
Aachen
Department of Computer Science

Technical Report

CD2Alloy: A Translation of Class

Diagrams to Alloy

and Back from Alloy Instances to Object Diagrams

Oliver Kautz, Shahar Maoz, Jan Oliver Ringert, Bernhard Rumpe

ISSN 0935–3232 · Aachener Informatik-Berichte · AIB-2017-06

RWTH Aachen · Department of Computer Science · July 2017

The publications of the Department of Computer Science of RWTH Aachen

University are in general accessible through the World Wide Web.

http://aib.informatik.rwth-aachen.de/

RWTH Aachen University

Software Engineering Group

CD2Alloy: A Translation of Class Diagrams to Alloy

and Back from Alloy Instances to Object Diagrams

Oliver Kautz
Shahar Maoz
Jan Oliver Ringert
Bernhard Rumpe

ii

Abstract

This report presents a translation from UML class diagrams [OMG15, Rum16] to Alloy
modules [Jac06] and a translation from Alloy instances back to UML object diagrams.
An overview of the translation was first presented in [MRR11a] and applied in [MRR11b]
to semantic differencing of class diagrams. It supports an extended list of CD language
features, including, e.g., directed associations, composite aggregations, interfaces, multiple
inheritance, and enumerations. The translation thus supports essential features of many
real-world CDs, UML and EMF metamodels, practically not analyzable before. An im-
portant feature of the translation is the ability to analyze multiple class diagrams within
one Alloy module, which is not possible with previous translations. This document defines
the translations by translation rules that operate on the abstract syntax of a class diagram
language and produce concrete syntax of the Alloy language. We give examples showing
class diagrams and complete representations in Alloy as well as an Alloy instance and its
object diagram representation.

iii

iv

Contents

1 Introduction 1

2 Preliminaries 3

2.1 Grammar of UML/P CDs . 3

2.2 Example CD . 5

2.3 Brief Overview of Alloy . 5

3 Translation of Class Diagrams to Alloy Modules 7

3.1 Abstract Syntax of Class Diagrams . 7

3.2 The CD2Alloy Translation Rules . 8

3.2.1 The Generic Part . 9

3.2.2 Rules U1 to U4: Classes, Field Names, Types, and Enums 13

3.3 Rules F1 to F4: Functions for Subclassing, Interfaces, Compositions, and
Enums . 15

3.4 Rules P1 to P4: Classes and Attributes . 18

3.5 Rules A1 to A6: Associations . 21

4 Translation and Analysis of Multiple CDs 27

5 Translation of Alloy Instances to Object Diagrams 31

5.1 Structure of CD2Alloy Alloy instances . 31

5.2 Translation rules . 32

6 Related Work 37

7 Conclusion 39

Literature 41

A Complete CD2Alloy Translation Example 43

v

vi

Chapter 1

Introduction

Analyzing models of one modeling language can often be done using a semantics preserving
translation to another language, and a reversed translation, back from the analysis results
to the domain of the first language. Class diagrams (CDs) are widely used for modeling the
structure of object-oriented systems and are the most popular sub-language of the Unified
Modeling Language (UML) [OMG15] standard. The syntax of CDs includes classes and
the various relationships between them such as associations and generalizations. The
semantics of CDs is given in terms of object models, consisting of sets of objects and
the relationships between these objects. Many authors have suggested different analyses
problems, solutions, and related tools for CDs (e.g., [ABGR10, CCR07, GBR07]).

A class diagram specifies a model of an object-oriented system structure. Our approach
relies on analyzed CDs using a translation to Alloy1, a textual modeling language based
on relational first-order logic [Jac06]. An Alloy module resulting from such a translation
can be analyzed using a SAT solver. An analysis result, which is an instance of the
module, if there is any, can be translated back to the UML domain, and be presented
as an object diagram (OD). Existing translations of CDs to Alloy [ABGR07a, ABGR10,
MGB04, SAB09] are limited to basic analyses of a single CD and lack automation of
translating instances back to ODs. Moreover, the translations miss support for several
CD language features as, for instance, multiple inheritance and interface implementation.
The main reason for this is that these CD features do not have immediate counterparts
in Alloy. In other words, the translations realize shallow embedding strategies.

This technical report presents CD2Alloy, a comprehensive translation of CDs to Alloy,
which is based on a deeper embedding strategy. Rather than mapping each CD construct to
a semantically equivalent Alloy construct, the translation presented in this report explicitly
encodes the semantics of CD constructs in Alloy. Class inheritance, for instance, is not
mapped to its Alloy’s counterpart — the extends keyword. Instead, it is defined using
several of Alloy’s language constructs — facts, functions, and predicates. The semantics
of the generated constructs then reflects the semantics of class inheritance in CDs. Earlier
work [MRR11a] has introduced the basic features of CD2Alloy and presented the general
idea of the translation without going into details. This report presents the translation
from CDs to Alloy modules and back from Alloy instances to ODs in full detail.

The alternative translation has several advantages. First, it allows us to support more CD
language features: in particular features that do not have direct counterparts in Alloy, such

1http://alloy.mit.edu/ accessed 2017-06-01

1

as multiple inheritance and interface implementation. Second, significantly, it allows to
solve several analysis problems that go beyond the basic satisfiability check and instance
generation tasks of a single CD, e.g., the analysis of the intersection of two CDs (i.e.,
generating common object models), the comparison of two CDs (checking if one is a
refinement of the other), etc. These would have been very difficult, if not impossible, to
support using existing translations from the literature. One of the strengths of CD2Alloy
is the capability of producing witnesses for analysis results. Witnesses are presented in
form of object diagrams, describing object models in the semantics of the class diagrams
involved in the analysis. Producing witnesses is important because it provides correctness
proofs. Browsing multiple witnesses supports human comprehension of the analysis results.

Technically, as concrete languages we use the CD and object diagram sublanguages of
the UML/P [Sch12, Rum16], a conceptually refined and simplified variant of the UML
designed for low-level design and implementation. Our semantics of CDs and ODs are
based on [BCGR09, CGR08] and are given in terms of object models, i.e., sets of objects
and relationships between these objects. The translation takes one or more CDs as input
and outputs an Alloy module. The Alloy module can then be analyzed with the Alloy An-
alyzer. Finally, using another translation, instances of the Alloy module found by the SAT
solver connected to the Alloy Analyzer are translated back to ODs. The transformations
are presented in Chapter 3.

This report is structured as follows: Chapter 2 provides a brief summary on the UML/P
CD language used by the translation and a short overview of Alloy. Chapter 3 describes
the CD2Alloy translation from CDs to Alloy modules and illustrates the translation by
example of a single input CD. Afterwards, Chapter 4 gives an example for the translation
when given multiple CDs as input, before Chapter 5 describes the translation from Alloy
instances back to ODs. Chapter 6 overviews related analysis approaches based on other
translations. In the end Chapter 7 reflects the translation and concludes.

2

Chapter 2

Preliminaries

The translation takes as input a set of UML/P class diagrams [Rum16, Sch12] and outputs
an Alloy module. The UML/P [Rum16] is a conceptually refined and simplified variant of
the UML designed for low-level design and implementation. Alloy is a textual modeling
language based on relational first-order logic. Alloy modules can be analyzed with the
Alloy analyzer, a fully automated constraint solver. The analyzer can check the validity
of user defined predicates and is capable of finding counterexamples during analysis for
a user defined finite scope. Alloy instances computed by the Alloy analyzer for modules
produced by the translation can be translated back to object diagrams. The object dia-
grams represent object models in the semantics of the input CDs calculated for an analysis
problem specified for the Alloy module generated from the input CDs.

Section 2.1 presents the class diagram language used as input for the translation, before
Section 2.2 shows an example class diagram that is used as a running example. In the end
of this chapter, Section 2.3 gives a brief overview of Alloy.

2.1 Grammar of UML/P CDs

MontiCore [KRV10] is a language workbench for the development of compositional mod-
eling languages. It supports the definition and generation of all artifacts relevant for
language processing for a modeling language specified by a grammar in an enriched EBNF
format. The generated artifacts include, inter alia, the abstract and concrete syntax of a
language and a parser for models conforming to the language.

Listing 2.1 shows the relevant parts of the class diagram MontiCore grammar describ-
ing the language of the class diagrams used as input for the CD2Alloy translation. The
grammar is adapted from [Sch12] and defines a subset of the UML/P [Rum16] class di-
agram language. The complete syntax of the UML/P CD language is defined in [Sch12]
using MontiCore grammars and context conditions for describing well-formedness rules.
The grammar depicted in Listing 2.1 extends the grammar mc.types.Types and thus
inherits, inter alia, the production rules Type for stating standard and primitive types
and ReferenceType for references to type names of classes or interfaces. A detailed
description of the grammar Types is given in [Sch12].

3

MCG

1 grammar CD extends mc.types.Types {

2 CDDefinition = "classdiagram" Name

3 "{" (Class | Interface | Enum | Association)* "}";

4 Class = Stereotype? Modifier? "class" Name

5 ("extends" superclasses:ReferenceType

6 ("," superclasses:ReferenceType)*)?

7 ("implements" interfaces:ReferenceType

8 ("," interfaces:ReferenceType)*)?

9 (";" | "{" Attribute* "}");

10 Interface = "interface" Name ("extends" interfaces:ReferenceType

11 ("," interfaces:ReferenceType)*)?";";

12 Enum = "enum" Name (";" | "{" EnumConstant ("," EnumConstant)* ";" "}");

13 EnumConstant = Name;

14 Attribute = Type Name";";

15 Association = (["association"] | ["composition"])

16 leftCardinality:Cardinality?

17 leftReferenceName:QualifiedName

18 ("(" leftRole:Name ")")?

19 (leftToRight: ["->"] | rightToLeft:["<-"] |

20 bidirectional:["<->"] | simple: ["--"])

21 ("(" rightRole:Name ")")?

22 rightReferenceName:QualifiedName

23 rightCardinality:Cardinality?

24 Cardinality = "[" (many:["*"] | lower:IntLiteral (".."

25 (upper:IntLiteral | noUpperLimit:["*"]))?) "]";

26 Modifier = (Abstract:["abstract"])*;

27 }

Listing 2.1: Extract of a MontiCore grammar for UML/P class diagrams.

The definition of a class diagrams starts with the keyword classdiagram followed by
the diagram’s name and body. The body is enclosed by square brackets (l. 3). It contains
arbitrarily many classes, interfaces, enums, and associations (l. 3). Classes are introduced
with the keyword class, optionally prefixed with a stereotype and a modifier (l. 4). The
keyword must be followed by the name of the class. The name is optionally followed by
the keyword extends and a list of references to classes the class extends (ll. 5-6) or by
the keyword implements and a list of interfaces the class implements (ll.7-8). After-
wards, a class definition optionally has a body enclosed by square brackets (l. 9). The
body consists of arbitrarily many attributes (l. 9). Each attribute consists of a type and
a name (l. 14). Stereotypes are represented as lists of stereotype identifiers enclosed by
angle brackets (”≪” and ”≫”) and are part of the Types grammar. The translation cur-
rently supports the modifier abstract (l. 26) and the stereotype identifier singleton.
Interfaces are introduced with the keyword interface followed by the interface’s name
(l. 10). Each interface can optionally extend further interfaces (ll. 10-11). The definition
of an enumeration type starts with the keyword enum followed by the enumeration’s name
(l. 12). The name is optionally followed by a body that is enclosed by square brackets and
defines the fields of the enumeration type (l. 12). The grammar supports declaring regular
associations, introduced with the keyword association, and compositions, introduced
with the keyword composition (l. 15). Each association defines the classes it associates
(l. 17 and l. 22) and is either unidirectional (denoted by -> or <-, l. 19), undirected
(denoted by --, l. 20), or bidirectional (denoted by <->, l. 20). Association ends are
optionally labeled with cardinalities (l. 16 and l. 23) and role names (l. 18 and l. 21). If

4

a role name on a side is omitted, it is inferred as the name of the class associated on the
same side starting with a lower case letter. Cardinalities are of the form *, n, n..*, or
n..m (ll. 26-27) where n and m are integers with n < m.

2.2 Example CD

Figure 2.1 shows an example of a UML/P class diagram in graphical notation. Listing 2.2
shows the same class diagram in textual notation. The class diagram contains two enu-
merations, eight classes of which one is abstract, one interface, four regular associations,
one composition, three class inheritance relations, and one implements relation.CD cd1«abstract»VehicleDate regDateString licensePlateTruckLicenseCompany EmployeeInsuranceInsuranceKind kind DriverDrivingExp exp«enumeration»InsuranceKindtransportinternational «enumeration»DrivingExpbeginnerexpert drivenBy drivesins of empslicenseof of cars*0..1 0..*0..1** 0..3 owner11 «interface»DrivableCar
Figure 2.1: The example class diagram cd1 consists of classes with attributes, enumerations
with enumeration values, associations with multiplicities, inheritance relations between
classes, and an implements relations between a class and an interface.

Each employee has exactly one insurance and can work in arbitrarily many companies.
Insurances have a kind of enumeration type InsuranceKind, which has the possible
enumeration values transport and international. Companies can own arbitrarily
many cars. Drivers are special employees that have a driving experience with the possible
enumeration values beginner or expert. Drivers can have up to three licenses and
drive an arbitrary number of vehicles. Each vehicle is driven by up to one driver. The
class Vehicle is an abstract class that implements the interface Drivable. There are
two concrete types of vehicles: Car and Truck.

