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Abstract
Nowadays, software plays a crucial role in the development of embedded products. The
product’s design and development process can be significantly simplified by relying on
reusable software components and modern general-purpose hardware. However, such
off-the-shelf components are typically not able to provide real-time support required in
the industry. To address this limitation, different approaches were presented in the past
to enable the use of high-level software while retaining precise timings during the inter-
action with the physical environment. For example, real-time capable Linux running on
general-purpose hardware is widely used in industrial automation today. Furthermore,
Linux-based platforms like Android are continuously gaining popularity in all sectors of
the market. Due to its intuitive user interface and a wide range of supported hardware,
Android is already broadly deployed in different industrial use cases. However, Android
devices used in embedded products are still restricted to serving the purpose of pure
data visualization and handling of the user input. To extend Android’s field of appli-
cation to time-critical domains, this work presents a holistic approach for combining
the performance of modern general-purpose off-the-shelf hardware with predictability
and determinism of a real-time capable operating system. Instead of adopting common
methods for limiting the real-time support to the Linux kernel and native applications,
it provides a global perspective on Android’s architecture including the Linux kernel,
main high-level components and their interaction in time-critical scenarios.

The first part of this dissertation covers enhancements for minimizing the process
scheduling latency using the PREEMPT RT patch. Since Android is built upon Linux, in-
troducing a fully preemptible kernel and a high-resolution timer enables a more precise
process management. This approach allows Android to achieve bounded scheduling
deviations in the same order of magnitude as industrial Linux-based systems. In the
second part, it is shown that Android’s original memory management may cause unpre-
dictable suspensions of running applications or even automatically terminate long-term
background processes. To address this issue, the platform is extended with a real-time
capable garbage collector based on reference counting. The new collector operates con-
currently to real-time threads in a non-blocking incremental manner, avoiding undesired
interferences. Furthermore, the proposed modifications provide additional protection for
persistent background services. Finally, this thesis implements enhanced methods for
data exchange between separate Android applications. Being seamlessly integrated into
the platform, new mechanisms allow predictable communication and bounded delays for
delivering arbitrary messages across process boundaries.

A detailed evaluation of the introduced platform changes highlights the effectiveness
and scalability of the presented approach. The resulting system performs better in terms
of responsiveness and determinism, while staying fully compatible with standard An-
droid components and third-party applications. By combining powerful general-purpose
hardware and high-level programming paradigms, Android applications are now able to
additionally fulfill strict timing requirements. This allows utilizing the advantages of
Android in industrial use cases, which facilitates the development of easily extendable
and less complex embedded products with intuitive user interfaces.
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Zusammenfassung
Heutzutage spielt Software in der Entwicklung eingebetteter Systeme eine besonders
wichtige Rolle. Obwohl der Einsatz von Standardhardware und wiederverwendbaren
Software-Komponenten die Produktentwicklung bedeutend beschleunigen kann, erfüllen
diese in der Regel nicht die industriellen Anforderungen an Echtzeitfähigkeit und Ro-
bustheit. Aus diesem Grund wurden in der Vergangenheit mehrere Ansätze vorgestellt,
um auch mit High-Level-Software präzise Timings im Umgang mit der physischen Umge-
bung zu erreichen. So sind echtzeitfähige Linux-Systeme auf Basis von Standardhardware
in der Industrie bereits weit verbreitet. Auch Linux-basierte Plattformen wie Android ge-
winnen kontinuierlich an Popularität in unterschiedlichsten Marktsegmenten. Dank der
intuitiven Benutzeroberfläche und der zahlreichen kompatiblen Hardware-Plattformen
findet Android heute zunehmend Anwendung in der Industrie. Bisher beschränken sich
solche Anwendungen jedoch auf die reine Visualisierung von Programmdaten und Nut-
zerinteraktion. Die vorliegende Dissertation präsentiert einen ganzheitlichen Ansatz,
um das Einsatzgebiet von Android auf zeitkritische Systeme zu erweitern, indem die
Leistungsfähigkeit moderner Standardhardware mit der Vorhersagbarkeit eines echt-
zeitfähigen Betriebssystems kombiniert wird. Anstatt die Echtzeitfähigkeit wie üblich
auf Linux zu beschränken, wird ein komponentenübergreifendes Lösungskonzept vorge-
stellt. Dieses umfasst sowohl den Linux-Kern als auch die wichtigsten Komponenten von
Android und deren Interaktion in zeitkritischen Szenarien.

Im ersten Teil der Arbeit wird der PREEMPT RT Patch eingesetzt, um die durch den
Prozess-Scheduler verursachte Latenzen zu minimieren. Verbesserte Unterbrechbarkeit
des Linux-Kernels sowie ein hochauflösender Timer ermöglichen auch unter Android ein
präziseres Prozessmanagement. Damit können die maximalen Scheduling-Abweichungen
für Android-Apps auf die Größenordnung von industriellen Linux-basierten Systemen
beschränkt werden. Im nächsten Schritt werden die unvorhersehbaren Unterbrechungen
von laufenden Anwendungen durch die automatische Speicherverwaltung untersucht.
Dieses Problem wird durch die Einführung eines echtzeitfähigen Garbage Collectors ba-
sierend auf Reference Counting gelöst. Dieser arbeitet parallel und nicht-blockierend,
sodass die Ausführung von Anwendungen mit Echtzeitanforderungen nicht mehr beein-
trächtigt wird. Die eingeführten Änderungen bieten zusätzlichen Schutz für persistente
Hintergrunddienste. Weiterhin präsentiert diese Arbeit erweiterte Methoden für einen
zuverlässigen Datenaustausch zwischen laufenden Anwendungen. Diese Erweiterungen
werden nahtlos in die Plattform integriert und ermöglichen eine vorhersagbare Kommu-
nikation zwischen separaten Android-Prozessen mit beschränkten Verzögerungen.

Eine detaillierte Auswertung der vorgeschlagenen Modifikationen belegt die Effekti-
vität und Skalierbarkeit des gewählten Ansatzes. Das neue System zeigt eine bessere Re-
aktionsfähigkeit und bleibt vollständig kompatibel mit Standard-Android-Komponenten
und existierenden Anwendungen. Dadurch können Android-Anwendungen strikte zeit-
liche Anforderungen erfüllen und gleichzeitig von leistungsfähiger Standardhardware
und höheren Programmiersprachen profitieren. Der Einsatz einer solchen echtzeitfähigen
Android-Plattform ermöglicht die Entwicklung von weniger komplexen eingebetteten
Produkten in neuen industriellen Szenarien.
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1 Introduction
Technological trends emerging in the market of consumer electronics can have a major
impact on the industrial domain. For instance, the importance of embedded off-the-
shelf products based on Android, with intuitive interfaces and extended mobility, has
continuously increased in all market segments during the last decade. Other examples of
such trends include reusable open-source components, flexible general-purpose hardware
and agile project management techniques, which became popular in the development of
high-level software. Their combination can significantly simplify the development pro-
cess and improve the quality of the resulting product. However, embedded systems are
typically characterized by a strong coupling between hardware and software, which lim-
its the integration of modern approaches. Thus, the development process for embedded
systems still largely relies on expert knowledge. Due to strict timing requirements, em-
bedded software is commonly implemented using low-level or specialized programming
languages, while its testing heavily depends on proprietary simulators.

A recent study of the worldwide market for embedded systems shows that general-
purpose Linux-based platforms like Raspberry Pi and Beagle Board belong to the most
popular hardware platforms for proprietary embedded projects in 2015 [122]. Addition-
ally, operating systems in general – and real-time operating systems in particular – are
expected to be the greatest technological challenge in the future (see Figure 1.1). Al-
though only 12% of respondents identified this as a challenge in 2013, this value grew
during 2014 (17%) and reached 26% in 2015. At the same time, the percentage of all
projects using an open-source OS/RTOS increased from 31% in 2012 to 39% in 2015.
This study also illustrates that new embedded products are more likely to include a
graphical user interface.

Some of these challenges can be addressed by introducing a general-purpose operating
system able to fulfill real-time requirements. Off-the-shelf operating systems like Linux
can be easily combined with modern concepts of software development, resolving the cur-
rently existing trade-off between flexibility and development efficiency [27]. Furthermore,
Linux is also compatible with common techniques for process and system virtualization,
which are designed to improve the system’s predictability and determinism. Combining
real-time capable virtual machines with a real-time Linux kernel is a widely accepted
practice in the industry, not least because it enables the usage of high-level programming
languages like Java [115]. Based on Linux, the Android platform inherits its flexibility
and additionally provides a rich application framework for various use cases. As it is
optimized for hardware with limited resources, Android can be deployed on a wide range
of different embedded devices, including low-end general-purpose hardware. Although
current trends indicate a rising popularity of Android in the embedded field, there exists
no holistic approach for extending the platform with real-time support.
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1 Introduction

OS/RTOS is 2013 12%
a technological 2014 17%

challenge 2015 26%

Portion of 2013 34%
open-source OS 2014 36%

in products 2015 39%

GUI is 2013 41%
included in the 2014 41%

next product 2015 49%

Figure 1.1: Embedded market trends between 2013 and 2015 [122].

1.1 Objectives and Contributions
This thesis implements a conceptual approach for extending the general-purpose Android
platform with soft real-time support. Since there is no comprehensive documentation
about the internals of Android’s architecture, the platform functionality shall be an-
alyzed in order to identify the main sources of unpredictable system behavior. The
determined bottlenecks shall be resolved to ensure bounded execution overhead caused
by the respective system component. The primary goal is the reliable execution of
Android applications on off-the-shelf embedded devices with minimal system latencies.
The secondary goal is preserving Android’s original application model and allowing con-
ventional applications written in the Java programming language to benefit from the
new real-time capable execution environment. The key contributions supporting the
objectives of this work are the following.

• Evaluation of techniques to fulfill real-time requirements on the Android platform:
This includes the identification of high-level components responsible for unreliable
process behavior in Android and the discussion of possible extension strategies.

• Integration of the preemptible kernel from industrial real-time Linux into Android:
This is accomplished with a new simplified approach of applying the RT PREEMPT
patch to Android’s Linux kernel. It allows the usage of priority-based scheduling
for Android applications, leading to significantly reduced scheduling latencies.

• Design and validation of the CPU frequency locking mechanism for real-time pro-
cesses: The presented approach allows reducing non-deterministic scheduling la-
tencies caused by Android’s dynamic CPU frequency scaling.

• Development of a non-blocking garbage collector to avoid unexpected suspensions
caused by the memory management in Android: It allows concurrent reclaiming
of memory and guarantees an undisturbed execution of real-time threads.

2



1.2 Thesis Outline

• Analysis of the memory adjustment values and extension of the internal process
management: This avoids the termination of background real-time processes by
the Low-Memory Killer, which is used by Android for memory usage optimization.

• Implementation of the priority inheritance during remote procedure calls using the
Binder driver: This effectively bounds the invocation delays between separate pro-
cesses and allows real-time applications to incorporate functionality implemented
as part of other applications in a controlled manner.

• Investigation of Android’s internal architecture for IPC messaging and integration
of an explicit prioritization mechanism for broadcasted parallel Intents: This en-
sures the correct ordering of messages transmitted across process boundaries and
significantly reduces blocking times during the internal data delivery.

• Evaluation of the practical applicability of the presented approach in the industrial
domain: It analyzes the effectiveness of the proposed changes and discusses the
effort required to make a general-purpose platform from the domain of consumer
electronics eligible for industrial use.

1.2 Thesis Outline
The remainder of this dissertation is structured as summarized in the following. First,
Chapter 2 presents an overview of the relevant background information, including the
state-of-the-art design methodology for embedded systems and currently available soft-
ware and hardware platforms. Furthermore, it covers the most important components
of the Linux kernel and the Android platform, as well as the main aspects of real-time
systems. Then, Chapter 3 summarizes current industrial trends and discusses the im-
portance of open-source-based high-level platforms. It includes the analysis of possible
approaches for augmenting Android with real-time support and the integration strategy
pursued in this thesis. Chapter 4 focuses on the optimization of the underlying Linux ker-
nel. In addition to improving the kernel’s preemptibility with PREEMPT RT, a new method
for CPU frequency locking is integrated in order to minimize scheduling latencies. The
following Chapter 5 discusses the elimination the undesired process suspensions caused
by the automatic memory management. Chapter 6 and Chapter 7 extend the soft real-
time support of the new platform by predictable methods for inter- and intraprocess
communication. Each of the mentioned chapters also presents the corresponding related
work and experimental testing results. A general evaluation is presented in Chapter 8.
It addresses the question of the integration overhead required for the introduction of a
more predictable system behavior and provides a discussion of advantages and limita-
tions of the resulting platform. Finally, Chapter 9 concludes this thesis and sketches
possible directions for future work.
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2 Preliminaries
This chapter summarizes the basic terminology and fundamental principles used in the
thesis. Section 2.1 provides a brief introduction to the development of embedded sys-
tems, including the specific aspects of software design methodology and an overview
of embedded general-purpose hardware. After that, Section 2.2 covers fundamentals of
Linux-based operating systems beginning with the Linux kernel itself in Section 2.2.1.
The second part in Section 2.2.2 focuses on the general information about the Android
platform, its global architecture and introduces important implementation details. Fi-
nally, requirements and solutions for real-time systems are presented Section 2.3.

2.1 Development of Embedded Systems
Embedded systems are computer systems embedded into complex cyber-physical envi-
ronments. They are used to perform a set of predefined functions, running on hardware
with constrained resources [110, 117]. Embedded systems are one of the most important
yet hidden parts of the modern world. In 2008, for example, the number of microproces-
sors per person in developed countries passed 30. More than 98% of all manufactured
microprocessors are used for embedded systems and not for classical desktop computers
[28]. Today, embedded systems can be found in most electronic products: microwave
ovens, TVs, mobile devices, industrial machinery and automotive applications. Regard-
less of whether the embedded component was designed to be autonomous or interactive,
its main purpose is linking physical processes with computational logic and data process-
ing. Since the correct reaction to external and internal events determines the behavior of
the embedding system, close cooperation between software and hardware components is
an essential factor. Depending on the system requirements, embedded systems are typ-
ically implemented with application specific integrated circuits (ASIC) or single board
computers (SBCs) by using a microcontroller or a system on a chip (SoC).

Recent technological improvements allow modern embedded systems to be more pow-
erful and interconnected than ever before, making it difficult to distinguish between
embedded and general-purpose devices. Cheap SBCs like Raspberry Pi1 or ODROID2

(see Figure 2.1), which used to be the embodiment of embedded hardware platforms,
are getting powerful enough to run general-purpose operating systems like Linux or An-
droid. The most prominent example for such a rapid improvement can be found on the
market for modern mobile devices. They emerged from originally serving a dedicated
purpose of voice transmission to full-fledged computer systems, being introduced to a big

1Raspberry Pi homepage: https://www.raspberrypi.org/
2ODROID homepage: https://www.hardkernel.com/
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(a) Raspberry Pi 3 Model B (b) ODROID XU4

Figure 2.1: Popular general-purpose hardware for embedded projects.

range of different use cases. Nevertheless, smartphones and tablets are still submitted
to constraints like limited battery lifetime and memory limitations, when compared to
general-purpose systems as desktop computers. Main differences between the properties
of general-purpose systems and embedded systems are summarized in Table 2.1.

Despite of various use cases available for mobile devices today, their form factor and
the limited power supply are still highly important constraints. Because of these lim-
itations – and considering the historical origination of smartphones as single-purpose
devices – they will be classified as embedded devices in context of this thesis. Common
technological challenges and rising complexity of cyber-physical products are further
blurring the borders between these two classes of devices. A comprehensive survey3 on
recent trends in the development of embedded systems has shown a high increase in
networking capabilities and the number of common interfaces for data exchange in the
past years. About 62% of all embedded devices are already connected to the internet
or planned to be connected in the near future. This implies the need for comprehen-
sive methodology and standard software components, which can be easily reused in new
applications without jeopardizing security or increasing the production time.

2.1.1 Design Methodology for Embedded Products
As described in the last section, software and hardware components are tightly coupled
in embedded systems. Generally accepted methods like Scrum [111] from software devel-
opment are typically not effective for embedded software-hardware projects. The same
applies to approaches arising from the domain of pure hardware design. Naive processes
for product development typically begin with detailed hardware planning to meet the
project requirements. The software part comes in only after the hardware (prototype)
is manufactured and tested. This leads to high costs of changes [44], if incompatibilities
between hardware and software are discovered in later phases. Ronkainen and Abra-
hamsson [103] have introduced the term hardware-related software for embedded systems,
in which the functionality is split between hardware and software implementation during
the development process.

3Survey results: http://www.barrgroup.com/Embedded-Systems/Market-Surveys/2016-Safety-Security/
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Property General-Purpose Systems Embedded Systems
Size The dimensions of general-

purpose workstations can be
freely selected to fit the hard-
ware which able to provide the
required performance.

Embedded systems have to seam-
lessly fit into the form factor of
the specific product. Mobility
aspects make smaller sizes even
more important.

Power supply Devices with a stationary instal-
lation can be easily connected to
a powerful energy source using a
power supply cable. They can
also make use of active cooling.

Mobile embedded systems can
only rely on a small battery. Even
with permanent power supply ac-
tive cooling is often not possible
because of the limited space.

Performance Powerful CPUs and high amount
of RAM is common for modern
general-purpose systems, allow-
ing them to be used for a variety
of different tasks.

Only limited resources are avail-
able for data processing and con-
nectivity. Higher performance on
mobile devices leads to a shorter
battery time.

Connectivity High-speed communication se-
tups utilizing optical cables or
multiple antennas are possible.

Limited resources make the inte-
gration of full-fledged communi-
cation stacks difficult.

Table 2.1: Property comparison between general-purpose and embedded systems.

Greene has identified the lack of a systematic design approach in projects developing
embedded systems [42]. Separate processes for design and development of hardware and
software may result in a less optimal final product [36]. As embedded systems have a
strong coupling with the physical world, a holistic design process is required to enable a
coherent consideration of different perspectives. To overcome this challenge, a number
of different approaches have been introduced in the past. Functional decomposition [72]
was one of the first methods proposed specifically for designing real-time systems. Hen-
zinger and Sifakis [52] postulate that such approaches have to consistently integrate
techniques from multiple worlds including software and hardware development. This
requirement is fulfilled by hardware-software-co-design [50, 118], which ensures the si-
multaneous consideration of both hardware and software [126] for each separate feature.

Growing performance of modern SoCs enables the use of supportive tools and advanced
programming paradigms, which typically require more resources at runtime. Besides of
low-level and specialized languages, object-oriented programming languages like Java
are increasingly used in embedded programming [32]. However, this can be explained
by the popularity of the language itself, rather than its suitability for this particular
purpose. Nevertheless, this trend did shift the focus of embedded projects from hardware
development to software development. Using object orientation and design patterns
in embedded products based on powerful general-purpose hardware can decrease the
product development time [26, 127], while the overall product quality increases.
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2.1.2 General-Purpose Embedded Hardware
As described in previous sections, the nature of embedded systems is interfacing and in-
teracting with its physical environment. Changing requirements during any development
stage often not only affect the software part, but also lead to adaptations of the hardware
layer. Especially if working with custom designed printed circuit boards (PCBs), this
may increase both the production cost and the overall product development time.

The modern market for embedded platforms offers a number of different FPGA- and
SoC-based solutions. Advanced applications like signal processing or hardware emulation
are typically implemented using an FPGA. Although FPGAs provide a reliable solution
for industrial applications, the high complexity of the corresponding hardware descrip-
tion languages and proprietary development tools prevent the platform from gaining
widespread acceptance in other embedded domains.

Arduino4 was one of the first affordable embedded boards for general public presented
in 2006. While being rather a small-scale device based on the AVR family of 8-bit
microcontrollers, its simplicity and high usability caused a revolution in do-it-yourself
electronics [68]. Depending on the board variant, Arduino boards provide a rich set of
common periphery and hardware interfaces like general-purpose I/O (GPIO), which are
easily accessible from user-space applications.

As mentioned earlier, another very popular embedded device for physical comput-
ing [101] is Raspberry Pi. Similarly to Arduino, Raspberry Pi aims at replacing custom
made PCBs for proof-of-concept implementations and small-scale projects. But in con-
trast to Arduino, Raspberry Pi uses an embedded microprocessor and a more sophisti-
cated system architecture, which provides higher performance and allows the usage of a
full-fledged operating systems (OS) based on Linux.

2.2 Linux-based Operating Systems
Linux was created as a free and open-source operating system, compatible to the portable
operating system interface (POSIX) standard. Today, it is widely available, highly
modular and ported to a number of different hardware platforms. With standard features
like multitasking and networking available out-of-the box, Linux has become popular not
only for server solutions and for desktop PCs in the private sector, but also in commercial
products like mobile devices, internet appliances and automotive applications. It is
installed on millions of general-purpose computer systems and used for a wide range
of different tasks [78, p. 1]. Recent survey results3 show that 21% of all embedded
devices rely on Linux. Its open-source nature boosts the general innovation process,
allowing commercial companies to collaborate on Linux development and to benefit from
contributions [49]. In the last decade, several new OSs emerged on basis of the Linux
Kernel. For example, to the most popular Linux-based platforms for mobile devices
belong Ubuntu Touch, Chromium OS, Firefox OS and Android.

4Arduino project homepage: https://www.arduino.cc/
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Figure 2.2: Basic structure of the Linux kernel.

2.2.1 Linux Kernel
The kernel is the core component of an operating system, which provides an abstraction
layer between user-level applications and the actual hardware. The following description
of the kernel architecture and its main elements is derived from Mauerer [78, pp. 2-6].

Linux utilizes a monolithic kernel that can be dynamically extended with additional
functionality using loadable modules. This architecture partially compensates the lim-
ited flexibility in comparison to microkernels, since separate device drivers for all types
of subsystems (memory management, filesystem and others) can be loaded at runtime.
A general overview of the kernel architecture gives Figure 2.2.

The architecture-specific code for the target hardware platform, also referred to as
board support package (BSP), is used to perform the initialization of the main hard-
ware components like processor, memory or bus subsystem. This layer is accessed by the
kernel in order to translate the platform-independent software instructions into the hard-
ware control commands. The kernel itself is divided into multiple elements for essential
system tasks like process and power management.

Although there is no explicit distinction between processes (also called heavy-weight
processes) and threads (also called light-weight processes) in Linux, following definitions
will be used in this thesis:

• A program is a list of instructions required to perform a specific task.

• A thread is an independent execution instance of a program or a program part.

• A process consists of one or more threads, representing a running program.
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One of the most important differences between processes and threads is the resource
sharing. Each process has its own independent execution environment with separate
context, address space and data structures. Threads are only executed as part of a
process. They typically share the memory space and other resources of the corresponding
process, introducing almost no overhead at context switches.

Linux utilizes preemptive priority scheduling, which enforces active processes to be
temporarily suspended for a context switch. At start, each process p is assigned a
specific scheduling priority value s ∈ [0..139], where higher values denote lower process
priority [78, p. 93]. This way a running process pi is preempted every time another
process pj with sj < si is started or woken up. User-space processes are scheduled with
the SCHED NORMAL policy based on nice values denoted as ni ∈ [19, ...,−20]. The simplified
equation for the calculation of the actual priority si = 120+ni can be constructed based
on the NICE TO PRIO define [78, p. 94] as shown in Listing 2.1.

# define MAX_USER_RT_PRIO 100
# define MAX_RT_PRIO MAX_USER_RT_PRIO
# define NICE_TO_PRIO (nice) ( MAX_RT_PRIO + (nice) + 20)

Listing 2.1: Calculating scheduling priority from nice value.

Besides of process and memory management, the Linux kernel also provides built-in
support for networking, various file systems and peripheral devices. User applications
reside on the top, communicating with the kernel space using system calls. This sep-
aration creates a beneficial ecosystem and makes it easy for platforms like Android to
integrate the Linux kernel for main system tasks.

2.2.2 Android Platform
The Android platform is part of the Android Open Source Project (AOSP), which is
developed and maintained by Google and Open Handset Alliance (OHA). The term plat-
form indicates that the Android package contains more than just an operating system.
Figure 2.3 shows the high-level system architecture5 of Android.

For easier development and better portability, Android applications are written in Java
programming language. All platform applications and the installed third-party software
reside on the topmost architectural level. They rely on the Application Framework,
which provides an abstraction of the underlying functionality and makes system calls
available in Java programming language. This layer also contains the main facilities
and services for the management of the user interface and Android-related entities like
packages and activities.

