
Aachen
Department of Computer Science

Technical Report

Towards Privacy-Preserving Multi-
Party Bartering

Stefan Wüller, Ulrike Meyer and Susanne Wetzel

ISSN 0935–3232 · Aachener Informatik-Berichte · AIB-2016-10

RWTH Aachen · Department of Computer Science · December 2016

The publications of the Department of Computer Science of RWTH Aachen
University are in general accessible through the World Wide Web.

http://aib.informatik.rwth-aachen.de/

Towards Privacy-Preserving Multi-Party Bartering

Stefan Wüller1, Ulrike Meyer1 and Susanne Wetzel2

1 Research Group IT-Security
RWTH Aachen, Germany

Email: {wueller, meyer}@itsec.rwth-aachen.de
2 Stevens Institute of Technology

Hoboken, NJ, USA
Email: swetzel@stevens.edu

Abstract. Both B2B bartering as well as bartering between individuals is in-
creasingly facilitated through online platforms. However, typically these platforms
lack automation and tend to neglect the privacy of their users by leaking crucial
information about trades. It is in this context that we devise the first privacy-
preserving protocol for automatically determining an actual trade between mul-
tiple parties without involving a trusted third party.

1 Introduction

The Encyclopedia Britannica defines bartering as “the direct exchange of goods
or services—without an intervening medium of exchange or money—either ac-
cording to established rates of exchange or by bargaining” [Bri]. According
to [min], the first mentioning of bartering dates back thousands of years. Through-
out history, the relevance of bartering increased in times of crises. For example,
in the US bartering was of utmost importance during the great depression in the
1930s, as well as during a long recession in the early 1980s [Sto]. Coherently, in
Europe bartering economies are currently reported to flourish in countries like
Greece due to imminent liquidity problems [Ald15]. However, the popularity of
bartering is not only increasing as a result of economic crises. Instead individu-
als as well as businesses increasingly engage in bartering in recent years which
may also be prescribed to the fact that bartering platforms increasingly facilitate
bartering between individuals as well as businesses.

However, these platforms typically disclose what (and how much) parties seek
or offer at least to the operator of the platform and typically also to other parties
even if a trade between these parties is not possible. Thus the privacy guarantees
offered by traditional bartering (i.e., a party merely learns what it gets and what
it gives away and there is no third party observing the transactions) are lost.

For the two-party case, these privacy issues are addressed with the help of
secure multi-party computation (SMPC), e.g., in [FO08,FMW+14]. While these
two party protocols can obviously be used to find pairwise trades in the multi-
party setting with more than two parties as well, they cannot be used to deter-
mine trade cycles between more than two parties. In this case, each party should
only learn which quantity of which commodity it is to give to which other party
and which quantity of which commodity it receives from which other party in
return. Any other information on what is traded at which exchange rates be-
tween the other parties in the trade cycle is to remain private. The particular
challenge of finding such cycles in a privacy-preserving way in the SMPC setting
has already been recognized in [FT98] but has to the best of our knowledge not

been addressed so far. In [KMRR15], multi-party bartering is addressed under a
different notion of privacy, namely marginal differential privacy. Compared to the
SMPC setting, this setting is weaker in that it requires a trusted third party in
order to determine an actual trade and assumes non-colluding corrupted parties.

As a first step towards privacy-preserving multi-party bartering, we design a
secure multi-party bartering process in which each party’s demand is fulfilled by
at most one other party and each party is allowed to specify exactly one quote
defining its offered and desired commodities and quantities. For a given set of
parties and their quotes our bartering process automatically and securely deter-
mines an actual trade comprising the actual trade constellation of the parties
(i.e., which party trades with which other party) as well as the actual com-
modities and quantities to be traded. The actual trade can be selected based on
different selection strategies including the maximization of the number of par-
ties able to trade. Throughout the bartering process, each party keeps its quote
secret at all times. Upon completion of the bartering process, each party learns
nothing but its local view of the actual trade which includes its trade partners
as well as the commodities and quantities to be sent and received. At the core of
the newly designed bartering process is a protocol that securely determines the
actual trade constellation. This protocol makes use of two main ideas. First, it
generalizes the idea of intertwining comparison and scalar product computations
used in [FMW+14]. Second, it uses a novel privacy-preserving mapping operation
that is based on the uniqueness of prime factorization, which is of independent
interest.

The remainder of this paper is organized as follows. After reviewing related
work in Section 2, we introduce definitions and notations used throughout the
paper (Section 3). We then devise a multi-party bartering terminology and pro-
vide an intuition for the operation of our protocols (Section 4). In Section 5, we
review existing protocols used as building blocks in the context of our work and
present a novel protocol for obliviously determining whether or not a specific
trade constellation corresponds to a potential trade. Building on that, we intro-
duce our novel protocol for determining an actual trade constellation (Section 6).
The paper closes with some remarks on future work.

4

2 Related Work

Our work extends on the privacy-preserving bartering protocol for two parties by
Foerg et al. [FMW+14]. Their protocol allows two parties to specify an offered
and a desired commodity along with the corresponding quantities and determines
whether or not (and if so at what rate) the two parties are willing to mutually
exchange their commodities. Our work presented in this paper extends their
setting to the multi-party case. Since the computation of an actual trade for an
arbitrary set of parties involves the identification of complex exchange structures
like trade cycles, it is necessary to extend the available terminology and to devise
novel techniques and protocols along with the corresponding security proofs.

To the best of our knowledge, there is only one approach to privacy-preserving
multi-party bartering that has been proposed in the past [KMRR15]: Kannan et
al. introduce a protocol where each party holds a (indivisible) commodity from
a publicly known finite set of commodities as well as a totally ordered preference
list over all commodities in the set. Their goal is then to determine an actual trade
between multiple parties such that the computed commodity allocation is pareto
optimal while the input of each party (commodity and preference list) is kept
private. Specifically, the protocol protects the parties’ input under the notion
of marginal differential privacy [KMRR15] which is a relaxation of differential
privacy [Dwo06]. In contrast to differential privacy, marginal differential privacy
is restricted to an adversary that has access to the protocol output of only one
single party which corresponds to the assumption that there are no colluding
parties participating in the protocol which try to subvert the privacy of another
party. The approach by Kannan et al. differs from our approach in that it requires
a trusted third party in order to determine an actual trade and in that they use
a weaker privacy notion that assumes non-colluding parties. Furthermore, their
approach supports only indivisible commodities. In our approach, an actual trade
is computed without the help of a trusted third party and we allow that all
but one colluding parties may be controlled by an adversary. In addition, our
approach supports divisible commodities.

In contrast to e-commerce (and auctions), bartering transactions are not nec-
essarily reduced to money which allows for a richer structure of
exchanges [LNRR03]: A trade takes place if the involved parties are satisfied
w.r.t. the specification of their offered and desired commodities and the corre-
sponding quantities. If the commodities first have to be converted into money
(as it is the case for e-commerce and auctions), the prices of the commodities
have to be individually determined. Consequently, a party desiring a commod-
ity which is more expensive than its offered commodity is not able to barter,
although a trade could have taken place if the commodities were traded di-
rectly [LNRR03]. Thus, privacy-preserving protocols for e-commerce scenarios
(e.g., [ABO04,EA05]) or auctions (e.g., [Bra02,NSY04]) are not suitable in the
context of privacy-preserving bartering.

In order to design our privacy-preserving bartering process, we make use of
SMPC techniques. While there exist generic SMPC frameworks providing gen-
eral results in the sense that they allow for any function to be securely com-
puted [Yao82,BOGW88,GMW87], using these frameworks in a straight-forward
fashion to design a specific functionality can lead to inefficient solutions [FO08],
[BCD+09]. By contrast, the specific purpose design of complex SMPC protocols

5

allows to provide domain specific solutions and to involve additional building
blocks like intermediate decryption which in turn allows to design more efficient
protocols [BCD+09,CT12,AMP04,HL10]. Therefore, we focus on designing spe-
cial purpose SMPC protocols rather than using any generic solutions.

3 Preliminaries

In the following, we introduce notations and recall definitions used throughout
the paper.

3.1 Notation

By s ←$ S we indicate that s is drawn uniformly at random from S. Nu :=
{1, ..., u} refers to the set of natural numbers less than or equal to u ∈ N. The
set of all prime numbers within an integer interval I is referred to as PI . We
denote the index set of all parties Pi participating in a multi-party protocol as
P := {1, . . . , ι} where i ∈P. Furthermore, λ denotes the empty string.

3.2 The Paillier Threshold Cryptosystem

Our privacy-preserving protocols require an additively homomorphic cryptosys-
tem which is semantically secure [KL07] against chosen-plaintext attacks and
provides a (τ, ι) threshold variant, i.e., the decryption key is distributed amongst
ι parties such that at least τ ≤ ι parties have to collaborate in order to decrypt
a ciphertext.

In the following, we summarize the (τ, ι) threshold variant of the Paillier
cryptosystem [Pai99] from [DJ01] along with the Paillier-related notation used
throughout the paper.3

The public key corresponds to an RSA modulus N = p · q of bit length k,
where p, q are safe primes (i.e., there are prime numbers p′ and q′ such that
p = 2p′ + 1 and q = 2q′ + 1) and k refers to the security parameter. The private
key d ∈ Zp′q′Ns with s > 0, s ∈ N satisfying d = 0 mod p′q′ and d = 1 mod N s

is polynomially shared between P1, . . . , Pι such that at least τ parties have to
cooperate for decryption.4 The encryption of a message m in the plaintext space
P := ZNs is computed as c = E(m) := (N+1)mrN

s
mod N s+1 where r ←$ Z∗Ns+1

and c is an element in the ciphertext space C := Z∗Ns+1 . Throughout the paper
we assume s = 1. We have that the plaintext space P forms the additive group
(ZN ,+), and the ciphertext space C forms the multiplicative group (Z∗N2 , ·). For
further details we refer to [DJ01].

Let m,m1,m2 ∈ P and κ ∈ N \ {0}. The Paillier ((τ, ι) threshold) cryptosys-
tem provides for homomorphic addition

E(m1) +h E(m2) := E(m1) · E(m2) = E(m1 +m2)

and homomorphic scalar multiplication

E(m)×h κ := E(m) · E(m) · · ·E(m)︸ ︷︷ ︸
κ times

= E(κ ·m).

3 Other threshold variants, e.g., the one from [FPS01] can be used as well.
4 Note that there exist multi-party computation techniques allowing to generate and distribute

Paillier keys without the help of a trusted third party [DJ01,NS11].

6

Furthermore, we write E(m1)−h E(m2) for

E(m1) +h (E(m2))−1 = E(m1 −m2)

where E(m2)−1 denotes the multiplicative inverse of E(m2) in C. In addition,
we write E(m) := c for m := D(c).

For all E(m1), E(m2) ∈ C, the homomorphic multiplication operation ·h is
defined as

E(m1) ·h E(m2) := E(m1 ·m2).

The computation of E(m1 ·m2) can be carried out using a homomorphic scalar
multiplication in case m1 or m2 is known. A ciphertext E(m) can be randomized
(or re-randomized) by computing E(m) +h E(0). For a vector V = (v1, ..., vn)
we write E(V) to denote the encryption of each entry vi (i ∈ Nn). Similarly, we
write Rnd(E(V)) to denote the randomization of each encrypted vector entry,
where for each randomization a fresh encryption of 0 is used.

For the remaining sections P, C, and E(·) refer to the plaintext space, the
ciphertext space, and the encryption function of (τ, ι) threshold Paillier, respec-
tively.

