
Aachen
Department of Computer Science

Technical Report

Verification of Programmable Logic
Controller Code using Model Checking
and Static Analysis

Sebastian Biallas

ISSN 0935–3232 · Aachener Informatik-Berichte · AIB-2016-07

RWTH Aachen · Department of Computer Science · July 2016

The publications of the Department of Computer Science of RWTH Aachen
University are in general accessible through the World Wide Web.

http://aib.informatik.rwth-aachen.de/

http://aib.informatik.rwth-aachen.de/

Verification of Programmable Logic Controller Code
using Model Checking and Static Analysis

Von der Fakultät für Mathematik, Informatik und Naturwissenschaften
der RWTH Aachen University zur Erlangung des akademischen Grades
eines Doktors der Naturwissenschaften genehmigte Dissertation

vorgelegt von

Diplom-Informatiker
Sebastian Biallas
aus Düsseldorf

Berichter: Universitätsprofessor Dr.-Ing. Stefan Kowalewski
Universitätsprofessor Dr.-Ing. Alexander Fay

Tag der mündlichen Prüfung: 14.7.2016

Diese Dissertation ist auf den Internetseiten der Hochschulbibliothek online verfügbar.

Bibliografische Information der Deutschen Nationalbibliothek
Die Deutsche Nationalbibliothek verzeichnet diese Publikation in der
Deutschen Nationalbibliografie; detaillierte bibliografische Daten sind
im Internet über http://dnb.d-nb.de abrufbar.

Zugl.: D 82 (Diss. RWTH Aachen University, 2016)

Sebastian Biallas
Informatik 11 — Embedded Software
biallas@embedded.rwth-aachen.de

Aachener Informatik Bericht AIB-2016-07

Herausgeber: Fachgruppe Informatik
RWTH Aachen University
Ahornstr. 55
52074 Aachen
GERMANY

ISSN 0935-3232

Copyright Shaker Verlag 2016
Alle Rechte, auch das des auszugsweisen Nachdruckes, der auszugs-
weisen oder vollständigen Wiedergabe, der Speicherung in Datenver-
arbeitungsanlagen und der Übersetzung, vorbehalten.

Printed in Germany.

ISBN 978-3-8440-4711-0

Shaker Verlag GmbH ∙ Postfach 101818 ∙ 52018 Aachen
Telefon: 02407 / 95 96 - 0 ∙ Telefax: 02407 / 95 96 - 9
Internet: www.shaker.de ∙ E-Mail: info@shaker.de

http://dnb.d-nb.de
www.shaker.de
info@shaker.de

abstract

Programmable Logic Controllers (PLCs, ger. Speicherprogrammierbare Steuerun-
gen) are control devices used in industry to control, operate and monitor plants,
machines and robots. PLCs comprise input connectors, typically connected to sen-
sors, output connectors, typically connected to actuators, and a program, which
controls the behavior, computing new output values based on the input values
and an internal state. Since PLCs operate in safety-critical environments, where
a malfunction could seriously harm the environment, humans, or the plant, it is
recommended to verify their programs using formal methods.

This dissertation studies the formal methods model checking and static analysis
to prove the correctness of PLC programs. For this, we developed the tool Ar-
cade.PLC, which allows the automatic application of these methods to PLC pro-
grams written in different vendor-specific dialects. It extracts a model from the
program by abstract simulation, which over-approximates the possible program
behavior. The user is then able to verify whether the model obeys a specification,
which can be written in the logic CTL or using automata.

For applying model checking, we demonstrate how the model can be extracted
automatically, such that the approach scales to industrial size programs. For this,
we introduce two different abstraction techniques: First, we develop an abstraction
refinement guided by the model checker that automatically creates an abstracted
model by iteratively analyzing counterexamples. Second, we implemented a pred-
icate abstraction that evaluates a formalized program semantics using an SMT
solver. Both techniques are evaluated using different programs from industry and
academia. Further, we introduce a simplified formalism to write specifications,
which is influenced by an automata-based language established in industry. We
implement an algorithm to check programs using this formalism and show that
this technique is even able to detect errors in the specification. Finally, we detail
how counterexamples generated by the model checker can be analyzed automati-
cally to locate the actual erroneous line in the program.

The static analysis we developed is able to detect program errors in a fully au-
tomatic way. We detect typical errors such as division by zero and illegal array
accesses, but also PLC specific errors, e. g., during a restart. The analysis is based
on a value-set analysis, which determines the values of all program variables in
each program location. These sets are then verified against the predefined checks
or user-provided annotations. We show how to implement this analysis such that
it scales to industrial size programs. The approach is evaluated on an industrial
case study.

I

zusammenfassung

Speicherprogrammierbare Steuerungen (SPSen, engl. Programmable Logic Con-
troller) sind Automatisierungsgeräte, welche zur Steuerung, Regelung und Über-
wachung von industriellen Anlagen und Maschinen eingesetzt werden. Sie besit-
zen dazu Eingänge, die mit Sensoren verbunden sind, Ausgänge, die mit Aktuato-
ren verbunden sind und ein Programm, welches die Ausgänge in Abhängigkeit der
Eingänge und eines internen Speichers belegt. Da SPSen häufig in kritischen Berei-
chen eingesetzt werden, in denen eine Fehlfunktion Gefahren für Mensch, Umwelt
oder die Anlage bergen kann, ist die Korrektheit des Programms zu prüfen.

Diese Dissertation untersucht die formalen Methoden Model-Checking und Sta-
tische Analyse, um die Korrektheit von PLC-Programmen zu beweisen. Wir haben
dazu das Tool Arcade.PLC geschrieben, welches es ermöglicht, diese Techniken
vollautomatisch auf PLC-Programme verschiedener Hersteller anzuwenden. Es ex-
trahiert durch abstrakte Simulation ein Modell, welches sämtliches Programmver-
halten widerspiegelt. Der Benutzer kann dann überprüfen, ob das Modell einer
Spezifikation entspricht, welche er in der Logik CTL formulieren muss oder als
Automaten eingegeben kann.

Zum Bereich Model-Checking zeigen wir in dieser Dissertation, wie das Mo-
dell automatisch abstrahiert werden kann, so dass der Ansatz auch für industriel-
le Programme skaliert. Es werden dazu zwei verschiedene Abstraktionstechniken
eingeführt: Eine durch den Model-Checker gesteuerte Abstraktionsverfeinerung
erstellt ein abstrahiertes Modell iterativ durch Analyse von Gegenbeispielen. Au-
ßerdem haben wir eine automatische Prädikat-Abstraktion implementiert, welche
mithilfe einer SMT-Solvers die formalisierte Programmsematik auf Prädikaten aus-
wertet. Beide Techniken werden anhand verschiedener Programme evaluiert. Wei-
terhin führen wir einen vereinfachten Spezifkationsformalismus ein, welcher sich
an einer in der Industrie etablierten Automatensprache orientiert. Wir implemen-
tieren einen Algorithmus, um Programme mit diesem Formalismus zu überprüfen
und zeigen, dass durch diese Technik auch Spezifikationsfehler entdeckt werden
können. Schließlich zeigen wir noch, wie vom Model-Checker gefundene Gegen-
beispiele analysiert werden können, um die eigentlich fehlerhafte Programmzeile
automatisch zu lokalisieren.

Die von uns implementierte Statische Analyse kann vollautomatisch Programm-
fehler entdecken. Dazu gehören beispielsweise eine Division durch Null, unerlaub-
te Array-Zugriffe oder PLC-spezifische Fehler z.B. beim Neustart. Die Analyse
basiert auf einer Wertebereichsanalyse, welche eine Übermenge der Werte aller
Variablen in allen Programmstellen berechnet. Wir zeigen, wie diese Analyse ska-
lierbar implementiert werden kann. Der Ansatz wird an einer großen industriellen
Fallstudie ausgewertet.

III

acknowledgements

I worked on this dissertation while I was employed as a research assistant at
the chair Informatik 11 — Embedded Software at the RWTH Aachen University. This
work would not have been possible without the support of many others. First of
all, I have to thank Prof. Dr.-Ing. Stefan Kowalewski for giving me the opportunity
to join his group, for supporting my thesis, and for the excellent collaboration dur-
ing this time. I would also like to thank Prof. Dr.-Ing. Alexander Fay for serving as
a second supervisor and for helpful remarks. Furthermore, I thank Prof. Dr. Bern-
hard Rumpe and apl. Prof. Dr. Thomas Noll for participating in my examination
committee.

I have to thank Dr. Bastian Schlich, whom I first met when I was a student
while he was a postdoctoral researcher at the chair. He introduced me to the topic
of formal verification of embedded software and supervised by Diploma thesis.
Later, he went to ABB and was able to establish an industrial research collaboration.
I would also like to thank his colleagues, especially Dr. Stefan Hauck-Stattelmann,
for the great collaboration during this time.

Furthermore, I would like to thank all my former colleagues and friends for the
great time I had at the chair. In particular, I enjoyed the numerous interesting
discussions I had with Dr. Jörg Brauer even outside the work environment.

I also have to thank Dr. Ralf Huuck for giving me the possibility to join his group
at NICTA during a research visit. I learned a lot about the static analysis of C and
C++ programs and how to scale such an analysis to industrial size programs.

I especially have to thank my students. They wrote excellent bachelor and master
theses, implemented algorithms and user interfaces, performed case studies, and
contributed as co-authors of publications. This work would not have been possible
without them.

Financially, my work was supported by the Deutsche Forschungsgemeinschaft. Fur-
ther, I was supported by the DFG research training group 1298 Algorithmic Synthesis
of Reactive and Discrete-Continuous Systems and the DFG Cluster of Excellence on
Ultra High Speed Mobile Information and Communication. I am very grateful for this
support and I also have to thank these groups for many interesting and stimulating
discussions.

Finally, I have to thank my parents and my sister for support and proof-reading.

Sebastian Biallas
July 2016, Berlin

V

C O N T E N T S

1 introduction 1
1.1 Formal Verification of PLC Code . 2
1.2 Contribution & Outline . 3

1.2.1 Model Checking . 3
1.2.2 Static Analysis . 5
1.2.3 Combining Model Checking and Static Analysis 6

1.3 Related Work . 6
1.4 Bibliographic Notes & Contributions by the Author 7

2 formal verification of plc code 9
2.1 A Brief History of Programmable Logic Controllers 9
2.2 Status Quo . 9

2.2.1 Program Organization Units 10
2.2.2 Modes of Operation . 10
2.2.3 Programming Languages . 11
2.2.4 Variables, Data Types, Lifetime and Scope 12
2.2.5 General Organization . 14
2.2.6 Timers . 15
2.2.7 Function Block Calls . 15
2.2.8 Standard & Vendor-Specific Extensions 16

2.3 PLCopen . 17
2.4 Formal Verification using Model Checking 18

2.4.1 Kripke Structures . 18
2.4.2 CTL Formulae . 18
2.4.3 Counterexamples and Witnesses 19

2.5 Model Checking PLC Programs . 20
2.5.1 Concrete Model . 20
2.5.2 Abstract Model for PLC Programs 21

3 implementation 25
3.1 Arcade.PLC . 25
3.2 Organization . 26
3.3 Generic Simulator and Abstract Domains 27

3.3.1 Lattices . 27
3.3.2 Intervals . 28
3.3.3 Bitsets . 28
3.3.4 Extensions . 28
3.3.5 Reduced Product . 29

3.4 Translation to the Intermediate Representation 30
3.4.1 Parsers . 30

VII

VIII Contents

3.4.2 Annotations using Pragmas . 30
3.4.3 Pragmatic & Practical Considerations 31
3.4.4 Instructions . 32

4 counterexample-guided abstraction refinement 37
4.1 Approach . 37

4.1.1 Related Work . 38
4.1.2 Contributions & Outline . 39

4.2 Worked Example . 39
4.3 Constraint Solver . 41

4.3.1 Constraints on Abstract Values 42
4.3.2 Constraints on Expressions . 43
4.3.3 Transforming Constraints . 44

4.4 Refinements . 45
4.4.1 Refinement of Input Variables 46
4.4.2 Refinement of Local Variables 47

4.5 State Space Organization . 50
4.5.1 Counterexample Analysis . 51
4.5.2 Worked Example . 51

4.6 Case Studies . 54
4.7 Conclusion . 56

5 predicate abstraction 59
5.1 Overview & Outline . 59
5.2 Related Work . 59
5.3 Worked Example . 60
5.4 Encoding of PLC semantics in FOL . 61

5.4.1 Encoding of Variables and the Program 61
5.4.2 Translating PLC Programs as FOL Formulae 63
5.4.3 Encoding of Timers . 65
5.4.4 Succinct Representation of Control-Flow Automata 67

5.5 Predicate Abstraction . 67
5.5.1 Implementation of the Predicate Abstraction 68
5.5.2 Scoping of Predicates . 70

5.6 Case Study . 71
5.7 Conclusion . 72

6 model checking using safety automata specifications 73
6.1 Motivation & Overview . 73

6.1.1 Bibliographic Notes & Related Work 74
6.1.2 Contribution & Outline . 75

6.2 Safety Automata . 75
6.2.1 Formalization . 75
6.2.2 Simplifications & Conventions 76
6.2.3 Relation to CTL . 77

6.3 A Model Checking Algorithm for Safety Automata 77

Contents IX

6.3.1 On-the-fly Checking . 77
6.3.2 Counterexamples . 78
6.3.3 Extensions . 78

6.4 Checking PLCopen Safety Function Blocks 80
6.5 Detecting Over-Specifications . 82

6.5.1 Detecting Over-Specifications in Safety Automata 82
6.5.2 Detection of a Faulty Specification 83

6.6 Concluding Discussion & Future Work 84
6.6.1 Automata Compared to CTL 84
6.6.2 Future Work . 84

7 fault localization in counterexamples 87
7.1 Approach . 87
7.2 Motivating Example . 88
7.3 Trace Comparison . 90

7.3.1 Preliminaries . 90
7.3.2 Analysis of the Last Cycle . 91
7.3.3 Analysis of a Trace . 93
7.3.4 Correction Candidates . 93
7.3.5 Case Study . 95
7.3.6 Discussion . 96

7.4 Candidate Exclusion . 97
7.4.1 Testing Multiple Lines at Once 98
7.4.2 Testing Multiple Cycles . 98
7.4.3 Coincidental Correctness & Preconditions 99
7.4.4 Multiple Necessary Error Candidates 101
7.4.5 Case Study . 101

7.5 Discussion & Comparison . 101
7.6 Related Work . 102
7.7 Conclusion & Future Work . 103

8 static analysis of plc programs 105
8.1 Approach . 105

8.1.1 Contribution & Outline . 106
8.1.2 Related Work . 106

8.2 Static Analysis Process . 107
8.2.1 Pointer Analysis . 108
8.2.2 Control-Flow-Graph Builder 109
8.2.3 Static Analyses Dataflow Framework 111
8.2.4 Live Variable & Reaching Definition Analysis 112
8.2.5 Value-Set Analysis . 113
8.2.6 Value-Set Analysis with Sparse Memory States 114
8.2.7 Widening . 115
8.2.8 Post-Analysis . 115

8.3 Localization of Function Block Variables 116

X Contents

8.4 Initializations & Partial Unrolling . 118
8.4.1 Retain Variables . 119

8.5 Implementation of Checks . 119
8.6 Case Studies . 122

8.6.1 Industrial Programs . 122
8.6.2 Specific Warning: Illegal GetStructComponent / PutStruct-

Component . 123
8.6.3 PLCopen Safety Function Blocks 124

8.7 Calculation of Summaries . 124
8.8 Conclusion & Future Work . 125

9 static analysis & model checking interplay 127
9.1 Verification of a Safety Application . 127

9.1.1 Modular Abstractions . 128
9.1.2 Selecting Modular Refinements using Forward Slicing 129
9.1.3 State Space Reduction using Liveness Analysis 130
9.1.4 Final Analysis . 131

9.2 Using the Model Checker to Augment Static Analysis Results 132
9.3 Conclusion . 132

10 conclusion 135
10.1 Formal Methods in Practice . 135
10.2 Future Work . 136

Bibliography 139

1
I N T R O D U C T I O N

Programmable Logic Controllers (PLCs) are control devices used in industry to
control, operate, supervise, and monitor machines, robots, assembly lines, chemi-
cal plants, power plants, oil rigs, and other technical processes [71]. They typically
comprise a set of input/output signals, which are connected to sensors and actu-
ators, and a program. The program is then run periodically at a high frequency
to calculate new output values based on the current input values and the internal
memory [71]. Since PLCs are often used in safety-critical settings, where a failure
might cause serious harm to humans or the environment, the correctness of the
program is highly important. Hence, its functionality must undergo an extensive
testing process [75, 96].