Android’s core is a set of native libraries written in C++ programming language,
highly optimized to be used on devices with limited resources. Besides of Android’s own
version of the libc library referred to as bionic [20, p. 156], media and networking libraries
were also optimized regarding energy and memory consumption, as well as for the usage
with low powered CPUs. In order to perform the translation of the API calls into the

5Android documentation: https://developer.android.com/guide/platform/index.html
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Figure 2.3: Android architecture overview.

native code base, an additional set of Java libraries is also included in Android Runtime,
residing in the third layer. It allows the usage of Java API in Android applications and
forms the basis for the application framework [82, p. 15]. It also provides the Dalvik
Virtual Machine (DVM), which is the most essential part of the Android platform.
The DVM is a sandboxing mechanism and a byte-code interpreter, which encapsulates
instances of running programs and executes the optimized Java code. Every Android
application is executed in a separate instance of the DVM with its own memory segment
and separate resources. The DVM was designed with focus on efficient parallel execution
of multiple VM-instances on a single mobile device [129, p. 60]. Starting with Android
5.0, DVM was replaced6 by Android Runtime (ART). It preserves the original byte-code
format, but instead of Just-In-Time (JIT) compilation used in DVM, ART introduces
the Ahead-Of-Time (AOT) compilation approach, which reduces power consumption
and improves execution efficiency [56, pp. 65-66].

As already mentioned in the last section, Android is built upon a Linux kernel. It
resides on the lowest architectural level and is used for the basic services like process and
memory management. Additionally, this layer contains the Linux networking daemons
like bluez and wpa supplicant, which are required for providing the Bluetooth support
and the Wi-Fi encryption. In contrast to the mainline Linux, the kernel in Android is
also optimized for mobile devices and contains additional Android-specific components7.

6Android documentation: https://source.android.com/devices/tech/dalvik/gc-debug.html
7Based on “Clarification on the Android Kernel”: http://lwn.net/Articles/373374/
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Android Extensions for Linux

Several hundred of additional patches were merged into the Linux kernel used in Android.
The kernel contains a number of additional system components, sometimes referred to
as Androidisms [129, pp. 34-45]. The following description briefly presents extensions
which are most relevant in context of this thesis.

• Low-Memory Killer is included in Android to improve the handling of out-of-
memory (OOM) situations on devices with limited resources. It is based on the
native Linux OOM adjustments and specifies the order of process termination if
the available system memory falls below a predefined threshold. Multiple policies
define distinct priority classes for active processes that have not been used in a long
time. These priorities describe which process is a better candidate for being killed,
which mainly depends on the process category (e.g. system component or user
application) and the degree of involvement into the user interaction (e.g. visible
element or hidden service).

• Binder Driver is part of Android’s architecture for remote procedure calls (RPCs)
which allows efficient data exchange across process boundaries. This kind of inter-
process communication (IPC) makes use of object invocation capabilities, which
allows system services running in separate processes to be handled as standard
Java objects in user applications. The actual remote service can be implemented
in any supported programming language and executed in a separate process or be
bundled with other services in a single process and share its address space.

• Anonymous Shared Memory (ASHMEM) is another Android-specific IPC
mechanism. The anonymous shared memory is used instead of the Linux’s SysV
IPC in order to avoid resource leakage and improve system security. Most sig-
nificant differences to POSIX SHM are the usage of reference counting for the
detection of unused memory regions and automatic shrinking in OOM situations.
Although the ASHMEM is widely used by the core components of the Android
runtime, its interface is not exposed through the public API.

Further Linux extensions like the new alarm and logging subsystems are essential
parts of the overall system architecture. Altogether, they form several Android-specific
concepts for the application development.

Android Concepts

Developers have to incorporate a set of unique Android APIs, when designing new
system-level or user-level components [129, pp. 26-30].

Android application are created using four main types of loosely coupled building
blocks as described in Table 2.2. To implement the desired functionality, one or multiple
of the required components can be combined in a single application. The platform was
designed to be modular and extendable, such that components of one application can
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Component Description
Activities Provide the graphical interface with control elements like but-

tons and text labels. Although Activities can contain program
logic, it is only triggered while the Activity is visible.

Services Allow execution of the program logic even if the corresponding
application is currently in the background. As services do not
contain UI elements, they are used for long-term operations
like monitoring and synchronization tasks.

Broadcast Receivers Serve as handlers for specific system- or user-defined events.
They are implemented using the Binder driver and get trig-
gered by the system as soon as the respective event occurs.

Content Providers Allow persistent storage and sharing of structured data be-
tween different applications or application components.

Table 2.2: Description of the main application components in Android.

call or reuse components of other applications. The interaction between distinct appli-
cations or internal components relies on Intents. They are mainly used to trigger specific
events in other applications like starting Activities or Services. Furthermore, Intents and
Broadcast Receivers provide a simple mechanism for the exchange of structured data
between different components of the same process or across process boundaries. It is
the recommended way of interprocess communication due to Android’s security model,
which includes strict sandboxing and fine-grained access control at the process level. All
application components (e.g. multiple Activities or Services) are bundled into a single
process by default8, taking advantage of the Linux user-based protection. Unique Linux
user identifier (UID) and group identifier (GID) values are assigned to every application,
preventing unauthorized access to private data.

In addition to existing concepts for process control and interprocess communication
included in Linux by default, Android also includes similar functionality on a higher
architectural level. Some of these instruments – for example the message passing between
different processes or the internal management of application life cycles – are relevant
in the context of this dissertation and will be briefly presented next.

Intent Broadcasting

Utilizing Intents and Broadcast Receivers allows the exchange of structured data across
process boundaries without jeopardizing the strict process isolation. For this purpose,
Android provides dedicated system components responsible for delivering of global and
local broadcasts. In case multiple receivers were registered for the same event and its
processing order is important, ordered broadcasts can be used. After the Intent object is
delivered, the receiving application can abort further processing, ignoring the remaining
receivers. Sticky broadcasts are persistently stored in the system. They are delivered

8Android documentation: http://developer.android.com/guide/topics/fundamentals.html
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automatically as soon as a new Broadcast Receiver with matching filter is registered.
The most common type is represented by parallel broadcasts, which are delivered to the
corresponding receivers without any particular ordering.

In Android, parallel broadcasts can be transmitted either globally or locally, depend-
ing on whether the target Broadcast Receiver is part of the same application. The
vast majority of Intents are broadcasted globally by using the Activity Manager Service
(AMS), which is part of Android’s application framework. It is invoked automatically
each time an application passes an Intent object to the method sendBroadcast(). The
AMS manages a list of all known receivers, which is used to extract applications in-
terested in this specific Intent. Finally, AMS delivers the Intent object to the filtered
Broadcast Receivers. This approach allows Android to enable flexible communication
between separate applications while preserving the sandboxing mechanism.

For applications with direct user interaction, broadcasted Intents may activate the
FLAG RECEIVER FOREGROUND. It is used to mark data of high importance and request the
system to handle the corresponding Intent with higher priority.

The application framework of Android provides a Local Broadcast Manager (LBM),
which is designed to process broadcasts in the context of the same application. If both
sender and receiver are created inside the same process, the LMB significantly increases
the broadcasting performance, since no interaction with other processes is required.
Similar to the global approach, sending local broadcasts is performed by using the
method sendBroadcast(). However, it has to be invoked using a singleton instance of the
class LocalBroadcastManager. This class also provides the method sendBroadcastSync(),
which can be used for an immediate delivery of the Intent object by the sending thread.

Process Management

Each Android process is managed by its own main thread. This thread – commonly
referred to as UI thread [81, p. 345] – is responsible for the application’s life cycle
management and the handling of user input. Other threads inside the same process
will be initially assigned a lower priority than the UI thread. Nevertheless, additional
threads for controlling UI elements are considered more important and thus will have a
slightly higher priority value than a thread for pure background computations.

Android relies on the Linux kernel’s priority-based scheduling mechanism for thread
management. Application threads are scheduled using the SCHED NORMAL policy with
predefined9 nice values as shown in Listing 2.2. Android also deploys cgroups to prevent
all background threads from using more than 5% of the combined CPU time10.

As described in Section 2.2.2, Android may kill active processes if the system is run-
ning out of memory. In this case, the process to be killed is selected based on Android’s
importance hierarchy11 as depicted in Figure 2.4. In order to preserve the correct be-
havior of the foreground application the user may currently be working with, cached
and background processes are killed first. The importance class can also be estimated

9From the source code analysis of Android 5.1.1 in system/core/include/system/thread defs.h
10From the source code analysis of Android 5.1.1 in system/core/rootdir/init.rc
11Android documentation: http://developer.android.com/guide/topics/processes/process-lifecycle.html
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/* use for background threads */
ANDROID_PRIORITY_BACKGROUND = 10,
/* most threads run at normal priority */
ANDROID_PRIORITY_NORMAL = 0,
/* threads currently running a UI that the user is interacting with

*/
ANDROID_PRIORITY_FOREGROUND = -2,
/* the main UI thread has a slightly more favorable priority */
ANDROID_PRIORITY_DISPLAY = -4,

Listing 2.2: Translation of thread priorities to nice values in Android.

Foreground Process

Visible Process

Service Process

Cached Process

Most important

(killed last)

Least important

(killed first)

Figure 2.4: Process importance
hierarchy in Android.

Running Paused

Stopped

Destroyed

Figure 2.5: Simplified life cycle
of Android applications.

for applications with multiple different components bundled into a single process. In
this case, the overall importance class is set to the class of the bundle’s most impor-
tant component. This allow non-interactive background services to be executed in a
high-prioritized process, if the given application also handles UI elements.

The activity diagram in Figure 2.5 shows a simplified version of the life cycle model for
Android Activities, based on the observed system behavior [35, p. 21]. The application
framework has to notify the running process in case of an enforced termination and
switch it to the destroyed state. This allows a graceful shutdown before the process is
actually killed by the operating system. However, experiment results show that running
applications can also be terminated from states paused and stopped without a prior
notification (denoted in the diagram by dashed transitions). Such life cycle model is
sufficient for non-demanding use cases in consumer electronics, but to be suitable for
applications with real-time requirements, the system has to guarantee a deterministic
and predictable behavior.

2.3 Designing Real-time Systems
Embedded systems are typically deployed in safety-critical environments where they have
to react to external stimuli within a predefined period of time. Missing a deadline while
waiting for a calculation result might yield severe consequences. According to Stankovic,
considering only the computational result is not sufficient for real-time systems [116]:
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“[...] the correctness of the system depends not only on the logical result of
the computation but also on the time at which the results are produced.”

Unmodified general-purpose OS like Linux and Android cannot guarantee a maximum
reaction time for an external event in complex dynamic processes. The main challenge
in augmenting a GPOS with real-time capabilities is to provide low-level control over the
most important system components, which commonly conflicts with high-level concepts
like encapsulation and inheritance.

The next section gives an overview of the formal definitions for real-time characteristics
used in this work. Sections 2.3.2 and 2.3.3 briefly introduce already available hardware
and software solutions for the development of real-time systems.

2.3.1 Real-time System Characteristics
In the Linux kernel, real-time processes use the scheduling policies SCHED FIFO and
SCHED RR with priority values in the range of 0 to 99 (higher priority), while normal pro-
cesses always have the priority value between 100 and 139 (lower priority) [78, pp. 93-94].
A task is called periodic if it has to be activated by the system scheduler at a fixed rate.
The opposite type is represented by sporadic tasks, which are typically triggered by an
irregular internal or external event.

Real-time operating systems (RTOS) must ensure predictable timings for all kinds of
active processes. In reality, the scheduler cannot immediately switch to another process
after it becomes eligible for execution at its activation time. The processor may be busy
executing another with higher priority, leading to a delay. Even if no other process with
a higher priority is blocking the CPU currently, a context switch to the new process
produces additional overhead which may vary depending on the current system state.
The time between the activation time and the actual execution of the corresponding
process is called scheduling latency [1]. As it is essential in real-time systems to account
for the worst-case scenario, knowing the possible maximum latency value is crucial. For
a predictable and deterministic system behavior, a RTOS has to limit the maximum
latency for high-prioritized processes. Furthermore, a fixed upper bound for maximal
scheduling latency is required for the calculation of the maximum reaction time, which
a process needs to respond to internal and external events.

Two main classes of real-time systems can be distinguished depending on the con-
sequences of missing a firm deadline. In soft real-time systems, missed deadlines may
have unwanted, but not destructive effects. Calculation results in hard real-time sys-
tems must be delivered in time even under worst-case conditions. Otherwise, they are
considered useless and the system state can lead to a serious hazard for human and ma-
chinery [71]. Examples for soft real-time systems can be found in vending machines and
video streaming applications. Hard real-time systems are typically used in automotive
and medical applications. To guarantee the required timing behavior, hard real-time
systems are commonly implemented using low-level or specialized hardware.
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2.3.2 Hardware for Real-time Computing
Various kinds of digital controllers designed for dedicated performance ranges can be
used to implement and deploy industrial real-time systems [83]:

• Application-specific integrated circuits (ASICs) are tailored to the intended
purpose, such that their logic is hard-wired into an integrated circuit. This allows
ASICs to provide high performance in their specific applications, but to gain only
a low score in terms of feature flexibility and development ease.

• Digital signal processors (DSPs) and FPGAs also provide high performance,
but the application logic can be modified by re-programming the same device. The
use of proprietary solutions based on DSPs like “dSpace” is common for rapid con-
trol prototyping (RCP) and hardware-in-the-loop (HiL) purposes. Besides of high
investment costs, the application-specific configuration of such products requires
expert knowledge of specialized modeling (e.g. Matlab/Simulink) or hardware
description (e.g. VHDL) languages.

• SoC- and microcontroller-based boards for general-purpose use were already
briefly presented in Section 2.1.2. Besides of simple re-programmability using high-
level programming languages, such devices contain digital and analog I/O as well
as additional peripherals like communication interfaces, timers and event counters.
Solutions based on such flexible platforms are suitable for a wide range of data
processing and control applications.

• Programmable logic controllers (PLCs) are microcontroller-based devices for
industrial purposes, providing rugged design for an in-field deployment. Their
modular architecture allows simple components upgrades and industry-ready I/O
connections. In contrast to general-purpose embedded boards, PLCs are pro-
grammed by using standardized industrial programming languages [55].

• Industrial PCs with general-purpose hardware have been shown suitable for soft
real-time applications. They can be used for industrial monitoring and control
when combined with real-time OS extensions or virtualization methods.

2.3.3 Real-time Operating Systems
As described in Section 2.3.1, RTOS must provide a deterministic system behavior
and minimize scheduling latencies. Nowadays, there are multiple commercial and non-
commercial real-time capable OS available on the market for both specialized and
general-purpose hardware. The most prominent RTOS products are QNX Neutrino12,
VxWorks13 and RTEMS14. Furthermore, hard real-time requirements can also be fulfilled

12QNX Neutrino RTOS by QNX: http://www.qnx.com/
13VxWorks by Wind River Systems: http://www.windriver.com/
14RTEMS project homepage: http://www.rtems.com/
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with a conventional desktop operating system by using a hypervisor or OS virtualization.
In this case, the guest OS is completely encapsulated by the hypervisor and executed
as a preemptible low-prioritized process. Examples for hypervisor-based solutions are
SIGMA [64] and INTEGRITY Multivisor15.

In addition to resource reservation and system virtualization, preemption enhancement
methods are the most important techniques to enable real-time support in the Linux
kernel, as described in the following [114], [130, pp. 360-364].

Resource Reservation

In order to ensure that real-time processes receive sufficient CPU time, even if non-
real-time processes allocate major system resources, processor reservation techniques
were presented in the past [2, 84, 112, 113]. Processes with assigned CPU reservation
are guaranteed to be executed for a predefined time slice in each activation period,
enforcing a preemption of other user-space activities. The selected time slice is applied
in a strict manner, such that the CPU is released after this time slice expires. This may
suspend the active real-time process even if the calculation was not finished yet.

Interrupt Layer Virtualization

Interrupt abstraction introduces an additional separation layer between the Linux kernel
and the hardware to gain control over the timers and interrupts. This allows a selective
prioritization of interrupt sources and forwarding of real-time interrupts into a dedicated
subsystem for immediate execution. Such architecture reduces scheduling latencies for
real-time handlers and creates a lightweight virtual machine where the Linux kernel is
executed as a preemptible process as long as no real-time processes are active. Ap-
proaches for the virtualization of the interrupt controller were successfully implemented
in RTLinux [134] and RTAI [77]. Xenomai [39] is an adaptation of RTAI with even
deeper virtualization and explicit domain separation between the real-time subsystem
and the Linux scheduler. Additionally, Xenomai can be combined with other solutions
like PREEMPT RT in order to achieve further latency improvements.

Preemptible Kernel

An alternative approach to reduce scheduling latencies is proposed by an enhanced pre-
emption model of the Linux kernel itself. The PREEMPT RT patch by Ingo Molnar makes
in-kernel spinlocks preemptible, allowing the scheduler to switch to a high priority pro-
cess almost immediately after its activation time, even if a low priority process currently
executes a critical section in kernel space. In order to avoid the arising problem of pri-
ority inversion, new spinlocks implement a priority inheritance protocol. Furthermore,
the PREEMPT RT patch additionally enables the use of a high-resolution timer and converts
all blocking interrupt service routines (ISRs) to preemptible kernel threads.

15INTEGRITY Multivisor by Green Hills: http://www.ghs.com/
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These features have to be explicitly activated at the compilation time by using the
new kernel configuration options16:

• CONFIG PREEMPT NONE: The default configuration in Linux. The preemption model
is optimized for throughput and does not provide any timing guarantees.

• CONFIG PREEMPT VOLUNTARY: Introduces explicit preemption points such that low
priority processes can voluntarily preempt themselves during system calls.

• CONFIG PREEMPT LL: Makes nearly all kernel code outside of explicit critical sections
preemptible and offers immediate event handling.

• PREEMPT RTB: The basic preemption mode enables the necessary minimum of the
introduced enhancements for systems with soft real-time requirements.

• PREEMPT RT FULL: Enables the full kernel preemption. This configuration option
should be activated for guaranteed latency bounds in time-critical systems.

As a number of changes introduced by the PREEMPT RT is also useful for non-real-time
systems, parts of the patch are gradually merged by the community into the Linux
code base. Except for the full real-time preemption mode, almost all other features are
already included into the mainline Linux for CPU architectures x86/x64 and ARM17.

Several research groups have evaluated the effect and the impact of PREEMPT RT on
the system behavior in terms of latency reduction and determinism. Different evalua-
tion studies [67] and performance assessments [97, 8] have shown that general-purpose
hardware with PREEMPT RT can fulfill soft and even hard [5, 87] real-time requirements.
Although the statistical results seem conclusive, the suitability of patched Linux in
safety-critical systems is still a highly controversial topic. Yaghmour et al. question its
general applicability in setups where a deadline miss or a system fault may endanger
human or machinery [130, p. 363]:

“For most applications that need real-time determinism, the RT-patched Li-
nux kernel provides adequate service. But for those real-time applications
that need more than low latencies and actually have a system that can be
vigorously audited against bugs, the Linux kernel, with or without the RT
patch, is not sufficient.”

Nevertheless, PREEMPT RT was shown effective and flexible, leading to its wide use
particularly in the field of industrial automation18. For this reason, it will be considered
in addition to other methods as an adequate solution for augmenting Android with
real-time support.

16Based on WindRiver’s Linux guide: https://knowledge.windriver.com/en-us/000_Products/000/
010/040/020/000_Wind_River_Linux_Kernel_and_BSP_Developer’s_Guide,_8.0/020/040/000

17Feature overview: http://www.osadl.org/Realtime-Linux.projects-realtime-linux.0.html
18Industrial use of PREEMPT RT by OSADL e.V.: http://www.osadl.org/
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A common way of implementing embedded control systems is to split regular tasks
(e.g. graphical user interface – GUI) from the actual control logic into independent
subsystems or even separate physical devices [83]. In such configuration, a real-time
capable embedded controller can benefit from an undisturbed program execution, while
non-critical data visualization and user interaction is handled by other hardware. A
major disadvantage of this separation is the additional overhead for communication and
synchronization of data between multiple devices. To ensure a high grade of reliability,
off-the-shelf RTOS typically focus on computational predictability and small memory
footprint, offering only rudimentary tools for GUI design. On the contrary, GPOS offer
rich functionality and ready-to-use components for building intuitive user interfaces, but
provide no real-time support.

Despite the apparent unsuitability of modern GPOS platforms for industrial use, re-
cent survey results show that Android and desktop OS like Ubuntu are increasingly
used in embedded products for monitoring and controlling purposes [122]. Although
Android is mainly targeting the private user segment, it already represents the second
most used OS for embedded systems as shown in Figure 3.1. The biggest challenges
for industrial-wide application of Android remain its current real-time limitations and
possible security vulnerabilities1.

FreeRTOS 24%
Android 21%
Micrium 19%
Custom 14%
Ubuntu 13%

Figure 3.1: Most popular embedded operating systems in 2015 [122].

In addition to the desired functional (e.g. support for real-time computing) and non-
functional (e.g. intuitive UI of the resulting applications) requirements mentioned above,
other selection factors may also play an important role when choosing an OS for em-
bedded products. According to survey results shown in Figure 3.2, the most relevant
factor is the availability of the OS source code, which highlights the industry’s interest
in open-source software. Further decisive criteria include broad hardware compatibility,
availability of integrated development tools, personal familiarity and ease of use.

1From online article: https://www.linux.com/news/android-follows-linux-wide-world-embedded
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Source Code Availability 45%
Tech Support 33%

Real-time Performance 32%
No Royalties 25%

High Compatibility 24%

Figure 3.2: Top selection factors for embedded operating systems in 2015 [122].

Being fully compliant with the vast majority of customer and developer expectations
mentioned in the survey results, it is not surprising that Android continuously increases
its popularity on the embedded market. This can also be observed in the rising number
of scientific publications and various industrial use cases related to the Android platform.
Android-based devices are deployed for patient monitoring [128] and data analysis [41]
in the health-care sector, as well as for automotive infotainment [14] and cyber-physical
systems [100]. The platform has also been evaluated in more complex automotive setups
like ABS control [66, 123], system diagnostics [125] and energy management [16, 23].
Further industrial use cases can be found in the field of robotics [92, 95], navigation
control [47, 94] and artificial satellites2.

Several of the mentioned applications have real-time requirements with strict timing
constraints that must be met by the operating system for a faultless operation. The
question of Android’s general reliability and suitability for real-time processing was
evaluated in different scientific studies as presented in the following.

3.1 Related Work
One of the first evaluations of Android’s real-time capabilities was performed by Maia
et al. After a detailed analysis of the original platform, Android was concluded to be
incapable of providing real-time guarantees due to the internal system architecture [74].
This statement was confirmed by results of experimental latency measurements by Mon-
gia and Madisetti, who conducted responsiveness tests in different system load scenar-
ios: with no load, with normal load and with heavy load [86]. Corresponding results
have shown reproducible violations of predefined scheduling deadlines reaching from
1 millisecond up to 1/2 second, demonstrating the inability of Android to provide re-
liable process scheduling. Other research groups made similar observations at later
stages [79, 95, 96, 133].

In addition to the architecture evaluation, Maia et al. have identified the most critical
high-level components – for example process and memory management – which need to
be modified or replaced for achieving a more deterministic system behavior. Addition-

2PhoneSat project homepage: http://www.phonesat.org/
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(a) Android with a real-time hypervisor.
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RT Linux Kernel

Core

RT Apps

VM

Application Framework
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(b) Partial real-time support.

Libraries

RT Linux Kernel

Core

RT JVM

VM

Application Framework

Applications

(c) Advanced real-time support.

Libraries

RT Linux Kernel

Core

Extended RT VM

Application Framework

Applications

(d) Android extended with real-time.

Figure 3.3: Strategies for the integration of real-time support into Android [74].

ally, the authors have proposed different approaches to extend Android with real-time
support [74], as illustrated in Figures 3.3(a) to 3.3(d).

The first approach shown in Figure 3.3(a) utilizes a real-time hypervisor in order to
split the real-time domain and the actual Android platform into distinct priority cat-
egories, which can be executed side by side. As it was shown in Section 2.3.3, system
virtualization strategies and Linux-based real-time solutions like RTLinux or RTAI are
commonly used in embedded systems. Similar system designs for hypervisor-based coex-
istence of Android and RTOS on mobile devices were also proposed by Mentor Graphics3

and WindRiver4. On true parallel multi-core hardware this approach may provide a fully
concurrent execution, where Android and real-time application are executed simultane-
ously without negatively affecting each other. On the other hand, such separation can
lead to a limited system functionality available to real-time tasks [74], as they are run-
ning detached from the Android framework directly on the top of the hypervisor and
only have access to low-level interfaces.

3MentorGraphics webinar presents hypervisor solutions for Android: https://www.mentor.com/
embedded-software/events/android-linux-real-time-webinar

4WindRiver solutions for Android: https://www.windriver.com/announces/android-solutions/
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The replacement of the underlying Linux kernel is an alternative approach chosen by
strategies 3.3(b) to 3.3(d). In this setup, the Android platform is modified to run on the
top of a real-time capable Linux and to utilize its API for CPU and process control.

Given the real-time support from the kernel, native applications can be executed di-
rectly on the top of Linux, as shown in Figure 3.3(b). This approach is comparable to a
hypervisor-based setup, as the process scheduling is done by a RTOS for example based
on process priorities. As shown by Mauerer et al. [79], it can provide significant im-
provement of execution determinism and process behavior in terms of predictability and
timeliness. Still, this approach is affected by the same limitation – real-time applications
cannot access the functionality provided by the Android framework.