3.3 Definition of Security

In order to define security comprising privacy and correctness, we have to spec-
ify the capabilities of an adversary under whose presence a protocol has to be
secure. We prove our protocols to be secure in the semi-honest model. A semi-
honest adversary controls a set of corrupted parties which correctly follow the
protocol specification with the exception that each corrupted party keeps record
of all data it generates itself and all messages it receives from other parties.
The postulation of the semi-honest model for application as well as for research
is well justified [Kol06,Gol09]. For some real-world applications it may suffice
to provide security against semi-honest adversaries especially when the essen-
tial protocol behavior is controlled by a complex software [Kol06]. Furthermore,
designing protocols for the semi-honest model is a first step towards designing
protocols for the malicious model where the adversary can arbitrarily deviate
from the protocol specification.5

We assume that the parties communicate over authentic channels, i.e., the
transferred data is resistant to tampering but can be wiretapped.6

Let X̂ := (X1, . . . , Xι) and let F : ({0, 1}∗)ι → ({0, 1}∗)ι, X̂ 7→ (F1(X̂), ...,
Fι(X̂)) be a multi-party (|P| = ι ≥ 2) functionality computable in polyno-
mial time where Pi provides input Xi and obtains output Fi(X̂) (i ∈ P).
Let π be an ι-party protocol for computing functionality F . We write IC :=
{i1, ..., iκ} ⊂ P for the index set of 1 ≤ κ < ι corrupted parties controlled by
the adversary. The view of Pi during an execution of π on input X̂ and secu-
rity parameter s is denoted as VIEWπ

i (s, X̂) := (s,Xi, r̊i,mi,1, ...,mi,n), where

5 In case of using threshold homomorphic encryption as underlying SMPC technique, starting
from a protocol providing security in the semi-honest model, security in the malicious model
can be obtained without increasing the protocol complexity [CDN01]. This generally does
not hold for other SMPC techniques like secret sharing.

6 Note that there exist standard techniques allowing that the parties do not have to know each
other to jointly execute an SMPC protocol, e.g., by differentiating between input parties and
computing parties.

7

r̊i represents Pi’s internal random tape and mi,j represents the j-th message

Pi received during a protocol execution of π. We write OUTPUTπ(s, X̂) :=
(OUTPUTπ

1 (s, X̂), . . . ,OUTPUTπ
ι (s, X̂)) in order to refer to the output of pro-

tocol π on input X̂ and security parameter s. Let X̂IC , FIC (X̂), and VIEWπ
IC

(X̂)

denote the κ-tuples (Xi1 , ..., Xiκ), (Fi1(X̂), ...,Fiκ(X̂)), and (IC ,VIEWπ
i1(X̂), ...,

VIEWπ
iκ(X̂)), respectively.

Definition 1. (Security: Semi-Honest Model, Multi-Party Setting [Gol09]). π
securely computes functionality F if there exists a probabilistic polynomial time
algorithm S such that for every IC it holds that {(S(1s, IC , X̂IC ,FIC (X̂)),

F(X̂))}
X̂,s

and {(VIEWπ
IC

(X̂, s),OUTPUTπ(s, X̂))}
X̂,s

are computational in-
distinguishable.

In the following, we assume that the security parameter s is implicitly given and
sufficiently large and for matters of convenience omit it from the remaining con-
siderations. We call S a simulator and enclose the values it simulates (on input
X̂IC and FIC (X̂) to generate a view which is computationally indistinguishable

from VIEWπ
IC

(X̂)) by square brackets 〈·〉 in order to distinguish between simu-
lated values and those occurring during a protocol run. If not stated otherwise,
S sets 〈Xc〉 := Xc (c ∈ IC).

In order to facilitate the security proof of a protocol π implementing func-
tionality F where π consists of a finite set of sub-protocols ρ1, . . . , ρn securely
computing functionalities G1, . . . ,Gn in the semi-honest model, we can apply the
Modular Composition Theorem [Can00] which states that if π′ securely computes
F in the semi-honest model where the sub-protocol calls of π are replaced by
calls to a trusted third party computing G1, . . . ,Gn, then π securely computes F
in the semi-honest model.

To prove our protocols to be secure in the semi-honest model, we proceed in

two steps as it is done in [AL11]. First, we prove that {F(X̂)}
X̂

c≡
{OUTPUT π(X̂)}

X̂
. We refer to this step as Correct Output Distribution (COD).

Second, we prove that VIEWπ
IC

can be simulated under consideration of the
given inputs and outputs of all corrupted parties such that VIEWπ

IC
and the

corresponding simulated view are computationally indistinguishable, referred to
as Correct View Distribution (CVD). If the output of F is encrypted with a
probabilistic cryptosystem, such as Paillier, we also have to prove that the distri-
bution of the decrypted output values of π are computationally indistinguishable
from the distribution of the decrypted output values prescribed by the definition
of functionality F . We refer to this step as Correct Distribution of Decrypted
Output (CDDO). Note, that this step is necessary to assure the correctness of π
and that it is not captured by Definition 1.

To refer to a concrete functionality or protocol, we use the templates F [affix]
name

and π
[affix]
name where protocol π

[affix]
name is an implementation of functionality F [affix]

name

with name and affix describing the functionality to be computed where the use
of affix is optional. For convenience, we omit name and affix for the case that
the target functionality and protocol is clear from the context. Furthermore, we
write F(X1, . . . , Xι, X) to denote that X is a public input that is known by
all parties. (o) ← F(X) indicates that all parties have common input X and
common output o.

8

TPT (S) Trade Partner Tuple (Set) Def. 2 (below Def. 12)
TPC(S) Trade Partner Constellation (Set) Def. 3 (below Def. 4)
PTPC(S) Potential Trade Partner Constellation (Set) Def. 4 (below Def. 4)
ATPC Actual Trade Partner Constellation Def. 5
AT Actual Trade Def. 6

Table 1: Bartering related acronyms used throughout the paper.

4 Overview

4.1 Bartering Related Terminology

For a set of parties, a trade generically indicates which party receives (or sends)
which quantity of which commodity from (or to) which other party. In this paper,
we focus on so-called (1 : 1) trades with one offered and one desired commodity
for each party. In such a trade, each party receives some quantity of its desired
commodity from at most one party and sends some quantity of its offered com-
modity to at most one other party.

More specifically, we consider a set of ι parties {Pi|i ∈P} with P := Nι and
a publicly known finite set C := {c1, . . . , cn} of divisible commodities. Each party
Pi specifies exactly one quote q(i) := (o(i),d(i)) where o(i) and d(i) is Pi’s offer

and demand, respectively. We model o(i) as a 3-tuple o(i) := (c
(i)
o , q(i)

o
, q

(i)
o) where

c
(i)
o ∈ C specifies the commodity offered by Pi and q(i)

o
∈ N\{0} (q

(i)
o ∈ N\{0})

denotes the minimum (maximum) quantity of c
(i)
o offered. Similarly, we model

d(i) := (c
(i)
d , q

(i)
d , q

(i)
d) with c

(i)
d ∈ C and q

(i)
d , q

(i)
d ∈ N\{0}. With q(i) a party Pi

indicates that it is satisfied with a trade if it receives at least q
(i)
d and at most

q
(i)
d units of commodity c

(i)
d and sending at least q(i)

o
and at most q

(i)
o units of

c
(i)
o . For convenience, we assume that q(i)

o
= 1 and q

(i)
d =∞. The quantity ranges

of the offered and desired commodities of a party Pi (i ∈P) are thus defined as

Q
(i)
o := [1, q

(i)
o] and Q

(i)
d := [q

(i)
d ,∞]. We write q

(i,i′)

c
(i)
o

in order to indicate at which

quantity Pi′ will receive commodity c
(i)
o from Pi (i, i′ ∈P).

We introduce the following bartering related terms which are summarized in
Table 1 and illustrated in Figure 1:

Definition 2. (Trade Partner Tuple). A trade partner tuple TPT (i) := (x(i), y(i))
for Pi (i ∈ P) with x(i), y(i) ∈ P\{i} is a 2-tuple which specifies the indices of
the trading partners Px(i) and Py(i) of Pi: Px(i) is the offerer of party Pi, i.e., Pi
receives some quantity of some commodity from Px(i), while Py(i) is the demander
of Pi, i.e., Pi has to send some quantity of some commodity to Py(i). If a party Pi
neither sends nor receives any commodity in a trade, i.e., it does not participate,
we write TPT (i) = (0, 0).

Definition 3. (Trade Partner Constellation). A trade partner constellation
TPC := (TPT (1), TPT (2), ..., TPT (ι)) is an ι-tuple which specifies exactly one
trade partner tuple for each Pi (i ∈P) and has the following property: for each
trade partner tuple TPT (i) = (x(i), y(i)) it either holds that x(i) = y(i) or it holds
that there exist exactly two distinct entries TPT (i′) and TPT (i′′) with i 6= i′, i′′

such that TPT (i′) = (y(i), y(i′)) and TPT (i′′) = (x(i′′), x(i)).

9

Definition 3 ensures that each party that participates as offerer (demander)
in some TPT of a TPC also participates as demander (offerer) either in the same
or in exactly one other TPT of the TPC.

For a fixed context of quotes Q := {q(1), ...,q(ι)} with q(i) = ((c
(i)
o , q(i)

o
, q

(i)
o),

(c
(i)
d , q

(i)
d , q

(i)
d)), a TPC is transformed into a trade partner constellation formula,

written ϕ
Q∼ TPC, such that:

ϕ :=
ι∧
i=1

(x(i),y(i))6=(0,0)

C(q(i),q(x(i))) ∧R(q(i),q(x(i))) (1)

with

C(q(a),q(b)) :=

{
1 if (q(a),q(b)) ∈ C
0 otherwise

and

R(q(a),q(b)) :=

{
1 if (q(a),q(b)) ∈ R
0 otherwise

,

where
C := {(q(a),q(b))|c(a)

d = c(b)
o } and

R := {(q(a),q(b))|q(a)
d

< q(b)
o }.

Evaluating ϕ (for a given context of quotes) denoted as JϕK ∈ {0, 1} allows one
to check whether or not there is a trade which all parties Pi (with TPT (i) 6= (0, 0))
in the corresponding trade partner constellation are satisfied with. The trade
partner constellations for which this holds for a given context of quotes Q are
referred to as potential trade partner constellations:

Definition 4. (Potential Trade Partner Constellation). For a context of quotes
Q, a trade partner constellation TPC is a potential trade partner constellation

(PTPC), iff ϕ
Q∼ TPC and JϕK = 1.

We write TPCS := {TPC1, . . . , TPCt} for a set of trade partner constella-
tions. Given TPCS and Q, the set of potential trade partner constellations is

denoted as PTPCS. Furthermore, given TPCS and Q, we define Φ := {ϕj |ϕj
Q∼

TPCj , j ∈ N|TPCS|} and Φsat := {ϕj |ϕj ∈ Φ, JϕjK = 1} ⊆ Φ.

Definition 5. (Actual Trade Partner Constellation). An actual trade partner
constellation ATPC is a specific PTPC drawn from PTPCS based on a specified
strategy.

For matters of convenience, we first assume that ATPC is drawn uniformly
at random from PTPCS. In Section 6.3, we sketch a modification of our proto-
col allowing to select an ATPC maximizing the number of traded commodities
(without reducing the level of privacy). Other optimization criteria can be inte-
grated analogously.

Definition 6. (Actual Trade). An actual trade AT for an ATPC specifies the
actual commodities and actual quantities for the commodities traded between the
parties involved in ATPC.

10

1 2

34

1 2

34

1 2

34
⊃ ∋ ⟶

actual
quantity
selection

TPC1 TPC2

TPC3 TPC4

PTPC1

PTPC2

TPCS PTPCS ATPC AT

1 2

34

1 2

34

1 2

34

1 2

34

1 2

34

q
(1,2)

c
(1)
o

q
(2,3)

c
(2)
o

q
(3,4)

c
(3)
o

q
(4,1)

c
(4)
o

Fig. 1: Illustration of the bartering related terms and their relations.