From a practical standpoint, however, testing cannot test every possible combi-
nation and sequence of input signals, especially when the internal state of the PLC
program has to be considered as well. Thus, testing is restricted to certain cover-
age criteria [91]. Formal verification, on the other hand, strives to validate that a
property holds in every possible configuration of the program. This is achieved by
reasoning about a formal model of the program behavior. In model checking [4], Model Checking

e. g., the program behavior is modeled as a transition system, which reflects the
reachable states of the system and their transitions. It is then checked whether this
model satisfies properties given in modal or temporal logics (cp. Sect. 2.4). This
approach is additionally able to generate a counterexample in case of a violation.
The counterexample then explains the violation by stating the exact circumstances
in which a property is violated, which aids in debugging the problem. Another
type of formal methods are static analyses, which can be used without a user sup- Static Analyses

plied specification. They are able to detect typical programming errors such as
unreachable code, possible divisions by zero, index out-of-bounds accesses, vari-
able stuck-to-zero. In some cases, the careful application of formal methods can
even reveal errors in the specification (cp. Sect. 6.5 and 8.6.3).

Formal verification is often desirable, if not recommended [70], when dealing
with safety-critical code. The goal of this dissertation is to harness the formal
methods model checking and static analysis for the verification of PLC code. The
emphasis is to adapt and refine these formal methods to the PLC domain to make
them applicable to industrial code and usable by engineers.

1

2 introduction

kM

kk

kw

k

w

N

4

6

7

5 8

9

TckMms

FALSE

FALSE

FALSE

FALSE

TckMMms

PLCopenfSF_Equivalent_k

PLCopenfSF_Equivalent

Activate Ready

S_ChannelA S_EquivalentOut

S_ChannelB Error

DiscrepancyTime DiagCode

PLCopenfSF_EmergencyStop_k

PLCopenfSF_EmergencyStop

Activate Ready

S_EStopIn S_EStopOut

S_StartReset Error

S_AutoReset DiagCode

Reset

PLCopenfSF_ESPE_k

PLCopenfSF_ESPE

Activate Ready

S_ESPE_In S_ESPE_Out

S_StartReset Error

S_AutoReset DiagCode

Reset

PLCopenfSF_SafeStopk_k

PLCopenfSF_SafeStopk

Activate Ready

S_StopIn S_Stopped

AxisID Error

MonitoringTime DiagCode

Reset

Acknowledge

AND

INM AND

INk

AND

INM AND

INk

1 InputDevice1_active 2 S1_S_EStopIn_1
3 S1_S_EStopIn_2 4 S0_RESET
5 InputDevice2_active 6 S2_S_ESPEIn
7 S0_RESET 8 AxisID_1
9 S3_DriveReset 10 S_Stopped
11 Error 12 DiagCode

Figure 1: Example program taken from [94, Part 2, p. 19] and remodeled in our
own tool for verification purpose.

1.1 formal verification of plc code

PLC programs are usually composed in a modular fashion (cp. Sect. 2.2.5). Fig-
ure 1 shows such a program, which is written in the graphical language Function
Block Diagram. The example connects existing functions blocks using logical blocks
to form a safety function. The goal of this safety function is to supervise an emer-
gency stop button (inputs 2 and 3) and a light curtain (input 5) in order to stop a
motor if any of these devices is triggered. Additionally, it is ensured that the motor
can only be restarted if a manual reset is triggered after a safe stop was requested.
The two redundant signals S1_S_EStopin_1 and S1_S_EStopin_2 of the emergency
stop button are combined using an SF_Equivalent block, which allows for a cer-
tain discrepancy time that ensures to keep a consistent signal if both switches do
not react at the same instant. The function blocks used in this diagram are defined
by the PLCopen consortium [94, Part 1] and then provided by a vendor. Such a
setup, i. e., combining existing function blocks from a library by an engineer, is
typical for safety functions.

To assess and verify the correctness of such a program, we address three ques-
tions in this dissertation:

1. Is the safety function of this program implemented correctly?

2. Are the function blocks used in this program implemented correctly?

3. How can we automatically detect faulty PLC code?

We created the tool Arcade.PLC, which allows to apply formal verification to
a wide range of industrial PLC code. It offers the formal method model checking,

1.2 contribution & outline 3
Model&Checking&

10&

PLC&Program&

Formal&Model&

Requirements&

Formal&Specifica>on&

Model&Checker&

Sa#sfies?(

„Yes“& Counterexample&

Figure 2: The model checking process.

which—as we will show—can be used to answer the first two questions. It also
implements different static analyses to address the third question. We detail our
contributions to these fields in the next section.

1.2 contribution & outline

We begin by describing the semantics of PLC programs in Chap. 2. We then de-
rive a formal model, on which our verification methods are based on. This for-
mal model comprises a transition system reflecting the observable input/output
behavior of a PLC program or a function block. To automatically generate this
model from a given PLC program and to check this model, we created the tool
Arcade.PLC. The history and overall organization of Arcade.PLC is described in
Chap. 3. It contains different parsers that translate PLC programs into an interme-
diate representation so as to handle multiple function blocks written in different
languages in one framework.

1.2.1 Model Checking

In Arcade.PLC, we use model checking to verify that a PLC program satisfies its
requirements. An overview of the model checking process is depicted in Fig. 2:
Given a program and requirements, the user wants to know whether the program
satisfies the requirements. To apply formal methods, both, the program and the re-
quirements have to be formalized first. Therefore, the program is transformed in a
formal model, that reflects the possible program behavior. The requirements have
to be formalized as well. Typically, logical formulae are used to specify the formal

4 introduction

requirements. Then, a model checker is used to verify that the formal model satis-
fies the formal specification. If the model checker can prove that the model satisfies
the requirements, it answers “yes”; otherwise a counterexample can be generated,
which explains the violation by listing a sequence of events possible in the model
that are forbidden by the specification. As a third option, the model checker might
return “out of memory” or it might have to be interrupted prematurely, because it
could not produce a result in a reasonable time. This happens if the model is too
large to be explored by the model checker and necessitates abstractions to generate
succinct models.

We present the following contributions to the model checking process of PLC
programs:

∙ After an introduction to PLCs and their semantics in Chap. 2, we describe
a formal model for the execution of PLC programs in Sect. 2.5.1. We fur-
ther describe how this model can be generated automatically from a given
program. This formal model takes the cyclic execution of PLC programs
into account and can reflect a composition of different modules written in
different languages.

∙ Since PLC programs usually depend on multiple inputs, abstractions of the
model are necessary to make the approach feasible. We present an abstract
model for PLC programs in Sect. 2.5.2.

∙ In Chap. 3 we give an overview of Arcade.PLC and how it can be used as a
model checker to automatically verify PLC programs.

∙ To derive abstractions automatically, we present a counterexample-guided
abstraction refinement [40] scheme in Chap. 4, which we tailor for the PLC
domain. This approach is evaluated using different programs from industry
and academia in Sect. 4.6. In particular, it will be possible to verify properties
of the function blocks shown in Fig. 1.

∙ To handle more complex programs, we describe a more powerful abstraction
using an automatic solver in Chap. 5. This approach can abstract program
states using all kinds of predicates (e. g., var1 < var2) that are expressible
using the solver and thus handle more complex programs.

∙ To ease the formalization of program requirements, we introduce a specifica-
tion formalism based on automata in Chap. 6. These automata represent a
more natural expression of typical function block specifications. Since they
are inspired by a formalism used in industry [55], many industrial specifica-
tions can readily be verified. We describe a model checking algorithm, which
is evaluated on an industrial library.

∙ A model checker generates counterexamples for violations of all-quantified
properties, which are concrete sequences of PLC input stimuli to trigger a

1.2 contribution & outline 5

violation. In Chap. 7 we present different heuristics that can localize the
faulty program statement in a counterexample automatically, or at least re-
duce the number of possible error candidates and thus further aid the user
in understanding a violation.

1.2.2 Static Analysis

Further, we implement different Static Analyses to derive program properties di-
rectly, i. e., without having to specify requirements1. The properties derived this
way comprise the value-sets that the program variables can assume (at each pro-
gram location or only input/output positions), positions where variables are dead
or alive, summaries for function blocks, and pointer aliases. On the one hand, this
information can then be used in other analyses, either to make them more precise
or to speed them up. On the other hand, these techniques can reveal errors in the
program without any specification effort from the user.

In particular, we present the following contributions in Chap. 8:

∙ In Sect. 8.2, we describe the static analysis process.

∙ In Sect. 8.2.4, we present a live and dead variable analysis, which takes the
different calling conventions of PLC function blocks into account. We ap-
ply the dead variable analysis to make model checking PLC programs more
efficient by reducing the state space sizes in Sect. 8.2.6.

∙ We present a pointer analysis to handle PLC programs using pointers.

∙ We present an efficient, flow-sensitive, partly context-sensitive abstract in-
terpretation [44] of PLC programs. This analysis is based on the liveness
information to make the approach feasible for large programs with a huge
number of variables and function blocks.

∙ We use the information to implement a value set analyses, which compute a
summary of the program behavior.

∙ Finally, the results of the static analysis are used to detect common program-
ming mistakes. We are also able to check user-supplied assertions, which can
directly be written in the source code. Results of an industrial case study are
presented in Sect. 8.6.

1 Some authors also regard model checking as a form of static analysis as opposed to dynamic analyses
that actually execute the program [122]. Other authors observed that the automatic extraction of the
model using simulation can be seen as a dynamic analysis [90]. In this dissertation, we use the
distinction that model checking requires a user-supplied specification, whereas static analysis can be
run without manual specification effort.

6 introduction

1.2.3 Combining Model Checking and Static Analysis

Finally, we combine model checking techniques and static analysis techniques in
Chap. 9. On the one hand, this provides even more powerful abstractions for the
model checker, and allows us to verify the safety function of the program shown in
Fig. 1. On the other hand, the model checker can be used to augment the results of
the results of certain static analyses. The thesis concludes with an overview of the
techniques presented and a discussion of their applicability in practice in Chap. 10.

1.3 related work

The verification of PLC programs using formal methods has been extensively re-
searched in the past [9, 86, 36, 8]. Moon [88] was the first to apply model checking
as a verification technique of PLC programs written in Ladder Diagram. In the core
of this approach, PLC programs are rewritten as an input language to the existing
model checking tool SMV, which was used for the verification. A similar approach
is followed by Pavlovic et al. [93]. They convert STEP7 Instruction List programs
into inputs for the NuSVM model checker. Gourcuff et al. present an approach for
Structured Text programs [62]. They only support Boolean variables and no con-
trol structures. In [63] they introduce an abstraction to make the approach feasible
for larger programs. Mertke and Frey [85] first rewrite PLC programs into Petri
nets, which are then analyzed using a model checker.

The verification of PLCopen function blocks was also discussed by Soliman and
Frey [114]. They use the Uppaal model checker to verify compositions of multiple
PLCopen function blocks. In their work, the focus is not on the correct implemen-
tation of a function block, but on how programs composed of PLCopen function
blocks can be verified (presumed that the function block implementation is cor-
rect).

A different approach is presented by Süflow and Drechsler [116]. They use
a SAT solver for equivalence checking of PLC programs using an intermediate
representation in SystemC.

Recently, Darvas et al. [49] came up with an efficient method of verifying com-
plex Structured Text programs using NuSMV. Their approach relies heavily on
rewriting and simplifying the NuSMV models to make the technique efficient.

Ljungkrantz et at. [82] study formal methods to verify safety function blocks
as well. They came up with ST-LTL to formulate their specifications, which also
allows for past-time operators to ease the specification efforts. The work presented
in this dissertation additionally researches automata based model checking and
static analysis.

Šusta [118] also presents a verification framework for PLC programs operating
on binary variables. His approach also depends on an intermediate representation
(called APLC in his work) for representing the PLC program.

1.4 bibliographic notes & contributions by the author 7

Bornot et al. [33] were the first to describe static analysis techniques for PLC pro-
grams. They use an abstract interpretation framework [44] similar to ours but are
restricted to Instruction List programs. Prähofer et al. [95] give an overview about
different static code analysis techniques and their benefits to IEC 61131-3 programs.
Their approach is concerned with detecting bad programming practices (naming
conventions, program complexity, code smells, dead locks) while the approach
used in our work infers the possible values of all program variables to detect pro-
gramming errors. They also assess available commercial tools for static PLC code
analysis, which, at the moment, seem to focus on syntactic checks only, e.g., the
compliance with certain naming convention for variables.

Direct model checking of Instruction List programs was introduced by Schlich et
al. [105]. This approach, which does not necessitate the rewriting of the programs
into other model checker inputs or Petri nets, allows for the verification of larger
programs. The work presented in this dissertation continues this line of research
by providing domain specific abstraction techniques, new specification formalisms,
error localization techniques and a static analysis for industrial size programs. We
present a more in-depth discussion of related work compared to our contributions
in their respective chapters.

1.4 bibliographic notes & contributions by the author

Parts of this dissertation were already published in peer-reviewed conferences and
workshops. In the following, we relate the chapters of this dissertation to these
publications and detail the contributions of the author of this thesis.

Chap. 2 and Chap. 3 are based on unpublished material (unless noted) and con-
tributed by Sebastian Biallas. In Chap. 3 the contributions of Sebastian Biallas to
the tool Arcade.PLC are listed. The state space for PLC program described in
Sect. 2.5.1 is based on ideas first described in [105]. Parsers and translators for
Structured Text were contributed by Sebastian Biallas. Other parser were contrib-
uted by students under the supervision of Sebastian Biallas. The parser for State-
ment List was contributed by Andreas Schumacher in his bachelor thesis [108].

Parts of Chap. 4 were first published in [16], on which the reasoning in this chap-
ter is based on. The implementation, formalization and evaluation was performed
by Sebastian Biallas. Ideas of Sect. 4.5 were first sketched in [18]. Parts of the
case study were first published in [20], [16], [24] and [18]. Additional results were
published in [19].

Chapter 5 is based on ideas described in the master thesis of Micro Giacobbe [59],
which was written under the supervision of Sebastian Biallas. The results of the
thesis were first published in [22], on which Chap. 5 is based on.

Chapter 6 is based on ideas described in the master thesis of Alexander Brain-
ing [34], which was written under the supervision of Sebastian Biallas and Volker
Kamin. Originally, the approach was implemented for formalizing microcontroller
specifications. Later, the approach was geared towards PLC verification. The re-

8 introduction

sults of an industrial case study were published in [23]. Sebastian Biallas contrib-
uted to the formalization of safety automata and their PLC specific interpretation.

The ideas of Chap. 7 are based on the master thesis by Nico Friedrich [56] and
were derived under the supervision of Sebastian Biallas. Parts of Sect. 7.3 were first
published in [21]. The reasoning in this section follows closely this publication.

The static analysis approach described in Chap. 8 was first published in [28]
and [115]. The value-set analysis to compute summaries described in Sect. 8.7 was
first published in [27], [25] and [26]. The analysis of RETAIN variables was first
published in [68]. The techniques were implemented under the supervision of
Sebastian Biallas.

The modular abstraction described in Chap. 9 was first published in [13], which
is based on the bachelor thesis of Dimitri Bohlender [32]. The slicing techniques
described in this chapter were contributed by Hendrik Simon. The rest of this
chapter was contributed by Sebastian Biallas.

During the work on this thesis, the author also published in the field of mi-
crocontroller binary code verification [14], microcontroller C code verification [11],
pointer analysis of C code [29], abstract interpretation [15], cloud-based soft PLC
services [61, 60], and automatic test case generation for PLC code [112, 30]. These
works are independent of this thesis.

2
F O R M A L V E R I F I C AT I O N O F P L C C O D E

This chapter gives an introduction to PLCs, their modes of operations, and the
ways they are programmed. Then, a formal model is derived which reflect their
behavior. This formal model is the basis on which we apply formal methods in the
later chapters.

2.1 a brief history of programmable logic controllers

Initially, hardwired logic was used to implement the controller logic for electrical
control devices. Using electro-mechanical devices such as mechanical switches,
cam timers as sequencers, relays as controllable switches, coils to store values,
it was possible to automate moderately complex control tasks. To exemplify, a
simple task such as a logical AND between two switches could be implemented by
connecting the two switches in series. Similarly, a logical OR could be implemented
by connecting the switches in parallel. This method had certain advantages such
as that a safety function (e. g., two switches have to be pressed to activate a motor)
can be implemented in an obviously correct way while ensuring that—physically—
the motor is not connected to power if one of the switches is not activated. The
disadvantages are that with this method it is harder to implement more complex
tasks, and it is very hard to reconfigure, update, or augment the system.

With the invention of the programmable computer, it was possible to store a
modifiable/configurable program on the controller (the PLC) that now takes over
the control task. This makes it possible to produce universal controllers that can
be configured and reprogrammed depending on their task. On the other hand, the
more complex nature of computer programs makes reasoning about their correct-
ness much more difficult.

