builds on traditional process and product quality
[II11], which can also be considered as approaches based on analytical, constructional,
and organizational quality assurance [LL10]. Product quality, in our understanding, is
covered by the ISO/IEC standard series 250xx quality models, which enable analytical
quality assurance by establishing grounds for analysis and finding issues. Other than
that, we consider process quality as constructional and organizational quality assurance
and see it as a type of preventive quality assurance. Thus, only together can all these
aspects paint an appropriate evaluation picture.

However, the category of software engineering research is another delimiting factor
concerning validation. In terms of Glass, Vessey, and Ramesh, our research is conceptual
analysis (CA) and implementation (CI) [GVR02], but we provide more than a concept,
a proof of concept by means of our implementation, and its measurements. Still, we
mostly conceal our initial investigations regarding a solution concerning model reuse as
well as UI considerations [Dyc12a; Dyc12b; DGL14b]. Therefore, the guiding challenges
that we initially set in section 1.2 (p. 6) are the best grounds for an assessment regarding
how much progress we can claim:

Storage Challenge: locating and accessing (Φ, Ψ).

Representation Challenge: warehousing and organizing (KL, IεKL).

Harvesting Challenge: identifying and extracting (id|D1 , s Ď m,  si ).

Evolution Challenge: changing and improving (Astaged , t´,˝,`u, QG).

Retrieval Challenge: querying and retrieving (MP).

Comparing these pieces of our puzzle to those set as challenges in section 1.2 (p. 6)
reveals that each line is extended with the most important symbols representing the
solutions, which we have developed, to each challenge at hand. As a brief recap, we
constructed an approach for operation-based model recommenders in the previous
chapters and explained the implementation we put on top of it. We did so by using middle
grounds for the formality of operation-based models and wrote down a complete approach
for model reuse, which starts with harvesting, proceeds to quality assured evolution,
and terminates with reutilization of models. The demonstration we build by means of a
software prototype implements all these concepts and shows how the approach can be
brought to life.

Further, despite its conceptual complexity, this prototype can provide a showcase in a
video of slightly over three minutes, which covers all basic functionalities. In more detail,
given a proper setup, videos for harvesting [Gan14b], evolving [Gan14c], and
reusing models [Gan14d] cover each of the use cases introduced in figure 2.1 (p. 25).
The exact combined runtime is 3 min and 14 s, which already indicates that we were able
to meet two of our main goals: “Integrated Simplicity”, i.e., the “easily and seamlessly” in
HERMES.

Otherwise, assessing this research comprises some obstacles, because reliable and
significant statements might result from many confounding variables (cf. [Rob09]). First,
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developers and modelers prefer to stick to their work habits, and adopting these requires
long-term cultural change. This becomes more difficult for reuse, as it inherits a rather
inconvenient reputation. Even assuming model reuse in operation, it would be difficult to
assess, because it suffers from the same measurement difficulties as have repeatedly
been shown for other reuse. Second, there is no knowledge library or model repository
on which the research community agrees. Certainly, this is because we are still in the
early stages of model reuse recommender system research. Third, any change to a
knowledge library interferes with the objectivity and repeatability of results. This could
be approached with a commonly agreed knowledge library, but harvesting models once
will affect the result.

Subsequently, we will describe the project history to lay the grounds for evaluating
our development process, assess the prototype, provide an overall quality discussion,
and comment on our contribution to the scientific knowledge base. In more detail, we
use our project history to explain why and how we did not get things right at first, and,
more importantly, how our development process helped to improve the situation. Further,
our discussion on the quality of our prototype shows how we could align the concept,
implementation, deployment, and usage experiences for mutual benefit. This is of
importance, because each aspect builds on the others in this order.

5.1. Some Project History

Some tasks in software engineering proceed iteratively until they are acceptable. This
iterative development was the case for several of our components. Some of them can be
plugged into the frameworks we provide, others cannot. Examples of the former are the
splitter explained as the clustering algorithm for harvesting in subsection 3.3.2 (p. 75) or
the recommender strategies for which we lay the groundwork in subsection 3.5.2 (p. 118).
We also opted for this flexibility because we could not see an ultimate solution, but
rather grounds for experimentation. However, the main part that was not realized as a
framework, although it took several attempts to get a solution, was the knowledge library.
For us, the magic number of versions was three, as it was the third attempt at a solution
that resulted in a real-world deployment that was conceptually sound. Still, it makes
sense to look into all three knowledge libraries briefly.

The first knowledge library was an EMF prototype that helped to elicit the actual
requirements we could ask of a knowledge library [Boh11]. We did not name this
prototype, but designed it in such a way that it could be used for code generation. The
resulting prototype served as grounds for experimenting with the meta-structure that we
eventually published [GL13]. This was particularly useful, as the EMF generated (the
so-called tree editor) comes with the option for dynamic instances. These require no
generated source code, but can use the reflective API. We learned from this prototype that
we should expect the meta-structure in the form of a graph and that access to this structure
and the content it represents, e.g., models, must be simple. Hence, we experimented
with several third-party EMF add-ons for forms, querying, and indexing models. Note
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that this prototype realized an approach similar to mega-modeling [Béz+05], i.e., one
model as a meta-structure for references to other models. The differences were the links
between models, which we provided, and the cross-project nature of our meta-structure.

The positives of this prototype were its simple and rapid development and seamless
integration into Eclipse. The drawbacks lay in distribution support, which also encountered
a lost update syndrome because persisting data under version control permitted no
transaction support. In addition, we faced severe issues with querying, which were
only recently considered by EMF IncQuery [Ujh+15]. With these concerns in mind, we
explored the available technologies.

The most complete package as a data provider for our meta-structure and its content
appeared to be a graph database [RWE13]. Hence, this led to our second prototype,
which we call MoCCa (“Model Composition and Combination Vault”, .mdf.mocca) [Fuc11].
The name already indicates that only treasured models are meant to be persisted and
that composing or combining these models is a vital requirement. Additionally, we
experimented with several other ideas for organizing models and the functionality grew
quickly. We even started experiments on harvesting, splitting, and merging models,
which are all indirectly supported by MoCCa.

Thus, we managed to fit all functionality into one system by integrating different tech-
nologies. A graph database represented the meta-structure, a version control system
managed the actual persistence, and an indexing and querying system fostered sophisti-
cated retrieval. Once again, we could build this system quickly, because Neo4j, Lucene,
and git operate well together and we achieved separation of concerns regarding technolo-
gies. One drawback was that we had to come up with our own UI to fit in with Eclipse,
and another issue was the hardcoded nature of MoCCa. This made it difficult to extend,
e.g., for demonstrating model evolution. Altogether, we found that MoCCa suffered from
“second system effect”, which states that second versions are often overambitious and
try to fix everything that was wrong with the first version [Bro75]. Hence, we either had
to chop down our solution or turn it over again. After reevaluating the solutions available
on the market, we started over.

The final realization, which is simply denoted as .mdf.store, was the result of com-
bining the two former prototypes while meeting additional requirements [Tra13]. We took
our experiences from the generated prototype and fitted a more sophisticated graph
database as a persistence strategy, which is called the resource strategy in EMF. As
an alternative persistence, we built in support for both graph databases and relational
databases. We did so because deployment scenarios in industrial contexts might not be
willing to install another database, so our solution had to fit into existing environments, and
we are aware that many relational databases have been deployed. In addition, we built
our indexing more flexibly than in MoCCa and implemented a registry for it. This is why
we talked about extendable indexing and querying in subsection 3.2.2 (p. 56). Further, we
distributed responsibilities to several servers for the meta-structure, preserving the actual
models, and indexing/querying. Overall, we gained a distributed and scalable solution
that provides the functionality needed for model recommendation production, and we
shared this with the model repository community [TGL13]. As an extra experiment, we
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made MoCCa available under the same API.
Altogether, provided proper installation, we came up with a knowledge library that is

flexible enough for extensions, scales well, operates extremely quickly, and is designed
for professional deployment. The downside of this solution is its high entrance barrier and
rather complex setup, because the technologies we employ, despite their performance,
come at that cost. Still, we were willing to pay that price to enable responsive model
recommendation production [DGL14b; DGL14a].

Regarding the development of harvesting and reuse, we built and leveraged a frame-
work architecture for each case. In other words, even three iterations were not enough
to get them right—and we are not certain that there is an ultimate truth for clustering,
splitting, or model recommendation production.

5.2. HERMES Quality and Experiences

Quality is known to be a complex matter, and we started this chapter by distinguishing
between analytical, constructional, and organizational quality assurance [LL10]. We
will cover these subsequently, but first provide a more detailed understanding. We put
analytical quality assurance, measured by means of ISO/IEC 25010 quality models,
under product quality [II11], and we further make the distinction between internal and
quality in use aspects with all their sub-items. Further, we elaborate on our means of
constructional quality assurance by discussing our process quality. This also includes
organizational aspects.

Other than that, one train of thought needs further clarification: The quality of our
software prototype is based on the foundation, which we provided through our conceptual
groundwork in chapter 3. For example, our approach builds on operation-based models
and knowledge libraries, i.e., both together facilitate the parts concerning harvesting,
evolution, and reuse. In other words, they establish a language we could use to explain
harvesting, evolution, and reuse. Therefore, we can consider them as evaluative parts,
because they allowed us to reach a functional stability. This is because of our knowledge
that operation-based models and knowledge libraries were complete, correct and appro-
priate for formulating harvesting, evolution, and reuse of models. However, research is
often not quite as straightforward and rarely goes as planned. Hence, we start with a few
remarks on our concept, although iterative development enforced continuous feedback
loops between software and concept.

