
dco/c++: Derivative Code by Overloading in C++

Introduction and Summary of Features

Uwe Naumann
Klaus Leppkes
Johannes Lotz

Department of Computer Science
Technical Report

Aachener Informatik-Berichte (AIB) | ISSN 0935-3232 | AIB-2016-08
RWTH Aachen University | Department of Computer Science | July 2016

The publications of the Department of Computer Science of RWTH Aachen University are
in general accessible through the World Wide Web.

http://aib.informatik.rwth-aachen.de/

dco/c++: Derivative Code by Overloading in C++

Introduction and Summary of Features

Uwe Naumann
Klaus Leppkes
Johannes Lotz

Lehr- und Forschungsgebiet Informatik 12:
Software and Tools for Computational Engineering

RWTH Aachen University, Aachen, Germany
info@stce.rwth-aachen.de

Zusammenfassung Boosted by advanced type genericity and support for template metapro-
gramming techniques the role of C++ as the preferred language for large-scale numerical simulati-
on in Computational Science, Engineering and Finance has been strengthened over recent years.
Algorithmic Differentiation of numerical simulations and algorithmic adjoint methods in parti-
cular have seen substantial growth in interest due to increased requirement for gradient-based
techniques in high dimensions in the context of parameter sensitivity analysis and calibration,
uncertainty quantification, and nonlinear optimization. Modern software tools for (adjoint) Al-
gorithmic Differentiation in C++ make heavy use of modern C++ features aiming for increased
computational efficiency and decreased memory requirement. The dco/c++ tool presented in this
report aims to take Algorithmic Differentiation in C++ one step further by focussing on deriva-
tives of arbitrary order, support for shared-memory parallelism and powerful and intuitive user
interfaces in addition to competitive computational performance. Its algorithmic and software
quality has made dco/c++ the tool of choice in many industrial and academic projects. A proper
introduction of the tool has been missing so far. This report aims to fill this gap. Its focus is
on giving an overview of the functionality offered by dco/c++ and a more detailed discussion of
some features. A feature summary is given in the appendix.

1 Yet Another AD Tool?

Driven by the growing complexity of nonlinear optimization [52], data analysis/machine
learning [2] and general inverse problems [42] in Computational Science, Engineering and
Finance Algorithmic Differentiation (AD) [18,34] and its adjoint mode in particular has seen
a substantial increase in popularity over recent years. Software tools for AD can be classified
into source code transformation (e.g, OpenAD [48], TAF/TAC++ [51], Tapenade [23]) and
overloading (e.g, Adept [24], ADOL-C [16], CppAD [3]) tools. The former typically result
in better performing derivative code while the latter turn out to be easier to develop and
maintain in the context of the ongoing evolution of programming languages and computer
architectures. Hybrid approaches have been investigated including the NAG AD Compiler for
Fortran [38] which combines elements of source transformation at the level of the compiler’s
internal representation with overloading techniques provided by a run time support library.
Approaches that are independent of the programming language have also been explored in-
cluding AD transformations on universal intermediate formats such as XAIF [25] used by
OpenAD and AD applied to assembly code [11]. A large collection of AD software tools can
be found on the AD community’s web portal www.autodiff.org in addition to an extensive
bibliography and links to related workshops/conferences.

As of today there is no source transformation tool offering full support for the C++ pro-
gramming language. This gap is mostly due to the outstanding complexity and (type) gene-

ricity of C++. It is filled by overloading solutions. The dco/c++ AD tool falls into the same
category.

Most modern AD tools for C++ make extensive use of template metaprogramming tech-
niques in order to defer certain semantic transformations to compile time (e.g, the preaccu-
mulation of local gradients of right-hand sides of scalar assignments by means of expression
templates [41,24,?]) yielding a hybrid source transformation/overloading approach. The gap
in terms of performance between pure source transformation and this hybrid method for C++

is decreasing. Further progress in the development of the C++ programming language and cor-
responding compiler technology can be expected to enforce this tendency. Hence we consider
a combination of overloading and template metaprogramming supported by multithreading
and powerful application programming interfaces (API) as the method of choice for AD tool
support in C++.

dco/c++ has been applied successfully to a number of relevant numerical simulation codes
including applications from computational fluid dynamics [45,46], chemical engineering [19,20],
athmospheric science [47,31], and computational finance1 [36]. A proper introduction of the
tool has been missing so far. This report aims to fill this gap. Its focus is on giving an overview
of the functionality offered by dco/c++ in Sec. 2 and a more detailed discussion of selected
unique features that turned out extremely useful in actual applications in Sec. 3.

The development of dco/c++ has been driven by requirements due to the previously out-
lined target codes. Financial applications in particular pose a number of challenges shaping
the set of functionalities and the design of the user interface. Most features provided by
modern C++ can be dealt with. Experience with other AD overloading tools suggests that
this is not generally the case. Indeed we are not aware of any modern C++ construct that
dco/c++ cannot handle. However as of today we cannot claim full coverage of all features by
our regression test suite either.

A distinguishing feature of dco/c++ is the transparency of its internal representation (al-
so referred to as the tape) for computation of adjoints. Through a well-designed API users
have the opportunity to modify arbitrary details (data dependencies, local partial derivatives,
modes of differentiation). This level of flexibility has proven crucial for the design of robust
and efficient adjoint solutions in a real-world setting. It facilitates building up libraries of
user-defined/domain-specific intrinsics, inclusion of manually derived adjoint code and of ap-
proximations of derivatives of black boxes, the handling of non-differentiability/discontinuity
through smoothing, and integration of advanced preaccumulation and checkpointing techni-
ques. References on the use of individual features can be found in most of the previously cited
articles on applications of dco/c++.

2 Basics

AD tools in general and dco/c++ in particular target implementations of multivariate vector
functions

y = F (x), x ∈ IRn, y ∈ IRm (1)

as computer programs. The mathematical formulation of F in Eqn (1) does not account for
aliasing and overwriting of program variables. A more realistic formulation of the targeted

1 dco/c++ is used by several tier-one investment banks under strict non-disclosure agreements.

numerical simulation programs is
z
z̃
y
ỹ

 := F (x, x̃, z, z̃) ,

where x ∈ IRdx , x̃ ∈ IRdx̃ , z ∈ IRdz , z̃ ∈ IRdz̃ , y ∈ IRdy , ỹ ∈ IRdỹ , and n = dx +dz, m = dz +dy.
Equality (=) is replaced by assignment (:=) in the sense of an imperative programming
language such as C++. In addition to pure inputs (x, x̃) and pure outputs (y, ỹ) there are
program variables serving as both (z, z̃) with their input values potentially overwritten by
the given implementation of F. We distinguish between active (x, z,y) and passive (x̃, z̃, ỹ)
variables. Standard AD terminology refers to variables with structurally non-zero derivatives
as active. Variables are referred to as passive otherwise. See [22] for details from a static
program analysis perspective.

Obviously, signatures of real-world numerical simulations in C++ can become arbitrarily
complicated involving, for example, pointers, references to instances of complex class hier-
archies, and type-generic arguments. However, most conceptual challenges in AD (and in
adjoint AD in particular) can be attributed to aliasing and overwriting. In the following we
write y := F (x) when referring to given implementations of Eqn (1). We call them primal
numerical simulation programs or simply primals. Parts of x and y can be aliased (yielding
z) unless stated otherwise. The numerical programs under consideration are assumed to be k
times continuously differentiable whenever derivative models of up to order k are discussed.
Note that mere differentiability of the underlying function F does not imply differentiability
of the given implementation. For example, the primal

float F(float x) { if (x==0) return 0; return x; }

implements the continuously differentiable function y = F (x) = x with unit derivative ever-
ywhere. An algorithmically differentiated version yields a vanishing derivative at x = 0.

We use notation from [34] for the description of first and higher derivative models. Let
J = dF

dx (x′) for a given x′ ∈ IRn. A matrix-free projection of J ∈ IRm×n in direction v ∈ IRn

is denoted as ⟨J,v⟩ ≡ J ·v. Such directional derivatives (tangents for short) are implemented
by first-order tangent versions of y := F (x). The latter can be generated by tangent (also:
forward) mode AD.

A matrix-free projection of J in direction u ∈ IRm is denoted as ⟨u, J⟩ ≡ JT · u. Such
adjoint derivatives (adjoints for short) are implemented by first-order adjoint versions of
y := F (x), which can be generated by adjoint (also: reverse) mode AD.

The projection notation generalizes naturally to second- and higher-order tangents and
adjoints of sufficiently often continuously differentiable numerical simulations. Let therefore
H = d2F

dx2 (x′) for a given x′ ∈ IRn. The 3-tensor H ∈ IRm×n×n is an m-vector of symmetric
(n×n)-matrices. Its first-order matrix-free projection in direction u ∈ IRm is denoted as ⟨u,H⟩
and yields a symmetric (n × n)-matrix as a linear combination of the m vector elements.
Multiplication of the latter with a vector v ∈ IRn yields a second-order matrix-free projection
of H in directions u ∈ IRm and v ∈ IRn as ⟨u,H,v⟩ = ⟨⟨u,H⟩ ,v⟩ .

Alternatively, the 3-tensor H can be regarded as an n-vector of (m × n)-matrix. Conse-
quently, its first-order matrix-free projection in direction v ∈ IRn is denoted as ⟨H,v⟩ and
yields an (m×n)-matrix as a linear combination of the n vector elements. Multiplication of the

latter with a vector w ∈ IRn yields a second-order matrix-free projection of H in directions
v,w ∈ IRn as ⟨H,v,w⟩ = ⟨⟨H,v⟩ ,w⟩ . Symmetry within H implies ⟨H,v,w⟩ = ⟨H,w,v⟩
(commutativity of tangent projection) ⟨⟨u,H⟩ ,v⟩ = ⟨u, ⟨H,v⟩⟩ (associativity of tangent and
adjoint projections) ⟨⟨u,H⟩ ,v⟩ = ⟨v, ⟨u,H⟩⟩ (equivalence of second-order tangent and ad-
joint projections).

Matrix-free projections of third and higher derivative tensors follow naturally. dco/c++
supports tangents and adjoints of first and higher order through recursive template instantia-
tion. Arbitrary combinations of matrix-free tangent and adjoint projections can be computed,
which makes dco/c++ well suited for illustration of the mathematical concepts behind AD in
a classroom environment.

2.1 Sample Numerical Programs

Our choice of sample applications is driven by three requirements.

1. Examples should be representative for real-world applications featuring practically rele-
vant code and data flow patterns exhibited by many numerical simulations.

2. The implementation should be simple enough to make a detailed discussion of the source
code feasible.

3. The simulations should be scalable in terms of computational cost to allow for run time
comparison of various scenarios.

Development and maintenance of dco/c++ as well as of further AD software solutions (see
Sec. 4) is driven by the Numerical Algorithms Group Ltd. (NAG)2, Oxford, UK in collabora-
tion with the Software and Tools for Computational Engineering (STCE) group3 at RWTH
Aachen University, Aachen, Germany. A user guide with details on the full range of functio-
nalities of dco/c++ can be found on

nag.co.uk/content/nag-and-algorithmic-differentiation .

The numerous example programs referred to in the following can be found on the dco/c++
research website

www.stce.rwth-aachen.de/research/software/dco/cpp.

Reproduction of the numerical results requires a (trial) license for dco/c++. Licensing and
distribution is organised by NAG.

Burgers Equation We consider the numerical solution of the 1D Burgers Equation [7]

dy

dt
= v

d2y

dx2
− y

dy

dx
(2)

over the unit square defined by t ∈ [0, 1] and x = [0, 1]. For a given initial condition on the
state y = y(t, x), for example, y(0, x) = sin(2πx), and fixed vanishing boundary conditions we
use central finite differences combined with upwinding in space and backward finite differences
in time yielding an implicit Euler scheme implemented as

2 nag.co.uk
3 www.stce.rwth-aachen.de

Listing 1.1. Type-generic primal Burgers code
1 // ... global passive read-only data
2

3 template <typename T>
4 void burgers(vector<T>& y) {
5 for (int j=0;j<m;j++) {
6 vector<T> yp=y;
7 newton(yp,y);
8 }
9 }

with type-generic discrete state vector y4 of size n holding the discrete initial condition y0 ∈
IRn (see Fig. 1(a)) as input and the approximate discrete solution ym ∈ IRn (see Fig. 1(b)) as
output for given viscosity v and m time steps performed. Individual Euler steps are computed
as solutions of nonlinear systems using Newton’s method in L1:7;5 see Sec. 3.1 for further
details. Experiments are run for the shock-free scenario v=0.01. All passive read-only data
(n, m, v) is declared globally yielding easier to follow source code listings due to simplifed
signatures of the routines called. Refer to [39] and to references therein for a more detailed
discussion of the Burgers equation.