2.2 status quo

Currently, PLCs are ubiquitously used in the automation and process domain.
They are standardized in the international norm IEC 61131 [71]. This, in principle,
allows for developing PLC programs independently of their target controllers and
simplifies exchange and sharing of functional units between different controllers.

9

10 formal verification of plc code

We details the most important aspects of the programming paradigms and the
general organization of PLC software in the following.

2.2.1 Program Organization Units

PLC programs are usually composed of different modules called program organiza-
tion units (POUs). Each POU consists of an interface providing input and output
parameters and an implementation.

There are three kinds of POUs: Function Blocks (FBs) are POUs that also maintainFunction Blocks

an internal state. To use them, one creates an instance of the FB in the form of a
new variable. This variable (the FB instance) can be called, passing values to the
input parameters to invoke the FB implementation. The implementation can then
access the internal state and the inputs, and so compute new output values, which
can be accessed by the caller.

Functions, on the other hand, only have input and output parameters but noFunctions

internal state. They can, however, have an explicit return value. Since there is no
internal state, it is not possible to instantiate functions. They are called directly,
passing new input parameters. It is possible to call a function as part of another
expression making use of the return value. It it not allowed to have recursive calls
of functions or function blocks.

Finally, Programs are POUs similar to FBs. While FBs only have memory vari-Programs

ables as input and output parameters that can be accessed by other POUs, pro-
grams can additionally have hardware inputs and outputs. These inputs and out-
puts are memory mapped or directly connected to hardware ports. An instance of
a program runs the control logic as described in the next section.

2.2.2 Modes of Operation

The most common operation is the so-called cyclic scanning mode. This mode com-Cyclic scanning
mode prises three phases which are executed repeatedly as shown in Fig. 3. In the first

phase, the input connectors, which are typically connected to sensors, are read and
the current values are stored in the input variables of the PLC program. These vari-
ables are now fixed for the rest of the cycle. In the second phase, the main POU is
called. This program can now compute new values for the output variables based
on the current input variables and the internal memory. In the third phase, the
final values of the output variables are set to the output connectors, which are
usually connected to actuators1. These steps are then repeated cyclically to con-
trol a process or a machine. Depending on the required sampling rate, real-time
requirements, and controlled process, different hardware is available to guarantee

1 After this step, internal tests and internal routines of the firmware of the PLC can be run. This phase
is not subject of this work.

2.2 status quo 11

Execute Program

Write Outputs Read Inputs

Figure 3: Schematic of the cyclic scanning mode

different cycle times. Typical PLCs have a cycle time of 100 Hz to 1000 Hz, but
special-purpose PLCs can operate at up to 1 000 000 Hz.

In the cyclic scanning mode, the program continuously polls for all relevant data
from input signals. Additional to this mode, some PLCs also provide interrupts that Interrupts

interrupt the current execution of the program for an interrupt handler. The usage
of such interrupts is vendor-specific and not handled in this work.

Observe that in the cyclic scanning mode, each cycle is immediately started after
the previous cycle is completed. This entails that the cycle times can be different,
depending on the time the program execution takes (if, e. g., the program takes
different execution paths depending on the inputs). To cancel computations of a
program that is stuck in a loop or just take too long, a watchdog can be used. If the
user wants to ensure constant cycle times, the periodic scanning mode can be used. Periodic

ScanningIt will call the program periodically at fixed points in time. If the program has not
finished its computation, a runtime error will be issued. Again, there are vendor
specific extensions2. In the following, we will only consider programs operating
in the cyclic scanning mode according to IEC 61131.

2.2.3 Programming Languages

The functionality of a POU can be implemented in different languages. These lan-
guages follow different programming paradigms: Some resemble the electrotechni-
cal background, some reflect an automata based view on a process and others rep-
resent typical low- or high-level textual programming languages. Five languages
are defined in the standard [71, Part 3]:

2 CoDeSys, e. g., swaps the meaning of periodic scanning mode and cyclic scanning mode. Other
vendors call the cyclic scanning mode continuous scanning mode.

12 formal verification of plc code

∙ Ladder Diagram (sometimes called Ladder Logic) is a graphical language that
resembles wiring diagrams. Using coils and switches arranged in rungs
(hence the name Ladder Diagram), these diagrams follow closely the hard-
wired logic of relay circuits.

∙ Function Block Diagram (FBD) is a graphical language that resembles circuit
diagrams. An example is shown in Fig. 1 on p. 2. An extension of FBDs,
which is used in the process control industry, is called Continuous Function
Chart (CFC).

∙ Sequential Function Chart (SFC) is a graphical language that allows to specify
the sequence of different tasks. They can be run in parallel or in sequence
and can be synchronized by different events. The general principles of SFCs
are inspired by GRAFCET [72] and Petri nets.

∙ Instruction List (IL) is a textual language resembling accumulator based ma-
chine code. An example for an IL program is shown in Fig. 8 on p. 40. A
Siemens-specific dialect of IL is called Statement List.

∙ Structured Text (ST) is a textual high-level language similar to Pascal. An
example is shown in Fig. 12 on p. 60. A Siemens-specific dialect of ST is
called Structured Control Language.

2.2.4 Variables, Data Types, Lifetime and Scope

Each POU can define variables for its interface, for temporary variables used inter-
nally, and—in case of a program or a function block—to maintain an internal state.
The values of latter variables are then retained between different invocations. The
standard [71, Part 3] defines different data types for variables. In the following,
we present the different data types defined by the standard and some prominent
vendor-specific extensions. For each category of types, we briefly mention whether
we support these types for the purpose of our verification work: unsupported means
that we cannot handle these types, ignored means that we support declaring and
using these types but ignore all operations. If the ignored types are tested or con-
verted into supported types, we over-approximate the behavior and assume that
each value might occur.

Table 1 shows the different integer and floating point types that can be used for
variables. The difference between the bitwise and normal integers is that bitwise
integers can be used for bitwise logical operations. It is possible to convert between
all data types using a xx_TO_yy function, where xx is the source and yy is the
destination data type. It is possible to subtype these scalar types to only support
a limited range. It is also possible to define enumerations as ENUM types that then
offer a list of named constants. There are additional binary coded decimal (BCD)
types, which are unsupported in this work.

2.2 status quo 13

Data type Size Range Remark

BOOL 1 bit true/false Bitwise
USINT 8 bit 0 . . . 28 − 1
BYTE 8 bit 0 . . . 28 − 1 Bitwise
UINT 16 bit 0 . . . 216 − 1
WORD 16 bit 0 . . . 216 − 1 Bitwise
UDINT 32 bit 0 . . . 232 − 1
DWORD 32 bit 0 . . . 232 − 1 Bitwise
SINT 8 bit −27 . . . 27 − 1
INT 16 bit −215 . . . 215 − 1
DINT 32 bit −231 . . . 231 − 1
REAL 32 bit IEEE 754 single3 Floating-Point
LREAL 64 bit IEEE 754 double Floating-Point

Table 1: Scalar Types

Strings can be stored in different string types that support different character
encodings and strings of bounded and unbounded length. We ignore the usage of
strings for the purpose of this work.

Types can also represent aggregates of other types. A STRUCT combines different
data types into an aggregation, where each member can be accessed by its name.
The most recent standard allows for overlapping data structures in the form of
unions, which we do not support. Aggregations of the same data type can be
stored in an ARRAY. Their members can only be accessed using an index expression.
Optionally, the index can be multi-dimensional. Accessing non-existing array ele-
ments using an index which is out of bounds can yield to runtime errors. Hence,
we added an analysis to detect these errors (cp. Sect. 8.5). In some vendor-specific
extensions, the distinction between structs and arrays is blurred, cp. Sect. 8.6.2.

The most recent standard IEC 61131-2013 defines references as a variable type.
These references contain the address of another variable and thus allow for indi-
rect access. In vendor-specific extensions, pointers are used with similar semantics.
In our framework, we handle references and pointers under a unified concept
(cp. Sect. 3.4.4).

A function block is also a variable type. A variable of function block type is
called an instance of a function block. Each instance gets its own set of variables Function Block

Instancedefined in the function block type. These variables have a certain lifetime and scope
depending on whether they retain the value between different invocations of the
function block and whether they can be accessed from the outside scope. The most Scope of Variables

important variable declarations and their lifetime and scope are shown in Tab. 2.

3 According to the most recent IEC 61131-2013 standard, the ranges of the REAL and LREAL data types
are defined according to the IEC 60559 (IEEE 754) single and double types.

14 formal verification of plc code

Declaration Lifetime Scope

VAR_INPUT Set to new value each invocation Accessible from outside
VAR_OUTPUT Retains value for next invocation Accessible from outside
VAR_TEMP Not stored Only internal
VAR Retains value for next invocation Only internal
VAR_GLOBAL Retains value for next invocation Accessible everywhere

Table 2: Lifetime and scope of different variable types

Additionally, variables can be marked as RETAIN and PERSISTENT. These mod-Retain and
Persistent
Variables

ifiers control whether the value of a variable is retained between a reset of the
PLC. To ensure the storage even between hard resets (power switch off), the values
might be stored in, e. g., permanent memory. While the exact semantics of retain
and persistent variables is vendor-specific, the concept of persistent variables can
be a source of errors if the programmer forgot to mark some variables as retained,
since this can result in inconsistent configurations after a restart. In Sect. 8.4.1, we
will analyze how we can detect such situations.

2.2.5 General Organization

A typical PLC program is modularly composed of different POUs. Each POU
can include other POUs: It might call other functions or instantiate other function
blocks as local variables. These POUs can then, in general, be implemented in
different languages. A programmer might, e. g., implement the high-level control
logic in SFC and then implement the low-level FBs in ST. Recursive calls of POUs
are not allowed, i. e., recursive function or function block calls are not allowed and
the nesting of POUs must be finite. This simplifies the analysis of PLC programs,
since all local variables have a unique address.

In Fig. 4, a typical controller configuration is depicted. Different tasks having
different cycle times can be run on one controller. Each task is represented by
one program, which can instantiate function blocks and has locale variables rep-
resenting the current state. Additionally, global variables (i. e., variables that all
programs can access) can be used to represent shared memory between the tasks.

The standard already defines functions and function blocks for the most com-
mon operations. This includes function blocks for flip-flops, edge detection, timers,
counters, mathematical functions and function for string manipulation.

When developing safety-critical applications, the programmer is sometimes re-Safety-Critical
Applications stricted to certain languages and constructs. Typically, a certified development

environment is needed that only allow the connection of certified function blocks
using an FBD. An example for such a library is given in Sect. 2.3. An example for
a safety application developed using this library is shown in Fig. 1 on p. 2.

2.2 status quo 15

Controller(

Global(Variables(

Input/Output(Variables(

Actuators(/(Sensors(

Func8on(
Block(

Task(1(

Func8on(
Blocks(

Func8on(
Block(

Task(2(

Func8on(
Blocks(….(

Program(1(Program(2(

Variables(Variables(

Figure 4: Typical Organization of a PLC

2.2.6 Timers

PLC programs can make use of timers to control or measure the duration of events.
Such timers are used to, e. g., invoke (or cancel) processes after a certain time, to
detect timeouts, or to detect signal equivalency with a certain discrepancy time.
There are two conceptually different kinds of timers available. The first kind pro-
vides a current time in, e. g., milliseconds. An example of such a timer would be
the TIME() function available in CoDeSys environments, which returns the current
time. When invoking this function multiple times in one cycle, the function might
return different values because a certain amount of (actual) time has passed.

By way of contrast, PLCs also expose a second kind of timer FBs that provide a
“frozen” state of the timer during the cycle. That is, at the beginning of the cycle a
memory image of the timer will be provided, which provides a consistent view of
the timer: This behavior is similar to the input variables of the program, which are
also fixed at the beginning of the cycle and do not change during the cycle. The
standard defines the three timer FBs TON, TOF, and TP that behave this way.

2.2.7 Function Block Calls

Passing parameter values to function blocks or functions can be performed using
two different methods. First, they can be passed directly when calling a func-
tion block. To illustrate, let functionblock be a function block with input input1,
input2 and output output1. A direct call can be performed as follows:

functionblock(input1 := 1, intput2 := a, output1 => result);

16 formal verification of plc code

This would pass the value 1 to intput1, the value of a to intput2, and copy the
value of output1 into result after the call. If copying of output parameter is not
necessary, the parameter values can also be passed without explicitly naming the
input variables (in this case, the order in which the values are given is important):

functionblock(1, a);

Secondly, the function block can be called without specifying any parameters.
In this case, the current value of the input variables is used. To change or read the
value, these variables are accessible from the caller’s scope. Passing the parameter
as per the example given above would look as follows:

functionblock.input1 := 1;

functionblock.input2 := a;

functionblock();

result := functionblock.output;

In practice, a mixture of these styles is used. In Sect. 8.3, we detail a technique to
reduce the visibility of these variables for a static analysis framework.

2.2.8 Standard & Vendor-Specific Extensions

Although PLC programming languages are standardized [71, Part 3], actual imple-
mentations differ slightly between vendors or even within the same vendor. Dur-
ing the course of this dissertation, especially syntactic differences of the ST dialect
between different vendors had to be accounted for. As we will see in Sect. 3.4.3,
we handle this using a specialized grammar.

The standard does not define whether Boolean expressions are evaluated using
short-circuit evaluation, which would mean that the evaluation of an expressionShort-Circuit

Evaluation is not stopped once the outcome is known. To exemplify, when evaluating an
expression such as A AND B and A is known to be false, one does not have to
evaluate B. All vendors we checked always evaluate all sub-expressions, without
short-circuit evaluation. This can be counter-intuitive, especially for programmers
who are used to short-circuit evaluation. As an example, consider the following
code fragment:

IF B<>0 AND A/B > 1 THEN

(* .. *)

END_IF;

The intention of the programmer was that the division A/B is only performed if
B is not zero. Yet, this division is performed since all sub-expressions are always
evaluated. We also evaluate all sub-expressions, so we can detect the error in this
case. CoDeSys additionally implements an extension using the keywords AND_THEN
and OR_ELSE to force short-circuit evaluation, which we do not support.

The standard does not always define a clear result for certain operations, or even
forbids them. Instances of such undefined or disallowed constructs are overflow

2.3 plcopen 17

of data types, division by zero, and array accesses outside the array bounds. Con-
sequently, this often indicates an error in the program. Depending on the vendor
and language dialect, these constructs can either trigger a runtime error or even
unwanted side effects. Although these situations are not always fatal or might
have defined results for some vendors, we catch them during our static analysis.

2.3 plcopen

PLCopen is a consortium that works on the standardization and harmonization
in the field of industrial automation. They develop new standards and improve
existing ones such as the IEC 61131. In particular, they define certain standard FBs
for the application in various domains, e. g., for motion control or safety. These
FBs are defined in a vendor-neutral way and are then typically implemented by
library authors for different PLCs. The idea is to have a set of typical FBs that are
needed in many applications and thus to reduce the costs of reimplementing and
validating these blocks. The FBs are not directly implemented by PLCopen, but
only described using different means [94]:

∙ A textual specification is provided for selected important properties of each
block.

∙ The behavior is exemplified using digital timing diagrams.

∙ A semi-formal specification of the complete behavior is given as a so-called
state diagram. These state diagrams comprise states, which specify the output
behavior, and transitions between states, which are triggered by certain input
values or timers. An example for a state diagram is shown in Fig. 18 on p. 83.
They also inspired our automata based specification in Chap. 6.

We implemented our own version of the PLCopen safety function block (SFB) Safety Function
Block Librarylibrary in Structured Text. We use PLCopen SFBs from our own implementation,

from another group [114], and for an industrial implementation in our case studies
(cp. Sect. 4.6, Sect. 6.4, and Sect. 8.6.1).

Additionally, PLCopen defines the PLCopen XML file format, as a standardized PLCopen XML

exchange format between different PLC development environments and tools [71,
Part 10]. It became part of the AutomationML file format (Automation Markup Automa-

tionMLLanguage) as standardized in [73]. This XML format offers topological and geomet-
rical information about plants and machines, connection information between sen-
sors, actuators and controllers as well as the actual control logic, which is then en-
coded in PLCopen XML. We implemented a parser for the PLCopen XML format
that extracts the control logic of PLC programs into our verification tool (cp. 3.4.1).

18 formal verification of plc code

2.4 formal verification using model checking

Originally, model checking was used to verify concurrent processes [39, 4, 42]. We
use model checking to verify the correct input/output behavior of PLC programs.
In this section, we formally introduce model checking and then describe the model
that we are verifying.

2.4.1 Kripke Structures

We model the PLC behavior in a labeled transition system. Therefore, let P be
a set of atomic propositions which will act as the labels. In the context of PLCs,
these are propositions over the inputs and outputs of the program or the internal
variables of the program.