5.2.1. Process Quality

As much as we could benefit from iterative development for our concepts, “[f]or a process,
it is not possible to build a prototype” [RRS11]. Even more, we agree that “we will never
find the philosopher’s stone” in respect of a rational design process [PC85]. Hence, we
“faked it”, as discussed in chapter 3, by concealing quite a few of the twists and turns
we took. In other words, “[w]e [did] not show the way things actually happened, we
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show[ed] the way we wish they had happened and the way things are” [PC85]. This
makes it feasible to replicate our results. Still, there was a design and development
process and we applied best practices for scientific software projects [HLN09]. These
best practices and their associated development process for scientific software applied
in the HERMES project mainly adhered to the results of our working group [Hof13; HLN09],
as summarized in figure 5.1. Certainly, some alterations were required because of
technological changes and the individual requirements of our project. Without going into
too much detail, we present our process.
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Figure 5.1.: Best Practices for Developing Scientific Software similar to [HLN09]

First, readers will have noticed that we were very serious about related work. Not only
is this due to a strong will to cover related work, but also to gain as much as possible
from the knowledge base, thus stimulating input for discussions. Additionally, we were
always reluctant to introduce new symbols, terms, or notations, but could rarely base our
work on common agreement. Instead, we often had to pick the most common usage.
Overall, an approach we often applied for systematic literature review is very similar
to a proposal by Wohlin et al. [Woh+12c]. Hence, we defined scopes for need, focus,
and technology, but not with respect to experimental designs and outcomes. The latter
is attributable to a lack of availability. In addition to the scopes, we exploited literature
database functionality for alerts in two respects. The first was keyword alerts, which

170



5.2. HERMES Quality and Experiences

automatically notified us about these keywords in new publications, and the second was
citation alerts for particularly important publications. These notified us about citations of
this work in other publications, which may be completely unrelated.

With an agreement set for terminology and understanding derived from related work, we
set to incremental development as proposed. This means we had weekly team meetings
for planning, nightly builds on a Hudson server applying findbugs, PMD, checkstyles
checks, code metrics, and Junit tests. Further, we had weekly integration cycles on a base
of Eclipse features and plug-ins. This is all identical to our colleagues’ findings except for
the complexity of our platform. This was reasonably smaller in our case, because we
could make use of a more recently provided Eclipse architecture functionality.

Each developer had an Eclipse product, our HERMES SDK, provided for development,
which had the benefit of making every developer a user at the same time. Sometimes,
this is referred to as “eat your own dog food”. The HERMES SDK was always bundled with
the same checkstyle, PMD, findbugs, git, Trac, and SonarQube configuration as those
applied during nightly builds. Eventually, SonarQube took over the checks of interest, so
we could solely use them.

The build infrastructure that we introduced followed a one-click setup, one-click run
approach. This means that all configuration necessary for a local build by a developer
could be installed with one script, and the build could be run by leveraging another
script. This is important, because our infrastructure grew over time. Eventually, it
comprised a Maven/Tycho build relying on a Hudson build server, Neo4J graph database,
Rexster graph database server, MySQL database server, elasticsearch indexing and
search server, SonarQube measurement server, and git version control server. We
did this heavy lifting in respect of infrastructure because we desired a prototype that
runs well, although we never aimed for a commercial-quality product. This is different
to our colleagues’ approach to run mostly a central build server, but they could not set
up an infrastructure as easily as with Docker containers. Further, Maven/Tycho was
not available at that point, but eased our build infrastructure enormously. As a bonus,
which we considered only a nice add-on but eventually used a lot, there were so called
long-term builds that enabled us to deploy based on different versions of Eclipse. This
eased migration to the most recent version of Eclipse.

Further, we should discuss the differences between our development, which resulted
from git and handling by git-flow. Our colleagues only discuss version control and change
management for cvs and svn styles, but we applied git, which is a distributed version
control system. This brings about the possibility of development by means of git-flow,
which allows for branches for every feature developed. Hence, developers were almost
independent and only advised to “rebase” their development on a regular, i.e., weekly,
basis. This means that their branch was continuously rooted on a new “Head”, which
is called “Develop” in git-flow. Overall, this eased merging and migration considerably.
Another benefit of applying git-flow resulted from public branches for features. These
enabled developers to create Trac tasks with Eclipse Mylyn contexts attached whenever
they were struggling with something. These Trac tasks could be checked by any team
member, with all the changes highlighted in the files added to the Mylyn context. With
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additional discussions and an escalation mechanism, this enabled us to accelerate and
distribute development fostered by change management using Trac.

5.2.2. Product Quality

Measuring software engineering products is often bound to measures, (code-) metrics,
and quality models. For the purpose of this assessment, we talk about measures and
not metrics, because we do not introduce a detailed measurement theory [Via16]. All
we need to know is that metrics are usually considered measures with an interpretation.
Further, quality models subsume and arrange aspects of consideration for assessment.
We employ two examples of quality models, as depicted in figure 5.2. One is the
current quality model provided by the ISO/IEC 250xx SQuaRE series (cf. figure 5.2b)
[II11]. This replaces ISO/IEC 9126 from 2001 (cf. figure 5.2a) and renders it obsolete
[II01]. Regardless, we provide this for comparison and because it is still very popular
for assessments. However, we omit any further discussion and leave the comparison
to readers. Subsequently, we guide our assessment using the structure provided by
figure 5.2b, moving clockwise for each of our components and linking them occasionally
to our product metrics, as provided in figure 5.3. Note that we only introduce the top
characteristics and not every sub-item. Instead, we simply use the latter. Further, we do
not take into account data quality (cf. ISO/IEC 25012).
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Figure 5.2.: Software Engineering – Product Quality Models [II01; II11]

Functionality Suitability is the “degree to which a product or system provides functions
that meet stated and implied needs when used under specified conditions” [II11]. First,
our prototype meets functional completeness on a coarse level because it realizes the
use cases we introduced in subsection 2.4.1 (p. 24). We can state so because it was
the focus of iterative and incremental development, and we can provide a showcase
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Figure 5.3.: HERMES 1.9.1 SonarQubeTM 5.6.1 LTS Measures

slightly longer than the three-minute video mentioned above. On a more fine grained
level, our prototype is functionally complete to a certain extent, because our framework is
suitable for extensions. Thus, despite our demonstration of these extensions in several
ways, others have not been provided. For example, we provide several means for
clustering models, but a semantically reliable clustering is not among them. One might
state that this was not the primary goal of this research, which is certainly correct, but
it does not change the fact that this is a reasonable user objective and we only made
some progress in respect of automating the harvesting process. Second, our prototype
was meant to be and to remain prototypical, which already places limitations on any
possible functional correctness. Hence, the 850-odd tests that helped in development
and ensuring functional stability only provide a weak statement. Still, they assured us
in moments of alteration that functionality remained. Other than that, our SonarQube
server, PMD, and findbugs (cf. figure 5.3) allow a certain statement of correctness, and
we believe that reasonable performance was attained; after all, quality is relative. Third,
our prototype, in our understanding, performs well in regard of functional appropriateness.
We believe so because we reached a state that overcame the second system syndrome
discussed in section 5.1 in many ways, not only regarding our knowledge library.

Turning to the approach introduced in chapter 3, our assessment of functional suitability
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is slightly different. First, functional completeness is good, as we can derive information
from the numerous examples, as shown in the course of chapter 3. However, we lack
functional correctness in terms of precision, because we needed to cut things short for
the sake of comprehensibility and brevity. Otherwise, a fully formalized concept would
take several dozen more pages without providing additional findings. As an example,
we used a mechanism known from object orientation for building the sets a model is
made of in our approach, so we can make more detailed statements about elements
and relationships. We even introduced a typing function without defining it in great detail.
Instead, we used this understanding and provided pointers to others who elaborate on
what we omitted. Third, functional appropriateness appears good to our mind, but some
small points could be considered over-engineered. This is because, on the one hand,
there are elaborate possibilities for making use of the operators we introduced, e.g.,
for model recommendation production. On the other hand, this is because of some
functionality that is not obviously used in our approach. The simplest example is our
revert operation for models, but there are several others of this kind. Still, we retained
them in our approach to keep it sound. In the example mentioned, this means an attempt
to show that we implement a Boolean algebra remains possible (cf. [Kög11]).

On a more general note, we did not explicitly discuss some common issues of rec-
ommender systems. First, this regards the cold start problem, i.e., what should a
recommender do if there is no or very little information available to take into account
for model recommendation production. In terms of Amazon, this would be a new user
with an empty profile, and in our terms this would be an empty context. Second, we pre-
sented a dual-mixed hybrid recommender approach in figure 3.36 (p. 141) and discussed
merely more than knowledge-based recommendation system approaches. However,
there are many other recommender approaches available. It also means that we omitted
a discussion on very simple recommender systems, which use features simulated by our
indexes and transfer basic ideas of recommender systems. Given our views on models
and editing sequences, it is trivial to use a common recommender system library. Third,
we omitted discussions on malicious use or other attempts to break our approach. We
did so because, in the current state, they seem negligible, though they are possible.
Ideas on that are provided for regular recommender system and might also work for our
approach [Pic+11; BR11].
Performance Efficiency is the “performance relative to the amount of resources used
under stated conditions” [II11]. First, we did not set time behavior constraints for our
prototype, which implies that its prototypical nature offers potential for improvement.
While this is very true for our HERMES IDE and HERMES SDK, the final knowledge library
introduced in section 5.1 is built to respond quickly. This is why we allow for distribution
to underlying servers. Other parts critical to time behavior are clustering and model
recommendation production. In our prototype, we chose the reasonable way, meaning
that we employed caching whenever reasonable, but did not reinvent the wheel for
clustering. Second, resource utilization is a general issue with Eclipse products. They
are often considered heavyweight, and this is also true for our HERMES IDE and HERMES

SDK product, but compared to a pure Eclipse, we do not impose additional issues, i.e., we
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add no significant impact on its start behavior or general responsiveness. Third, capacity
is only an issue for our knowledge library, and we consider distribution reasonable for
scaling. Regarding our approach from chapter 3, there are no aspects to discuss.
Compatibility is the “degree to which a product, system, or component can exchange
information with other products, systems or components, and/or perform its required
functions, while sharing the same hardware or software environment” [II11]. While this
is not an issue for our approach in chapter 3, our prototype, despite its size, works well
in terms of co-existence. This is attributable to, firstly, the products we provide, if we
think of effects on the system other than the product itself. Second, this is attributable
to OSGi and the architecture that we developed, because they provide the means for
encapsulation that we frequently employed. Third, the interoperability of our prototype
was a minor concern, but data and communication in our prototype adhere to (de facto)
standards. For example, models are based on Ecore, persistence by means of XMI, and
communication with elasticsearch, and the Rexster server is based on JSON.
Usability is the “degree to which a product or system can be used by specified users
to achieve specified goals with effectiveness, efficiency, and satisfaction in a specified
context of use” [II11]. Next to the requirement to obtain a basic solution, the top priority
is stated in the project name: “easily and seamlessly”. We can demonstrate a basic
showcase of model reuse as a process by means of the HERMES IDE in five videos of
approximately 60 s each (total 5:07 min). They illustrate the core features including
downloading, installing, and experiments for each part from our domain architecture.
If we are limited to the three core use cases, the videos last 3:14 min in total. Note
that this is all despite our rather complex foundation. Other than that, the UIs were
continuously evaluated in “desktop surveys” and through a final assessment by “laboratory
experiments” [Woh+12a], e.g., [Sew13; Rot12; DGL14b; Dol14].