-1

-0.8

-0.6

-0.4

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

"y(0,x)"

-0.4

-0.3

-0.2

-0.1

 0

 0.1

 0.2

 0.3

 0.4

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

"y(1,x)"

(a) (b) (c)

Abbildung 1. Burgers equation: Initial condition y0 ∈ IRn (a), solution ym ∈ IRn (b) and Jacobian of the
solution with respect to the initial condition within the interior domain.

To illustrate the features offered by dco/c++ we consider derivatives of the approximate
discrete solution with respect to the discrete initial condition, including projections of the
Jacobian matrix

J =
dym

dy0
∈ IRn×n

and of the Hessian tensor
H =

d2ym

dy02
∈ IRn×n×n .

For example, Fig. 1 (c) shows a 3D-plot of the whole Jacobian. Finite difference (FD) appro-
ximation of derivatives is used as a method for potential validation of derivatives returned by

4 Depending on the context we use the mathematical, e.g, y, and source code listing notations, e.g, y inter-
changeably.

5 We reference line i in Listing k by Lk:i. Sequences of lines i to j in Listing k are denoted by Lk:i–j. Sets of
nonconsecutive lines i1, ..., ij in Listing k are denoted by Lk:i1, . . . , ij .

dco/c++ whenever possible. Closely matching values typically indicate success. The negation
of this statement does not apply in general due to the well-known numerical instability of
FD in finite precision floating point arithmetic. We observe good correspondence between
first derivatives obtained by double precision AD and FD for all our test problems. Higher
precision arithmetic is used6 to obtain reliable FD approximations of higher derivatives.

When comparing run times of the various derivative codes we typically report values for
their computational cost (run time) relative to an optimized implementation of the primal.
For example,

R =
Cost(F(1))

Cost(F)
(3)

denotes the relative run time of an adjoint version F(1) of a primal F. All tests are performed
on an Intel Xeon E5-2630 with 128GB of main memory and running Linux. For n = 103 and
m = 104 the run time of the primal Burgers code is 1.0s.

Reported results of run time measurements should be considered as qualitative. Experience
shows that they can be sensitive to the choice of computation environment including hardware
specifications, system software and compiler version. Qualitative statements can be expected
to remain valid.

LIBOR Market Model As a second case study we consider the LIBOR7 market model
introduced in [6] and used in [12] as illustration of the benefits of adjoint AD for simulations
in finance. Over recent years adjoint AD has gained significant importance in computational
finance driven mainly by increasing gradient sizes in the context of XVA calculations and
documented by a large number of related publications, e.g, [40,32].

The LIBOR sample code simulates the payoff P ∈ IR of a portfolio of swaptions with
given swap rates und maturities. Swaps of the floating forward rate L ∈ IRn and a given fixed
swap rate are considered. The primal shown in Listing 1.2 is generic in the data type of the
active in- (L) and outputs (P) (L2:3–4). Again, all passive read-only data (n,m,p, LIBOR
interval, volatility, maturities, swap rates) is declared globally. We use dco/c++ to compute
the gradient of the payoff with respect to the initial LIBOR rates.

Listing 1.2. Type-generic primal LIBOR code
1 // ... global passive read-only data
2

3 template<typename T>
4 void libor(const vector<T>& L, T& P,
5 const vector<vector<double>>& Z) {
6 T Ps=0;
7 for (int j=0;j<p;j++) {
8 vector<T> Lc(L);
9 path_calc(j,Lc,Z);

10 portfolio(Lc,P);
11 Ps+=P;
12 }
13 P=Ps/p;

6 We use ARPREC [1] developed at Lawrence Berkeley National Laboratory.
7 London Interbank Offered Rate

14 }

Monte Carlo simulation with a normally distributed random variable Z ∈ IRp×m performs
p path calculations evolving L for m time steps. Path simulations (L2:9) are performed on
local copies (L2:8) of the initial libor rates. The payoff of each scenario is evaluated (L2:10)
followed by summing up individual payoffs (L2:11) for subsequent averaging over all paths
(L2:13).

Refer to [13] for further discussion of the mathematical details behind the LIBOR mar-
ket model. All numerical results obtained by our implementation were validated against the
implementation used in [12] and available from Giles’ website8 at the University of Oxford,
UK. The run time of p = 104 primal Monte Carlo path simulations is 1.9s.

2.2 First-Order Tangents

In tangent mode directional derivatives are computed alongside with function values as(
y

y(1)

)
:= F (1)

(
x,x(1)

)
≡

(
F (x)⟨

dF
dx (x),x(1)

⟩) . (4)

We mark first-order tangent versions of program variables by the superscript (1). To imple-
ment Eqn. (4) a generic tangent 1st-order scalar type (gt1s) is provided by dco/c++. Its use
is illustrated in Listing 1.3.

8 people.maths.ox.ac.uk/gilesm/codes/libor_AD

Listing 1.3. First-order tangents with dco/c++
1 #include <iostream>
2 #include <vector>
3 #include <cmath>
4 using namespace std;
5

6 #include "burgers.h"
7

8 #include "dco.hpp"
9 typedef dco::gt1s<double>::type DCO_T;

10

11 int main() {
12 vector<DCO_T> y(n);
13 for (int i=1;i<n-1;i++) y[i]=sin(2*PI*i/n);
14 dco::derivative(y[24])=1;
15 burgers(y);
16 vector<double> yp(dco::value(y)), dydy_v(dco::derivative(y));
17 // ... output and return
18 }

All dco/c++ data types, overloaded arithmetic operations and support functions are declared
in the C++ header file dco.hpp included in L1.3:8. They are members of the namespace dco.
Differentiation modes are generic with respect to their base types. Instantiation with a non-
derivative type such as double yields a first derivative mode. AD by overloading is enabled
by switching the types of all active program variables to the data type type associated with
each mode. We use the shortcut DCO_T for derivative types provided by dco/c++ (L1.3:9).

The primal in burgers.h included in L1.3:6 is fully generic with respect to the type of
its active variables; here the state y declared as a C++ vector of type DCO_T in L1.3:12 and
initialized in L1.3:13. PI implements a sufficiently accurate approximation of π. All passive
read-only variables are declared globally in burgers.h as outlined in Sec. 2.1. The initial
directional derivative is set equal to the 25th Cartesian basis vector9 in IRn (L1.3:14). A single
overloaded evaluation of the primal in L1.3:15 yields the 25th column of the Jacobian alongside
with the final primal state. Both are stored in corresponding vector variables in L1.3:16. Their
values are printed for subsequent validation. Special read/write access routines for function
values (dco::value(...)) and derivatives (dco::derivative(...)) are provided.

The entire Jacobian can be accumulated column-wise by letting the initial tangent range
over the Cartesian basis in IRn yielding a computational cost of O(n) · Cost(F). The cost of
a single tangent evaluation relative to an optimized primal typically ranges between 1.5 and
2.5 depending on specifics of the given implementation. A generic tangent 1st-order vector
type (gt1v) is provided by dco/c++ to compute several directional derivatives simultaneously.
Its use is illustrated in the following by the computation of the gradient for the LIBOR
case study. Improvements in run time can be expected due to avoiding repeated evaluation
of partial derivatives of all operations and better support for vectorization provided by the
hardware and system software. For the given problem size we observe a reduction of the run
time for accumulation of the Jacobian of the Burgers case study by a factor of three when

9 Vector entries in C++ are interpreted as offsets into arrays. Hence the ith element carries index i− 1.

switching to gt1v mode. The corresponding code and further relevant examples are collected
on the dco/c++ research website.

To avoid missunderstanding due to overloaded meanings of the term “derivative” in com-
putational finance derivatives are referred to as greeks and denoted by corresponding greek
letters. For example, in the LIBOR case study the gradient of the payoff with respect to
the initial LIBOR rates is also known as delta. Its accumulation in tangent mode requires n
directional derivatives in the corresponding Cartesian basis directions to be evaluated. For
n = 80 and p = 104 Monte Carlo paths, the scalar (gt1s) version takes more than 136s while
the corresponding vector (gt1v) version completes the same job in less than 60s.

Listing 1.4. Gradient for LIBOR in first-order tangent vector mode
1 // ... stdlib
2

3 #include "libor.h"
4

5 #include "dco.hpp"
6 typedef dco::gt1v<double,n>::type DCO_T;
7

8 int main() {
9 vector<DCO_T> L(n,0.05); DCO_T P=0;

10 srand(0); default_random_engine generator(0);
11 normal_distribution<double> distribution(0.0,1.0);
12 vector<vector<double>> Z(p,vector<double>(m));
13 for (int j=0; j<p;j++)
14 for (int i=0;i<m;i++)
15 Z[j][i]=0.3+distribution(generator);
16 for (int i=0;i<n;i++) dco::derivative(L[i])[i]=1;
17 libor(L,P,Z);
18 vector<double> dPdL(n,0);
19 for (int i=0;i<n;i++) dPdL[i]=dco::derivative(P)[i];
20 // ... output and return
21 }

Randon numbers are generated in L1.4:10–15. The length of the derivative vector is passed
as a compile-time parameter to the gt1v template (L1.4:6). Here we choose to set it equal
to the number of directional derivatives to be evaluated yielding implicitly a product of the
gradient with the identity in IRn. The optimal choice of this compile-time parameter depends
on hardware specifics and may require some experiments. Vectors of length n are returned
by the derivative access routine in vector mode. Offset dereferencing is used to access the
individual components; see L1.4:16 and L1.4:19.

The accumulation of Jacobians as sequences of directional derivatives in tangent (vector)
mode turns out to be trivially parallel. Multithreaded (using OpenMP) tangent versions of
the Burgers code can be found on the dco/c++ research website.

2.3 First-Order Adjoints

A first-order adjoint version of y := F (x) augments the primal computation with incrementa-
tion of given adjoints x(1) ∈ IRn of the inputs x with the product of the transposed Jacobian

with a given vector of adjoints y(1) ∈ IRm of the outputs y as(
y

x(1)

)
:= F(1)

(
x,x(1),y(1)

)
≡

(
F (x)

x(1) +
⟨
y(1),

dF
dx (x)

⟩) . (5)

First-order adjoint versions of program variables are marked by subscript (1). The entire

x := 2
y := 1
x := (x+ y) · y
y := x · y
x := 3 · x

0: x = 2 1: y = 1

tmp = 3

2: x = 3

3: y = 34: x = 9

1 1

1

3

3

3

1

0: x 1: y

2: x

3: y4: x

1 4

3

3

1

(a) (b) (c)

x4
(1)

y3
(1)

x2
(1)

y1
(1)

x0
(1)

 :=

1
0
0
0
0

 ,

1
0
3
0
0

 ,

1
0
3
12
0

 ,

1
0
3

12
3

x4
(1)

y3
(1)

x2
(1)

y1
(1)

x0
(1)

 :=

0
1
0
0
0

 ,

0
1
1
3
0

 ,

0
1
1
7
0

 ,

0
1
1
7
1

(d) (e)

Abbildung 2. Internal representation used by dco/c++ in adjoint mode for given example (a): tape without
statement-level gradient preaccumulation (b); tape with statement-level gradient preaccumulation (c); (comma-
separated) evolution of vector of adjoints for computation of second row of Jacobian (d); evolution of vector
of adjoints for computation of first row of Jacobian (e);

Jacobian can be accumulated row-wise by letting the adjoints of the primal results range
over the Cartesian basis in IRm yielding a computational cost of O(m) · Cost(F). A single
algorithmic adjoint evaluation typically exhibits a relative run time more than three opti-
mized primal function evaluations depending on the specifics of the given implementation.
The reduction of the run time overhead is one of the dominating challenges in adjoint AD.
Insufficient memory resources may result in failure to evaluate algorithmic adjoints. Realisti-
cally this scenario is more common than one would like. Naive application of adjoint mode
to practically relevant problems is almost certainly going to exceed the given memory bound.
User expertise is required to make adjoints work in general. A feasible solution can always be
constructed.

A simple example (n = m = 2) illustrating the algorithm employed by dco/c++ to im-
plement Eqn. (5) is shown in Fig. 2. A tape (Fig. 2 (c)) is recorded storing information on
data dependences (visualized as a directed acyclic graph; dag) and local partial derivatives
(visualized as edge labels). We use statement-level gradient preaccumulation implemented
efficiently by template metaprogramming [41]. The dag of the statement x := (x + y) · y
marked by dashed lines in Fig. 2 (b) is replaced by the local gradient yielding the final tape
in Fig. 2 (c). For given adjoints of the active outputs (instances of y and x associated with

vertices 3 and 4, and their adjoints denoted as y3(1) and x4(1), respectively) interpretation of
the tape over an associated vector of adjoints yields a linear combination of the rows of the
Jacobian. In Fig. 2 (e) and (d) we illustrate the propagation of both Cartesian basis vectors
in IR2 as a comma-separated list of states of the vector of adjoints. During a last-in-first-out
traversal of the vertices vi in the dag (e.g, i = 4, . . . , 0) adjoints associated with all predeces-
sors are incremented with the product of vi(1) with the local partial derivative labelling the
corresponding edge. The resulting Jacobian entries are highlighted.