Figure 1 illustrates the interdependency of the introduced terms. A trade part-
ner constellation can be visualized as a directed graph (see Definition 13, Ap-
pendix A), i.e., a node represents a party and a directed edge between two
nodes represents the exchange direction of a commodity between two parties.
For example, according to the node labels and the direction of the edges we
have that TPC4 in Figure 1 is equal to (TPT (1), TPT (2), TPT (3), TPT (4)) =
((3, 2), (1, 3), (2, 1), (0, 0)). A potential trade partner constellation set is a subset
of a given trade partner constellation set containing those trade partner constel-
lations which form the basis for a trade all involved parties are satisfied with
when taking the given context of quotes into account. In Figure 1, we assume
a context of quotes such that TPC1 = PTPC1 and TPC4 = PTPC2 are po-
tential trade partner constellations. An actual trade partner constellation is an
element from the set of potential trade partner constellation selected w.r.t. a spe-
cific strategy. In Figure 1, the actual trade partner constellation is chosen such
that it maximizes the number of traded commodities (four commodities can be
traded in PTPC1 while only three commodities can be traded in PTPC2). The
determined actual trade partner constellation is transferred into an actual trade
by selecting the actual quantities of the commodities to be traded. In Figure 1,

the actual trade indicates that P1 has to send q
(1,2)

c
(1)
o

units of commodity c
(1)
o to

P2, that P2 has to send q
(2,3)

c
(2)
o

units of commodity c
(2)
o to P3, and so on.

4.2 Bartering Process and Intuition

The overall goal of a bartering process between parties P1, ..., Pι with a context
of quotes Q = (q(1), ...,q(ι)) is to determine an actual trade, i.e., one specific
trade with which all parties are satisfied. Our bartering process introduced in
this paper can determine such an actual trade from the set of all possible trade
partner constellations. However, for matters of efficiency, it is also possible to
use a smaller trade partner constellation set, e.g., one which may contain only
trade partner constellations of 5-trade cycles (cf. Appendix A) or constellations
in which specific parties get to trade (cf. TPCS in Figure 1). Upon input of
the trade partner constellation set, the bartering process tries to find an actual
trade consistent with the trade partner constellations in the given trade partner
constellation set.

11

TPCS
1.−→ PTPCS

2.−→ ATPC

Part I: πATPC-Sel

3.−→ AT

Part II:
πRSI

Fig. 2: Illustration of the overall bartering process.

Finding an actual trade first requires the determining of the set of potential
trade constellations, i.e., those trade constellations in the trade partner constel-
lation set for which the commodities and quantities of the involved parties in
their roles of offerer and demander match (Transition 1, Fig. 2). Subsequently,
one of the potential trade constellations is selected as actual trade partner con-
stellation (Transition 1, Fig. 2). This constellation then already indicates which
parties will send (and receive) some commodity to (from) which other party in
the (yet to be determined) actual trade. Finally, the parties individually engage
in a two-party protocol with each one of their trade partners (determined by the
actual trade partner constellation) in order to select the actual quantities for the
commodities to be traded (Transition 3, Fig. 2).

In order to implement such a bartering process securely, the input of the par-
ties, i.e., their quotes, have to be kept secret throughout the process. Moreover,
at the end of the process the parties should learn no more than their local view
of the selected actual trade, i.e., their own trade partners and the commodities
and quantities to be traded with them. Our newly developed bartering process
consists of two parts (cf. Figure 2).

(Part I.) For the first part, we design a multi-party protocol πATPC-Sel (secure
in the semi-honest model) that takes a context of private quotes Q as well as a
(publicly known) set of trade partner constellations as input and then performs
the following steps: (1) securely determine the potential trade partner constella-
tion set, (2) securely select an actual trade partner constellation, and (3) provide
each party Pi with (nothing but) its actual trade partner tuple in the actual
trade partner constellation as output (see Section 6.1).

(Part II.) In the second part, each party is involved in the two-party protocol
πRSI with each of its trade partners to determine the actual quantities traded
using a two-party protocol for the secure computation of a random sub-interval
introduced in [FMW+14] (see Section 6.2).

The first step of the multi-party protocol πATPC-Sel (determining the poten-
tial trade partner constellation set) is implemented with the help of an oblivious
evaluation of a trade constellation formula. A protocol solving this task is intro-
duced in Section 5.2 (see Definition 11). It extends on an approach introduced
in [FMW+14] in that we generalize the order of securely intertwining compar-
ison and scalar product operations and introduce a secure iteration over these
operations thus facilitating the secure matching of quotes for multiple (i.e., more
than two) parties.

The second step of the multi-party protocol (selecting an actual trade partner
constellation from the potential trade partner constellation set) makes use of the
Conditional Random Selection (CRS) protocol introduced in [WMFW15] (see
Definition 9, Section 5).

Finally, the third step of the multi-party protocol (which ensures that each
party learns nothing but its local view of the selected actual trade partner con-

12

stellation) makes use of a novel encoding and decoding operation that is based
on the uniqueness of prime factorization. Specifically, each party is assigned a
unique set of prime numbers. Each party then selects a mapping between its
prime numbers and all of its trade partner tuples in any of the trade partner
constellations (including those where the respective trade partner tuple is equal
to (0, 0)) in the trade partner constellation set. Each party keeps its mapping se-
cret. Subsequently, for all trade partner constellations, all parties jointly compute
the product of the corresponding prime numbers (locally mapped to the respec-
tive trade partner tuples by the parties) in an oblivious fashion thus enabling
each party to uniquely encode its participation in the trade partner constellation
by contributing a unique prime number in each case. In turn, given the product
of prime numbers for the actual trade partner constellation, through trial divi-
sion each party can locally determine which one of its prime numbers divides
the product and then identify the respective trade partner tuple based on its
own secret mapping. It is important to note that knowing which set of prime
numbers was assigned to which party, anyone can perform the trial division step.
However, given the fact that each party keeps its mapping between its prime
numbers and its trade partner tuples secret, this does not leak any information.
Since also trade partner tuple (0, 0) is mapped to a prime number (individually
by each party) and the product of prime numbers includes those prime numbers
for parties which neither send nor receive a commodity, the prime number prod-
uct does not leak which parties participate in the selected actual trade partner
constellation. It is also important to note that the size of the prime numbers
does not have any influence on the security of our new protocol.

In Appendix A, we provide an example to further illustrate the workings of
our new bartering process.

5 Building Blocks

In this section, we first present existing functionalities and the corresponding
protocols which are used as building blocks in our novel protocols. Furthermore,
we introduce a novel functionality for obliviously evaluating trade partner con-
stellation formulas and present a corresponding protocol which is proven secure
in the semi-honest model.

5.1 Existing Building Blocks

Definition 7. (FLT
SC-SO: Two-party Secure Comparison (SC) Less Than (LT)

with Shared Output (SO)). Let P1 and P2 hold integers v1 and v2, respectively.
Then, functionality FLT

SC-SO is given by (w1, w2) ← FLT
SC-SO(v1, v2) with w2 ←$

{0, 1} and w1 ∈ {0, 1} s.t. w1 ⊕ w2 indicates whether or not v1 < v2.

Definition 8. (FωRSI : Two-party secure computation of a Random (R) Sub-
Interval (SI)). Let P1 hold integer interval I1 and P2 hold integer interval I2 such
that ω ≤ |I1 ∩ I2|. Then, functionality FωRSI is given by ([lr, ur])← FωRSI(I1, I2)
where [lr, ur] is a sub-interval drawn uniformly at random from Io = I1 ∩ I2 s.t.
|[lr, ur]| = ω.

13

Definition 9. (F i∗CRS-C: Multi-party Conditional (C) Random (R) Selection (S)
with output Check (C)). Let P1, . . . , Pι hold m vectors E(Li) = (E(li,1), . . . ,
E(li,n)) of length n of integers li,j ∈ P (i ∈ Nm, j ∈ Nn) encrypted with
(ι, ι) threshold Paillier. Let E(Li∗) be an encrypted binary indicator vector and
{E(L1), ..., E(Lm)}\{E(Li∗)} be the value vectors with i∗ ∈ Nm. Then, function-
ality F i∗CRS-C is given by ((E(o1), . . . , E(om))) ← F i∗CRS-C((E(L1), . . . ,
E(Lm))) with E(oi) = Rnd(E(li,j∗)) (i ∈ Nm) where j∗ ←$ {j ∈ Nn : li∗,j = 1}
if there exists at least one j ∈ Nn s.t. li∗,j > 0. Otherwise, F i∗CRS-C((E(L1), . . . ,
E(Lm))) outputs (λ1, . . . , λm) with λ1 = . . . = λm = λ. Note that j∗ is fix for all
i ∈ Nm.

Definition 10. (F(τ ,ι)-Dec: (τ, ι) Threshold Decryption (Dec)). Let E(m) ∈ C be
the encryption of m ∈ P under a semantically secure (τ, ι) threshold cryptosystem
and let each of the participating ι parties hold a secret share used for decryption.
Then, functionality F(τ ,ι)-Dec is given by (m)← F(τ ,ι)-Dec(E(m)), where at least
τ out of ι parties contribute to the decryption of E(m) using their secret shares.

Two-party protocols implementing functionalities FLT
SC-SO and FωRSI are intro-

duced in [May12] and [FMW+14], respectively. A protocol implementing func-
tionality F i∗CRS-C has been presented in [WMFW]. All of these protocols have
been proven secure in the semi-honest model. A (τ, ι) Paillier threshold decryp-
tion protocol, π(τ ,ι)-Dec, implementing functionality F(τ ,ι)-Dec has been presented
in [FPS01] and provides security in the semi-honest model according to [WMFW].
In this paper, we exclusively use πi

∗
CRS-C for i∗ = 1 and πωRSI for ω = 0. Conse-

quently, we will omit these indices in the remainder of this paper.

5.2 Obliviously Evaluating Trade Party Constellation Formulas

In the following, we introduce a functionality, referred to as FOE-TPCF, for
obliviously evaluating trade constellation formulas as defined in Section 4.1 and
present a corresponding protocol, πOE-TPCF, to securely implement functionality
FOE-TPCF.

Definition 11. (FOE-TPCF: Oblivious (O) Evaluation (E) of a Trade Partner
Constellation Formula (TPCF)). Let Pi hold private input q(i) (i ∈P) as well as
a public trade partner constellation formula ϕ ∈ Φ. Then, functionality FOE-TPCF

is given by (E(e))← FOE-TPCF(q(1), . . . ,q(ι), ϕ) where E(e) is an (ι, ι) threshold
Paillier ciphertext of e = 1 if JϕK = 1 and e = 0 otherwise.

When designing a protocol implementing FOE-TPCF securely, it does not suf-
fice to evaluate each predicate C and R in ϕ independently and to combine
the (plaintext) results via AND-operations since the involved parties would then
learn whether or not a specific predicate is satisfied. Similar to [FMW+14], our
approach is to intertwine the predicate evaluations instead of evaluating them in-
dependently. This allows us to evaluate ϕ in a privacy-preserving fashion without
leaking any intermediate results.

In the following, we give a detailed description of protocol πOE-TPCF (see
Protocol 1) and provide a security proof in the semi-honest model. Keeping the
bartering process in mind in which πOE-TPCF is used later on, we allow that
πOE-TPCF can be called by ι parties Pi (i ∈ P) but only a subset of ι′ parties

14

Pi′ with i′ ∈ P ′ := {i|i ∈ P, ϕ
Q∼ TPC, TPT (i) 6= (0, 0)} participate in the

evaluation of the respective trade partner constellation formula

ϕ = C(q(d1),q(o1)) ∧R(q(d1),q(o1)) ∧ . . .
∧ C(q(dι′),q(oι′)) ∧R(q(dι′),q(oι′))

(2)

with dj , oj ∈ P ′ (j ∈ Nι′). Protocol πOE-TPCF iterates over each conjunction
C(q(dj),q(oj))∧R(q(dj),q(oj)) in ϕ (j ∈ Nι′). Each such conjunction is processed
sequentially and involves two parties: one that plays the role of the demander
(Pdj) and one that plays the role of the offerer (Poj).