Definition 2.1: A labeled transition system is a tuple ⟨S, R, L⟩ withLabeled
Transition

System ∙ a finite set S of states

∙ a transition relation R ⊆ S× S

∙ a labeling function L : S→ 2AP, L(s) = { f ∈ AP | s |= f }

Such a transition system naturally describes the behavior of a discrete event
system such as a PLC. A transition system ℳ = ⟨S, R, L⟩ with an initial state
s0 ∈ S is called a Kripke structure. The test, whether a Kripke structure is a model ofKripke Structure

a logical formula φ, denoted:

(ℳ, s0) |= φ,

is called model checking.
Typical logics that have Kripke structures as models are LTL (linear time logic),

CTL (computation tree logic) and CTL* (an extension of CTL) [53]. These logics are
able to express properties about paths (i. e. temporal behavior4) and branches (i. e.
non-deterministic behavior).

2.4.2 CTL Formulae

For a set P of atomic propositions, a CTL formula is inductively defined as follows:

∙ TT and FF are state formulae.

∙ Each p ∈ P is a state formula.

∙ For state formulae φ, ψ the formulae ¬φ, φ ∧ ψ, φ ∨ ψ and φ ⇒ ψ are state
formulae as well.

4 Here, the term temporal refers to in which order things happen but not to physical time.

2.4 formal verification using model checking 19

∙ For state formulae φ, ψ the formulae Gφ, Fφ, Xφ and φUψ are path formulae.

∙ For a path formula φ the formulae Aφ and Eφ are state formulae.

Each state formula defined this way is a CTL formula. For a transition system
⟨S, R, L⟩ the semantics of a state formula for a state s is defined as follows:

∙ TT and FF denote true and false.

∙ The atomic propositions and the operators ¬, ∧, ∨ and ⇒ are used as in
propositional logic for the labelling L(s).

∙ For a path formula φ the all-quantified state formula Aφ is fulfilled if all
paths starting in s fulfill φ.

∙ For a path formula φ the existential-quantified state formula Eφ is fulfilled if
at least one path starting in s fulfills φ.

Now let π = ⟨s0, s1, s2, . . . ⟩ be a path. The semantics of a path formula for state
formulae φ, ψ w. r. t. π is defined as follows:

∙ Gφ (globally) is fulfilled if all states on the path fulfill φ, i. e., ∀i : si |= φ.

∙ Fφ (finally) is fulfilled if at least one state on the path fulfills φ, i. e., ∃i : si |= φ.

∙ Xφ (next) is fulfilled if the next state on the path fulfills φ, i. e. s1 |= φ.

∙ φUψ (until) is fulfilled if there is a state on the path that fulfills ψ and all
previous states fulfill φ, i. e., ∃i : si |= ψ ∧ ∀j < i : sj |= φ.

CTL is characterized by the fact that branch operator (A, E) are always combined
with path operator (G, F, X, ..U..). In CTL* this restriction is lifted. In this case, CTL*

however, it is no longer possible to efficiently check formulae [4]. By ∀CTL, we ∀CTL
denote the all-quantified fragment of CTL [53].

2.4.3 Counterexamples and Witnesses

If an all-quantified formula φ is violated then there exists a trace in the state space
that violates φ. Such a trace is called counterexample. For a safety-property, a
counterexample is a finite path ending in a state violating this property. For a
guarantee-property, a counterexample is an infinite path (i. e., a loop) that does
not reach a required property. For existential-quantified properties, on the other
hand, we can generate a witness that proves the property.

For a user, counterexamples are very helpful in understanding why a formula is
violated [39]. Counterexamples also play a central role in Chap. 4, where they are
used to refine an abstraction. In Chap. 7, we will present techniques to automat-
ically locate the problematic steps, i. e., the steps that are most likely responsible
for a violation and thus represent the bug in the program. An example for how a
counterexample for PLC program looks is shown in Fig. 20 on p. 89.

20 formal verification of plc code

2.5 model checking plc programs

In this section we define a formal model for PLC programs, which can be used
to verify certain properties. These properties can be simple invariants, such as if
an input is set, a certain output has to be set as well but can also specify the order
of events, such as if an input is set, then an output must be 0 until another input is
set. Since we also want to verify functions or functions blocks, we generalize this
model to all kinds of POUs.

2.5.1 Concrete Model

A key aspect of our formal model is that we want to capture only the observable
behavior of the PLC program. That is, we are interested in a particular stimulus
and the response of the PLC program. The stimulus corresponds to values of
the input variables of program (and some extra information, e. g., which timers
are about to fire this cycle). The response then corresponds to the values at the
outputs at the end of the cycle. Everything that happens during the execution
of the cycle is not observable and thus should not be subject to the verification.Observable

Behavior Note that exposing internal states might even cause spurious errors: Suppose two
outputs, output1 and output2, should both contain the same value and they are
both 0 at the beginning of the cycle. Suppose further, that the following ST code is
used to set them both to 1 during the program:

23 // [..]

24 output1 := 1;

25 output2 := 1;

Then, after the execution of line 24 an error would be signaled, since output1 is 1
but output2 is still 0. For an actual PLC program, the effect of the two assignments
would be visible only at the end of the cycle and thus provide a consistent (and
correct) result. It is hence necessary to verify properties only at the end of the cycle,
which is what we want to reflect in our model.

In principle, our model is a transition system between PLC states. A state can
be seen as a memory dump of the PLC variables, or, more formally, an assignment
function of the PLC variables:

Definition 2.2: We denote by Var the set of all variables of the program and byVariables

𝒟 the domain of Var. We partition Var into Var = VarM ∪̇ VarI , where VarM

represents all variables that retain their value for the next cycle, whereas VarI rep-
resents the input variables that are assigned a new value each cycle (cp. Tab. 2 on
p. 14). Further, we call an assignment VarI → 𝒟 to the inputs an input configura-Input

Configuration tion. We use the set VarT to refer to temporal variables, i. e., local variables that
do not retain their value for the next cycle. Observe that VarT ∩ Var = {}, since
temporal variables are not part of the model.

2.5 model checking plc programs 21

Definition 2.3: Let 𝒟 be the domain of all variables Var occurring in the program.
Then a memory state is an assignment s : Var → 𝒟 reflecting the configuration Memory State

of the PLC after the execution of a cycle. If the context is unambiguous, we will
call memory states just states. Often, we will write states explicitly as a tuple of
assignments such as ⟨out = 0, var = 0, . . . ⟩. There is one state, called the initial state,
which is characterized by all variables set to their initial values. This is the state
when the PLC is switched on and usually denoted by s0.

Definition 2.4: The (explicit) model (ℳ, s0) of a PLC program is a transition system Explicit Model

ℳ between states s ∈ S, where s0 is the initial state. The transition relation R ⊆
S × S is characterized as follows: State (s, s′) ∈ R iff s′ is reachable from s after
one PLC cycle. In other words, if the PLC is configured according to s and there
is an input configuration such that after the invocation of the program, the PLC is
configured according to s′, then (and only then) (s, s′) ∈ R. In this case, we call s′ Successors of a

Statea successor of s.

We can build the explicit model from a program automatically: Starting from s0,
we enumerate all possible input configurations and execute the program, discover-
ing all successors s0. Then, for each successor, we repeat this process, discovering
the next level of successors. Since the size of the memory states is finite, this
process will eventually terminate with the complete state space of the program.

Note that our model abstracts time. Each transition in the Kripke structure Time

represents one cycle of the program but we have no accurate timing information.
We therefore, over-approximate timer function blocks (cp. Sect. 2.2.6): Once a timer
is started, we assume that it can fire in each cycle. Once it has fired, it can no longer
fire until it has been restarted. Hence, we can only prove properties regarding the
order of certain events but not regarding how long certain operations take. In
practice, however, the Boolean Q outputs of timer function blocks can be used in
formulae to specify that certain property only happen if or after a timer has fired.

2.5.2 Abstract Model for PLC Programs

The construction of the concrete state space introduced in the previous section is
very susceptible to state explosion, since state spaces grow exponentially in the
number of inputs [16]. To make this approach feasible, we now turn to building
abstract state spaces that combine sets of concrete states into macro states.

Formally, this abstraction can be seen as a partition of the state space. This
partition induces an equivalence relation ∼ of states. We write s ∼ t if the states s Equivalence

Relationand t lie in the same equivalence class. This equivalence class represents the macro
state

s/∼ :=
{

s′ ∈ S | s′ ∼ s
}

, (1)

22 formal verification of plc code

t0

t1 t2

good
states

bad states

Figure 5: Kripke structure with abstraction.

which summarizes all states equivalent to s. Using an equivalence relation ∼
and a concrete Kripke structure (ℳ, s0) we obtain an abstracted Kripke structure
(ℳ′, s′0) withℳ′ = (S′, R′, L′) defined as follows:

S′ = {s/∼ | s ∈ S}
s′0 = s0/∼
R′ ⊆ S′ × S′

(s′, t′) ∈ R′ ⇔ ∃(s, t) ∈ R : s ∈ s′ ∧ t ∈ t′

L′(s′) =
⋃
s∈s′

L(s)

Such an abstraction is usually called existential abstraction [42]. Figure 5 shows an
example of such an abstraction. The concrete states are indicated as solid circles
and the three macro states t0, t1 and t2 are indicated by the dashed lines. The
abstracted transitions are indicates by the dashed arrows. We hence abstracted 13
states by 3 macro states. Observe that in the concrete state space we cannot reach a
bad state from t0. The abstracted state space, however, admits a path t0 → t1 → t2

that reaches the bad states. This a spurious counterexample, which occurs sinceSpurious
Counterexamples our abstraction allows for more behavior than the concrete state space.

To suppress spurious counterexamples, we have to refine an abstraction, i. e.,Refinement

treat states differently that were summarized in the same equivalence class before.
In this case, it help to split the states at the bottom in Fig. 5 into another macro
state. The refined state space is shown in Fig. 6. Observe the new equivalence
classes t′2 and t′5 that we introduced. These classes summarize the states that yield
to the bad states. Now, that they lie in the our equivalence class, the abstracted
state space is safe: The bad states are not reachable from the initial state.

2.5 model checking plc programs 23

t′0

t′1

t′2

t′3

t′5

t′4

good
states

bad states

Figure 6: Refinement of the abstraction shown in Fig. 5

The techniques we presented here, i. e., using a spurious counterexample as an
indicator to refine a given abstraction give rise to the counterexample guided re-
finement schemes [40]. We use such a scheme in Chap. 4 to automatically generate
a refined abstraction of PLC programs for model checking.

3
I M P L E M E N TAT I O N

During the course of this dissertation, we created the tool Arcade.PLC. In this
chapter, we describe the history of Arcade.PLC and how the model checker and
the static analysis is organized. We then describe the abstract simulator used for
efficient creating of abstract state spaces and the intermediate representation used
to offer a canonical interface for the verification of programs written in different
languages.

3.1 arcade .plc

Arcade.PLC originated as an offspring of the [mc]square model checker [103, 106]. History

The development of [mc]square started in 2004 as a model checker for micro-
controller code. [mc]square directly works on machine code and thus contains
simulators and hardware models for various microcontrollers such as ATMEGA
ATmega16/256, C51 and Renesas R8C [92, 100, 101, 99]. To make the adoption to
new microcontrollers easier, it also contains a generator to automatically generate
specific analyses from machine descriptions [67, 66]. In 2009, the possibility to
verify PLC programs written in Instruction List was added [105].

To better reflect the different applications and areas of expertise, [mc]square was
renamed to Arcade1 and split in the sub-projects Arcade.µC for microcontroller
verification and Arcade.PLC for PLC verification. Both projects share an Eclipse-
based user interface built on the Rich Client Platform. For Arcade.PLC, it allows Graphical

Front-Endfor inspecting programs written in Instruction List (IEC and Siemens), Structured
Text, and Function Blocks Diagram. Possible errors and warnings can directly be
highlighted in the source code.

Additionally, we developed a command line interface that allow for running the Command Line
Interfacemodel checker or the static analysis from batch processes or other tools. This is es-

pecially useful for a continuous integration environment where each new version
is automatically tested. For each new revision, one can, e. g., automatically check
whether previous requirements are still fulfilled, or check whether the static analy-
sis detects new warnings. Finally, we also developed a server-based interface for
the static analysis of Arcade.PLC. This server is used to implement a web-based

1 Arcade stands for Aachen Rigorous Code Analysis and Debugging Environment.

25

26 implementation

ProgramProgram Specification

Parser
Compiler

Abstract
Simulation

Model
Checker

State Space

Counter-
example
Analyzer

Counter-
example

Arcade.PLC

refine

Figure 7: Model checking process with Arcade.PLC [18]

front-end to showcase the static analysis capabilities. Since the server also pro-Web-Based
Front-End duces machine readable results, it can easily integrated in other development plat-

forms or work flows without the need for a local installation of the Arcade.PLC
tool.

Arcade.PLC ships with three PLC libraries that can readily be used in all pro-Libraries

grams: Our standard library covers most function and function block defined by
IEC. We also offer a PLCopen safety function block library in a PLCOPEN namespace.
This library was written during the course of this dissertation. We use this library
in various case studies (cp. Sect. 4.6 and Sect. 5.6). This library can be selected if
no vendor-specific PLCopen library is provided. Finally, we also provide helper
functions in the ARCADE namespace that, e. g., allow for checking user-provided
invariants in the form of assertions (cp. Sect. 8.5, p. 121).

3.2 organization

The overall organization of the model checking process of Arcade.PLC is depicted
in Fig. 7. It contains the following components:

∙ Parser and compiler for different PLC languages. These are described in
Sect. 3.4.1.

∙ An abstract interpreter that can be parametrized. It is used for building the
state space for the model checker as well as the static analysis and described
in Sect. 3.3.

∙ A model checker for verifying CTL and automata-based specifications.

∙ Automatic refinements for the model checker, described in Chap. 4 and 5.

Additionally, Arcade.PLC contains a static analysis, which we describe in Chap. 8.

3.3 generic simulator and abstract domains 27

3.3 generic simulator and abstract domains

The simulator of Arcade.PLC is written in a way that its operations can be pa-
rameterized: On the one hand, they can operate on concrete values yielding a
PLC simulator. This simulator is powerful enough to run a soft-PLC2 in industrial
contexts [61, 60].

On the other hand, the simulator of Arcade.PLC can be configured to operate
on abstract domains. Abstract domains summarize a sets of concrete values into
an abstract value. For each abstract domain, all operations provide a sound over-
approximation of the concrete program semantics: Let 𝒞 be a concrete domain
(e. g., Z) and𝒜 an abstract domain (e. g., 𝒜 ⊆ ℘(𝒞), where ℘(S) denotes the power-
set of S). A concretization function γ : 𝒜 → ℘(𝒞) maps an abstract value a ∈ 𝒜 to Concretization

Functionthe set of concrete values it summarizes. An abstraction function α : ℘(𝒞) → 𝒜
Abstraction
Function

maps a set C ⊆ 𝒞 to its abstract counterpart α(C) ∈ 𝒜 such that

C ⊆ γ(α(C)). (1)

This ensures that no value is “lost” during abstraction. To abstract the program
semantics, let f : 𝒞 → 𝒞 be an operation of the program. To abstract the behavior
soundly, we need an abstract transformer f # : 𝒜 → 𝒜 of the operation such that

f (γ(a)) ⊆ γ(f #(a)) for all a ∈ 𝒜. (2)

Intuitively, this means that all program behavior is tracked when abstracting the
program semantics. We allow, at most, for more behavior of the program.

In the following, we describe the abstract domains that have been implemented
for abstract simulation. These domains can be used for model checking as well as Abstract

Domains and
Reduced Product

the static analysis. All domains share the same interface such that the simulation
can be performed on any of these domains. The key component, however, is a
reduced product of these domains, which we introduce in Sect. 3.3.5. Using this
product domain, all operations can be performed on all domains in parallel. Do-
mains can then share and propagate information, increasing the overall precision.
We first define lattices, which form the background of all domains.

3.3.1 Lattices

Definition 3.1: A lattice (L,⊑) is a partially ordered set (po-set) L w. r. t. ⊑, in which Lattice

every two elements e1, e2 have a unique supremum e1 ⊔ e2 (called the join operator)
and a unique infimum e1 ⊓ e2 (called the meet operator).

In our case, we assume that each lattice has a maximum element ⊤ and a mini-
mum element ⊥. The join operator can intuitively be seen as a union operator that
merges information from different points. The meet operator can be seen as an in-
tersection between different objects. A lattice can hence collect the semantics of a

2 A soft-PLC is an industrial PC that runs PLC programs usually using a real-time OS.

28 implementation

program during abstract simulation. The ⊤ element can then be seen as everything
is possible and the ⊥ element can be seen as nothing is possible.