The distinction between tape and associated vector of adjoints enables separation of se-
quentially (tape) and nonsequentially (vector of adjoints) accessed data. Recording typically
dominates the computational effort in comparison to interpretation as supported by results
in Sec. 2.7. Moreover decomposition of the internal data structure allows allocation of several
vectors of adjoints and their parallel interpretation as described in Sec. 3.2.

To implement Eqn. (5) dco/c++ provides a generic adjoint 1st-order scalar type (ga1s)
defined in dco.hpp. Refer to Listing 1.5 for illustration in the context of the Burgers case
study.

Listing 1.5. First-order adjoints with dco/c++
1 // ... stdlib
2

3 #include "burgers.h"
4

5 #include "dco.hpp"
6 typedef dco::ga1s<double> DCO_M;
7 typedef DCO_M::type DCO_T;
8 typedef DCO_M::tape_t DCO_TAPE_T;
9

10 int main() {
11 // ... L3:12-13
12 DCO_M::global_tape=DCO_TAPE_T::create();
13 DCO_M::global_tape->register_variable(y);
14 vector<DCO_T> yc(y);
15 burgers(yc);
16 DCO_M::global_tape->register_output_variable(yc[25]);
17 dco::derivative(yc[25])=1.;
18 DCO_M::global_tape->interpret_adjoint();
19 vector<double> v_dydy(dco::derivative(y));
20 cerr << dco::size_of(DCO_M::global_tape) << "B" << endl;
21 DCO_TAPE_T::remove(DCO_M::global_tape);
22 // ... output and return
23 }

As in tangent mode, all active program variables need to be redeclared. The new type (short-
cut: DCO_T) is defined as part of the adjoint mode (DCO_M) over a passive base type (here:
double); L1.5:6–7. A tape type is associated with adjoint mode (DCO_TAPE_T; L1.5:8). An
instance is created in L1.5:12 to record all information required for the evaluation of Eqn. (5).
Recording is triggered by overloaded operations on previously recorded arguments. Hence, all
independent inputs need to be recorded (also: registered with the tape) explicitly (L1.5:13).
Results of overloaded operations are recorded automatically.

All independent inputs (y) must be read-only in order to ensure correct access to their
adjoints in L1.5:19. The evolution of the state is therefore performed on a copy yc (L1.5:14).
The value of the final state can be extracted from yc following the call to the overloaded
primal (L1.5:15). Active outputs need to be registered explicitly (L1.5:16) to ensure correct
computation of their adjoints despited possible reuse in subsequent computations. This scena-
rio is not illustrated by the given example, where line 16 could in fact be omitted. Nevertheless
we advise users of dco/c++ to register active outputs in order to avoid potential trouble in
less obvious situations.

We chose to compute the gradient of the 26th entry of the final state with respect to
the initial state by setting the adjoint final state equal to the corresponding Cartesian basis
vector (L1.5:17). Derivative components of active program variables of dco/c++ adjoint type
are guaranteed to be equal to zero prior to their first use. Interpretation of the tape in L1.5:18
yields adjoints with machine accuracy. Function values match the ones obtained in tangent
mode. The adjoints are entries of the 26th row the Jacobian which intersects with the 25th

column computed in Sec. 2.2 in its 25th element. Numerical results can be validated by running
the tangent and adjoint versions of the Burgers case study provided in the dco/c++ research
website. The size of the tape in bytes can be recovered for diagnostics (L1.5:20). Deallocation
of the tape requires calling of a dedicated routine (L1.5:21).

The current version of dco/c++ supports three kinds of tapes. A “blob tape” allocates a
specified amount of main memory for recording and interpretation at maximum speed. It is up
to the user to ensure that sufficient tape memory is allocated; an exception is raised otherwise.
Improved robustness comes with the “chunk tape”. It allocates chunks of main memory of
specified size up to the limit of the physical memory available. A slight run time overhead
is induced by chunk management. Chunks can be written to and read from hard disc when
using a “file tape.” The resulting increase in tape memory comes at the expense of further
decrease in computational efficiency. However it allows “brute force” evaluation of adjoints of
larger problem instances at no extra development cost. This feature proves advantageous for
debugging during the development and for validation of more sophisticated solutions.

In Listing 1.5 a global tape was used. Thread-safe adjoint simulations require thread-
local tapes supported by dco/c++ through its ga1sm mode allowing for multiple tapes to be
allocated. Built-in varied (also: forward activity) analysis [22] can help reduce the size of the
tapes. An adjoint vector mode is also available. Refer to the dco/c++ user guide for further
information.

For the LIBOR case study a single evaluation of the adjoint consisting of tape recording
(L1.6:9–12) and interpretation (L1.6:13–14) gives the entire gradient extracted in L1.6:15.

Listing 1.6. Gradient for LIBOR in first-order adjoint mode
1 // ... stdlib
2

3 #include "libor.h"
4 // ... L5:6-8
5

6 int main() {
7 vector<DCO_T> L(n,0.05); DCO_T P=0;
8 // L4:10-15
9 DCO_M::global_tape=DCO_TAPE_T::create();

10 DCO_M::global_tape->register_variable(L);

11 libor(L,P,Z);
12 DCO_M::global_tape->register_output_variable(P);
13 dco::derivative(P)=1;
14 DCO_M::global_tape->interpret_adjoint();
15 vector<double> dPdL(dco::derivative(L));
16 DCO_TAPE_T::remove(DCO_M::global_tape);
17 // ... output and return
18 }

For n = 80 and p = 104 Monte Carlo paths the above returns the gradient after less than 3s
yielding a speedup by a factor of roughly 30 compared to tangent vector mode.

In Fig. 3 we compare (total) run times for gradients of the midpoint of the solution of
Burgers’ case study with respect to the initial condition. The relative computational costs of
all three tangent versions considered scale linearly with the number of active inputs while the
relative cost of the adjoint remains essentially constant.

100 200 400

1

10

100

Problem size [n]

R
un

tim
e

[s]

gt1s gt1v
gt1s_omp ga1s Abbildung 3. Race: We compare run

times (in seconds) for gradients of
the midpoint of the solution of Bur-
gers’ case study with respect to the
initial condition for m = 1000 impli-
cit Euler steps and n = 100, . . . , 500
spatial grid points. Four dco/c++ mo-
des are considered: Scalar tangent mo-
de (gt1s), vector tangent mode with
vector length n (gt1v), parallel sca-
lar tangent mode with OpenMP on
four threads (gt1s_omp), scalar ad-
joint mode (ga1s).

Similar to tangent mode dco/c++ features a generic adjoint 1st-order vector data type
(ga1v). The accumulation of Jacobians as sequences of adjoints in adjoint (vector) mode is
also trivially parallel. See Sec. 3.2 for discussion of a corresponding solution with dco/c++.

2.4 Second-Order Tangents

Application of tangent mode to a first-order tangent code yields a second-order tangent code
for evaluating

y
y(2)

y(1)

y(1,2)

 := F (1,2)
(

x,x(2),x(1),x(1,2)
)

≡

F (x)⟨

dF
dx (x),x(2)

⟩⟨
dF
dx (x),x(1)

⟩⟨
d2F
dx2 (x),x(1),x(2)

⟩
+
⟨
dF
dx (x),x(1,2)

⟩
 .

(6)

Tangent versions of program variables due to the application of tangent mode to first deriva-
tive code are marked by superscipt (2). We set v(1)(2) ≡ v(1,2). When implementing Eqn. (6)
with dco/c++ both the computation of the function value and of the first directional derivative
are augmented with their respective directional derivatives yielding two first derivatives y(1)

and y(2) and a second derivative y(1,2) alongside the function value y. Extraction of pure
second derivative information requires x(1,2) = 0 on input. Individual entries y(1,2) ∈ IRm of
the Hessian can be obtained by setting x(1) and x(2) equal to the corresponding Cartesian
basis vectors yielding a computational cost of O(n2) · Cost(F) for accumulation of the whole
Hessian.

To illustrate the use of dco/c++ in second-order tangent mode we compute

d2ym

dy024dy
0
25

∈ IRn

for the Burgers case study in Listing 1.7.

Listing 1.7. Second-order tangents with dco/c++
1 // ... stdlib
2

3 #include "burgers.h"
4

5 #include "dco.hpp"
6 typedef dco::gt1s<double>::type DCO_BT;
7 typedef dco::gt1s<DCO_BT>::type DCO_T;
8

9 int main() {
10 // ... L3:12-13
11 dco::value(dco::derivative(y[24]))=1;
12 dco::derivative(dco::value(y[25]))=1;
13 burgers(y);
14 vector<double> ddydyy_v_v(dco::derivative(dco::derivative(y)));
15 // ... output and return
16 }

A dco/c++ first-order tangent type is defined over a base type DCO_BT. Setting this base type
equal to a first-order tangent type over double yields a second-order tangent type (L1.7:6–
7). The data access pattern is illustrated in Fig. 4 (a). Recursive template instantiation
results in a data type with four elements of type double. Access to them is provided by
corresponding nested calls to dco::value(...) and dco::derivative(...). For example, a
call of dco::derivative(v) on a variable v of second-order tangent type returns its derivative
component v(1). Calling dco::derivative(v(1)) on this variable of first-order tangent type
yields v(1,2). The value of v(1) can be extracted by calling dco::value(v(1)). In Fig. 4 the
order of a variable is determined by its distance from the leaf nodes of the tree. For example,
the intermediate v represents a first-order tangent type while its successor with the same label
is the actual value (“0th derivative”).

v

v

v v(2)

v(1)

v(1) v(1,2)

value

value derivative

derivative

value derivative

v

v

v v(2)

v(1)

v(1) v
(2)

(1)

value

value derivative

derivative

value derivative

(a) (b)

Abbildung 4. Data access in second-order (tangent over) tangent (a) and (tangent over) adjoint (b) types
provided by dco/c++

Consequently, y(2) is set equal to the 25th Cartesian basis vector in L1.7:11 followed by
setting y(1) equal to the 26th Cartesian basis vector in L1.7:12. The overloaded primal called
in L1.7:13 yields y(1,2) = d2ym

dy024dy
0
25

stored in a vector of matching size n in L1.7:14. Code for
the accumulation of the whole Hessian tensor is easily derived from Listing 1.7.

As one of the greeks the Hessian of the payoff with respect to the initial LIBOR rates is
also referred to as gamma. Its accumulation shown in Listing 1.8 takes

(
n+1
2

)
evaluations of

the primal model overloaded for second-order tangent dco/c++ types.

Listing 1.8. Hessian of LIBOR in second-order tangent mode
1 // ... stdlib
2

3 #include "libor.h"
4 // ... L7:5-7
5

6 int main() {
7 vector<DCO_T> L(n,0.05); DCO_T P=0;
8 // L4:10-15
9 vector<vector<double> > ddPdLL(n,vector<double>(n,0));

10 for (int i=0;i<n;i++) {
11 dco::value(dco::derivative(L[i]))=1;
12 for (int j=0;j<=i;j++) {

13 dco::derivative(dco::value(L[j]))=1;
14 libor(L,P,Z);
15 ddPdLL[i][j]=ddPdLL[j][i]
16 =dco::derivative(dco::derivative(P));
17 dco::derivative(dco::value(L[j]))=0;
18 }
19 dco::value(dco::derivative(L[i]))=0;
20 }
21 // ... output and return
22 }

With x ≡ L ∈ IRn the input directions x(1) and x(2) are set to range independently over
the Cartesian basis vectors in IRn, respectively (L1.8:11,19 and L1.8:13,17). All derivative
components of the second-order tangent variables are guaranteed to be equal to zero following
construction (L1.8:7). Symmetry of the Hessian is exploited (L1.8:12,15–16). The overloaded
LIBOR model is evaluated for each of the

∑n
k=1 k =

(
n+1
2

)
relevant combinations of x(1) and

x(2). With y ≡ P ∈ IR the resulting second-order tangent projection y(1,2) of the Hessian
contains hi,j = hj,i (L1.8:15). Resetting x

(2)
j = 0 (L1.8:17) and x

(1)
i = 0 (L1.8:19) ensures

correct (re)seeding with Cartesian basis vectors. Note that x ≡ L is not modified by the
libor function which makes selective resetting of its derivative components feasible. If x was
modified, then all derivative components of all its entries would have to be reset to zero to
ensure correct seeding prior to each overloaded call to libor.