W.l.o.g. we represent a commodity c
(i)
o offered by Pi as a |C |-bit vector c

(i)
o ∈

{0, 1}|C | with Hamming weight 1. More precisely, c
(i)
o := (c

(i)
o,1, . . . , c

(i)
o,|C |) where

c
(i)
o,l = 1 if c

(i)
o = cl ∈ C and c

(i)
o,l = 0 otherwise (l ∈ N|C |). We use the same

notation for desired commodities. The demander Pd1 first encrypts c
(d1)
d bitwise

whereupon it sends the result to the offerer Po1 (cf. Step 1.1.1, Protocol 1). The

offerer determines the encryption of the scalar product c
(d1)
d ×c(o1)

o by computing

ciphertext G :=
∏|C |
l=1Gl where Gl equals e

(d1)
l := E(c

(d1)
d,l) if c

(o1)
o,l = 1 and

otherwise 1 (cf. Step 1.3, Protocol 1). Note that there exists only one l ∈ N|C |
such that c

(o1)
o,l = 1. Next, the parties engage in πLT

SC-SO providing private input

q
(d1)
d and q

(o1)
o , respectively, in order to obtain an XOR-shared output indicating

whether or not q
(d1)
d < q

(o1)
o holds. The offerer then computes intermediate results

K1 and K2 where, depending on w2, one of them is set to a re-randomization of
G and the other one is set to a fresh encryption of 0. K1 and K2 are send to the
demander (cf. Step 1.5, Protocol 1). Depending on w1, the demander sets E(b1)
to a re-randomization of either K1 or K2, i.e., to an encryption of JC(q(d1)q(o1))∧
R(q(d1)q(o1))K. He then sends E(b1) to Pd2 which initiates the beginning of the
next iteration operating on conjunction C(q(d2)q(o2)) ∧R(q(d2)q(o2)) and E(b1).

The iteration steps for j = 2, ..., ι′ − 1 proceed analogously to the one for
j = 1 except that the demander computes

e
(dj)
l :=

{
E(bj−1)×h c

(dj)
d,l if c

(dj)
d,l = 1

E(c
(dj)
d,l) if c

(dj)
d,l = 0

,

with l ∈ N|C | instead of just encrypting c
(dj)
d bitwise (cf. Step 1.2.1, Protocol 1).

The last iteration step, i.e., j = ι′ proceeds analogously to the intermediate
iteration steps for j = 2, ..., ι′ − 1 except that Pdι′ sets E(e) := E(bι′)

7 and
broadcasts E(e) (cf. Step 1.8, Protocol 1). All parties Pi (i ∈ P) jointly re-
randomize E(e) before outputting it.8

7 We write E(m) := c to define m := D(c), m ∈ P.
8 Note that the joint re-randomization of E(e) does not contribute to the functionality of

the protocol but is necessary for proving security because it decouples the randomness in
the protocol output from the randomness in the protocol execution up to Step 2 (Protocol
1). In the security proof, the re-randomization is excluded from the simulation of a party’s
view but can be added by generating an appropriate amount of random values from Z∗N
and intermediate encryptions of E(e) such that the views of the corrupted parties remain
consistent.

15

Protocol 1: πOE-TPCF for obliviously evaluating trade partner constellation
formulas.
1 Given ϕ for each j from 1 to ι′:

1.1 If j = 1:
1.1.1 Party Pd1 :

1.1.1.1 Compute e
(d1)
l := E(c

(d1)
d,l) for l ∈ N|C |

1.1.1.2 Send e
(d1)
1 , ..., e

(d1)

|C | to party Po1

1.2 Else:
1.2.1 Party Pdj :

1.2.1.1 Compute e
(dj)

l :=

{
E(bj−1)×h c

(dj)

d,l if c
(dj)

d,l = 1

E(c
(dj)

d,l) if c
(dj)

d,l = 0
for l ∈ N|C |

1.2.1.2 Send e
(dj)

1 , ..., e
(dj)

|C | to party Poj

1.3 Party Poj computes G :=
∏|C |
l=1Gl where Gl :=

{
1 if c

(oj)

o,l = 0

e
(dj)

l if c
(oj)

o,l = 1

1.4 Parties Pdj and Poj jointly compute (w1, w2)← πLT
SC-SO(q(dj)

d
, q

(oj)
o)

1.5 Party Poj :

1.5.1 Set K1 :=

{
E(0) if w2 = 0

Rnd(G) if w2 = 1

1.5.2 Set K2 :=

{
Rnd(G) if w2 = 0

E(0) if w2 = 1

1.5.3 Send K1,K2 to Party Pdj

1.6 Party Pdj :

1.6.1 Set E(bj) :=

{
Rnd(K1) if w1 = 0

Rnd(K2) if w1 = 1

1.7 If j 6= ι′:
1.7.1 Send E(bj) to Party Pdj+1

1.8 Else:
1.8.1 Set E(e) := E(bι′)

1.8.2 Broadcast E(e)

2 All parties Pi jointly re-rerandomize E(e) (i ∈P)

3 Party Pi outputs E(e) (i ∈P)

16

c
(dj)

d

?
=

c
(oj)
o

Q
(dj)

d ∩

Q
(oj)
o

?

6= ∅
G (j = 1) G (j = 2, . . . , ι′) w1 w2 K1 K2 E(bj)

× × E(0) E(bj−1 · 0)
0 0 E(0) Rnd(G) Rnd(K1)

1 1 Rnd(G) E(0) Rnd(K2)

×
√

E(0) E(bj−1 · 0)
0 1 Rnd(G) E(0) Rnd(K1)

1 0 E(0) Rnd(G) Rnd(K2)

√
× E(1) E(bj−1 · 1)

0 0 E(0) Rnd(G) Rnd(K1)

1 1 Rnd(G) E(0) Rnd(K2)

√ √
E(1) E(bj−1 · 1)

0 1 E(0) Rnd(G) Rnd(K1)

1 0 Rnd(G) E(0) Rnd(K2)

Table 2: Intermediate computation results of πOE-TPCF.

Lemma 1. Let Pi hold private input q(i) (i ∈P) as well as public input ϕ. Then
protocol πOE-TPCF securely computes functionality FOE-TPCF in the semi-honest
model.

Proof. (CDDO.) We have to show that if JϕK = 1, πOE-TPCF outputs E(e) with

e = 1 and otherwise e = 0. For j = 1, b1 = 1 iff c
(d1)
d = c

(o1)
o and Q

(d1)
d ∩

Q
(o1)
o 6= ∅ hold, i.e., JC(q(d1)q(o1)) ∧ R(q(d1)q(o1))K = 1, and otherwise b1 = 0.

For j = 2, . . . , ι′, bj = bj−1 iff JC(q(dj),q(oj))∧R(q(dj),q(oj))K = 1 and otherwise
bj = 0. The recursive computation of E(e) implies that e = 1 iff JϕK = 1 and
otherwise e = 0. See Table 2 for a detailed summary of the intermediate protocol
steps. (COD.) Since the output of πOE-TPCF is re-randomized and the underlying
cryptosystem is semantically secure, the distribution of the output of πOE-TPCF

and a fresh encryption of e are computationally indistinguishable.

(CVD.) In the following, we sketch a simulator S which outputs a transcript
which is computationally indistinguishable from VIEWπ

IC
(x̂) = (IC , ϕ,VIEWπ

i1 ,
. . . ,VIEWπ

iκ) for each set of corrupted parties given by IC = {i1, ..., iκ}. The
detailed description of S is provided in Table 6 in Appendix B. By applying
the modular composition theorem, it suffices for S to simulate the output of the
sub-protocol call of πLT

SC-SO. For a given ϕ, each party plays two roles: for one
conjunction of the form C(q(dj),q(oj))∧R(q(dj),q(oj)) in ϕ (j ∈ Nι′), an involved
party plays the role of the demander and for another conjunction it plays the
role of the offerer. When participating in an execution of FOE-TPCF, a corrupted
party Pc with c ∈ IC and c ∈P ′ learns seven messages mc,1, . . . ,mc,7. Messages
mc,1 = w1, mc,2 = K1, mc,3 = K2, and a message mc,7 send in Step 1.7.1 of
Protocol 1 are learned in the role of the demander. Message mc,5 send in Step
1.1.1.2 or Step 1.2.1.2 of Protocol 1 and a message mc,6 = w2 are learned in the
role of the offerer. Message mc,4 = E(e) is learned independently of Pc’s role.
Note that Pd1 is an exception in that it does not learn a message md1,7 since

Pd1 initiates the evaluation of ϕ. A simulator S which simulates VIEWπ
IC

(X̂)
necessarily has to check whether or not the following conditions hold:

i) For Pc = Pdj (resp., Pc = Poj) with c ∈ IC and j ∈ Nι′ there exists an c′ ∈ IC
such that Pc′ = Poj (resp., Pc′ = Pdj).

ii) For Pc = Pdj with c ∈ IC , j ∈ Nι′ there exists an c′ ∈ IC such that Pc′ = Pdj−1
.

17

For the case that condition i) holds, the views of Pc and Pc′ have to be consistent,
i.e., 〈mc,1〉, 〈mc,2〉, and 〈mc,3〉 (resp., 〈mc,5〉 and 〈mc,6〉) have to fit to 〈mc′,5〉 and
〈mc′,6〉 (resp., 〈mc′,1〉, 〈mc′,2〉, and 〈mc′,3〉). Using the shared knowledge (i.e.,
random tapes and messages simulated so far) of the corrupted parties, S can
simulate the required consistency (see Table 6, Appendix B). If condition i)
does not hold, mc,1, mc,2 and mc,3 can be simulated by 〈mc1〉 ←$ {0, 1}, and

〈mc,2〉, 〈mc,3〉 ←$ C (resp., 〈mc′,5〉 := (〈e(c′)
1 〉, . . . , 〈e

(c′)
|C | 〉) with 〈e(c′)

1 〉, . . . , 〈e
(c′)
|C | 〉

←$ C and 〈mc,6〉 ←$ {0, 1}). This is due to the fact that in Protocol 1, K1 and K2

are randomized, e
(c′)
1 , . . . , e

(c′)
|C | are fresh encryptions, w2 is uniformly distributed

in {0, 1}, and the underlying cryptosystem is semantically secure.
For the case that condition ii) holds, mc,7 has to be simulated by using shared

knowledge (i.e., random tapes and messages simulated so far) of the corrupted
parties and assigning

〈mc,7〉 :=

{
Rnd(〈mdj−1,2〉) if 〈mdj−1,1〉 = 0

Rnd(〈mdj−1,3〉) if 〈mdj−1,1〉 = 1

where random bits from 〈̊rdj−1
〉 are used to perform the randomizations. Oth-

erwise, it suffices to set 〈mc,7〉 ←$ C. To assure that the generated views fit
to each other, for each Pc, the broadcast message mc,4 has to be simulated by
assigning 〈mc,4〉 := 〈mdι′ ,7〉 if dι′ ∈ IC and otherwise 〈mc,4〉 ←$ C. Table 6 in
Appendix B lists the details of S . For any IC , it is specified how to simulate
Pc’s view w.r.t. the view of the other corrupted parties. First, the simulation of a
corrupted party Pd1 ’s view in both of its roles is listed (Step 1, Table 6) followed
by the simulation of the other corrupted parties’ views by referring to simulation
steps presented for Pd1 (Step 2, Table 6). For the case that c /∈ P ′, Pc’s view
consists only of its private input and 〈mc,4〉 since it does not receive any message
except the broadcast of E(e) (cf. Step 1.8.2, Protocol 1).

Complexity. Observe that each party Pi′ (i′ ∈ P ′) is involved in Step 1 of
Protocol 1 exactly two times: in one case it is playing the role of the demander
and in the other case it is playing the role of the offerer. In the former case,
each party computes |C | ciphertexts, one homomorphic scalar multiplication
(except Pd1), one randomization of a ciphertext, participates in a single execution
of πLT

SC-SO, and sends |C |+ 1 ciphertext. In the latter case, each party computes
one randomization, one fresh encryption of 0, participates in a single execution
of πLT

SC-SO, and sends two ciphertexts. Assuming that |C | is fixed and ϕ has the
structure given by Equation 2 and since the complexity of πLT

SC-SO is in O(1),
the computation complexity of πOE-TPCF for each party is in O(1) whereas the
communication and round complexities of the overall protocol are in O(ι′).

6 Bartering Process

In the following, we introduce our novel multi-party protocol, πATPC-Sel, for ran-
domly selecting an actual trade partner constellation from a given public trade
partner constellation set and providing each party with its local view of this
actual trade partner constellation as output. We first define the underlying func-
tionality FATPC-Sel followed by a detailed protocol description and a proof of

18

security in the semi-honest model. Additionally, we describe how the parties lo-
cally can compute their part of the actual trade from the actual trade partner
constellation, i.e., to determine the actual quantities for the commodities to be
traded. In Appendix A, we provide an example of how πATPC-Sel can be used in
the process of computing an actual trade from a given trade partner constellation
set.