2.3 Brief Overview of Alloy

Alloy1 is a modeling language based on relational first-order logic [Jac06]. The models
written in Alloy are called modules. An Alloy module consists of signature declarations,

1http://alloy.mit.edu/ accessed 2016-11-07

5

CD cd1

1 classdiagram cd1 {

2 enum InsuranceKind {transport, international;}

3 enum DrivingExp {expert, beginner;}

4 class Employee;

5 class Driver extends Employee {

6 DrivingExp exp;

7 }

8 interface Driveable;

9 abstract class Vehicle implements Driveable {

10 Date regDate;

11 String licensePlate;

12 }

13 class Car extends Vehicle;

14 class Truck extends Vehicle;

15 class Company {}

16 class License {}

17 class Insurance {

18 InsuranceKind kind;

19 }

20 association [1] Driver (drivenBy) <-> (drives) Car [0..*];

21 association [0..1] Company (of) -> (cars) Car [*];

22 association [*] Employee (emps) <- (of) Company [*];

23 composition [1] Employee (of) -> (ins) Insurance [1];

24 association [1] Driver (owner) -- (license) License [0..3];

25 }

Listing 2.2: The class diagram cd1 (CD2AlloyExample) given in UML/P CD concrete
syntax.

fields, facts and predicates. Each signature denotes a set of atoms, which are the basic
entities in Alloy. Relations between two or more signatures are represented using fields
and are interpreted as sets of tuples of atoms. Facts are statements that define constraints
on the elements of the model. Predicates are parametrized constraints. A predicate can
be included in other predicates or facts.

Alloy modules can be analyzed using the Alloy Analyzer, a fully automated constraint
solver. This is done by a translation of the module into a Boolean expression. The
expression is analyzed by SAT solvers embedded within the Analyzer. The analysis is
based on an exhaustive search for instances of the module, bounded by a user-specified
scope. The scope limits the number of atoms for each signature in an instance of the
system that the solver analyzes. The Analyzer can check for the validity of user-specified
assertions. If an instance that violates the assertion is found within the given scope, the
assertion is not valid. However, if no instance is found, the assertion might be invalid in
a larger scope. Used in the opposite way, the Analyzer can search for instances of user-
specified predicates. If the predicate is satisfiable within the given scope, the Analyzer
will find an instance that proves it. However, if the analyzer does not find an instance,
the predicate may be satisfiable in a larger scope. For a complete and detailed account of
Alloy we refer to [Jac06].

6

Chapter 3

Translation of Class Diagrams to
Alloy Modules

This chapter defines the rules for translating class diagrams to Alloy modules. The input
of the translation is a set of UML/P class diagrams. The output is an Alloy module
containing a predicate for each class diagram. Each of such predicates expresses the
semantics of its corresponding CD in terms of Alloy instances representing the object
models in the semantics of the CD.

Section 3.1 describes the abstract syntax of the class diagram language used as input
for the translation. Afterwards, Section 3.2 presents the translation rules for transforming
CDs to Alloy modules. The rules are illustrated by example of the class diagram described
in Section 2.2. Appendix A shows the complete result from applying the CD2Alloy trans-
lation to the class diagram given in Section 2.2.

3.1 Abstract Syntax of Class Diagrams

The translation rules operate on the abstract syntax of class diagrams as defined by the
simplified MontiCore grammar described in Section 2.1 and depicted in Listing 2.1.

The grammar format provided by MontiCore [KRV10] is an extended CFG format en-
hanced with the possibility for the specification of concrete and abstract syntax. Monti-
Core derives an abstract syntax tree (AST) from each grammar. An AST is a data struc-
ture for representing the abstract syntax of a language defined by a MontiCore grammar.
Additionally, MontiCore derives a class diagram representing the AST of the language de-
fined by a grammar. Code generators translate the class diagram into Java code. Parsers
derived from MontiCore grammars instantiate these classes and thus create AST instances
representing the abstract syntax of models. The descriptions of the translations presented
in this report abstract from implementation details and deal with AST instances on a
conceptual level. The translation rules handle AST instances in a similar manner as one
operates on mathematical structures.

The AST of a language can be represented by a class diagram. The class diagram consists
of a class for each production rule of the corresponding grammar. The name of the class is
defined by the name of the non-terminal introduced by the left-hand side of the production

7

rule. Each class in the class diagram represents an AST node. The associations between
the classes are defined by the right-hand sides of the production rules. Each production
rule has a name and a body. The name introduces the name of the non-terminal defined by
the rule. Elements referenced by the the body of production rules can be explicitly named.
If the name of an element is omitted, the name is derived from the name of the referenced
terminal or non-terminal. Repetition of an element on the right hand of a production rule
is denoted by the * symbol. Optional elements are followed by the symbol ?. The special
non-terminal Name induces a universe of names. Referencing the Name non-terminal on
the right-hand side of a production rule introduces a field in the corresponding AST node
class. The field ranges over the universe induced by Name. Each name is required to
have an unique String representation. If a production rule p references a non-terminal n
different from Name, the AST data structure contains an association between the classes
introduced for p and for the production corresponding to n. The association is navigable
from the class for p to the class for n. The role name given to the class corresponding
to n is given by the name of the element referencing n. The association’s cardinality on
the side of the class introduced for n is the same as specified in the grammar: (1) If the
referenced non-terminal is marked as optional, the classes are related in a one to at most
one relationship. (2) If the referenced non-terminal is part of a repetition, the classes are
related in a one to many relationship. (3) Otherwise, the classes are related in a one to
one relationship. Keywords in square brackets on the right hand side of a production rule
are added to the corresponding AST class as boolean attributes. A detailed description
of the derivation of the abstract syntax of MontiCore languages is given in [KRV10].

The root of any class diagram AST is a CDDefinition node. For the purpose of nav-
igating over an AST instance, the transformations presented in this report use the well
known dot notation. For instance, a class diagram represented by a CDDefinition

node cd contains the set of classes cd.class, the associations cd.association, the enu-
meration types cd.enum, and the interfaces cd.interface. As a second example, the
expression {a.name ∣ ∃c ∈ cd.class ∶ a ∈ c.attribute} describes the set of all names of
all attributes of all classes occurring in the CD cd. In the remainder of this report,
the reflexive transitive closure of the superclasses and interfaces attributes of a
class c ∈ cd.class are denoted by c.superclasses∗ and c.interfaces∗, respectively. For a
class c, the expression c.superclasses∗.interfaces∗ denotes the set of all interfaces imple-
mented by any class contained in the set c.superclasses∗ and is defined by the equation
c.superclasses∗.interfaces∗ = ⋃sc∈.superclasses∗ sc.interfaces

∗. The translation rules pre-
sented in this report often require checking equality of names. For notational convenience
the translation rules use the following abbreviations for this purpose: Given a name n and
an AST node ast, we denote by n = ast the expression that evaluates to true if, and only if,
the value of the name attribute of the AST node ast is equal to the name n. For instance,
given a name n and a Type node t, the expression n = t evaluates to true iff the name
of the type represented by t is equal to the name n. Analogously, given two AST nodes
ast and ast′, the expression ast = ast′ evaluates to true iff ast.name = ast′.name. Given a
Class node c and an Interface node i, for instance, the expression c = i evaluates to
true iff c.name = i.name.

3.2 The CD2Alloy Translation Rules

The CD2Alloy translation takes as input a set of class diagrams CD. It outputs a single
Alloy module containing a predicate for each class diagram cd ∈ CD. Each predicate

8

expresses the semantics of the corresponding CD in terms of Alloy instances that represent
the object models in the semantics of the CD. The translation is divided into four stages.
The first stage (cf. Section 3.2.1) is the generic part of the CD2Alloy translation producing
signatures, facts, and predicates common to all CD2Alloy translations. The second stage
(cf. Section 3.2.2) creates signatures for the representation of CDs in CD2Alloy. This stage
produces signatures common to all CDs used as input for the translation. The third stage
(cf. Section 3.3) creates functions for expressing subclassing, interfaces, composition, and
enumeration types. Each of the functions is specific to exactly one cd ∈ CD. The fourth
and last stage (cf. Section 3.4 and Section 3.5) creates an Alloy predicate for each cd ∈ CD

that expresses the semantics of the CD in terms of valid Alloy instances representing object
models in the semantics of the CD cd.

The translation starts with the translation rule depicted in Figure 3.1. The rule is defined
using the formal notation for translation rules as defined in Appendix B of [Rin14]. The
translation rules consist of expressions in the concrete syntax of the target language Alloy
as well as control structures and directives that operate over the abstract syntax of class
diagrams as described in Section 3.1. The translation rule syntax and the effect of applying
transformations is described in detail in [Rin14], Appendix B.

The key idea of the CD2Alloy translation is the definition of CD semantics using custom
predicates instead of using the built-in concepts of the Alloy language. This has multiple
advantages. First, the CD2Alloy translation allows to express features that cannot be
expressed by direct mappings of CD constructs to Alloy constructs. A detailed discus-
sion of the differences between the semantics of CDs and the Alloy language is given in
[ABGR10]. Alloy’s extends keyword, for instance, cannot handle multiple inheritance or
interface implementation. Second, the CD2Alloy translation allows the analysis of multi-
ple CDs using Alloy. The semantics of a CD is not fixed by Alloy constructs, such as fields
of signatures, but defined in a custom predicate. Thus, analysis tasks involving multiple
CDs can be written as an expression over multiple predicates and evaluated automatically
by the Alloy Analyzer.

3.2.1 The Generic Part

The generic part of the CD2Alloy translation is common to all generated modules, inde-
pendent of the input CDs. It consists of a set of parametrized auxiliary predicates for
expressing the semantics of CDs and a fixed core of abstract Alloy signatures for repre-
senting class instances (objects), field names, field values, and enumeration type values.

Listing 3.1 shows the abstract signature Obj (l. 1) that is the parent of all signatures
representing classes in the module. The get Alloy field of the Obj signature relates Obj
and FName atoms to atoms of the Obj, Val, and EnumVal signatures. The abstract
signature FName (l. 2) is used to represent association role names and attribute names
for all classes in the CDs. The abstract signature Val (l. 3) represents all predefined and
unknown types, i.e., primitive types and other types that are not defined as classes in
a CD. Values of enumeration types are represented using the signature EnumVal (l. 4).
All the Alloy signatures above are abstract and thus have no immediate instances. The
signatures are extended by signatures representing elements from CDs in the CD specific
parts of the translation.

Listing 3.2 and Listing 3.3 show the generic, parametrized predicates responsible for spec-
ifying the relations between objects and fields. The predicate ObjAttrib (Listing 3.2,

9

Translation Rule

Translation rule with a set CD of class diagrams as parameter:

module
zÐÐÐÐÐx

{|cd.name|}zx
cd∈CD

// generic signatures and classes
zÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐx

see Section 3.2.1

// signatures common to all CDs
zÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐx

see Section 3.2.2

executeRule(U1 CD) see Figure 3.2 for body of rule U1
executeRule(U2 CD) see Figure 3.3 for body of rule U2
executeRule(U3 CD) see Figure 3.4 for body of rule U3
executeRule(U4 CD) see Figure 3.5 for body of rule U4
∀cd ∈ CD ∶
// functions specific to CD
zÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐx

cd.name see Section 3.3

executeRule(F1 cd) see Figure 3.6 for body of rule F1
executeRule(F2 cd) see Figure 3.7 for body of rule F2
executeRule(F3 cd) see Figure 3.8 for body of rule F3
executeRule(F4 cd) see Figure 3.9 for body of rule F4
∀cd ∈ CD ∶
// semantics predicate
zÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐx

cd.name see Section 3.4 and Section 3.5

pred
zÐÐÐx

cd.name {
zx

// classes and attributes in
zÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐx

cd.name see Section 3.4

executeRule(P1 cd) see Figure 3.11 for body of rule P1
executeRule(P2 cd) see Figure 3.12 for body of rule P2
executeRule(P3 cd) see Figure 3.13 for body of rule P3
executeRule(P4 cd) see Figure 3.14 for body of rule P4
// associations in
zÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐx

cd.name see Section 3.5

executeRule(A1 cd) see Figure 3.15 for body of rule A1
executeRule(A2 cd) see Figure 3.16 for body of rule A2
executeRule(A3 cd) see Figure 3.17 for body of rule A3
executeRule(A4 cd) see Figure 3.18 for body of rule A4
executeRule(A5 cd) see Figure 3.19 for body of rule A5
executeRule(A6 cd) see Figure 3.20 for body of rule A6

}
zx

Figure 3.1: Overview of the translation of a set of class diagrams CD into an Alloy module.

Alloy

1 abstract sig Obj { get: FName -> {Obj + Val + EnumVal} }

2 abstract sig FName {}

3 abstract sig Val {}

4 abstract sig EnumVal {}

Listing 3.1: The abstract signatures FName, Obj, Val, and EnumVal.