For the given scenario (see Sec. 2.2) the total run time of Hessian accumulation in second-
order tangent mode adds up to more than 4 hours. A similar run time is observed when
using central finite difference approximation in double precision. Combinations of gt1s and
gt1v types are possible. Multithreading can be applied to speed up the computation. Still
the overall run time remains unsatisfactory.

2.5 Second-Order Adjoints

Application of tangent mode to a first-order adjoint code yields a second-order adjoint code
for evaluating

y
y(2)

x(1)

x(2)
(1)

 := F
(2)
(1)

(
x,x(2),x(1),x

(2)
(1),y(1),y

(2)
(1)

)

≡

F (x)⟨

dF
dx (x),x(2)

⟩
x(1) +

⟨
y(1),

dF
dx (x)

⟩
x(2)
(1) +

⟨
y(1),

d2F
dx2 (x),x(2)

⟩
+
⟨

y(2)
(1),

dF
dx (x)

⟩

(7)

As before, we use the superscript (2) to mark tangent versions of program variables due to
the application of tangent mode to a first derivative code (here: first-order adjoint code).
To implement Eqn. (7) with dco/c++ the computation of the function value and of the first-
order adjoint are augmented with their first derivatives yielding y(2) and x(2)

(1) as directional

derivatives of y and x(1) in direction x(2), respectively. Extraction of pure second derivative
information from x(2)

(1) requires x(2)
(1) = y(2)

(1) = 0 on input. Individual columns (x(2)
(1) ∈ IRn) of

the Hessian are obtained by setting y(1) and x(2) equal to the corresponding Cartesian basis
vectors yielding a computational cost of O(m · n) · Cost(F) for accumulation of the whole
Hessian. Fig. 5 illustrates second-order adjoint mode implemented as tangents of adjoints as

x := 2
y := 1
x := (x+ y) · y
y := x · y
x := 3 · x

0: x = (2, 1) 1: y = (1, 1)

tmp = (3, 2)

2: x = (3, 5)

3: y = (3, 8)4: x = (9, 15)

(1, 0) (1, 0)

(1, 2)

(3, 1)

(3, 0)

(3, 5)

(1, 1)

0: x 1: y

2: x

3: y4: x

(1, 1) (4, 3)

(3, 0)

(3, 5)

(1, 1)

(a) (b) (c)

x4
(1)

y3
(1)

x2
(1)

y1
(1)

x0
(1)

 :=

(1, 0)
(1, 0)
(0, 0)
(0, 0)
(0, 0)

 ,

(1, 0)
(1, 0)
(3, 0)
(0, 0)
(0, 0)

 ,

(1, 0)
(1, 1)
(4, 1)
(3, 5)
(0, 0)

 ,

(1, 0)
(1, 1)
(4, 1)

(19,21)
(4,5)

Abbildung 5. Internal representation used by dco/c++ in second-order adjoint mode for given example (a): tape
without statement-level gradient preaccumulation (b); tape with statement-level gradient preaccumulation (c);
(comma-separated) evolution of vector of first- and second-order adjoints for computation of Hessian projection
(below horizontal line)

in Eqn. (7) for the same simple example used in Fig. 2. Directional derivatives in direction
(x(2), y(2))T are stored alongside function values and local partial derivatives yielding value
pairs labelling the vertices and edges in the dag shown in Fig. 5 (b). Statement-level preac-
cumulation yields the local gradient for x := (x + y) · y and the product of the local 2 × 2
Hessian with the vector (x(2), y(2))T . For given adjoints y3(1) and x4(1) of the active outputs
and assuming vanishing second-order adjoints interpretation of the tape yields a second-order
projection of the Hessian tensor in directions (x(1), y(1))

T and (x(2), y(2))T . The evolution of
the corresponding vector of first- and second-order adjoints is shown in the bottom part of
Fig. 5. During a last-in-first-out traversal of the vertices vi Entries of the resulting Hessian
projection are highlighted.

To illustrate the use of dco/c++ in second-order adjoint mode we compute

d2ym25
dy024dy0

∈ IRn

for the Burgers case study in Listing 1.9.

Listing 1.9. Second-order adjoints with dco/c++
1 // ... stdlib

2

3 #include "burgers.h"
4

5 #include "dco.hpp"
6 typedef dco::gt1s<double>::type DCO_BT;
7 typedef dco::ga1s<DCO_BT> DCO_M;
8 typedef DCO_M::type DCO_T;
9 typedef DCO_M::tape_t DCO_TAPE_T;

10

11 int main() {
12 // ... L3:12-13
13 DCO_M::global_tape=DCO_TAPE_T::create();
14 DCO_M::global_tape->register_variable(y);
15 dco::derivative(dco::value(y[24]))=1;
16 vector<DCO_T> yc(y);
17 burgers(yc);
18 DCO_M::global_tape->register_output_variable(yc[25]);
19 dco::derivative(yc[25])=1.;
20 DCO_M::global_tape->interpret_adjoint();
21 vector<double> v_ddydyy_v(dco::derivative(dco::derivative(y)));
22 DCO_TAPE_T::remove(DCO_M::global_tape);
23 // ... output and return
24 }

The first-order adjoint version of the Burgers case study is overloaded for a first-order tangent
base type over double in L1.9:6–7. Creation of the tape and registration of the initial state as
active input is similar to the first-order adjoint (L1.9:13–14). The direction x(2) is set equal to
the 25th Cartesian basis vector in L1.9:15. Recording of the tape (L1.9:17) is again performed
on a copy yc of the state (L1.9:16) to ensure correct access to the first- and second-order
adjoints of the initial state in L1.9:23. Both the function evaluation and its derivative in
direction x(2) are recorded. The adjoint final state is set equal to the 26th Cartesian basis
vector (L1.9:19) prior to interpretation of the tape (L1.9:20), that is, propagation of adjoints
of the function evaluation and of its directional derivative. Access to the individual elements
of second-order adjoint variables follows the same logic as the second-order tangent version.
It is illustrated in Fig. 4 (b). Within the Hessian tensor

H = (h)ki,j ≡
d2ym

dy0dy0
∈ IRn×n×n

the second-order tangent and adjoint results intersect in element h2524,25. Correctness of the
numerical results can be verified by running the sample codes provided on the dco/c++ research
website.

Accumulation of the entire Hessian for the LIBOR example takes n evaluations of the
second-order adjoint routine with P(1) ≡ y(1) = 1 and L(2) ≡ x(2) ranging over the Cartesian
basis vectors in IRn as shown in Listing 1.10.

Listing 1.10. Hessian of LIBOR in second-order adjoint mode
1 // ... stdlib

2

3 #include "libor.h"
4 // ... L9:5-9
5

6 int main() {
7 vector<DCO_T> L(n,0.05); DCO_T P=0;
8 // L4:10-15
9 DCO_M::global_tape=DCO_TAPE_T::create();

10 DCO_M::global_tape->register_variable(L);
11 DCO_TAPE_POSITION_T tpos=DCO_M::global_tape->get_position();
12 vector<vector<double> > ddPdLL(n,vector<double>(n,0));
13 for(int j=0;j<n;j++) {
14 dco::derivative(dco::value(L[j]))=1;
15 libor(L,P,Z);
16 DCO_M::global_tape->register_output_variable(P);
17 dco::value(dco::derivative(P))=1;
18 DCO_M::global_tape->interpret_adjoint_to(tpos);
19 for(int i=0;i<n;i++) {
20 ddPdLL[i][j]=dco::derivative(dco::derivative(L[i]));
21 dco::derivative(L[i])=0;
22 }
23 dco::derivative(dco::value(L[j]))=0;
24 DCO_M::global_tape->reset_to(tpos);
25 }
26 DCO_TAPE_T::remove(DCO_M::global_tape);
27 // ... output and return
28 }

Both creation of the tape (L1.10:9) and registration of the active inputs (L1.10:10) are per-
formed once followed by n recordings and corresponding interpretations for the different
directions x(2) (L1.10:14). Once allocated tape memory should be shared amongst the record-
ings. Repeated registration of the same inputs should be avoided. Hence, dco/c++ allows to
store the tape position of type

typedef DCO_TAPE_T::position_t DCO_TAPE_POSITION_T

after registration of the active inputs (L1.10:11) in order to restart taping from this position
(L1.10:24). Optionally, interpretation can be stopped at this position (L1.10:18) to avoid
unnecessary visits of tape locations that respresent program variables and have no effect on
the propagation of adjoints due to missing arguments.

Subsequent recordings and interpretations require correct re-initialization of certain va-
riables on the right-hand side of Eqn. (7), namely x(2)

(1) (L1.10:21) and x(2) (L1.10:23). Note
that both x(2)

(1) and x(1) are set equal to zero in L1.10:21 ensuring optionally correct first-order
adjoints in x(1) for all n iterations.

As alternatives to the “tangents of adjoints” approach second-order adjoints can be com-
puted as “adjoints of tangents” as well as “adjoints of adjoints”; examples can be found on
the dco/c++ research website. While both alternatives turn out to be mathematically equi-
valent to the “tangents of adjoints” approach the latter requires handling of nested tapes

yielding mostly suboptimal run time performance. See [28] for further studies of the various
combinations and for an example where adjoints of adjoints outperforms its competitors.

2.6 Higher-Order Tangents and Adjoints

Recursive nesting of first derivative types allows seamless extension of most dco/c++ solutions
to arbitrary order of differentiation. Despite the fact, that higher-order tangent versions of
first-order adjoints are the preferred option for computing higher-order adjoints in almost all
cases arbitrary combinations of tangent and adjoint types are possible. For example, third-
order adjoint mode can be implemented as an adjoint version of a second-order adjoint model
derived as a tangent version of a first-order adjoint yielding

y := F (x)

y(2) :=

⟨
dF

dx (x),x(2)

⟩
x(1) := x(1) +

⟨
y(1),

dF

dx (x)
⟩

x(2)
(1) := x(2)

(1) +

⟨
y(1),

d2F

dx2
(x),x(2)

⟩
+

⟨
y(2)
(1),

dF

dx (x)
⟩

x(3) := x(3) +

⟨
y(3),

dF

dx (x)
⟩
+

⟨
y(2)
(3),

d2F

dx2
(x),x(2)

⟩
+

⟨
x(1,3),

d2F

dx2
(x),x(2)

⟩
+

⟨
x(1,3),y(1),

dF 2

dx2
(x)

⟩
+

⟨
x(2)
(1,3),y(1),

d3F

dx3
(x),x(2)

⟩
x(2)
(3) := x(2)

(3) +

⟨
y(2)
(3),

dF

dx (x)
⟩
+

⟨
x(2)
(1,3),y(1),

d2F

dx2
(x)

⟩
y(1,3) := y(1,3) +

⟨
x(1,3),

dF

dx (x)
⟩
+

⟨
x(2)
(1,3),

d2F

dx2
(x),x(2)

⟩
y(2)
(1,3) := y(2)

(1,3) +

⟨
x(2)
(1,3),

dF

dx (x)
⟩

Projections of the third derivative tensor in directions y(1), x(2), and x(2)
(1,3) can be computed.

An implementation of a corresponding third-order adjoint with dco/c++ can be found on the
dco/c++ research website.

2.7 Performance

Performance tuning for AD software is typically focussed on first-order adjoint mode which
poses the main challenges. Scalar tangent mode can be expected to be implemented efficiently
in virtually all cases. Preaccumulation based on template metaprogramming as employed by
dco/c++ typically has a positive effect on vector tangent mode. The chosen vector length and
parallelization strategy often turn out to have an even stronger impact. Hence, when evalua-
ting a given vector tangent mode AD solution its quality is more likely to be dependent on
the skills of the user of the given AD software rather than on the software itself. Experience
shows that this claim holds even more for nontrivial real-world first- and higher-order adjoint
solutions requiring substantial user expertise in terms of understanding the data dependen-
cies within the primal (e.g, for checkpointing or preaccumulation), its mathematics (e.g, for

handling implicit functions) or the compute environment (e.g, for inclusion of GPUs10 into
a CPU-based adjoint). Fair comparison of individual AD tools becomes extremely difficult if
not practially impossible in such cases.