3.3.2 Intervals

Intervals are the most common abstract domain [44]. We abstract a set S of values
as α(S) = [min(S), max(S)] and store the interval as a tuple. There are special ⊤
and ⊥ elements for a full and empty set, respectively. The meet operator is imple-
mented as an interval intersection, whereas the join operator selects the minimum
and maximum from both operands. The abstract transformers for linear arithmetic
operations can then be defined as operations on the interval bounds, providing a
sound abstraction due to the linearity. Many non-linear operations such as bit-
wise operations cannot be modeled precisely using intervals and thus incur an
over-approximation. We hence extend the interval bounds up to the range of the
variable type in these cases.

Consider [5, 7] + [2, 2] = [7, 9] which is exact (all values of the result are actuallyExample

feasible). In contrast, we have [5, 7] * [2, 2] = [10, 14], which contains the values 11
and 13 not being multiples of 2.

3.3.3 Bitsets

Bitsets are used for abstracting Boolean logic and bitwise operations [16, 28]. They
are represented as bit-vectors ⟨bn, . . . , b1, b0⟩ (for a variable of n bits), where each bit
bi is either 0, 1 or unknown (denoted *), where unknown means that we do not know
whether the bit is 0 or 1. All Boolean and bit-wise operations are then modeled
on the bit-level using three-valued logic. Other operations are not supported and
return ⊤, i. e., all bits unknown. To illustrate, let AND and OR be the BooleanExample

operations. Then

∙ ⟨1, 0, 1, *⟩AND ⟨*, 1, 1, 0⟩ = ⟨*, 0, 1, 0⟩,
∙ ⟨1, 0, 1, *⟩OR ⟨*, 1, 1, 0⟩ = ⟨1, 1, 1, *⟩, and

∙ ⟨1, 0, 1, *⟩+ ⟨0, 0, 0, 1⟩ = ⊥.

Hence, arithmetic that involves unknown bits incurs a loss of precision. While the
last operation could in theory be summarized as ⟨1, 1, *, *⟩, we abstract arithmetic
operations to return an unknown result. We chose this approach for simplicity,
since, as we will see, such operations can already be captured by intervals and the
reduced product introduced in Sect. 3.3.5.

3.3.4 Extensions

We provide two other domains to make intervals more precise. First, to abstract a
small number of distinct values precisely, we use k-sets. In principle, these are setsk-Sets

3.3 generic simulator and abstract domains 29

that cannot contain more than k values (indicated by a subscript k in the following).
We denote by the special symbol {*}k any set that contains more than k values.
This is equivalent to the ⊤ element of this domain, representing all possible values
of the variable type.

Let m1 = {5, 7, 18}4, m2 = {12}4, m3 = {12, 13}4 be 4-sets. Then m1 ⊔ m2 = Example

{5, 7, 12, 18}4, whereas m1 ⊔ m3 could only be represented by {*}4, since it is not
representable exactly as a 4-set.

During the abstract simulation, all operations are performed for each value in
the set. This explains the restriction to, at most, k values per set, so as to maintain
efficient operation. The force of the k-set domain is that variables that only hold a
small number of values during the execution can be represented exactly. This espe-
cially includes diagnosis codes, enumeration types and program states. Variables
which range over a huge number of values (e. g., sensor values), on the other hand,
are abstracted using the {*}k symbol, which makes their handling still efficient
yet imprecise. Currently, the value of k can be configured manually, and is 50 by
default. In practice, this seems to be a good compromise between precision and
speed.

Additionally, we provide interval-sets as an extension of the k-sets. Interval-
sets are stored as a set of intervals offer a precise join operator. To illustrate, we
have {[1, 2]} ⊔ {[4, 5]} = {[1, 2] , [4, 5]} with interval-sets, whereas [1, 2] ⊔ [4, 5] =
[1, 5] with intervals. All operations between interval sets have to be performed
as a cross product of all interval combinations. Afterwards, the result has to be
normalized, i. e., overlapping and adjacent intervals have to be merged. Since this
incurs an overhead for each operation and, additionally, so as to avoid an explosion
in the number of intervals stored, we use a threshold for the maximum number
of intervals, similar to the k-sets. After more than this threshold intervals are
stored, intervals are merged. While this loses precision, it still provides a sound
over-approximation.

3.3.5 Reduced Product

Each domain offers a trade-off between precision on the one hand, efficient oper-
ations and in-memory representation on the other hand. To combine them, we
provide a (partially) reduced product domain [44], which allows for running all ab-
straction operations in parallel in different domains. This is an approach similar
to [98, 35]. By using this combination and performing each operation on each
domain, we are able to precisely capture a variety of different program behaviors:
Intervals deal with integer arithmetic, bitsets are suitable for Boolean logic and
k-sets accumulate small sets of distinct values. Since we also allow information
exchange between domains (if an abstract value represents a single value in one
domain, this information is propagated to the other domains), the precision is
further increased.

30 implementation

3.4 translation to the intermediate representation

To handle the different PLC languages and to handle PLC programs written in
a combination of different languages under one framework, we translate all pro-
grams into an intermediate representation (IR).

3.4.1 Parsers

We allow for loading PLC files from plain text files or from AutomationML [73]
files in the PLCopen XML format. These files can contain multiple POUs written
in different languages.

For Instruction List according to the IEC 61131 standard, we build on a parserInstruction List

from a previous work [105]. In contrast to this work, which directly simulates the
IL semantics, we first translate IL into our IR so as to have a canonical platform for
all further analyses. IL is an accumulator based machine languages on which all
logical and arithmetic operations are performed. We, therefore, introduce an accu-
mulator variable (which has temporary lifetime) to reflect all operations. Figure 9
on p. 43 shows an example of this translation.

We also implemented a parser for Statement List (the Siemens dialect of Instruc-Statement List

tion List). It is handled similar to Instruction List according to IEC. Here, we
have to model different accumulators. The accumulators are represented as 16-bit
words, where the upper and lower byte can be accessed separately. To represent the
handling of these accumulators efficiently without too much overhead, we model
the accumulator word and its byte as separate accumulators. As long as the ac-
cumulator is accessed either in a byte-wise or in a word-wise fashion, we require
no overhead. If, on the other hand, byte- and word-wise access is intertwined,
we have to insert instructions to convert the different accumulator representations
into each other. We resolve this during the translation by a series of bit-shift and
masking instructions.

Function Block Diagrams are read from the PLCopen format. We offer an inter-Function Block
Diagram active FBD editor that allows for configuring the order in which FBs are evaluated.

The semantics of an FBD is then translated into a series of Call instructions in our
IR.

For Structured Text, we implemented a parser which generates an abstract syn-Structured Text

tax tree (AST). This AST is then compiled into the IR. While this transformation
is straightforward, several practical considerations had to be taken into account,
which we detail in the next sections.

3.4.2 Annotations using Pragmas

To guide the parser or the analysis, we allow to annotate the source code using
pragmas. A pragma is an annotation in the source code that is syntactically a

3.4 translation to the intermediate representation 31

comment (i. e., it is ignored by the parser), yet can bear special meaning in some
contexts. We use the syntax {@text...} for pragmas, since the text between curly
braces is usually ignored by other parsers, similar to comments. The most recent
IEC standard recommends the curly braces for such constructs. We define the
following pragmas:

{@ARCADE CONTEXT-SENSITIVE:TRUE} Analyze instances of the POU in a
context-sensitive way, cp. Sect. 8.2.2.

{@CHECK PRECONDITION condition} User-defined check for POUs.
{@DIALECT dialect} Switch between different dialects, see

next section.

The CHECK pragma allows for defining preconditions for POUs. The argument
condition can be an arbitrary condition over the variables of the POU and is
checked each time an instance of the POU is called. The checks are performed
during the static analysis (cp. Sect. 8.5).

3.4.3 Pragmatic & Practical Considerations

Although the languages are standardized, many different vendor-specific dialects
are used to write industrial PLC programs. We implemented support for ST pro- Vendor-specific

Dialectsgram written in the dialects IEC 61131 (version 1993, 2003 and parts of 2013),
CoDeSys, and Siemens. These dialects differ in the number of specific constructs,
reserved words, comment style, or whether nested comments are allowed. We
solve these differences in the parser: Our grammar supports a superset of all di-
alects. During parsing one can switch—either using a configuration option or
using a pragma—between different dialects. This enables or disables certain key-
words in the parser so as to allow their usage as identifiers. To exemplify, when
parsing Siemens SCL BEGIN is a required keyword marking the beginning of the
statements after the variable declarations. When parsing source code for other ven-
dors, BEGIN is not reserved and should be treated as an identifier. The behavior
can thus be selected in our parser (or, more specifically, in our lexer, which filters
the keywords/non-keywords appropriately).

Another example is the definition of pointers. The IEC norm allows for defining
pointers using the REF_TO keyword, whereas CoDeSys uses the keywords POINTER

TO. We enable and disable these keywords accordingly and then handle pointers
under a unified framework.

Finally, our parser is very liberal when it comes to accepting certain syntactic
constructs. Semicolons are defined optional at some places (e. g., after control
structures) and we allow to omit the closing keywords for function block defini-
tions.

Another problem we faced analyzing real-world code was that the access to the Encrypted /
Restricted Codeactual code base was often very restricted. During a case study it turned out, e. g.,

32 implementation

that some libraries were encrypted and thus not amenable to our analysis [115]. To
handle code with unknown or encrypted FBs, we derive the types of unknown vari-
ables and function blocks at translation time depending on the context in which
they are used. We then try to guess the type of these unknown variables or pa-
rameters from the context they are used in. Since input and output parameters are
accessed using a different syntax, we are able to distinguish between them. We
can hence deduce which variables are affected by calling unknown function blocks
and thus still provide a sound over-approximation of the program semantics [115].

For a case study, we collaborated with ABB and implemented a parser for Com-
pact Control Builder AC800M files. The results of this case study are reported in
Sect. 8.6.1.

3.4.4 Instructions

Our intermediate representation (IR) is based on a set of primitive instructionsIntermediate
Representation which we describe in this section. These instructions allow for expressing all Struc-

tured Text, Instruction List and Function Block Diagram programs. They operate
on different operands defined as follows:

literal ::= ... (Literal value)
reference ::= ... (See below)

lvalue-expr ::= variable
| negated-variable (Only for negated output parameters)
| *reference (Dereferenced variable)

expr ::= valueof lvalue-expr
| literal
| addressof lvalue-expr
| ⊖ expr
| expr ⊙ expr
| expr ▷◁ expr
| typecast expr

Here, ⊖ denotes a unary operator, ⊙ a binary or arithmetic operator and ▷◁ a
relational operator. Intuitively, lvalue-expr are expressions which a value can
be assigned to, whereas all expr have a value. References are special variablesReferences

created internally to reference to array elements or structure fields. They can also
be used to represent pointers for language dialects that support pointers. Typecast
expressions are used to convert between different integer and floating point types.

We make use of the following intermediate instructions:

∙ Assign lvalue-expr, expr
This instruction copies the value of expr and assigns it to lvalue-expr.

3.4 translation to the intermediate representation 33

∙ Alias reference, lvalue-expr
This instruction creates an alias of the expression lvalue-expr such that
reference can be used to refer to the value of lvalue-expr. This instruction
is used to refer to variables in aggregate data types using the accompanying
Index and Member instructions.

∙ TransferFunction func-id, lvalue-expr, (expression...)
This instruction calls the internal function func-id using the given expres-
sions as operands and assigns the result to lvalue-expr. It is used to im-
plement functions not (readily) expressible using the given operations, espe-
cially mathematical functions. In its abstract semantics, sound approxima-
tions have to be provided for the result (cp. Sect. 3.3).

∙ WideningHint variable, expr
The WideningHint is a special hinting instruction to improve the runtime
of certain analyses. It indicates that variable will likely assume values ac-
cording to expr. Using this hint, loop bounds can be inferred faster (cp.
Sect. 8.2.7). Since this instruction represents only a hint for speeding up the
analysis, it does not have underlying operational semantics.

∙ Index reference0, reference1, expr
reference1 must reference an array and expr must be a valid index expres-
sion into this array. Then, the Index instruction will create an alias of the
member with number expr of reference1 such that reference0 refers to it.

∙ Member reference0, reference1, field
reference1 must reference a struct and field a valid field name of this
structured type. Then, the Member instruction will create an alias such that
reference0 refers to it.

∙ Jump label

Jump unconditional to label.

∙ Return

End of POU. Always the last instruction in a translation unit, see below.

∙ Branch[If/Unless] label, condition
This instruction branches to label if/unless the condition is fulfilled.

∙ Call pou, (operands, ...)
Call the pou instance, passing all input operands provided. After the call,
all provided output operands are assigned from the pou. Note that func-
tions cannot be called in an expression. A separate Call instruction has to
be issued for each function call (possibly storing the result in a temporary
variable).

34 implementation

∙ CallIndirect reference, (operands, ...)
This instruction works as the Call instruction but the callee is selected via a
reference.

The body of each POU will be reflected by an array of these instructions called
translation unit. The conditional and unconditional branch instruction can onlyTranslation Unit

jump to instructions in this translation unit (the index of the array of instruc-
tions is used as the jump target). Other POUs can be invoked using the Call

or CallIndirect instruction only. Return is always the last instruction of a transla-
tion unit. In case of multiple exits from a POU, jump instruction to the sole Return

instruction will be generated. For each instruction, we mark the original program
statement or fragment it was generated from so as to highlight possible problems
in the actual source code. We discuss a complete example of an IL program in
Chap. 4, and an ST example in Chap. 8.

Instead of creating one translation unit per POU, we create separate translation
units for each instance of a POU: If, e. g., Block is an FB with integer variables x

and y and FB1, FB2 are instances of Block, then the memory layout looks as follows:

Other variables...

FB1 : Block
x : int

y : int

FB2 : Block
x : int

y : int

Other variables...

We then create two translation units for Block. One that operates on FB1.x and
FB1.y, and one that operates on FB2.x and FB2.y. Depending on whether the FB1

or FB2 instance of Block is called, we emit a Call instruction to the corresponding
translation unit. Alternatively, one could generate one translation unit per POU.
This translation unit would then be given a pointer to the POU members on each
call on which the code should operate. The advantage of our approach is that each
translation unit operates on its own set of variables. While it generates more IR
instructions, it greatly simplifies further analyses, since it is statically known to
which member variables each instruction refers to.

We use the Alias and Index instructions to decompose arbitrarily complex ex-Decomposition of
complex

expressions
pressions with array and structure accesses. To motivate this, we consider the
following ST fragment with a double indirect array access:

arr0[arr1[a+b]] := arr2[c];

This fragment can be modularly decomposed into:

1 Alias ref0, arr1

2 Index ref1, ref0, a+b

3 Alias ref2, arr0

3.4 translation to the intermediate representation 35

4 Index ref3, ref2, *ref1

5 Alias ref4, arr2

6 Index ref5, ref4, c

7 Assign *ref3, *ref5

Observe that in line 4 the value that the variable ref1 points to is used as an index.
In line 7, the actual assignment occurs. Our IR makes it now easy to, e. g., automat-
ically detect possible invalid array access by checking all Index instructions, which
now have a canonical and simpler form. The true power of this approach becomes
evident when handling abstractions of data, i. e., multiple references and values at
once during the abstract interpretation in Chap. 8.

4
C O U N T E R E X A M P L E - G U I D E D A B S T R A C T I O N R E F I N E M E N T

In Sect. 2.5.1 of Chap. 2, we described our explicit-state model for PLC programs.
Since PLC programs typically depend on several inputs, verification using this
explicit-state model is susceptible to state explosion, due to the exponential growth
in the number of input bits. Even small programs can easily lead to state spaces
consisting of hundreds of millions of states, which is a major obstacle for the ap-
plicability of model checking to real-world programs [39]. In this chapter, we
describe the process of automatically building an abstracted state space for PLC
programs. The approach is based on the counterexample guided abstraction re-
finement (CEGAR) scheme [40], geared towards the specifics of PLC programs. In CEGAR

a more general setting, these CEGAR techniques have been successfully integrated
into several model checkers before [5, 69].

4.1 approach

The key idea of the CEGAR scheme is to start the verification process on a coarse
over-approximation of the program semantics. For such an over-approximation,
we are trying to prove an ∀CTL formula, the universal fragment of CTL [53] ∀CTL
(cp. 2.4.2). These all-quantified specifications have the key property that if they
are satisfied in this over-approximating semantics, they are also valid in the con-
crete model, since the abstraction allows—at most—for more behavior than the
concrete system. In case a specification is violated, this may be due to the abstrac-
tion, which then manifests itself in a spurious counterexample. In this case, we
can use the counterexample to refine the abstraction in order to obtain a stronger
semantics which suppresses the behavior that led to the spurious counterexample
trace. We tailor our abstraction refinement for the execution model of PLCs as com-
pared to traditional CEGAR approaches implemented in tools such as Slam [5] or
Blast [69]: On the one hand, we decide when refinement is necessary based on the
cyclic behavior of PLCs. On the other hand, what is refined (e. g., an input vs. a
local variable) can necessitate different strategies for the organization of the state
space.