With regard to usability sub-characteristics, first, recognizing appropriateness was
no concern for our project, because users need to know if model recommendations
are appropriate for their needs in the first place. Second, we consider learnability as
a positive aspect of our approach, because it does not expose many concepts to the
user despite their need for the approach. Still, reusing models is certainly simpler than
harvesting or evolving them. In particular, the latter comes with quite a few new concepts,
e.g., stages, simple reviews, or review hats, which are not always intuitive. This is why we
provide a lot of user guidance in our software prototype. Third, operability is influenced
by what we mentioned before, because user guidance enhances operability. Other than
that, we consider a quick learning video for harvesting and reusing models to be more
beneficial than elaborate tutorials or handbooks, because in either case a few keystrokes
will expose the necessary functionality. Still, the setup of a deployed system requires
some effort. Fourth, user error protection was of no concern for our prototype, so system
behavior might suffer. Fifth, UI aesthetics are a positive aspect of our prototype for two
reasons. First, many constraints are posed by the development of Eclipse, so we have
little ability to change the aesthetics, and second, we were concerned about a coherent
design for our project and product, as stated in section 4.6 (p. 161). Finally, accessibility
was not a real concern, because we are covering a niche market.
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Note that usability concerns do not entirely apply to our approach in chapter 3. We
only ensured that commonly agreed notations and symbols were employed as much
as possible, and only introduced new symbols if necessary. Hence, we hope that we
achieved a notation with easy learnability, which we foster in our glossary and index.
Reliability is the “degree to which a system, product, or component performs specified
functions under specified conditions for a specified period of time” [II11]. First, maturity
was only a minor concern for our prototype, but we achieved several stable releases
over time and the core functionality rarely needed to be changed. At the time of writing,
we have reached version 1.9.1 for HERMES IDE and SDK according to Eclipse standard
versioning, which starts at 1.0.0. Certainly, this does not mean that we have left the
prototypical state, but that we have proceeded further than simply a proof of concept,
as we indicated early in this chapter. This has a certain impact on, second, availability,
because a prototype is often developed following the head branch, as explained in
subsection 5.2.1. Because of this, a nightly build could put the system out of service
and, third, fault tolerance was not a concern. Therefore, users needed to expect some
downtime. The same holds true for recoverability.

For our approach, it is important that we achieved a high maturity, because we used
our notation for some time while writing down and discussing recommender strategies.
Some of that is leveraged by our dashboard and simulator. Further, we reached a level
of abstraction in our approach that provides the means to use our notation as a language
and formulate higher-level solutions. For example, our recommendation operations
or schema for model recommendation production and candidate generation are such
higher-level solutions (cf. subsection 3.5.7 (p. 138)). Similarly beneficial are indexing
and querying operations or our disambiguation for recommender strategy data sources.
Security is the “degree to which a product or system protects information and data so that
persons or other products or systems have the degree of data access appropriate to their
types and levels of authorization” [II11]. Research prototypes in software engineering
often suffer from security issues unless this is managed, and our prototype is no exception.
This means, at best, we delegated security issues to respective services, i.e., our
underlying Rexster, elasticsearch, and git server. Certainly, this puts our security in a
very good place, but this is only because of the decision to use these servers and not
because we considered it in detail. However, next to authentication with these servers,
authorization is a real issue in our prototype, because anyone can take any role that is
crucial, e.g., for our review mechanism. In other words, any modeler can override issues
and put a model in the fine stage, although this should only be possible for a limited
group of, say, principal modelers. Regarding our approach from chapter 3, we do not
see security as a big issue, but we are aware of privacy issues. These are beyond the
present scope, but are addressed in our concluding remarks.
Maintainability is the “degree of effectiveness and efficiency with which a product or
system can be modified by the intended maintainers” [II11]. Disregarding fundamental
changes, our prototype exposes certain characteristics regarding maintainability that rely
on figure 5.3 and figure 5.4. First, modularity is provided at a low level due to roughly 120k
LOC (cf. figure 5.3) distributed over about 100 plug-ins (cf. figure 5.4) in OSGi bundles
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Figure 5.4.: HERMES Plug-Ins Overview n=196

with strict access policies and APIs-exposing functionality. The number of plug-ins might
appear high, but the framework character of harvesting and reuse (.mmf and .mrf) allow
for plugging in new solutions as needed, which we made use of frequently. On a slightly
higher level, the components derived from our domain architecture, e.g., .harvest.mmf
or reuse.mrf, in combination with their EMF, limit further impact on change propagation.
Still, reusability is low because each component is highly tailored to our domain. However,
analyzability is high because of the plug-ins we introduced and our logging framework,
simulation environment, and the template character of our recommendation operations.
Further, modifiability is backed by adherence to a style guide and partly fostered by our
tests, which support refactoring, i.e., assure functional durability. Finally, we cannot give
an overall statement on testability, because design decisions were not always equally
clever. Some parts are realized for dependency injection, others are hardwired. While
the former certainly fosters testability, the latter is often an obstacle to it.

Note that the numbers in figure 5.4 are meant to provide an overview rather than
being exact, because next to our HERMES IDE and HERMES SDK exist other products that
sometimes feed components back. Hence, the exact Eclipse products vary from time
to time. The baseline for figure 5.4 at the time of writing was 196 plug-ins available
in our HERMES project repository. Some 160 of these were published grouped in 46
features on our P2 update site [Gan14g]. The plug-ins, which we did not ship, are of test,
demonstration, legacy, or branding nature.

The maintainability of our approach appears reasonable, because the operators remain
the same and we designed the whole approach flexibly. For example, alternative models,
even reduced to vertices and edges, induce only obvious subsequent alterations, i.e.,
use the element and relationship sets as they were introduced. The same holds true
for alterations to our knowledge library in case of a new LibraryElement, which needs
new indexing and could require new querying to be plugged in. Even clustering in
harvesting and cross-links suffer mild alterations; they are based on graph structures
after all. Eventually, model recommendation production will need only slight alterations,
because our explanations were rather high level anyway. The picture is different for
the evolution part. This could change entirely, say, if we put snippets of DSLs in our
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knowledge library and need to subject them to quality assurance. This is because a
quality model and respective measures are likely to be different for DSLs.
Portability is the “degree of effectiveness and efficiency with which a system, product,
or component can be transferred from one hardware, software, or other operational or
usage environment to another” [II11]. First, adaptability did not play a big role in our work
because Eclipse, as a platform or framework, provides stable grounds and even supports
legacy Eclipse 3.x realizations through a compatibility layer. Further, the servers we
use, e.g., git, are expected to be long-term systems and were chosen because of that.
Second, installability is considered because we found our realization on well-established
servers and Eclipse. Regarding the latter, this means we provide packaged products for
download that only need extraction, or an available Eclipse can install our components
via a P2 update site [Gan14g], granted a suitable Eclipse. Third, replaceability is not
an issue because we are not aware of a functionally similar system we could need to
replace. There are model repositories, but we would rather exploit than migrate them.

Other than that, certain parts that we rely on in Eclipse might change. For example, a
new class diagram editor could replace the current version. However, this would require
only a changed context, because we use platform-independent operations associated
with the context. Similarly, we designed our prototype with the intention of minimizing
change propagation. Within our prototype, we could picture the following change: Say
we were to introduce another type of LibraryElement. This is quickly introduced in
our knowledge library through code generation, but it results in some further changes,
e.g., additional indexing and querying. However, treating models as sets or operation
sequences remains roughly the same, although a new context is required to handle the
newly introduced LibraryElement properly, i.e., transform them into operations that
can be applied to a canvas. Contrary to that, the whole evolution we have introduced
is rather tailored to our Model, i.e., class diagrams. Hence, we do not consider it as
especially portable in regard of our quality model and respective metrics. The stages,
simple reviews, review hats, and classification of issues and concerns remain valid.

5.2.3. Quality in Use

Contrary to the mostly internal view of software engineering products discussed above,
another perspective is from the outside, or in other words, quality in use [II11]. In some
respects, this perspective mirrors the evaluation approaches mentioned at the start of
this chapter as empirical studies. Hence, there are only a few comments on our approach
from chapter 3. Note that we focus on the reuse component and model recommendation
production here, because they are the eventual goal.
Effectiveness refers to the “accuracy and completeness with which users achieve
specified goals” [II11]. The effort required to gain an accurate and complete solution,
given an ideal model recommendation production, depends largely on two factors: the
input and knowledge library. Further, the benefit depends on certain known elements.
Hence, we could sketch these factors as a mapping, showing that more precise inputs
and more elaborate knowledge libraries lead to accurate and complete results, but cost
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some degree of effort to define. Further, perfect completeness is rather unlikely, because
modeling inherits solution specifics and we aimed at so-called eighty percent solutions.
Efficiency refers to the “resources expended in relation to the accuracy and complete-
ness with which users achieve goals” [II11]. Reused models supposedly need fewer
interactions with an IDE and have higher quality. Hence, finding and establishing the
solution from a reused model offer some supposed savings. Given models of approxi-
mately nine classes, some relationships, attributes, and operations, an assessment of
the actions a modeler needs to undertake to create them, i.e., the length of an editing
sequence, should exceed the actions needed to find, pick, and alter a model for reuse.
This should also be true for our pursued eighty percent solutions. This means that any
measure for human–computer interaction based on Fitts’ Law will expose benefits for
model reuse [AZ03]. Note that this does not take into account the interactions needed to
harvest and evolve models. However, repository projects often lead the argument for
standardization as an additional higher reuse goal [Som11].
Satisfaction is the “degree to which user needs are satisfied when a product or system
is used in a specified context of use” [II11]. Disregarding the quality of data, which we
cannot take into account here, we claim that the entire approach and its implementation
is useful. Not only is this because of the repeatedly stated need for reuse on a conceptual
level, but also because of our deployment experiences. We elaborate on them in more
detail in subsection 5.2.4, particularly because the recommender strategies, which we do
not consider real recommender systems as they do not introduce novelty or surprise, play
a major role in getting our approach used. Still, they establish trust in our implementation
and lower the entrance barrier. Note that personalization, i.e., editing sequences, plays a
role here as well. Next, pleasure is hard to assess because it depends largely on the data
a knowledge library can work with and on the tuning of the recommendation operations.
Finally, we consider comfort as a positive aspect, because we put model reuse at each
users’ fingertips seamlessly (cf. S in HERMES) in both a proactive and reactive manner.
In the former, we realized presentation in the most unobtrusive way we could find, and
in the latter case, we employed well-known user interaction patterns for IDEs, i.e., key
strokes or selections.
Freedom from risk is the “degree to which a product or system mitigates the potential
risk to economic status, human life, health, or the environment” [II11]. Hence, it should
be of little surprise that we did not cover this.
Context coverage is the “degree to which a product or system can be used with effec-
tiveness, efficiency, freedom from risk and satisfaction in both specified contexts of use
and in contexts beyond those initially explicitly identified” [II11]. Note that this meaning
of context differs from our understanding for the recommender framework. Here, it is
meant as an environmental term, so it does not apply to us.