6.1 Protocol for Selecting an Actual Trade Partner Constellation

Definition 12. (FATPC-Sel: Actual Trade Partner Constellation (ATPC) Selec-
tion (Sel).) Let party Pi hold private input q(i) (i ∈P). Furthermore, let TPCS
be an arbitrary non-empty set of trade partner constellations which is publicly
known. Then, the functionality FATPC-Sel is defined as

(TPT
(1)
∗ , . . . , TPT

(ι)
∗) if PTPCS 6= ∅

⊥ otherwise

}
← FATPC-Sel(q

(1), . . . ,q(ι), TPCS)

where (TPT
(1)
∗ , . . . , TPT

(ι)
∗) := ATPC ←$ PTPCS ⊆ TPCS.

In the following, TPTS(i) refers to the set of trade partner tuples for Pi
(i ∈P) w.r.t. TPCS.9

In an ideal world where a trusted third party exists, functionality FATPC-Sel

could be computed as follows: Each party Pi (i ∈ P) sends its private in-
put q(i) to the trusted third party which additionally is given the public set
of trade constellation tuples TPCS. With the knowledge of Q = {q(1), . . . ,q(ι)},
the trusted third party locally computes PTPCS ⊆ TPCS. For the case that
PTPCS 6= ∅, the trusted third party selects an actual trade partner constel-

lation ATPC = (TPT
(1)
∗ , . . . , TPT

(ι)
∗) uniformly at random from PTPCS and

sends TPT
(i)
∗ = (x

(i)
∗ , y

(i)
∗) to Pi. Otherwise, the trusted third party returns ⊥ to

all parties. Note that a (0, 0) output for party Pi indicates that Pi is not involved
in the actual trade partner constellation while ⊥ indicates that there exists no
potential trade constellation in the given TPCS at all.

In the real world, where no trusted party exists, protocol πATPC-Sel (see Pro-
tocol 2) is executed in order to compute functionality FATPC-Sel. Following the
intuition provided in Section 4, πATPC-Sel can be split up into the following phases:

1. Construction Phase: From the public set of trade partner constellations,
TPCS, each party individually constructs the set of formulas Φ such that
at the end of this phase each party holds the same set Φ.

2. Evaluation Phase: Each ϕj ∈ Φ is obliviously evaluated jointly by all parties
Pi (i ∈ P) by calling πOE-TPCF(q(1), . . . ,q(ι), ϕj) such that at the end of
this phase, each party holds a vector E(L) = (E(e1), . . . , E(e|TPCS|)) where
ej = JϕjK (j ∈ N|TPCS|).

3. Mapping Phase: At the begin of the protocol, each party Pi (i ∈P) is given
an interval I(i) of positive integers with at least |TPTS(i)| prime numbers

9 Note that the same trade partner tuples for different TPCs are only included once in TPTS(i)

and thus |TPTS(i)| ≤ |TPCS|.

19

Protocol 2: πATPC-Sel for obliviously selecting an actual trade partner con-
stellation.

1 Construction Phase
1.1 Each party Pi (i ∈P) locally constructs the same set Φ from TPCS.

2 Evaluation Phase
2.1 For each ϕj ∈ Φ:

2.1.1 Each party Pi participates in (E(ej))← πOE-TPCF(ϕj)
2.2 Each party Pi sets E(L) := (E(e1), . . . , E(e|TPCS|))

3 Mapping Phase
3.1 Each party Pi:

3.1.1 Set S(i) := ∅
3.1.2 For each (x(i), y(i)) ∈ TPTS(i):

3.1.2.1 Draw a random prime p
(i)

(x(i),y(i))
from PI(i)\S

(i)

3.1.2.2 Update S(i) = S(i) ∪ {p(i)
(x(i),y(i))

}
3.2 Party Pι:

3.2.1 Set u
(ι)
j := E(p

(ι)

TPT
(ι)
j

) (ϕj
Q∼ TPCj)

3.2.2 Send (u
(ι)
1 , . . . , u

(ι)

|TPCS|) to Pι−1

3.3 Each party Pi′ (from i′ = ι− 1 to 1)

3.3.1 Compute u
(i′)
j := u

(i′+1)
j ×h p(i

′)

TPT
(i′)
j

3.3.2 Send (u
(i′)
1 , . . . , u

(i′)
|TPCS|) to Pi′−1

3.4 Party P1:
3.4.1 Set E(L′) := (E(e′1), . . . , E(e′|TPCS|)) := (u

(1)
1 , . . . , u

(1)

|TPCS|)

3.4.2 Broadcast E(L′)
4 Selection Phase

4.1 Each party Pi participates in ((c∗1, c
∗
2))← πCRS-C(E(L), E(L′))

4.2 For each party Pi
4.2.1 If c∗1 = c∗2 = λ:

4.2.1.1 Skip Steps 5 to 7
4.2.1.2 Each party Pi outputs ⊥

5 Decryption Phase
5.1 Each party Pi participates in (e∗2)← π(τ ,ι)-Dec(c

∗
2):

6 Reverse Mapping Phase
6.1 Each Party Pi:

6.1.1 For each p
(i)

TPT
(i)
j

∈ S(i)

6.1.1.1 If p
(i)

TPT
(i)
j

divides e∗2 then TPT
(i)
∗ := TPT

(i)
j and go to Step 7

7 Output Phase

7.1 Each party Pi outputs TPT
(i)
∗

20

such that for each i, i′ ∈P (i 6= i′), I(i) and I(i′) are pairwise disjoint. Each
party Pi constructs a secret table mapping each element in TPTS(i) to a
unique prime number randomly chosen from I(i). More precisely, each party
Pi keeps a set S(i) of already assigned prime numbers from I(i) which is initial-
ized with ∅. Pi then maps each trader partner tuple (x(i), y(i)) ∈ TPTS(i) to

a prime number p
(i)

(x(i),y(i))
←$ PI(i)\S(i). Subsequently, p(x(i),y(i)) is added to

S(i). Once all parties have established their mapping tables, all parties engage
in the consecutive computation of an encrypted prime number product for

each ϕj ∈ Φ. Each party Pi contributes a single prime number p
(i)

TPT
(i)
j

to the

encrypted prime number product associated with ϕj ∈ Φ: First, Pι computes

u
(ι)
j = E(p

(ι)

TPT
(ι)
j

) (j ∈ N|TPCS|) and sends the result to Pι−1. Each party

Pi′ from i′ = ι − 1 to 1 then computes u
(i′)
j = u

(i′+1)
j ×h pTPT (i′)

j

and sends

the results to Pi′−1, except P1 which sets E(L′) := (E(e′1), . . . , E(e′|TPCS|)) :=

(u
(1)
1 , . . . , u

(1)
|TPCS|) and broadcasts E(L′). This mapping of trade partner con-

stellations to prime number products is the central idea of this protocol and
ensures the correctness and the security of the protocol.

4. Selection Phase: From the previous phases, each ϕj is associated with two
values E(ej) and E(e′j) where ej ∈ {0, 1} indicates whether or not ϕj is
satisfied while e′j is a product of individual prime numbers encoding the
trade partner tuples of each party w.r.t. ϕj . In this phase, the parties now
jointly compute πCRS-C on the common input (E(L), E(L′)) in order to select
an entry of E(L′) associated with a randomly selected ϕj ∈ Φsat for the case
that Φsat 6= ∅ (i.e., PTPCS 6= ∅). Otherwise, in the case that Φsat = ∅
(i.e., PTPCS = ∅), the parties learn of this fact. In the former case, πCRS-C

returns a randomly selected pair (c∗1, c
∗
2) ∈ (E(L), E(L′)) with c∗1 = E(e∗1) and

c∗2 = E(e∗2). In the latter case where e1 = . . . = e|TPCS| = 0, πCRS-C(L,L′)
returns (c∗1, c

∗
2) with c∗1 = c∗2 = λ which prompts each party Pi to output⊥ and

to terminate the protocol. The purpose for this approach is to hide the number
of satisfied formulas (for the case that Φsat 6= ∅) as this could otherwise not
be simulated given the inputs and outputs of the set of corrupted parties.

5. Decryption Phase: Each party learns e∗2 from jointly decrypting c∗2 together
with all other parties.

6. Reverse Mapping Phase: Each party Pi checks which prime in S(i) divides e∗2.

The unique result TPT
(i)
∗ determines Pi’s trading partners w.r.t. ϕ

Q∼ ATPC.

7. Output Phase: Each party Pi outputs TPT
(i)
∗ .

Theorem 1. Let Pi hold q(i) (i ∈ P) and let TPCS be public. Then protocol
πATPC-Sel securely computes functionality FATPC-Sel in the semi-honest model.

Proof. (COD.) In order to prove COD, we distinguish two cases: (i) TPCS ⊇
PTPCS = ∅ and (ii) TPCS ⊇ PTPCS 6= ∅. For case (i), the output of
πATPC-Sel is fixed; each party outputs ⊥. For case (ii), we have to show ATPC =

(TPT
(1)
∗ , . . . , TPT

(ι)
∗) is selected uniformly at random from PTPCS.

(i) For the case that TPCS ⊇ PTPCS = ∅, the Evaluation Phase of πATPC-Sel

returns a vector E(L) = (E(e1), . . . , E(e|TPCS|)) where e1 = . . . = e|TPCS| =
0 since there exists no ϕ ∈ Φ such that JϕK = 1. This implies that in the

21

Selection Phase of πATPC-Sel, πCRS-C(E(L), E(L′)) returns (λ, λ). Then, each
party Pi (i ∈P) outputs ⊥ and the protocol terminates.

(ii) For the case that TPCS ⊇ PTPCS 6= ∅, the Evaluation Phase of πATPC-Sel

computes a vector E(L) = (E(e1), . . . , E(e|TPCS|)) with ej = JϕjK and L has
Hamming weight |Φsat|. πCRS-C(E(L), E(L′)), called in the Selection Phase
of πATPC-Sel, returns (E(e∗1), E(e∗2)) for a random j ∈ N|TPCS| such that

e∗1 = e′j = JϕjK = 1 (ϕj ∈ Φsat) and e∗2 = p
(1)

TPT
(1)
j

· . . . · p(ι)

TPT
(ι)
j

. After jointly

decrypting E(e∗2) in the Decryption Phase of πATPC-Sel, each party Pi obtains

e∗2 and sets its TPT
(i)
∗ := TPT

(i)
j for p

(i)

TPT
(i)
j

∈ S(i) where p
(i)

TPT
(i)
j

divides e∗2.

Overall, it follows that ATPC ←$ PTPCS ⊆ TPCS.

Altogether, πATPC-Sel provides a correct distribution of the output for both cases.
(CVD.) By separating the different phases of Protocol 2, we sketch a simulator

S which outputs a transcript computationally indistinguishable from VIEWπ
IC

(X̂).
Table 5 in Appendix B provides a detailed description of S . The number of
messages m a party Pi (i ∈ P) receives when participating in πATPC-Sel de-
pends on the party’s position in the protocol execution and on whether or not
PTPCS = ∅ (cf. Table 5, Appendix B). By applying the modular composi-
tion theorem, it suffices for S to simulate the output of πOE-TPCF, πCRS-C,
and π(τ ,ι)-Dec by means of a trusted third party performing the computation
of FOE-TPCF, FCRS-C, and F(τ ,ι)-Dec, respectively. In the Evaluation Phase of
πATPC-Sel, the joint outputs of the |TPCS| sub-protocol calls of πOE-TPCF are
simulated by setting 〈E(L)〉 := (〈E(e1)〉, . . . , 〈E(e|TPCS|)〉) where 〈E(ej)〉 ←$ C
(j ∈ N|TPCS|). For each Pc (c ∈ IC = {i1, . . . , iκ}), S sets 〈mc,1〉 := 〈E(L)〉.
The Mapping Phase can be simulated by performing Steps 3.1 - 3.4 of Proto-
col 2 for each party Pi (i ∈ P). From the simulated mapping tables, S can

simulate (u
(i)
1 , . . . , u

(i)
|TPCS|) (cf. Steps 3.2 and 3.3, Protocol 2) and E(L′) (cf.