We first detail how refinement is triggered. We, therefore, make use of three Deterministic
Control Flowindicators: Firstly, we use refinement to ensure deterministic control flow of the

37

38 counterexample-guided abstraction refinement

program. Traditional CEGAR techniques allow for non-deterministic control flow,
i. e., it is possible to have a conditional branch with unknown (abstracted) branch
condition. This is not possible for PLCs due to the atomic simulation of a cycle
during state space generation. We hence trigger refinement if a conditional branch
instruction would yield non-deterministic control flow. The refinement itself will
be selected based on the results of a constraint solver on the conditional expression,
which, subsequently, will cause a refinement of a program variable. Secondary, our
method refines the abstraction on-the-fly if atomic propositions cannot be assignedAtomic

Propositions a truth-value during the simulation of a cycle. This ensures that we can always
evaluate the validity of the specification at the end of the cycle. Finally, we use
refinement to ensure deterministic behavior of special function blocks (e. g., timers)
and instructions that operate on arrays or pointers.

Based on the scopes of variables, our approach utilizes two different methods
for what is refined: In the case that input variables require refinement, only the cur-Refinement of

Inputs rently processed cycle needs to be reanalyzed using the refined semantics. States
that evolved from other input combinations are not affected by this refinement
step. For variables that endure cycles, however, we use a different approach. AsRefinement of

Locals we have seen in Sect. 2.5.1, these are the variables that are non-temporary and
not inputs. For exposition, we subsume these variables under the term local vari-
ables throughout this chapter and denote them by the set VarM (cp. Def. 2.2). If
these local variables trigger the refinement process, the state space admits spuri-
ous counterexamples. In this case, a rebuild might be necessary based on globally
refined constraints, so-called lemmas.

4.1.1 Related Work

Our approach builds on an abstract interpretation framework of program seman-
tics [44, 45], using the domains defined in Sect. 3.3. The techniques in this chapter
particular build on the interval domain [44] and bit-wise domain which are com-
bined using a partly reduced product similar to [35, 97, 98]. This allows us to
reason about arithmetic as well as bit-manipulating program fragments. In gen-
eral, our method is inspired by the abstract simulation using intervals described
by Schlich et al. [105]. To avoid spurious counterexamples, however, we introduce
refinements to our abstraction.

These refinements are based on two principles: Our refinement loop, which
starts at a very coarse abstraction that is iteratively refined, is similar to the works
of Kurshan [77]. On the one hand, the refinement in this loop is triggered by certain
PLC specific behavior, such as deterministic control flow during the execution of a
program cycle. On the other hand, we implement the traditional CEGAR-loop [40]
that analyzes counterexamples generated by the model checker and—in the case a
counterexample is spurious due to the abstraction—can also trigger refinement.

We further use different refinement steps depending on whether we have to re-
fine abstract values on input variables or in local variables. Henzinger et al. [69]

4.2 worked example 39

propose a lazy abstraction scheme that refines only parts of the predicates in the
program. Our refinement step for input variables can be seen as a simplified adap-
tation of such a method. The tree-based structure for the organization of our state
space described in Sect. 4.5 follows similar ideas as described by McMillan [83].

A key difference between our method and existing techniques is that our method
exploits knowledge about the underlying PLC semantics to trigger refinement and
is not solely based on the analysis of spurious counterexamples.

4.1.2 Contributions & Outline

In this chapter, we present the following contributions: We describe a symbolic
encoding of programs written in our intermediate representation that we use to
derive constraints. The constraints are subsequently used to guide the refinement
process. Constraint solving over our interval and bit-wise domain is used during
the refinement itself. We detail a CEGAR algorithm that is optimized for refine-
ments based on input and local variables. We show the effectiveness of our method
by verifying various function blocks from industry and academia. Using CEGAR,
each of these blocks could be verified on a standard desktop computer, requiring
less than 2 minutes per block. We will start by presenting our technique on the
basis of a worked example, which is written in Instruction List.

4.2 worked example

Our approach will be motivated with the example program shown in Fig. 8, which
is used throughout the chapter. The program comprises two input variables, a
local variable, and an output variable, all of type BYTE (range 0–255). In each cycle,
the following operation is performed:

∙ The input variable input0 is loaded into the accumulator, the constant 50 is
added and the result is compared to 100 (lines 11–13).

∙ If the result is not greater than 100, the input variable input1 is copied into
the local variable var0 (lines 15–16).

∙ Otherwise, the local variable var0 is copied into the output variable output0

(lines 18–19).

To verify this program using naïve methods, we would generate the state space Naïve Method

as shown in Sect. 2.5.1: We would start by enumerating all possible input configu-
rations, creating all successor states of the initial state. The process is repeated to
obtain a state space which can be examined by a model checker. In our example,
such an approach would create 216 = 65 536 successors for each state, resulting in
232 = 4 294 967 296 states in total. This is known as the state explosion problem [41],
which makes this approach infeasible for larger programs. To make formal verifica-
tion possible, abstract states have to be introduced, which summarize a (potentially

40 counterexample-guided abstraction refinement

1 PROGRAM Instruction_List_Example

2 VAR_INPUT

3 input0, input1: BYTE;

4 END_VAR

5 VAR

6 var0: BYTE;

7 END_VAR

8 VAR_OUTPUT

9 output0: BYTE;

10 END_VAR

11 LD input0

12 ADD 50

13 GT 100

14 JMPC lbl

15 LD input1

16 ST var0

17 RET

18 lbl: LD var0

19 ST output0

20 RET

21 END_PROGRAM

Figure 8: Example Instruction List program [16]

huge) number of concrete states (cp. Sect. 2.5.2). In the given program, e. g., it is
only relevant whether input0 lies in the interval [0, 50] or in [51, 255] to determine
the two possible control flow paths: If we determine that the value lies in either in-
terval, we can decide if the conditional jump in line 14 is taken or not (independent
of the accumulator or other variables).

The crucial step in this method is to find abstract values that do not change
the behavior of the program or only change it when it is irrelevant for the eval-
uation of the specification. To find such abstract values, we gradually refine the
abstraction: We start with the most general abstract states representing all possible
values. Then, these values are successively refined as long as the program behavior
is different to the original behavior w. r. t. the specification.

In the example program, we would assume the abstract value [0, 255] for inputs
input0 and input1 (i. e., all values are possible) and start simulating the PLC cycle:
After loading input0 and adding 50, the accumulator holds [50, 305] (no overflow
occurs here, since the accumulator can store larger data types than bytes). Compar-
ing the latter interval to 100 yields the set {true, false} in the accumulator, because
the comparison can result in either true or false depending on the actual values
assumed in a concrete execution. The next operation is a conditional jump, for
which we hence cannot decide whether it would be taken. Since a PLC cycle is
executed atomically, we do not want to split the execution into two different paths
here and thus use this as a refinement criterium: We always demand that the accu-

4.3 constraint solver 41

mulator holds a concrete value before a branch. Each conditional jump thus poses
a restriction on the abstract value in the accumulator.

We call such a restriction a constraint. The key idea is to use the constraint From Restrictions
to Constraintson the abstract value in the accumulator in line 14 to derive a constraint on the

input variables that caused the conditional jump to be ambiguous. The reason
the accumulator contains {true, false} is the comparison of [50, 305] with 100. It is,
therefore, sufficient to constrain the interval [50, 305] to be either greater than 100
or less-equal than 100. Since the interval [50, 305] was the result of adding 50 to
[0, 255], we can constrain [0, 255] to be either greater than 50 or less-equal than 50
to avoid conflicts. We observe further that the interval [0, 255] is the initialization
of the variable input0, so we now derive that input0 has to be considered for
two different initializations: the intervals [0, 50] and [51, 255], which both ensure
deterministic control flow and cover the whole range of input0. This process of
resolving constraints from intermediate expressions to input variables will later be
performed using symbolic information.

By careful observation, we resolved the constraint on the accumulator for the
conditional jump to a constraint on an input variable in this case. Then, by re-
fining the input variable into two different intervals, problematic combinations of
values are avoided in subsequent executions after restarting the cycle. A key obser-
vation at this stage is that the values of input variables are assigned independently
of previous states, and thus, the refinement does not affect already created states.
Hence, constraints on input variables can be resolved locally by splitting the ab-
stract values into smaller abstract states. If, however, we have a situation where we
have constraints on local variables such as var0, we have to use a different strategy.
Here, splitting the abstract value cannot be resolved locally, because its value was
calculated in a previous state and we no longer know how this value was derived
symbolically. In Sect. 4.4.2, we will detail how we can handle this situation.

First, we will introduce the constraint solver, which is used for the constraint
transformation process on symbolic information during the execution of a pro-
gram cycle. We then formally present the refinement process for input and local
variables using the constraint solver.

4.3 constraint solver

A constraint is a certain condition, which can either be applied to an abstract value
or a symbolic expression. The constraint solver is then used to transform con-
straints on symbolic expressions into constraints on variables containing abstract
values, ideally equivalent to the original constraint. The rationale is that resolving
a constraint for an abstract value is trivial (by selecting suitable values) whereas
resolving constraints on an expression is more convoluted.

42 counterexample-guided abstraction refinement

4.3.1 Constraints on Abstract Values

Definition 4.1: A constraint is a condition f on an abstract value a, denoted cs f (a).Constraint cs f (a)

We call such a constraint valid or consistent if the set of concrete values that a
represents is consistent under the condition defined by f . We define the different
constraints, with the meaning of consistent as follows:

∙ The single value constraint cssing(a) is consistent iff a represents only a single
concrete value.

∙ Comparison constraints have the form cs▷◁c(a) for some relational operation
▷◁ ∈ {=, ̸=,<,≤,>,≥} and a constant c. They are consistent iff for all x, y ∈
a the condition x ▷◁ c ⇐⇒ y ▷◁ c holds.

∙ The bit mask constraint cs& c(a) is consistent iff for all x, y ∈ a: x & c = y & c,
where & is the bitwise AND operation.

A constraint can be seen as a restriction on how many concrete values an abstract
value can represent at most without getting inconsistent. Trivially, concrete valuesConcrete Values

are consistent under all constraints. It follows that all constraints can be made
consistent by splitting an abstract value into the concrete values it represents.

Given a constraint and a variable, we can easily assign abstract values to theSelecting
Consistent

Values
variable such that the constraint is valid. Usually, we want these abstract values to
cover as many concrete values as possible. This is done using a splitter:

Definition 4.2: Let 𝒜 be an abstract domain, a ∈ 𝒜 an abstract value and f aSplitter

constraint condition. A splitter split f : 𝒜 → ℘(𝒜) enumerates abstract values
split f (a) = {a1, . . . , an} such that

⋃̇n
i=1ai = D and cs f (ai) is consistent for 1 ≤ i ≤ n

with n minimal.

To illustrate, let cs>100([0, 255]) be a constraint on a BYTE interval. In this case,
the splitter split f ([0, 255]) would generate the consistent abstract values [0, 100]
and [101, 255]. That means that for a variable v of type BYTE, assigning both of
these values to v makes cs>100(v) valid. Note that we extended the definition of
constraints from abstract value to variables here.

We can hence conclude that once we have derived a constraint on a variable, theConstraints on
Variables variable can be easily (and efficiently) made consistent by a splitter. Constraints

on arbitrary expressions have to be reduced to constraints on variables. In our
example, this step was the transformation of the single value constraint (which
arises from the conditional jump) to the compare constraint on the variable input0.
To formalize this process, we extend the definition to constraints of expressions of
abstract values, written cs f (expr).

4.3 constraint solver 43

Program Intermediate Symbolic form Accumulator

LD input0 Assign ACC, input0 acc(0) := input0
(0) [0, 255]

ADD 50 Assign ACC, (ACC + 50) acc(1) := acc(0) + 50 [50, 305]
GT 100 Assign ACC, (ACC == 0) acc(2) := acc(1) > 100 {true, false}
JMPC label BranchUnless ACC, label guard(cssing(acc

(2)))

..

Figure 9: IL fragment, first translated to IR then into SSA form. The rightmost
column shows the values in the current accumulator in one execution
path.

4.3.2 Constraints on Expressions

Constraints on expressions are derived from the intermediate representation (IR)
we introduced in Sect. 3.4.4. To derive expressions, we rewrite instructions of our
IR into a static single assignment (SSA) form [47] on which the constraint solver Static Single

Assignmentwill operate. Since this translation performed while simulating one cycle, only one
path of the program is considered at a time. Therefore, we do not have to generate
φ-nodes in the translation phase1. In case an expression results in a concrete value
during the build of the SSA, we discard the symbolic information and use the
concrete value as a right-hand side. This prunes unnecessary information and
ensures that all non-constant expressions are composed of at least one variable
that can be refined.

Figure 9 shows an example of how the translation is performed. On the left hand
side, the example program is shown and then its translation into IR (cp. Fig. 8). The
third column shows the corresponding SSA expressions. In the forth column we
list the abstract values of the accumulator for the first instructions of the exam-
ple program. The LD, ADD, and GT instructions of IL are translated into Assign

instructions in our IR. Translating such assignments into SSA is straightforward by
introducing a new variable for each left hand side. On the right hand side, however,
complex expressions are allowed in our IR (which arise, e. g., when translating ST
programs). For the purpose of the constraint solver, each complex expression is
converted into simpler expressions by introducing temporaries2. This ensures that
unary and binary expressions (cp. Sect. 3.4.4) only operate on l-values or constants.

For the BranchUnless statement, we need to decide the conditional jump and
thus require a concrete value in the accumulator. Therefore, guard statements are
added, which contain the appropriate constraints. If these constraints are inconsis-
tent, the constraint solver described in the next section is used to find refinements
of variables in order to make the guard constraint valid.

1 φ-nodes are used in SSA to merge two different incoming control flow edges. This cannot happen
in our approach because we only consider one path at a time.

2 Similar to a three-address code.

44 counterexample-guided abstraction refinement

Note that the translation into SSA is done during the simulation, automatically
unrolling all loops of the program. Since the programs of PLCs should react fast to
ensure their real-time behavior, each program cycle should terminate after a short
time, which guarantees bounded size of these symbolic expressions. In the next
section, we examine how expression constraints such as cssing(acc

(2)) are trans-
formed.

4.3.3 Transforming Constraints

If the validity of an expression constraint cs f2(e2) implies the validity of cs f1(e1), we
write cs f1(e1) ↷ cs f2(e2). We illustrate this using the example program: ConsiderImplication of

Constraints the single-value constraint cssing(acc
(2)). From this constraint, the solver can derive

a constraint on input0 with the following steps:

cssing(acc
(2)) ↷ cssing(acc

(1) > 100) (1)

↷ cs>100(acc
(1)) (2)

↷ cs>100(acc
(0) + 50) (3)

↷ cs>100−50(acc
(0)) (4)

↷ cs>50(input0
(0)) (5)

In the trivial steps (1), (3) and (5) left-hand side of an SSA expression is replaced
by its corresponding right-hand side definition. Step (2) transforms the single-
value constraint into an equivalent compare constraint. In step (4), a compare
constraint is translated to resolve adding the constant. To summarize, we can
make the single-value constraint cssing(acc

(2)) valid by refining input0 into proper
abstract values using a splitter on cs>50(input00).

We formally define the steps of the constraint solver inductively on the SSA ex-
pressions. In the following, f is an arbitrary constraint condition, e1 and e2 are (non-
constant) expressions, c is a constant, ⊖ is a unary expression and ⊙ is a binary op-
eration. Relational operations are denoted by the symbol ▷◁ ∈ {=, ̸=,<,≤,>,≥}.

Let cs f (e0) be a constraint. If e0 is an l-value and there is an SSA expression e0 :=
e1, we apply the trivial transformation cs f (e0) ↷ cs f (e1). If e0 is an input variable
or a local variable the resolving process is terminated, since this can be handled
using a splitter. If e0 is constant, it is trivially consistent under all constraints.
Otherwise, e0 is a unary expression, a binary expression or a data type cast. For aUnary

Expressions unary expression, the transformation is defined as follows:

∙ A complement operation is absorbed by a bit-mask constraint cs& m(¬e1) ↷
cs& m(e1).

∙ A compare constraint on a negation cs▷◁c(−e1) is resolved by cs▷◁c(−e1) ↷
cs▷◁−c(e1), where (=, ̸=,<,≤,>,≥) = (=, ̸=,≥,>,≤,<).

4.4 refinements 45

∙ All other constraints on unary operations are resolved as single value con-
straints cs f (⊖e1) ↷ cssing(e1).