10

Alloy

1 pred ObjAttrib[objs: set Obj, fName: one FName,

2 fType: set {Obj + Val + EnumVal}] {

3 objs.get[fName] in fType

4 all o: objs| one o.get[fName] }

5

6 pred ObjFNames[objs: set Obj, fNames:set FName] {

7 no objs.get[FName - fNames] }

8

9 pred BidiAssoc[left: set Obj, lFName:one FName,

10 right: set Obj, rFName:one FName] {

11 all l: left | all r: l.get[lFName] | l in r.get[rFName]

12 all r: right | all l: r.get[rFName] | r in l.get[lFName] }

13

14 pred Composition[compos: Obj->Obj, right: set Obj] {

15 all r: right | lone compos.r }

16

17 fun rel[wholes: set Obj, fn: FName] : Obj->Obj {

18 {o1:Obj,o2:Obj|o1->fn->o2 in wholes <: get} }

Listing 3.2: Parametrized predicates for specifying the relations between objects and
fields of objects.

ll. 1-4) limits the tuples in the objs.get[fName] relation to the correct type of the
field fName, which is given by the set fType. The predicate ensures exactly one object,
value, or enumeration value is related to each object represented by an atom in the set
objs and to the field name represented by the atom fName. The predicate ObjFNames
(Listing 3.2, ll. 6-7) is used to ensure objects do not have field names other than the ones
stated in the CD. It requires the get relation does not relate any atom in the set objs
with any atom not contained in the set fNames to any object or value. If the set objs
consists of all atoms representing all instances of a class and the set fNames contains all
atoms representing all attribute names of the class as well as all all role names given to
classes associated with the class, the predicate ensures no instance of the class has a field
that is not stated in the CD. The predicate BidiAssoc (Listing 3.2, ll. 9-12) is used to
ensure each object having a link to another object via a bidirectional association can also
be referenced by the other object via a link representing an instance of the same associa-
tion. The association’s role names are represented by the atoms given by the parameters
lFName and rFname. The predicate requires that all partners on the left ends of links
corresponding to the association have links back to the partners on the right ends of the
association and vice versa. There are different interpretations of composition semantics in
the literature. For instance, [GR99] requires the part to be existentially dependent from
the aggregate and requires a strong form of forbidding sharing, i.e., a part object can
only exist if it is connected to a whole object and a part object cannot be shared by two
different whole objects. In contrast, in the UML [OMG15] and in the UML/P [Rum16], it
is only required that each part object is related to at most one whole object. This report
considers the semantics specified for the UML/P [Rum16]. The predicate Composition
(Listing 3.2, ll. 14-15) is used to ensure that each part object is connected to at most one
whole. It states the compos relation relates each atom contained in the set right at
most once, i.e., there is at most one (l,r) ∈ compos such that r = right. If the set
right contains all atoms representing all objects of a specific class and the compos rela-
tion contains all whole/part tuples such that the second component of each tuple contains
a part object that is an instance of the specific class and the first component contains a

11

Alloy

1 pred ObjUAttrib[objs: set Obj, fName:one FName, fType:set Obj, up: Int] {

2 objs.get[fName] in fType

3 all o: objs| (#o.get[fName] =< up) }

4

5 pred ObjLAttrib[objs: set Obj, fName: one FName, fType: set Obj, low: Int] {

6 objs.get[fName] in fType

7 all o: objs | (#o.get[fName] >= low) }

8

9 pred ObjLUAttrib[objs:set Obj, fName:one FName, fType:set Obj,

10 low: Int, up: Int] {

11 ObjLAttrib[objs, fName, fType, low]

12 ObjUAttrib[objs, fName, fType, up] }

Listing 3.3: Predicates used to specify cardinality constraints for navigable association
ends and for association ends of undirected associations.

whole object from which navigation is possible to an object of the given class, the predi-
cate ensures each part object of the specific class can be referenced by at most one whole.
The function rel (Listing 3.2, ll. 17-18) takes as input a set of Obj atoms wholes and
a FName atom fn. It returns a relation between Obj atoms. The relation consists of
all tuples of Obj atoms (o1,o2) that are related with the atom fn by the get relation
and where the first component is a member of the set wholes. Intuitively, the function
returns all pairs of objects where the first component of the tuple is a member of the
objects represented by the set wholes and the second component of each pair can be
referenced by the first component by using the field name represented by the atom fn.

Listing 3.3 shows the generic predicates used to specify cardinality constraints for navi-
gable association ends and for association ends of undirected associations. The predicate
ObjUAttrib (ll. 1-3) defines the set of possible partners of links and provides an upper
bound for the number of objects related by the get relation for a specific role name and
a specific object. First, it requires all atoms related to any atom in the set objs and the
field name fName via the get relation are members of the set fType. Second, it requires
the get relation relates each atom in the set objs with the atom fName to at most up
many other atoms. If the set objs contains all atoms representing all instances of a class,
the parameter fName represents a field name of the class, the set fType contains all atoms
representing all instances of the field’s type, and the parameter up is equal to the field’s
corresponding multiplicity, the predicate ensures links for the field fName only relate the
given objects to other objects of the field’s type and the number of links is bounded by
the corresponding association’s upper cardinality. The predicate ObjLAttrib (ll. 5-7) is
defined analogously. It is used to specify lower bounds of associations. The two predicates
ObjLAttrib and ObjUAttrib are both used by the predicate ObjLUAttrib (ll. 9-12)
to define association ends with lower and upper multiplicities.

The predicates depicted in Listing 3.4 are used to specify cardinality constraints for non-
navigable association ends. Given an object represented by an element of the set objs, the
predicate ObjL (ll. 1-2) provides a lower bound low for the number of objects, represented
by the atoms contained in the set fType, from which navigation must be possible to the
given object via the role name represented by the atom fName. The predicate ObjU (ll. 4-
5) is defined analogously for specifying upper bounds and the predicate ObjLU (ll. 7-10)
can be used to specify both, lower and upper bounds.

12

Alloy

1 pred ObjL[objs: set Obj, fName:one FName, fType: set Obj, low: Int] {

2 all r: objs | # { l: fType | r in l.get[fName]} >= low }

3

4 pred ObjU[objs: set Obj, fName:one FName, fType: set Obj, up: Int] {

5 all r: objs | # { l: fType | r in l.get[fName]} =< up }

6

7 pred ObjLU[objs: set Obj, fName:one FName, fType: set Obj,

8 low: Int, up: Int] {

9 ObjL[objs, fName, fType, low]

10 ObjU[objs, fName, fType, up] }

Listing 3.4: Parametrized predicates used to specify cardinality constraints for non-
navigable association ends.

Translation Rule

Translation rule with a set CD of class diagrams as parameter:

U1 ∀c ∈ ⋃cd∈CD cd.class ∶
sig
zÐÐx

c.name extends Obj {}
zÐÐÐÐÐÐÐÐÐÐÐÐx

Result of application to the CD cd1 shown in Listing 2.2:

Alloy

1 sig Vehicle extends Obj {}

2 sig Company extends Obj {}

3 sig Employee extends Obj {}

4 sig Car extends Obj {}

5 sig Insurance extends Obj {}

6 sig License extends Obj {}

7 sig Driver extends Obj {}

8 sig Truck extends Obj {}

Figure 3.2: Rule U1 generates a signature extending the signature Obj for each class of
any class diagram in the set CD.

3.2.2 Rules U1 to U4: Classes, Field Names, Types, and Enums

The rules U1 to U4 generate signatures for CD elements collected from the union of the
elements of all input CDs. The signatures for classes, field names, primitive types, and
enumerations are declared for all CDs. The rules described in Section 3.3, Section 3.4,
and Section 3.5 generate functions and predicates for constraining the relations between
atoms of the signatures generated from rules U1 to U4 for each individual input CD.

Rule U1 shown in Figure 3.2 creates an Alloy signature extending the signature Obj for
every class in the union of classes from all class diagrams. Atoms of these signatures
represent objects in the object models in the semantics of the CDs. As interfaces can not
be instantiated, the translation does not introduce signatures for interfaces. However, the
translation creates signatures for abstract classes. The translation rule P3 (cf. Figure 3.13)
introduced later assures no object model in the semantics of a CD contains instances of
abstract classes. Translating the CD given in Listing 2.2 produces the results shown in
the lower part of Figure 3.2.

13

Translation Rule

Translation rule with a set CD of class diagrams as parameter:

U2 ∀n ∈ {a.name ∣ ∃c ∈ ⋃cd∈CD cd.class ∶ a ∈ c.attribute} ∪
{a.leftRole, a.rightRole ∣ a ∈ ⋃cd∈CD cd.association} ∶

one sig
zÐÐÐÐÐÐx

n extends FName {}
zÐÐÐÐÐÐÐÐÐÐÐÐÐÐx

Result of application to the CD cd1 shown in Listing 2.2:

Alloy

1 one sig owner extends FName {}

2 one sig cars extends FName {}

3 one sig license extends FName {}

4 one sig licensePlate extends FName {}

5 one sig emps extends FName {}

6 one sig drives extends FName {}

7 one sig kind extends FName {}

8 one sig of extends FName {}

9 one sig regDate extends FName {}

10 one sig exp extends FName {}

11 one sig drivenBy extends FName {}

12 one sig ins extends FName {}

Figure 3.3: Rule U2 produces a singleton signature for each attribute and for each associ-
ation role name occurring in any class diagram of the set CD.

The translation Rule U2 defined in Figure 3.3 introduces a singleton signature for every
name used as field name in any class of any CD contained in the set CD. Therefore, the
rule iterates over all attribute names of any class and over all role name of any association of
any CD contained in the set CD. All the signatures extend the abstract signature FName.
The signatures’ atoms are therefore related by the get relation to atoms representing
values of attributes and objects. The translation of the CD given in Listing 2.2 produces
the results shown in the lower part of Figure 3.3.

The rule U3 depicted in Figure 3.4 creates a singleton signature extending the signature
Val for every type of an attribute of a class defined in a CD that is not defined by a class
or an interface in the CD. Each of these signatures represents an instance of a primitive
or an unknown type. The constraint ∀t ∈ cd.class∪ cd.interface ∶ a.type ≠ t.name ensures
the type a.type is not defined by any class or interface in the CD cd. If a type is defined
by a class or by an interface in a class diagram cd′ but not in a class diagram cd, the type
is still treated as a primitive or unknown type in the CD cd. Since the range of unknown
types is not known and the range of primitive types is not of importance for the analysis,
the signatures are assigned the multiplicity one. This ensures all objects share a single
symbolic instance of each primitive or unknown type. The lower part of Figure 3.4 shows
the results from translating the class diagram depicted in Listing 2.2.

Translation Rule U4 shown in Figure 3.5 creates a signature for every enumeration value
defined in any CD contained in the set CD. To ensure all objects share a single symbolic
instance of each enumeration value, the signatures have the multiplicity one. The name
of each signature includes the name of the corresponding enumeration type to distinguish
same named values of different enumerations. The enumeration constant Orange of an
enumeration named Fruit, for instance, has to be distinguishable from the enumeration

14

Translation Rule

Translation rule with a set CD of class diagrams as parameter:

U3 ∀type ∈ {a.type ∣ ∃cd ∈ CD ∶ ∃c ∈ cd.class ∶ a ∈ c.attribute∧
∀t ∈ cd.class ∪ cd.interface ∶ a.type ≠ t.name} ∶

one sig type
zÐÐÐÐÐÐÐÐÐÐx

type extends Val {}
zÐÐÐÐÐÐÐÐÐÐÐÐx

Result of application to the CD cd1 shown in Listing 2.2:

Alloy

1 one sig type_Date extends Val {}

2 one sig type_String extends Val {}

Figure 3.4: Rule U3 creates a singleton signature for each primitive or unknown type used
in any CD contained in the set CD.

Translation Rule

Translation rule with a set CD of class diagrams as parameter:

U4 ∀e ∈ ⋃cd∈CD cd.enum ∶ ∀v ∈ e.enumConstant ∶
one sig enum
zÐÐÐÐÐÐÐÐÐÐx

e.name
zx
v.name extends EnumVal {}

zÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐx

Result of application to the CD cd1 shown in Listing 2.2:

Alloy

1 one sig enum_InsuranceKind_international extends EnumVal {}

2 one sig enum_DrivingExp_expert extends EnumVal {}

3 one sig enum_InsuranceKind_workAcc extends EnumVal {}

4 one sig enum_InsuranceKind_transport extends EnumVal {}

5 one sig enum_DrivingExp_beginner extends EnumVal {}

Figure 3.5: Rule U4 produces a signature for every enumeration value defined in any CD
that is a member of the set CD.

value Orange of an enumeration named Color. Each signature is independent of the
class diagram defining it to be able to consider two same named constants of two same
named enumerations of two different CDs to be equal. Two Color constants Orange
defined in two same named enumerations in two different class diagrams, for instance,
need to be considered to be equivalent in the object models in the semantics of the CDs.
The results from applying the translation rule to the class diagram shown in Listing 2.2
are depicted in the lower part of Figure 3.5.

3.3 Rules F1 to F4: Functions for Subclassing, Interfaces,

Compositions, and Enums

As indicated in Figure 3.1, the rules F1 to F4 are executed for every class diagram cd ∈ CD.
Each rule creates Alloy functions to access atoms representing values and objects in the
semantics of the translated CDs.

15

Translation Rule

Translation rule with parameter cd ∈ CD:

F1 ∀c ∈ cd.class ∶
fun
zÐÐx

c.nameSubsCD
zÐÐÐÐx

cd.name :set Obj {
zÐÐÐÐÐÐÐx

let subs = {sub ∈ cd.Class∣ c ∈ sub.superclasses∗} in

{|sub.name|}
+
zx

sub∈subs

}
zx

Result of application to the CD cd1 shown in Listing 2.2:

Alloy

1 fun VehicleSubsCDcd1: set Obj { Vehicle + Car + Truck }

2 fun CompanySubsCDcd1: set Obj { Company }

3 fun EmployeeSubsCDcd1: set Obj { Employee + Driver }

4 fun CarSubsCDcd1: set Obj { Car }

5 fun InsuranceSubsCDcd1: set Obj { Insurance }

6 fun LicenseSubsCDcd1: set Obj { License }

7 fun DriverSubsCDcd1: set Obj { Driver }

8 fun TruckSubsCDcd1: set Obj { Truck }

Figure 3.6: Rule F1 produces a function for each class in the CD cd returning all atoms
of all subclasses of the class.

The rule F1 defined in Figure 3.6 produces a function for each class in the CD that
returns all atoms representing all subclass instances of the class. The functions support
expressing subclassing. Since the functions are CD specific, it is possible to express a
different inheritance hierarchy for each individual CD. The set defining predicate of the
set subs requires c to be a member of the reflexive transitive closure of the superclass
relation of the class sub. Therefore, the transition always produces a well formed Alloy
function since the set subs is never empty because it always at least contains the class c.
The function produced for the class Car and the class diagram given in Listing 2.2, which
is shown in Figure 3.6 l. 4, for instance, returns the set of all Car atoms.