5.2.4. Deployment Experiences

Certainly, the recommender strategies and the data they can build on are at the heart of
our deployments, and we gained some surprising experiences in putting HERMES in use.
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These findings are mostly work-culture-related and do not concern the potential benefits
gained from reusing models. Hence, we introduce some of our recommender strategies
and their respective data sources. Note that we use the term recommender strategy,
although they might not give recommendations in a sense of RSSE, i.e., they might not
follow the entire model recommendation production sequence or the schema introduced
in subsection 3.5.7 (p. 138). For example, they might not perform any ranking or filtering.
Still, they helped us to derive the model recommendation production schema.

The first recommender strategy is very basic, and we call it QuickText. This provides a
means to speed up element creation by leveraging some model operations from subsec-
tion 3.1.2 (p. 37). Therefore, it plugs into our model recommender framework by using
textual inputs from our reactive query box (cf. figure 4.6 (p. 157)) to create elements on
a given modeling canvas. The DSL for processing is very fundamental and we explain
it through a few examples: “new Airport, Passenger, Vehicle” will create three classes
with according names. “new Vehicle < Bus, Car, Train” yields a superclass Vehicle

with three subclasses, as expected; this is also allowed to have several superclasses
for multi-inheritance. “new Airport - Checkin, Gate, Tower” creates an Airport class
associated with three classes. In addition, simple comma-separated lists result in re-
spective elements and asterisks between terms represent composition relationships. As
a gimmick, QuickText also takes already-present elements into account. This is useful
for associating two not yet related but already created elements. Note that elements are
mostly classes for QuickText.

Another recommender strategy, which is relatively fundamental, can be considered
as an accelerated copy’n’paste reuse, and we call it QuickPaste. This uses folders as
data sources and searches them for Ecore models related to the given query. Again,
this recommender strategy plugs right into our model recommender framework with our
reactive query box (cf. figure 4.6 (p. 157)). The query itself can be a regular expression
in Java syntax, and matching models are listed as usual. If picked, the according
model is simply inserted into the canvas, hence the thinking that this is an accelerated
copy’n’paste reuse. Note that a folder can be located on a computer running an Eclipse
IDE, on a shared folder in a network, or in a folder under version control. The latter has
built in support from any recent Eclipse IDE. Note that there is an enhanced version of
QuickPaste called QuickModel that uses Internet search engines to find models. For
example, a Google search of a given query need only be suffixed by “filetype:ecore”
to result in Ecore models only. Further, optional parameters such as “site:eclipse.org”
or “inurl:github”, provide a means of filtering results that are hosted at eclipse.org or
have github somewhere in their URL. With simple adjustments, this brings Ecore models
hosted somewhere in the Internet and indexed by a search engine to our fingertips.
However, this raises copyright issues that we do not discuss here.

A more semantic recommender strategy, which is also not a real recommender (RSSE),
uses WordWeb Online as a database. Given a query, this strategy queries WordWeb
Online and provides its results. These can be terms that are related as synonyms,
are derived forms of the query, or occur in part of relationships to it. Moreover, these
results preserve relationships, e.g., “Male” with a picked recommendation “type of Person”
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establishes both classes, with the latter being the abstract superclass. Note that WordWeb
Online is vital for model recommendation production with the help of synonyms.

Finally, the MoCCa recommender strategy leverages almost the full extent of our
presented approach and makes use of the respective knowledge library. Its content
comprises design patterns [Gam+95], some example models, and additional handpicked
models from various sources. This recommender strategy can be considered a proof of
concept for operation-based model recommenders, although we are certain that more
beneficial content depends on each individual deployment scenario. Because of that,
the HERMES Demo IDE we provide comes with only a few Models.

All the recommender strategies introduced above take inputs from our query box and
work reactively, although model operation sequences can alter them to work proactively.
QuickPaste and QuickModel can use selected or created elements as queries to extend
existing content. Further, our WordWeb Online recommender strategy can leverage
the same and provide results for a selected element. In fact, all these strategies exist,
but present their results in a different UI. Only QuickText is not available as a proactive
recommender strategy.

5.3. Overall Quality Discussion

Thus far, we have shown that our approach from chapter 3 with a semi-formal notation
could serve as the basis for an implementation (cf. chapter 4 (p. 151)), as a language (cf.
start of chapter 4 (p. 151) and bullet points in chapter 5 (p. 165)), and as a notation for
discussion or development (cf. chapter 4 (p. 151) and Appendix A (p. 195)). Further, we
were able to demonstrate that reuse as a process can be subdivided into the components
we explained based on operation-based models. This implements not only a single
aspect of reuse, but its entirety, which some might denote as the lifecycle of model
reuse. Moreover, we found and introduced higher-level solutions in the form of schema
for model recommendation production and candidate generation, which, combined with
our classification of model persistence, enables precise classification for knowledge-
based recommender systems. In a nutshell, this makes our approach a cookbook for
knowledge-based model recommendation production.

Further, we could show how to realize our approach from chapter 3 as a software
prototype that fulfills the requirements we set initially. This means we have created a piece
of software that exceeds proof of concept quality, as we showed by the ISO/IEC 250xx
SQuaRE series. Surprisingly, we found that our subjective quality assessment differs
from those provided by our SonarQube. For example, some things that we consider to
have been covered well were marked down by SonarQube. However, the discrepancy
goes further and shows that we did not sugar-coat things, because SonarQube provided
a positive assessment of some points that we are not so happy about. Still, there is no
reason that this should cause us a headache, because we met our requirements bearing
in mind that we have provided a prototype; quality is relative, after all.

Finally, one extra point is worth mentioning: We attribute a big share of the reason why
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we achieved a fully functional solution to the quality of our development process, which
enabled sufficient quality for our approach and prototype by incremental and iterative
development with feedback loops. Hence, we considered small evaluative studies to
be sufficient for validating our work, although larger field studies would certainly do no
harm. Still, we can claim that we met our derived goals for our project, i.e., the meaning
of HERMES, and for our research as presented earlier in this chapter.

5.4. Contribution to Scientific Knowledge Base

Given our approach, realization, assessment, and experiences, we should ask what our
contribution to the scientific knowledge base is, or how big (X, X, or X) a dent in the
universe of knowledge it will make [Mat10]. Ideally, this should go well with the challenges
stated in section 1.2 (p. 6), our derived requirements noted in section 2.4 (p. 24), and,
eventually, the statements taken from this chapter put in a broader perspective. Keep
in mind that we set off to ease model reuse and achieved this by means of operation-
based models as a foundation for several processing steps leading to knowledge-based
recommender systems.

X Storage Challenge: locating and accessing (by: Φ, Ψ).

X Representation Challenge: warehousing and organizing (by: KL, IεKL).

X Harvesting Challenge: identifying and extracting (by: id|D1 , s Ď m,  si ).

X Evolution Challenge: changing and improving (by: Astaged , t´,˝,`u, QG).

X Retrieval Challenge: querying and retrieving (by: MP).

These challenges, taken from section 1.2 (p. 6) and enriched by our assessment in
the form of checkmarks and the symbols representing our solution (cf. list of acronyms
and symbols from p. 255), approach our requirements from section 2.4 (p. 24), as we
discussed in chapter 4 (p. 151) and Appendix A (p. 195). Hence, we are approach-
ing modeling support with model reuse across its entire lifecycle, from storage all the
way to reutilization by means of operation-based models ( Σ). This encompasses the
challenges of storage, representation, harvesting, evolution, and retrieval. The most
important outcome is a cookbook derived from deployments that comprises schema for
model recommendation production (MP), which are based on solutions regarding the
challenges and provides an architecture to implement a tailored solution. In more detail,
we propose a quality assured knowledge library (KL) capable of sophisticated queries
(Φ) that model recommendation production can rely on. This makes our approach a
task-oriented knowledge-based recommender system (cf. figure 3.39 (p. 149) detailed in
figure 3.36 (p. 141)) working in cycles of recommendation production operations (%ana,
%gen, %rnk , and %fil ) and capable of fallbacks or filtering depending on whether there are
too many or few recommendation items. In fact, it works for knowledge stored as property
graphs with little adjustment.
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Our deployment experiences played a major role when we decided to consider not
only parts of the model reuse lifecycle, but also its entirety. Because parts that are
often considered vital but are excluded, such as harvesting and evolution, contributed
to stabilized operation-based models, which otherwise would possibly only function for
reutilization, and hence break the platform independence or context analysis. As a result,
operation-based models not only function as an approach for the EMOF-reflective API
and Ecore, but all modeling languages derived from them. This makes operation-based
models potential grounds for many modeling languages, both graphical such as UML
with class diagrams and BPMN with process diagrams or textual such as xcore or Xtext.
Note that the latter bridges operation-based models to DSLs, which is no surprise bearing
in mind that, e.g., Xtext uses Ecore models for code generation.

However, this use of models for DSLs, although not apparent to users, points to the
inherent data structure that we are working on: (property) graphs. Therefore, we can say
that we are working on the reutilization (item production) of graph structures and their
meta-information in the form of graphs. Thus, what else can we represent as graphs
and gain benefit from reutilizing them? Turning to DSLs, there does not seem to be
much of a difference between them and source code. Equally, what distinguishes textual
modeling from programming? Concerning the size of items we take into account, i.e.,
several elements at once, there would not appear to be much difference except for the
level of abstraction. This means that the single element recommendations we introduced
could be regarded as elementary code completion and model recommendations could
be regarded as source code snippets or templates. Hence, the novelty in our approach
lies in the extent, which we denote as the relatedness.