Basic performance of adjoint AD software should be measured in terms of the relative
run time R (see Eqn. (3)) and the amount of memory occupied by the internally stored data
(e.g, tape and vector(s) of adjoints in case of dco/c++). Reliable comparison among different
tools is only possible for relatively small test cases whose memory requirement stays within
the given bounds on the available main memory. They should be run in basic adjoint mode
(inspired by the “hello world” adjoint examples from the various user guide) not including
any “user tricks.” Having said this, such performance comparisons are of only limited benefit
when it comes to dealing with real-world scenarios. While they might indicate that a given
AD tool yields very efficient adjoint code at a local scale the challenge of effective use of
the wide range of AD methods by the user of the tool remains dominant. This observation
implies that while local performance of AD tools is important their flexibility with respect to
diverse application scenarios is even more so. For example, a run time factor of two gained
on local sections of the target code is easily lost by choosing the wrong preaccumulation or
checkpointing strategies. A suboptimal API of an AD tool may complicate effective use of such
methods due to restricted access to the internal representation or due to unnecessary copying
of data. dco/c++ has proven to address such issues effectively in a number of projects. Some
commerical users in particular have gone through extensive test periods before committing
to dco/c++.

In the following we investigate relative run times of basic first-order adjoints generated
with dco/c++ and we comment on results obtained with other AD tools. Target primals are
selected according to the previous discussion, that is, their adjoints can be evaluated on our
target computer within the given limits on the main memory. The following test problems
are part of the dco/c++ test suite:

3D cross-frame field (CoMISo) This code is part of a method for constructing a 3D cross-
frame field, a 3D extension of the 2D cross-frame field as applied to surfaces in applications
such as quadrangulation and texture synthesis [26]. It consists of approximately 80 straight
lines generated by MapleTM [33] with common subexpression optimization switched on. The
code is part of a test case of the software package CoMISo [5].

Lax-Wendroff (LW) and Toon (Toon) Both test problems are described in further detail in
[24], where they were used to test performance of the AD tool Adept. Both solve the one-
dimensional advection equation

∂u

∂t
= −u

∂u

∂x

with state u, time t, spacial coordinate x, and the initial state x0 as parameter. The equation
is solved on an equidistant grid with either Lax-Wendroff [27] (linear) or Toon [44] (nonlinear)
schemes. The discretized cost functional is given as f(x0) = ∥xe(x0)∥ with final state xe.

Burgers’ equation with forward Euler time stepping (Burgers(F)) This code implements the
problem from Sec. 2.1 using explicit time stepping.

LIBOR market model (LIBOR) This is the code from Sec. 2.1.
10 Graphics Processing Units

Burgers’ equation with backward Euler time stepping (Burgers(B)) This is the code from
Sec. 2.1.

In Fig. 6 we show measurements for three different dco/c++ configurations: blob tape, chunk
tape, and with multiple tape support. Blob and chunk tapes were described in Sec. 2.3. Mul-
tiple tape support allows for a thread-safe use of several tapes concurrently yielding a larger
memory footprint for each program variable, since an additional reference to the owning tape
is required. Multiple tapes can be either chunk or blob tapes. We use blob tapes in our
measurements.

ch
un

k

ch
un

k

ch
un

k

ch
un

k

ch
un

k

ch
un

k

m
ul

tip
le

m
ul

tip
le

m
ul

tip
le

m
ul

tip
le

m
ul

tip
le

m
ul

tip
le

bl
ob

bl
ob

bl
ob

bl
ob

bl
ob

bl
ob

CoMISo LW Toon Burgers(F) LIBOR Burgers(B)

0

2

4

6

8

10

12

14

16
recording

interpretation

Abbildung 6. This figure shows the run time ratio R for the listed test problems for different configurations of
dco/c++. The blue part corresponds to the tape recording time while the red part visualizes tape interpretation
time.

Our in-house performance test framework constantly measures run time and memory
consumption for other AD overloading tools including ADOL-C11, CppAD12, tapescript13,
and Adept.14 The results indicate dco/c++ to be the fastest tool, followed by Adept (10% ∼
250% slower) and CppAD (200% ∼ 500% slower). ADOL-C and tapescript turn out to be
substantially slower on average. For example, on the Burgers(B) case study, our measurements
for dco/c++ (blob tape) suggest a relative run time of less than 7. Adept is second fastest
at a relative run time of 19 followed by CppAD (40), ADOL-C (96) and tapescript (109).
Qualitatively we were able to reproduce the observations from [24] for LW and Toon. The
11 projects.coin-or.org/ADOL-C
12 www.coin-or.org/CppAD/
13 github.com/compatibl/tapescript
14 www.met.reading.ac.uk/clouds/adept/

lowest memory consumption is exhibited by dco/c++ (blob tape) followed by ADOL-C and
Adept (30% ∼ 250% increase). CppAD and tapescript require even more memory.

3 Selected Special Features

While Sec. 2 dealt with the basic functionality provided by dco/c++ we discuss in the following
selected special and partially unique features that turned out particularly beneficial in actual
applications. Three important aspects of algorithmic adjoints are addressed:
1. Flexibility of user interaction with dco/c++ adjoints; Users may want to or even have to

deviate from the standard dco/c++ approach to the evaluation of adjoints (taping + inter-
pretation). For example, source may be missing for part of the primal making numerical
approximation by finite differences and integration into the adjoint data flow a feasible
alternative. An interface for inclusion of external adjoints is presented in Sec. 3.1 in the
context of the Burgers case study. It is used to replace the algorithmic adjoint Newton
solver for the implicit Euler step by a symbolic adjoint version as described in detail in
[37].

2. Multithreading; With virtually all modern computer architectures supporting shared me-
mory parallelism tread-safe implementations of adjoints become increasingly relevant. Two
scenarios are discussed in Sec. 3.2:
(a) Numerical simulations running in a multithreaded shared memory environment require

adjoint versions. The use of thread-local tapes is discussed in the context of the LIBOR
test case in Sec. 3.2.

(b) The evaluation of several adjoints at a given point (for a given tape) can be done in
parallel using several threads over separate thread-local vectors of adjoints as shown
in Sec. 3.2 using the Burgers case study.

3. Tape compression by preaccumulation; In most cases the often prohibitive size of the tape
is the main limiting factor for applicability of basic dco/c++ adjoints as introduced in
Sec. 2.3. In addition to various checkpointing schemes which can be implemented using
the external adjoint interface (see Sec. 3.1) dco/c++ offers an easy-to-use preaccumulation
interface presented in Sec. 3.3.

3.1 External Adjoint Interface
This section introduces the external adjoint interface provided by dco/c++. It enables seamless
interaction with a dco/c++ adjoint through implementation of custom adjoints for selected
parts of the primal computation and their integration into the corresponding tape. The exter-
nal adjoint interface has proven crucial for the construction of robust and efficient adjoints for
various applications [46,31,30]. Its design is driven by the chain rule of differential calculus.
Support is provided for various relevant target scenarios including checkpointing, preaccumu-
lation, approximate adjoints for black boxes, symbolic adjoints for implicit functions as well
as generalization to higher-order adjoints.

Some formalism is required to introduce the external adjoint interface properly. For no-
tational convenience we assume all elementals to map from the entire memory space of the
program (v1−n, . . . , vq) onto itself. A similar approach is taken in [18] and [17].

The primal program for computing a multivariate vector function F : IRn → IRm as
y = F (x) yields an elemental decomposition

vi = Φi(vi−1), Φi : IRn+q → IRn+q for i = 1, . . . , q

and v0 = (x0, . . . , xn−1, 0, . . . , 0), vq = (x0, . . . , xn−1, v1, . . . , vp, y0, . . . , ym−1) . Consequently,
x = Pn · v0 and y = vq · QT

m for linear operators Pn = (In×n, 0n×q) ∈ IRn×(n+q) and Qm =
(0m×(n+p), Im×m) ∈ IRm×(n+q) extracting the first n and last m entries of a vector in IRn+q,

respectively. The identity in IRk is Ik×k and 0k×l denotes a matrix of all zeros in IRk×l.
The adjoint program evaluates the adjoint elemental decomposition

x(1) := x(1) +
⟨
y(1),∇F (x)

⟩
,

where ⟨
y(1),∇F (x)

⟩
= Pn · Φ1

(1)(x,Φ2
(1)(v1, . . .Φq

(1)(v
q−1,vq

(1)) . . .))

and for given vq
(1) = (0, . . . , 0, y0(1), . . . , y

m−1
(1)) assuming availability of adjoint elementals

vi−1
(1) = Φi

(1)(vi−1,vi
(1)) ≡ ∇Φi(vi−1)T · vi

(1) for i = q, . . . , 1.

By default the adjoint elemental decomposition is generated homogeneously with dco/c++.
Special treatment of certain elementals (e.g, Φk) may become desirable or even essential, for
example, to ensure feasibility of the memory requirement by checkpointing or preaccumula-
tion [9], to exploit the implicit function theorem [3], to handle nonsmoothness [15] or even
discontinuity, or to integrate parts of the computation running on a different compute plat-
form (e.g, GPU) [14]. The resulting gaps (the missing tape of Φk in the adjoint context (the
tape of F) need to be filled by custom versions of Φk

(1) yielding
⟨
y(1),∇F (x)

⟩
as

Pn · (∇Φ1(x)T . . .

vk−1
(1)︷ ︸︸ ︷

∇Φk(vk−1)
T (∇Φk+1(vk)T . . . (∇Φq(vq−1)T · vq

(1)) . . .)︸ ︷︷ ︸
vk
(1)

) .

An API needs to be provided allowing for

vk−1
(1) := Φk

(1)(vk−1,vk
(1)) ≡ ∇Φk(vk−1)

T · vk
(1)

to be evaluated based on custom required data to be recorded by an appropriately augmented
primal version of Φk. For example, checkpointing the given implementation of Φk requires its
input arguments to be stored in order to allow context-free reevaluation of Φk. The adjoint
Φk
(1) restores the argument checkpoint followed by an augmented primal evaluation of Φk (e.g,

generation of a local tape) and propagation of the adjoints (e.g, interpretation of the local
tape). Moreover, communication with the context needs to be established by enabling access
to in- and outputs of Φk and to the adjoints of all active arguments.

Our upcoming discussion of the external adjoint interface of dco/c++ replaces the algorith-
mic adjoint of the Newton solver inside of the Burgers case study with its symbolic adjoint
version. The general concept behind adjoint solvers for systems of nonlinear equations is il-
lustrated in Fig. 7 based on prior work in [37]. An algorithmic adjoint (solid arrows) version
of the implicitly defined function x(p) is generated with dco/c++ by recording a tape of the
Newton iterations followed by its interpretation yielding a correct adjoint of the approximate
primal solution x̃ with respect to p. Finite differences (dotted arrow) may be able to validate
this adjoint at a much higher computational cost. Alternatively, a symbolic adjoint (dashed
arrows) results from differentiating the residual at the solution x∗ followed by solving the

F (x(p),p) = 0 ⇒ x∗

x̃ ≈ x∗ : F (x̃,p) ≈ 0

(
∂F

∂x (x∗)

)T

·z = x̄; p̄+ =

(
∂F

∂p (x∗)

)T

·z

three potentially different values for p̄

solve primal & record tape

(
d
dp

)T

· x̄

differentiate residual

solve adjoint

interpret tape

finite differences

Abbildung 7. Kinds of differentiation: Algorithmic (solid arrows), approximate (dotted arrow), symbolic
(dashed arrows)

adjoint equation. Solution of the latter at the given approximate primal solution x̃ yields yet
another approximation of the adjoint. The computational cost can be reduced as well as the
memory requirement. See [37] and references therein for further details on symbolic adjoint
nonlinear solvers.

Our sample code applies the above to the solution of Burgers’ equation. Let therefore
g(y) denote the right-hand side of the ordinary differential equation resulting from spatial
discretization of Burgers’ equation as outlined in Sec. 2.1. Implicit Euler integration with time
step ∆t and given initial condition y0 computes iterates yk for k = 1, ...,∆t−1 as solutions of
the system of nonlinear equations

f(yk,yk−1) ≡ yk − yk−1 −∆t · g(yk) = 0 . (8)

The new state yk is parameterized by yk−1. It is computed by an implementation of Newton’s
method.

The basic dco/c++ adjoint records all Newton iterations on the tape for later interpretation
when computing the algorithmic adjoint of the implicit Euler scheme. Alternatively, symbolic
differentiation of Eqn (8) at the solution yk∗ with respect to yk−1 yields

df(yk∗ ,yk−1)

dyk−1
=

∂f(yk∗ ,yk−1)

∂yk
· dyk∗

dyk−1
+

∂f(yk∗ ,yk−1)

∂yk−1

:=−I

= 0 .

We denote total and partial derivatives by “d” and “∂”, respectively. Transposal and multi-
plication with

z = −
(
∂f(yk∗ ,yk−1)

∂yk

)−T

· yk
(1)

from the right yields

yk−1
(1) =

(
dyk∗

dyk−1

)T

yk
(1) =

(
∂f(yk∗ ,yk−1)

∂yk−1

)T

· z = −I · z = −z .