Translation rule F2 shown in Figure 3.7 introduces a function for every interface in the CD
that returns all atoms representing instances of classes implementing the interface. Since
interface implementation can be inherited, the rule also selects the classes having super-
classes implementing the interface. The two transitive and reflexive closures of attributes
superclasses and interfaces also capture super interfaces of interfaces implemented by
superclasses. In contrast to the set subs defined in translation rule F1, the set impls

described in translation rule F2 can be empty in case an interface is not implemented by
any class. Thus the functions produced for interfaces that are not implemented by any
class return none. For any other interface, the generated function returns the union of the
atoms representing all instances of the classes implementing the interface. The translation
of the class diagram shown in Listing 2.2 produces the results shown in the lower part of
Figure 3.7.

The rule F3 defined in Figure 3.8 creates a function for each enumeration type in the CD
that returns the atoms representing the enumeration type’s possible values. The values are
given by the signatures produced by translation rule U4 shown in Figure 3.5. The function

16

Translation Rule

Translation rule with parameter cd ∈ CD:

F2 ∀i ∈ cd.interface ∶
fun
zÐÐx

i.nameSubsCD
zÐÐÐÐx

cd.name :set Obj {
zÐÐÐÐÐÐÐx

let impls = {c ∈ cd.class ∣ i ∈ c.superclasses∗.interfaces∗} in

if (∣impls∣ > 0) then {|c.name|}
+
zx

c∈impls
else none

zÐÐx
}
zx

Result of application to the CD cd1 shown in Listing 2.2:

Alloy

1 fun DriveableSubsCDcd1: set Obj { Car + Truck + Vehicle }

Figure 3.7: Rule F2 produces a function for each interface in the CD cd returning all
instances of classes implementing the interface.

Translation Rule

Translation rule with parameter cd ∈ CD:

F3 ∀e ∈ cd.enum ∶
fun
zÐÐx

e.nameEnumCD
zÐÐÐÐx

cd.name :set EnumVal {
zÐÐÐÐÐÐÐÐÐÐÐx

{|enum
zÐÐx

e.name
zx
enumV al.name|}

+
zx

enumV al∈e.enumConstant

}
zx

Result of application to the CD cd1 shown in Listing 2.2:

Alloy

1 fun DrivingExpEnumCDcd1: set EnumVal {

2 enum_DrivingExp_expert + enum_DrivingExp_beginner }

3 fun InsuranceKindEnumCDcd1: set EnumVal {

4 enum_InsuranceKind_international +

5 enum_InsuranceKind_transport }

Figure 3.8: Rule F3 creates a function for each enumeration type in the CD cd that returns
the enumeration’s possible values.

generated for a specific CD only returns the atoms representing enumeration values defined
by the enumeration type defined in the given CD. It does not return atoms corresponding
to enumeration values defined by same named enumeration types in other CDs that are
not defined by the enumeration type of the given CD. The lower part of Figure 3.8 shows
the result produced from translating the class diagram depicted in Listing 2.2.

The rule F4 shown in Figure 3.9 creates a function for every part participating in a
composite whole-part-relation in the CD. It returns all linked whole/part instance pairs
where the first component is an instance of a whole and the second component is an
instance of the part. The bottom of Figure 3.9 shows the result produced by the translation
given the class diagram depicted in Listing 2.2 as input. The class diagram contains

17

Translation Rule

Translation rule with parameter cd ∈ CD:

F4 ∀part ∈ {a.RightReferenceName ∣ a ∈ cd.association∧
a.isComposition} ∶

let comps = {comp ∈ cd.Association ∣ comp.isComposition∧
comp.rightReferenceName = part} in

fun
zÐÐx

partCompFieldsCD
zÐÐÐÐÐÐÐÐÐx

cd.name:Obj->Obj {
zÐÐÐÐÐÐÐÐx

{|rel[
zÐÐx

c.leftReferenceNameSubsCD
zÐÐÐÐx

cd.name ,
zx

c.rightRole]
zx

|}
+
zx

c∈comps

}
zx

Result of application to the CD cd1 shown in Listing 2.2:

Alloy

1 fun InsuranceCompFieldsCDcd1:Obj->Obj {

2 rel[EmployeeSubsCDcd1, ins]

3 }

Figure 3.9: Rule F4 creates a function for every part of a composite whole-part-relation
that returns all linked whole/part instance pairs.

one composition. The function produced for the class Insurance returns all tuples of
Employee/Insurance instances where the first component of each tuple is linked to the
second component of the tuple via a link corresponding to the composition association.

3.4 Rules P1 to P4: Classes and Attributes

The rules P1 to P4 are executed for every class diagram cd to generate the first part of
the body of the Alloy predicate cd.name (cf. Figure 3.1) capturing the semantics of the
class diagram cd.

The translation rules P1 to P4 all use the auxiliary translation rule H1 shown in Fig-
ure 3.10. It translates Type and Name elements of the abstract syntax to corresponding
names of functions and signatures defined in the Alloy module. Translation rule H1 is
used in translation rules P1 (cf. Figure 3.11) for attribute types and in rules A1 to A4
(cf. Figure 3.15, Figure 3.16, Figure 3.16, Figure 3.17) for associations. In case the name or
type given as input to rule H1 refers to an enumeration type, the auxiliary translation rule
produces the name of the Alloy function that returns all atoms representing the enumera-
tion type’s possible values as defined in the CD cd. Similarly, if the input corresponds to a
class, the rule generates the name of the Alloy function that returns all atoms representing
all instances of subclasses of the class in the CD cd. Otherwise, if the input corresponds
to an interface, the translation produces the name of the function that returns all atoms
representing all instances of classes in the CD cd implementing the interface. In any other
case, the translation assumes the type or name belongs to a primitive or unknown type
and returns the name of the Alloy signature that represents it.

18

Translation Rule

Translation rule with parameters cd ∈ CD and type ∈ Type ∪Name:

H1 if (∃e ∈ cd.enum ∶ e.name = type) then

typeEnumCD
zÐÐÐÐx

cd.name

else if (∃c ∈ cd.class ∶ c.name = type) then

typeSubsCD
zÐÐÐÐx

cd.name

else if (∃i ∈ cd.interface ∶ i.name = type) then

typeSubsCD
zÐÐÐÐx

cd.name

else

type
zÐÐx

type

Figure 3.10: Translation rule to translate type names from a CD to corresponding Alloy
functions or signatures.

Translation Rule

Translation rule with parameter cd ∈ CD:

P1 ∀c ∈ cd.class ∶ ∀a ∈ ⋃c′∈c.superclasses∗ c
′.attribute ∶

ObjAttrib[
zÐÐÐÐÐÐÐx

c.name, a.name, executeRule(H1 a.type cd)]
zx

Result of application to the CD cd1 shown in Listing 2.2:

Alloy

1 ObjAttrib[Vehicle, licensePlate, type_String]

2 ObjAttrib[Vehicle, regDate, type_Date]

3 ObjAttrib[Car, licensePlate, type_String]

4 ObjAttrib[Car, regDate, type_Date]

5 ObjAttrib[Insurance, kind, InsuranceKindEnumCDcd1]

6 ObjAttrib[Driver, exp, DrivingExpEnumCDcd1]

7 ObjAttrib[Truck, licensePlate, type_String]

8 ObjAttrib[Truck, regDate, type_Date]

Figure 3.11: Rule P1 uses predicate ObjAttrib to declare the attributes of every class
in the class diagram cd.

The rule P1 shown in Figure 3.11 instantiates the predicate ObjAttrib (cf. Listing 3.2)
to declare the types and multiplicities of the attributes of every class in the class diagram
cd. The list of attributes also includes all inherited attributes of the class in cd since there
is no inheritance on the Alloy signature level for the classes of the CD. The translation first
flattens and later rebuilds the inheritance hierarchy. In particular, as part of flattening,
the complete list of attributes and associations of each class is collected from all its super
classes. Given a class c and an attribute a of type t, the generated predicate ensures the
get relation only relates instances of class c with the field name a to exactly one object of
type t. The lower part of Figure 3.11 shows the results produced by the translation given
the CD shown in Listing 2.2 as input.

19

Translation Rule

Translation rule with parameter cd ∈ CD:

P2 ∀c ∈ cd.class ∶
let fields = {a.name ∣ ∃c′ ∈ c.superclasses∗ ∶ a ∈ c′.attribute} ∪
{a.leftRole ∣ a ∈ cd.association ∧ a.rightReferenceName ∈
{c′.name ∣ c′ ∈ c.superclasses∗∨

c′ ∈ c.superclasses∗.interfaces∗}} ∪
{a.rightRole ∣ a ∈ cd.association ∧ a.leftReferenceName ∈
{c′.name ∣ c′ ∈ c.superclasses∗∨

c′ ∈ c.superclasses∗.interfaces∗}} in

ObjFNames[
zÐÐÐÐÐÐÐx

c.name ,
zx

if(∣fields∣ > 0) then {|fn|}
+
zx

fn∈fields

else none
zÐÐx

]
zx

Result of application to the CD cd1 shown in Listing 2.2:

Alloy

1 ObjFNames[Vehicle, licensePlate + regDate]

2 ObjFNames[Company, cars + emps]

3 ObjFNames[Employee, ins]

4 ObjFNames[Car, licensePlate + regDate + drivenBy]

5 ObjFNames[Insurance, kind]

6 ObjFNames[License, owner]

7 ObjFNames[Driver, exp + license + drives + ins]

8 ObjFNames[Truck, licensePlate + regDate]

Figure 3.12: Rule P2 restricts the tuples of the get relation to the attributes of the class
and to the role names of its partners in associations.

The rule P2 defined in Figure 3.12 restricts the get relation (cf. Listing 3.1) to only relate
Obj atoms representing objects with the FName atoms corresponding to the field names
of the names of the attributes defined in the object’s type and to the role names of the
types associated with the type of the object. The rule incorporates class and interface
inheritance. For each class c ∈ cd.class, the set fields defined in the let/in construct
of the rule is defined as the union of three sets. The first set contains the names of all
attributes of the class and its superclasses. The second set contains the left role names of
all associations where the class, one of its superclasses or one of the interfaces it implements
is referenced on the right association end. The third set contains the right role names of all
associations where the class, one of its superclasses or one of the interfaces it implements
is referenced on the left association end. The translation of the CD given in Listing 2.2
produces the results shown in the lower part of Figure 3.12.

The rule P3 given in Figure 3.13 specifies that all signatures corresponding to abstract
classes must have no instances and that signatures representing singleton classes must
contain exactly one atom. The CD given in Listing 2.2 does not contain any singleton
class but one abstract class called Vehicle. The lower part of Figure 3.13 shows the
results from applying translation rule P3 to the CD.

20

Translation Rule

Translation rule with parameter cd ∈ CD:

P3 ∀c ∈ {c ∈ cd.class ∣ c.isAbstract} ∶
no
zÐx

c.name

∀c ∈ {c ∈ cd.class ∣ "singleton" ∈ c.stereotype} ∶
one
zÐÐx

c.name

Result of application to the CD cd1 shown in Listing 2.2:

Alloy

1 no Vehicle

Figure 3.13: Rule P3 ensures signatures representing abstract classes have no atoms and
that signatures representing singleton classes contain exactly one atom.

Translation Rule

Translation rule with parameter cd ∈ CD:

P4 Obj =
zÐÐÐÐx

if ∣cd.class∣ > 0 then {|c.name|}
+
zx

c∈cd.class
else none

zÐÐx

Result of application to the CD cd1 shown in Listing 2.2:

Alloy

1 Obj = Vehicle + Company + Employee + Car + Insurance +

2 License + Driver + Truck

Figure 3.14: Rule P4 restricts all objects in object models of the CD to be instances of
the classes of the CD.

The rule P4 defined in Figure 3.14 restricts all atoms in Alloy instances representing objects
in object models of the CD to be members of the signatures representing the classes of the
CD. This constraint is important for multiple CD analysis where the Alloy module might
contain signatures extending Obj that represent classes of other class diagrams. The lower
part of Figure 3.14 shows the results produced by translating the class diagram given in
Listing 2.2.

3.5 Rules A1 to A6: Associations

The translation rules A1 to A6 handle the translation of associations. This includes bi-
and unidirectional as well as undirected associations, compositions, and the various types
of multiplicities on association ends.

The translation rule A1 shown in Figure 3.15 specifies a constraint on the sets of links of
bidirectional associations using the predicate BidiAssoc (cf. Listing 3.2). The translation
result requires all objects that are linked to another object via a bidirectional association
also have a link to the other object via the same association. The class diagram given in
Listing 2.2, for instance, contains one bidirectional association between the classes Driver

21

Translation Rule

Translation rule with parameter cd ∈ CD:

A1 ∀a ∈ {a ∈ cd.association ∣ a.isBidirectional} ∶
BidiAssoc[
zÐÐÐÐÐÐÐx

executeRule(H1 a.leftReferenceName cd) ,
zx

a.rightRole ,
zx

executeRule(H1 a.rightReferenceName cd) ,
zx

a.leftRole]
zx

Result of application to the CD cd1 shown in Listing 2.2:

Alloy

1 BidiAssoc[DriverSubsCDcd1,drives,CarSubsCDcd1,drivenBy]

Figure 3.15: Rule A1 constraints the sets of links of bidirectional associations.

Translation Rule

Translation rule with parameter cd ∈ CD:

A2 ∀part ∈ {a.RightReferenceName ∣ a ∈ cd.association∧
a.isComposition} ∶

Composition[
zÐÐÐÐÐÐÐÐÐx

partCompFieldsCD
zÐÐÐÐÐÐÐÐÐx

cd.name ,
zx

partSubsCD
zÐÐÐÐx

cd.name]
zx

Result of application to the CD cd1 shown in Listing 2.2:

Alloy

1 Composition[InsuranceCompFieldsCDcd1, InsuranceSubsCDcd1]

Figure 3.16: Rule A2 ensures parts of compositions have at most one whole.

and Car. The lower part of Figure 3.15 shows the results of applying the translation rule to
the class diagram. For each object having the type or supertype Driver that is connected
via a drives link to an object of type or supertype Car, there must be a drivenBy link
that connects the same Car object to the same Driver object and vice versa.