Further, from a software engineering point of view, we consider our higher-level opera-
tions in model recommendation production (MP) and their underlying engineering as a
contribution. This is because of the template characteristics they expose. Some may
denote this a referential architecture [Clo+09; TDM10; Mar+15], but we would rather give
a humble assessment and say that we came up with a cookbook for model recommender
systems backed by and derived from a few realized recommender strategies.

To that end, we avoided pointing too much to the so-called features of recommender
systems, because with our sequences of operations and context analysis, it is easy to
transfer basic recommender system knowledge. Consider an index for our introduced
god-class clustering and leveraging that index by a respective context analysis or using
all classes of a model. This is no challenge.

In addition, our operation recording by means of operation-based models also enabled
our proactive quality guidance for knowledge libraries. We consider this to be another
contribution to the scientific knowledge base, because our approach joins a quality model
for models with quality gates and stages for guided model evolution in knowledge libraries.
Certainly, this is coupled to models, because the quality model and respective metrics
are bound to models and class diagrams. However, the evolution approach we have
presented allows for adoption to other artifacts given our quality gates, or stages.

Research on software often stops at the proof of concept stage, and publishing such
software is not always desirable, but we went further with our realization because we
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needed this experience to mature our approach and the schema in particular. Hence,
we provided our entire prototype for free as an open-source project at an early stage.
We picked a rather weak license for our source code, the Eclipse Public License (EPL
1.0), which allows companies to use our results in commercial products even without
remaining open source. In addition, we put some effort into achieving a long-term
supported prototype by choosing the software we rely on carefully. Further, our build
infrastructure is based on an Eclipse Project targeted at long-term support. This should
allow our software prototype and implementation to last a long time, which we consider
beneficial for our framework architecture.

Another contribution is with regard to our deployment experiences, and we should
ask why we have elaborated in such detail on recommender strategies that are not real
recommenders (RSSE). They were means of getting modelers used to model reuse and
making them familiar with our query box. We did so because we found that modelers
are as reluctant as any other users to alter their workflows. In particular, we found that
to be true when they had to expend extra effort, which is inevitable for our 80% model
reuse. We learned this the hard way, because our first deployment, equipped with our
WordWeb Online recommender strategy, and our MoCCa recommender strategy were
not well accepted. In fact, that this modeling support existed was rather quickly forgotten.
However, after we introduced our recommender strategies QuickText and QuickModel,
the usage of our query box improved and, after some time, our MoCCa recommender
strategy was “rediscovered”. In a nutshell, we introduced a low but beneficial-to-pass
barrier so that modelers were willing to adjust their workflow, i.e., work culture.

Finally, a contribution that we consider minor and not directly related to our research is
the adjustments to the “Processes and Practices for Quality Scientific Software Projects”,
as we explained in subsection 5.2.1 (cf. [HLN09]).
Lack of contribution: We are aware of our potential contributions, and see some leads
as being beneficial despite the interference of controlled and confounding variables.
First, we can ask if model reuse pays off and the counting of editing actions, as we
discussed in subsection 5.2.3, provides hard evidence supporting Fitts’ Law [AZ03]. This
is backed by studies concerning model refactoring, which demonstrate the associated
benefit [AMT10; Moh+09; RSA13; SU13]. Additionally, we can argue that model reuse
improves quality in modeling in two respects: (a) it provides approved quality, and (b) it
provides agreed standards. An example is Vorto, which realizes some of our approach
for the “Internet of Things” (IoT) [Ecl15c]. Second, we can ask if model reuse is accepted
by users. Other than the cultural discussion in subsection 5.2.4, this probably comes
down to tool acceptance and data quality. We approached the former as one of our
major requirements, and small user tests confirm that we found a reasonable solution.
Regarding the latter, any company working with models and trying to attempt model
reuse is in charge of data quality, and we provide the necessary means for a good start.
Third, we can evaluate the recommender system algorithms using standard datasets
and metrics. For regular recommender systems, precision, recall, and so on are such
metrics [CKT10; SG11; Ava+14]. Finally, an agreed on set of recorded interactions is
required for comparison, i.e., sequences of model operations in our terms [Rob09].
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Now here I am, a fool for sure,
No wiser than I was before
(Da steh ich nun, ich armer Tor,
und bin so klug als wie zuvor)

J.W.v. Goethe
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The course of this text has researched the surroundings of UML modeling and the reuse
of UML models. More precisely, we limited the scope to the more generic EMOF and
investigated it by means of class diagram representations. Therefore, we established
a vision, defined a set of use cases, and introduced a running example. All of this was
founded on existing and derived research questions. In a nutshell, we can claim that we
could realize our vision in the software prototype shown in figure 6.1.

Person

name : String

gender : Gender

chat ( )

Party

date : Date

start ( )

end ( )

Bartender

blend ( )

0..1- host

1- party

* - guests
Cocktail

name : String

Ingredient

name : String

2..*- ingredients

* - ingredients

Type: Model

CocktailCock tail
Cocktail
Cockroach
Cockapoo

Recommendations: 3

(a) Vision (IBM RSA) cf. figure 1.5 (p. 8) (b) Realization (Eclipse) cf. figure 4.6 (p. 157)

Figure 6.1.: Comparing Searchbox and Preview of Model Completion for Class Diagrams

This screenshot proves no more than the existence of a prototype and neglects the
concepts that underlie our solution. It combines approaches from data mining, model
evolution, and recommender systems, so we were able to develop a coherent solution
for model reuse. However, the foundations lie in the two perspectives we defined for
models. First, we look at models in a tuple format, with every element comprising either
information or relationships. Note that this also provides enough information to derive a
graph from the tuple format. Second, we consider models as operation sequences that
represent editing actions carried out on the abovementioned tuple.
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Each of the domains mentioned above contributes to one part of our approach, and we
gave respective summaries to ensure digestible chunks. Now, we provide a conclusive
and complementary summary to enable a discussion and outlook. This is why we put
subsections 3.1.6, 3.2.6, 3.3.7, 3.4.9 and 3.5.10 (p. 47, 72, 93, 115, 148) together with
chapter 4 (p. 151) and chapter 5 (p. 165), to start our discussion from there.

6.1. HERMES Acts Performed

With the idea of model reuse in mind, we started the HERMES project with a vision of model
completion (section 1.3 (p. 8)). However, it only demonstrated reactive triggering, and
we found out in the course of this research that proactive triggering is vital for software
engineering recommender systems [DGL14b]. This was backed up at roughly the same
time by Murphy-Hill and Murphy [MM14].

This raises the question of where recommendations should come from and how they
should be produced. This leads us to requirements engineering for a model recom-
mender system and the respective research statements, as similarly provided for source
code reuse by Janjic, Hummel, and Atkinson [JHA14]. We refined them as follows (cf.
section 1.2 (p. 6)):

Storage Challenge: locating and accessing (by: Φ, Ψ).

Representation Challenge: warehousing and organizing (by: KL, IεKL).

Harvesting Challenge: identifying and extracting (by: id|D1 , s Ď m,  si ).

Evolution Challenge: changing and improving (by: Astaged , t´,˝,`u, QG).

Retrieval Challenge: querying and retrieving (by: MP).

Certainly, each point could be dealt with in isolation, but our solutions must function
seamlessly with one another. This was already indicated by the repeated use of the term
model library, which we later refined to knowledge library. Other than that, we needed a
sound foundation in terms of a notation for models and respective operations. This came
down to the requirement that our notation of models and operations should support and
enable the reuse of models. This notation, which we denoted as operation-based models,
allowed an approach suitable for dealing with potential information overflow next to the
abovementioned research questions. Note that these research questions deliberately
omitted one requirement for the software prototype, because it could not interfere with
the underlying approach: Usability.

Let us put a pin into usability until later, and first focus on our operation-based models
( Σ

PM

Σ

). We introduced them as a notation for sequences of editing operations (σ) on
models (m). Therefore, we had a tuple or graph perspective of models to begin with, and
altered them successively by sequences of operations. For our later realization, it was
useful that each of these operations had a relative in the EMOF reflective API, which has
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EMF/Ecore as an implementation. Before that, however, our operation-based models
served as a language and sufficiently formal notation on which to found our approach.

Generally, we can say that a model recommendation production works similarly to
regular recommender systems, e.g., for online shops. It uses the same processing steps,
but applies them to different data. While a recommender system for an online shop
analyzes purchased or ranked items to find similar customers and predict the most likely
next product or liked item, our model recommendation production uses editing sequences
to find possible completions in our knowledge library. Note that the information leveraged
for predictions could be denoted simply as an action, because purchasing, ranking, or
editing are actions after all. This already tells us that both approaches do not differ as
much as we might expect.

We found that the major difference between both recommender systems lay in their
nature, which is collaborative filtering for online shops and knowledge-based content
for the model knowledge library. We had to use such a knowledge library because
collaborative filtering would not have delivered the desired results. The best we could
have expected was single additional operations, but we were aiming for model reuse for
edited models rather than elementary extensions of them.

Certainly, our knowledge-based content recommender system needed data to work on,
and we designed our knowledge library (KL) to be a suitable source of data. It comprised
a set of models, each represented as a Model, which was organized by a meta-structure
forming a graph. This structure provided more than Model-to-Model relationships, it
also allowed categorization and grouping. Hence, models could have neighbors in a
meta-structure sense in several respects, and we mirrored this in the granularity and
relatedness of model recommendations, as we explain shortly. Further, additional or
derived properties of models, i.e., features for regular recommender systems, could
be leveraged by the recommendation algorithm realizing a knowledge-based content
recommender system.

In more detail, we have broken down a recommendation algorithm into four steps that
are similarly used by regular recommender algorithms. First, analysis kicked off the
process of model recommendation production and looked into contextual and further
information, e.g., recent editing sequences on the model under consideration. Then,
model recommendation candidate mrc (PMRC) generation extracted potential recom-
mendations from our knowledge library; these were ranked in the next step according to
their properties. Finally, the ranked model recommendations mr (PMR) were filtered to
give recommendation results r. The notable difference to regular recommender systems
lies in how the knowledge library was leveraged as a property graph and how models
were treated. Altogether, this meant model recommendation candidates of different
granularity and relatedness were produced.