The approach in Figure 3.3(c) addresses the disadvantage of missing high-level API
in real-time applications by introducing a real-time capable Java VM (JVM) in addition
to ART or DVM (see Section 2.2.2). Integration of an off-the-shelf RT-JVM into the
Android Runtime allows execution of Java bytecode in a controlled and deterministic
manner, providing the necessary timing guarantees. This idea goes in accordance with
the lasting interest of scientific community to deploy Java-based controllers in time- and
security-critical environments [15, 22, 40]. For this purpose, different advanced real-time
capable VMs like KVM [73], Jamaica VM [53, 54] and Fiji VM [98, 99] were presented in
the literature. Yan et al. have demonstrated the RTDroid project [132, 133] as a proof-
of-concept integration of the Fiji VM into Android. While more details of their work will
be presented over the course of this thesis, the main drawback of such implementation
is the missing native connection to the Android framework. Similar to the previously
introduced approaches, the plain Fiji VM does not provide any interfaces for utilization
of Android APIs in real-time applications. As stated by its authors, “RTDroid provides
a faithful illusion to an existing Android app running on our platform that it is executing
on Android” [133]. It can be assumed that such approach – described in their work as a
“clean-slate design” – requires a significant amount of implementation and integration
overhead for re-architecting the platform, creating an adequate runtime environment for
the introduced RT-JVM and extending the latter to translate calls between real-time
applications and the official Android API.

The last method presented by Maia et al. for providing real-time support in Android
is depicted in Figure 3.3(d). In contrast to previous approaches, it aims at extending the
original platform components with predictability and determinism. While this method
entails considerable effort for analysis and modification of the underlying architecture,
different projects have demonstrated its suitability for augmenting standard Linux and
Android architectures with real-time support. This was achieved by implementing ad-
ditional techniques of resource reservation [75] and advanced dynamic process schedul-
ing [43] on the top of the platform architecture. Both techniques have shown that the
evaluated system was able to provide reliable process behavior and guaranteed responses
within a predefined time frame [74].
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3.2 Discussion of Possible Approaches
While the performance of embedded devices continuously increases, limited predictabil-
ity and unbounded scheduling latencies of mobile software platforms prevent their usage
in the domain of time- and safety-critical systems. As shown in previous sections, cur-
rent research is focused on combining Android’s rich functionality in terms of reusable
high-level components with reliability and determinism of a real-time OS. A separated
real-time ecosystem implemented solely for native Linux applications on the top of a real-
time hypervisor (Figure 3.3(a)) or on the top of a real-time Linux kernel (Figure 3.3(b))
will suppress the advantages of the Android platform. This kind of architecture can be
justified if the Android API is only necessary for non-real-time applications running on
the same device. In case high-level frameworks or advanced programming paradigms
need to be available in the real-time domain, this approach is not sufficient.

A platform with a seamlessly integrated RT-JVM does not suffer from this disadvan-
tage (Figure 3.3(c)). Besides of creating new opportunities by the usage of Java API,
modern solutions compliant with RTSJ [40] like Jamaica VM or Fiji VM are capable of
precise timings and hard real-time processing. As such off-the-shelf products commonly
provide own components for thread and memory management, a redesign of the platform
architecture may be required during the integration. This approach provides the best
real-time performance in terms of deterministic behavior and minimal scheduling laten-
cies in comparison to other methods, as the interaction between the introduced real-time
capable components can be designed from scratch. Nevertheless, the integration process
itself is not trivial. Besides of the actual implementation overhead, introduced modifi-
cations have to be maintained and updated with every new Android version. This can
become challenging, as Android updates are released every six months and often include
major changes in virtualization mechanisms, memory management, system libraries and
internal APIs. If calls to the high-level Android API are encapsulated by the RT-JVM,
changes in platform components may pose a particular obstacle if they contradict or can-
cel out the behavior improvements gained from the additional VM. This effect can also
be caused at runtime by forwarding method calls from real-time applications into the
Android framework. As RT-JVM and Android’s internal framework provide competi-
tive execution environments, leaving the boundaries of a real-time process and executing
unmodified Android code may introduce unbounded delays and have negative impact
on the process behavior. It is therefore inevitable to analyze and improve Android’s
components even if an off-the-shelf RT-JVM is additionally integrated into the platform
for full real-time support.

As the integration of Android APIs into a separate real-time domain leads to ma-
jor architectural changes regardless of the selected approach, the method of extending
Android’s native components (Figure 3.3(d)) can be assumed to allow the highest im-
plementation flexibility. In this case, essential real-time features are not provided by
a dedicated RT-JVM, but must be implemented separately, significantly increasing the
implementation overhead. Nevertheless, the required changes can be tailored specifically
to Android’s original architecture. The possibility to integrate the optimal combination
of techniques and methods for real-time support allows reaching the expected perfor-
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mance and maximizing portability to new Android versions at the same time. Instead of
creating competitive real-time subsystems, the concept proposed by this thesis enables
a holistic view on all central parts of Android’s architecture.

3.3 Adding Real-Time Support to Android
The real-time integration approach pursued in this thesis is based on the extension of
Android’s native components. It will be shown that modifications in multiple parts
of Android architecture are required for achieving the real-time performance on the
application level. Figure 3.4 summarizes these main system components including their
most important features, which will be analyzed and modified over the course of this
work. The structure of the implementation chapters follows a bottom-up design to
resolve architectural dependencies.

Application FrameworkRuntime

Non-blocking GC

+

OOM Adjustments

Linux Kernel

Improved Preemptibility

+

CPU Frequency Control

Priority Inheritance

during

Remote Procedure Calls

Predictable Intra- and

Interprocess

Communication

Figure 3.4: Android subsystems extended for integration of the real-time support.

Android Linux Kernel

The Linux kernel is responsible for process management in Android, providing the foun-
dation to other system layers. Although the Android framework includes own mecha-
nisms for taking influence on running processes, the kernel plays a crucial role in the life
of active applications and services. Reliable process management and bounded schedul-
ing latencies are essential for deterministic behavior of the whole platform. Since these
requirements are not fulfilled by the original kernel, this thesis presents an approach
based on the PREEMPT RT patch to improve the kernel’s preemptibility and extend it with
a real-time capable, priority-based scheduler. It is also analyzed how the specific kernel
configuration affects the real-time behavior of native applications. Furthermore, An-
droid’s kernel provides advanced low-level features that can have severe impact on the
timeliness of running tasks. In addition to the kernel extension, the presented approach
introduces full control over dynamic CPU frequency scaling.

Android Runtime

As described in Section 2.2.2, Android Runtime allows the usage of high-level APIs by
providing a virtual machine for optimized Java code. The Dalvik VM, which was used
in versions prior to Android 5.0, and the new Android Runtime (ART) both provide
own mechanisms for automatic memory management. The included garbage collector
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(GC) is automatically invoked each time an application is running out of memory. Both
VMs implement a stop-the-world garbage collection paradigm in order to ensure data
consistency in the target application. However, this method introduces non-deterministic
interruptions as all application threads have to be suspended until the GC invocation
is finished. Instead of executing the application logic, one or multiple time slots may
be spent for garbage collection. This effectively prevents the application from gaining
benefit out of the deterministic scheduling provided by the real-time Linux kernel, since
the execution path of the application’s logic can be interrupted at any time. Applications
with real-time requirements need a more predictable solution in order to avoid high
latencies caused by GC invocations [86]. This thesis presents an approach to improve the
responsiveness real-time processes by introducing a non-blocking memory management.
Instead of relying on the native stop-the-world algorithm, the proposed GC does not
affect real-time applications. Unused memory objects are collected concurrently to real-
time threads instead of suspending them. This avoids interference with the application
logic and facilitates predictable process behavior.

In addition to the process scheduling controlled by the Linux kernel, Android’s frame-
work provides advanced mechanisms for system resource saving. Evaluations show that
these mechanisms can negatively affect long-term background processes and applications
with high memory demands. This work presents a detailed analysis of Android’s internal
OOM adjustment values and evaluates a possible protection mechanism.

Android Application Framework

Native Android APIs can be leveraged in real-time applications in the standard way by
incorporating the Binder driver for remote procedure calls. The Binder represents the
central mechanism for application linking (see Section 2.2.2). It has a strong impact on
the effectiveness and timeliness of inter-process communication, as it passes the execu-
tion control across process boundaries. A deterministic behavior of the Binder driver
is especially required when real-time applications interact with other platform compo-
nents. The presented approach includes an in-depth architecture analysis of the Binder
subsystem and proposes a priority-aware extension to the corresponding kernel module
and its middleware wrapper. Evaluation of the modified system indicates the increased
performance during the RPC execution and reduced processing latencies.

The Binder driver is particularly important for Android’s generic message passing
framework based on Intent broadcasting. It will be shown that even the extended
Binder cannot prevent non-deterministic transmission delays when Intents are used for
exchanging application data between separate processes. As bounded IPC is crucial for
a real-time capable operating system, the proposed solution incorporates non-blocking
operations for priority-based Intent handling.
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Integration of real-time capabilities into the Android platform cannot be fulfilled without
extending the underlying Linux kernel. The most prominent implementations and com-
mercially available products for real-time Linux were already presented in Section 2.3.3.
While all of them are suitable for reliable process scheduling, different approaches vary
greatly in terms of overhead required for their integration in Android. Since many of
the platform workflows internally rely on the kernel, the selected solution must provide
sufficient compatibility to main Android components.

A full replacement of the original kernel by off-the-shelf products like RTAI or Xeno-
mai requires a major redesign of the low-level architecture and the hardware abstraction
layer. Such products do not include the required Androidisms (see Section 2.2.2) in their
distributions, being not capable of running the Android platform by default. Android
extensions like Wakelocks and the Binder driver have to be implemented and integrated
separately, while taking into account requirements of the specific kernel. A particular
challenge arises from the internal architecture design in products like RTLinux. Vir-
tualization of the interrupt layer introduces a major obstacle for the communication
between regular and real-time processes. The inability of both RTLinux and RTAI to
use mainline Linux device drivers in the respective real-time subsystem leads to code
duplication and additional implementation overhead [114]. One example is the network
protocol stack, which was implemented in both products for the second time specifically
for real-time processes. It can be reasonably assumed that this limitation also applies
to the Andoidisms, which would have to be integrated separately into the standard and
real-time application domains.

In contrast to the deployment of a commercial solution with a micro kernel or interrupt
virtualization, the application of the PREEMPT RT patch to Android’s standard Linux
kernel does not require any changes on the architectural level. This patch is designed
explicitly as an extension to the mainline Linux and it has already proven its effectiveness
in the industry (see Section 2.3.3). The main goal of PREEMPT RT is the integration of
real-time capabilities into the standard Linux by making it fully preemptible. Since the
proposed modifications are also useful in a big number of other application scenarios, the
patch is being gradually merged into the main kernel repository. Figure 4.1 illustrates the
evolution1 of the patch’s size between version 2.6.15-rt21 released in 2006 and the newest2

available version 4.9.13-rt10. It shows the number of files affected by the respective patch
with a recognizable downward trend. After a major part was incorporated in Linux
3.0, noticeable portions were also merged into the mainline repository with Linux 3.2

1Generated based on raw patches from https://www.kernel.org/pub/linux/kernel/projects/rt/
2Last accessed on 02.03.2017.
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Figure 4.1: Evolution of PREEMPT RT’s size between 2006 and 2017.

and Linux 3.6. It can therefore be expected that the overhead for the application of
PREEMPT RT will continue to decrease in future. Thus, the main benefit of this approach
is the reduced complexity, which is achieved by lower integration overhead and consistent
API for both real-time and non-real-time domains. This makes it an adequate alternative
to setups with a real-time hypervisor and additional off-the-shelf kernels.

The remainder of this chapter is structured as followed. A short summary of the
related work is presented in Section 4.1. The chosen implementation approach is covered
by Section 4.2 with improvement of kernel’s preemptibility and Section 4.3 showing the
integration of a frequency locking mechanism. The introduced changes are evaluated
by measuring the worst-case scheduling latency for different system configurations in
Section 4.4. Finally, a concluding discussion is presented in Section 4.5.

4.1 Related Work
Android was originally designed for mobile devices with ARM processors. Despite the
Android x86 project3, which started in 2009 and aims at porting Android to the x86
platform, the vast majority of produced Android devices are still built based on ARM
and ARM64 architectures like the Cortex A72 series. According to Altenberg [5], this
architecture is especially interesting in context of real-time Linux. Cortex A series can
be seen as a successor of the ARM11 architecture family, which was widely used in the
industry because of the beneficial multicore design, ability to upscale the CPU frequency
and highly efficient execution of Java code. Altenberg enumerates the available real-time
features – which are already part of the vanilla Linux kernel – and presents a detailed
evaluation of a generic ARM system patched with PREEMPT RT. Testing is performed
under system load and includes measurements of the context switching time in reaction
to external events and accuracy evaluation of the internal timer. Recorded worst-case
latencies on the ARM11 platform range between 68 µs and 110 µs. Since the evaluation

3Android x86 project website: http://www.android-x86.org/
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results show a strictly deterministic system behavior in all test scenarios, the patching
approach is concluded sufficient to enable hard real-time support on ARM CPUs [5].

In 2013, the suitability of PREEMPT RT specifically for the Android kernel was questioned
by Zores [135, p. 7]. In addition to the apparent impracticability of the patch application,
the author lists severe design flows in the Android platform. The most important ones
that are preventing Android from gaining real-time capabilities are Dalvik’s automatic
memory management and inefficient audio architecture.

Nevertheless, two successful proof-of-concept realizations of the patching approach
were published several months earlier. A conference paper [60] presenting preliminary
research results in the context of this dissertation and a detailed evaluation by Mauerer
et al. [79] pursue similar ideas for kernel modifications. Mauerer et al. consider the
scenario of a partial real-time support (see Figure 3.3(b)) and provide an in-depth effort
analysis for the application of PREEMPT RT to the kernel of a commercial off-the-shelf
Android tablet. Despite the large number of actual patch files contained in the set
of PREEMPT RT, the actual patching process was accomplished significantly faster than
expected. Finally, concluding performance tests of the patched kernel showed acceptable
worst-case latencies between 65 µs to 100 µs, which corresponds with the measurement
results presented by Altenberg.

Yan et al. suggest off-the-shelf products like RTEMS and RTLinux [131, 132, 133]
as replacement for Android’s Linux kernel in their research project RTDroid. Leverag-
ing the execution model of RTEMS and compiling the real-time process directly into
the kernel provides real-time applications the full control of all available hardware re-
sources. This approach is referred to as the single-app deployment [133]. But the authors
also point out the incompatibility of this setup with original Android. Since Android
Runtime is built upon separate system services, all of them have to be integrated into
the single-app in form of threads. This approach yields a significantly more complex
build process and includes basically the whole Android platform into each real-time ap-
plication. Additionally, the main statement of Yan et al. regarding the recommended
integration of the real-time Linux seems inconsistent. While generally promoting the full
kernel replacement in favor of off-the-shelf products, their publications use RTLinux as
an equivalent to the PREEMPT RT patched Linux, instead of the equally named standalone
solution for virtualization of the interrupt layer (compare Section 2.3.3). At the same
time, the authors presumably adopt the position of Zores, stating that the patching
approach is not suitable for consumer devices based on ARM CPUs [131]:

“The x86 and the LEON3 environments do not require any more than replac-
ing the non-real-time kernel with either real-time Linux kernel (by applying
an RT-Preempt patch, i.e., RTLinux) or the real-time RTEMS kernel. The
same strategy, however, does not work for the smartphone environment be-
cause Android has introduced extensive changes in the kernel that are not
compatible with RTLinux patches.”

The evaluation of RTDroid shows predictable and deterministic platform behavior
with both approaches, using either PREEMPT RT or RTEMS. Unfortunately, Yan et al. do
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not conduct latency measurements for native Linux processes, as all their tests involve
interaction with high-level Android components. Nevertheless, the authors also identify
low-level Linux components which may have negative effects on the kernel’s real-time
capabilities. The first issue is caused by the low-memory killer, which is used in An-
droid for improving the handling of OOM situations (see Section 2.2.2). This feature is
disabled in RTDroid, since it seems meaningless in setups with only one active process.
Disabling the low-memory killer in standard Android would allow non-real-time appli-
cations with excessive memory usage to jeopardize the system stability. On the other
hand, active low-memory killer can silently terminate real-time processes if they allo-
cate big memory chunks. A general solution proposed in a preliminary paper published
during this dissertation project [60] will be presented later. Another issue arises from
dynamic CPU frequency scaling which is used in Linux to create a trade-off between
CPU performance and energy saving. However, changes in the current CPU frequency
directly affect the execution time of all active processes, possibly introducing additional
latencies. While Yan et al. leave this as future work [131], this dissertation handles the
aspect of dynamic frequency scaling in Section 4.3.

Finally, Ruiz et al. evaluate the resource reservation using cpusets for native real-time
processes running on the top of Android’ Linux kernel [104]. This is a known approach of
partitioned scheduling [6, 17, 30, 69], which creates a static assignment of active processes
to specific processor cores. While it is a common strategy to improve the behavior of real-
time processes on Linux, Ruiz et al. were the first to publish corresponding test results for
the Android platform. Notably, the authors do not incorporate any other methods like
PREEMPT RT and perform their measurements with an unmodified kernel. Their results
show worst-case latencies for a real-time task isolated on one of the CPU cores to be
bounded by about 47 µs. Although this is a notable improvement in comparison to the
standard setup, the duration of the test was limited to 108 × 5µs = 500 seconds, which
is not sufficient for a representative sampling set.

4.2 Improving Kernel’s Preemptibility
This section explains the chosen approach of the application of PREEMPT RT to Android’s
Linux kernel. The following example uses the kernel version android-jfltexx-3.4.107
for Samsung Galaxy S4 and the patch version preempt-3.4.107-rt133. The source code
for the standard kernel release, which can be pulled from the official repository, is referred
to as mainline. Since PREEMPT RT does not contain or depend on binary data, patching
can be considered as line-based joining of text files. Figure 4.2 illustrates separate merge
events across the respective source trees as explained in the following.

Multiple organizations are typically involved in the development of a Linux kernel
for Android. Besides of the official kernel developers and the Android team, hardware
vendors like Samsung have to integrate their device-specific extensions and drivers into
the source code. For this reason, the final source tree for the shipped device can diverge
from the original mainline source. As PREEMPT RT is designed to be applied on the top
of the mainline kernel, additional synchronization of the device’s kernel towards the
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preempt-3.4.107-rt133

android-jfltexx-3.4.107

android-jfltexx-3.4.107-rt133mainline-3.4.107

(2)

(1)

(3)

Figure 4.2: Patching with PREEMPT RT (illustration derived from [79, Fig. 2]).

mainline kernel is required to avoid conflicts. This step is denoted (1) in Figure 4.2.
After the mainline source is patched in step (2), real-time support for the Android
kernel is enabled by merging both branches in step (3). This approach is preferred
over the patch application directly on the top of the android-jfltexx-3.4.107, as the
intermediate patching results can be validated separately in the respective branch. A
successful patch application makes the kernel fully preemptible and introduces advanced
functionality as it was explained in Section 2.3.3. However, this functionality has to be
explicitly activated in the kernel configuration. In contrast to real-time configuration
options like PREEMPT RT FULL, which have to be enabled for providing advanced real-time
support, other options (e.g. debugging or function tracing) may increase the system
overhead and therefore need to be disabled.

The impact caused by various configuration options on the process behavior is an-
alyzed in more detail in Section 4.4. The following section discusses global effects of
dynamic CPU frequency scaling and proposes an approach for locking the frequency in
order to reduce scheduling latencies in real-time applications.

4.3 CPU Frequency Lock
As described previously, the Linux kernel utilizes dynamic CPU frequency scaling to
adapt the performance to current system needs and to save energy. Since the frequency
value directly determines the execution time for CPU instructions, changing it at run-
time has global consequences. With a lower CPU frequency, all processes will require
more time to complete their execution, possibly causing deadline misses. The dynamic
frequency scaling can be completely disabled in the kernel configuration, which causes
the system to run at the maximum frequency supported by the CPU. If the correspond-
ing hardware is protected from overheating, this approach may be suitable for stationary
devices with constant power supply. Mobile devices however will suffer from the excessive
energy consumption, leading to a significant reduction of the battery lifetime. In order
to improve the process predictability, but prevent the mobile device from draining its
battery, this work implements a frequency locking mechanism based on governors4. Two

4Linux documentation: https://www.kernel.org/doc/Documentation/cpu-freq/governors.txt
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count++

lock := freq
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[false]
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[true] [false]
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count > 0?

(a) Acquiring a frequency lock.

count--

lock := null

SuccessFailure

[false]

[true]

count = 0?

[true]

[false]

count > 0?

(b) Releasing a frequency lock.

Figure 4.3: Simplified mechanism for dynamic frequency locking.

simplified activity diagrams in Figure 4.3 illustrate the logic of acquiring and releasing
the lock.

The CPU frequency can be dynamically locked to a fixed value at runtime. By default,
no lock is set and the system may adapt the CPU frequency to the current workload.
In order to keep a constant CPU performance, a starting real-time process should try
to acquire the lock with the desired frequency value. Every locking request is handled
by the system as depicted in Figure 4.3(a). The transition to the right side is taken if
no other process is currently holding the lock. In this case, the system governor freezes
the system frequency to the provided value. Before the function returns, the internal
counter variable is incremented to store the number of currently active locks. If another
process has already locked the frequency earlier, the execution path takes the transition
to the left side. To avoid conflicting states, the process is only allowed to proceed if
the desired frequency matches the currently active value. In this case, only the internal
counter has to be increased, as the lock is already active. This avoids the release of the
frequency lock if the first locking process terminates earlier than the second does.

Figure 4.3(b) shows the process of releasing a frequency lock, which is done analogously
but in the reverse order. The internal counter is decremented on every call until no
other process is holding the lock. In this case, the system governor enables the dynamic
frequency scaling and the system returns to its normal state.

A thread-safe implementation is achieved by protecting both mechanisms with a real-
time mutex included in PREEMPT RT. Additional API opens real-time processes the pos-
sibility to make use of the lock in order to keep the CPU frequency at a constant level.
It can be used by multiple processes simultaneously to freeze the frequency value un-
til all processes have released their locks again. This eliminates the risk of deadline
misses in time-critical applications due to unexpected system transition to a lower CPU
performance.
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Option Name Value Option Name Value Option Name Value
Scheduling options

PREEMPT Y PREEMPT RTB N PREEMPT VOLUNTARY N
PREEMPT NONE N PREEMPT LL N PREEMPT RT FULL Y

Debugging options
SCHED DEBUG N DEBUG PREEMPT N DEBUG IRQ FLAGS N
DEBUG RT MUTEXES N DEBUG KERNEL N ... N

Other options
HIGH RES TIMERS Y CPU IDLE ? RCU BOOST ?
TREE PREEMPT RCU ? AUDITSYSCALL ? STACKTRACE ?

Table 4.1: Kernel configuration options relevant for real-time support.

4.4 Experiments
This section presents the results of a scheduling latency evaluation for native Linux
processes. All tests were performed directly on top of the patched Linux kernel, while
high-level Android components will be in focus of the analysis in following chapters. A
Samsung Galaxy S4 (codename jfltexx) smartphone with an Exynos 5410 Octa (4x 1.6
GHz Cortex-A15 & 4x 1.2 GHz Cortex-A7) chipset and 2 GB of RAM was used to record
the measurements. This device runs the Linux kernel android-jfltexx-3.4.107-rt133
as part of the modified Android 5.1.1.

The evaluation is divided in three parts. The first part evaluates the impact of various
configuration options on the system behavior. Thus, an optimized configuration can be
used in the second part of this section for benchmarking the scheduling latency under
different conditions. Finally, the last part evaluates the process behavior when the
introduced locking mechanism is used to prevent the dynamic CPU frequency scaling.

4.4.1 Configuration of the Linux Kernel
A number of different sources provide recommendations for the configuration of a kernel
patched with PREEMPT RT. In addition to mandatory options (partially presented in Sec-
tion 2.3.3) introduced by the patch, other options have to be activated or deactivated
in a specific pattern to avoid negative side effects on the system performance. How-
ever, publicly available publications and tutorials in this field do not provide a complete
evaluation, covering only a subset of available configuration options at once. Table 4.1
summarizes relevant options from online sources5,6,7 and scientific work [9, 31, 121] with
the corresponding recommended setting.

Based on these sources, it can be assumed that the highest possible preemption level
and the least possible debugging overhead enable the best real-time performance. Fur-

5A realtime preemption overview: https://lwn.net/Articles/146861/
6RT-Preempt homepage: https://rt.wiki.kernel.org/
7OSADL recommendations: https://www.osadl.org/Realtime-Preempt-Kernel.kernel-rt.0.html
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Figure 4.4: Worst-case latency analysis for different kernel configurations.

thermore, the high-resolution timer must be activated for full real-time support, as
it is required for precise scheduling. Therefore, options PREEMPT, PREEMPT RT FULL and
HIGH RES TIMERS are set to “Y”, while all debugging options are set to “N”.