The translation rule A2 defined in Figure 3.16 instantiates the predicate Composition
(Listing 3.2) for each part of a composition in the CD. The produced constraint ensures
the get relation relates at most one atom representing a whole instance to each atom
representing a part instance.

The translation rules A3 to A6 shown in Figure 3.17, Figure 3.18, Figure 3.19, and Fig-
ure 3.20 handle multiplicities of association ends. Rules A3 and A4 handle the multiplici-
ties of associations that allow navigation from right to left, whereas rules A5 and A6 handle
associations that allow navigation from left to right. The translation rules A3 and A5 also
instantiate predicates stating multiplicity constraints of bidirectional and undirected as-
sociations. Boundaries for the number of existing links are defined using the predicates
ObjLUAttrib and ObjLU for lower and upper bounds. The predicates ObjLAttrib and
ObjL are used for the specification of lower bounds only. Each of the four predicates is

22

Translation Rule

Translation rule with parameter cd ∈ CD:

A3 ∀a ∈ {a ∈ cd.association ∣ a.isBidirectional ∨ a.isRightToLeft} ∶
if a.leftCardinality.isLowerUpper then

ObjLUAttrib[
zÐÐÐÐÐÐÐÐÐx
executeRule(H1 a.rightReferenceName cd) ,

zx
a.leftRole ,

zx
executeRule(H1 a.leftReferenceName cd) ,

zx
a.leftCardinality.lower ,

zx
a.leftCardiality.upper]

zx
else

ObjLAttrib[
zÐÐÐÐÐÐÐÐx
executeRule(H1 a.rightReferenceName cd) ,

zx
a.leftRole ,

zx
executeRule(H1 a.leftReferenceName cd) ,

zx
a.leftCardinality.lower]

zx

Result of application to the CD cd1 shown in Listing 2.2:

Alloy

1 ObjLUAttrib[CarSubsCDcd1, drivenBy, DriverSubsCDcd1, 1, 1]

2 ObjLAttrib[CompanySubsCDcd1, emps, EmployeeSubsCDcd1, 0]

3 ObjLUAttrib[LicenseSubsCDcd1, owner, DriverSubsCDcd1, 1, 1]

Figure 3.17: Rule A3 ensures the cardinality constraints stated on the left sides of bidirec-
tional associations, undirected association, and associations that are navigable from right
to left are respected.

defined in Listing 3.3. The multiplicity of a cardinality given by a constant k is internally
expressed as lower and an upper bound k..k. The range k..* is expressed as a lower
bound only, and multiplicity * is expressed as lower bound 0.

Translation rule A3 is defined in Figure 3.17 and applies to bidirectional and undirected
associations (concrete syntax <-> and --) as well as to associations that are navigable
from right to left (concrete syntax <-). The rule ensures the cardinality constraints stated
on the left sides of the associations are respected. In case the association defines a lower
and an upper bound on its left hand side, the translation rule instantiates the predicate
ObjLUAttrib. Otherwise, the association does only define a lower bound on its left side.
In this case the rule generates an instantiation of the predicate ObjLAttrib. The lower
part of Figure 3.17 shows the results from transforming the CD depicted in Listing 2.2. The
first predicate resulting from the translation originates from the bidirectional association
between the classes Driver and Car. The second predicate is produced for the association
between the classes Employee and Company, which is only navigable from right to left.
The last predicate becomes instantiated for the undirected association between the classes
Driver and License.

The rule A4 described in Figure 3.18 only applies to associations that are navigable from
right to left (concrete syntax <-). It ensures the cardinality constraints stated on the

23

Translation Rule

Translation rule with parameter cd ∈ CD:

A4 ∀asc ∈ {a ∈ cd.association ∣ a.isRightToLeft} ∶
if asc.rightCardinality.isLowerUpper then

ObjLU[
zÐÐÐÐx
executeRule(H1 asc.leftReferenceName cd) ,

zx
asc.leftRole ,

zx
executeRule(H1 asc.rightReferenceName cd) ,

zx
asc.rightCardinality.lower ,

zx
asc.rightCardiality.upper]

zx
else

ObjL[
zÐÐÐx
executeRule(H1 asc.leftReferenceName cd) ,

zx
asc.leftRole ,

zx
executeRule(H1 asc.rightReferenceName cd) ,

zx
asc.rightCardinality.lower]

zx

Result of application to the CD cd1 shown in Listing 2.2:

Alloy

1 ObjL[EmployeeSubsCDcd1, emps, CompanySubsCDcd1, 0]

Figure 3.18: Rule A4 ensures the cardinality constraints stated on the right sides of
associations, which are navigable from right to left, are respected.

right sides of the associations are respected. In case the right side of an association is
restricted by a lower and an upper bound, the translation rule creates an instantiation
of the ObjLU predicate, otherwise it instantiates the ObjL predicate. The class diagram
shown in Listing 2.2 contains exactly one association that is only navigable from right to
left. The cardinality on the left side of the association is given by *. Since this cardinality
specification only defines a lower bound, the translation produces an instantiation of the
ObjL predicate as indicated in the lower part of Figure 3.18.

Rule A5 given in Figure 3.19 is defined analogously to rule A3 and applies to bidirectional
and undirected associations (concrete syntax <-> and --) as well as to associations defined
from left to right (concrete syntax ->). Rule A6 given in Figure 3.20 is the analog to rule
A4. In contrast to rule A4, it applies to associations that are navigable from left to right
instead of to associations that allow navigation from right to left. The lower parts of
Figure 3.19 and Figure 3.20 show the results from applying the translations to the CD
given in Listing 2.2.

24

Translation Rule

Translation rule with parameter cd ∈ CD:

A5 ∀asc ∈ {a ∈ cd.association ∣ a.isBidirectional ∨ a.isLeftToRight} ∶
if asc.rightCardinality.isLowerUpper then

ObjLUAttrib[
zÐÐÐÐÐÐÐÐÐx
executeRule(H1 asc.leftReferenceName cd) ,

zx
asc.rightRole ,

zx
executeRule(H1 asc.rightReferenceName cd) ,

zx
asc.rightCardinality.lower ,

zx
asc.rightCardiality.upper]

zx
else

ObjLAttrib[
zÐÐÐÐÐÐÐÐx
executeRule(H1 asc.leftReferenceName cd) ,

zx
asc.rightRole ,

zx
executeRule(H1 asc.rightReferenceName cd) ,

zx
asc.rightCardinality.lower]

zx

Result of application to the CD cd1 shown in Listing 2.2:

Alloy

1 ObjLUAttrib[DriverSubsCDcd1,drives,CarSubsCDcd1,0,1]

2 ObjLAttrib[CompanySubsCDcd1,cars,CarSubsCDcd1,0]

3 ObjLUAttrib[EmployeeSubsCDcd1,ins,InsuranceSubsCDcd1,1,1]

4 ObjLUAttrib[DriverSubsCDcd1,license,LicenseSubsCDcd1,0,3]

Figure 3.19: Rule A5 ensures the cardinality constraints stated on the right sides of
bidirectional associations, undirected association, and associations that are navigable from
right to left are respected.

25

Translation Rule

Translation rule with parameter cd ∈ CD:

A6 ∀asc ∈ {a ∈ cd.association ∣ a.isLeftToRight} ∶
if asc.leftCardinality.isLowerUpper then

ObjLU[
zÐÐÐÐx
executeRule(H1 asc.rightReferenceName cd) ,

zx
asc.rightRole ,

zx
executeRule(H1 asc.leftReferenceName cd) ,

zx
asc.leftCardinality.lower ,

zx
asc.leftCardiality.upper]

zx
else

ObjL[
zÐÐÐx
executeRule(H1 asc.rightReferenceName cd) ,

zx
asc.rightRole ,

zx
executeRule(H1 asc.leftReferenceName cd) ,

zx
asc.leftCardinality.lower]

zx

Result of application to the CD cd1 shown in Listing 2.2:

Alloy

1 ObjLU[CarSubsCDcd1, cars, CompanySubsCDcd1, 0, 1]

2 ObjLU[InsuranceSubsCDcd1, ins, EmployeeSubsCDcd1, 1, 1]

Figure 3.20: Rule A6 ensures the cardinality constraints stated on the left sides of associ-
ations that are navigable from left to right are respected.

26

Chapter 4

Translation and Analysis of
Multiple CDs

The previous chapter introduced the translation rules for translating a set CD of UML/P
class diagrams [Rum16] into a single Alloy module. For each CD cd ∈ CD the output of
the translation contains the predicate cd.name that expresses the semantics of the CD in
terms of Alloy instances representing object models. Running one of these predicates using
Alloy’s build in run command presents Alloy instances to the user that represent object
models that are members of the semantics of the corresponding CD. Besides calculating the
object models in the semantics of a single CD, different predicates can also be combined
to answer more complex analysis questions such as whether there are object models in the
semantics of one CD that are no members of the semantics of another CD. Based on this
question [MRR11b] presented cddiff , a semantic differencing operator for CDs based on
the translation presented in this technical report. Given two class diagrams cd1, cd2 ∈ CD,
cddiff (cd1, cd2) is defined as the set of object models possible in cd1 that are not possible
in cd2. [MRR11b] specifically defined a bounded version of the operator cddiff k(cd1, cd2),
which only includes object models where the number of instances of each class is not
greater than an arbitrary but fixed scope k. Technically, to compute cddiff k(cd1, cd2),
[MRR11b] suggests using a translation to Alloy similar to the translation presented in
this report. The translation described in this report is a slightly enhanced version of the
translation employed by [MRR11b]. Given a set CD = {cd1, cd2} of two class diagrams,
computing Alloy instances representing the set of object models in cddiff k(cd1, cd2) can
be done by running the predicate diff defined as:

pred diff {
zÐÐÐÐÐÐÐÐx

cd1.name and not
zÐÐÐÐÐÐx

cd2.name

}
zx

Another interesting analysis questions is whether a class diagram cd1 ∈ CD refines another
class diagram cd2 ∈ CD, i.e., whether all object models in the semantics of cd1 are also
members of the semantics of cd2. Reformulating the problem statement leads to the
question whether there are object models in the semantics of cd1 that are not contained in
the semantics of cd2. If such an object model does not exist, then cd1 refines cd2. For an
arbitrary but fixes scope k this question can be easily answered by running the predicate
diff as defined above.

27

CD cd2v1EmployeePositionKind kind«enumeration»PositionKindfullTimepartTime TaskDate startDateManagermanages0..1 managedBy* 1 * CD cd2v2EmployeePositionKind kind«enumeration»PositionKindfullTimepartTimeexternal TaskDate startDateManagermanages0..1 managedBy* 1 0..2
Figure 4.1: Two syntactically similar CDs cd2v1 and cd2v2.

alloy

1 // Rule U1

2 sig Task extends Obj {}

3 sig Employee extends Obj {}

4 sig Manager extends Obj {}

5 // Rule U2

6 private one sig task extends FName {}

7 private one sig managedBy extends FName {}

8 private one sig kind extends FName {}

9 private one sig manages extends FName {}

10 private one sig employee extends FName {}

11 private one sig startDate extends FName {}

12 // Rule U3

13 private one sig type_Date extends Val {}

14 // Rule U4

15 private one sig enum_PositionKind_partTime extends EnumVal {}

16 private one sig enum_PositionKind_external extends EnumVal {}

17 private one sig enum_PositionKind_fullTime extends EnumVal {}

Listing 4.1: Output of the translation rules U1-U4 given the CDs cd2v1 cd2v2 depicted
in Figure 4.1 as input.

This chapter demonstrates the analysis of multiple CDs by example. Figure 4.1 shows
the graphical representation of the two syntactically rather similar class diagrams cd2v1
and cd2v2, which were previously presented in [MRR11b]. The CD cd2v1 contains the
enumeration type PositionKind, the three classes Employee, Manager, and Task

as well as two associations. The CD cd2v2 is a revised version of the CD cd2v1. An
additional inheritance relation between the classes Manager and Employee has been
added, one multiplicity on the association between the classes Employee and Task has
been changed from * to 0..2, and the value external has been added to the enumeration
type PositionKind.

Listing 4.1, Listing 4.2, Listing 4.3, and Listing 4.4 show the non-generic part of the Alloy
module produced by the translation presented in Chapter 3 when given the two CDs cd2v1
and cd2v2 shown in Figure 4.1 as input. Translation rules U1 to U4 produce signatures for

28

alloy

1 // Rule F1

2 fun TaskSubsCDcd2v1: set Obj { Task }

3 fun EmployeeSubsCDcd2v1: set Obj { Employee }

4 fun ManagerSubsCDcd2v1: set Obj { Manager }

5 fun TaskSubsCDcd2v2: set Obj { Task }

6 fun EmployeeSubsCDcd2v2: set Obj { Employee + Manager }

7 fun ManagerSubsCDcd2v2: set Obj { Manager }

8 // Rule F3

9 fun PositionKindEnumCDcd2v1: set EnumVal {

10 enum_PositionKind_partTime +

11 enum_PositionKind_fullTime

12 }

13 fun PositionKindEnumCDcd2v2: set EnumVal {

14 enum_PositionKind_partTime +

15 enum_PositionKind_external +

16 enum_PositionKind_fullTime

17 }

Listing 4.2: Output of the translation rules F1-F4 given the CDs cd2v1 cd2v2 depicted
in Figure 4.1 as input.

CD elements collected from both CDs, which are referenced by the generated parts specific
to each of the CDs. The results from applying rules U1 to U4 are given in Listing 4.1.
Listing 4.2 depicts the parts generated by translation rules F1-F4. The functions given in
lines 2-4 and in lines 9-12 are generated from cd2v1, whereas the functions shown in lines
5-7 and lines 13-17 are produced for cd2v2.