It is important to clarify what is meant by granularity and relatedness. The former
refers to potentially beneficial parts of models in our knowledge library, whereas the
latter reflects the potential neighbors in our knowledge library. These were indicated
by relationships in the abovementioned meta-structure. We distinguished between
three kinds of information for direct Model-to-Model relationships called Connectors.
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First, we introduced syntactic information for Connectors, which we called cross-links
(cl). These contain actual syntactical model information that connects adjacent Models
syntactically, e.g., by inheritance or composition relationships, or more. Second, we
explained the semantic information for Connectors, which elaborate on the meaning of
this relationship. Finally, generic information was provided for the purpose of maintaining
the information that the adjacent Models were used together in the past. Other than that,
indirect relationships between Models were denoted by Categorys and Groups, which
played a role in generating model recommendation candidates with a certain relatedness.
As an example, we could assume that a Model was found as a 100% match, i.e., that it
was already present in the currently edited model. Hence, this Model from the knowledge
library would have been of little use as a model recommendation candidate, so the related
Models in our knowledge library became model recommendation candidates regardless
of whether they were categorized or grouped with the abovementioned 100% match.

Now, how did this abovementioned 100% Model get into our knowledge library? To
make our approach more complete, we looked into approaches that identify potentially
beneficial parts and feed them to our knowledge library. We called this harvesting, and
provided support for analyzing a model that is currently being edited given a knowledge
library. This means we leveraged information from our knowledge library and identified
already-known parts (K), so potentially beneficial parts of the currently edited model
could be found by means of structural analysis or clustering. As we suspected this would
be a highly subjective task, we gave the modeler the last word before new parts were
confirmed for the knowledge library. As terms, we talked of submodels (s) as long as
the mentioned parts were not stored in the knowledge library, because they could be
considered submodels of the currently edited model. After they were persisted in our
knowledge library, they became models represented as Models.

Unfortunately, model quality is a rather subjective matter, and models are rarely as
stable in the long run as most software is. In fact, as much as models in our knowledge
library, software applications undergo change over time, and we investigated this as the
issue of model evolution in knowledge libraries. At the same time, this software evolution
often leads to declining quality, so we considered model quality in knowledge libraries
with proactive quality guidance. This was intended to provide one of three stages for each
model, indicating roughly the current quality assessment or the fact that this model had
been taken out of service, i.e., been deprecated. Further, it comprised guidance by means
of continuous feedback mirroring problems in several respects. Some of them, e.g.,
syntactic issues, were automatically resolvable, whereas others, e.g., understandability,
were a matter for manual investigation through simple reviews.

This concludes our summary from a complementary perspective of a software tool realiz-
ing a recommender system that provides an additional reasoning perspective. Certainly,
this software prototype exists, as we discussed in chapter 4 (p. 151), and illustrates how
our approach came to life to provide strong indicators in an implementable approach.
This prototype also served as the basis for validation, feedback, and demonstration,
which we used for illustration purposes. In addition, we were able to demonstrate a basic
showcase of the demo tool in slightly more than three minutes across three videos. We
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took this as an indicator of the simplicity of our tool’s usability and integration, despite the
elaborate approach. Further, it exposed an architecture that is congruent to our HERMES

domain architecture.
At the end of the day, the question arises as to what could possibly remain? The

approach we have presented was developed with model reuse in mind, but the bigger
picture is quite clear. The essence is about recommender systems for graph-based data,
i.e., it presents recommender systems for property graphs. The reason lies in the tiny
detail of how our knowledge library models relationships, i.e., the Connectors. They are
vertices with respect to graph theory, but they are modeling relationships. Certainly, this
is no novelty, and emulating property graphs by extra vertices in regular graphs is exactly
the same idea. Still, this is uncommon for recommender systems leveraging knowledge
libraries modeled as graphs.

6.2. HERMES Acts To Be Performed

The figures that provide an overview of almost each subsection in chapter 3 (figures 3.5,
3.14, 3.23 and 3.33) indicate that many parts are designed for flexibility or extendability.
For the model data framework, the versioning is an example, and replacing the versioning
software used may open opportunities for further research. A more interesting case is
the indexing of the same figure, because we designed the internals to be extendable,
as explained in section 3.2 (p. 48). Similarly, this holds true for the model evolution
framework, because it is meant to be bound to the model data framework. Hence, the
versioning software might be replaced, or, in a more interesting case, metrics and reviews
might be altered, as explained in section 3.4 (p. 94). Both of these alterations would
require an in-depth understanding, because we do not consider them the most thrilling
areas for research. This is different for the frameworks that are responsible for storing
or retrieving data. More precisely, figure 3.14 (p. 74) and figure 3.33 (p. 118) already
indicate with indexes which parts inherit the potential for further research. First, and most
importantly, we see recommender strategies for given contexts and UIs as grounds for
experimenting. Second, we see splitter as having similar grounds for experimentation.
Certainly, the other parts of both frameworks offer great opportunity and flexibility for new
directions, be it new editors, i.e., contexts, or anything else. However, these adjustments
or extensions keep the overall approach mostly as is, although they offer some potential
for new directions, as we now discuss for each part.
Operation-Based Models: The foundation for our approach lies in operation-based
models, and replacing them would be a deal breaker in many respects. Still, deriving a
more formal or informal notation could prove beneficial. The former could serve for the
mathematical induction that we have generally omitted in the course of this text, while
the latter could make operations more readable for human users. Of course, this would
mean transforming our notation into a domain-specific language. Compared to other
textual notations for models, e.g., EMFText or xcore (textual Ecore) [Hei+09; Ste+08],
this would concentrate on changing models.
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Storing Models (store.mdf): As of now, the model data framework has been deployed
for graph databases, relational databases, and version control servers, e.g., git [Tra13].
Although the latter offers only limited functionality, with a distributed system and dedicated
servers responsible for versioning, indexing, and meta-information, functionality need
not be lacking. Still, as we showed earlier, a realization with a pure directory might be
reasonable to get the whole approach deployed (cf. subsection 5.2.4 (p. 179)). Other
than that, some parts, which we only mentioned for the sake of completeness, could be
explored in more depth. Examples are the TemplateInformation [Hu13], the Example,
or extensions of LibraryElement. This is reasonable, because reusable models appear
more often than we might think. Consider a DSL modeled in Xtext [EB10]. Underneath,
the Xtext framework creates an Ecore model and uses it for code generation with the
EMF framework. Therefore, why not investigate these generated models and put them in
a knowledge library? Our meta-structure could also be improved, even with our attempt
to counter the second system effect [Bro75]. We investigated in this direction, but did
not gain the benefit we were hoping for [Fuc11]. Other possible LibraryElements, e.g.,
project documentation, may serve as grounds for successful research [Rei13].

Let us drop the whole knowledge library idea for a moment and consider alternative
persistence or data sources. An example for data sources could be common machine
learning or regular recommender systems, which could provide fundamentally different
data, if fed properly. Still, we found relatively few available data, so we did not go into too
much detail about this. Instead, our focus on model reuse required us to produce model
recommendations and not individual classes, attributes, methods, and the like. In our
terminology, these individuals would roughly map to a small sequence of operations, or
one compound operation if we combined one create and add operation in one compound
operation.
Harvesting Models (.harvest.mmf): As of now, very few marker, splitter, and saver
operations have been realized for our model mining framework, and improving on them
is a direction worth exploring. This not only means research for UML-related models, but
also for other models, which might allow more automation than we achieved. Other than
that, more natural language processing, e.g., for camel case notation, better adjusted
metrics for splitting, or other approaches for creating submodels are possible research
directions. We did not engage in this area because our focus was reutilization in model
reuse. Still, without a decently filled knowledge library, any possible testing falls apart
and makes the approach much less complete.

What is meant by “other approaches for creating submodels”? We only briefly men-
tioned that the general problem of finding submodels could be seen as a (bicriteria)
optimization or a constraint satisfaction problem, but we omitted the formalization. Still,
any relevant solver needs a formalization to be able to work on these problems.
Evolving Models (evolve.mef): We bound our model evolution framework tightly to
our data framework, and locked some settings that might require further exploration.
For example, the quality model we use is not easily adjustable. Certainly, metrics and
reviews are designed to be extensible, but editing support for the quality model would be
desirable [Hil10]. This becomes more apparent for other models or LibraryElements,
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e.g., BPMN models. This would even require a different set of metrics. Finally, our
investigations on generations were not on a par with their possibilities. The concept
proved beneficial for the recommender algorithm, but remains a runtime concept that has
not been fully explored. This is also true for quality changes occurring in generations.
Reusing Models (reuse.mrf): The current status of our model recommender framework
is a job scheduling mechanism for a recommender domain. Thus, it holds together and
moderates between several recommender strategies, contexts, and UIs. In particular,
the first opens a playground for research, because it allows greater focus on the actual
algorithm producing model recommendations. Earlier, we provided and discussed our
experiences, but many alterations and extensions are possible. This is not only true
for algorithms working on the given environment, i.e., making different uses of model
data, meta-information, contextual information, and so forth, but also for alterations to
contextual information or the leveraged knowledge library. While the former could use
research conducted with interaction data or the Mylyn project, e.g., degree of user interest
model, [MFR14; KM05; KM06; MMA14], the latter could explore machine learning or
regular recommender systems, as we mentioned above.

One direction that is certainly worth exploring in practice concerns the link between
models and source code. Often, source code generated from models is only linked
to libraries at a later point, and this is done manually (see generation gap)! However,
EMF offers an element denoted EDataType that can link to arbitrary classes in libraries.
Hence, consider recommended models that not only provide modeled classes, but also
provide links to existing libraries that support a later implementation. Examples could
be login mechanisms or date calculations, as mentioned on the very first pages of this
text. Hence, an element EDataType representing DateTime from the Joda-Time library
(org.joda.time)1 could immediately provide its functionality.

Next to additional data, improved recommender approaches could include so-called
community aspects. These community-supported recommender systems leverage rat-
ings or likes, and we implemented likes as a means of social quality for our models in
our knowledge library. As of now, we have not used this much in our model recommen-
dations production. Still, it is not difficult to integrate “likes” into the ranking, because the
foundation is simple. The general train of thought, however, requires some fundamental
changes if applied. This is because of the way recommender systems evaluate such
information. For example, these systems could try to assess the likelihood of an item
being picked given a certain precondition. This is conditional probability as formulated
by Bayes, and is not considered sophisticated mathematics. For lack of data, we did
not investigate this further, but we found out that simple approaches were often only
marginally outperformed by more complex algorithms, just as naïve Bayes classification
performs reasonably well compared with more recent regular probabilistic recommender
approaches [Jan+11]. However, for performance measures of recommender systems,
the known metrics require full application for an agreed set of data. As of now, there
is neither the data nor an agreement on suitable accuracy and error metrics [Ava+14;
STC14].