For a binary expression the transformation is defined as follows: Binary
Expressions

∙ A constraint on two non-constant expressions is resolved as a single value
constraint on one expression cs f (e1 ⊙ e2) ↷ cssing(e1). This other expression
is then resolved in the next refinement step.

∙ For all compare operations ▷◁ we resolve cssing(e1 ▷◁ c) ↷ cs▷◁c(e1).

∙ Addition and subtraction in compare constraints are resolved by the trans-
lations cs▷◁c1(e1 + c2) ↷ cs▷◁(c1−c2)(e1), cs▷◁c1(e1 − c2) ↷ cs▷◁(c1+c2)(e1), and
cs▷◁c1(c2 − e1) ↷ cs▷◁(c1−c2)(−e1).

∙ Some bitwise operation are resolved using the bit mask constraint. A com-
parison constraint cs=c1(e1&c2) is transformed as cs=c1(e1&c2) ↷ cs&c2(e1).

∙ All other constraints on binary operations are resolved as single-value con-
straints: cs f (e1 ⊙ c) ↷ cssing(e1). A constraint cs ̸=c1(e1&c2) is transformed
similarly.

∙ Casts to a smaller data type are handled similar to bit mask constraints, while
casts to larger data types are ignored (since they do not change semantics).

Since each IL instruction adds at most one SSA expression, the constraint solver
can resolve each constraint in, at most, 𝒪(n) steps, where n is the number of Complexity

instructions executed in the cycle. For ST programs, n is the number of operations,
since each operation adds another SSA expression. In the next section, we will use
the constraint solver with linear complexity to compute the necessary refinements.

4.4 refinements

Existing CEGAR techniques work solely by analyzing counterexamples. Spurious
counterexample then trigger refinements of the chosen abstraction. A key differ-
ence of our approach to these techniques is that we take PLC specific behavior into
account, which yields additional hints for refinements. We want to prevent, e. g.,
non-deterministic control flow during the simulation of a program cycle so as to
hide intermediate states, since they should not be observable to the model checker.

At each non-deterministic branch point, we therefore symbolically resolve the
non-deterministic value to the source that generated the value. The source is usu-
ally an input variable (whose value is chosen non-deterministically each cycle) but
could also be a local variable or a timer. Splitting the abstract value of such vari-
ables into different (smaller) abstract values creates separate states, and can thus
eliminate the problematic cases.

46 counterexample-guided abstraction refinement

A refinement of values using the constraint solver is initiated once an incon-
sistent constraint is encountered. Therefore, the validity of constraints is testedConstraints

during
Simulation

during simulation. We introduce constraints (by the means of guard instructions)
in the following situations:

∙ As we have seen, the control flow has to be deterministic while simulating
a cycle. Hence, we put a guard before each BranchUnless instruction, which
contains the branch condition as a single value constraint.

∙ Some special function blocks such as timers require concrete input values for
their operation, which we guard accordingly.

∙ After simulating a cycle, the truth valuations of atomic propositions are deter-
mined to label the state space accordingly. The values of the atomic proposi-
tions have to be consistent, so they are guarded with appropriate constraints.

∙ The Index instruction is guarded by single value constraints, because we do
not allow indirect array access with an unknown index.

∙ Similarly, all pointer instructions are guarded by single value constraints.

Our method follows two different strategies, depending on whether an inputTwo Strategies

or a local variable has to be refined. In the first step we will explain how we
implemented the refinement of input variables.

4.4.1 Refinement of Input Variables

We will first consider the case that the refinement algorithm does not have to refine
values stored in predecessor states. This is achieved by allowing only concrete
values in local variables (i. e., variables whose value is retained between cycles) at
the start and at the end of each cycle. We can easily achieve this using the existing
approach by guarding these variables with a single-value constraint at the end of
the program. This ensures that only input and temporary variables can store an
abstract value at the beginning and end of the cycle. Since the value is overwritten
in the next cycle, we guarantee that no abstract values are maintained between
states.

Since this technique forbids abstract values in the state space, we do not add
additional behavior to the program, and hence, will not find spurious counter-
examples. We will see that the refinement of input variables is a powerful abstrac-
tion of the state space on itself, due to the huge number of hidden input values.
Our algorithm iteratively refines values, similar to the refinement loop initially de-
scribed by Kurshan [77]. It performs the following steps during the generation of
successor states (cp. Def. 2.4 and the following discussion):

4.4 refinements 47

1. All splitters used for the refinements are stored on a stack. In the first step, a
splitter is pushed onto the stack that assigns the ⊤ element of the domain to
all input variables.

2. The splitter on top of the stack is used to assign abstract values to the input
variables. The splitter gives rise to different configurations s1, . . . , sn (rep-
resenting different traces through the program). For s1 . . . sn, steps 3–6 are
performed:

3. Simulate a cycle of the PLC for the current configuration. If one of the above
mentioned situations occurs, where the simulation cannot proceed, the con-
straint solver is used to find a new splitter, which is then put on the stack. In
this case, step 2 is repeated.

4. The atomic propositions are evaluated. If a truth value cannot be determined,
again, the constraint solver is used to find a new splitter, which is put on the
stack and step 2 is repeated.

5. The newly created successor state is stored in the state space.

6. The splitter on top of the stack is advanced to its next refinement. If the
splitter has already assigned all values of the domain, it is removed from the
stack. If the stack is empty all successors are created. Otherwise repeat with
step 2.

Note that by using a stack for the splitters, we work with different splitters
depending on the current assignment to variables. This also implies that we can
use different splitters, depending on the program path that is currently refined
(since this path is determined by the current assignment to the program variables).

It follows that the efficiency of this approach is highly dependent on the order in
which variables are refined. Typically, variables are referenced in the order of their
importance for the control flow in real-world programs. Hence, the refinements
picked by of our approach are usually quite good. In the next section, this method
is extended to other variable classes.

4.4.2 Refinement of Local Variables

We now discuss how the algorithms works if we allow for storing of abstract val-
ues in local variables. Since the value of local variables might be calculated in a
previous state (and thus depend on the value of other variables), abstract values
in local variables can incur new behavior, i. e., transitions which are not possible
in the concrete model. To illustrate, consider two variables that contain abstract
values, but with their concrete value always being identical in the concrete pro-
gram semantics. In the example program, this is the case for the variables var0

and outputp0 if input0 is greater than 50.

48 counterexample-guided abstraction refinement

input0 = [0, 0]

input1 = [0, 0]

var0 = [0, 0]

output0 = [0, 0]

input0 = [0, 50]

input1 = [0, 255]

var0 = [0, 255]

output0 = [0, 0]

input0 = [51, 255]

input1 = [0, 255]

var0 = [0, 255]

output0 = [0, 255]

?

input0 = [0, 0]

input1 = [0, 0]

var0 = [0, 0]

output0 = [0, 0]

input0 = [0, 50]

input1 = [0, 255]

var0 = [0, 255]

output0 = [0, 0]

input0 = [51, 255]

input1 = [0, 255]

var0 = [0, 24]

output0 = [0, 24]

input0 = [51, 255]

input1 = [0, 255]

var0 = [25, 255]

output0 = [25, 255]

✓

?

input0 = [0, 0]

input1 = [0, 0]

var0 = [0, 0]

output0 = [0, 0]

input0 = [0, 50]

input1 = [0, 24]

var0 = [0, 24]

output0 = [0, 0]

input0 = [51, 255]

input1 = [0, 255]

var0 = [0, 24]

output0 = [0, 24]

input0 = [0, 50]

input1 = [25, 255]

var0 = [25, 255]

output0 = [0, 0]

input0 = [51, 255]

input1 = [0, 255]

var0 = [25, 255]

output0 = [25, 255]

✓

E

Figure 10: Subsequent refinements of the state space for verifying the specification
AG output0 < 25 [16]

4.4 refinements 49

Since we work with non-relational domains, we cannot track that two variables
are identical if they contain an abstract value. When comparing the value of the
variables, we hence induce new behavior since we assume that they could contain
different values. Yet—and this is the key property—if an ∀CTL formula is valid
in such an abstract model with added behavior, it is also valid in the concrete
model [40]. Otherwise, the formula is violated and the model checker is able to
extract a counterexample. A counterexample that is not feasible in the concrete
semantics is called spurious. Our approach to verify that a counterexample is not
spurious is to rebuild the state space based on a refined semantics.

The key steps of this approach are sketched in Fig. 10. We are trying to verify
AG output0 < 25 for the example program. The first row shows the first iter-
ation of the state space, with irrelevant states omitted. In the right-most state,
cssing(output0 < 50) is not consistent since output0 lies in the interval [0, 255],
so the state has to be refined accordingly. We perform this step using the con-
straint solver, which returns the constraint cs>25(var0). The reason for this is that
if input0 lies in the interval [51, 255], var0 is copied into output0. Since refin-
ing the global variable var0 possibly creates new behavior, we save the constraint
cs>25(var0) as a so-called lemma for further refinement:

Definition 4.3: A lemma is a constraint (on a local variable) that has to be consis- Lemma

tent for a counterexample to stay feasible. In other words, by keeping a lemma
consistent during state space generation, we could be able to suppress a spurious
counterexample.

In the second row we show the refined state space, where the state was split
to make the atomic propositions consistent. Since output0 > 25 in the state next
to the question mark, we have a candidate for a counterexample trace here. Due
to the over-approximation, however, we have to verify that this counterexample is
also feasible in the concrete semantics. To achieve this we rebuild the state space
while keeping all lemmas we found consistent, thus avoiding the addition of new
behavior to the state space.

We, therefore, add new guards for all local variables at the end of the program
according to their lemmas. The idea is that we can use the symbolic information
from the SSA and the end of the program for all variables accessed in this cycle.
Hence, the constraint solver can deduce how the value was computed and select
suitable refinements. It will either obtain a crucial refinement of an input variable,
thus resolving the over-approximation in this state, or it will obtain a new lemma,
which might be needed in a further refinement/rebuild step.

The final result of the state space is shown in the third row of Fig. 10. Here,
cs>25(var0) is consistent and all additional behavior was removed. Hence, we can
deduce that the counterexample trace is a feasible counterexample for the formula
AG output0 < 25.

50 counterexample-guided abstraction refinement

4.5 state space organization

The organization of the state space described in the previous section has two draw-
backs: Firstly, in the case of a spurious counterexample the complete state space
has to be rebuilt. Secondly, it does not exploit the structure of the relation between
abstract and concrete states. To exemplify, the states s0 = ⟨v ↦→ 0⟩, s1 = ⟨v ↦→ [0, 5]⟩
and s2 = ⟨v ↦→ [0, 10]⟩ are currently different states and thus stored independently.
Yet, s0 ⊑ s1 ⊑ s2 and hence it might be sufficient to only store s2.

We will, therefore, organize the state space in a way that such entailments can
be efficiently detected and their structure exploited. For this, we use a hierarchical
representation in the form of a tree. Each node in the tree can either be (a) aTree and Nodes

constraint cs f (v), (b) a leaf, or (c) missing. Leaves correspond to the abstract states
of our state space. Only a constraint cs f (v) can have children, defined according
to their splitter:

∙ For a single value constraint cssing(v) a child node is introduced for every
possible value of v.

∙ For a comparison constraint cs▷◁c(v) two child nodes are introduced for v ▷◁ c
being true or false, respectively.

∙ A mask constraint cs& c(v) has child nodes consistent to cs& c(v). The number
of children is thus 2n, where n is the number of bits set in c.

The key idea here is that the children of a constraint are always consistent under
all parent constraints.

A lookup maps a state s to a state ŝ (i. e., a leaf) which is contained in the stateLookup

space and entails s. A lookup is performed by recursively traversing the tree until
a leaf is found. We start at the root and for each node n:

∙ If n is a leaf ŝ then we return ŝ.

∙ If n is missing, we have to create a new leaf: We create a new state ŝ consistent
under all constraints on the path from the root to n and return ŝ.

∙ If n is a constraint cs f (v) and it is inconsistent under s, we return refine using
the constraint cs f (v). In this case, the lookup fails and the input has to be
refined first.

∙ If n is a constraint cs f (v) and it is consistent under s, we continue with the
respective child node, where f is fulfilled.

To build the initial state space for a formula φ, we perform the following opera-Initial State
Space tion for the initial state s0 (i. e., the concrete initial state).

1. We perform a lookup of s0, which gives rise to a leaf ŝ0. Observe that s0 is a
concrete state so this lookup cannot be inconsistent.

4.5 state space organization 51

2. If the obtained ŝ0 is consistent under φ then ŝ0 is returned as the initial
abstract state.

3. Otherwise, we use the constraint solver to generate a constraint cs f (v) resolv-
ing this conflict. We then replace the leaf ŝ0 by this constraint and resume at
step 1.

After we have built the initial state space, the abstract state space can be gener- Building the
Abstract State
Space

ated. Therefore, we create the successors s1, . . . sn of the initial state ŝ0 using the
refinement techniques described in Sect. 4.4.1 and 4.4.2. Then, the states s1, . . . sn

are looked up in the state space which gives rise to further refinements (if the
lookup is inconsistent) or new leaves (if a node is missing). This process yields
thus a transition relation between the leaves of the state space. For each new leaf,
the steps are repeated until the complete state space is build or a counterexample
is found.

4.5.1 Counterexample Analysis

If a counterexample is found, it might again be spurious. We hence have to an- Spurious
Counterexamplesalyze counterexamples for their feasibility and—if they are spurious—add new

constraints to suppress them. Further, we want to make counterexamples more ex-
plicit by adding back the variables they depend on since their abstract counterpart
typically does not explain the violation. In the following, let π = ⟨ŝ0, . . . , ŝn⟩ be
a counterexample for some invariant φ. We then walk the counterexample back-
wards. For each transition ŝi → ŝi+1 we check whether the transition depends on a
lemma on some local variable v. If it does, the lemma gives rise to a new constraint
cs f (v): If the constraint condition is not fulfilled, the counterexample π becomes
infeasible. To make the constraint always consistent, we hence replace the leaf ŝi
with cs f (v) in the state space. All children of cs f (v) will now (by definition) be
consistent under this constraint. We now have to rebuild parts of the state space. If
i = 0 then the initial state ŝ0 is changed and we have to rebuild the state space from
scratch to check for another counterexample. If i ̸= 0 then we recheck φ beginning
at ŝi+1 to test whether the suffix of π is suppressed.

This process is continued until we either no longer find a counterexample (in
this case the state space is safe) or we find a counterexample without dependence
on lemmata. This is then a feasible counterexample and presented to the user.
To make the counterexample more understandable, we also augment it with all
lemmata on input variables.

4.5.2 Worked Example

We explain our approach using the worked example shown in Fig. 11, which
sketches a safety function block that has 4 inputs and 2 outputs. The block op-
erates in different modes. If the block is in output mode, the input is copied into

52 counterexample-guided abstraction refinement

OutputAc've*
Output*

Ac'vate*
Input*
Lock*
Reset*

50 counterexample-guided abstraction refinement

Initstart Output

Lock

Error

Activate

Lock

¬Lock

input > 50

"Reset

¬Activate

Figure 10: Example program we use to demonstrate the state space organization.

[September 23, 2015 at 17:09 – classicthesis]

Figure 11: Example function block we use to demonstrate the state space
organization.

output. If input is greater than 50 the block goes into an error state, from where
it is necessary to reset the block. Additionally, the output can be locked, in which
case the input is no longer copied. Internally, the block is implemented as a state
machine with states Init (0), Ouput (1), Lock (2), and Error (3). The safety function
we want to verify is:

AG output ≤ 50

We start by making the initial state space consistent. This entails creating a splitter
for cssing(output ≤ 50). Checking this state space creates a counterexample S0 →
S1:

output ≤ 50

S0 S1

This state space comprises the node cssing(output ≤ 50), which has the leaves S0

and S1. S0 represents states where output ≤ 50, which is in particular the initial
state. The leaf S1 represents the violating states. These states are, as we will see
later, unreachable. The dotted line represents the counterexample, while the solid
lines represent the lookup tree of the state space. The transition of the counter-
example depends on the lemma state = 0. We hence replace S0 by this lemma.

4.5 state space organization 53

Checking the state space again results in the following counterexample:

output ≤ 50

state = 0

S0 S1 S2

Observe that in S0 we have state = 0, while in S1 we have state ̸= 0. In
S2 we have a violation, which depends on the lemma state = 1. We use this
as a replacement for S1. Checking the state space again results in a spurious
counterexample (not shown), which now depends on state = 2. Checking the
refined state space results in the following spurious counterexample:

output ≤ 50

state = 0

S0

state = 1

S1

state = 2

S2 S3 S4

This counterexample has a transition from S2 (where state = 2, which rep-
resents the locked state) to a violating state. This happens because the imple-
mentation copies the internally stored value to the output if it is in the locked
state. This internal variable is called LockedInput. Since our state space does not LockedInput

store any information about this variable, it might contain any value, hence caus-
ing the violation. Thus, the final lemma that we derive from this state space is
LockedInput ≤ 50, which is used to replace S2.