The remaining options lack a consistent recommendation value and need to be eval-
uated separately. For this purpose, a dedicated kernel version was compiled for each
of the 25 = 32 possible configurations. Actual testing was performed using cyclictest8,
which acts as a de facto standard for benchmarking kernels patched with PREEMPT RT.
It was ported9 and compiled for Android in the context of this thesis. The evaluation
was done with standard parameters10 for the duration of 30 minutes per configuration.
Although the benchmark prints minimum, maximum and average values for each run,
only the maximum value is used in the following analysis, as it represents the worst-case
scheduling latency during the execution. For realistic test conditions, the evaluation was
performed under additional CPU load. This was achieved using the hackbench binary
included in the benchmark. With standard parameters11, it creates 400 thread pairs
which continuously pass 100 byte messages via sockets.

This testing process yields 32 measurements, which represent the worst-case latency
recorded in the respective kernel configuration. These values can be divided into two
distinct sets for each configuration option. Each set contains 16 latency values describing
the system behavior when the option is set either to “Y” or to “N”. Box plots with a
logarithmic scale are used to illustrate these sets in Figure 4.4.

The option RCU BOOST has clearly the biggest impact on the preemptibility of the
kernel and thus on measured scheduling deviations. Activating this options reduced the
maximum worst-case latency from 8257 µs to only 661 µs. Similarly, setting the options
TREE PREEMPT RCU and STACKTRACE to “Y” also has positive effects on the scheduling,
reducing the maximum of all measured values by almost 3000 µs in each case. It must
be stated that all presented evaluation results for other options contain 8 measurements
with RCU BOOST set to “N”. For this reason, it is presumable that high latencies are caused
by this specific setting, hiding the impact of the option that is actually being analyzed.

8Original cyclictest documentation: https://rt.wiki.kernel.org/index.php/Cyclictest
9Ported cyclictest for Android: https://github.com/RTAndroid/android_external_cyclictest

10Benchmarking parameters: cyclictest -n -p 80 -D 30m
11Parameters for stressing the CPU: hackbench -loops 10000000

36

https://rt.wiki.kernel.org/index.php/Cyclictest
https://github.com/RTAndroid/android_external_cyclictest


4.4 Experiments

Test Kernel Freq. Lock CPU Load
1 Standard – –
2 PREEMPT RT – –
3 PREEMPT RT – +
4 PREEMPT RT + –
5 PREEMPT RT + +

Table 4.2: Test specification for a detailed
evaluation of the scheduling latency.

Scheduling Latency [µs]
Test 1 2 3 4 5
Min 37 27 23 17 16
Q1 161 76 91 29 32
Q2 197 79 115 34 36
Q3 199 79 118 35 36
Max 7407 118 219 58 63
Avg 186 77 108 31 34
σ 48 4 17 6 6

Table 4.3: Latency evaluation results.

However, additional testing of the remaining four options with activated RCU BOOST has
shown a latency distribution similar to Figure 4.4. Enabling TREE PREEMPT RCU and
STACKTRACE was confirmed to reduce scheduling latencies, while options CPU IDLE and
AUDITSYSCALL made no significant difference regardless of their setting. This optimized
configuration will be used for all further tests in the context of this work.

4.4.2 Native Scheduling Latency
The next test evaluates the scheduling latency of native processes in different scenarios.
Besides a comparison to the original non-patched kernel, latency values are also recorded
during an active frequency lock. To validate the scalability of the resulting approach,
some tests are performed under additional CPU load. The hackbench binary was used
with default configuration as described in the previous section. A summary of all tests
including the corresponding parameters is given in Table 4.2.

A real-time process with priority 80 is scheduled every T = 500 µs for the total
duration time of one hour. For a more detailed evaluation of the system behavior, the
differences between the scheduled and the actual execution of this process (latencies) are
recorded on every iteration. Since cyclictest provides only summarized information,
this test relies on a new implementation derived from the original benchmark. Table 4.3
presents the most relevant statistical values calculated from the recorded measurements.

Test 1 shows the unsuitability of the original kernel for reliable, deterministic schedul-
ing. Executing a process with real-time priority does not prevent the system from causing
significant latencies. The recorded maximum value of 7407 µs means that the process
has missed its activation deadline 14 times in a row. Since this test is executed without
additional CPU load, it can be assumed that the real-time process will experience even
higher deviations from its schedule if other applications will run concurrently.

The system behavior is greatly improved on the PREEMPT RT patched kernel as shown
in Test 2. In this case, all measured values up to the 3rd quartile remain below 80 µs and
the standard deviation is reduced from 48 µs in the original kernel to only 4 µs. This
is a clear indication for a more deterministic scheduling resulting from the preemptible
kernel. Nevertheless, additional CPU load in Text 3 has a noticeable negative effect on
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(a) Measurements for T = 5 ms.
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(b) Measurements for T = 500 ms.

Figure 4.5: Evaluation of the scheduling latency for extended period times.

the latency distribution. The high priority of the real-time process does not completely
protect it from increased scheduling delays. All measured values in Test 3 are increased
by about 30–50% in comparison to Test 2, while the worst-case latency rises to 219 µs
when the CPU is under stress. This may be sufficient for soft real-time systems designed
to react in the range of milliseconds or higher, but not for applications with period times
below 300 µs.

The remaining tests reuse the configuration of Tests 2 and 3 while additionally locking
the CPU frequency to the highest supported value of 1.8 GHz by making use of the new
API. Results recorded during Tests 4 and 5 illustrate that the introduced mechanism for
preserving a constant CPU speed reduces the scheduling latency regardless of the current
load. Disabling automatic frequency scaling leads to a constant execution time of CPU
instructions and a more deterministic timing on the system level. This provides a higher
system performance allowing the real-time process to be scheduled more precisely, with
the maximum deviation from its planned activation time of 63 µs. The other measured
values do not exceed 40 µs even when challenging the CPU with additional tasks.

4.4.3 Dynamic CPU Frequency Scaling
Previous test has shown the increased predictability of process scheduling when the
CPU is locked to the highest available frequency. This was made possible by preventing
the frequency value from being automatically adjusted depending on the system load.
Without the lock, all running processes and system activities are affected by dynamic
changes of the CPU speed. Measuring these changes is only possible with sufficiently
long execution periods without additional CPU load, since the dynamic scaling module
requires time to release the frequency between two subsequent iterations. For this reason,
the following tests are performed by scheduling the real-time process with different period
times T between 1 millisecond and 2 seconds. The benchmark application is extended
to calculate a product of two 100×100 matrices in each iteration. The time required for
this operation is continuously recorded in addition to the scheduling latency. Evaluation
results for 200 iterations with T = 5 ms and T = 500 ms are illustrated in Figure 4.5.
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(a) Calculation delay for T = 5 ms.
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(b) Calculation delay for T = 500 ms.

Figure 4.6: Evaluation of the calculation time for extended period times.

Without a frequency lock, the observed scheduling latency for T = 5 ms in Fig-
ure 4.5(a) is slightly worse than the one recorded during Test 2 in the previous section
(compare Table 4.3 for T = 500 µs). Although worst-case values are similar in both
tests, extending the period time from 500 µs to 5 ms increases the average latency by
about 20 µs. While this value stays nearly constant during the test, effects of the dy-
namic frequency scaling become apparent in Figure 4.5(b). With even further extension
of the period time to T = 500 ms, the overall CPU load level falls under a certain
threshold and energy saving mode is activated. Without an explicit lock, the Linux
kernel automatically reduces the CPU speed by choosing a lower frequency value. As a
result, the whole system is slowed down leading to significantly higher latencies up to
162 µs. Figure 4.5(b) shows a recurrent pattern where the CPU frequency is repeat-
edly increased for a short period of time every 25 iterations of the benchmark process.
This pattern might be caused by another active process which generates a substantial
system load for an approximate duration of 10 × 500 ms = 5 seconds with a period of
25× 500 ms = 12.5 seconds. In contrast to dynamic frequency scaling, enforcing a CPU
frequency lock at the maximum supported level ensures a bounded latency regardless of
the period time. Both diagrams show worst-case measurements in the range of 25–38
ms, which corresponds with the observations from Tests 4 and 5 in Section 4.4.2.

A similar behavior can be recognized in the values for the calculation phase as depicted
in Figure 4.6. Both diagrams plot the time required for the matrix multiplication in
the respective iteration of the same two runs presented in Figure 4.5. For a disabled
frequency lock, process period time of T = 5 ms results in an average calculation time
of about 4.9 ms with relatively low scattering (see Figure 4.6(a)). With the period time
of T = 500 ms the same multiplication takes up to 15.3 ms due to the energy saving
mode activated by the dynamic frequency scaling (see Figure 4.6(b)). In both cases, the
proposed frequency locking mechanism is able to guarantee a deterministic time frame
of 1.7 ms in which the result is calculated.

Figure 4.6(b) also confirms the global effect of the dynamic frequency adjustments.
The low value recorded in the 63rd iteration of this test indicates that the processing
was made with a higher CPU speed. This allowed the result to be calculated in only
2.9 ms, instead of 14.8 ms required in both the previous and the subsequent iteration.
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Figure 4.7: Impact of the frequency on the calculation time.

Notably, the outlier in the 63rd iteration can also be identified in Figure 4.5(b), where
the real-time process was scheduled with significantly lower latency in comparison to
neighboring iterations. Thus, the process was able to benefit from another application
or system activity that temporarily caused a transition to a higher CPU frequency.

In order to quantify the processing speedup gained from the lock at different frequency
levels, the last test is repeated for T ∈ {1 ms, 2.5 ms, 5 ms, 10 ms, 50 ms, 500 ms, 1 s, 2 s}.
Additionally, measurements for each T are recorded for different settings of the frequency
lock: no locking, acquired for 400 MHz (minimum value), acquired for 1.1 GHz and
acquired for 1.8 GHz (maximum value). Figure 4.7 shows the average calculation time
computed based on 200 iterations for each T and each setting. Data points recorded
with the same lock level have been connected for better comparability.

As it was mentioned earlier, short period times keep the CPU busy and prevent the
system from reducing the frequency. Correspondingly, rising values for T allow the
dynamic frequency scaling mechanism to save the battery by lowering the current CPU
speed. This effect is visualized by the test case with no frequency lock. It illustrates
that the average calculation time gradually increases from 3.5 ms to 12.3 ms when T is
extended up to 2 seconds. These values confirm the previous measurements for T = 5 ms
(see Figure 4.6(a)) and T = 500 ms (see Figure 4.6(b)). However, the performance of
the dynamic frequency scaling never reaches either of the limits provided by locking
the minimum or the maximum frequency. It was already shown that acquiring the
introduced frequency lock for 1.8 GHz leads to a shorter computation time. Notably,
acquiring a lock for 400 MHz provides even lower performance than the one observed
during the automatic adjustment. This may be caused either by internal limits of the
module for dynamic frequency scaling or by other applications performing their work
in the background. Thus, activating the frequency lock is confirmed to guarantee a
deterministic timing regardless of the chosen CPU frequency value.
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4.5 Summary and Discussion
This chapter presented an approach for the application of the PREEMPT RT patch to An-
droid’s Linux kernel. A synchronization of the device-specific kernel before merging it
with the patched mainline source tree simplifies the patching process while preserving
vendor extensions and included Androidisms. The required overhead is expected to de-
crease in future, since PREEMPT RT is being continuously merged into the mainline kernel.
Furthermore, the system configuration was optimized for real-time processing based on
detailed evaluation of the relevant kernel options. Evaluation results of the scheduling
latency for native Linux processes have shown bounded response times and worst-case
latencies of 63 µs even under additional CPU load. This was possible by using the
introduced frequency locking mechanism based on Linux governors.

This approach protects real-time applications from being undesirably affected by tran-
sitions to different frequency values caused by temporary CPU load. The lock can be al-
located dynamically at execution time, providing a better trade-off between predictabil-
ity and energy saving on mobile devices. Additionally, the overhead introduced by the
implemented methods for acquiring and releasing of the frequency lock is bounded and
predictable. However, the current implementation is not aware of the process that had
requested a lock. An acquired frequency lock is preserved permanently if the respon-
sible process terminates without releasing it. Keeping track of the mapping between
active locks and the corresponding processes would also introduce additional security
and prevent malicious processes from releasing locks they did not acquire.

Overall evaluation results are comparable to those presented in the literature for ARM
CPUs (see Section 4.1). It may therefore be concluded that the proposed approach
leverages the entire potential of PREEMPT RT while preserving Android-specific extensions.
Nevertheless, higher architectural levels must also be modified in order to make Android
applications benefit from the obtained determinism and predictability of the kernel.
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As explained in Section 2.2.2, each Android application is encapsulated by a dedicated
instance of the virtual machine running in a separate Linux process. This way, real-
time Android applications can immediately benefit from the fine-grained CPU control
and reduced scheduling latencies, as presented in the last chapter. However, the virtual
machine has a major influence on the internal process behavior, as it continuously mon-
itors and manages the virtual environment. For example, if the amount of free memory
falls below a predefined threshold, the VM automatically invokes the collection of un-
used memory objects. Regardless of the Android version, both Dalvik VM and Android
Runtime provide advanced algorithms for object disposal. Invocations of the GC do
not affect other processes, since the garbage is collected only in the memory region of
a single process. However, all activities of the target application are suspended by the
VM in order to avoid data inconsistencies. The GC is activated depending not only
on the process’ own memory usage, but also on the global system state and internal
thresholds. As a result, all active processes experience unpredictable delays at runtime
due to enforced interruptions of all threads inside the corresponding VM instance.

While automatic memory management mechanisms provide a higher flexibility for ap-
plication developers, they typically cause high runtime overhead. Suspending all active
threads is the most obvious way of preserving the consistency of the memory state dur-
ing the identification of unused objects. Hence, creating a non-blocking GG is of major
importance especially in time-critical domains [33]. As pointed out by Schoeberl, auto-
matic memory management in real-time applications is possible, if the garbage collection
is performed incrementally with a known maximal blocking time [107, 108]. Based on
these ideas, this chapter proposes a concept of a real-time capable garbage collection and
its integration into the Dalvik VM. Its non-blocking operation mode minimizes interfer-
ences between the garbage collector thread and the thread that executes the application
logic. Furthermore, it avoids OOM situations by keeping a sufficient amount of memory
available at any time, improving the overall system predictability.

The remainder of this chapter is structured as follows. Related work and known algo-
rithms for automatic memory management are summarized in Section 5.1. Section 5.2
illustrates the conceptual design of the real-time capable collector and its integration
in Android. An analysis of how memory consumption affects the behavior of long-term
background applications is presented in Section 5.3. Section 5.4 provides a detailed
evaluation of the introduced changes. Finally, Section 5.5 concludes this chapter.
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5.1 Related Work
The first approach to extend Android’s memory management to improve the user ex-
perience was presented by He et al. [48]. In addition to a detailed analysis of the heap
structure used by the DVM, the authors propose to change the default heap layout. In-
stead of allocating objects of different types next to each other, the heap is divided into
two distinct regions for static and dynamic content. The class region stores preloaded
class objects, which do not change during their lifetime on the heap. The user region
offers memory for dynamic allocations of program data at runtime. The authors pro-
pose a regional garbage collection, which is primarily focused on the user region. Still,
their approach additionally includes a mechanism to scan both regions, which performs
similarly to the native stop-the-world algorithm of the DVM and can also free objects
in the class region. Presented evaluation results indicate a better performance of this
approach in comparison to the original implementation. However, since this algorithm
cannot guarantee an undisturbed program execution over a long period of time, it is not
suitable for deployment in time-critical domains.

A solution designed specifically to meet real-time requirements was presented as part
of the RTDroid project [133]. Instead of modifying the original GC implementation,
RTDroid integrates the Fiji VM – an additional JVM with its own mechanisms for
memory management. It relies on a parallel GC based on Immix [13], which allocates
and reclaims memory in contiguous regions. This allows real-time applications executed
inside the Fiji VM to benefit from automatic memory management without negative
effects on the application’s runtime behavior. However, this protection only applies to
threads controlled by the Fiji VM. Android system services and third-party applications
will still depend on the original GC implementation, as they are executed by their own
DVM instances. This approach can be justified only in scenarios where the real-time
process does not use any of Android’s internal API, since accessing functionality outside
of the process boundaries may still result in unpredictable delays.

In addition to the presented approaches based on regional GC, other state-of-the-art
methods for automatic memory management include tracing GC and reference-counting
GC. The following sections provide a short summary of the related work on these topics
and present further techniques for using automatic GC in the context of real-time com-
puting. Application threads that can allocate and mutate memory will be referred to as
mutators, while a collector is the thread performing the actual garbage collection.

5.1.1 Tracing Garbage Collection
The original GC in Android’s DVM is based on a tracing collector. Similar to the
vast majority of all tracing-based GC implementation, DVM uses a mark-and-sweep
algorithm [80] for the detection of unused objects in the memory. This algorithm is
divided in two phases. In the mark phase, the collector performs a traversing through
the graph of all allocated objects and marks all reachable ones. The next phase is called
sweep phase, since the collector scans all objects on the heap and frees the memory
behind all unmarked objects. This algorithm guarantees to correctly identify and reclaim
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garbage objects even if they contain circular references. However, its main disadvantage
is that all mutator threads have to be suspended during the graph traversion in order
to avoid new allocations before the mark phase is finished.

An advanced version of mark-and-sweep called tri-color-marking [25] introduces three
different sets to additionally keep track of whether an object can potentially be reclaimed.
This modification allows the collector to be executed incrementally, processing only a
small number of objects each time. This way, the system does not have to suspend the
mutator threads for the duration of the whole collection, splitting the execution into
multiple short steps. Other adaptations of the mark-and-sweep algorithms addition-
ally improve the performance of the original method by enabling generational [58] or
compacting [93] garbage collection.

5.1.2 Reference-Counting Garbage Collection
Another method for detecting whether an object is still used by the running program
is reference counting. It has been originally introduced by Collins [21] and relies on
the number of active references to each allocated object. Each object stores how many
other objects have a reference to it, allowing the system to reclaim the memory as
soon as this number reaches zero. A write barrier – which is executed on every object
assignment – is used to detect changes and allows the original algorithm to free an
object immediately after its counter was set to zero. However, this operation may
have negative impact on the process behavior, for example if the freed object references
a big number of other objects, which now also have to be reclaimed. This effect is
called cascading deallocation [124]. It causes non-deterministic delays to the program
execution, if a deallocation of one object causes a deallocation of another object by
recursively decreasing their reference counts. This issue can be addressed by creating a
set of objects waiting to be freed. Instead of reclaiming the memory immediately, the
write barrier only inserts the detected garbage object into the set, leading to a bounded
execution time. An additional collecting thread can concurrently remove objects from
the set and free them, without interfering with the program logic.

A performance gain can be achieved by limiting the memory scope of the write barrier
as proposed by the Deutsch-Bobrow method [24]. It excludes objects allocated on the
stack from the consideration, since they are assumed to be mutated frequently. This
leads to a significant reduction of calls to the write barrier, as it is only executed for
objects stored on the heap. As a disadvantage, additional checks are required before an
object can be freed, since it can still be referenced from other objects on the stack.

The original algorithm for garbage collection can be further improved by implementing
deferred [24] and coalescing [70] reference counting. Both approaches present conditions
under which effects of intermediate mutations may be either calculated at a later stage
or even completely ignored, reducing the execution overhead of the write barrier.

Nevertheless, reference-counting GC has a major disadvantage, when compared to
algorithms for tracing GC: If two or more objects have a circular reference to each other,
their respective reference counts will never reach zero, even if they are not referenced
from any other objects on the heap. Such structures – commonly referred to as cyclic
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garbage – cannot be identified by a reference counting method. To address this issue,
Bacon and Rajan have presented a cycle detection mechanism [12]. It can be deployed
in addition to the write barrier in order to detect and reclaim cyclic garbage.

5.1.3 Real-Time Garbage Collection
Deterministic behavior of algorithms for automatic memory management is crucial in
real-time applications. If the garbage collection has to be deployed in real-time scenarios
with firm deadlines, it must provide more than just a bounded blocking time. As men-
tioned above, Schoeberl has identified three requirements a real-time capable garbage
collection has to fulfill [107, 108]:

1. The collector has to keep up with the maximum allocation rate of mutators.

2. The worst-case blocking time introduced by the collector has to be known a priori.

3. The time for GC operations like tracing and write barrier has to be predictable.

The first characteristic describes the cooperation between the collector and the mu-
tator threads, rather than a requirement for the GC algorithm itself. Nonetheless, this
condition has to be satisfied in order to avoid dangerous OOM situations.

Properties (2) and (3) have a major influence on the design of the GC and how it needs
to be scheduled. Schoeberl points out that a real-time capable collector must be executed
concurrently to the mutator threads and perform incremental GC with bounded overhead
in terms of space and time. The concurrent execution can be achieved by using either
periodic scheduling [10] or slack-based scheduling [51]. In the first case, the collector
is executed with the highest possible priority at a fixed schedule. It automatically
preempts all the mutator threads for a bounded amount of time during the collection
phase. This fulfills the requirement (2), since both the invocation time and the blocking
time can be calculated a priori. On the contrary, a slack-based collector is executed
with a lower priority and it can be preempted by the real-time thread at any time. This
also guarantees the predictability of the GC behavior and fulfills the requirement (2).
However, in this case the collector thread requires a sufficient amount of the CPU time
to keep up with the allocation rate of the mutator. In both cases, the GC has to rely on
an incremental approach, since the time slice of a single iteration might not be sufficient
for a full memory scan. Regardless of which approach is chosen for the scheduling of
the collector thread, all mutator threads are indirectly slowed down by the introduction
of the write barrier. Although the time overhead for barrier’s execution is bounded
(see Section 5.1.2) as required by the requirement (3), the overall system performance
is decreased as the write barrier is executed on every object assignment.

Both tracing and reference-counting collectors begin their execution by scanning the
context (e.g. registers and stack – referred to as local root sets) of all mutator threads.
This is a necessary step, since the optimized write barrier is only executed for objects
on the heap, which can still be referenced from the root set. The most straightforward
method to obtain a consistent snapshot of the root set is to suspend the target thread.
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In real-time applications, these suspensions can be avoided if the snapshot is created
by the real-time thread itself. This requires additional synchronization between the
collector and the mutator thread, like in the delegated local root set scanning proposed
by Schoeberl and Puffitsch [109]. It passes the scanning of the respective context to the
mutators themselves by setting a predefined flag. A mutator thread periodically checks
this flag at its implementation-specific safe points and performs the scan of its own
registers and stacks. Thus, no thread suspension has to be enforced and the collector
thread can start its execution after all mutators have finished the scanning of their own
root sets.

5.2 Real-time Garbage Collector for Android
As presented above, garbage collectors using the mark-and-sweep approach are typically
not suitable for applications in real-time environments. They rely on the stop-the-world
paradigm, causing non-deterministic suspensions of mutator threads and increasing the
risk of deadline misses. To address this issue, this section presents an approach for
the design and integration of a real-time capable, reference-counting garbage collector
for the Dalvik VM. In order to minimize the integration effort for upcoming platform
updates, the new GC is implemented in addition to the original algorithm. This allows
the real-time processes to benefit from a more deterministic memory management, while
other applications and unrelated system components can be adopted unchanged.

A real-time GC has to fulfill the requirements presented in Section 5.1.3. Thus, the
collector implemented in the context of this thesis is designed to avoid interferences
with mutator threads running inside the same DVM instance. This is achieved with a
concurrent and incremental GC incorporating the following techniques:

• Reference-counting GC [21]: The reference count of each object is stored in the
extended meta header of the object itself.

• Deutsch-Bobrow method [24]: A write barrier updates the reference count of each
object on the heap by handling assignment operations.

• Delegated local root set scanning [109]: Additional synchronization mechanism
delegates the scanning of the root sets to the mutator threads.

• Non-cascading deallocation [124]: Garbage objects are not freed immediately, but
rather stored in a zero count table for later processing by a dedicated thread.

• Slack-based scheduling [51]: A concurrent collector thread reclaims objects in the
zero count table based on snapshots of local root sets.

• Cycle detection [12]: The collector thread is able to detect cyclic garbage.

Following sections present these extensions in detail, beginning with the extended
metadata and the integration of the write barrier. Finally, the actual garbage collector
is implemented by incorporating the remaining techniques.
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Figure 5.1: Schematic representation of objects within the DVM [38].