1Note that with Java SE 8, it is encouraged to migrate to its java.time library (see JSR-310)
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Other directions for research would continue GUI designs [DGL14b]. We implemented
many GUIs that have not been mentioned in the course of this text, but we did no user
experience testing on them. This is certainly worth exploring from a human–computer
interaction point of view. Other techniques that we investigated include some so-called
quick-fixes, which, at a key-stroke, repair issues. We omitted further investigations
because we see these fixes as being too small to be reuse. They are single actions
for completing or repairing models. Second, the drag’n’complete functionality, which
we have already discussed [DGL14b], is an option for user interaction, and the only
reason we did not investigate this further is the technology. We succeeded with a proof
of concept for an IBM Rational Software Architect, because the basic functionality is
available already, but for our EcoreTools/Sirius-rooted software prototype, this would
have meant a lot of back-porting.
Software Prototype: Our software prototype experienced several deployments and
appeared sufficient for a prototype. Certainly, there are at least two things worth inves-
tigating: First, development in the Eclipse ecosystem is fast and new projects emerge
constantly. This has resulted in recent changes to the GUIs with different handling of
models. We developed a proof of concept for these new GUIs, but, as of now, the
implementation is not fully functional. Second, another glimpse at the software proto-
type reveals a template structure that recurred for certain kinds of information systems.
This concerns our harvesting, data, and reuse framework, which similarly occurs in
software architectures for DSS in the early 1980s and later [Spr80]. For our case, we
need to put these three together with our concept, language, and extension points (cf.
figure 3.14 (p. 74) and figure 3.33 (p. 118)) to gain what some might call a software
referential architecture. In particular, the options mentioned for the harvesting and
reuse framework, i.e., their interfaces, explain why this might be a software referential
architecture, as many believe [Clo+09; TDM10; Mar+15].
Field Studies: We conducted field studies as a means for testing our software, but not
for adding another layer to our evaluation stack. Certainly, this harmed the ability to
conduct an entire evaluation, and this offers potential for research, not only for UML-
related models, but also for BPMN, AUTOSAR, or other types of models. Our short
peek at workflows and related approaches for business process modeling showed that
these environments also have reuse needs [Mic+15]. Unfortunately, one issue must be
addressed first: Although research communities do not get tired celebrating their MDE
success stories [Mus+14], our experience does not back up these findings, but rather
underlines their conclusion that it is “still a niche technology” [Mus+14]. In fact, we found
that MDE is rarely applied, raising the question of why that is. Some answers might
be obvious, while others are not [Mus+14]. Furthermore, we need to ask who keeps
repositories for collections of models? Only they provide grounds for field studies.
Methodology - HAM: Any concept with associated principles should be surrounded with
tools, languages, and methodologies [LL10, System Triangle]. With respect to concepts,
principles, tools, and languages, we submitted a working package that some might call
holistic, but is lacking in terms of a supporting methodology. This does not mean that there
is no methodology, but that, for brevity, we omitted to introduce HAM, our HERMES Agile
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Modeling. Additionally, HAM is not extensive enough to be considered as a real scientific
contribution. It is about reusing models after all, and many modeling methodologies,
e.g., the Unified Modeling Methodology (UMM), discuss this at length. Hence, structure,
tasks, roles, work products, and processes would fail to surprise you (note that this is
Software & Systems Process Engineering Metamodel (SPEM) 2.0 notation).
Data and Model Repositories: The amount of available data is crucial for information
systems intended for reuse, and we have mentioned some publicly available model
repositories and libraries (cf. subsection 3.2.5 (p. 68)). None of these is suitable for
model reuse, as we already pointed out. Hence, a vacuum exists with respect to publicly
available model repositories or better knowledge libraries. However, we are aware that
models are often considered vital company assets worth keeping secret, so maybe the
modeling culture needs to change, as it did for source code. For now, some models are
discoverable through Internet searches.

6.3. Some Final Notes

As a final note on modeling, we agree that it has been around for centuries, but that, as
an engineering discipline, it is still in its infancy. We think so because it is still considered
as an art, but “[f]or conceptual modelling to progress from an ‘art’ to an engineering
discipline, quality standards need to be defined, agreed and applied in practice” [Moo05].
We hope that we have contributed in this respect, because reuse is widely agreed to be a
chance for quality improvement. As a final note on models, we found that they are rarely
shared with communities and that there is little discussion about this. This closed-source
manner is sometimes mentioned as a hindrance to model-driven development, and not
only does it put this work ahead of time, but also endangers model-driven development.
We are aware that model-driven development comes at a certain cost, but we have
also experienced great benefits from it. In some respects, the work preceding this
research should have ensured this cultural change as well as publicly available model
repositories or knowledge libraries, should there not have been many of them already
(see subsection 3.2.5 (p. 68) and [Mus+14]). Thus, the chances are that this needs more
“disruptive innovation” [Chr11].

As a final note on recommender systems, we take a step back and look at the greater
consequences of using search engines and recommender systems. Fisher, Goddu,
and Keil recently found that recommender systems and search engines can result in an
overestimation of our own knowledge [FGK15]. This might not be considered harmful at
first, but a more detailed look unveils that this induces dependence on such systems—not
just in respect of information, but also in its retrieval. Hence, as much as these systems
are means for easing everyday life, they manipulate us at the same time, because they
draw conclusions for us or sometimes persuade us [YGZ13]. Certainly, this is not a new
issue, and artificial intelligence and other domains in computer science have been down
that road. However, it always makes sense to indulge in these discussions: after all, we
must agree that “I doubt, therefore I think, therefore I am” [Hermes Ref. Space Up ].
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AGuidelines for Item Ranking

In section 3.5 (p. 117), we established model recommendation production as a sequence
of operations, as shown in equation (A.1), and introduced model recommendation item
properties that we turned into dimensions of model recommendation production.

MP : %fil ˝ %rnk ˝
nPN
©
i“0

%geni ˝ %ana (equal to equation (3.76) (p. 120)) (A.1)

X-SE
NSΨ( .)

Dimensions of Model Recommendation Production (figure 3.35 (p. 140))

Achieving proper ranking results from %rnk requires insights from candidate generation,
i.e., we instantiate a sentence from subsection 3.5.2 (p. 118) while neglecting its impact:

For a given context (sensitivity), we query our knowledge library (granular-
ity, relatedness), generate model recommendation candidates (extent), and
possibly apply them (impact).

Configuration: We can denote such an instantiation as a vector of leveraged data:

[τ , (ΨpIidq, ...), (%x´sens
gen , ...),(%id

gen, ...), frnk , c-degmax]

An example for reactive model recommendation production configuration looks like:

[reactive, (ΨpIWModelq,ΨpINameq), (%basic-sens
gen , %syno-sens

gen ), (%c
gen, %ch`

gen , %ch´

gen ), f p1q

rnk , 0.8]

This uses the querying mechanism of basic means and synonyms as a fallback. Further,
model recommendation candidates are only produced in a size given by the knowledge
library with direct hits in Models and by Connectors, no matter whether a cross-link is
present. For ranking purposes, a function is given and the completion degree must not
exceed 80% of what is already on the modeling canvas. Another example meant for
proactive model recommendation production is:
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[proactive, (ΨpIWModelq,ΨpINameq), (%iso-sens
gen , %terms-sens

gen ), (%c
gen, %ch`

gen , %ch´

gen ), f p2q

rnk , 0.8]

This queries by means of indexed words from models and names provided by Models.
Therefore, it relies on a multistep query for isomorphic querying or term sensitivity as a
fallback. Results are of a size specified by the knowledge library and include Models
related by cross-links. Admittedly, these resulting items will be very large for a proactive
model recommendation production. Note that, in both cases, the ranking function is not
specified, and we discuss this shortly.
Ranking: As difficult as ranking without ratings is [SS11], pseudocode 3.6 (p. 135) and
equation (3.115) (p. 133) provide a starting point, but neglect many aspects that can
and should be taken into account. Note that this concerns the order for scaling weights,
which we introduced in equation (3.121) (p. 135), and the data at hand.

The purpose of ranking stems from the need to order candidates, and we transfer
this to a mapping from model recommendation candidates to a real number co-domain
between zero and one. To do so, we take into account the strength of indexes, sensitivity,
and extent as given in a configuration. Note that we discussed this earlier and depicted
these dimensions in appendix A. In some respects, we could talk of strong and weak
items expressing the index they result from or explicit and implicit items denoting whether
they are direct matches or result from synonyms.

Hence, we require an assessment for all dimensions. The baseline for this is the
completion degree. The default concerns the model currently being edited and an
extent of “complete” recommendation candidates. In other cases, a sensitivity-related
completion degree is the baseline. This is roughly the same as before, but adjusted with
a factor. This is because the sensitivity introduced in equations (3.93) to (3.98) on page
128 can be less accurate. For example, a query employing synonyms should be ranked
lower than one using basic sensitivity, even if the same number of matching terms are
found. This means that an exact completion degree is calculated for the original model
with synonyms as above, but the result is reduced by a factor. Hence, our extent property
requires an additional factor, because a complete recommendation candidate may be
re-asked to produce candidates of the same category. Certainly, we need another factor
to adjust for the strength of that extent. Note that the order is descending from complete
candidates to either element candidates or category candidates in cases of reactive
model recommendation production. In the case of proactive model recommendation
production, the descent is ordered from element to complete. Finally, the strength of an
employed index is to be taken into account if the default index is abandoned. The reason
for this lies in the fact that a used index can leverage manually added meta-information,
e.g., from a description.

With these distinctions, we can discuss functions to provide factors between zero and
one for adjusting the completion degrees to become sensitivity completion degrees, index
strengths, and extent strengths. While exact values are often difficult, a good starting
point is a simple quadratic (x ÞÑ 1´ x2 cf. figure A.1a) or an exponential function, as
depicted in figure A.1. The latter (px , yq ÞÑ e´x2´y2 cf. figure A.1b) shows that, for optimal
values at the origin, a maximum of one is reached in the middle and an equal decrease
occurs in every direction, i.e., axis. This is the behavior we are looking for, so we need to
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map our inputs accordingly. For example, we can use the order of the given indexes and
extents to map each to an interval between zero and one, starting at zero and continuing
equidistantly.