Step 3.4, Protocol 2). 〈mc,2〉 is set to (〈u(c+1)
1 〉, . . . , 〈u(c+1)

|TPCS|〉) for c ∈ IC\{ι}
while 〈mc,3〉 is set to 〈E(L′)〉 for c ∈ IC\{1}. Furthermore, S computes 〈e′j〉
(j ∈ N|TPCS|) from the simulated mapping tables (where one of these values is
used to simulate the Decryption Phase). The simulation of the Selection Phase
depends on whether or not F(X̂) = ⊥. For the case that F(X̂) 6= ⊥, the output
of πCRS-C is simulated by setting 〈c∗1〉, 〈c∗2〉 ←$ C. Otherwise, 〈c∗1〉 = 〈c∗2〉 := λ.
For each Pc, S sets 〈mc,1〉 := (〈c∗1〉, 〈c∗2〉). The Decryption Phase is only exe-

cuted for the case that F(X̂) 6= ⊥. The output of π(τ ,ι)-Dec is simulated by

setting 〈e∗2〉 := 〈e′j〉 where j ∈ N|TPCS| is chosen such that ϕj
Q∼ TPCj with

TPT
(i1)
j = TPT

(i1)
∗ , . . . , TPT

(iκ)
j = TPT

(iκ)
∗ . Note that otherwise, 〈e∗2〉 is not

consistent with F(X̂). For each Pc, 〈mc,5〉 is set to 〈e∗2〉.
Due to the fact that the underlying cryptosystem is semantically secure, it fol-

lows that the simulated view is computationally indistinguishable from VIEWπ
IC

.
Furthermore, S is designed in such a way that the simulated view fits to the par-
ties output.

Complexity. Let OOE-TPCF, OCRC-C, and ODec denote the computation, com-
munication, and round complexities of πOE-TPCF, πCRS-C, π(τ ,ι)-Dec, respectively,
depending on the context. The computation complexity of πATPC-Sel is domi-
nated by the sub-protocol calls and |TPCS| homomorphic scalar multiplications

22

and overall is in O(|TPCS|+ |TPCS| ·OOE-TPCF +OCRC-C +ODec). In order to
determine the communication and round complexities of πOE-TPCF, the staggered
message exchange for computing E(L′) has to be considered. The communication
complexity of πATPC-Sel is in O(ι·|TPCS|+|TPCS|·OOE-TPCF +OCRC-C +ODec)
while the round complexity is in O(ι+ |TPCS| ·OOE-TPCF +OCRC-C +ODec).

6.2 Negotiation of Actual Quantities

In order to complete the (privacy-preserving) bartering process, i.e., for each
party to compute its local view of the AT based on the ATPC, each party has
to negotiate the actual quantities of the commodities to be traded with its trading
partner. This can be done by engaging in the two-party protocol πRSI for ω = 0
(as introduced in [FMW+14]) with each one of its trading partners. That is for

each TPT
(i)
∗ = (x

(i)
∗ , y

(i)
∗) 6= (0, 0), Pi and Py(i) participate in an execution of

(q
(i,y(i))

c
(i)
o

)← πRSI(Q
(y(i))
d , Q

(i)
o) where q

(i,y(i))

c
(i)
o

indicates the quantity of c
(i)
o Pi has

to send to Py(i) . Note that q
(i,y(i))

c
(i)
o

is chosen uniformly at random from Q
(y(i))
d ∩Q(i)

o

which honors the specified quantity ranges of the parties without preferring any
one of them.

6.3 Optimization of ATPC Selection

Until now, we assumed that the actual trade partner constellation ATPC was
drawn uniformly at random from the set of potential trade partner constellations
PTPCS. We now sketch a simple modification of protocol πATPC-Sel which allows
the private selection of an ATPC with maximum welfare as optimization criteria,
where the welfare W(·) of a TPC is defined as the number of parties actively
involved in the trade: W(TPC) := |{TPT (i) : i ∈P, TPT (i) ∈ TPC, TPT (i) 6=
(0, 0)}|.

The first step of our protocol modification is to introduce a prioritization
of the TPCs given by TPCS: At the end of the Evaluation Phase (Step 2.2
in Protocol 2), the parties locally multiply the evaluation result E(ei) with
W(TPCi) (∀i ∈ N|TPCS|) resulting in a vector E(L) = (E(e1) ×h W(TPC1),
. . . , E(e|TPCS|) ×h W(TPC|TPCS|)). The second step of our modification is to
replace the protocol call of πCRS-C (Step 4.1, Protocol 2) by a variant of condi-
tional random selection (also introduced in [WMFW]) which supports an integer
indicator vector instead of just a binary indicator vector (cf. Definition 9). In the
context of Protocol 2, this variant of πCRS-C returns (c∗1, c

∗
2) := (E(ej∗), E(e′j∗))

where j∗ ←$ {j ∈ N|TPCS| : ej = max(e1, . . . , e|TPCS|)}.
Similar optimization criteria (e.g., for each TPC given by TPCS a party

individually determines the corresponding utility value and the welfare of a given
TPC corresponds to the sum of utility values over all parties) can be integrated
into protocol πATPC-Sel analogously.

7 Conclusion & Future Work

In this paper, we presented a privacy-preserving multi-party process for deter-
mining an actual trade from a given set of trade partner constellations which is

23

secure in the semi-honest model. Going forward, we plan to devise and imple-
ment a privacy-preserving bartering system which uses our novel protocol at its
core. Devising such a system raises further research questions like how to design
the dynamics of the system, i.e., at what point the quotes of which parties should
be considered for determining an actual trade. Furthermore, we plan to investi-
gate the representation and processing of more complex commodities comprising
several attributes.

References

[ABO04] E. Aı̈meur, G. Brassard., and F. S. Mani Onana. Blind Sales in Electronic Com-
merce. In Proceedings of the 6th International Conference on Electronic Commerce,
pages 148–157. ACM, 2004.

[AL11] G. Asharov and Y. Lindell. A Full Proof of the BGW Protocol for Perfectly-
Secure Multiparty Computation. Cryptology ePrint Archive, Report 2011/136,
2011. http://eprint.iacr.org/2011/136.

[Ald15] L. Alderman. Trading Meat for Tires as Bartering Economy Grows in Greece, 2015.
http://www.theorderoftime.com/politics/cemetery/stout/h/pbb-24.htm.

[AMP04] G. Aggarwal, N. Mishra, and B. Pinkas. Secure Computation of the kth-Ranked
Element. In Advances in Cryptology - EUROCRYPT 2004: International Confer-
ence on the Theory and Applications of Cryptographic Techniques, pages 40–55.
Springer Berlin Heidelberg, 2004.

[BCD+09] P. Bogetoft, D. L. Christensen, I. Damg̊ard, M. Geisler, T. Jakobsen, M. Krøigaard,
J. D. Nielsen, J. B. Nielsen, K. Nielsen, J. Pagter, M. Schwartzbach, and T. Toft.
Secure multiparty computation goes live. In Financial Cryptography and Data Se-
curity: 13th International Conference, pages 325–343. Springer Berlin Heidelberg,
2009.

[BOGW88] M. Ben-Or, S. Goldwasser, and A. Wigderson. Completeness Theorems for Non-
cryptographic Fault-tolerant Distributed Computation. In Proceedings of the
Twentieth Annual ACM Symposium on Theory of Computing, pages 1–10. ACM,
1988.

[Bra02] F. Brandt. A Verifiable, Bidder-Resolved Auction Protocol. In 5th International
Workshop on Deception, Fraud and Trust in Agent Societies, pages 18–25, 2002.

[Bri] Encyclopedia Britannica. http://www.britannica.com/topic/barter-trade.
[Can00] R. Canetti. Security and Composition of Multiparty Cryptographic Protocols.

Journal of Cryptology, 13(1):143–202, 2000.
[CDN01] R. Cramer, I. Damg̊ard, and J. B. Nielsen. Multiparty Computation from Thresh-

old Homomorphic Encryption. In Advances in Cryptology - EUROCRYPT 2001:
International Conference on the Theory and Application of Cryptographic Tech-
niques, pages 280–300. Springer Berlin Heidelberg, 2001.

[CT12] E. De Cristofaro and G. Tsudik. Experimenting with Fast Private Set Intersection.
In Trust and Trustworthy Computing: 5th International Conference, pages 55–73.
Springer Berlin Heidelberg, 2012.

[DJ01] I. Damg̊ard and M. Jurik. A Generalisation, a Simplification and Some Applica-
tions of Paillier’s Probabilistic Public-Key System. In Proceedings of the 4th In-
ternational Workshop on Practice and Theory in Public Key Cryptography, pages
119–136. Springer-Verlag, 2001.

[Dwo06] C. Dwork. Differential Privacy. In Automata, Languages and Programming: 33rd
International Colloquium, pages 1–12. Springer Berlin Heidelberg, 2006.

[EA05] F. S. Mani Onana E. Aı̈meur, G. Brassard. Blind Negotiation in Electronic Com-
merce. In Montreal Conference on eTechnologies, pages 1–9, 2005.

[FMW+14] F. Förg, D. Mayer, S. Wetzel, S. Wüller, and U. Meyer. A secure two-party bar-
tering protocol using privacy-preserving interval operations. In Twelfth Annual
International Conference on Privacy, Security and Trust, pages 57–66, 2014.

[FO08] K. Frikken and L. Opyrchal. PBS: Private Bartering Systems. In Financial Cryptog-
raphy and Data Security: 12th International Conference, pages 113–127. Springer
Berlin Heidelberg, 2008.

24

[FPS01] P.-A. Fouque, G. Poupard, and J. Stern. Sharing Decryption in the Context of
Voting or Lotteries. In Financial Cryptography: 4th International Conference, pages
90–104. Springer Berlin Heidelberg, 2001.

[FT98] M. Franklin and G. Tsudik. Secure Group Barter: Multi-Party Fair Exchange with
Semi-Trusted Neutral Parties. In Financial Cryptography: Second International
Conference, pages 90–102. Springer Berlin Heidelberg, 1998.

[GMW87] O. Goldreich, S. Micali, and A. Wigderson. How to Play ANY Mental Game. In
Proceedings of the Nineteenth Annual ACM Symposium on Theory of Computing,
pages 218–229. ACM, 1987.

[Gol09] O. Goldreich. Foundations of Cryptography: Volume 2, Basic Applications. Cam-
bridge University Press, 2009.

[HL10] C. Hazay and Y. Lindell. Efficient Secure Two-Party Protocols. Springer-Verlag
Berlin Heidelberg, 2010.

[KL07] J. Katz and Y. Lindell. Introduction to Modern Cryptography. Chapman &
Hall/CRC, 2007.

[KMRR15] S. Kannan, J. Morgenstern, R. Rogers, and A. Roth. Private Pareto Optimal
Exchange. In Proceedings of the Sixteenth ACM Conference on Economics and
Computation, pages 261–278. ACM, 2015.

[Kol06] V. Kolesnikov. Secure Two-Party Computation and Communication. PhD thesis,
University of Toronto, 2006.

[LNRR03] N. López, M. Núñez, I. Rodŕıguez, and F. Rubio. A Multi-agent System for e-
Barter Including Transaction and Shipping Costs. In Proceedings of the 2003 ACM
Symposium on Applied Computing, pages 587–594. ACM, 2003.

[May12] D. Mayer. Design and Implementation of Efficient Privacy-Preserving and Unbi-
ased Reconciliation Protocols. PhD thesis, Stevens Institute of Technology, 2012.

[min] mint.com. Barter System History: The Past and Present. https://www.mint.com/
barter-system-history-the-past-and-present.

[NS11] T. Nishide and K. Sakurai. Distributed Paillier Cryptosystem without Trusted
Dealer. In Information Security Applications: 11th International Workshop, pages
44–60. Springer Berlin Heidelberg, 2011.

[NSY04] J. Nzouonta, M.-C. Silaghi, and M. Yokoo. Secure Computation for Combinato-
rial Auctions and Market Exchanges. In Proceedings of the Third International
Joint Conference on Autonomous Agents and Multiagent Systems, pages 1398–
1399. IEEE Computer Society, 2004.