5.2.1 Extended Metadata Management
The Dalvik VM provides the function dvmMalloc as part of the dlmalloc module to
access memory on the heap. This function is invoked from dvmAllocObject to allocate a
memory block of an appropriate size which is used for an object of the desired class. Java
objects are internally represented by the DVM as an instance of either a DataObject or
an ArrayObject. As illustrated in Figure 5.1, besides of the actual runtime content, both
types also store a generic structure Object with meta information. This generic data
provides a reference to ClassObject, which represents the class this object belongs to,
including its fields, methods, interfaces and other relevant information. It is particularly
important, since the properties described by this structure are the same for all objects
instantiated from this class. This enables a mapping between the specified instance fields
of a class and the actual runtime data of an object, which is stored separately inside the
content area. While the content of a DataObject can have as complex layout as the class
it is instantiated from, the content area of an ArrayObject can only store primitive data
types or references to other objects. Although there might be a big number of different
objects of the same given class, the VM optimizes its memory usage by allocating only
one instance of the corresponding ClassObject structure and saving the same reference
to all created objects.
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Reference-counting GC implemented in the context of this thesis requires additional
information to be stored in all object instances managed by the DVM. Since the native
implementation does not provide corresponding data fields, the definition of the Object
structure has been extended accordingly. Additionally, a zero count table was included
into the global runtime context of the DVM stored in the DvmGlobals structure1. This
table is used to keep track of potential garbage objects, which either have just reached
the reference count of zero or have been newly created in the dvmAllocObject function.
Its definition is based on the ReferenceTable, which is already part of Android’s source
code2 and can contain up to 216 = 65, 536 object references.

5.2.2 Integration of the Write Barrier
As Android 2.2 does not require a write barrier for its original memory management,
it was additionally integrated into the DVM. The barrier updates the corresponding
reference count each time an object reference is modified. It is implemented to receive
two arguments. The first argument is the new object, whose reference is supposed to
be stored in the respective field. If valid (the value is not null), its reference count is
increased since it is about to receive a new reference. The second argument to the write
barrier is the old field value. After a validity check (null or uninitialized memory), the
reference count of the old object is decreased since the corresponding field will not point
to this object anymore. Both counter operations are executed using the atomic functions
android atomic inc and android atomic dec provided by the Android platform. Such
thread-safe implementation protects the system from race conditions in case the object
is updated from multiple threads simultaneously.

If an object’s reference count reaches zero during the execution of the write barrier,
this object can be treated as a candidate for garbage collection. It is inserted in the zero
count table, if not already stored there, and an additional flag in the object’s metadata
is set. This flag is used to achieve constant overhead for checking the membership of a
specific object in the zero count table. To avoid searching overhead, the corresponding
flag is set when the object is inserted into the table and cleared when it is removed.
For the same reason, an object is not removed from the zero count table, if its reference
count increases again. Instead, the collector thread validates that the reference count
of each object equals zero before reclaiming it, or removes it from the zero count table
otherwise. This approach allows the introduced write barrier to be executed in O(1)
time and to adds only a constant overhead to the runtime behavior of the DVM.

Besides of internal functions for object manipulation, the DVM also defines interpreter
opcodes3 for updating the object’s content region. Six opcodes presented in Table 5.1
have been identified to modify references stored in arrays and instance fields. All of
them were updated to execute the introduced write barrier each time the interpreter
invokes the corresponding command.

1Definition of dvmGlobals from Android 2.2 in dalvik/vm/Globals.h
2Definition of ReferenceTable from Android 2.2 in dalvik/vm/ReferenceTable.h
3Opcodes for the Dalvik VM are defined in Android 2.2 in dalvik/vm/mterp/c/
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Opcode Name
OP APUT OBJECT OP IPUT OBJECT
OP FILLED NEW ARRAY OP IPUT OBJECT QUICK
OP FILLED NEW ARRAY RANGE OP SPUT OBJECT

Table 5.1: Opcodes for updating object references on the heap.

Listing 5.1: Determining the duration of the next sleep phase for the collector.
1: function getSleepDuration()
2: tsleep ← 2 sec ◃ Init with maximum sleep duration
3: for all res ∈ {mem, zct} do
4: rdiff ← rcur − r̂cur ◃ Allocated in the last iteration
5: rrem ← rlim − rcur ◃ Remaining amount of this resource
6: tlim ← rrem × t̂sleep/rdiff ◃ Time until the threshold is reached
7: tcon ← tlim/2 ◃ Conservative time for this resource
8: tsleep ← min(tcon, tsleep) ◃ Global sleep time for all resources
9: end for

10: return tsleep

11: end function

5.2.3 Implementation of the Garbage Collector
The new garbage collection is performed by an additional concurrent thread. Its priority
is automatically adjusted to be lower than the minimum priority of all real-time mutators
in the same DVM instance. As explained in Section 5.1.3, this slack-based scheduling
approach ensures that the collector thread can be preempted by mutators to avoid un-
desired delays. The GC itself is not triggered as long as the DVM instance has sufficient
resources for an undisturbed operation. More precisely, the collector thread monitors
the amount of available memory rmem

cur and the filling degree of the zero count table rzct
cur.

If both values stay above the respective predefined threshold rres
lim with res ∈ {mem, zct},

there is no need to invoke the garbage collection and the thread is put asleep again. The
duration of the sleep phase tsleep is estimated using a heuristic. Listing 5.1 presents this
calculation based on the values t̂sleep and r̂res

cur from the previous iteration.
The maximum sleep duration is initialized with 2 seconds. This value was chosen as an

upper bound to prevent the collector from missing the memory shortage, if the allocation
rate of the mutators suddenly increases. The current allocation rate in line 5 is calculated
based on changes during the last iteration. This rate is used for the approximation of tlim,
which denotes the time until the threshold of the respective resource will be exceeded.
However, the value of rdiff is subject of application-specific fluctuations and it may
change at any time depending on the mutator’s state. For this reason, the resource-
specific time is additionally divided by two in order to provide a more conservative
estimation tcon. This approach provides a higher reliability, since the allocation rate of
the mutators can be re-calculated earlier in order to react to recent changes.
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As soon as one of the values rres
cur exceeds the corresponding threshold, the garbage

collection is started. Listing 5.2 summarizes the initialization phase (Lines 2-7) and the
sweeping phase (Lines 8-25), which are explained in the following.

Listing 5.2: Reclaiming the garbage with a reference-counting collector.
1: procedure performSweeping()
2: atomic
3: zctlocal ← copy zctglobal ◃ Minimize blocking times
4: cleanup zctglobal

5: end atomic
6: invoke root sets scan ◃ Blocking delegation to mutators
7: invoke cycle detection ◃ Identify cyclic garbage
8: for all obj ∈ zctlocal do
9: remove obj from zctlocal

10: if obj.refcount ̸= 0 then
11: continue ◃ Drop objects with references
12: end if
13: if obj.marked = true then
14: add obj to zctglobal

15: continue ◃ Reachable from the root set
16: end if
17: for all child ∈ obj.refs do
18: child.refcount← child.refcount− 1 ◃ Its parent will be reclaimed
19: if child.refcount = 0 then
20: add child to zctlocal ◃ Process cascading deallocations
21: end if
22: end for
23: free obj ◃ Reclaim the garbage object
24: end for
25: cleanup zctlocal

26: end procedure

Initialization Phase

Access to the zero count table is protected by a mutex to avoid race conditions. Per-
forming the full garbage collection by iterating through the global table would block
the execution of all mutator threads in the same DVM instance. This is avoided by
atomically creating a local copy of the zero count table and cleaning up the global one.

The next step invokes the scan of the root sets. This functionality is already available
in Android’s source tree4 as a part of the original mark-and-sweep collector. In contrast
to mutators with standard priority – which can be suspended during the scan – the

4See method dvmHeapMarkRootSet in dalvik/vm/alloc/MarkSweep.c
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schedule of real-time threads should not be affected. For this reason, the concept of
delegated root set scanning (see Section 5.1.3) is used to notify real-time threads about
the pending garbage collection. By periodically checking the corresponding flag, a real-
time thread can determine at which point in time the scan of the local root set should
be performed. The execution of the collector thread is blocked until all threads of the
affected DVM instance have finished their scans. After this step, all referenced objects
on the heap have been marked without blocking the real-time threads.

Since the original method for reference counting cannot reclaim cyclic garbage, the
cycle detection mechanism proposed by Bacon and Rajan [12] is executed prior to the
sweeping phase. The write barrier overapproximates the set of candidates for cyclic
garbage. All objects whose reference count was decreased, but which still have at least
one reference pointing to them, are examined by the cycle detection algorithm. In case
they are confirmed to form a cycle, the reference count of the cycle root is decreased,
allowing the garbage collector to reclaim its memory in the same iteration.

Sweeping Phase

The initialization phase prepares the local zero count table and ensures that all objects
referenced from local root sets are marked accordingly. Before reclaiming objects con-
tained in the local zero table, the collector thread validates they are referenced neither
from the heap nor from local root sets. The first check (Lines 10-12) is necessary since
a mutator thread could have stored a reference to this object in an instance field on the
heap after it was inserted into the global zero count table. Such objects can be dropped,
as they will be automatically re-inserted into the zero count table as soon as their refer-
ence count reaches zero again. The second check (Lines 13-16) filters all objects that are
reachable from local root sets. They are still in use and cannot be reclaimed yet, but
they cannot be dropped from the zero count table either, since they have no references
on the heap. In order to keep track of such objects, they are re-inserted into the global
zero count table and checked again in the next GC iteration.

Remaining objects are identified as unused (Lines 17-23). Before the memory behind
a garbage object is reclaimed, the reference counts of all child objects are decremented.
If a child object reaches a reference count of zero, it is immediately inserted into the
local zero count table to be reclaimed during the same iteration. Finally, the garbage
object is deleted using the API already provided by the DVM5. Then, the local zero
count table is destroyed and the collector thread enters the next sleep phase.

5.3 Memory Adjustments for Real-time Processes
As described earlier, only applications executed in foreground processes can be consid-
ered protected from the enforced termination by the system (see Section 2.2.2). However,
this does not apply to the vast majority of all activities and services present in the sys-

5See method dvmHeapSourceFree in dalvik/vm/alloc/HeapSource.c
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tem at a certain point in time. Hidden activities and background services are destroyed
as soon as foreground processes require more memory6:

“Though these processes are not directly visible to the user, [...] the system
will always keep such processes running unless there is not enough memory to
retain all foreground and visible process. Services that have been running for
a long time (such as 30 minutes or more) may be demoted in importance [...].
This helps avoid situations where very long running services with memory
leaks or other problems consume so much RAM that they prevent the system
from making effective use of cached processes.”

In case a real-time application with high memory demands has to persistently run
in the background for a long time, using a real-time capable garbage collection is not
sufficient to protect it from unexpected suspension or termination events. For this
reason, the low-memory killer has to be extended to respect the scheduling of long-term
processes with real-time requirements.

Android calculates out-of-memory adjustment (OOM ADJ) values for each active process
in order to reliably distinguish between separate processes of the same importance class.
Adjustment values are initialized based on the application’s importance class, but can
be dynamically modified at runtime depending on the process’ behavior. This allows
considering relevant changes if a visible activity is temporarily moved in the background
or if a hidden service creates a visible notification. Both cases can be automatically
handled by increasing or decreasing the respective adjustment values accordingly.

The six different importance classes and corresponding memory thresholds are set by
Android during the boot sequence7 as shown in Listing 5.1. The minfree parameter
denotes memory thresholds to trigger the low-memory killer as soon as the amount of
free memory falls below the given value. These parameters are presented in memory
pages of size 4096 bytes. For example, the low-memory killer will start terminating
empty processes with OOM ADJ > 15 as soon as there is less than 24 MB RAM available8.
In case the memory situation gets even worse and the system has less than 8 MB RAM
available9, Android will destroy all processes with OOM ADJ > 1, which affects everything
except for the current foreground application and system services.

This analysis illustrates that real-time processes have to be used with appropriate
adjustment values in order to avoid being killed by the system in OOM situations.
The internal design of the low-memory killer allows this approach to be applied to
both activities and background services designed for long-term execution. The following
experiments will show that choosing an appropriate adjustment value protects real-time
processes from being terminated if other applications allocate high amounts of memory.

6Developers documentation for processes and application life cycle in Android: https://developer.
android.com/guide/topics/processes/process-lifecycle.html

7From the source code analysis of Android 2.2 in system/core/rootdir/init.rc
8Conversion from pages to bytes: 6144 pages× 4096 bytes/page = 25165824 bytes
9Conversion from pages to bytes: 2048 pages× 4096 bytes/page = 8388608 bytes
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on boot
# Define the oom_adj values for the classes of processes that can be
# killed by the kernel . These are used in ActivityManagerService .

setprop ro. FOREGROUND_APP_ADJ 0
setprop ro. VISIBLE_APP_ADJ 1
setprop ro. SECONDARY_SERVER_ADJ 2
setprop ro. BACKUP_APP_ADJ 2
setprop ro. HOME_APP_ADJ 4
setprop ro. HIDDEN_APP_MIN_ADJ 7
setprop ro. CONTENT_PROVIDER_ADJ 14
setprop ro. EMPTY_APP_ADJ 15

# Note that the driver only supports 6 slots , so we have
# HOME_APP at the same memory level as services .

write /[...]/ lowmemorykiller / parameters /adj 0 ,1 ,2 ,7 ,14 ,15
write /[...]/ lowmemorykiller / parameters / minfree

1536 ,2048 ,4096 ,5120 ,5632 ,6144

Listing 5.1: Loading memory and adjustment threshold values during Android boot.

5.4 Experiments
This section evaluates the changes to the Dalvik VM integrated over the course of
this chapter. The following tests are executed on the HTC Dream smartphone with the
Qualcomm Snapdragon (MSM7201A ARM11) 528 MHz CPU and 192 MB of RAM. This
device runs Linux kernel android-msm-2.6.29-rt24 as part of the modified Android 2.2.
Although the kernel was patched with PREEMPT RT and compiled with the recommended
configuration, kernel optimization and frequency locking presented in Chapter 4 were
integrated at a later stage and could not be applied in this evaluation. All tests were
performed using a conventional Android application, which was executed in a dedicated
Linux process with the real-time priority of 80.

The section begins with the evaluation of OOM adjustment values in context of real-
time applications. Remaining tests cover the analysis of the reference-counting garbage
collection. The first part presents effects of the automatic memory management on the
scheduling latencies of periodic real-time tasks with constant allocation rate. In the
second part, the same setup is reused for latency measurements during a long-term test.
Finally, the performance impact introduced by the additional overhead of new reference
GC is quantified and compared to the original implementation.

5.4.1 OOM Adjustments for Real-time Processes
This test compares the behavior of application components depending on their respective
OOM ADJ values. In order to identify the differences, the testing environment must allocate
significant amount of memory such that the low-memory killer is triggered. HTC Dream
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Displayed com.evaluation.memory.OomNormal
Evaluation (1378): Allocating 30 MB of RAM ...
Evaluation (1378): Allocated 30 MB of RAM.

Displayed com.evaluation.memory.OomRealtime
Evaluation (1491): Allocating 30 MB of RAM ...

Process com. android . keychain has died.
Process com. android . voicedialer has died.
Process com. android . gallery3d has died.
Process com. android . quicksearchbox has died.
[...]
Process com.evaluation.memory:oomNormal has died.

Evaluation (1491): Allocated 30 MB of RAM.

Listing 5.2: Termination of the normal activity in the OOM situation.

provides about 100 MB of RAM to the Android platform10, whereby only about 40 MB
are available for allocation in user applications11.

The test is implemented using two activities, executed in separate processes. When
started, both activities allocate 30 integer arrays of size 1 MB12. The memory overhead
of the array object itself and the size of the corresponding references are not taken
into account. In contrast to the activity OomNormal, which begins with the allocation
immediately after start, the activity OomRealtime first changes its OOM value to -1 using
an additional interface in the new memory management module. Since the device does
not provide sufficient memory to fulfill the demands of both activities at the same time,
the system will react to this OOM situation by terminating the less important of both
processes.

In the first test, the OomNormal activity is started before the OomRealtime activity. As
shown in Listing 5.2, OomNormal was able to successfully allocate the required amount of
memory. Starting OomRealtime in the next step leads to the lack of free memory, which
triggers the low-memory killer and terminates a number of background applications.
Since the OomNormal activity is not visible to the user anymore, it is classified as being
less important and it is killed by the system, reclaiming 30 MB of allocated memory.
Notably, this is the desired system behavior in Android and occurs too if the OomRealtime
activity would keep the default OOM ADJ of 0. After this test, the device is rebooted to
avoid side effects of keeping the real-time application in the memory.

The second test is performed analogously, but with the reversed starting order of
activities. As presented in Listing 5.3, it begins with the real-time activity successfully
allocating the required memory. After the normal activity is executed, it starts its own
allocation, leading to the termination of different applications in the background. Since
OomNormal is currently in the foreground, it has the highest OOM ADJ value available to

10Taken from: https://groups.google.com/forum/#!topic/android-platform/rbL6mUYnW3M
11Determined at runtime using MemoryInfo instance retrieved from ActivityManager system service
12Each array contains 262144 primitive elements: 262144 integers ×4 byte/integer = 1048576 bytes
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Displayed com.evaluation.memory.OomRealtime
Evaluation (1289): Allocating 30 MB of RAM ...
Evaluation (1289): Allocated 30 MB of RAM

Displayed com.evaluation.memory.OomNormal
Evaluation (1552): Allocating 30 MB of RAM ...

Process com. android . gallery3d has died.
Process com. android . voicedialer has died.
Process com. android . quicksearchbox has died.
Process com. android . keychain has died.
Process com. android . location .fused has died.
Process com. android .mms has died.
[...]
Process com.evaluation.memory:oomNormal has died.

Listing 5.3: Protection of the real-time activity in the OOM situation.

user applications. This causes less important system services like location and mms
to be killed. However, the reclaimed memory still does not suffice for the requested
allocation. Both activities are the in direct conflict for the memory, which causes the low-
memory killer to take the next step and start destroying visible applications. Although
the OomRealtime activity is still in the background, it has a higher importance class
determined by OOM ADJ set to -1. Since the normal activity was assigned the default value
of 0, it cannot justify the termination of OomRealtime. For this reason, the allocation
of the current array object will fail. However, even if the started activity might be
able to continue its execution with a smaller number of objects, the low-memory killer
was triggered because the overall amount of free memory has fallen below the lowest
threshold of 6 MB. In this case, the foreground activity is also terminated in order to
release memory and avoid global system crash.

Both tests have shown that Android kills background processes in order to provide
sufficient memory to applications that are classified more important. This behavior can
negatively affect long-term real-time applications, if they are not additionally protected
and if the foreground application has high memory demands.

5.4.2 Latency Caused by the Garbage Collection
This test is performed using a real-time thread with period time T = 10 ms and the
total duration of 30 min13. In every iteration, the thread allocates 8 acyclic objects
(with 16 bytes / object) on the DVM heap. Corresponding references are not saved,
such that the objects can be reclaimed by the GC. Latency values recorded during both
tests with the native GC and with the reference-counting GC were additionally clustered
to provide a better overview. Each value in Figure 5.2 represents the worst-case latency
out of the cluster of 100 subsequent measurements during the respective test.

13Leading to 30 min× 60 sec/min× 100 iterations/sec = 180000 iterations.
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(a) Latencies with native collector.
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(b) Latencies with reference-counting collector.

Figure 5.2: Evaluation of the latencies introduced by the garbage collection.

Figure 5.2(a) illustrates the behavior of the native mark-and-sweep collector included
in Dalvik VM. Its stop-the-world paradigm causes scheduling latencies up to 126 ms since
the mutator thread has to be suspended. A full garbage collection is performed every
12000 iterations, which corresponds to an allocation size of approximately 1.5 MB. This
value seems reasonable, considering that less than 40 MB of total memory is shared
by all Android applications on the HTC Dream. The original collector is shown to
be unsuitable for applications with real-time requirements. During this test, a single
invocation of the GC leads to the miss of up to twelve scheduled deadlines.

As shown in Figure 5.2(b), using the proposed reference-counting GC significantly
decreases suspension times. In comparison to the original approach, the new collector
does not introduce latencies higher than 500 µs, leading to better predictability and
higher responsiveness of the system.

For a better visualization, latency values recorded in both tests are clustered into
distinct classes and presented in histograms with a logarithmic scale in Figure 5.3. The
vast majority of scheduling latencies recorded while using the original collector stay in
the range of 50-150 µs (see Figure 5.3(a)). Nevertheless, its mark-and-sweep algorithm
has enforced the suspension of the mutator thread for more than 1 ms 2264 times.
Figure 5.3(b) confirms the earlier observation that no latencies higher than 500 µs were
detected using the reference-counting GC. Furthermore, this approach has also reduced
the total number of latencies in the range between 400 µs and 650 µs.

In order to validate the performance of the new collector on different types of ob-
jects, additional tests were performed using memory load with acyclic, cyclic and mixed
objects. The summarized results of latency measurements are presented in Table 5.2.
Although the test with no object load has performed the best in terms of more precise
scheduling, the additional overhead of about 15 µs introduced by the garbage collector
is not significant. No negative impact of different object types on maximum and average
scheduling latencies can be recognized. However, worst-case latencies higher than 500
µs have been observed in every test case. For this reason, another test is performed in
the next section in order to validate the upper bound for scheduling latencies when the
new collector is used during a long-term execution.
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(b) Latency classes with rc collector.

Figure 5.3: Number of scheduling latencies recorded in different classes [38].

No Load Acyclic Load Cyclic Load Mixed Load
Max Avg Max Avg Max Avg Max Avg
518 91.67 524 103.88 522 104.96 544 104.03

Table 5.2: Recorded latencies for different types of object load [µs].

5.4.3 Latency Evaluation in a Long-Term Execution
The long-term test is conducted for the total duration of 48 hours and memory load of
12 acyclic objects (16 bytes / object) allocated in each iteration. Other settings are set
as described in Section 5.4.2. Similar to the previous test, recorded values were splitted
into multiple latency classes in order to improve the readability. The resulting diagram
with logarithmically scaled y-axis can be found in Figure 5.4.

Although the latency values illustrate a deterministic behavior of the new garbage
collector in general, several outliers can be detected. Values in the range of 550 µs to 600
µs were observed only twice, indicating that 600 µs is a reasonable upper bound for delays
for real-time applications with a constant memory throughput. Nevertheless, 8 major
outliers above 1 ms were detected among more than 17 million of total measurements.
Two biggest deviations from the schedule were caused by latencies of about 45.5 ms.
Remaining six latencies were measured in the range between 1.1 ms and 1.5 ms. Since
the test application would crash if there is not enough memory for the next allocation,
these delays cannot be attributed to the garbage collection not being able to keep up
with the allocation rate. Since the collector is executed with a lower priority than the
mutator, the negative interference between corresponding threads can be excluded too.

As described in Section 5.4, the evaluation of the automatic memory management with
HTC Dream was performed without the optimized kernel configuration and frequency
locking mechanism. It was shown in the previous chapter that in this situation real-time
applications may be negatively influenced by other system components, if corresponding
processes are periodically scheduled with T > 1 ms.
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Figure 5.4: Distribution of the scheduling latency in the long-term test [38].

Android Latency [µs]
Max Min Avg

Original 14.34 12.06 12.74
Modified 29.35 20.29 28.11

Table 5.3: Time for object allocation.

Android Latency [µs]
Max Min Avg

Original 3.24 0.38 0.59
Modified 3.24 0.95 2.20

Table 5.4: Time for object operation.

5.4.4 Analysis of the Memory Management Overhead
The final test analyzes the additional runtime overhead introduced by the integrated
facilities for the new garbage collection. Particularly, the execution time of running
applications is affected by the proposed write barrier, zero count table and cycle detection
algorithm, possibly leading to a decreased system performance. This impact can be
measured by recording the time required for object allocation (using the new operator)
and object operation (storing an object reference in a member field of another object)
and comparing it between the original and the new implementation. Since the integrated
write barrier may negatively affect the system performance even if the mark-and-sweep
collector is used, the tests are executed separately for the original DVM and for the new
one with modifications for reference-counting GC.

The test is implemented as a conventional Android application running with real-
time priority of 80 and T = 10 ms. It consists of three phases, which are repeated in
each of 1000 iterations. First, the mutator thread allocates 200 instances of given class
CA. This class contains a single member field – a reference to an object of class CB –
initialized with null. Second, existing instance of class CB is saved in the respective
member field of previously allocated objects. The assignment is performed 20 times on
four different instances of class CA (80 assignment operations in total). The time for
both allocations and assignments is determined using the high-resolution timer. Finally,
all object references are removed and the mutator thread explicitly invokes the garbage
collection to ensure that enough memory is available for the next iteration. Values
presented in the following were normalized to provide the time for a single operation.

As shown in Table 5.3, integration of the write barrier and overapproximation of cycle
roots introduce a notable overhead to object allocations. The worst-case time increases
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from 14.34 µs on the unmodified system to 29.35 µs when the extended DVM is used.
All recorded values indicate that the proposed approach requires about twice as much
time for the allocation of a single object as the original implementation.

Similar behavior can be observed based on the performance evaluation of object op-
erations as presented in Table 5.4. Although the worst-case time of 3.24 µs remains
the same on both systems, minimum and average values differ significantly. While the
minimum operation time more than doubles in its value, the average time required for
an assignment increases from 0.59 µs to 2.20 µs. This means that the new memory man-
agement introduces more than 370% of additional overhead, which has to be handled by
the system at runtime.