The predicate cd2v1 encoding the semantics of cd2v1 is depicted in Listing 4.3 and the
predicate cd2v2 encoding the semantics of the CD cd2v2 is given in Listing 4.4. The
syntactic differences of the CDs induce several differences in the generated predicates.
The enumeration type PositionKind in cd2v2 consists of one more enumeration value
than the same named enumeration type in cd2v1. Thus, the value range of fields of type
PositionKind must differ in both CDs, which is reflected in the predicate cd2v1 in line
4 and in predicate cd2v2 in line 4. The functions PositionKindEnumCDcd2v1 and
PositionKindEnumCDcd2v2 return different sets (cf. Listing 4.2, ll. 9-17). In class
diagram cd2v1 the class Manager has no attributes, which is reflected in the predicate
cd2v1 in line 7. In contrast, the additional inheritance relation in cd2v2 leads to class
Manager inheriting all attributes from class Employee, which has two effects on the dif-
ference between the two predicates. First, in cd2v2 class Manager inherits the attribute
kind having the enumeration type PositionKind from class Employee. Thus, predi-
cate cd2v2 additionally specifies the value range for this attribute (cf. Listing 4.4, l. 5).
Second, the inherited field names are added to the field names that can be related to the
signature Manager via the get relation (cf. Listing 4.4, l. 8). The predicate instantia-
tions generated for the two associations in the CDs differ since the subclass relations of
all classes in both CDs are treated individually (cf. Listing 4.3, ll. 10-17 and Listing 4.4,
ll. 11-18). However, class Employee is the only class a subclass has been added for in
cd2v2. Thus, as can be seen when comparing the generated functions for expressing sub-
classing (cf. Listing 4.2, ll. 2-7), only the corresponding subclassing functions generated
for the Employee classes differ in functionality (cf. Listing 4.2, l. 3 and l. 6). Further, the
cardinality * on one side of the undirected association between the classes Employee and
Task changed to 0..2. While the former cardinality only induces a lower bound of the

29

alloy

1 pred cd2v1 {

2 // Rules P1 - P4

3 ObjAttrib[Task, startDate, type_Date]

4 ObjAttrib[Employee, kind, PositionKindEnumCDcd2v1]

5 ObjFNames[Task, startDate + employee + none]

6 ObjFNames[Employee, kind + task + managedBy + none]

7 ObjFNames[Manager, none]

8 Obj = (Task + Employee + Manager)

9 // Rules A1 - A6

10 BidiAssoc[EmployeeSubsCDcd2v1, task, TaskSubsCDcd2v1, employee]

11 ObjLUAttrib[EmployeeSubsCDcd2v1, managedBy, ManagerSubsCDcd2v1, 0, 1]

12 ObjLUAttrib[TaskSubsCDcd2v1, employee, EmployeeSubsCDcd2v1, 1, 1]

13 ObjLAttrib[EmployeeSubsCDcd2v1, task, TaskSubsCDcd2v1, 0]

14 ObjL[ManagerSubsCDcd2v1, managedBy, EmployeeSubsCDcd2v1, 0]

15 }

Listing 4.3: The predicate cd2v1 produced by the CD2Alloy translation. Translation
rules P1-P4 and A1-A6 produce the body of the predicate when given the CD cd2v1
(cf. Figure 4.1) as input.

alloy

1 pred cd2v2 {

2 // Rules P1 - P4

3 ObjAttrib[Task, startDate, type_Date]

4 ObjAttrib[Employee, kind, PositionKindEnumCDcd2v2]

5 ObjAttrib[Manager, kind, PositionKindEnumCDcd2v2]

6 ObjFNames[Task, startDate + employee + none]

7 ObjFNames[Employee, kind + task + managedBy + none]

8 ObjFNames[Manager, kind + task + managedBy + none]

9 Obj = (Task + Employee + Manager)

10 // Rules A1 - A6

11 BidiAssoc[EmployeeSubsCDcd2v2, task, TaskSubsCDcd2v2, employee]

12 ObjLUAttrib[EmployeeSubsCDcd2v2, managedBy, ManagerSubsCDcd2v2, 0, 1]

13 ObjLUAttrib[TaskSubsCDcd2v2, employee, EmployeeSubsCDcd2v2, 1, 1]

14 ObjLUAttrib[EmployeeSubsCDcd2v2,task, TaskSubsCDcd2v2, 0, 2]

15 ObjL[ManagerSubsCDcd2v2, managedBy, EmployeeSubsCDcd2v2, 0]

16 }

Listing 4.4: The predicate cd2v2 produced by the CD2Alloy translation. Translation
rules P1-P4 and A1-A6 produce the body of the predicate when given the CD cd2v2
(cf. Figure 4.1) as input.

Task instances associated with an Employee instance, the latter induces a lower and an
upper bound (cf. Listing 4.3, l. 16 and Listing 4.3, l. 17). Different analyses of the Alloy
module generated from the translation can be performed in the Alloy Analyzer using run
commands. For instance, executing the command run {cd2v1 and not cd2v2} for

10 instructs Alloy to compute instances with at most ten atoms per signature that satisfy
the generated predicate cd2v1 and not the generated predicate cd2v2.

30

Chapter 5

Translation of Alloy Instances to
Object Diagrams

The intermediate results of CD analyses using our translation are Alloy instances of the
Alloy modules generated from the input CDs. Alloy instances in scope k exist if, and only
if, object models with up to k objects exist (scope k bounds the number of Alloy atoms
in relation Obj representing objects in object models). The computed Alloy instances
represent object models that are possible in the input CDs. This chapter presents a
translation from Alloy instances to UML/P object diagrams (ODs) [Rum16]. Each OD
resulting from such a translation represents the object model corresponding to an instance
computed by the Alloy analyzer. Such object diagrams can be presented to engineers as
witnesses of analysis results. The resulting UML/P ODs consist of objects with attributes
and links between the objects. The MontiCore grammar for the object diagrams used in
this report is given in [Sch12].

Section 5.1 describes the structure of Alloy instances of modules resulting from the CD2Alloy
translation. The structure is independent of specific CDs. Based on the common structure,
Section 5.2 presents the translation from Alloy instances to UML/P ODs.

5.1 Structure of CD2Alloy Alloy instances

An Alloy instance consists of the signatures, fields, and relations that are specified in its
corresponding Alloy module. Each signature is a set of atoms that contains at most as
many elements as defined by it’s user specified scope. Each atom can be interpreted as a
signature instance. Fields and relations are translated into tuples of atoms. Since Alloy
instances are always finite, the sets and tuples of atoms are always finite, too. Independent
of the input CDs given to the CD2Alloy translation, every generated Alloy module includes
the signatures, fields, and relations specified in the generic part of the translation described
in Section 3.2.1. Thus all generated Alloy modules share the signature Obj with it’s field
get and the signatures FName, Val, and EnumVal (cf Listing 3.1). The shared signatures
induce a common form for all Alloy instances computed for any module produced by the
translation. The elements of the common form are used for the translation to ODs. Every
Alloy instance computed for any Alloy module produced by the translation for any set of
input CDs consists of the following sets of atoms:

31

Alloy

1 FName = {employee$0, kind$0, managedBy$0,

2 manages$0, startDate$0, task$0}

3 EnumVal = {enum_PositionKind_external$0,

4 enum_PositionKind_fullTime$0,

5 enum_PositionKind_partTime$0}

6 Val = {type_Date$0}

7 Obj = {Employee$0, Manager$0, Task$0, Task$1, Task$2}

8 get = {Employee$0->kind$0->enum_PositionKind_fullTime$0,

9 Employee$0->managedBy$0->Manager$0,

10 Employee$0->task$0->Task$0,

11 Employee$0->task$0->Task$1,

12 Employee$0->task$0->Task$2,

13 Task$0->employee$0->Employee$0,

14 Task$0->startDate$0->type_Date$0,

15 Task$1->employee$0->Employee$0,

16 Task$1->startDate$0->type_Date$0,

17 Task$2->employee$0->Employee$0,

18 Task$2->startDate$0->type_Date$0}

Listing 5.1: Excerpt of an Alloy instance for the module generated from the class
diagrams cd2v1 and cd2v2 depicted in Figure 4.1.

❼ Obj representing all objects in the OM,

❼ V al representing values of primitive and unknown types of attributes in the OM,

❼ EnumV al representing enumeration values assigned to attributes in the OM,

❼ FName representing attribute and role names,

and the relation

❼ get ⊆ (Obj × FName × (Obj ∪ V al ∪ EnumV al)) representing links and attribute
assignments in the OM.

Figure 4.1 shows an excerpt of an Alloy instance of the module produced from the
CD2Alloy translation for CDs cd2v1 and cd2v2 (cf. Listing 5.1) in the textual Alloy syntax
for instances. It shows all the common Alloy signatures and relations as described above.

5.2 Translation rules

The translation of Alloy instances to UML/P ODs is done with translation rule O1 shown
in Figure 5.5. The name of each atom in the sets Obj, V al, FName, and EnumV al is
composed of the name of the atom’s most specific signature, followed by the symbol $,
and an integer uniquely identifying the atom under the atoms in the set of its signature
(cf. Listing 5.1). Translation rule O1 utilizes the auxiliary translation rules defined in
Figure 5.1, Figure 5.2, Figure 5.3, and Figure 5.4 for producing declarations of objects,
attributes of primitive types, attributes of enumeration types, and links. The auxiliary
translation rules internally compute type and instance names for objects in the resulting
OD. All auxiliary translations are defined by means of pattern matching on the string

32

Translation Rule

Translation rule with parameter o ∈ Obj:

ODecl let name = THE x ∈ {siĝnum ∣ o = siĝ$̂num} in

let type = THE x ∈ {sig ∣ ∃num ∶ o = siĝ$̂num} in

name :
zx
type

Result of application to the Obj atom name Employee$0:

OD

1 Employee0:Employee

Figure 5.1: Rule ODecl translates an Obj atom to an object declaration.

Translation Rule

Translation rule with parameters v ∈ V al and a ∈ FName:

Prim let type = THE x ∈ {t ∣ ∃num ∶ v = type ̂t̂$̂num} in

let name = THE x ∈ {sig ∣ ∃num ∶ a = siĝ$̂num} in

let val = THE x ∈ {sig ∣ ∃num ∶ v = siĝ$̂num} in

type
zx
name = some

zÐÐÐÐÐx
val

Result of application to the Val atom name type Date$0 and the FName atom
name startDate$0:

OD

1 Date startDate = some_type_Date

Figure 5.2: Translation rule Prim translates a Val atom and a FName atom to an attribute
declaration. The name attribute’s name is encoded by the FName atom, whereas the value
and the type of the attribute are encoded by the Val atom.

representation of atom names where the symbol ̂ denotes string concatenation. The
auxiliary translation rules use the THE operator. In this context, the operator retrieves the
unique element of a singleton set, i.e., given a singleton set S = {e} the expression THE x ∈ S
retrieves the unique element e of S and binds its value to x. For simplicity we assume the
underscore () and dollar ($) symbols must not be used in names of elements in the CDs
given as input for the CD2Alloy translation. This assumption leads to the uniqueness of
the single elements contained in the sets described in the auxiliary translation rules.

The rule ODecl depicted in Figure 5.1 transformsObj atom names to expressions introduc-
ing object declarations. It computes an object’s name by dropping the $ symbol from the
atom’s name. The type of an object is given by the name of the atom’s signature. The rule
ODecl translates the atom name Employee$0, for instance, to Employee0:Employee.

The translation rule Prim shown in Figure 5.2 takes as input a Val and a FName atom. It
produces an attribute declaration for an attribute of primitive or unknown type. The value
and the type of the attribute are encoded in the name of the Val atom. The attribute’s
name is encoded by the FName atom’s name. The lower part of Figure 5.2 shows an
example for the application of the translation rule.

33

Translation Rule

Translation rule with parameters e ∈ EnumV al and a ∈ FName:

Enum let type = THE x ∈ {t ∣ ∃v ∶ ∃n ∶ e = enum ̂t̂ ̂v̂$̂n} in

let name = THE x ∈ {sig ∣ ∃num ∶ a = siĝ$̂num} in

let val = THE x ∈ {v ∣ ∃t ∶ ∃n ∶ e = enum ̂t̂ ̂v̂$̂n} in

type
zx
name =

zÐx
val

Result of application to the FName atom name kind$0 and the EnumVal atom name
enum PositionKind external$0:

OD

1 PositionKind kind = external

Figure 5.3: Translation rule Enum translates an EnumVal atom and a FName atom to a
declaration of an attribute having the name of the field encoded by the FName atom and
having the type encoded by the EnumVal atom.

Translation Rule

Translation rule with parameters o ∈ Obj, o′ ∈ Obj, and a ∈ FName:

Link let lObj = THE x ∈ {siĝnum ∣ o = siĝ$̂num} in

let lnkName = THE x ∈ {sig ∣ ∃num ∶ a = siĝ$̂num} in

let rObj = THE x ∈ {siĝnum ∣ o′ = siĝ$̂num} in

link
zÐÐÐx

lObj -> (
zÐÐÐx

lnkName)
zx

rObj

Result of application to the Obj atom names Employee$0 and Task$1 and the
FName atom name task$0:

OD

1 link Employee0 -> (task) Task1

Figure 5.4: Translation rule Link translated two Obj atoms and one FName atom to a
link declaration. The link connects the objects encoded by the Obj atoms and has a name
that is encoded by the FName atom.

The translation rule Enum given in Figure 5.3 produces declarations for attributes of
enumeration types from EnumVal atom names and FName atom names. Enum types and
values are derived from EnumVal atoms, whereas attribute names are derived from FName

atoms. For example, the rule Enum translates the EnumVal atom name enum Position-

Kind external$0 and the FName atom name kind$0 to PositionKind kind =

external.

The translation rule Link shown in Figure 5.4 creates a link declaration from two Obj

atom names and a FName atom name. The names of the objects connected by the link are
encoded in the Obj atom names, whereas the FName atom name encodes the link name.
The rule translates the Obj atom names Employee$0, Task$1 and the FName atom
name task$0, for instance, to the expression link Employee0 -> (task) Task1.