Hence the computation of yk−1
(1) amounts to the solution of the linear system

(
∂f(yk∗ ,yk−1)

∂yk

)T

· z = yk
(1) . (9)

The external adjoint interface of dco/c++ requires its users to provide two versions for the
section of the code (w.l.o.g. wrapped into a function call) subject to non-standard treatment.
For the Burgers case study the call to an instance of the nonlinear solver

1 template<typename T>
2 void newton(const vector<T>& yp, vector<T>& y) { ... }

computing y as a function of yp is replaced by the following specialization for T=DCO_T to be
called at time of recording:

Listing 1.11. Specialization of newton to be called during recording
1 template<>
2 void newton(const vector<DCO_T>& yp, vector<DCO_T>& y) {
3 DCO_TAPE_T* tape=dco::tape(yp);
4 DCO_EAO_T* D=tape->create_callback_object<DCO_EAO_T>();
5 vector<DCO_BT> ypv=D->register_input(yp);
6 vector<DCO_BT> yv=dco::value(y);
7 newton(ypv,yv);
8 D->write_data(yv);
9 y=D->register_output(yv);

10 tape->insert_callback(newton_adjoint,D);
11 }

Each active variable stores a pointer to its tape extracted in L1.11:3 and required for the
creation of a callback object of external adjoint object type

typedef DCO_M::external_adjoint_object_t DCO_EAO_T

in L1.11:4. The callback object holds all information necessary for the evaluation of the local
adjoint including references to local in- and outputs (L1.11:5,9) as well as required data (here
the approximate solution of the nonlinear system; L1.11:8). The actual Newton iterations
are performed passively (L1.11:7). Both ypv returned in L1.11:5 and yv hold values of type
DCO_BT=double. The external adjoint object is inserted into the tape along with a pointer to
the callback function (here newton_adjoint) to be called by the interpreter when reaching
the current position in the tape (L1.11:10).

The interpreter expects an implementation of newton_adjoint, e.g,

Listing 1.12. Adjoint version of newton to be called during interpretation
1 void newton_adjoint(DCO_EAO_T* D) {
2 const vector<DCO_BT>& y=D->read_data<vector<DCO_BT>>();
3 vector<DCO_BT> ya(y.size()); D->get_output_adjoint(ya);
4 vector<DCO_BT> A((y.size()-2)*3+4,0);
5 dfdy(y,A,/*transpose=*/true);
6 LU(A); FS(A,ya); BS(A,ya);
7 D->increment_input_adjoint(ya);
8 }

The approximate solution of the nonlinear system is recovered (L1.12:2) followed by extracting
adjoints of the local results from the enclosing tape (L1.12:3). Evaluation of the local adjoint
amounts to solving the linear system in Eqn. (9) (L1.12:6–7) with the transposed tridiagonal

system matrix computed in L1.12:5. The solution is used to increment the adjoint inputs
(L1.12:7).

The main driver remains unchanged; see Listing 1.5. For the given scenario (see Sec. 2.2)
we observe a speedup by a factor of 3.5 on our target computer. The tape size is reduced by
a factor of roughly 30.

Seamless transition to second-order adjoints is supported. It amounts to instantiation
of the above code with the second-order adjoint dco/c++ data type introduced in Sec. 2.5
and linkage with the corresponding second-order adjoint driver. The implementation can be
found on the dco/c++ research website. For example, for n = 500 and m = 1000 the memory
requirement of a second-order adjoint computation is reduced from more than 17GB to less
than 400MB. A decrease in run time by a factor of three can be observed. Refer to the dco/c++
research website for access to the sample code.

3.2 Multithreading

L

L_t

L_ct

P_t

L_ct

P_t

Ps_t

L_t

L_ct

P_t

L_ct

P_t

Ps_t

P

1

1

nt/p

1

nt/p

1

1

nt/p

1

nt/p

1/nt 1/nt

Abbildung 8. Parallel adjoints for LIBOR case study: Distribution of individual paths to the two threads is
marked by dotted and dashed lines, respectively. For nt threads the j-th path is assigned to the thread with
thread id j%nt (L1.13:23), that is, paths 0 and 2 are evaluted by thread 0 and paths 1 and 3 are evaluted by
thread 1. Known local partial derivatives are attached to the corresponding edges, for example, the partial
derivatives of the final values of the thread-local Ps_t with respect to the are known to be equal to pathwise
payoffs P_t are known to be equal to nt/p for p paths evaluated by nt threads. The partial derivatives of the
final payoff P with respect to the Ps_t are equal to 1/nt yielding according to the chain rule 1/p as the partial
derivatives of P with respect to the pathwise payoffs P_t. Similarly, the copy operations L → L_t and L_t →
Lc_t yield unit partial derivatives, respectively.

Adjoints for Multithreading The LIBOR case study features a high degree of concurrency
due to mutually independent Monte Carlo path simulations. It lends itself to the exploitation
of shared memory parallelism using OpenMP. While a multithreaded implementation of the
primal is rather straight forward the corresponding adjoint requires more careful treatment.

Fig. 8 depicts a graphical representation of the data flow for a simplified scenario involving
four Monte Carlo paths to be evaluated by two threads. This setup represents a special case of
the implementation shown in Listing 1.13. Thread-local copies L_t of the common input L are
generated (L1.13:18). Read-only inputs are required for correct access to the adjoint results as
outlined previously. Hence each path is evaluated on a local copy Lc_t (L1.13:24–25) yielding
a local payoff P_t. Thread-local sums Ps_t over the pathwise payoffs are built (L1.13:29)
followed by averaging (L1.13:32) and summation over all threads to obtain an estimate of the
primal payoff P (L1.13:34).

Listing 1.13. Thread-parallel recording of multiple tapes
1 // ... L6:1-3
2

3 #include "dco.hpp"
4 typedef dco::ga1sm<double> DCO_M;
5 typedef DCO_M::type DCO_T;
6 typedef DCO_M::tape_t DCO_TAPE_T;
7

8 #include <omp.h>
9

10 void libor(vector<double>& L, double& P, vector<double>& dPdL,
11 const vector<vector<double>>& Z) {
12 int nt=omp_get_max_threads();
13 P=0;
14 #pragma omp parallel
15 {
16 int tid=omp_get_thread_num();
17 DCO_TAPE_T *tape=DCO_TAPE_T::create();
18 vector<DCO_T> L_t(n,0); for (int i=0;i<n;i++) L_t[i]=L[i];
19 tape->register_variable(L_t);
20 DCO_T P_t=0; double Ps_t=0;
21 DCO_TAPE_POSITION_T tpos=tape->get_position();
22 for (int j=0;j<p;j++) {
23 if(j%nt!=tid) continue;
24 vector<DCO_T> Lc_t(L_t);
25 path_calc(j,Lc_t,Z); portfolio(Lc_t,P_t);
26 tape->register_output_variable(P_t);
27 dco::derivative(P_t)=1./p;
28 tape->interpret_adjoint();
29 Ps_t+=dco::value(P_t);
30 tape->reset_to(tpos);
31 }
32 Ps_t/=p;
33 #pragma omp atomic
34 P+=Ps_t;
35 for (int i=0;i<n;i++) {
36 #pragma omp atomic
37 dPdL[i]+=dco::derivative(L_t[i]);

38 }
39 DCO_TAPE_T::remove(tape);
40 }
41 }
42

43 // ... main() calls libor(...)

It remains to compute adjoints of P_t with respect to Lc_t for all paths. Pair-wise inde-
pendence of the paths yields mutually independent adjoints. Each thread allocates a local tape
(L1.13:17). Support for multiple tapes is provided by dco/c++ in ga1sm mode (L1.13:4) enab-
ling thread-safe implementations of tape-based adjoints. Thread-local active inputs L_t are
registered with the tape (L1.13:19) followed by recording individual paths (L1.13:24–26) and
immediate interpretation (L1.13:28) [21] for adjoint local payoffs set equal to 1/p (L1.13:27).
Subsequent recordings use the same tape memory as a result of resetting the tape pointer
to the position following the local active inputs (L1.13:21,30). The latter are incremented by
repeated interpretations yielding correct adjoints for a sequence of paths. Both the reduc-
tions of the final payoff (L1.13:34) and of its gradient with respect to the initial LIBOR rates
(L1.13:37) require atomic handling due to potential race conditions.

The relative simplicity of the given implementation is due to the Monte Carlo section not
being followed by further computation on the payoff P. Adjoints of the path-local payoffs are
known to be equal to 1/p at compile time. They do not depend on adjoints to be computed
prior to their evaluation. Otherwise checkpointing would have to be applied in order to delay
the adjoint Monte Carlo simulation until after the adjoint payoff is available. The read-only
initial LIBOR rates L can be used eliminating the need for additional checkpointing memory.
Checkpointing may also become necessary in case of more complex individual path simulations
whose tape sizes may exceed to available memory resources.

The run time of basic adjoint mode is 2.6s based on a tape of size 1.8GB. While the run
time is not reduced significantly when using pathwise taping, the size of the tape is reduced
to 40KB. Shared memory parallelization using four threads increases the tape size by four.
A speedup of about three can be observed. Seamless transition to second- (and higher-)order
adjoint modes is guaranteed; see corresponding example on the dco/c++ research website.

Multithreading for Adjoints Multithreading can also be applied to several concurrent
interpretations of the same tape. dco/c++ supports the allocation of multiple thread-local
vectors of adjoints sharing a single, sequentially recorded tape. As an example we consider
the computation of several inner rows of the Jacobian of the Burgers case study illustrated
in Fig. 9 for the two inner rows of a 4× 4 Jacobian. Obviously, adjoint mode would only be
used in practice if the number of rows turned out to be substantially lower than the number
of active inputs resulting from the given spatial discretization scheme. Fig. 9 (b) shows a
representation of the tape to be interpreted twice using vectors of adjoints shown in Fig. 9 (c)
and (d). The two interpretations can be performed concurrently by two threads with adjoint
final states set equal to the second and third Cartesian basis vectors, respectively.

Our implementation in Listing 1.14 uses a band width bw defined in burgers.h to select
the 2·bw target rows within the Jacobian. All relevant code is restricted to the main driver
function.

Listing 1.14. Thread-parallel evaluation of multiple adjoints for single tape

A =

a0,0 a0,1 a0,2 a0,3

a1,0 a1,1 a1,2 a1,3

a2,0 a2,1 a2,2 a2,3

a3,0 a3,1 a3,2 a3,3

y0

y1

y2

y3

dy1

dy0

dy2

dy1

dy3

dy2

a1,0

a1,1

a1,2

a1,3

...
0
1
0
0

a2,0

a2,1

a2,2

a2,3

...
0
0
1
0

(a) (b) (c) (d)

Abbildung 9. Parallel accumulation of two inner rows of the Jacobian A ∈ IRn×n (a) for the Burgers case
study with n = 4, m = 3 and using two threads: Tape of evolution of state with preaccumulated local Jacobians
of individual time steps (b); second row computed by first thread using vector of scalar adjoints (c); third row
computed by second thread using vector of scalar adjoints (d).

1 // ... L5:1-8
2

3 #include <omp.h>
4

5 int main() {
6 omp_set_num_threads(nt);
7 vector<DCO_AT> y(n,0);
8 for (int i=1;i<n-1;i++) y[i]=sin(2*PI*i/n);
9 DCO_AM::global_tape=DCO_TAPE_T::create();

10 DCO_AM::global_tape->register_variable(y);
11 vector<DCO_AT> yc(y);
12 burgers(yc);
13 for(int i=n/2-bw;i<n/2+bw;i++)
14 DCO_AM::global_tape->register_output_variable(yc[i]);
15 vector<vector<double>> M_dydy(2*bw,vector<double>(n));
16 #pragma omp parallel
17 {
18 int tid=omp_get_thread_num();
19 dco::adjoint_vector<DCO_TAPE_T,double,2*bw/nt>
20 av(DCO_AM::global_tape);
21 for(int i=n/2-bw,j=0;i<n/2+bw;i++) {
22 if(i%nt!=tid) continue;
23 av.derivative(yc[i])[j]=1;
24 j++;
25 }
26 av.interpret_adjoint();
27 for(int i=n/2-bw,k=0;i<n/2+bw;i++) {
28 if(i%nt!=tid) continue;
29 for(int j=1;j<n-1;j++)
30 M_dydy[i-n/2+bw][j]=av.derivative(y[j])[k];

31 k++;
32 }
33 }
34 DCO_TAPE_T::remove(DCO_AM::global_tape);
35 // ... output and return
36 }

Declaration and initialization of the initial state in (L1.14:7–8) is followed by the recording of
the tape as previously discussed (L1.14:9–14). The target rows of the Jacobian are stored in
an appropriately declared matrix (L1.14:15). Within the parallel section (L1.14:16–33) each
of the nt threads allocates 2·bw/nt vectors of adjoints linked to the single global tape and
with elements of type double (L1.14:19–20). Adjoint final states are set equal to the Cartesian
basis vectors yielding the corresponding row of the Jacobian (L1.14:21–25) by thread-local
tape interpretation (L1.14:26). The results are stored (L1.14:27–32)) prior to leaving the
parallel section and deallocation of the global tape (L1.14:34).