[Pai99] P. Paillier. Public-Key Cryptosystems Based on Composite Degree Residuosity
Classes. In Advances in Cryptology - EUROCRYPT ’99: International Confer-
ence on the Theory and Application of Cryptographic Techniques, pages 223–238.
Springer Berlin Heidelberg, 1999.

[Sto] J. H. Stout. The History of Bartering and Money. http://www.theorderoftime.

com/politics/cemetery/stout/h/pbb-24.htm.
[WMFW] S. Wüller, U. Meyer, F. Förg, and S. Wetzel. Privacy-Preserving Conditional

Random Selection (Extended Version). https://itsec.rwth-aachen.de/people/
PPCRS_Extended.pdf/view.

[WMFW15] S. Wüller, U. Meyer, F. Förg, and S. Wetzel. Privacy-Preserving Conditional
Random Selection. In 13th Annual Conference on Privacy, Security and Trust
(PST), pages 44–53, 2015.

[Yao82] A. C. Yao. Protocols for Secure Computations. In 23rd Annual Symposium on
Foundations of Computer Science, pages 160–164, 1982.

25

TPCj TCj ϕj
TPC1 = ((5, 2), (1, 3),
(2, 4), (3, 5), (4, 1))

TC1 = ({1, 2, 3, 4, 5}, {(1, 2),
(2, 3), (3, 4), (4, 5), (5, 1)})

ϕ1 = C(q(1),q(5)) ∧R(q(1),q(5)) ∧
C(q(2),q(1)) ∧R(q(2),q(1)) ∧
C(q(3),q(2)) ∧R(q(3),q(2)) ∧
C(q(4),q(3)) ∧R(q(4),q(3)) ∧
C(q(5),q(4)) ∧R(q(5),q(4))

TPC2 = ((4, 2), (1, 3),
(2, 5), (5, 1), (3, 4))

TC2 = ({1, 2, 3, 4, 5}, {(1, 2),
(2, 3), (3, 5), (5, 4), (4, 1)})

ϕ2 = C(q(1),q(4)) ∧R(q(1),q(4)) ∧
C(q(2),q(1)) ∧R(q(2),q(1)) ∧
C(q(3),q(2)) ∧R(q(3),q(2)) ∧
C(q(4),q(5)) ∧R(q(4),q(5)) ∧
C(q(5),q(3)) ∧R(q(5),q(3))

TPC3 = ((5, 2), (1, 4),
(4, 5), (2, 3), (3, 1))

TC3 = ({1, 2, 3, 4, 5}, {(1, 2),
(2, 4), (4, 3), (3, 5), (5, 1)})

ϕ3 = C(q(1),q(5)) ∧R(q(1),q(5)) ∧
C(q(2),q(1)) ∧R(q(2),q(1)) ∧
C(q(3),q(4)) ∧R(q(3),q(4)) ∧
C(q(4),q(2)) ∧R(q(4),q(2)) ∧
C(q(5),q(3)) ∧R(q(5),q(3))

.

Table 3: TPC1 to TPC3 of TPCS written as trade cycle and trade partner constellation formula.

Appendix A - Example

In our example, we visualize a trade partner constellation as a directed graph
which we call trade partner constellation graph.

Definition 13. (Trade Partner Constellation Graph.) Given TPC = (TPT (1),
..., TPT (ι)), a trade partner constellation graph is a graph (V,E) with V :=
{1, . . . , ι} and E := {(i, y(i))|TPT (i) = (x(i), y(i)) 6= (0, 0)}. An m-cycle in a
trade partner constellation graph is referred to as m-trade cycle (m−TC) of the
corresponding TPC.

We consider five parties Pi (i ∈ {1, . . . , 5} = P ′ = P) with private input q(i)

which aim to find a 5−TC as an actual trade partner constellation. Overall, there
exist (5 − 1)! = 24 5−TCs.10 In the following, we show how πATPC-Sel proceeds
to determine such a 5−TC. As input, the protocol takes Q = {q(1), . . . ,q(5)}
and TPCS which consists of all the (5− 1)! possible 5−TCs.

For each 5−TCj with a corresponding TPCj ∈ TPCS = {TPC1, . . . , TPC24},
each party constructs ϕj

Q∼ TPCj (j ∈ N24) (Table 3 exemplarily lists TPC1 to
TPC3 along with the corresponding 5−TCs and TPCF s). After obliviously eval-
uating each ϕj ∈ Φ by calling πOE-TPCF, each party holds E(L) = (E(e1), . . . ,
E(e24)) with ej = JϕjK and j ∈ N24. Based on TPCS, each party Pi deter-
mines its TPTS(i) and maps each (x(i), y(i)) ∈ TPTS(i) to a unique prime

number p
(i)

(x(i),y(i))
∈ PI(i) . In our example we assume that I(1) = [0, 1000],

I(2) = [1001, 2000] and so on. For ϕ1 to ϕ3, Table 4 illustrates the mapping
from trade partner tuples to prime numbers for all parties.

10 Note that the computation of the number of n-trade cycles for n parties which is (n − 1)!
distinguishes from computing the amount of permutations of n-tuples from a domain of
cardinality n without repetition which is calculated by n!: all permutation of tuples which
can be equalized by shifting the elements to the left or right with wrap-around are isomorphic
to exactly one cycle. There are (n− 1) · (n− 1)! of those tuples which can easily be verified.

26

ϕ1 ϕ2 ϕ3 ...

P1 (5, 2) : 73 (4, 2) : 17 (5, 2) : 73 ...
P2 (1, 3) : 1021 (1, 3) : 1021 (1, 4) : 1997 ...
P3 (2, 4) : 2503 (2, 5) : 2837 (4, 5) : 2797 ...
P4 (3, 5) : 3637 (5, 1) : 3559 (2, 3) : 3221 ...
P5 (4, 1) : 4801 (3, 4) : 4583 (3, 1) : 4003 ...

Table 4: Mapping trade partner tuples to prime numbers.

As described above, the parties then jointly compute the encrypted prime
number products

E(e′j) = E(p
(5)

TPT
(5)
j

· p(4)

TPT
(4)
j

· p(3)

TPT
(3)
j

· p(2)

TPT
(2)
j

· p(1)

TPT
(1)
j

)

associated with each TPCj such that finally each party holds E(L′) = (E(e′1),
. . . , E(e′24)). In order to privately compute an ATPC, parties P1, . . . , P5 run
protocol ((c∗1, c

∗
2)) ← πCRS-C(E(L), E(L′)) where c∗1 is an encryption of e∗1 = 1

for the case that there exists at least one j ∈ N24 such that JϕjK = 1 and c∗2 is
the encrypted product e∗2 of prime factors mapped to the TPT s of a randomly
chosen ATPC from PTPCS. Note that for the case that there is no j such that
JϕjK = 1, (c∗1, c

∗
2) = (λ, λ) and πATPC-Sel returns ⊥.

For our example, we assume that Jϕ3K = 1 and that πCRS-C returns
(E(e∗1), E(e∗2)) with e∗1 = 1 and e∗2 = e′3 = E(5257384086990991). E(e∗2) is jointly
decrypted such that after decryption each party knows the plaintext e∗2. Each
party Pi then performs local trial divisions by successively dividing e∗2 by a prime
number from S(i) until the first prime number is found which divides e∗2. By map-
ping the matching prime number back to the corresponding TPT , Pi then learns
its trade partners for the privately selected ATPC. In our example P1, deter-
mines that 73 ∈ S(1) divides e∗2 which according to P1’s mapping table implies
that P1 receives its desired commodity (of some quantity) from P5 and has to
send its offered commodity (of some quantity) to P2. Subsequently, P1 engages
with each of P5 and P2 in the two-party protocol πRSI to determine the actual

quantities at which the commodities c
(1)
o and c

(1)
d will be traded.

27

Appendix B - Simulators

Input of S: IC , TPCS, X̂IC = (q(i1), . . . ,q(iκ)), F(X̂) = ⊥ or F(X̂) = (TPT
(1)
∗ , . . . , TPT

(ι)
∗)

1 Construction Phase
Nothing to simulate

2 Evaluation Phase
2.1 Simulate E(L) = (E(e1), . . . , E(e|TPCS|)) by selecting 〈E(ej)〉 ←$ C (j ∈ N|TPCS|).
2.2 For each Pc (c ∈ IC = {i1, . . . , iκ}), set 〈mc,1〉 := 〈E(L)〉 = (〈E(e1)〉, . . . , 〈E(e|TPCS|)〉).

3 Mapping Phase
3.1 For each Pi (i ∈P):

3.1.1 Follow Steps 3.1 - 3.4 of Protocol 2.
3.2 For each Pc (c ∈ IC):

3.2.1 Set 〈̊rc〉 := 〈r〉 where 〈r〉 is a concatenation of |TPCS| elements drawn uniformly at

random from Z∗
N2 used for the simulation of Pc’s computation of u

(c)
1 , . . . , u

(c)
|TPCS| in

Step 3.1.1 of S.
3.2.2 If c 6= ι:

3.2.2.1 Set 〈mc,2〉 := (〈u(c+1)
1 〉, . . . , 〈u(c+1)

|TPCS|〉) which is simulated in Step 3.1.1 of S.

3.2.3 If c 6= 1:
3.2.3.1 Set 〈mc,3〉 := 〈E(L′)〉 which is simulated in Step 3.1.1 of S.

3.3 Compute 〈e′j〉 (j ∈ N|TPCS|) from the simulated mapping tables in Step 3.1.1 of S.
4 Selection Phase

4.1 If F(X̂) 6= ⊥:
4.1.1 Select 〈c∗1〉, 〈c∗2〉 ←$ C.

4.2 Else:
4.2.1 Set 〈c∗1〉 = 〈c∗2〉 := λ.

4.3 For each Pc (c ∈ IC), set 〈mc,4〉 := (〈c∗1〉, 〈c∗2〉).
5 Decryption Phase

5.1 If F(X̂) 6= ⊥:

5.1.1 Set 〈e∗2〉 := 〈e′j〉 where j ∈ N|TPCS| s.t. ϕj ∼ TPCj with TPT
(i1)
j =

TPT
(i1)
∗ , . . . , TPT

(iκ)
j = TPT

(iκ)
∗ .

5.1.2 For each Pc (c ∈ IC), set 〈mc,5〉 := 〈e∗2〉.
6 Reverse Mapping Phase & Output Phase

Nothing to simulate
7 If F(X̂) 6= ⊥:

7.1 If 1 ∈ IC : Set 〈VIEWπ
1 (X̂)〉 := (〈q(1)〉, 〈̊r1〉, 〈m1,1〉, 〈m1,2〉, 〈m1,4〉, 〈m1,5〉).

7.2 If ι ∈ IC : Set 〈VIEWπ
ι (X̂)〉 := (〈q(ι)〉, 〈̊rι〉, 〈mι,1〉, 〈mι,3〉, 〈mι,4〉, 〈mι,5〉).

7.3 For each Pc (c ∈ IC\{1, ι}), set 〈VIEWπ
c′ (X̂)〉 := (〈q(c′)〉, 〈̊rc′ 〉, 〈mc′,1〉, . . . , 〈mc′,5〉).

8 Else: Set 〈VIEWπ
c (X̂) (c ∈ IC) as in Step 7 of S but remove 〈mc,5〉 from each view.

Output of S: 〈VIEWπ
IC

(X̂)〉

Table 5: Detailed description of simulator S for πATPC-Sel.

28

Input of S: IC , ϕ, X̂IC = (q(i1), . . . ,q(iκ)), F(X̂) = E(e)

For Pc with c ∈ IC , c ∈P′:

1 If Pc = Pd1 (⇒ Pc 6= Po1):
1.1 Simulating the demander role of Pc

1.1.1 Select 〈r1〉, . . . , 〈r|C |〉 ←$ Z∗N and set 〈r〉 := (〈r1〉, . . . , 〈r|C |〉)
(used for computing e

(d1)
1 , . . . , e

(d1)
|C |).