34

Translation rule O1 defined in Figure 5.5 is parametrized with the sets of atoms Obj, V al,
EnumV al, and FName of an Alloy instance computed from a module produced by the
CD2Alloy translation. It first declares an OD having the name od. Inside the body of
the OD definition, the rule uses two outer quantifications. The first outer quantification
ranges over the set of atoms in the set Obj representing objects in the object model. For
each object contained in the set Obj, the rule defines an object. The name of the type of
the object is equal to the name of the signature of the atom. The name of the object is
equal to the name of the signature of the atom postfixed with the atom’s identifier. The
outer quantification contains two nested quantifications. The first nested quantification
ranges over all tuples in the get relation where the first component is equal to the atom
bounded by the outer quantification and the last component is a member of the set Val.
As a result the iteration declares an attribute for each attribute of primitive or undefined
type of the object represented by the atom bounded by the outer quantification. Similarly,
the second nested quantification declares an attribute for each attribute of an enumeration
type. The second outer quantification instantiates all links between objects. It iterates
over all pairs of atoms contained in the relation get that relate three atoms representing
two object and an association name. The result from translating the Alloy instance given
in Listing 5.1 is shown in the lower part of Figure 5.5.

35

Translation Rule

Translation rule with sets of atoms Obj, V al, EnumV al, FName and a set get ⊆
(Obj × FName × (Obj ∪ V al ∪EnumV al)) as parameters:

O1 objectdiagram od {
zÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐx
∀o ∈ Obj ∶
executeRule(ODecl o) {

zx
∀(o′, a, val) ∈ {(o′, a, val) ∈ get ∣ o′ = o ∧ val ∈ V al} ∶

executeRule(Prim val a) ;
zx

∀(o′, a, val) ∈ {(o′, a, val) ∈ get ∣ o′ = o ∧ val ∈ EnumV al} ∶
executeRule(Enum val a) ;

zx
}
zx

∀(o, a, o′) ∈ {(o, a, o′) ∈ get ∣ o ∈ Obj ∧ o′ ∈ Obj} ∶
executeRule(Link o o′ a) ;

zx
}
zx

Result of application to the Alloy instance textually shown in Listing 5.1:

OD

1 objectdiagram od {

2 Employee0:Employee { PositionKind kind = fullTime; }

3 Manager0:Manager {}

4 Task0:Task { Date startDate = some_type_Date; }

5 Task1:Task { Date startDate = some_type_Date; }

6 Task2:Task { Date startDate = some_type_Date; }

7 link Employee0 -> (managedBy) Manager0;

8 link Employee0 -> (task) Task0;

9 link Employee0 -> (task) Task1;

10 link Employee0 -> (task) Task2;

11 link Task0 -> (employee) Employee0;

12 link Task1 -> (employee) Employee0;

13 link Task2 -> (employee) Employee0;

14 }

Figure 5.5: Translation of Alloy instances representing object models in the semantics of
a CD to UML/P ODs.

36

Chapter 6

Related Work

UML2Alloy [ABGR07b, ABGR09] is another translation from CDs to Alloy. The trans-
formation is defined by means of a formal CD metamodel, an Alloy metamodel, and
transformation rules between metamodel instances. The shallow nature of the transla-
tion limits the set of CD features supported by the translation. For instance, multiple
inheritance cannot be directly represented as Alloy does not support multiple inheritance.
The translation presented in this technical report address this challenge using a deeper
embedding strategy that bridges some of the differences between the CD and the Alloy
modeling languages.

A formalization of UML package merge is given in [DDZ08]. Unlike our approach, the
the method in [DDZ08] does not present a generic transformation to Alloy and does not
discuss the analysis of multiple CDs. Another translation of the UML metamodel to
Alloy is presented in [Sen10]. Similar to the translation given in this technical report, the
translation is not shallow and handles an extended list of CD features such as multiple
inheritance and composition. In contrast to our translation, it does not support analyses
of multiple input models such as refinement checking.

UMLtoCSP [CCR07] is a translation from UML/OCL to constraint satisfaction problems.
Using a constraint solver, the resulting problems can be solved within a user-defined
bounded search space. The tool checks for various kinds of satisfiability (and other analysis
problems), and can generate example instances (object model) as analysis results. The
analyses in CD2Alloy and UMLtoCSP are both fully automated and limited to a bounded
scope. By adding further constraints to a constraint satisfaction problem resulting from the
UMLtoCSP translation, it should be possible to extend UMLtoCSP to check for Boolean
expressions over CDs, as supported by our work.

USE [GBR07] supports the analysis of a CD with OCL invariants. It supports multiple
inheritance. Valid instances are searched for enumeratively, within a user-given bounded
scope. Other work by the same group, e.g., [SWK+10], report on analyzing UML/OCL
models directly using a SAT solver. Analyses of multiple CDs such as checking refinement
between two CDs, as available in our work, are not available in any of the works related
to USE.

Further examples for the kinds of analyses enabled by the translation given in this report
are presented in [MRR11b, MRR11c]. A semantic differencing operator for class diagrams
is presented in [MRR11b]. It is implemented using the translation to Alloy presented in this
report. A variant of our translation is used in [MRR11c] to support semantic variability

37

in CD/OD consistency analysis. This tool takes three artifacts as input: a CD, an OD,
and a feature configuration that specifies choices over a set of semantic variability points.
With this, the semantics mapping is configured and analysis results change according to
the semantics induced by the selected feature configuration.

38

Chapter 7

Conclusion

This technical report presented CD2Alloy, a translation from UML CDs to Alloy and back
from Alloy instances to UML ODs. It supports many CD language features, including,
e.g., directed associations, composite aggregations, interfaces, multiple inheritance, and
enumerations. An important feature of the translation is the ability to analyze multiple
class diagrams within one Alloy module, which is not possible with previous translations.
The ideas and translation rules are demonstrated with running examples.

One future work direction consists of the investigation of encoding additional fragments
of UML into Alloy, in order to support additional language features and analyses. An-
other future work direction consists of integrating OCL into the translation. Additional
future work could investigate adding summarization and abstraction strategies to the
translation for computing informative, small, and comprehensive object models. Finally,
another future work direction is to address the scope limitation and attempt to improve
the performance of the analysis in general by using model slicing techniques, tailored to
CD analysis. Such optimization may need to take into account also the special cases of
analyses involving more than one CDs.

39

40

Bibliography

[ABGR07a] Kyriakos Anastasakis, Behzad Bordbar, Geri Georg, and Indrakshi Ray.
UML2Alloy: A challenging model transformation. In Gregor Engels, Bill
Opdyke, Douglas C. Schmidt, and Frank Weil, editors, MoDELS, volume
4735 of Lecture Notes in Computer Science, pages 436–450. Springer, 2007.

[ABGR07b] Kyriakos Anastasakis, Behzad Bordbar, Geri Georg, and Indrakshi Ray.
UML2Alloy: A Challenging Model Transformation. In Proceedings of the
10th International Conference on Model Driven Engineering Languages and
Systems, MODELS’07, pages 436–450. Springer, 2007.

[ABGR09] Kyriakos Anastasakis, Behzad Bordbar, Geri Georg, and Indrakshi Ray. On
challenges of model transformation from UML to Alloy. Software and Systems
Modeling, 2009.

[ABGR10] Kyriakos Anastasakis, Behzad Bordbar, Geri Georg, and Indrakshi Ray. On
challenges of model transformation from UML to Alloy. Software and Systems
Modeling, 9(1):69–86, 2010.

[BCGR09] Manfred Broy, Maŕıa Victoria Cengarle, Hans Grönniger, and Bernhard
Rumpe. Considerations and Rationale for a UML System Model. In K. Lano,
editor, UML 2 Semantics and Applications, pages 43–61. John Wiley & Sons,
November 2009.

[CCR07] Jordi Cabot, Robert Clarisó, and Daniel Riera. UMLtoCSP: a tool for the
formal verification of UML/OCL models using constraint programming. In
ASE, pages 547–548. ACM, 2007.

[CGR08] Maŕıa Victoria Cengarle, Hans Grönniger, and Bernhard Rumpe. System
Model Semantics of Class Diagrams. Informatik-Bericht 2008-05, TU Braun-
schweig, Germany, 2008.

[DDZ08] Jürgen Dingel, Zinovy Diskin, and Alanna Zito. Understanding and im-
proving uml package merge. Software and Systems Modeling, 7(4):443–467,
October 2008.

[GBR07] Martin Gogolla, Fabian Büttner, and Mark Richters. USE: A UML-based
specification environment for validating UML and OCL. Sci. Comput. Pro-
gram., 69(1-3):27–34, 2007.

[GR99] Martin Gogolla and Mark Richters. Transformation Rules for UML Class Di-
agrams. In Jean Bézivin and Pierre-Alain Muller, editors, The Unified Model-
ing Language, UML’98 - Beyond the Notation. First International Workshop,

41

Mulhouse, France, June 1998, Selected Papers, volume 1618 of LNCS, pages
92–106. Springer, 1999.

[Jac06] Daniel Jackson. Software Abstractions: Logic, Language, and Analysis. MIT
Press, 2006.

[KRV10] Holger Krahn, Bernhard Rumpe, and Stefen Völkel. MontiCore: a Framework
for Compositional Development of Domain Specific Languages. International
Journal on Software Tools for Technology Transfer (STTT), 12(5):353–372,
September 2010.

[MGB04] Tiago Massoni, Rohit Gheyi, and Paulo Borba. A UML Class Diagram An-
alyzer. In 3rd Int. Work. on Critical Systems Development with UML (CS-
DUML), affiliated with UML Conf., pages 143–153, 2004.

[MRR11a] Shahar Maoz, Jan Oliver Ringert, and Bernhard Rumpe. CD2Alloy: Class
diagrams analysis using Alloy revisited. In Jon Whittle, Tony Clark, and
Thomas Kühne, editors, MoDELS, volume 6981 of Lecture Notes in Computer
Science, pages 592–607. Springer, 2011.

[MRR11b] Shahar Maoz, Jan Oliver Ringert, and Bernhard Rumpe. CDDiff: Semantic
differencing for class diagrams. In Mira Mezini, editor, ECOOP, volume 6813
of Lecture Notes in Computer Science, pages 230–254. Springer, 2011.

[MRR11c] Shahar Maoz, Jan Oliver Ringert, and Bernhard Rumpe. Semantically Con-
figurable Consistency Analysis for Class and Object Diagrams. In Conference
on Model Driven Engineering Languages and Systems (MODELS’11), LNCS
6981, pages 153–167. Springer, 2011.

[OMG15] Object Management Group. OMG Unified Modeling Language (OMG UML),
Superstructure Version 2.5 (15-03-01), March 2015. http://www.omg.

org/spec/UML/2.5/PDF/ [Online; accessed 2016-11-07].

[Rin14] Jan Oliver Ringert. Analysis and Synthesis of Interactive Component and
Connector Systems. Aachener Informatik-Berichte, Software Engineering,
Band 19. Shaker Verlag, 2014.

[Rum16] Bernhard Rumpe. Modeling with UML: Language, Concepts, Methods.
Springer International, July 2016.

[SAB09] Adel Smeda, Adel Alti, and Abbdellah Boukerram. An Environment for De-
scribing Software Systems. WSEAS Transactions on Computers, 8(9):1610–
1619, 2009.

[Sch12] Martin Schindler. Eine Werkzeuginfrastruktur zur agilen Entwicklung mit
der UML/P. Aachener Informatik-Berichte, Software Engineering, Band 11.
Shaker Verlag, 2012.

[Sen10] Sagar Sen. Automatic Effective Model Discovery. PhD thesis, Univ. of Rennes,
2010.

[SWK+10] Mathias Soeken, Robert Wille, Mirco Kuhlmann, Martin Gogolla, and Rolf
Drechsler. Verifying UML/OCLmodels using Boolean satisfiability. InDATE,
pages 1341–1344. IEEE, 2010.

42

http://www.omg.org/spec/UML/2.5/PDF/
http://www.omg.org/spec/UML/2.5/PDF/

Appendix A

Complete CD2Alloy Translation
Example

This appendix contains the complete translation result from translating the class diagram
described in Section 2.2. The class diagram is graphically depicted in Figure 2.1. Its
textual representation is given in Listing 2.2. The result originated from applying the
translation rules defined in Chapter 3.