5.5 Summary and Discussion
This chapter has presented the design and integration of a real-time capable reference-
counting garbage collector into the Dalvik VM for Android. In contrast to the native
mark-and-sweep approach, the new collector is executed concurrently and does not cause
suspensions of real-time applications at runtime. Adjustable parameters for the invoca-
tion threshold and the used thread priority allow the new collector to be further tailored
to the requirements of a specific real-time application.

The effect of the introduced changes was evaluated in multiple tests. It was shown that
real-time applications can be protected from terminations caused by the low-memory
killer by choosing an appropriate OOM ADJ value. The overall system behavior is im-
proved in terms of determinism and responsiveness, since real-time mutator threads can
continue their execution regardless of other applications’ memory usage and even dur-
ing an ongoing garbage collection. Reference counting effectively avoids deadline misses
caused by worst-case latencies of up to 120 ms, which were introduced by the original
mark-and-sweep algorithm. Instead, no GC-related latencies higher than 600 µs were
observed during the tests even if the application has a constant memory allocation rate.
Additionally, the runtime overhead of the integrated changes was measured for object
allocations and assignment operations. Test results illustrate the increased amount of
time required for object processing, when comparing to the original system. However,
this was expected, since the implementation of reference-counting algorithm requires
additional steps to be integrated into the DVM. The overhead was shown to be bounded
and it can be reduced in future by making use of deferred and coalescing garbage collec-
tion. Appropriate compaction mechanisms can also address possible heap fragmentation
issues, which were not evaluated in this work.
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6 Bounded Remote Procedure Calls
The extended Linux kernel and the concurrent garbage collection presented in previous
chapters create a solid foundation for real-time support for Java application in Android.
However, until now real-time Android applications were considered running isolated,
without access to the original Android API. In order to make use of the functionality
provided by the highly modular Android framework, developers have to rely on an
RPC-based interprocess communication using Binder (see Section 2.2.2). It is the only
IPC mechanism in Android compatible with the strict process sandboxing model, which
was introduced to improve security and protect the system from undesired interference
with other processes. In fact, all methods for interprocess communication recommended
by the official Android documentation1 directly or indirectly rely on Binder. Thus, the
Binder driver is the core of Android’s functionality linking mechanism, being responsible
for all kinds of interaction between the platform and user applications.

Since the overhead for interprocess communication must be bounded in context of
real-time applications, this chapter presents the analysis of Binder’s internal architecture
and an extension approach for priority-based RPC handling. It preserves the priority of
the execution thread across process borders and enables the preemption of low-priority
threads on the callee side.

This chapter begins with a summary of related work in Section 6.1. Section 6.2
covers the design of the new Binder architecture in two parts. Since there is no public
documentation of the Binder framework, a brief overview is presented in Section 6.2.1.
After the discussion in Section 6.2.2, the integration of the high-level components and
an overview of the required changes is provided in Section 6.2.3. Section 6.3 evaluates
the effects of the introduced modifications with focus on delays during remote procedure
calls. Finally, the chapter is concluded in Section 6.4.

6.1 Related Work
The evaluation of Binder-related functionality found in the literature mainly focuses on
high-level components like Intents and Broadcast Receivers, which will be covered in
detail in the next chapter. There is only little effort invested in the analysis of Binder’s
low-level architecture. Until now, the research was limited to security enhancements
and improved privacy protection mechanisms. Tracking of Binder transactions was pro-
posed in RiskMon [57]. It inserts tracing hooks into the Binder driver layer for access
monitoring and risk assessment. Binder customization is also used in TaintDroid [29] for

1IPC in Android: http://developer.android.com/training/articles/security-tips.html#IPC
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privacy improvements. Similarly, the Scippa project deploys an extended Binder driver
for a more effective prevention of security attacks [11].

The preliminary publication in context of this thesis was the first work to evaluate
Binder-based RPC mechanism in context of real-time applications [62]. Although the
approach presented by Mauerer et al. allows interprocess communication in real-time
processes on Android, it is based on shared memory regions and does not incorporate
the high-level Android framework. The RTDroid project has proposed a new design
for Android’s subsystem for delivery of sensor data [132]. It incorporates modifications
of the Handler and Looper classes, which are responsible for internal event handling.
However, the actual data passing across process boundaries managed by Binder was not
considered in their publication. As it will be shown in the following sections, the original
implementation of the Binder framework is not capable of reliable message delivery and
has to be extended for usage in real-time domains.

6.2 Extended Binder Driver
The Binder driver included in Android is an adapted version of the OpenBinder2. It
consists of three layers:

• The actual driver is written in the C programming language as part of the Linux
kernel. Its low-level command interface is based on ioctl system calls.

• A C++ wrapper encapsulates the kernel access and provides methods to upper
layers. This wrapper handles the data serialization and controls Binder worker
threads inside running applications.

• The application framework simplifies the usage of the C++ wrapper in Java by
offering another level of abstraction. It manages the control flow between Java and
native code through autogenerated objects Proxy and Stub.

Figure 6.1 summarizes the main components involved in the Binder-controlled IPC.
Each running application in Android has its own Binder node inside the kernel driver
and several local threads – referred to as Binder or Looper threads – to manage incoming
connections. In order to execute remote procedure calls in the context of another process,
Android generates a local Proxy object with the identical interface. The desired method
can be invoked on this proxy object in the same way, as if the corresponding component
was available in the current process. However, since the proxy does not contain the actual
method logic, it only serializes the supplied arguments and transfers the execution to
the Linux kernel. The serialized data is then passed to the Binder driver, which resolves
the target application and copies the data to the callee process. After the respective
method was executed on the remote side, the computed result is returned to the caller
in the same way. All interactions with the local proxy object are blocking, such that
the calling thread is not able to distinguish between method calls on true local objects

2OpenBinder project homepage: http://www.angryredplanet.com/˜hackbod/openbinder
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Linux Kernel

Application BApplication A

Binder Driver

Binder Thread Pool Binder Thread Pool

Application Components Application Components

Proxy/Stub Proxy/Stub

Figure 6.1: Schematic illustration of Android’s Binder architecture.

and remote invocations. On the one hand, this encapsulation provides an effective and
flexible way for linking applications components running in separate processes. On the
other hand, blocking operations across multiple processes may cause random delays at
runtime. In a real-time system, all latencies caused by internal operations have to be
bounded and predictable.

In its original implementation, neither the low-level Binder driver nor its high-level
wrapper provide measures to ensure a deterministic execution of pending RPC requests.
The driver contains several critical sections protected by a mutex, which does not con-
sider the priority of waiting threads. This poses a high risk for real-time threads, as the
execution of their RPCs may be blocked by regular threads. Mercer and Tokuda have
identified similar threats in the context of real-time applications, if the implementation
relies on non-preemptible critical sections or interaction between components with dif-
ferent priorities [85]. This issue can be addressed by extending the Binder driver and
the corresponding wrapper implementation to support the priority inheritance proto-
col across multiple processes. Due to the lack of the official documentation, the next
section presents a brief overview of Binder’s original implementation3 and discusses its
disadvantages if used in real-time applications. Afterwards, modifications to improve
Binder’s behavior are presented in detail.

6.2.1 Overview of Binder’s Architecture
This section illustrates the interaction between different Binder layers in a simplified
scenario where a client application invokes a remote procedure call in the context of a
separate service process. The sequence of steps, which is performed during this RPC, is
summarized in Figure 6.2.

3Based on the source code analysis of Android 4.2.2 in kernel/drivers/staging/android/binder.c
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Figure 6.2: Binder steps executed during a remote procedure call [62].
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6.2 Extended Binder Driver

After the service process is started, the Binder driver automatically spawns one or
multiple Looper threads to handle incoming connection requests. These threads register
themselves in the kernel module (1) and sleep on the corresponding process-specific node
as long as there are no pending RPCs. Inactive Looper threads remain in the waiting
state by default until another Binder node performs a wake-up call (8) on their node.

The client application stores a proxy object, which implements the same interface as
the target object stored in the service. By calling the desired method directly on the
proxy object (3), the client implicitly initiates a new RPC. In the first step, the meta
information about the call as well as the passed arguments are serialized by the proxy
(4) and redirected into the Linux kernel. Since all running processes are registered in
the low-level driver, the transmitted meta information (e.g. the package name) is used
to find the node of the target application (5). Each node contains a FIFO queue, which
stores all pending events waiting to be handled by the corresponding process. After
finding the target node, the serialized RPC is inserted into the node’s FIFO queue
(6). Since each node resides in the memory region of the corresponding process, this
operation can only be performed by the kernel driver and not by the client application
itself. For this reason, this step finishes the data transmission and passes the execution
to the service process (7) by performing a wake-up call on its node (8). To ensure a
blocking operation mode, the client thread is put asleep (9) until the execution result of
this request is delivered.

The service side responds to the incoming request by waking up all waiting threads
and randomly choosing one of them to process the RPC. If the FIFO queue contains
only one element, remaining Looper threads will be sent back to sleep until the next
event. The thread processing the RPC transaction will return to the user-space (10)
and deserialize the original meta information (11). This information is used to invoke
the desired method on the actual object (12) and receive the calculation result (13).
After the execution is complete, the result is returned to the client in a similar way.
It is serialized and forwarded to the low-level Binder driver (14) in order to be copied
to client’s memory. To finish the RPC processing on the service side (15), the Looper
thread notifies the client about the pending result (16) and enters a new sleep phase
until the next event occurs (17).

The control flow returns to the original thread on the client side, which was put asleep
in step (9). After leaving the kernel-space (18), this thread deserializes the result value
(19) and returns from the original method call on the proxy object, delivering the remote
result as if it was calculated locally. In this simple example, the processing thread on the
client side is not a Looper thread, but a regular user-space thread. Complex Android
applications typically allow RPCs calls from the service to the client too, utilizing the
Binder-based communication in both directions.

The original implementation of the low-level Binder driver makes use of different
components during the RPC handling. One of the most important parts for the node
management is encapsulated by the binder node struct for storing the relevant informa-
tion about running processes. It includes the binder proc struct, which is shared by all
Looper threads of the same Binder node. This struct is essential for RPC processing, as
it contains both the wait queue wait, used to synchronize and wake up waiting Looper
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threads, and the FIFO transaction queue todo, used to store pending Binder events.
Multiple critical sections protected by corresponding mutexes ensure the consistency
of the global data. Furthermore, the original implementation defines various internal
commands to take influence on the current system state at runtime. For example, the
driver reacts to an excessive use of a specific Binder node by spawning additional Looper
threads. A new thread with the default priority is created in the given application pro-
cess in order to handle the rising count of incoming RPC events. This architecture
encapsulates the actual process of data passing across process boundaries and enables a
flexible IPC mechanism, which can be used in high-level Android applications. However,
this flexibility leads to several disadvantages, when Binder-based RPC are used in the
real-time domain.

6.2.2 Analysis of Binder’s Real-time Support
Since the Binder driver is one of the most extensively used components in Android, a
high amount of low-level transactions are generated on the device every second. For this
reason, the Binder driver was designed with focus on performance, but not on predictable
blocking times. The first drawback arises from using regular Looper threads to process
events created by applications with other priorities in the user-space. An RPC invoked
by a thread with real-time priority will be handled by a regular thread on the service
side. This facilitates priority inversion scenarios, as the processing Looper thread may
be interrupted on the remote side by any other thread with higher priority.

Automatically spawning additional threads in high-load situations may decrease the
system predictability even further. It leads to additional processing overhead and causes
significantly longer waiting periods until the critical section can be entered. Due to
the increased number of the competing threads waiting to acquire the mutex, threads
processing regular RPCs may block threads with RPCs from real-time applications. In
addition, the used mutex does not distinguish between threads with different priorities.
Even though the original implementation use the same priority for all Looper threads,
temporary increasing the priority of the processing Looper thread will have no effect on
the execution. If multiple threads are waiting to acquire the mutex in the moment of
its release, the ownership will be transferred non-deterministically to one of the waiting
threads regardless of its priority.

Another negative effect is caused by the deployed FIFO queue, which stores pending
RPC transactions. Since an event from a privileged thread may be inserted at any time,
its processing will be delayed, until the execution of all other transactions inserted earlier
have been finished. Furthermore, there is no guarantee that a free Looper thread will be
available in the exact moment of the RPC arrival. In the worst case, additional thread
has to be started and prepared first, leading to a significant processing overhead.

Identified design flaws can prevent the system from deterministic data delivery and
expose real-time applications to unbounded processing delays. In order to improve
the process behavior, this dissertation proposes a new approach for priority inheritance
during remote procedure calls. Required modifications of the low-level kernel driver and
of the corresponding wrapper implementation are summarized in the next section.
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6.2.3 Integration of the Priority Inheritance
In real-time systems, the worst-case delay for a remote procedure call has to stay pre-
dictable regardless of the current system load. This delay combines the time to find and
access the remote process, to execute the desired method and to the return the calcu-
lated result back to the client. However, since the actual method execution time is part
of the target application and cannot be influenced by the system, it is excluded from
further consideration. Thus, following modifications address only the original behavior
of the Binder driver itself.

• As shown in the previous section, the low-level driver randomly chooses the next
idle Looper thread to process an RPC request, even if it was generated by a real-
time thread. This issue is solved by an additional Looper thread, implemented to
only handle RPCs from real-time threads. As soon as the Binder node is accessed
by a user-space thread with real-time priority, the additional Looper thread is
created or woken up and set to the same priority as the caller. In the current
implementation, this thread is reused for all privileged transactions. This approach
guarantees that a real-time Looper thread will be available in all applications by
default. It is used to immediately handle requests from real-time clients on the
remote side with the same real-time priority. In addition to the original wait
queue wait, the struct binder node is extended with a new wait queue rt wait. It
is required for a selective wake up operation (see Step 8 in Figure 6.2) depending
on whether a regular or a real-time Looper thread has to be activated.

• In order to avoid further blocking by low-priority RPC transactions stored in the
todo FIFO queue, the struct binder node is extended with an additional high-
priority transaction queue rt todo. It is dedicated to store privileged RPCs only
and is processed separately by the new real-time Looper thread.

• The last major source of non-determinism are critical sections in the low-level
driver. Since the ownership of the original mutexes is transferred randomly, the
real-time Looper thread may suffer from priority inversion while one of the regular
Looper threads is holding the mutex. To ensure that the access to the critical
section is granted strictly depending on the priority of the blocked threads, original
mutex declarations are replaced by equivalent rt mutex defines from RT PREEMPT.

Proposed modifications introduce a deterministic processing of incoming transactions
and allow priority-based RPC handling. In addition to better system responsiveness,
privileged calls can now be executed with minimal blocking time. The Binder RPC
sequence presented in Figure 6.2 has to be adjusted to benefit from the new architecture.
The following list shows only the modified steps of the full sequence in case a real-time
thread on the client side generates a new RPC transaction.

5. Record the scheduling priority s of the current real-time thread.

6. Store the transaction data in the rt todo queue, instead of the original todo queue.
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8.1. Request the creation of a dedicated Looper thread, if it does not yet exist.

8.2. Notify the rt wait queue, instead of the wait queue to wake up the new Looper.

10.1. Set the priority of the new Looper thread to s.

10.2. Poll the data from the rt todo queue, instead of the original todo queue.

17. Sleep on the rt wait queue, instead of the wait queue.

This approach establishes a priority inheritance mechanism during remote procedure
calls in Android, while keeping architectural changes at minimum. All threads involved
in the execution of an RPC are guaranteed to have the same priority, which allows priv-
ileged execution across process boundaries. Additional Looper thread on the callee side
inherits the priority of the caller and benefits from the real-time capable mutex, which
preserves the correct execution order for high-prioritized threads. Furthermore, the new
thread also complies with the original Looper/Binder life cycle and uses a separate job
queue, minimizing the integration and maintenance overhead. Other resources required
at runtime are allocated analogously to other Looper threads, such that they are released
by the Binder driver automatically, after the termination of the corresponding process.

6.3 Experiments
This section evaluates the introduced system modifications in multiple tests. It begins
with a short description of the testing setup and a definition of the measured values.
The first part of the evaluation compares the behavior of the original and of the modified
system depending on the system load. Finally, the last part discusses the scalability of
the new approach in setups with multiple real-time threads.

Testing was performed on the Google Nexus 10 (codename manta) tablet computer,
which is built with a Samsung Exynos 5250 (2x 1.7 GHz Cortex-A15) SoC and 2 GB of
RAM. This device runs the Linux kernel android-manta-3.4.5-rt15 as part of the mod-
ified Android 4.2.2. Test cases were implemented in conventional Android applications
with introduced extensions as explained in previous sections.

Applications A and B are used to perform remote procedure calls via the Binder driver
as shown in Figure 6.3. Application A spawns krt real-time threads with priority of 80
and knrt regular threads. All threads periodically invoke the method getTimestamp()
on an object in the context of application B. This method is implemented to return
the current timestamp tres from the high-resolution timer enabled by PREEMPT RT. In
order to determine the processing time, each thread records a timestamp tpre imme-
diately before the method is invoked and another timestamp tpost immediately after
method getTimestamp() returns. The processing time can be split into the invocation
delay TCALL, method execution time TEXEC and the return delay TRET . Since TEXEC is
application-specific, it is excluded from the evaluation. Remaining delays are calculated
based on the returned result value tres: TCALL = tres − tpre and TRET = tpost − tres.
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6.3.1 Performance Evaluation under Load
This section evaluates the performance of the Binder driver for rising number of regular
threads. In the first test, one real-time thread and knrt = 20 regular threads are used to
invoke the RPC as described above. All non-real-time threads are spawn only to gener-
ate additional system load, their processing delays are neither recorded nor evaluated.
Invocation delays TCALL and return delays TRET are recorded in 2500 iterations.

Values measured with the original implementation are summarized in Figure 6.4(a).
Obviously, the unmodified Binder architecture cannot guarantee predictable timings.
While recorded invocation delays show only a few outliers up to 15.4 ms, returning a
value from the remote method blocks the executing thread up to 41.7 ms. The vast
majority of return delays are significantly higher than the invocation delay in the same
iteration. In both cases, the handling is negatively affected by other Looper threads, as
the priority of the caller is not inherited by the callee. Thus, new method invocations or
returning the data may be blocked for a non-deterministic time until the Looper thread
carrying the privileged RPC acquires the mutex.

Binder modifications proposed in this chapter allow a more predictable system behav-
ior. A comparison between TCALL delays in the original and in the new implementation
is shown in Figure 6.4(b). Although the original driver typically handles the RPC invo-
cation in less than 2 ms, random outliers are distributed without a recognizable pattern.
The modified Binder is able to avoid these outliers and notably reduce the invocation
delay. Integrated priority inheritance mechanism improves the system predictability and
introduces an upper bound below 1 ms.
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Figure 6.4: Analysis of Binder delays for knrt = 20 regular threads [62].
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Figure 6.5: Analysis of Binder delays for knrt = 100 regular threads [62].

The system performance in high load scenarios on the original and on the modified
Android is evaluated in the next test. It reuses the testing environment presented earlier,
but increases the number of regular threads to knrt = 100. Although all threads execute
the same remote method in a separate process and perform the same calculation, TCALL
and TRET values are only recorded for the single real-time thread.

The behavior of standard Android is shown in Figure 6.5(a). Increased number of
regular threads causes major disturbances in RPC processing and leads to higher delays,
when compared with results of the previous test in Figure 6.4(a). Although returning
a result value from a remote method performs notably worse than its invocation, both
delays fluctuate during the test. The diagram shows random distributions with multiple
outliers up to 42.3 ms for TCALL and up to 44.5 ms for TRET . Since the unmodified
Binder cannot guarantee a reasonable upper bound, it is concluded to be unsuitable for
predicable RPC execution in real-time applications.

Figure 6.5(b) depicts the results of this test on the modified system. Both graphs show
a constant processing time without major negative effects caused by 100 regular threads.
Since invocations from the real-time thread are executed by a privileged Looper thread
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Figure 6.6: Invocation delays for rising number of real-time threads [62].

on the remote side, the RPC can be processed immediately without further blocking by
other threads. This does not change in high-load situations, such that both delays are
bounded by 51 µs ≤ TCALL ≤ 75 µs and 41 µs ≤ TRET ≤ 70 µs. Periodic increase of
both delays by approximately 30 µs illustrate cases where the critical section is blocked
by another thread and cannot be entered immediately. In the first test with knrt = 20
regular threads there were approximately 30 such outliers for each TCALL and TRET .
With knrt = 100 there are more than 45 outliers. This behavior was expected, as the
probability of a mutex being already acquired increases with higher number of competing
threads. Nevertheless, the extra blocking time is reliably bounded, as the real-time
thread is guaranteed to receive the ownership of the rt mutex as soon as it is released
by a regular thread. This assumption is confirmed by recorded measurements, since the
real-time thread is not blocked for longer than 30 µs during the test execution. Thus,
the new Binder driver is shown to provide reliably bounded invocation and return delays
for remote procedure calls even under major load from concurrent regular threads.

6.3.2 Multiple Real-Time Threads
The final test is performed to evaluate the scalability of the proposed approach in scenar-
ios with 1 ≤ krt ≤ 7 real-time threads. Additional RPC load is generated by spawning
knrt = 100 regular threads, which execute the same RPC analogously to the previous
test. To achieve a better readability of the resulting diagram, it only presents the invo-
cation delays of all real-time threads combined. For each krt ∈ {1, ..., 7}, the statistical
evaluation in Figure 6.6 is based on the total number of krt × 2500 recorded values.

The diagram shows a recognizable linear trend of all depicted values. Worst-case de-
lays have only a slight deviation of about 30 – 40 µs from the corresponding average,
confirming a bounded and predictable processing. The average duration of the RPC
invocation reaches from 55 µs for krt = 1 to 319 µs for krt = 7. Notably, these values
are arranged on an apparent straight line with an approximate increase of 44 µs for
each additional real-time thread. Previous tests have shown that this overhead roughly
corresponds to the execution duration of one RPC invoked by a real-time thread. Con-
sidering that only one privileged Looper thread is created on the remote side to handle
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high-prioritized transactions, the rise of the average values can be explained by the se-
quential data processing. The introduced rt mutex preserves the correct execution order,
such that no further blocking delays are produced by RPCs from regular threads.

6.4 Summary and Discussion
This chapter has presented an analysis of Binder’s internal architecture with an approach
to improve its suitability for the real-time application domain. The investigation of the
related platform components is performed in Section 6.2.1. Identified flaws in the original
implementation were considered during the new design for both Binder subsystems: the
low-level driver and the high-level wrapper. The new architecture enables a more robust
IPC based on remote procedure calls by inheriting the priority of the executing thread
across process boundaries. Thus, real-time applications can avoid priority inversion
while executing code on the remote side. In contrast to the original implementation –
which handles all incoming RPCs by a regular Looper thread – the enhanced Binder
architecture relies on a dedicated real-time thread to process method calls from high-
prioritized threads. Additionally, the new approach relies on a real-time mutex from
PREEMPT RT to protect the critical sections in the Binder driver. Instead of the non-
deterministic selection of the next thread to acquire the mutex, the access is now granted
to the waiting thread with the highest priority.

Evaluation of the proposed modifications to the low-level Linux driver and the high-
level wrapper was performed in multiple tests. The original framework was shown un-
suitable of providing predictable behavior, making it impractical for use in real-time
applications. The Binder driver included in the original Android platform introduces
random delays up to 4 ms during a remote method call even on an idle system. Op-
positely, latencies caused by the modified implementation were shown to be bounded
under different testing conditions. Test results highlight that the new approach provides
a deterministic behavior even with high CPU load and multiple competing real-time
threads. Although the WCET for a remote method call is rising with the number of
active real-time executors accessing the same method, the upper bound shows a strict
linear dependency on the number of competing threads. The maximum value stays pre-
dictable and can be calculated a priori during the system design phase. In future, the
performance of the proposed extension may be further increased by creating a pool of
real-time threads with different priorities.

Integration of the extended Binder driver – which is involved in different kinds of
interaction between user applications and the Android platform – as suggested by the
presented approach improves the overall system responsiveness. The new subsystem for
remote procedure calls is used by all active applications implicitly, leading to a more
reliable and deterministic data exchange across process boundaries. A special case of
such IPC is Intent broadcasting, which is analyzed in detail in the next chapter.
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The last chapter has presented a way to bound the overhead caused by remote procedure
calls, used all native communication mechanisms in Android. It is especially important
for broadcasting Intents between different Android applications or their components,
which is one of the most important concepts in Android [3, 82]. Since a real-time capa-
ble platform has to provide reliable and predictable methods for inter- and intraprocess
communication, this chapter analyzes the capabilities of Android’s Intent broadcast-
ing. As it will be shown in the evaluation, the built-in FLAG RECEIVER FOREGROUND for
preferential treatment of foreground Intents does not prevent the system from causing
non-deterministic delays during the message delivery. Thus, this chapter presents a new
approach to bound the execution overhead and reduce the broadcasting delay for both
global and local broadcasts. Unordered data structures used in the original implemen-
tation for first in – first out Intent handling are replaced in order to allow priority-based
processing. Additionally, blocking times during the internal process flow are reduced by
minimizing the corresponding critical section. This leads to a better preemptibility and
guarantees predictable delays and higher scalability for real-time applications.