1.1.2 Select 〈rK〉 ←$ Z∗N (used for the randomization of K1 or K2).
1.1.3 Select 〈w1〉 ←$ {0, 1} and set 〈mc,1〉 := 〈w1〉.
1.1.4 If o1 ∈ IC :

1.1.4.1 Compute 〈K1〉, 〈K2〉 (Step 1.5, Protocol 1) by using 〈mo1,6〉, 〈rK1 〉, 〈rK2 〉 from

〈VIEWπ
o1

(X̂)〉 and the knowledge of c
(o1)
o and e

(d1)
1 , . . . , e

(d1)
|C | .

1.1.5 Else:
1.1.5.1 Select 〈K1〉, 〈K2〉 ←$ C.

1.1.6 Set 〈mc,2〉 := 〈K1〉 and 〈mc,3〉 := 〈K2〉.
1.1.7 If dι′ ∈ IC :

1.1.7.1 Set 〈mc,4〉 := 〈mdι′ ,7〉.
1.1.8 Else:

1.1.8.1 Set 〈mc,4〉 ←$ C.
1.2 Simulating the offerer role of Pc (Let jc ∈ {2, . . . , ι′} s.t. Pc = Pojc)

1.2.1 Select 〈rK1
〉, 〈rK2

〉 ←$ Z∗N (used for the computation of K1 and K2).
1.2.2 Set 〈̊rc〉 := (〈r〉, 〈rK〉, 〈rK1

〉, 〈rK2
〉).

1.2.3 If djc ∈ IC :

1.2.3.1 Compute 〈e(djc)1 〉, . . . , 〈e(djc)|C | 〉 (Protocol 1, Step 1.2) using 〈r〉 and 〈mdjc ,7〉 from

〈VIEWπ
djc

(X̂)〉.
1.2.4 Else:

1.2.4.1 Select 〈e(djc)1 〉, . . . , 〈e(djc)|C | 〉 ←$ C.

1.2.5 Set 〈mc,5〉 := (〈e(djc)1 〉, . . . , 〈e(djc)|C | 〉).
1.2.6 If djc ∈ IC :

1.2.6.1 Set 〈w2〉 s.t. 〈w2〉 ⊕ 〈mdjc ,1〉 indicates whether or not q
(djc)

d < q
(djc)
o .

1.2.7 Else:
1.2.7.1 Select 〈w2〉 ←$ {0, 1}.

1.2.8 Set 〈mc,6〉 := 〈w2〉.
1.2.9 Set 〈VIEWπ

c (X̂)〉 := (〈q(c)〉, 〈̊rc〉, 〈mc,1〉, . . . , 〈mc,6〉).
2 Else:

2.1 Simulating the demander role of Pc (Let j ∈ {2, . . . , ι′} s.t. Pc = Pdj)
2.1.1 If dj−1 ∈ IC :

2.1.1.1 Compute 〈E(bj−1)〉 (Protocol 1, Step 1.6) by using 〈rK〉, 〈mdj−1,1〉, 〈mdj−1,2〉, and

〈mdj−1,3〉 from 〈VIEWπ
dj−1

(X̂)〉.
2.1.2 Else

2.1.2.1 Select 〈E(bj−1)〉 ←$ C.
2.1.3 Set 〈mc,7〉 := 〈E(bj−1)〉.
2.1.4 Proceed as in Steps 1.1.1 - 1.1.8.

2.2 Simulating the offerer role of Pc (Let jc ∈ {1, . . . , ι′} s.t. Pc = Pojc)
2.2.1 Proceed as in Steps 1.2.1 - 1.2.2.
2.2.2 If Pc = Po1 :

2.2.2.1 If d1 ∈ IC :

2.2.2.1.1 Compute 〈e(d1)1 〉, . . . , 〈e(d1)|C | 〉 (Protocol 1, Step 1.1) using 〈r〉 from 〈VIEWπ
d1

(X̂)〉.
2.2.2.2 Else:
2.2.2.2.1 Select 〈e(d1)1 〉, . . . , 〈e(d1)|C | 〉 ←$ C.

2.2.3 Else:
2.2.3.1 Proceed as in Steps 1.2.3 - 1.2.5.

2.2.4 Proceed as in Steps 1.2.6 - 1.2.8.
2.2.5 Set 〈VIEWπ

i (X̂)〉 := (〈q(c)〉, 〈̊rc〉, 〈mc,1〉, . . . , 〈mc,7〉).

Output of S: 〈VIEWπ
IC

(X̂)〉

Table 6: Detailed description of simulator S for πOE-TPCF.

29

30

Aachener Informatik-Berichte

This list contains all technical reports published during the past three years.

A complete list of reports dating back to 1987 is available from:

http://aib.informatik.rwth-aachen.de/

To obtain copies please consult the above URL or send your request to:

Informatik-Bibliothek, RWTH Aachen, Ahornstr. 55, 52056 Aachen,

Email: biblio@informatik.rwth-aachen.de

2013-01 ∗ Fachgruppe Informatik: Annual Report 2013

2013-02 Michael Reke: Modellbasierte Entwicklung automobiler Steuerungssys-

teme in Klein- und mittelständischen Unternehmen

2013-03 Markus Towara and Uwe Naumann: A Discrete Adjoint Model for Open-

FOAM

2013-04 Max Sagebaum, Nicolas R. Gauger, Uwe Naumann, Johannes Lotz, and

Klaus Leppkes: Algorithmic Differentiation of a Complex C++ Code

with Underlying Libraries

2013-05 Andreas Rausch and Marc Sihling: Software & Systems Engineering Es-

sentials 2013

2013-06 Marc Brockschmidt, Byron Cook, and Carsten Fuhs: Better termination

proving through cooperation

2013-07 André Stollenwerk: Ein modellbasiertes Sicherheitskonzept für die ex-

trakorporale Lungenunterstützung

2013-08 Sebastian Junges, Ulrich Loup, Florian Corzilius and Erika Ábrahám: On

Gröbner Bases in the Context of Satisfiability-Modulo-Theories Solving

over the Real Numbers

2013-10 Joost-Pieter Katoen, Thomas Noll, Thomas Santen, Dirk Seifert, and

Hao Wu: Performance Analysis of Computing Servers using Stochastic

Petri Nets and Markov Automata

2013-12 Marc Brockschmidt, Fabian Emmes, Stephan Falke, Carsten Fuhs, and

Jürgen Giesl: Alternating Runtime and Size Complexity Analysis of In-

teger Programs

2013-13 Michael Eggert, Roger Häußling, Martin Henze, Lars Hermerschmidt,

René Hummen, Daniel Kerpen, Antonio Navarro Pérez, Bernhard

Rumpe, Dirk Thißen, and Klaus Wehrle: SensorCloud: Towards the In-

terdisciplinary Development of a Trustworthy Platform for Globally In-

terconnected Sensors and Actuators

2013-14 Jörg Brauer: Automatic Abstraction for Bit-Vectors using Decision Pro-

cedures

2013-16 Carsten Otto: Java Program Analysis by Symbolic Execution

2013-19 Florian Schmidt, David Orlea, and Klaus Wehrle: Support for error tol-

erance in the Real-Time Transport Protocol

2013-20 Jacob Palczynski: Time-Continuous Behaviour Comparison Based on

Abstract Models

2014-01 ∗ Fachgruppe Informatik: Annual Report 2014

2014-02 Daniel Merschen: Integration und Analyse von Artefakten in der mod-

ellbasierten Entwicklung eingebetteter Software

31

2014-03 Uwe Naumann, Klaus Leppkes, and Johannes Lotz: dco/c++ User Guide

2014-04 Namit Chaturvedi: Languages of Infinite Traces and Deterministic Asyn-

chronous Automata

2014-05 Thomas Ströder, Jürgen Giesl, Marc Brockschmidt, Florian Frohn,

Carsten Fuhs, Jera Hensel, and Peter Schneider-Kamp: Automated Ter-

mination Analysis for Programs with Pointer Arithmetic

2014-06 Esther Horbert, Germán Mart́ın Garćıa, Simone Frintrop, and Bastian

Leibe: Sequence Level Salient Object Proposals for Generic Object De-

tection in Video

2014-07 Niloofar Safiran, Johannes Lotz, and Uwe Naumann: Algorithmic Dif-

ferentiation of Numerical Methods: Second-Order Tangent and Adjoint

Solvers for Systems of Parametrized Nonlinear Equations

2014-08 Christina Jansen, Florian Göbe, and Thomas Noll: Generating Inductive

Predicates for Symbolic Execution of Pointer-Manipulating Programs

2014-09 Thomas Ströder and Terrance Swift (Editors): Proceedings of the In-

ternational Joint Workshop on Implementation of Constraint and Logic

Programming Systems and Logic-based Methods in Programming Envi-

ronments 2014

2014-14 Florian Schmidt, Matteo Ceriotti, Niklas Hauser, and Klaus Wehrle:

HotBox: Testing Temperature Effects in Sensor Networks

2014-15 Dominique Gückel: Synthesis of State Space Generators for Model

Checking Microcontroller Code

2014-16 Hongfei Fu: Verifying Probabilistic Systems: New Algorithms and Com-

plexity Results

2015-01 ∗ Fachgruppe Informatik: Annual Report 2015

2015-02 Dominik Franke: Testing Life Cycle-related Properties of Mobile Appli-

cations

2015-05 Florian Frohn, Jürgen Giesl, Jera Hensel, Cornelius Aschermann, and

Thomas Ströder: Inferring Lower Bounds for Runtime Complexity

2015-06 Thomas Ströder and Wolfgang Thomas (Editors): Proceedings of the

Young Researchers’ Conference “Frontiers of Formal Methods”

2015-07 Hilal Diab: Experimental Validation and Mathematical Analysis of Co-

operative Vehicles in a Platoon

2015-08 Mathias Pelka, Jó Agila Bitsch, Horst Hellbrück, and Klaus Wehrle (Ed-

itors): Proceedings of the 1st KuVS Expert Talk on Localization

2015-09 Xin Chen: Reachability Analysis of Non-Linear Hybrid Systems Using

Taylor Models

2015-11 Stefan Wüller, Marián Kühnel, and Ulrike Meyer: Information Hiding in

the Public RSA Modulus

2015-12 Christoph Matheja, Christina Jansen, and Thomas Noll: Tree-like Gram-

mars and Separation Logic

2015-13 Andreas Polzer: Ansatz zur variantenreichen und modellbasierten En-

twicklung von eingebetteten Systemen unter Berücksichtigung regelungs-

und softwaretechnischer Anforderungen

2015-14 Niloofar Safiran and Uwe Naumann: Symbolic vs. Algorithmic Differen-

tiation of GSL Integration Routines

2016-01 ∗ Fachgruppe Informatik: Annual Report 2016

32

2016-02 Ibtissem Ben Makhlouf: Comparative Evaluation and Improvement of

Computational Approaches to Reachability Analysis of Linear Hybrid

Systems

2016-03 Florian Frohn, Matthias Naaf, Jera Hensel, Marc Brockschmidt, and

Jürgen Giesl: Lower Runtime Bounds for Integer Programs

2016-04 Jera Hensel, Jürgen Giesl, Florian Frohn, and Thomas Ströder: Proving

Termination of Programs with Bitvector Arithmetic by Symbolic Exe-

cution

2016-05 Mathias Pelka, Grigori Goronzy, Jó Agila Bitsch, Horst Hellbrück, and

Klaus Wehrle (Editors): Proceedings of the 2nd KuVS Expert Talk on

Localization

2016-06 Martin Henze, René Hummen, Roman Matzutt, Klaus Wehrle: The Sen-

sorCloud Protocol: Securely Outsourcing Sensor Data to the Cloud

2016-07 Sebastian Biallas : Verification of Programmable Logic Controller Code

using Model Checking and Static Analysis

2016-09 Thomas Ströder, Jürgen Giesl, Marc Brockschmidt, Florian Frohn,

Carsten Fuhs, Jera Hensel, Peter Schneider-Kamp, and Cornelius As-

chermann: Automatically Proving Termination and Memory Safety for

Programs with Pointer Arithmetic

∗ These reports are only available as a printed version.

Please contact biblio@informatik.rwth-aachen.de to obtain copies.

33