Alloy

1 module umlp2alloy/cd1_module

2

3 // ***** Generic Part *****
4

5 //Names of fields/associations in classes of the model

6 private abstract sig FName {}

7

8 //Names of enum values in enums of the model

9 private abstract sig EnumVal {}

10

11 //Values of fields

12 private abstract sig Val {}

13

14 //Parent of all classes relating fields and values

15 abstract sig Obj {

16 get : FName -> { Obj + Val + EnumVal }

17 }

18

19 pred ObjFNames[objs: set Obj, fNames:set FName] {

20 no objs.get[FName - fNames]

21 }

22

23 pred ObjAttrib[objs: set Obj, fName:one FName, fType: set { Obj + Val +

EnumVal }] {

24 objs.get[fName] in fType

25 all o: objs | one o.get[fName]

26 }

27

28 pred ObjMeth[objs: set Obj, fName: one FName, fType: set { Obj + Val +

EnumVal }] {

29 objs.get[fName] in fType

30 all o: objs | one o.get[fName]

43

31 }

32

33 pred ObjLUAttrib[objs: set Obj, fName:one FName, fType: set Obj, low: Int,

up: Int] {

34 ObjLAttrib[objs, fName, fType, low]

35 ObjUAttrib[objs, fName, fType, up]

36 }

37

38 pred ObjLAttrib[objs: set Obj, fName:one FName, fType: set Obj, low: Int] {

39 objs.get[fName] in fType

40 all o: objs | (#o.get[fName] >= low)

41 }

42

43 pred ObjUAttrib[objs: set Obj, fName:one FName, fType: set Obj, up: Int] {

44 objs.get[fName] in fType

45 all o: objs | (#o.get[fName] =< up)

46 }

47

48 pred ObjLU[objs: set Obj, fName:one FName, fType: set Obj, low: Int, up: Int

] {

49 ObjL[objs, fName, fType, low]

50 ObjU[objs, fName, fType, up]

51 }

52

53 pred ObjL[objs: set Obj, fName:one FName, fType: set Obj, low: Int] {

54 all r: objs | # { l: fType | r in l.get[fName]} >= low

55 }

56

57 pred ObjU[objs: set Obj, fName:one FName, fType: set Obj, up: Int] {

58 all r: objs | # { l: fType | r in l.get[fName]} =< up

59 }

60

61 pred BidiAssoc[left: set Obj, lFName:one FName, right: set Obj, rFName:one

FName] {

62 all l: left | all r: l.get[lFName] | l in r.get[rFName]

63 all r: right | all l: r.get[rFName] | r in l.get[lFName]

64 }

65

66 pred Composition[compos: Obj->Obj, right: set Obj] {

67 all r: right | lone compos.r

68 }

69

70 fun rel[wholes: set Obj, fn: FName] : Obj->Obj {

71 {o1:Obj,o2:Obj|o1->fn->o2 in wholes <: get}

72 }

73

74 fact NonEmptyInstancesOnly {

75 some Obj

76 }

77

78 // ***** Structures common to both CDs *****
79

80 // Concrete names of fields in cd

81 private one sig owner extends FName {}

82 private one sig cars extends FName {}

83 private one sig license extends FName {}

84 private one sig licensePlate extends FName {}

85 private one sig emps extends FName {}

86 private one sig drives extends FName {}

87 private one sig kind extends FName {}

44

88 private one sig of extends FName {}

89 private one sig regDate extends FName {}

90 private one sig exp extends FName {}

91 private one sig drivenBy extends FName {}

92 private one sig ins extends FName {}

93

94 // Concrete value types in model cd

95 private one sig type_Date extends Val {}

96 private one sig type_String extends Val {}

97

98 // Concrete enum values in model cd

99 private one sig enum_InsuranceKind_international extends EnumVal {}

100 private one sig enum_DrivingExp_expert extends EnumVal {}

101 private one sig enum_InsuranceKind_transport extends EnumVal {}

102 private one sig enum_DrivingExp_beginner extends EnumVal {}

103

104 // Classes and interfaces in model cd

105 sig Vehicle extends Obj {}

106 sig Company extends Obj {}

107 sig Employee extends Obj {}

108 sig Car extends Obj {}

109 sig Insurance extends Obj {}

110 sig License extends Obj {}

111 sig Driver extends Obj {}

112 sig Truck extends Obj {}

113

114 // ***** CD cd1 *****
115

116 // Types wrapping subtypes

117 fun VehicleSubsCDcd1: set Obj {

118 Vehicle + Car + Truck

119 }

120 fun CompanySubsCDcd1: set Obj {

121 Company

122 }

123 fun EmployeeSubsCDcd1: set Obj {

124 Employee + Driver

125 }

126 fun CarSubsCDcd1: set Obj {

127 Car

128 }

129 fun InsuranceSubsCDcd1: set Obj {

130 Insurance

131 }

132 fun LicenseSubsCDcd1: set Obj {

133 License

134 }

135 fun DriverSubsCDcd1: set Obj {

136 Driver

137 }

138 fun TruckSubsCDcd1: set Obj {

139 Truck

140 }

141

142 // Types containing subtypes for definition of associations

143 fun DriveableSubsCDcd1: set Obj {

144 Vehicle + Car + Truck

145 }

146

147 // Relations that represent compositions which the class is a part of

45

148 fun InsuranceCompFieldsCDcd1: Obj->Obj {

149 rel[EmployeeSubsCDcd1, ins]

150 }

151

152 // Enums

153 // Enum values in cd

154 fun DrivingExpEnumCDcd1: set EnumVal {

155 enum_DrivingExp_expert + enum_DrivingExp_beginner

156 }

157

158 fun InsuranceKindEnumCDcd1: set EnumVal {

159 enum_InsuranceKind_international + enum_InsuranceKind_transport

160 }

161

162

163 // Values and relations in cd

164 pred cd1 {

165

166 // Definition of class Vehicle

167 ObjAttrib[Vehicle, licensePlate, type_String]

168 ObjAttrib[Vehicle, regDate, type_Date]

169 ObjFNames[Vehicle, licensePlate + regDate + none]

170 // Definition of class Company

171 ObjFNames[Company, cars + emps + none]

172 // Definition of class Employee

173 ObjFNames[Employee, ins + none]

174 // Definition of class Car

175 ObjAttrib[Car, licensePlate, type_String]

176 ObjAttrib[Car, regDate, type_Date]

177 ObjFNames[Car, licensePlate + regDate + drivenBy + none]

178 // Definition of class Insurance

179 ObjAttrib[Insurance, kind, InsuranceKindEnumCDcd1]

180 ObjFNames[Insurance, kind + none]

181 // Definition of class License

182 ObjFNames[License, owner + none]

183 // Definition of class Driver

184 ObjAttrib[Driver, exp, DrivingExpEnumCDcd1]

185 ObjFNames[Driver, exp + license + drives + ins + none]

186 // Definition of class Truck

187 ObjAttrib[Truck, licensePlate, type_String]

188 ObjAttrib[Truck, regDate, type_Date]

189 ObjFNames[Truck, licensePlate + regDate + none]

190

191 // Special properties of singletons, abstract classes and interfaces

192 no Vehicle

193

194 // Associations

195 BidiAssoc[DriverSubsCDcd1, license, LicenseSubsCDcd1, owner]

196 ObjLUAttrib[LicenseSubsCDcd1, owner, DriverSubsCDcd1, 1, 1]

197 ObjLUAttrib[DriverSubsCDcd1, license, LicenseSubsCDcd1, 0, 3]

198 ObjLAttrib[CompanySubsCDcd1, cars, CarSubsCDcd1, 0]

199 ObjLU[CarSubsCDcd1, cars, CompanySubsCDcd1, 0, 1]

200 ObjLUAttrib[EmployeeSubsCDcd1, ins, InsuranceSubsCDcd1, 1, 1]

201 ObjLU[InsuranceSubsCDcd1, ins, EmployeeSubsCDcd1, 1, 1]

202 BidiAssoc[DriverSubsCDcd1, drives, CarSubsCDcd1, drivenBy]

203 ObjLUAttrib[CarSubsCDcd1, drivenBy, DriverSubsCDcd1, 1, 1]

204 ObjLUAttrib[DriverSubsCDcd1, drives, CarSubsCDcd1, 0, 1]

205 ObjLAttrib[CompanySubsCDcd1, emps, EmployeeSubsCDcd1, 0]

206 ObjL[EmployeeSubsCDcd1, emps, CompanySubsCDcd1, 0]

207 // Compositions

46

208 Composition[InsuranceCompFieldsCDcd1, InsuranceSubsCDcd1]

209

210 Obj = (Vehicle + Company + Employee + Car + Insurance + License + Driver +

Truck)

211 }

212

213

214 pred cd {

215 cd1

216 }

217

218 // Run commands

219

220 run cd for 10 but 5 int

Listing A.1: Complete translation result resulting from translating the class diagram
given in Listing 2.2. Figure 2.1 depicts the graphical representation of the class diagram.

47

48

Aachener Informatik-Berichte

This list contains all technical reports published during the past three years. A

complete list of reports dating back to 1987 is available from:

http://aib.informatik.rwth-aachen.de/

To obtain copies please consult the above URL or send your request to:

Informatik-Bibliothek, RWTH Aachen, Ahornstr. 55, 52056 Aachen,

Email: biblio@informatik.rwth-aachen.de

2014-01 ∗ Fachgruppe Informatik: Annual Report 2014

2014-02 Daniel Merschen: Integration und Analyse von Artefakten in der mod-

ellbasierten Entwicklung eingebetteter Software

2014-03 Uwe Naumann, Klaus Leppkes, and Johannes Lotz: dco/c++ User

Guide

2014-04 Namit Chaturvedi: Languages of Infinite Traces and Deterministic Asyn-

chronous Automata

2014-05 Thomas Ströder, Jürgen Giesl, Marc Brockschmidt, Florian Frohn,

Carsten Fuhs, Jera Hensel, and Peter Schneider-Kamp: Automated Ter-

mination Analysis for Programs with Pointer Arithmetic

2014-06 Esther Horbert, Germán Mart́ın Garćıa, Simone Frintrop, and Bastian

Leibe: Sequence Level Salient Object Proposals for Generic Object De-

tection in Video

2014-07 Niloofar Safiran, Johannes Lotz, and Uwe Naumann: Algorithmic Dif-

ferentiation of Numerical Methods: Second-Order Tangent and Adjoint

Solvers for Systems of Parametrized Nonlinear Equations

2014-08 Christina Jansen, Florian Göbe, and Thomas Noll: Generating Inductive

Predicates for Symbolic Execution of Pointer-Manipulating Programs

2014-09 Thomas Ströder and Terrance Swift (Editors): Proceedings of the In-

ternational Joint Workshop on Implementation of Constraint and Logic

Programming Systems and Logic-based Methods in Programming Envi-

ronments 2014

2014-14 Florian Schmidt, Matteo Ceriotti, Niklas Hauser, and Klaus Wehrle:

HotBox: Testing Temperature Effects in Sensor Networks

2014-15 Dominique Gückel: Synthesis of State Space Generators for Model

Checking Microcontroller Code

2014-16 Hongfei Fu: Verifying Probabilistic Systems: New Algorithms and Com-

plexity Results

49

http://aib.informatik.rwth-aachen.de/

2015-01 ∗ Fachgruppe Informatik: Annual Report 2015

2015-02 Dominik Franke: Testing Life Cycle-related Properties of Mobile Appli-

cations

2015-05 Florian Frohn, Jürgen Giesl, Jera Hensel, Cornelius Aschermann, and

Thomas Ströder: Inferring Lower Bounds for Runtime Complexity

2015-06 Thomas Ströder and Wolfgang Thomas (Editors): Proceedings of the

Young Researchers’ Conference “Frontiers of Formal Methods”

2015-07 Hilal Diab: Experimental Validation and Mathematical Analysis of Co-

operative Vehicles in a Platoon

2015-08 Mathias Pelka, Jó Agila Bitsch, Horst Hellbrück, and Klaus Wehrle (Ed-

itors): Proceedings of the 1st KuVS Expert Talk on Localization

2015-09 Xin Chen: Reachability Analysis of Non-Linear Hybrid Systems Using

Taylor Models

2015-11 Stefan Wüller, Marián Kühnel, and Ulrike Meyer: Information Hiding

in the Public RSA Modulus

2015-12 Christoph Matheja, Christina Jansen, and Thomas Noll: Tree-like

Grammars and Separation Logic

2015-13 Andreas Polzer: Ansatz zur variantenreichen und modellbasierten En-

twicklung von eingebetteten Systemen unter Berücksichtigung regelungs-

und softwaretechnischer Anforderungen

2015-14 Niloofar Safiran and Uwe Naumann: Symbolic vs. Algorithmic Differ-

entiation of GSL Integration Routines

2016-01 ∗ Fachgruppe Informatik: Annual Report 2016

2016-02 Ibtissem Ben Makhlouf: Comparative Evaluation and Improvement of

Computational Approaches to Reachability Analysis of Linear Hybrid

Systems

2016-03 Florian Frohn, Matthias Naaf, Jera Hensel, Marc Brockschmidt, and

Jürgen Giesl: Lower Runtime Bounds for Integer Programs

2016-04 Jera Hensel, Jürgen Giesl, Florian Frohn, and Thomas Ströder: Proving

Termination of Programs with Bitvector Arithmetic by Symbolic Exe-

cution

2016-05 Mathias Pelka, Grigori Goronzy, Jó Agila Bitsch, Horst Hellbrück, and

Klaus Wehrle (Editors): Proceedings of the 2nd KuVS Expert Talk on

Localization

2016-06 Martin Henze, René Hummen, Roman Matzutt, Klaus Wehrle: The

SensorCloud Protocol: Securely Outsourcing Sensor Data to the Cloud

2016-07 Sebastian Biallas : Verification of Programmable Logic Controller Code

using Model Checking and Static Analysis

2016-09 Thomas Ströder, Jürgen Giesl, Marc Brockschmidt, Florian Frohn,

Carsten Fuhs, Jera Hensel, Peter Schneider-Kamp, and Cornelius As-

chermann: Automatically Proving Termination and Memory Safety for

Programs with Pointer Arithmetic

2016-10 Stefan Wüller, Ulrike Meyer, and Susanne Wetzel: Towards Privacy-

Preserving Multi-Party Bartering

2017-01 ∗ Fachgruppe Informatik: Annual Report 2017

2017-02 Florian Frohn and Jürgen Giesl: Analyzing Runtime Complexity via

Innermost Runtime Complexity

50

∗ These reports are only available as a printed version.

Please contact biblio@informatik.rwth-aachen.de to obtain copies.

51

	Introduction
	Preliminaries
	Grammar of UML/P CDs
	Example CD
	Brief Overview of Alloy

	Translation of Class Diagrams to Alloy Modules
	Abstract Syntax of Class Diagrams
	The CD2Alloy Translation Rules
	The Generic Part
	Rules U1 to U4: Classes, Field Names, Types, and Enums

	Rules F1 to F4: Functions for Subclassing, Interfaces, Compositions, and Enums
	Rules P1 to P4: Classes and Attributes
	Rules A1 to A6: Associations

	Translation and Analysis of Multiple CDs
	Translation of Alloy Instances to Object Diagrams
	Structure of CD2Alloy Alloy instances
	Translation rules

	Related Work
	Conclusion
	Literature
	Complete CD2Alloy Translation Example