For bw = 32, n = 500, and m = 1000 basic adjoint mode takes 12s. Shared memory
parallelization with four threads yields a speedup of roughly three. Ongoing investigations
in the context of larger use cases are expected to provide further insight into the tuning of
multithreading applied to separate vectors of adjoints. Transition to second and higher order
is straight forward as illustrated by examples on the dco/c++ research website.

3.3 Tape Compression by Preaccumulation

The main challenge faced by all users of algorithmic adjoint software including users of dco/c++
is the often infeasible memory requirement of methods for implementing the reversal of the
data flow, for example, by a tape combined with a vector of adjoints. Checkpointing is pro-
bably the preferred method for limiting the memory footprint at the expense of additional
computation. Corresponding support is provided by dco/c++, for example, through its exter-
nal adjoint interface; see Sec. 3.1. Alternatively, preaccumulation of local Jacobians can help
to ensure feasibility of an adjoint solution.

dco/c++ offers various ways to replace certain sections of the tape with the corresponding
local Jacobian including its external adjoint interface and direct insertion of local partial
derivatives into the tape not discussed in detail in this report; see dco/c++ user guide for
further details. The following solution to preaccumulation has been developed as part of
an ongoing effort to simplify the user interface to dco/c++ wherever possible. Isolated (free
of side effects) parts of the tape can be replaced with their corresponding local Jacobians
by using only a few instructions as illustrated in Listing 1.15 for the LIBOR case study.
Specific modifications are limited to the libor routine. The enclosing driver program remains
unchanged; see Listing 1.6.

Listing 1.15. Reduction of tape size through preaccumulation of local Jacobians
1 void libor(const vector<DCO_T>& L, DCO_T& P,
2 const vector<vector<double>>& Z) {
3 DCO_T Ps=0;
4 DCO_M::jacobian_preaccumulator_t jp(dco::tape(L));
5 for (int j=0;j<p;j++) {
6 jp.start();
7 vector<DCO_T> Lc(L);

8 path_calc(j,Lc,Z); portfolio(Lc,P);
9 jp.register_output(P);

10 jp.finish();
11 Ps+=P;
12 }
13 P=Ps/p;
14 }

In Listing 1.15 local gradients of path-local payoffs P with respect to the path-local copies
Lc of the initial LIBOR rates are preaccumulated. The corresponding local tapes of the
entire path calculation and associated evaluation of the portfolio (L1.15:8) are replaced by a
single gradient, respectively, yielding a substantial decrease in overall tape size. Therefore a
Jacobian preaccumulator object needs to be created for the target tape (L1.15:4). A pointer
to the latter can be extracted from any active variable by using the dco::tape routine. For
each path preaccumulation is initiated by setting a start position (L1.15:6). Local active
outputs need to be registered explicitly following the recording of the local tape (L1.15:9).
The actual preaccumulation is triggered by a call to the finish member function (L1.15:10)
of the Jacobian preaccumulator object. Interpretation of the local tape with adjoints of its m
outputs set equal to the Cartesian basis vectors in IRm (here: adjoint of scalar local output
set equal to one) replaces the local tape with the local Jacobian (here: gradient).

Preaccumulation applied to a basic adjoint of the LIBOR case study results in a tape
of size 28MB. The run time of the corresponding gradient computation is 2.7s. Pathwise
taping combined with preaccumulation reduces the tape size to 1.6KB while no significant
improvement in run time can be observed. Shared memory parallelization with four threads
reduces the overall run time by a factor of two at the expense of an increase in memory
requirement by a factor of four. Again, the transition to second and higher order does not
pose any conceptual challenges. Corresponding sample codes can be found on the dco/c++
research website.

4 Above and Beyond dco/c++

Integration of (adjoint) AD into a nontrivial numerical simulation software environment re-
mains a demanding effort. The benefits in terms of feasibility of derivative-based methods
for parameter sensitivity analysis and calibration, large-scale nonlinear optimization and un-
certainty quantification typically outweigh the investment. However, it must be recognized
that this investment is not a one-off exercise. AD has a significant impact on software de-
velopment and maintenance procedures. Sensitivity information can and should be included
into unit and regression test hierarchies. Coding guidelines may have to be adapted to ensure
robustness of new versions of the code base with respect to its augmented semantics.

Taking all this into account, the level of professionalism expected from an AD software
has risen over recent years. We have been investing into a state of the art dco/c++ software
engineering environment in order to meet these expectations as formulated by both commeri-
cal and academic partners. Crucial elements include cross-platform overnight builds15, a unit
and regression test suite, extensive user documentation and quality assurance mechanisms
implemented in collaboration with our partners at NAG.
15 see www.stce.rwth-aachen.de/buildbot/dco

dco/c++ forms the basis for a number of extensions targeting other programming models
and languages. Inspired by earlier efforts to handle Fortran by providing a suitable wrap-
per to an underlying C++ solution (ADOL-F [43]) dco/fortran has been developed as a
Fortran front-end to dco/c++. One of its main target applications is the NAG Library. In
collaboration with NAG an AD version of the NAG Library is under development including
algorithmic adjoints based on dco/fortran as well as symbolic adjoints of implicit functions
(e.g, [non]linear equation solvers) and hybrid adjoint routines combining both algorithmic
and symbolic elements. dco/fortran is also used to derive and maintain adjoint versions of
Telemac [49] and ICON [50] based on prior work on the NAG AD Fortran Compiler [38].
Preliminary studies for other programming languages include dco/matlab and dco/python.
Both tools are currently used in a purely experimental regime.

Working with numerous partners in academia and industry we have been confronted with
requests to extend algorithmic adjoint capabilities to GPUs. The traditional approach of al-
locating substantial amounts of (tape) memory dynamically turned out to be infeasible for
massively parallel accelerators featuring a relatively low amount of main memory compared
to their computational peak performance. Analysis of the technical challenges resulted in
the concept of meta adjoint programming implemented by dco/map [29]. A domain-specific
language is combined with custom preprocessing of the primal to yield highly efficient ad-
joint code on both CPUs and GPUs. Coupling of CPUs and GPUs is supported through
combination of dco/c++ and dco/map. First applications of dco/map show highly promising
results.

5 Conclusion

Algorithmic adjoint methods for large-scale gradient-based numerical simulation and incorpo-
rating symbolic as well as approximate approaches wherever appropriate or necessary can be
expected to play an increasingly important role in Computational Science, Engineering and
Finance. While not being the easiest programming language to master C++ features a degree
of flexibility and semantic richness which is likely to make it the first choice for a large num-
ber of ongoing and future large-scale and long-term simulation software development efforts.
Software for Algorithmic Differentiation of C++ code will remain a fundamental element of
the numerical simulation toolbox.

The dco/c++ software is a central ingredient of numerous ongoing academic and commeri-
cal projects. Its proven robustness, support for post C++11 standards, efficiency, innovation
and sutainability represents the basis for further development addressing substantial challen-
ges within an ever changing computational environment. Ongoing work includes extensions
toward vector and matrix derivative types, implementation of adjoint code design patterns
[35] and further support for parallelism. However, these improvements will not eliminate the
need for user knowledge. A perfect algorithmic adjoint remains the result of a powerful tool
applied by an expert user.

A Feature Summary

We list all features of the current release of dco/c++ without further explanation. Contact

info@stce.rwth-aachen.de

to find out more.

– stable
• generic first- and higher-order tangents (scalar mode / vector mode)
• generic first- and higher-order adjoints (scalar mode / vector mode)
• blob tape, chunk tape, file tape
• activity analysis for recording
• thread-safety by support for multiple tapes
• external adjoint interface, i.e. support for user-callbacks
• adjoint code module interface
• direct tape manipulation (user-defined gradients)
• tape compression (tape-based preaccumulation of gradients/Jacobians)
• Adjoint MPI support
• vector of adjoints separated from tape; benefits:

∗ arbitrary data type for adjoint vector
∗ vector and scalar modes with same data type (no re-instantiation of code base)
∗ parallel use of same tape w/ multiple adjoint vectors (e.g. using OpenMP)

• first- and second-order sparsity pattern detection
• vector adjoint mode with multiple tape support: ga1vm
• dco/map: meta adjoint programming (different piece of software)
• C++11 support

– experimental
• adjoint code generation during overloading (full unrolling)
• debugging using a combined data type: finite differences vs. tangents vs. adjoints;

benefits:
∗ automatic check of externally implemented adjoints (tangent/adjoint identity)
∗ weak discontinuity detection (using finite differences)
∗ control flow discontinuity detection

– prototyped (outlook for v4.0)
• vectorization support (AVX2, AVX-512)
• C++11 support
• code instrumentation for bidirectional dataflow analysis, debugging during tape inter-

pretation, determination of numerical intensive kernels
• Linux: HPC version using low-level memory access; benefits:

∗ active datatype occupies same memory as passive datatype: simple decay possible;
zero-copy when calling passive kernels

∗ fixed size adjoint memory (mem(adjoints) = mem(primals)); only tape grows (se-
quential write/read only → well suited for writing/reading to/from file)

• Linux: OpenMP support w/ automatic spawning and reducing of per-thread tapes
• Linux: fully automatic checkpointing support

Literatur

1. D. Bailey, Y. Hida, X. Li, and B. Thompson. Arprec: An arbitrary precision computation package.
Technical report, 2002.

2. A. Baydin, B. Pearlmutter, and A. Radul. Automatic differentiation in machine learning: A survey. CoRR,
abs/1502.05767, 2015.

3. B. Bell and J. Burke. Algorithmic differentiation of implicit functions and optimal values. In [4], pages
67–77. Springer, 2008.

4. C. Bischof, M. Bücker, P. Hovland, U. Naumann, and J. Utke, editors. Advances in Automatic Diffe-
rentiation, number 64 in Lecture Notes in Computational Science and Engineering (LNCSE). Springer,
2008.

5. D. Bommes, H. Zimmer, and L. Kobbelt. Practical mixed-integer optimization for geometry processing.
In Curves and Surfaces, Lecture Notes in Computer Science, pages 193–206. Springer, 2012.

6. A. Brace, D. Gatarek, and M. Musiela. The market model of interest rate dynamics. Mathematical Finance,
7:127–147, 1997.

7. J. Burgers. Mathematical examples illustrating relations occurring in the theory of turbulent fluid moti-
on. Verhandelingen der Koninklijke Nederlandse Akademie van Wetenschappen, Afdeeling Natuurkunde,
2(17):1–53, 1939.

8. G. Corliss, C. Faure, A. Griewank, L. Hascoët, and U. Naumann, editors. Automatic Differentiation of
Algorithms: From Simulation to Optimization, Computer and Information Science. Springer, 2002.

9. M. Fagan and A. Carle. Reducing reverse-mode memory requirements by using profile-driven checkpoin-
ting. Future Generation Computer Systems, 21(8):1380–1390, 2005.

10. S. Forth, P. Hovland, E. Phipps, J. Utke, and A. Walther, editors. Recent Advances in Algorithmic
Differentiation, volume 87 of Lecture Notes in Computational Science and Engineering. Springer, Berlin,
2012.

11. D. Gendler, U. Naumann, and B. Christianson. Automatic differentiation of Assembler code. In Proceedings
of the IADIS International Conference on Applied Computing, pages 431–436. IADIS, 2007.

12. M. Giles and P. Glasserman. Smoking adjoints: Fast Monte Carlo Greeks. Risk, pages 88–92, January
2006.

13. P. Glasserman. Monte Carlo Methods in Financial Engineering. Springer, 2003.
14. F. Gremse, A. Hoefter, L. Razik, F. Kiessling, and U. Naumann. GPU-accelerated adjoint algorithmic

differentiation. Computer Physics Communications, 200:300–311, 2016.
15. A. Griewank. On stable piecewise linearization and generalized algorithmic differentiation. Optimization

Methods and Software, 28(6):1139–1178, 2013.
16. A. Griewank, D. Juedes, and J. Utke. Algorithm 755: ADOL-C: A package for the automatic differentiation

of algorithms written in C/C++. ACM Transactions on Mathematical Software, 22(2):131–167, 1996.
17. A. Griewank and U. Naumann. Accumulating Jacobians as chained sparse matrix products. Mathematical

Programming, 95(3):555–571, 2003.
18. A. Griewank and A. Walther. Evaluating Derivatives. Principles and Techniques of Algorithmic Differen-

tiation, Seocnd Edition. Number OT105 in Other Titles in Applied Mathematics. SIAM, 2008.
19. R. Hannemann, W. Marquardt, U. Naumann, and B. Gendler. Discrete first- and second-order adjoints

and automatic differentiation for the sensitivity analysis of dynamic models. Procedia Computer Science,
1(1):297 – 305, 2010.