The remainder of this chapter is structured as follows. An overview of the related work
is provided in Section 7.1. The design and integration of the introduced modifications
are covered by Section 7.2. After a short analysis of Android’s original architecture,
Section 7.2.2 summarizes the proposed approach of explicit Intent prioritization. Imple-
mentation details are presented separately for global broadcasting in Section 7.2.3 and
for local broadcasting in Section 7.2.4. The impact of the new approach is evaluated
in multiple tests in Section 7.3. Finally, Section 7.4 concludes this chapter with a brief
discussion of the presented enhancements.

7.1 Related Work
Interprocess communication in Android was evaluated in a number of scientific publica-
tions presented in recent years. However, publicly available research results are limited
to the analysis of security-related questions. For example, measures for the identifi-
cation of security risks arising during the communication between separate processes
were presented by Chin et al. [19]. An empirical study of inter-component interaction
with focus on robustness was performed by Maji et al. [76]. Their work proposes a
modified data structure used by Intents, which was designed to achieve higher compat-
ibility between sending and receiving components. Other publications have presented
similar ideas for improving Android’s IPC architecture in terms of security and privacy
protection [65, 90, 106].
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Until today, only a few studies have examined the predictability of existent IPC meth-
ods in Android or proposed new approaches suitable for real-time applications. Mauerer
et al. was the first to present a data exchange mechanism between real-time Linux pro-
cesses in Android [79]. It uses shared memory regions with additional synchronization
algorithm based on publish-subscribe pattern. However, the authors only consider pro-
cesses on the top of the Linux kernel and do not evaluate high-level Android components.

Another approach was implemented as part of RTDroid [133]. It relies on an extended
application architecture using modified Handler and Looper classes. This allows real-
time applications to post prioritized events into the internal message queue. At a later
stage, these events are dispatched and translated into user-defined local method calls
for corresponding actions. This mechanism allows predictable delivery of messages and
runnables within a single application process in a bounded time. However, RTDroid
does not provide any mechanisms for real-time capable data transmission across process
boundaries. Furthermore, the corresponding research does not cover Intent broadcasting
architecture.

7.2 Extended Broadcasting Architecture
Android’s broadcasting system is a powerful mechanism for sending and receiving generic
messages. It is one of the most flexible ways for the exchange of structured data between
the system and user applications, or between multiple applications from different ven-
dors or even between separate components of the same application. Although Android
supports various types of Intent broadcasts (see Section 2.2.2), generic communication
is typically implemented by relying on parallel broadcasts, also referred to as normal
broadcasts1.

This section evaluates the architecture behind Android’s Intent processing, which
covers the central system components like the Activity Manager Service (AMS) used
for global broadcasts and the Local Broadcast Manager (LBM) used for broadcasts
inside the same process. Since there is no official documentation for the internal Intent
handling, this section provides an architecture analysis of respective components based
on their source code in Android 4.2.2. After presenting the implementation details, the
original architecture is extended with explicit Intent prioritization mechanism for both
global and local broadcasts.

7.2.1 Analysis of Intent Broadcasting
A schematic illustration of the global broadcast handling is given in Figure 7.1. It shows
that the application A can transmit Intents by using the sendBroadcast() method in
any of its components. Since Android’s security policy prevents user applications from
accessing all registered receivers directly, the Binder driver is used to forward the data
to a persistent system service implemented in the ActivityManagerService class. The
AMS manages all known applications and their active broadcast receivers, which are

1Official documentation: https://developer.android.com/guide/components/broadcasts.html
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used to resolve all recipient processes for a given broadcast. This information and the
original Intent object are encapsulated in a new BroadcastRecord object and saved in the
internal BroadcastQueue to be handled later. Android manages a foreground queue und
a background queue, both designed for simple FIFO processing. The foreground queue
stores only Intents broadcasted with enabled priority flag FLAG RECEIVER FOREGROUND.
All other broadcasts are stored in the background queue. The Activity Manager Service
relies on its UI thread to dequeue the pending broadcast records and pass them to the
recipient application via Binder. In Figure 7.1 this step is denoted by the transition to
the application B, which invokes the method onReceive() in the registered Broadcast
Receiver.

The process of internal record processing inside the Activity Manager Service is ad-
ditionally illustrated in Figure 7.2. As presented above, the broadcast is delivered by
the Binder driver and handled on the service side by one of the Looper threads. The
Looper executes the method broadcastIntent() in the AMS, which provides the record
insertion logic. Notably, the original implementation of this method is not thread-safe.
Race conditions are avoided by protecting its major part with a synchronized-block,
such that only one Looper thread can insert new broadcast record at a time. In order to
minimize blocking times, further processing is done by the UI thread of the service. The
Looper sends a notification about the pending broadcast and exits the critical section
to allow other records to be inserted. The Binder driver performs the actual broadcast
delivery as described above.

If the user application does not have to receive global broadcasts, but only relies on the
internal communication between its own components, the Local Broadcast Manager can
be used. As shown in Section 2.2.2, the LBM is designed to provide a similar interface
for registering Broadcast Receivers and sending Intent objects within the same process.
An overview of the LBM’s main components is presented in Figure 7.3. Analogously
to the global approach, all application components can use the singleton instance of
the Local Broadcast Manager to generate a new broadcast, which is encapsulated by a
broadcast record and inserted into the local FIFO queue. In contrast to the AMS, the
LBM does not provide a separate data structure for foreground broadcasts and saves
all records in the same queue by default. Selection of the thread to handle the pending
records depends on the type of the local broadcast. If the sendBroadcast() method was
used, the application’s own UI thread will be notified to deliver the Intent. Otherwise, if
the sendBroadcastSync() method was used, the processing will start immediately in the
context of the calling thread. Notably, the latter approach does not only deliver the cur-
rent Intent, but rather dequeues and processes all pending records stored in the waiting
queue. This may lead to a situation where another Intent object, originally broadcasted
using the method sendBroadcast(), is actually delivered to its receiver by the current
thread, instead of the UI thread. This process illustrated by the sequence diagram in
Figure 7.4. Furthermore, the presented diagram highlights that the onReceive() method
of the corresponding Broadcast Receiver may be called from different threads, depend-
ing on which broadcast function was executed. This difference is important, as specific
actions in Android may only be performed by the UI thread (e.g. accessing visible
elements).
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// transmit a low - prioritized Intent
Intent intentL = new Intent ( ACTION );
intentL . putExtra ( INTENT_PRIORITY_EXTRA , 5);
sendBroadcast ( intentL );

// transmit a high - prioritized Intent
Intent intentH = new Intent ( ACTION );
intentH . putExtra ( INTENT_PRIORITY_EXTRA , 80);
sendBroadcast ( intentH );

// implicitly use the priority of the current thread
Intent intentT = new Intent ( ACTION );
sendBroadcast ( intentT );

Listing 7.1: Sending prioritized broadcasts in Android [61].

7.2.2 Intent Prioritization Mechanism
In contrast to local broadcasts, which are always handled with the same priority, global
approach of Intent transmission can make use of the FLAG RECEIVER FOREGROUND to re-
quest preferential treatment (see Section 2.2.2). Such broadcast records are inserted in
the foreground queue and transmitted prior to Intents stored in the background queue.
However, it will be shown in the evaluation that the usage of this flag guarantees neither
a deterministic data processing, nor bounded delivery delays. The lack of a coherent pri-
oritization mechanism may introduce significant blocking times for pending broadcasts.
Intent objects sent by privileged processes can only be processed after all other Intents
stored in the same queue have been delivered. Since all processes can set the foreground
flag regardless of their priority, this method cannot protect real-time broadcasts from
undesired delays. This drawback is addressed in the following by introducing a priority
queue to ensure the correct processing order. It allows broadcast records to be sorted
based on the priority of the encapsulated Intent object, instead of being sorted by their
creation time.

In order to make use of this approach on the application side, Intent objects generated
from the thread i are augmented with the broadcasting priority value bi. As illustrated
by the example in Listing 7.1, the priority value bi can be directly assigned in the
application logic. If no explicit value is provided, it will be set automatically to the
scheduling priority si of the corresponding sending thread. Additionally, the method
sendBroadcast() is extended to avoid privilege escalation when passing the Intent object
to the broadcasting manager. The validation process uses the current priority si of the
thread i as an upper bound for possible bi. This prevents real-time threads with low
priorities from jeopardizing the internal Intent management by always choosing the
highest possible value bi = smax = 99 (see Section 2.3.1).

As explained in the last section, both AMS and LBM enqueue incoming broadcasts
using critical regions. Corresponding synchronized-blocks protect the identification of
matching Broadcast Receivers, the creation of a new broadcast record and its insertion
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in the correct broadcast queue. On the one hand, this guarantees the consistency of
the internal state in cases where multiple applications generate broadcasts simultane-
ously. On the other hand, this setup allows only one Looper thread to enter the critical
section at a time, leading to a major bottleneck and neutralizing the benefits of a mul-
tithreaded environment. As a real-time operating system has to maximize the overall
system predictability and responsiveness for privileged applications, portions of source
code enclosed into synchronized-sections must be kept as short as possible [18, 85]. For
this reason, the relevant critical sections in AMS and LBM are reconstructed in order
to ensure the priority-based processing and to reduce the blocking time.

Another important aspect of the Intent delivery is the availability of the processing
thread. The sender application and the corresponding Looper thread only can insert a
new Intent object into the broadcast queue, but not deliver it to the Broadcast Receiver2.
This task is typically performed by the UI thread of either the Activity Manager Service
(for global broadcasts) or of the application itself (for local broadcasts). However, in both
cases the respective UI thread is also responsible for processing a high number of other
events. For example, the AMS interacts with all active applications at the same time,
while the UI thread of a single application handles its life cycle transitions and processes
external events. Such architecture can lead to significant delays before the respective
UI thread receives a sufficient amount of the CPU time to deliver the next broadcasted
Intent. This limitation can be addressed by modifying the interaction with the local UI
thread or by introducing a dedicated thread, which is only used to process the pending
broadcasts. Following sections present the integration of the proposed extensions into
the global and into the local broadcasting subsystems.

7.2.3 Handling of Prioritized Global Broadcasts
Intent objects broadcasted by user applications or system processes are passed to the Ac-
tivity Manager Service by the Binder driver. A Looper thread deserializes the transmit-
ted payload and executes the method broadcastIntent() for further processing, which
handles the permission validation, the identification of target receivers and the insertion
into the corresponding broadcasting queue (see Figure 7.1). As it was explained above,
this section is largely protected by a synchronized-block to ensure the data consistency
if multiple threads are accessing the queue at the same time. Since only one Looper
thread is allowed to enter this critical section, other Looper threads carrying privileged
broadcasts may be blocked until the synchronized-block is released again. Furthermore,
the next processing thread is chosen randomly out of all waiting threads, which may
cause unbounded delays during the delivery of high-priority broadcasts. As pointed out
by Mercer and Tokuda [85], reducing the size of critical regions may prevent occurrences
of priority inversion and improve the soft real-time performance. However, introducing
a thread-safe method while reusing the architecture is challenging, because of the high
complexity of Android’s original implementation and strong interconnection of the re-
lated system components. Although a clean slate redesign would improve the system

2Except for the sendBroadcastSync() method in the LocalBroadcastManager class
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Figure 7.5: Encapsulation of the critical section in the Activity Manager Service [61].

processing performance, it may also threaten the backward compatibility and increase
the integration overhead in future releases. For this reason, instead of the dissolving
the critical section, this dissertation presents a different approach to ensure the correct
activation order for Looper threads waiting to insert the next broadcast record. The
introduced modifications guarantee a deterministic access to the synchronized-block
based on the priority of the carried Intent object bi. Looper threads with privileged
broadcasts receive preferential treatment and allowed to enter the critical section first.
This functionality is implemented by a new Guard object with two additional methods
acquireGuard() and releaseGuard() in the Activity Manager Service:

• The Guard object is represented by a global variable of type AtomicInteger.

• The method acquireGuard() initializes the Guard and allows the current thread
to proceed, if no broadcasts with higher priority are being currently blocked. It is
designed to provide a deterministic selection among all waiting thread, depending
on the priority of the carried Intent. A call to this method is inserted immediately
before the synchronized-block.

• The method releaseGuard() releases the Guard and emits a controlled notifica-
tion that the critical section is empty again. A call to this method is inserted
immediately after the synchronized-block.

This process is illustrated in Figure 7.5. Each Looper thread, which enters the method
broadcastIntent() (see Figure 7.2), is registered in an additional waiting queue. The
queue is sorted by the priority of the waiting Intent objects, which were inserted by
corresponding Looper threads. Only the thread carrying the Intent with the highest
priority is allowed to proceed to the Guard object. Otherwise, the thread is put asleep
on the waiting queue until the next notification arrives. In the next step, the thread
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validates the state of the Guard object. If it already contains a value, another Looper
thread currently blocks the critical section. In this case, the current thread is also
suspended by calling the wait() method. Only if the Guard object is in the released
state, the current thread attempts to atomically store its thread ID. This operation may
fail, if another Looper thread with the same or higher priority acquires the Guard first.
Low-prioritized broadcasts are guaranteed to be blocked by the waiting queue, avoiding
further interferences with privileged threads. As soon as a Looper thread has successfully
acquired the Guard, its Intent is encapsulated by a new broadcast record and inserted
into the broadcast queue. Finally, the thread exits the critical section, resets the value
of the Guard object and wakes up the waiting threads.

Section 7.2 has presented the internals of the broadcast processing, including the
creation of new BroadcastRecord objects. In the original implementation, these objects
are stored either in the foreground or in the background queue, which are managed by
the UI thread of the AMS. This dissertation introduces a new class SortedBroadcast-
Queue to respect the priority of the enqueued Intents. However, instead of replacing the
original queues, the new data structure is used additionally to store broadcasts generated
by real-time threads only. The correct queue for the insertion is selected automatically
at runtime, based on the priority of the incoming broadcast. Furthermore, the waiting
time of the pending records is minimized by creating a separate real-time thread, which
is dedicated to the delivery of broadcast records stored in the SortedBroadcastQueue.
Thus, Intents with real-time priority receive the preferential treatment and are delivered
by the dedicated real-time thread, avoiding additional waiting time.

The presented approach does not resolve the bottleneck caused by the critical section,
but it creates a strict ordering mechanism to control the processing Looper threads.
Methods acquireGuard() and releaseGuard() enable a more predictable insertion of
global broadcasts, as only the thread carrying the highest-priority Intent can proceed
to the synchronized-block. This minimizes the number of competing threads in front
of the critical section and avoids priority inversion scenarios. In comparison to the orig-
inal implementation, the proposed extension does not cause additional blocking times.
Instead, it ensures that the selection of the next thread to enter the critical section is
performed in a controlled and deterministic manner.

7.2.4 Handling of Prioritized Local Broadcasts
As presented in Section 7.2.1, broadcasts between the components of the same applica-
tion can be implemented by relying on the LocalBroadcastManager class. Since no data
has to be transferred across process boundaries, the broadcasting is more efficient, which
also leads to shorter handling delays.

Although the original implementation of the LBM is less complex than the AMS, it
still makes use of synchronization on a global monitor object. In fact, the content of the
method sendBroadcast is almost completely enclosed in a synchronized-block. Source
code analysis indicates that this may be done for memory saving purposes. For example,
this method avoids object allocations, relying on pre-allocated global variables instead.
This approach demands the usage of critical sections to ensure the data consistency and
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makes concurrent execution impossible. User threads carrying broadcasted Intent ob-
jects have to be serialized and blocked while another thread occupies the corresponding
synchronized-block, creating a major performance bottleneck. In contrast to the AMS,
the Local Broadcast Manager is not part of the actual Android framework, but is dis-
tributed separately with the Support Library package3. It allows the class architecture
to be easily modified without jeopardizing the compatibility to previous or future plat-
form releases. In the following, the method sendBroadcast() is redesigned by making
use of local object allocations, which allows to shorten the synchronized-block signif-
icantly. This improves both the application responsibility and the performance of the
broadcasting system in multithreaded environments. By relying on a real-time capable,
concurrent garbage collection presented in Section 5, the proposed modifications do not
affect the predictability of the process behavior.

Android’s LBM also uses a FIFO list to store the pending broadcast records, being
unsuitable for priority-based processing. Similarly to the AMS, this list is replaced by
a priority queue, sorted by the priority value of the contained Intents. Since pend-
ing broadcasts are delivered by the application’s UI thread, its priority is increased to
correspond the sending real-time thread. In contrast to the global approach, no ad-
ditional real-time thread for the queue management is created. Providing a separate
real-time thread as part of the LBM may negatively affect the behavior of running ap-
plications. Furthermore, execution of the onReceive() method should be performed by
the UI thread by default, as it might interact with visible elements.

Another drawback arises from the design of the method sendBroadcastSync(), which
transmits the given Intent object in the context of the current thread. Instead of the
immediate delivery of the carried Intent to the matching receiver, it uses the method
sendBroadcast() method to create and enqueue the record into the broadcast queue. In
the next step, the sending thread dequeues all pending Intents and delivers them con-
secutively, bypassing the UI thread. The original implementation does not distinguish
between broadcasts created by sendBroadcast() or by sendBroadcastSync() and pro-
cesses all records in a single run. This way a high-priority broadcast can be significantly
delayed until other records – which were already stored in the queue, but not handled by
the UI thread yet – are delivered first. For this reason, the method sendBroadcastSync()
cannot guarantee an upper bound for the internal processing time. In order to make it
suitable for real-time applications, its implementation is modified to handle the created
record immediately, instead of adding it to the priority queue. Thus, the carried Intent
object is passed to the target receiver even if the broadcasting queue contains other ele-
ments. This approach is preserved for local broadcasts generated by low-priority threads,
as the synchronous delivery can only be performed during the own computation time
of the sender. The time slot is reliably bounded by the system for both regular and
real-time threads, depending on the corresponding priority. This approach minimizes
the interferences during the handling of local broadcasts and transfers the control over
the synchronous data delivery to the Linux scheduler.

3Official documentation for the Android Support Library: https://developer.android.com/topic/
libraries/support-library/index.html
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7.3 Experiments

7.3 Experiments
The modifications presented in previous sections are evaluated separately in multiple
tests. The first part analyzes the delays for global broadcasts caused during their pro-
cessing in the Activity Manager Service. This includes measurements of the default
prioritization using the FLAG RECEIVER FOREGROUND and of the system behavior in differ-
ent load situations. Furthermore, the correctness of the proposed approach for handling
explicitly prioritized broadcasts is validated in detail. Finally, the new architecture of
the Local Broadcast Manager class is evaluated and discussed in the second part.

Testing was performed on the Google Nexus 10 (codename manta) tablet computer,
which is built with a Samsung Exynos 5250 (2x 1.7 GHz Cortex-A15) SoC and 2 GB
of RAM. This device runs the Linux kernel android-manta-3.4.5-rt15 as part of the
modified Android 4.2.2. Test cases were created in conventional Android applications
with introduced extensions as explained in previous sections. The method onReceive()
of the implemented Broadcast Receiver only records the timestamp of data arrival tarr
using the high-resolution timer, which is enabled by PREEMPT RT.

7.3.1 Performance Evaluation of Global Broadcasts
The evaluation begins by measuring the processing time TPROC , which is spent by a
globally broadcasted Intent object inside the AMS. It specifies the total delay between
the invocation of the method broadcastIntent() in the Activity Manager Service at
time tinv and the actual arrival of the broadcasted Intent in the corresponding receiver
at time tarr with TPROC = tarr − tinv.

Two applications are used to perform the first test. Application A spawns one real-time
thread with priority of 80 and knrt = 10 regular threads to transfer data to the application
B using global parallel broadcasts. Each of the threads sends a new Intent object every
100 ms, performing 1000 iterations in total. No explicit priority values are used in this
test, such that broadcasts are prioritized implicitly in the modified system. Processing
delays TPROC are calculated based on Intents broadcasted by the real-time thread only. A
comparison between the original implementation and the extended platform is presented
in Figure 7.6(a).

The values recorded in the original implementation seem to be randomly distributed
in the range between 264 µs and 15.3 ms. Although more than 80% of all broadcasts
were delivered in less than 3 ms, 55 outliers higher than 6 ms have been detected.
This behavior indicates the lack of predictability in the original design of the Activity
Manager Service. Non-deterministic blocking caused by the critical section and the FIFO
processing enforced by the BroadcastQueue cannot guarantee a preferential treatment
for broadcasts generated by the privileged thread. The effectiveness of the proposed
modifications is shown by the behavior of the extended system. Introducing a sorted
data structure in combination with a dedicated processing thread leads to a notable
improvement of the time an Intent object spends in the AMS. The worst-case delay is
reduced to only 2.2 ms, whereas 95% of all high-priority Intents were delivered to the
corresponding receiver in less than one millisecond.
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(a) Comparison of the processing delay [61].
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Figure 7.6: Processing delays for global real-time broadcasts with knrt = 10.
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Figure 7.7: Distribution of TPROC for real-time broadcasts during a long-term test [61].

7.3.2 Impact of the Foreground Priority Flag
The next test compares the behavior of the extended implementation to the explicit
prioritization of global Intents using the FLAG RECEIVER FOREGROUND. In addition to the
setup presented in the previous section, the real-time thread sets the foreground flag for
its own Intents. Since this test was only performed with unmodified Android, the result
comparability is increased by summarizing the recorded measurements with data from
the previous test as shown in Figure 7.6(b).

Android’s native prioritization is able to reduce the worst-case processing delay by
a small margin. However, even with activated foreground flag the standard deviation
stays almost as high as the average processing time, indicating major delay dispersion
and the poor system’s predictability. The original implementation is concluded to be
unable to provide any timing guarantees for the delivery of global broadcasts.

Introduced changes allow a significant improvement of the system behavior. The
average value is reduced to only 278.5 µs. Furthermore, a long-term test with 1, 000, 000
broadcasts generated by each of the running threads4 has shown an upper bound for
the processing time of about 2.4 ms. The full delay distribution of the long-term test is
depicted in Figure 7.7.

4The long-term test had a total running time of about 28 hours.
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Figure 7.8: Worst-case processing delay for real-time Intents with rising knrt [61].

7.3.3 Handling of Global Broadcasts under Load
The processing time TPROC was shown reasonably bounded, when global broadcasts
generated by a real-time thread were handled with low system load. It can be assumed
that knrt = 10 regular threads – which concurrently generate additional broadcasts at
the same rate as the real-time thread – create an adequate amount of throughput to
simulate a typical usage scenario. Nevertheless, this test evaluates the behavior of the
new Activity Manager Service in high-load situations. The test is conducted with the
same setup as used in previous sections, but with a varying number of regular threads
knrt ∈ {25, 50, 75, 100} creating 1,000 broadcasts each. The value TPROC is calculated for
Intents generated by the real-time thread in three different scenarios: using the original
Android platform, using the original platform with activated FLAG RECEIVER FOREGROUND
and using the extended AMS with implicit prioritization. The worst-case delay of each
run for different knrt values is presented in Figure 7.8.

The diagram shows a rising worst-case delay for higher number of active senders in all
configurations. The highest delay was observed in the original implementation, where
the longest Intent processing took 48.3 ms for knrt = 100. Native prioritization using
the foreground flag did not prevent the load from negatively influencing broadcasts
generated by the real-time thread. Although the measured worst-case value was slightly
lower than when the foreground flag was not used, this value increased almost threefold
from knrt = 10 to knrt = 100, reaching about 33.8 ms in the worst case. The extended
implementation shows significantly lower delays with the maximum of about 9.3 ms for
knrt = 100 regular threads. However, in comparison to the unmodified system, the
maximum delay shows a faster growth. It can be assumed, that the new implementation
cannot guarantee a fixed upper bound for the worst-case delay, if the number of senders
is not limited. This behavior may be caused by the critical section, which creates a
significant performance bottleneck. Nevertheless, implemented methods for acquiring
and releasing the Guard object ensure that the access to the synchronized-block is
granted based on the priority of the waiting threads, reducing the overall overhead by
a factor of 3 to 4. Since long critical sections neutralize the benefit of a multi-threaded
platform, the scalability of the system may be further improved by reducing their size
to the minimum. This assumption is evaluated for local broadcasts in Section 7.3.5.
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Figure 7.9: Case 4 violates the processing order of prioritized Intents [61].

7.3.4 Evaluation of the Explicit Prioritization
Tests presented in previous sections have mainly focused on the evaluation of processing
timings and the overall broadcasting performance. Another obstacle to the reliable and
predictable Intent handling in the original implementation was created by the FIFO
queue. Sorting the pending broadcast records based on their insertion time cannot
guarantee the correct order of delivery for prioritized Intents. Broadcasts generated
by real-time threads may be blocked until the processing of already enqueued records
– possibly generated by threads with lower priority – is finished. Section 7.2.3 has
presented the modification approach to solve such conflicts by introducing an ordered
queue, to sort pending broadcasts based on their priorities, and the Guard object, to
ensure the correct thread activation order.