Altogether, we obtain a template algorithm as depicted in pseudocode A.1. Note that
this scaling has an incompatible interface compared with line 14 in pseudocode 3.6 (p. 135).
1 // r is pεidM , εM, querytermq with format pEM, EM, strq
2 double ranking(ModelRecommendationCandidate r){

3 // is "Complete" candidate, i.e., not Element, ..., Category

4 if (r.candidate == r.originalModel) {

5 // could be filtered eventually if ě c-degmax
6 return completionDegree(r.candidate);

7 else {// is Element, Submodel, Connector, Group, Category

8 return sensitivityCompletionDegree(r.originalModel) *

9 indexStrengthOf(r) *

10 extentStrength(r.candidate, r.originalModel);

11 }

12 }

Pseudocode A.1: Ranking Candidate

Finally, recommendations should offer a “surprise” to some extent [RW14]. Hence, it
could be a good idea to provide one or more random items that will not be shown to the
user, because the number of items for a presentation has already been exceeded. This
is a dangerous endeavor, because these items must be further explained to the user so
that they do not lose confidence in the system [YGZ13].
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Figure A.1.: Example for Scaling Functions
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Glossary

basic operations (Πb) are means of
elementary editing for models.
They comprise create (πc), prop-
erty set (πpset ), relationship assign
(πrass ), and delete (πd ). (equa-
tion (3.4) (p. 38))

candidate is an outcome of model recom-
mendation generation that is fed to
the ranking and kept as an element
of the tuples denoted mrc. (equa-
tion (3.89) (p. 127))

Category is a concept for arranging Li-

braryElements in a knowledge li-
brary. (figure 3.6 (p. 51))

clustering (graph) is an algorithm produc-
ing submodel candidates.

concept reuse is the counterpart to soft-
ware reuse concerning conceptual
artifacts, which are project indepen-
dent. (cf. subsection 2.3.3 (p. 20))

Connector is a concept for relating Li-

braryElements in a knowledge li-
brary. (figure 3.6 (p. 51))

context is the static environmental infor-
mation. (page 124 and equa-
tion (3.78) (p. 124))

cornflower blue is a popular color in LATEX,
and is sometimes the color of the
“better tie at home”.

cross-link is a syntactical element of a
Connector and can restore rela-
tionships and other elements that
were present before the adjacent
Models were separated. (subsec-
tion 3.3.3 (p. 82))

danube blue is a popular color used by the
IBM Rational Software Architect.

dependency graph (DG) is a graph de-
rived from a model either in sim-
ple or regular form for clustering.

(pseudocode 3.2 (p. 77))
editing sequence describes the editing

process subdivided into create,
delete, select, and all in operation-
based format of the currently edited
model, and is part of the con-
text in editing as Σx. (equa-
tion (3.82) (p. 124))

end of the day “... and here it is, the ac-
tual end of the day” [CHM10, End
of LFA Review].

evolution is the process of modification of
successive generations. (cf. sub-
section 3.4.2 (p. 95))

evolution graph provides a structure
for evolving models as se-
quences of snapshots. (subsec-
tion 3.4.2 (p. 95))

evolution stage automaton struc-
tures and builds the founda-
tion for changing stages. (fig-
ure 3.25 (p. 100))

evolution step summarizes editing oper-
ations so that a change in stages
occurs. (subsection 3.4.2 (p. 95))

extent is subdivided into granularity and
relatedness for model recommen-
dations. (table 3.11 (p. 121))

decent describes a stage that is provisional.
(equation (3.68) (p. 100))

fine describes a stage that is stable.
(equation (3.69) (p. 100))

granularity is one distinction among the
extent of model recommendations
when parts of models of a Model

from a knowledge library are lever-
aged. (table 3.11 (p. 121))

Group is a concept for arranging Li-

braryElements in a knowledge
library. The LibraryElements
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might have been used together be-
fore, but this is not necessarily the
case. (figure 3.6 (p. 51))

Hermes is an Olympian god in Greek re-
ligion and mythology, considered
a quick and cunning god moving
freely between the worlds of the
mortal and the divine, e.g., as an
emissary and messenger of the
gods. He has also been viewed
as the protector and patron of, e.g.,
invention and trade, roads, bound-
aries, travelers, and thieves. In
some myths, he is a trickster and
outwits other gods for his own sat-
isfaction or for the sake of hu-
mankind.

HERMES is the research prototype im-
plementing operation-based
model recommender systems
(chapter 4 (p. 151) and sec-
tion 4.6 (p. 161)). The name is an
acronym summarizing the project
goals: “Harvest, Evolve, and Reuse
Models Easily and Seamlessly”.

Indexer is a concept for processing data
elements in knowledge libraries for
supporting Querys.

Junit also known as Iunit, was a minor
ancient Egyptian goddess; unre-
lated to JUnit a testing framework
for Java.

knowledge library is short for an en-
hanced model graph library. It com-
prises vertices (KLV), edges (KLE),
and indexes (KLI). The vertices
are LibraryElements, Models,
MetaInformation, and so forth.
(table 3.4 (p. 50))

library is a collection of indexed datasets.
(cf. table 3.4 (p. 50))

LibraryElement is a concept represent-
ing the actual information per-

sisted in a knowledge library. (fig-
ure 3.6 (p. 51))

Example is a concept explaining a Model

exemplary. (figure 3.6 (p. 51))
marker is part of the harvesting framework

for finding known parts (K).
MetaInformation is a concept in a knowl-

edge library providing additional in-
formation regarding quality. (fig-
ure 3.6 (p. 51))

metamodel is the model of a model, or
an abstraction of the modeled con-
cepts. (cf. subsection 2.3.1 (p. 16)
and subsection 2.5.1 (p. 28))

model is an abstraction of real-world el-
ements. In our case, the term
is often a synonym for UML
class diagrams. (cf. subsec-
tion 2.3.1 (p. 16))

Model is a subconcept of LibraryElement
representing actual Ecore models.
(figure 3.6 (p. 51))

model elements are the basic building
blocks of models, e.g., classes and
attributes; by and large, they com-
prise MOF or Ecore concepts. (ta-
ble 3.1 (p. 34))

model operations are our means of rep-
resenting the editing sequences
of models. They comprise basic
and supporting operations. (equa-
tion (3.3) (p. 38))

model recommendation is an information
item of estimated value for model-
ing. (see page 119)

model relationships are the basic con-
nectors of models, e.g., refer-
ences; by and large, they comprise
MOF or Ecore relationships. (ta-
ble 3.2 (p. 36))

model reuse is a process implementing
reuse for model. (cf. subsec-
tion 2.3.3 (p. 20))
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model, operation-based see operation-
based model

ontology is a formal, explicit specifica-
tion of a shared conceptualization
[Gru93]. (subsection 3.2.4 (p. 65))

operation-based model ( Σ) is a represen-
tation of a model in a sequenced
manner. It comprises model oper-
ations. (equation (3.1) (p. 36))

operations – see model operations or rec-
ommendation operation

plug-in name for an OSGi bundle in Eclipse.
(cf. subsection 2.5.1 (p. 28))

proactive describes model recommenda-
tion presentation when deemed
appropriate [Rob+14, Glossary].
(subsection 3.5.3 (p. 122))

proactive quality guidance means to
qualitatively guide model editing.

production is to be considered in the con-
text of model recommendations
and comprises the steps under-
taken to gain model recommenda-
tions. (MP equation (3.77) (p. 120))

production sequence comprises opera-
tions undertaken during model rec-
ommendation production. (equa-
tion (3.76) (p. 120))

purpose is an attribute of MetaInfor-

mation meant to provide a
lightweight specification. (fig-
ure 3.6 (p. 51))

quality characteristic are leaves in a qual-
ity model. (figure 3.26 (p. 102))

quality gate (figure 3.27 (p. 103)).
quality measure are means for assessing

model properties.
Query is a concept for leveraging data pre-

pared by Indexer for retrieval.
reactive describes model recommenda-

tion presentation when requested
[Rob+14, Glossary]. (subsec-
tion 3.5.3 (p. 122))

recommendation operation helps subdi-
vide model recommendation pro-
duction into analyze, generate,
rank, and filter operations. (equa-
tion (3.71) (p. 119))

recommender system is an information fil-
tering system for “big data” tasks
attempting to predict preferences
or actions based on known pref-
erences or actions from histori-
cal/similar data. (cf. subsec-
tion 2.3.2 (p. 19))

relatedness is one distinction among the
extent of model recommendations
when non-syntactical information
from a knowledge library is lever-
aged. (table 3.11 (p. 121))

repository is usually a storage location. (cf.
subsection 2.3.1 (p. 16))

reuse is commonly used as a sloppy ab-
breviation for reutilization. More
precisely, it is a multistep process
leading to reutilization. (cf. subsec-
tion 2.3.3 (p. 20))

reutilization is the last step of model reuse,
considering it a process and putting
models in a new environment. In
general, the term reuse is used as
a synonym for reutilization, which
is more precise.

saver is part of the harvesting framework
for persistence.

schema are best practices for model rec-
ommendation production and gen-
eration. (subsection 3.5.7 (p. 138))

sensitivity comprises one type of model
recommendation production op-
eration concentrating on query-
ing a knowledge library. (equa-
tions (3.93) to (3.98) (p. 128))

sequence (evolution) is a successive se-
ries of model snapshots. (subsec-
tion 3.4.2 (p. 95))
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sequence can be a summarizing concept
for model model operations as a se-
quence of operations, model evo-
lution as an sequence, model rec-
ommendation production as a pro-
duction sequence, or model editing
sequence ( Σx).

sequence of operations (σ) is a conve-
nient concept to summarize more
operations that are meant to be
read, ordered from right to left.
(equation (3.15) (p. 39))

snapshot (evolution) is a point in time over
the evolution of a model. (subsec-
tion 3.4.2 (p. 95))

software reuse is the counterpart to con-
cept reuse concerning software ar-
tifacts, which are project specific.
(cf. subsection 2.3.3 (p. 20))

splitter is part of the harvesting framework
for creating submodel candidates.

stage (evolution) describes the evolution

status of a model with respect to
reusability and quality.

submodel is a subset of a model that is
syntactically complete and sound.
(subsection 3.3.2 (p. 76))

submodel candidate is a potential sub-
model produced by clustering to
be manually altered or stored as
a valid model represented by a
Model in a knowledge library.

supporting operations (Πs) are means of
helping elementary editing for mod-
els. They comprise type identifi-
cation (Γ), find in models (ϕ), up-
date (πu), and revert (π´1). (equa-
tion (3.9) (p. 38))

TemplateInformation is a concept
for generalizing Models. (fig-
ure 3.6 (p. 51))

vague describes a stage that is sketchy.
(equation (3.67) (p. 100))
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