20. R. Hannemann-Tamás, J. Tillack, M. Schmitz, M. Förster, J. Wyes, K. Nöh, E. von Lieres, U. Naumann,
W. Wiechert, and W. Marquardt. First- and second-order parameter sensitivities of a metabolically and
isotopically non-stationary biochemical network model. In Electronic Proceedings of the 9th International
Modelica Conference, Munich, Sep 3-5, 2012. Modelica Association, 2012.

21. L. Hascoët, S. Fidanova, and C. Held. Adjoining independent computations. In [8], Computer and
Information Science, chapter 35, pages 299–304. Springer, New York, NY, 2002.

22. L. Hascoët, U. Naumann, and V. Pascual. To-Be-Recorded analysis in reverse mode automatic differen-
tiation. Future Generation Computer Systems, 21:1401–1417, 2005.

23. L. Hascoët and V. Pascual. The Tapenade automatic differentiation tool: Principles, model, and specifi-
cation. ACM Transactions on Mathematical Software, 39(3):20:1–20:43, 2013.

24. R. Hogan. Fast reverse-mode automatic differentiation using expression templates in C++. ACM Tran-
sactions on Mathematical Software, 40(4):26:1–26:24, jun 2014.

25. P. Hovland, U. Naumann, and B. Norris. An XML-based platform for semantic transformation of numerical
programs. In M. Hamza, editor, Software Engineering and Applications, pages 530–538. ACTA Press, 2002.

26. J. Huang, Y. Tong, H. Wei, and H. Bao. Boundary aligned smooth 3d cross-frame field. ACM Trans.
Graph., 30(6):143:1–143:8, 2011.

27. P. Lax and B. Wendroff. Systems of conservation laws. Communications on Pure and Applied mathematics,
13(2):217–237, 1960.

28. J. Lotz. Hybrid Approaches to Adjoint Code Generation with dco/c++. PhD thesis, RWTH Aachen
University, 2016.

29. J. Lotz, K. Leppkes, U. Naumann, and J. du Toit. Meta adjoint programming in C++. Technical Report
AIB-2017-07, Department of Computer Science, RWTH Aachen University, 2017.

30. J. Lotz, U. Naumann, R. Hannemann-Tamás, T. Ploch, and A. Mitsos. Higher-order discrete adjoint ODE
solver in C++ for dynamic optimization. Procedia Computer Science, 51:256–265, 2015.

31. J. Lotz, U. Naumann, and J. Ungermann. Hierarchical algorithmic differentiation: A case study. In [10],
pages 187–196. Springer, 2012.

32. D. Lu. The XVA of Financial Derivatives: CVA, DVA and FVA Explained. Springer, 2016.
33. M. B. Monagan, K. O. Geddes, K. M. Heal, G. Labahn, S. M. Vorkoetter, J. McCarron, and P. DeMarco.

Maple 10 Programming Guide. Maplesoft, 2005.
34. U. Naumann. The Art of Differentiating Computer Programs. An Introduction to Algorithmic Differen-

tiation. Number SE24 in Software, Environments, and Tools. SIAM, 2012.
35. U. Naumann. Adjoint code design patterns. In Seventh International Conference on Algorithmic Diffe-

rentiation, Oxford, UK, 2016. Extended abstract. Full paper under review.
36. U. Naumann and J. du Toit. Adjoint algorithmic differentiation tool support for typical numerical patterns

in computational finance. Journal of Computational Finance, 2016. To appear.
37. U. Naumann, J. Lotz, K. Leppkes, and M. Towara. Algorithmic differentiation of numerical methods:

Tangent and adjoint solvers for parameterized systems of nonlinear equations. ACM Transactions on
Mathematical Software, 41:1–26, 2015.

38. U. Naumann and J. Riehme. A differentiation-enabled Fortran 95 compiler. ACM Transactions on Ma-
thematical Software, 31(4):458–474, December 2005.

39. A. Noack and A. Walther. Adjoint concepts for the optimal control of Burgers equation. Comput. Optim.
Appl., 36(1):109–133, 2007.

40. A. Pfadler. Computing sensitivities of CVA using adjoint algorithmic differentiation. Master’s thesis,
University of Oxford, 2015.

41. E. Phipps and R. Pawlowski. Efficient expression templates for operator overloading-based automatic
differentiation. In [10], volume 87 of Lecture Notes in Computational Science and Engineering, pages
309–319. Springer, Berlin, 2012.

42. M. Sambridge, P. Rickwood, N. Rawlinson, and S. Sommacal. Automatic differentiation in geophysical
inverse problems. 170:1 – 8, 07 2007.

43. D. Shiriaev, A. Griewank, and J. Utke. A user guide to ADOL–F: Automatic differentiation of Fortran
codes. Tech. Report IOKOMO–04–1995, TU Dresden, Dept. of Mathematics, 1996.

44. O. Toon, R. Turco, D. Westphal, R. Malone, and M. Liu. A multidimensional model for aerosols: Descrip-
tion of computational analogs. Journal of the Atmospheric Sciences, 45(15):2123–2144, 1988.

45. M. Towara and U. Naumann. A discrete adjoint model for OpenFOAM. Procedia Computer Science,
18:429–438, 2013.

46. M. Towara, M. Schanen, and U. Naumann. MPI-parallel discrete adjoint OpenFOAM. Procedia Computer
Science, 51:19–28, 2015.

47. J. Ungermann, J. Blank, J. Lotz, K. Leppkes, Lars Hoffmann, T. Guggenmoser, M. Kaufmann, P. Preusse,
U. Naumann, and M. Riese. A 3-d tomographic retrieval approach with advection compensation for the
air-borne limb-imager GLORIA. Atmospheric Measurement Techniques, 4(11):2509–2529, 2011.

48. J. Utke, U. Naumann, M. Fagan, N. Tallent, M. Strout, P. Heimbach, C. Hill, and C. Wunsch. OpenA-
D/F: A modular open-source tool for automatic differentiation of Fortran codes. ACM Transactions on
Mathematical Software, 34(4):18:1–18:36, July 2008.

49. C. Villaret, R. Kopmann, J. Riehme, D. Wyncoll, U. Merkel, and U. Naumann. First-order uncertainty
analysis using algorithmic differentiation of the Telemac-2D/Sisyphe morphodynamic model. Computers
& Geosciences, 90(B):144–151, 2015.

50. A. Vlasenko, P. Korn, J. Riehme, and U. Naumann. Estimation of data assimilation error: A shallow-water
model study. Monthly Weather Review, 142:2502–2520, 2014.

51. M. Voßbeck, R. Giering, and T. Kaminski. Development and first applications of TAC++. In [4], pages
187–197. Springer, 2008.

52. A. Wächter and L. Biegler. On the implementation of an interior-point filter line-search algorithm for
large-scale nonlinear programming. Math. Program., 106(1):25–57, 2006.

Aachener Informatik-Berichte

This list contains all technical reports published during the past three years. A complete
list of reports dating back to 1987 is available from:

http://aib.informatik.rwth-aachen.de/

To obtain copies please consult the above URL or send your request to:

Informatik-Bibliothek, RWTH Aachen, Ahornstr. 55, 52056 Aachen,
Email: biblio@informatik.rwth-aachen.de

2015-01 ∗ Fachgruppe Informatik: Annual Report 2015
2015-02 Dominik Franke: Testing Life Cycle-related Properties of Mobile Applications
2015-05 Florian Frohn, Jürgen Giesl, Jera Hensel, Cornelius Aschermann, and Thomas

Ströder: Inferring Lower Bounds for Runtime Complexity
2015-06 Thomas Ströder and Wolfgang Thomas (Editors): Proceedings of the Young

Researchers’ Conference “Frontiers of Formal Methods”
2015-07 Hilal Diab: Experimental Validation and Mathematical Analysis of Coopera-

tive Vehicles in a Platoon
2015-08 Mathias Pelka, Jó Agila Bitsch, Horst Hellbrück, and Klaus Wehrle (Editors):

Proceedings of the 1st KuVS Expert Talk on Localization
2015-09 Xin Chen: Reachability Analysis of Non-Linear Hybrid Systems Using Taylor

Models
2015-11 Stefan Wüller, Marián Kühnel, and Ulrike Meyer: Information Hiding in the

Public RSA Modulus
2015-12 Christoph Matheja, Christina Jansen, and Thomas Noll: Tree-like Grammars

and Separation Logic
2015-13 Andreas Polzer: Ansatz zur variantenreichen und modellbasierten Entwicklung

von eingebetteten Systemen unter Berücksichtigung regelungs- und software-
technischer Anforderungen

2015-14 Niloofar Safiran and Uwe Naumann: Symbolic vs. Algorithmic Differentiation
of GSL Integration Routines

2016-01 ∗ Fachgruppe Informatik: Annual Report 2016
2016-02 Ibtissem Ben Makhlouf: Comparative Evaluation and Improvement of Com-

putational Approaches to Reachability Analysis of Linear Hybrid Systems
2016-03 Florian Frohn, Matthias Naaf, Jera Hensel, Marc Brockschmidt, and Jürgen

Giesl: Lower Runtime Bounds for Integer Programs
2016-04 Jera Hensel, Jürgen Giesl, Florian Frohn, and Thomas Ströder: Proving Ter-

mination of Programs with Bitvector Arithmetic by Symbolic Execution
2016-05 Mathias Pelka, Grigori Goronzy, Jó Agila Bitsch, Horst Hellbrück, and Klaus

Wehrle (Editors): Proceedings of the 2nd KuVS Expert Talk on Localization
2016-06 Martin Henze, René Hummen, Roman Matzutt, Klaus Wehrle: The Sensor-

Cloud Protocol: Securely Outsourcing Sensor Data to the Cloud
2016-07 Sebastian Biallas : Verification of Programmable Logic Controller Code using

Model Checking and Static Analysis
2016-08 Klaus Leppkes, Johannes Lotz, and Uwe Naumann: Derivative Code by Over-

loading in C++ (dco/c++): Introduction and Summary of Features
2016-09 Thomas Ströder, Jürgen Giesl, Marc Brockschmidt, Florian Frohn, Carsten

Fuhs, Jera Hensel, Peter Schneider-Kamp, and Cornelius Aschermann: Auto-
matically Proving Termination and Memory Safety for Programs with Pointer
Arithmetic

2016-10 Stefan Wüller, Ulrike Meyer, and Susanne Wetzel: Towards Privacy-Preserving
Multi-Party Bartering

2017-01 ∗ Fachgruppe Informatik: Annual Report 2017
2017-02 Florian Frohn and Jürgen Giesl: Analyzing Runtime Complexity via Innermost

Runtime Complexity

2017-04 Florian Frohn and Jürgen Giesl: Complexity Analysis for Java with AProVE
2017-05 Matthias Naaf, Florian Frohn, Marc Brockschmidt, Carsten Fuhs, and Jürgen

Giesl: Complexity Analysis for Term Rewriting by Integer Transition Systems
2017-06 Oliver Kautz, Shahar Maoz, Jan Oliver Ringert, and Bernhard Rumpe:

CD2Alloy: A Translation of Class Diagrams to Alloy
2017-07 Klaus Leppkes, Johannes Lotz, Uwe Naumann, and Jacques du Toit: Meta

Adjoint Programming in C++
2017-08 Thomas Gerlitz: Incremental Integration and Static Analysis of Model-Based

Automotive Software Artifacts
2017-09 Muhammad Hamad Alizai, Jan Beutel, Jó Ágila Bitsch, Olaf Landsiedel, Luca

Mottola, Przemyslaw Pawelczak, Klaus Wehrle, and Kasim Sinan Yildirim:
Proc. IDEA League Doctoral School on Transiently Powered Computing

2018-01 ∗ Fachgruppe Informatik: Annual Report 2018
2018-02 Jens Deussen, Viktor Mosenkis, and Uwe Naumann: Ansatz zur varianten-

reichen und modellbasierten Entwicklung von eingebetteten Systemen unter
Berücksichtigung regelungs- und softwaretechnischer Anforderungen

2018-03 Igor Kalkov: A Real-time Capable, Open-Source-based Platform for Off-the-
Shelf Embedded Devices

2018-04 Andreas Ganser: Operation-Based Model Recommenders

∗ These reports are only available as a printed version.
Please contact biblio@informatik.rwth-aachen.de to obtain copies.