This test evaluates the effectiveness of the introduced changes using krt = 10 real-
time threads without additional system load. Each thread generates a new broadcast
every 5 ms with an explicit broadcasting priority randomly chosen between bmin = 0 and
bmax = 99. In comparison to previous tests, the sending period was reduced in order to
facilitate the occurrence of conflict situations. As the presented approach automatically
limits the effective broadcasting priority (see Section 7.2.2), the scheduling priority of
the sending threads is set to smax = 99 in order to make use of the full possible broadcast
priority range. Figure 7.9 illustrates the possible combinations for handling of two Intents
with different priorities in the Activity Manager Service.

The first case shows a low-priority Intent being delivered to its receiver earlier than the
high-priority Intent. This behavior might be correct, if the transmitting Looper thread
has already entered the critical section and inserts its record in the broadcast queue first.
If the queue is currently empty, the dedicated real-time thread handles the low-priority
Intent immediately. Hence, Case 1 is assumed valid under given conditions. Cases 2 and
3 are valid too, since IHigh is delivered to its receiver earlier than ILow regardless of the
insertion order (as enabled by the introduced priority queue). The last case depicts a
scenario where the high-priority Intent is blocked by a low-priority Intent, violating the
correct processing order. This behavior indicates a failure in the prioritization mecha-
nism, as ILow receives preferential treatment over IHigh. The following equation describes
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Count Failures
Original Android 6344 2271
Modified Android 7485 0

Table 7.1: Analysis of the broadcast handling order [63].

the correct system behavior for two Intents H and L based on their priority values b,
the invocation times tinv and arrival times tarr :

bH > bL ∧ tH
inv < tL

inv ⇒ tH
arr < tL

arr

Current test is performed to validate this property in the original and in the modified
Android platforms for all generated broadcasts. It records the total number of situations
in which ILow was invoked in the AMS later than IHigh (Count) and how many of
these ILow were delivered to the receiver before IHigh (Failures). Table 7.1 presents the
measured results for both systems.

As the broadcasting priority is generated randomly, the total number of conflicting
situations is different for both tests. During the test in the unmodified Android, 6344
possible race conditions were observed, but despite of the FIFO processing, only 2271
of them resulted in the low-priority broadcast to be delivered first. This is due to
fact that the Looper thread carrying IHigh has a higher priority (see Section 6) and
more time to enter the critical section and insert a new broadcast record. However, as
the evaluation shows, this mechanism may fail if another thread currently executes the
critical section. This creates a non-deterministic scenario, where a Looper thread with
ILow may enter the critical section earlier than another Looper thread carrying IHigh.
Although a higher number of race conditions was detected during the test of the extended
implementation, all Intents were handled in the correct order. This indicates that the
integrated approach effectively prevents prioritization errors during the processing of
global parallel broadcasts.

7.3.5 Performance Evaluation of Local Broadcasts
The final test evaluates the performance of the intraprocess communication using the
extended Local Broadcast Manager as described in Section 7.2.4. The setup is chosen
similar to the first test from Section 7.3.1, where a single real-time thread and knrt = 10
regular threads generate 1000 implicitly prioritized Intents each. Since no data has to
be passed across process boundaries, the timestamp tinv for the calculation of TPROC
is taken before the Intent is passed to the LBM, such that the processing delay covers
the full handling period of a broadcast. The evaluation is performed separately for the
asynchronous Intent delivery by the UI thread using the method sendBroadcast(), as
well as the synchronous delivery in the context of the calling thread using the method
sendBroadcastSync(). Figure 7.10 summarizes the recorded results for the original and
for the extended Android.
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Figure 7.10: Processing delay for local broadcasts with knrt = 10 regular threads [61].

In comparison to the global broadcast processing using the AMS, local broadcasting
is confirmed to be significantly more efficient (compare Figure 7.6). The worst-case
processing delay under the same conditions is reduced from 15.3 ms to only 2.4 ms,
while over 90% of all Intents were delivered in less than 1 ms. However, recorded delays
are distributed randomly, making a reasonable prediction impossible. Asynchronous
delivery using the extended LBM shows a bounded overhead with the maximum delay
of 765 µs. For synchronous broadcasting using the method sendBroadcastSync(), this
time is further reduced to only 139 µs without significant outliers. Although invoking
the receiver in the context of the sending thread shows the most reliable behavior, this
approach can be used only if the receiver does not directly interact with UI elements.

Modifications for the Local Broadcast Manager introduced in Section 7.2.4 aimed
at achieving higher performance under CPU load due to the considerably shortened
synchronized-block. This property is evaluated in the following by repeating the last
test with knrt ∈ {25, 50, 75, 100} regular threads. Each scenario is tested with the original
implementation (O), the modified implementation using asynchronous handling by the
UI thread (Mu) and the modified implementation using the synchronous delivery by the
sending thread (Ms). For better readability, Figure 7.11 presents the boxplots for all
recorded values using logarithmic scaling.

The responsiveness of the original implementation strongly depends on the number
of active threads. While the median value is decreasing in situations with higher load,
the worst-case processing delay rises from 2.4 ms to 5.1 ms for knrt = 100. A similar
observation can be made for the modified Intend delivery in the context of the sending
thread. Although the maximum values in each run are significantly smaller than in the
corresponding test of the original implementation, the worst-case delay increases from
139 µs for knrt = 10 to 249 µs for knrt = 100. The increase of the processing delay for
Mu is marginal. While the maximum value rises to 972 µs for 50 regular threads, it stays
below 1 ms regardless of the additional load, offering a reasonable upper bound for local
broadcasts. Hence, this method is concluded to provide the optimal performance for
Intent delivery while enabling predictable broadcasting in real-time applications.
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Figure 7.11: Statistics for local broadcast processing [61].

7.4 Summary and Discussion
Intent broadcasting constitutes one of the most important mechanisms for data ex-
change in Android, allowing to take advantage of Android’s rich application framework.
The original implementation of AMS and LBM was evaluated and extended in order to
enable priority-based processing. Instead of FIFO-based Intent delivery based on the
insertion time, Intents broadcasted from real-time applications are managed automat-
ically by a separate data structure, being sorted by their explicit or implicit priority.
Furthermore, processing delays were significantly reduced by minimizing the responsible
critical sections and introducing privileged delivery threads. Evaluation results recorded
in multiple tests highlight advantages of the modified system components for both global
and local broadcasts.

The original implementation was shown to behave unreliably and to cause unbounded
delays during Intent processing. Global parallel broadcasts in standard Android cannot
be delivered within a predictable time regardless of the FLAG RECEIVER FOREGROUND pri-
ority flag. Original components cause worst-case transmission delays of up to 15.3 ms
in the default configuration and up to 12.2 ms for foreground broadcasts with knrt = 10
regular threads. During the test of the modified system over the course of 28 hours
all Intents broadcasted by a real-time thread were delivered in less than 2.5 ms. These
results demonstrate the effectiveness and scalability of the presented approach. Priority-
based ordering and the introduced Guard object guarantee the deterministic thread
management in front of the critical section and thus the correct processing of messages
transmitted by real-time applications.

Positive effects gained from resolving critical sections are illustrated by evaluation
results of the new local broadcasting manager. Instead of the worst-case delay of about
2.4 ms observed during the asynchronous Intent delivery in the original implementation,
the new approach has shown bounded transmission delays below 1 ms. As explained
during the architecture analysis, synchronous Intent broadcasting using standard LBM
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class may result in unpredictable blocking times since previously inserted objects have to
be dispatched first. The modified concept allows an immediate delivery, which makes the
method sendBroadcastSync() to be a better way of message passing between components
of the same real-time application. Evaluation results show that the modified LBM class
is able to dispatch local broadcast and process them in context of the sending thread
in less 250 µs for knrt = 100 regular threads. The only limitation of this approach
is the missing support for the direct interaction with user interface. As presented in
Section 2.2.2, only the UI thread may access or modify the state of UI elements. Thus,
broadcasted actions that affect the UI cannot be handled by synchronous processing,
since they require additional synchronization mechanisms with the UI thread.

While the proposed approach for global broadcasts ensures a deterministic Intent
processing inside the system core, it has no influence on the UI thread of the recipient
application, which passes the data to the corresponding Broadcast Receiver. Although
high-prioritized Intents are delivered to their target applications first, the responsible UI
thread may be currently blocked either by the system or even by other threads inside
the same application. This would lead to the delayed processing on the application level,
which might have undesired consequences in context of real-time computing. In future,
an extended Intent architecture with a possibility to temporarily adjust the priority
of the receiving thread has to be evaluated. However, such approach requires detailed
analysis and careful design, since enforced modifications of thread priorities may affect
the internal application logic if the process also contains active real-time threads. New
API for the specification of allowed priority ranges for the UI thread of each application
could provide a solution to avoid negative effects. Another improvement of the data
processing on the application side may be achieved by incorporating the modified Looper
and Handler classes [133], as proposed by Yan et al. Finally, importance of sticky
and ordered Intents has to be evaluated in context of real-time applications. In case
their processing delays can jeopardize the deterministic execution in real-time scenarios,
responsible system components have to be analyzed and redesigned too.
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8 Evaluation
Current survey results show that the number of annually sold mobile devices is rising1,
while the sales of desktop PCs continuously decrease. Although desktop PCs still play
a key role in consumer electronics, the importance of mobile devices is growing rapidly2.
As an increasing number of users works with mobile devices on a daily basis, intuitive
handling becomes the defining factor for new electronic products. It can be assumed
that high-quality user experience will eventually become an important non-functional
requirement for the design of interfaces for industrial machinery. Hence, a reliable solu-
tion based on a modern OS has the potential to change the current market situation and
to provide an intuitive and extensible platform, encouraging the design of user-friendly
products. Today, the Android platform holds the largest market share of over 81%. This
popularity of Android arises from the satisfaction of the majority of developers’ and
customers’ expectations, as it was presented by the survey results [122]. Additionally,
its source code is available under the Apache 2.0 open-source license, which facilitates
the development of innovative applications, commercial products and scientific research.
Since the platform is developed by a consortium of mobile device manufacturers, Android
benefits from a wide range of supported hardware from different vendors like Samsung,
HTC and Motorola. Furthermore, Google has recently presented the AndroidThings3

– an Android-based platform for the Internet of Things – designed as a customizable
solution for new embedded products. This is a crucial step to establish Android in the
industrial market and to provide high-level applications with access to advanced periph-
ery like ADC and I2C, which increases the competitiveness and attractiveness of the
off-the-shelf embedded boards like Raspberry Pi.

As shown in Chapter 3, Android is already used in more than 20% of new embedded
projects today. As it was originally developed for needs of smartphones and tablets,
Android’s architecture was deliberately designed to provide the best possible user expe-
rience even on devices with limited resources. Thus, it includes mechanisms to influence
application priorities based on their current visibility and to reduce energy consumption
by terminating long-running background processes. While these are beneficial prop-
erties for consumer devices, such behavior is not compatible with predictability and
determinism required in industrial time-critical environments. This dissertation aimed
at combining the advantages of a reliable execution environment for industrial appli-
cations and a flexible modern mobile platform running on general-purpose hardware.
Different methods to improve Android’s behavior towards bounded processing latencies

1Worldwide Smartphones Sales in 2016: http://www.gartner.com/newsroom/id/3609817
2Usage of mobile vs. desktop devices: http://www.telegraph.co.uk/technology/2016/11/01/

mobile-web-usage-overtakes-desktop-for-first-time/
3Peripheral I/O in AndroidThings: https://developer.android.com/things/sdk/pio/index.html
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8 Evaluation

were developed over the course of this work. The experiment results indicate that real-
time applications can be effectively shielded from unwanted influence of system activities
by modifying platform components responsible for process scheduling, CPU frequency
control, memory management and interprocess communication.

This chapter provides a qualitative assessment of the introduced changes and evaluates
different functional and non-functional criteria. The challenge of conflicting requirements
between the user-oriented design and the requirements for embedded systems is discussed
in Section 8.1 using the example of dynamic CPU frequency scaling. Additionally, this
section presents an overhead estimation and impact analysis for each of the integrated
extensions. Finally, Section 8.2 concludes this chapter with a brief summary.

8.1 Impact Analysis of the Introduced Extensions
From the consumer’s point of view, Android’s mechanisms for strict energy saving play
a crucial role in an application’s life cycle. Historically, it is one of the most prominent
features, which is adjusted and extended in almost every Android release. The dynamic
CPU frequency scaling was the first approach to reduce the energy drain if no application
is currently active. In the next Android version, the device was put into sleep mode as
soon as its screen was turned off. Wakelocks were designed for allowing background
activity and preventing the screen timeout in exceptional cases. However, third-party
applications often forget to release a Wakelock, which forced Google to introduce a
new Doze mode in Android 6. It is activated automatically when the device remains
stationary for a given period of time, suppressing active Wakelocks and disabling all
networking activities4. In Android 7, the Doze mode was extended and it can be enabled
by the system even if the device is not kept stationary.

While this feature is useful to reduce the device’s energy consumption, it contradicts
the main principle of real-time computing. In the industrial domain, the control logic
should not be affected by user interaction or by other applications running concurrently.
Since the CPU frequency determines the execution time of CPU instructions, dynamic
changes influence the behavior of all active processes. As demonstrated in Chapter 4,
lower values of the CPU frequency cause applications to require more time to finish
current calculations, possibly leading to deadline misses. To maintain the energy con-
sumption benefits of frequency scaling, this thesis has proposed a method to disable the
dynamic CPU frequency adjustments during the execution of real-time applications.

Advantages of mobile platforms become apparent when considering modern non-
functional requirements like intuitive user interfaces and a simplified development cycle.
However, as the example of enforced power saving in Android shows, improving the
platform’s predictability inevitably requires substantial modifications on a functional
level. The following sections analyze the introduced extensions and their role in making
consumer-class electronic devices eligible for use in the industrial domain as summarized
in Table 8.1. In this context, each extension is evaluated for its contribution to reaching

4Official documentation about the new Doze mode in Android: https://developer.android.com/
training/monitoring-device-state/doze-standby.html
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8.1 Impact Analysis of the Introduced Extensions

the primary goal – enabling real-time support in Android. Besides the implementation
and integration overhead, the discussion analyzes non-functional aspects like compat-
ibility to future Android releases and providing access to Android’s rich application
framework (e.g. use of standard platform components and third-party applications in
real-time applications). Finally, relevance of the respective extension outside of the real-
time domain is estimated, indicating whether it might also be useful for conventional
Android applications running on consumer devices.

Application of the PREEMPT RT Patch

The PREEMPT RT patch provides all relevant features and does not require implementa-
tion of additional techniques. As shown by different scientific studies and because of its
wide acceptance in the industry, this patch provides adequate results for soft real-time
applications [5, 87]. However, the integration of this patch into Android generates a
notable overhead, which strongly depends on the version of the device-specific Linux
kernel and vendor extensions. Although patching succeeded in all examined devices,
proprietary drivers and version inconsistencies may cause severe integration problems,
as mentioned by Yan [131] and Zores [135]. Furthermore, this approach increases the
risk of incompatibilities to future releases. Since the PREEMPT RT patch only introduces
real-time support on the lowest architectural level, it is detached from the Android frame-
work. This extension is assumed not suitable for the consumer market, as deterministic
scheduling comes at cost of performance, flexibility and fairness for user applications.

Mechanism for the CPU Frequency Locking

The frequency lock is implemented as a wrapper for Linux CPU frequency governors.
It encapsulates the activation logic and provides a high-level application interface. This
allows to keep the integration overhead at minimal level and to migrate the presented
solution easily to other governor types or newer Linux versions. As shown in Chapter 4,
this extension is important to reduce scheduling latencies caused by dynamic CPU fre-
quency scaling and achieve deterministic process behavior. Similarly to the PREEMPT RT
patch, frequency locking only extends the basic real-time support of the Linux kernel.
It does not allow real-time applications to make use of the Android application frame-
work and may be disadvantageous for consumer devices, as locking CPU frequency can
negatively impact the battery life and lead to increased heat development.

Non-blocking Garbage Collection

Among all proposed extensions, the real-time capable automatic memory management
has the highest development complexity. All required algorithms5 had to be imple-
mented from scratch by taking into account the specifics of Android. Furthermore, the
implemented garbage collector has to operate on Android’s native data structures, which
significantly increases the integration overhead. This also leads to a poor upgradability

5Except the local root scanning, which is part of the original Android implementation.
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of the new GC, as any change in future releases of Android may break the compati-
bility. At the same time, non-blocking garbage collector is one of the most important
components to achieve real-time support on higher architectural levels. It ensures the
interruption-free execution of real-time applications implemented in Java programming
language. To avoid suspensions in out-of-memory situations, this functionality might
also be useful in regular applications on consumer devices. It is, however, far less im-
portant than in time-critical scenarios, as short blocking times in regular applications
do not cause any damage and usually even lay beyond human perception.

Control of Memory Adjustment Values

Implementation and integration overhead for controlling memory adjustment values is
low, as it only manipulates Android’s mechanism for process management. Similar to
the wrapper for the CPU frequency governors, this extension is created on top of the
internal API and provides high portability and updatability to future Android releases.
Although this approach does not directly improve scheduling latencies or process respon-
siveness, it offers a new interface to influence Android’s internal prioritization of running
applications. Hence, it is important to guarantee the predictability of the system and
to protect real-time background processes from being killed during automatic memory
usage optimization. This extension does not contribute to the interaction between real-
time application and other platform components. Furthermore, it is not reasonable for
the consumer market, as bypassing Android’s control mechanisms creates a substantial
risk of abuse.

Extended Binder Driver

Introducing priority inheritance for Binder-based remote procedure calls involves con-
siderable development effort. The overhead for implementation and integration is high,
as multiple components including the Linux kernel and the application framework must
be modified. It also requires additional data exchange across different architectural lay-
ers, which increases the complexity and reduces the expected compatibility to future
releases. Although high-level applications can meet soft real-time requirements by using
the extensions presented above, they have no reliable communication channel to invoke
the official Android API. Hence, this extension plays a key role, as it bounds the RPC
overhead and enables the interaction with third-party components without jeopardizing
the process behavior. This way external functionality can be incorporated in real-time
applications in a predictable manner. As priority inheritance is generally favorable for
all kinds of applications, it might also be useful for the consumer market.

Prioritized Intent Broadcasting

Implementation of the broadcast prioritization is done on high level, encapsulating the
new functionality in just a few additional classes. The original platform interface is
preserved by relying on existing Extra fields and the BroadcastQueue class. Although
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the proposed extensions can be easily integrated into Android, their effectiveness is sig-
nificantly decreased by critical sections, which protect the Intent handling in the orig-
inal implementation. While a redesigned class for local broadcasting can be provided
in a separate package, deterministic processing of global Intents requires major plat-
form adaptations. Nevertheless, the presented approach provides a standardized way
for predictable data exchange between real-time applications and external components.
Implicit Intent prioritization might be also reasonable for conventional applications on
consumer devices, as the original processing is based on the FIFO strategy only. How-
ever, such functionality must be designed carefully, as low-priority messages may be
blocked for an indefinite period of time in high-load scenarios.

8.2 Summary and Discussion
In accordance to the objectives of this dissertation, the primary goal was reached by
extending the main platform components of Android, instead of redesigning its archi-
tecture. This approach supports the fulfillment of the secondary goal, as real-time
applications can preserve the original application model and make use of the new API
to leverage the integrated functionality in the standard Android manner. The presented
modifications cover the most important parts of the internal infrastructure:

• Extensions 1, 2 and 4 establish a reliable execution environment for soft real-time
support at the lowest architectural level. Real-time Android applications executed
in dedicated Linux processes are precisely scheduled by the patched kernel based on
their priorities. Furthermore, they are protected from dynamic changes of the CPU
frequency or unexpected terminations by the memory optimization mechanism.

• Extension 3 minimizes interferences between the application logic and the auto-
matic garbage collector. This change affects Android Runtime and allows usage of
Java programming language for the development of real-time applications.

• Extensions 5 and 6 provide a possibility to link components from different ap-
plications and reuse existing functionality in a predictable manner. They allow
applications on the highest architectural level to benefit from a predictable ex-
change of structured data across process borders.

Although the popularity of Android for embedded projects is rising, using it in time-
critical environments requires substantial platform extensions. Evaluation of the pre-
sented modifications indicates that augmenting Android for usage in the industrial do-
main is generally possible, albeit with considerable development overhead. Furthermore,
as the discussion of extensions 1, 2 and 4 shows, such modifications may conflict with
standard behavior of consumer devices, where important non-functional requirements in-
clude the responsiveness of the foreground application and extended battery life. Since
the original platform is optimized to provide the best possible user experience, its ar-
chitecture does not consider typical use cases for industrial operating systems like static
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priorities or splitting the application logic from the UI handling. While these are known
techniques to guarantee a predictable process behavior regardless of user input and vi-
sualization overhead, they often lead to a limited flexibility and extensibility of the
resulting platform.

Android is based on the Linux kernel, which is broadly used in the industrial domain
today. The extensions proposed by this dissertation unveil the potential of the platform
in terms of deterministic behavior and allow Android-based embedded products to serve
industrial purposes beyond simple visualization and user interaction. Preserving the
compatibility to external components and third-party applications facilitates the inte-
gration of modern technologies, reducing the product complexity and resulting in faster
software development by relying on a wide range of available extensions, support tools
and third-party libraries.
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9 Conclusion
The example of industrial Linux proves that deterministic and predictable application
behavior is possible using the combination of high-level operating systems and general-
purpose hardware. Currently, Android is continuously gaining importance not only in
consumer electronics, but – as indicated by the current trends in embedded products –
also in the industrial application domain (see Section 3). While it is mainly used for
HMI purposes today, included Linux kernel raises the question of Android’s suitability for
reliable monitoring and control. A more predictable process and memory management
help to expand Android’s field of application to time-critical domains. Ongoing interest
in augmenting Android with real-time support is reflected by the rising number of related
scientific publications [74, 79, 86, 91, 104, 131, 133]. Prior to this work, the research
was mainly focused on the evaluation of the real-time Linux kernel and application-
specific extensions, creating separated execution environments for regular and real-time
applications. Only little attention was paid to the extension of Android’s native high-
level components and their interaction at runtime. This dissertation provides a holistic
view on the Android platform by identifying and modifying components required for the
predictable and deterministic execution of real-time Android applications. Furthermore,
the implemented approach preserves the original API, allowing real-time applications to
interact with system components in a controlled manner.

9.1 Summary
Each chapter of this work presented an analysis and extension of original components
related to one specific aspect of the platform’s behavior. For achieving the optimal
process behavior and preserving application design flexibility on different architectural
levels, the final embedded product has to incorporate all of the introduced extensions:

1. A fully preemptible Linux kernel with worst-case scheduling latencies of about
63 µs. This corresponds with the optimal behavior of a patched Linux kernel as
evaluated in the scientific literature (compare Section 4.1) and seems suitable for
a wide range of time-critical use cases.

2. A concurrent memory management with an iterative, non-blocking garbage col-
lection based on reference counting. It addresses the undesired non-deterministic
suspensions and unfolds the full power of high-level programming languages and
frameworks. Additional protection prevents real-time processes in Android from
being killed during a long-term execution in the background.
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3. Enhanced mechanisms for data exchange across the application’s process borders.
Since remote procedure calls and Intent broadcasting represent the two most im-
portant approaches for interprocess communication in Android, extended methods
reduce corresponding blocking times and guarantee predictable upper bounds for
the communication delay.

9.2 Future Work
Providing a real-time capable platform based on Android facilitates the development of
modern user interfaces and reduces the complexity of software and hardware products.
The approach proposed in this dissertation creates the minimal foundation for soft real-
time support in Android. Possible improvements related to each of the introduced
features were already briefly presented in the corresponding chapters. However, further
research on other topics is required in order to successfully establish the Android platform
running on general-purpose hardware in the industrial environment and to use it as a
substitute for the individual application-specific solutions.

Besides of security audits and the identification of privacy-related issues, embedded
products typically have to provide APIs for low-level hardware control. In addition to
GPIO, such interfaces often include access to peripherals like PWM, ADC or UART.
They are commonly used for actuator control and raw data exchange with peripheral sen-
sors. Recently, Google has introduced peripheral I/O extensions designed for Android.
While this is a reasonable way to exploit the full potential of general-purpose embed-
ded boards like ODROID and Raspberry Pi, the internals of these extensions have to
be evaluated in the context of real-time applications. For example, predictable data
retrieval was partially covered by Yan et al. [132], who presented a promising approach
for real-time capable access to sensor data at runtime.

Another issue arises from the limited support for industrial communication. An-
droid devices provide interfaces for consumer-grade protocols like Bluetooth, USB and
WIFI, which are designed for higher throughput, while industrial setups typically rely
on more robust protocols like Modbus, CAN and PROFINET with focus on predictabil-
ity. Several projects were identified to evaluate the predictability of the available inter-
faces [45, 88] or to integrate industrial protocols into the Android platform [4, 105, 120]
in the past. Such approaches are important for the seamless integration of off-the-shelf
embedded devices into the industrial environment.
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