54 counterexample-guided abstraction refinement

After a rebuild, we end up with the following state space:

output ≤ 50

state = 0

S0

state = 1

S1

state = 2

LockedInput ≤ 50

S2 S3

The final state space has only 4 leaves, which represent the four different modes
of the function block. Implicitly, it is derived that always LockInput ≤ 50 if the
block is in state 2 (this follows because the other leaf of the node is missing). Since
the right leaf of the output ≤ 50 constraint is missing as well, it follows that aViolation is

Unreachable violation of the property we want to verity is not reachable.

4.6 case studies

We have implemented the techniques described in this chapter in Arcade.PLC.
To show the effectiveness of our approach, we performed a case study verifying
different properties of various PLC programs [18]. It contains three different setsSetup

of programs: We analyze five safety function block from the PLCopen consor-
tium [94] from two libraries: The first library is written in IL and was provided
by Soliman and Frey [114], while the second library is our own implementation
written in ST. The blocks have between 4 and 12 inputs of type BOOL and TIME.

The second set of programs are written in the Siemens dialect of IL. They are
written for a Siemens SIMATIC S7 PLC to control conveyor belts and a 3D robot
of a Fischertechnik plant. The conveyor belts operate independently using motors
and light curtains. To assess the scalability, we used programs to control one as
well as four belts. The robot has three motors to move its arm and one motor for a
mechanical grab. The motors are monitored using step counters. We checked the
programs with one and four degrees of freedom.

For the Antivalent block we verified that (1) AntivalentOut output implies thatVerification

ChannelNC (normally closed) is set and ChannelNO (normally open) is not set. To

4.6 case studies 55

Program φ res Abs. #States #Created #CE Time
PL

C
o

pe
n

Antivalent

(ST, 108 LOC)
(1) ✓

A1 45 401 0 0.1 s
A2 5 782 4 0.1 s

EmergencyStop

(IL, 226 LOC)
(2) ✓

— 134 4 288 − 0.4 s
A1 80 721 0 0.2 s
A2 6 329 7 0.2 s

ModeSelector

(IL)
(3) ✓

A1 > 35 000 > 15 M 0 > 1 h
A2 38 623 352 0 55 s

ModeSelector

(ST, 187 LOC)
(3) ✓

A1 15 594 3 254 198 0 270 s
A2 17 4 722 0 0.7 s

ModeSelector

(ST, 187 LOC)
(3) ✓

A1 15 594 3 254 198 0 274 s
A2 18 4788 2 1.1 s

GuardLocking

(IL, 321 LOC)
(4) ✓

— > 130 000 > 7 M 0 > 1 h
A1 39 231 953 741 0 192 s
A2 3 1146 0 0.2 s

MutingSeq

(ST, 212 LOC)
(5) ✓

A1 56 466 5 003 709 0 715 s
A2 3 1 062 0 0.1 s

MutingSeq

(ST, 212 LOC)
(6) ✓

A1 98 725 16 697 622 0 3 262 s
A2 3 1 764 0 0.2 s

Be
lt

1 Belt
(S7 IL, 92 LOC)

(7) ✓
— 360 46 081 − 2 s
A1 109 1 448 0 0.2 s
A2 3 33 0 0.1 s

4 Belts
(S7 IL, 322 LOC) (7) ✓

A1 118 1 579 0 0.4 s
A2 3 33 0 0.1 s

R
o

bo
t

1 Axis
(S7 IL, 65 LOC)

(7) ✓
— 173 693 − 0.5 s
A1 128 371 0 0.5 s
A2 208 1026 335 16.6 s

4 Axes
(S7 IL, 101 LOC)

(8) ✓
— 11 921 3 051 777 − 142 s
A1 149 473 0 0.5 s
A2 166 582 692 201 s

4 Axes
(S7 IL, 101 LOC)

(9) E
— 11 665 83 969 − 8.7 s
A1 107 237 1 0.5 s
A2 82 328 675 261 s

Table 3: Evaluation of the CEGAR technique to verify PLC programs (see also [18])

56 counterexample-guided abstraction refinement

check the EmergencyStop block, we verified that the emergency output is not set
if the emergency input is not set (2). For the ModeSelector block we verified that
in the locked state, at most, one mode is set (3). For the GuardLocking block
we verified that the GuardLocked signal can only be asserted if the block is ready
(4). Similarly, we verified that MutingActive signal can only be asserted if the
MutingSeq block is ready (5), and the muting lamp is on (6). For the conveyor belt
program of the Fischertechnik plant we verified that it acknowledges the motor
stop signal (7). For the robot program we verified that the counter for axis 0 stays
in its bounds (8). Otherwise, the plant could suffer physical damage. Additionally,
we slightly modified the formula to induce a counterexample (9).

The results of this case study are presented in Tab. 3. We tried to verify eachResults

property without abstraction (—), with refinements but without the state space
organization (A1), and finally with full abstraction (A2). For each technique, the
table shows the number of abstract states in the final state space, the number of
states created, the number of analyzed counterexamples and the overall time for
model checking. Often, we were unable to verify the property without abstraction,
since the program depends on too many inputs. For brevity, we only show the
results with activated abstractions in these cases.

Using the right abstractions, all formulae for all programs could be verified.
The runtime of the verification process is always between seconds and minutes
depending on the abstraction selected. Without abstraction, we were unable to
verify most programs. The Antivalent block, e. g., is one of the smallest programs
we checked, but due to one input of type TIME, we could not enumerate all input
configurations in a concrete domain. The use of abstractions makes this block then
amenable to the verification.

The Belt example shows that adding independent functionality (i. e., adding
three independent belts to the program) does not affect the abstractions: The same
number of abstract states for A2 is generated. While this works in the Robot ex-
ample as well, it becomes apparent that the higher number of inputs makes the
exploration of this state space slower, even if it is very small. Interestingly, the
A2 abstraction is generally slower in this example. This is caused by the high
number of counterexamples that have to be analyzed, which, in turn, is caused by
the specifics of the formula and the program: Here, we are checking on a certain
counter that counts the number of rising edges of an axis sensor; this must stay
below 40. The brute force approach of the A1 abstraction is better in this case.

4.7 conclusion

In this chapter we introduced a CEGAR scheme specifically geared towards model
checking PLC programs. We detailed different techniques that were used to ab-
stract the state space while it is built (for input variables) and were guided by the
analysis of spurious counterexamples (for local variables). Using these abstrac-

4.7 conclusion 57

tion techniques we were able to verify various ∀CTL properties for programs and
function blocks from academia and industry.

In the case study we could see that, in some cases, the brute force approach
without the more complex organization of the state space could still be faster.

Obviously, the technique is limited by the power of the constraint solver. In the
next section, we will, therefore, introduce a predicate abstract using existing SMT
solvers. Finally, in Chap. 9, we will use static analysis results to analyze a complete
safety application.

5
P R E D I C AT E A B S T R A C T I O N

The previous chapter introduced a CEGAR-based approach to iteratively build
and check an abstract model for PLC programs. Yet, this approach is limited to
the domains we have implemented in Arcade.PLC and the restrictions of the hand-
written constraint solver. More complicated programs necessitate a more powerful
approach. In this chapter, we detail a predicate abstraction [64] for PLC programs
that abstracts the program behavior using predicates between variables. The actual
transition relation, i. e., which predicates are fulfilled at which program locations,
is then discovered using automatic decision procedures.

5.1 overview & outline

In the approach described in this section, we first encode the semantics of a given
PLC program as first order logic formulae. That is, the instructions of our interme-
diate representation are formulated in a logic suitable for automatic solvers. We
describe this encoding in Sect. 5.4.

In Sect. 5.5, we then automatically derive the transition relation of an abstracted
state space. The abstraction is based on predicate expression over program vari-
ables. For each program location, we track the evaluation of these predicates using
SMT solving. Additionally, we introduce a predicate scoping, which attaches a
lifetime to certain predicates such that it is no longer necessary to keep their eval-
uation at each program location. This technique allows to further reduce the size
of the state space.

The feasibility of our approach is demonstrated in Sect. 5.6 by checking various
PLC programs. The chapter ends with a conclusion in Sect. 5.7. We start by dis-
cussing related work and then motivating our approach using a worked example,
which is used throughout this chapter.

5.2 related work

In their seminal paper, Graf and Saïdi [64] showed how to derive abstract state
spaces using decision procedures. Their approach works by adding all derived
transitions as blocking clauses until a formula becomes unsatisfiable. Numerous

59

60 predicate abstraction

1 PROGRAM Example

2 VAR_INPUT

3 in0, in1, in2: USINT;

4 flag : BOOL;

5 END_VAR

6 VAR_OUTPUT

7 out : USINT;

8 END_VAR

9 VAR

10 var : USINT;

11 END_VAR

12 IF flag THEN

13 IF in0+in1+in2 < 100 THEN

14 var := in0;

15 ELSE

16 var := 0;

17 END_IF;

18 ELSE

19 out := var;

20 END_IF;

21
22 END_PROGRAM

Figure 12: Example PLC program used throughout this chapter [22]

works refined this approach in different directions. Ball et al. [7], e. g., make use of
abstraction interpretation [44] for C code verification so as to derive the successors
of multiple (unrelated) predicates in one decision procedure call. This also allows
the representation of don’t cares for the predicate evaluation. Henzinger et al. [69],
on the other hand, introduce a lazy abstraction scheme, which works by using a
different precision for different parts of the program and is deeply ingrained in
their refinement loop. Our predicate scoping technique can be seen as a special
case of these approaches, tailored for the cyclic scanning mode of PLCs.

5.3 worked example

Our approach is motivated with the small example program shown in Fig. 12,
which is written in ST. The program performs the following operation in each
cycle: First, the input variable flag is tested (line 12). If the flag is set, the program
tests whether the sum of the three inputs in0, in1, in2 is less than 100 (line 13).
If so, the variable in0 is copied into var, otherwise the variable var is set to 0. If
flag is not set then the value of var is copied into the output variable out (line 19).
Note that var is a non-temporary variable, which holds its value for the next cycle.

Suppose we want to manually verify that the invariant out < 100 holds for thisVerifying an
Invariant program. We first observe that the variable out is only set to the value of var,

which in turn is either set to 0 or in0. In the first case the invariant is trivially true.
The second case can only be executed if in0 + in1 + in2 < 100, which implies
that in0 < 100 (overflow cannot occur here, since arithmetic is implicitly cast to a
bigger accumulator data type here), making the invariant true. Note that it is not
obvious how to automate these steps to prove the invariant.

Unfortunately, the techniques we presented the previous chapter cannot readily
be applied to the example. The reason for this is that the inequality in0+ in1+

in2 < 100 cannot be abstracted efficiently by intervals, resulting again in a state
explosion. One way to capture such expressions that relate the values between vari-

5.4 encoding of plc semantics in fol 61

ables is to use more powerful domains such as convex polyhedra [46], difference
bound matrices [80, 124], or octagons [87].

In this chapter, however, we extend our model checking in a different direction.
Instead of implementing a new domain for this specific setup, we implement an
abstraction over predicates. These predicates can be arbitrary Boolean expressions Predicates

and are later evaluated using automatic decision procedures. In case of the exam-
ple program, we would evaluate the predicate π0 := in0+ in1+ in2 < 100 (and
other suitable predicates) at every program location. The state space itself then
comprises of states that are tuples of the current line number and evaluation of
the predicates or conjunctions of predicates. Note that this notation is different
from our previous convention: We now evaluate intermediate steps, which are not
observable, and thus should be hidden to the model checker. We hence have to
slightly extend our specification of the invariant as follows:

AG (exitpoint =⇒ out < 100) (1)

Here, exitpoint is an atomic proposition that evaluates to true only at the exit point Exit Point

of the program. This ensures that only the observable behavior of the program is
verified and that non-observable intermediate states are hidden.

To automate the building of the state space, we will encode the program se-
mantics in first order logic (FOL). Each statement will then relate preconditions to First Order Logic

postconditions, and we can use solver calls to evaluate the validity of predicates in
the program.

5.4 encoding of plc semantics in fol

In this section, we describe the transformation of PLC programs into FOL formu-
lae. Each model of such a formula represents a possible state change by the state-
ment encoded in the formula. Syntactically, we use unprimed variables for the Precondition: x

precondition and primed variables for the postcondition when encoding the pro- Postcondition: x′

gram semantics. This allows to derive the transition relation between states with
decision procedures. We start by encoding key components of PLC programs.

5.4.1 Encoding of Variables and the Program

As in Def. 2.2, let Var be the set of variables of the PLC program. In this sec-
tion, however, we flatten all structures and arrays so that we only deal with scalar
variables. Indirect array accesses and pointers are not supported throughout this
chapter. Depending on their lifetime and their semantics, we partition Var into
three distinct sets VarM, VarI and VarT (variables that retain their value between
cycles, inputs variables, and temporary variables, cp. Def. 2.2). Since recursion is
not possible in PLC programs, we can determine the number of variables used
such that each variable has a unique identifier/address. Special handling of local
variables stored on a stack for function block or function calls is thus not required.

62 predicate abstraction

ASSUME in0+in1+in2 < 100

ASSUME in0+in1+in2 ≮ 100

l1 l6

l2

l4

l5

l3
ASSUME flag ≠ 1

ASSIGN out var

ASSIGN var in0

ASSIGN var 0

ASSUME flag = 1

Figure 13: Control flow automaton of program Example [22].

It the following, let 𝒟 be our domain of discourse. The domain of discourse canDomain of
Discourse be chosen as the union of the data types of the variables in Var, after flattening

are all elementary (i. e., non-aggregate) data types. We introduce memory states,
defined for each program location:

Definition 5.1: A memory state is given by a tuple ⟨ℓ, ν⟩, where ℓ ∈ L is a programMemory State

location and ν : Var → 𝒟 is a variable assignment. Here, ℓ stands for a symbolic
address (e. g., a line number) of the next statement to be executed.

We define two special program locations ℓS and ℓE which denote the entry point
and exit point of the program1. The program model, which contains all possible
executions of the PLC program, is defined in the following form:

Definition 5.2: The program model is a state transition system ⟨S, I, R⟩ where S isProgram Model

the set of memory states, I ⊆ S is the set of initial memory states and R ⊆ S× S is
a transition relation.

Consider the worked example Example of Figure 12. Its set of variables is en-Worked Example

coded as Var = {in0, in1, in2, flag, out, var}, which is subdivided into VarI =

{in0, in1, in2, flag}, VarM = {var, out} and VarT = {}. The domain of dis-
course is the union of the data types BOOL ∪ USINT ∪ UDINT. The program model
of the program would contain, e. g., the transition (19, ⟨out = 1, var = 0, . . . ⟩) ∼
(20, ⟨out = 0, var = 0, . . . ⟩).

The encoding described thus far contains even more states than the concrete
model described in Def. 2.4 since we now consider intermediate states. To actually
reduce the number of states, we will introduce a symbolic encoding using FOL
formulae.

1 The program can always be transformed to have only one exit point.

5.4 encoding of plc semantics in fol 63

5.4.2 Translating PLC Programs as FOL Formulae

As described in Sect. 3.4.4, we first compile all PLC programs into our intermedi-
ate representation (IR). In this chapter, we translate the IR into FOL in two steps.
First, we translate the IR statements into a control flow automaton [12]. Then, the
automaton is converted into FOL formulae.

Definition 5.3: A control flow automaton (CFA) is a labeled state transition system Control Flow
Automaton⟨L, Stmt, G⟩ where L is a set of program locations, Stmt is a set of operations over

the variables and G ⊆ L× Stmt× L is a set of control flow edges.

With ℓ ∈ L we represent a location in the IR of the program. A control flow
edge ⟨ℓ, ·, ℓ′⟩ indicates that if the current state is in location ℓ, then there is a
possible transition to location ℓ′ after the execution of the statement. We define
two instructions that can be used as operations in the CFA:

∙ ASSUME π

∙ ASSIGN v t

The assign operation directly corresponds to all assignments used in our IR and the
assume operation is used to model the guards of conditional jumps. The operation
assume is followed by a predicate π = p(t1, . . . , tn) or a negated predicate π =

¬p(t1, . . . , tn), meaning that the transition is executed only if the given predicate
application is valid. The operation assign is followed by a variable v and a term t of
the same type. It means that in the next state the variable v will be assigned with
the evaluation of the expression t in the current state. Here, a term t is defined as
follows:

Definition 5.4: A term t is either a variable or a function application with other Term

terms:

t ::= x
| f (t1, . . . , tn)

where x ∈ Var is a variable and f is a function symbol.

Note that constants are also defined as functions (with arity 0). We define all
operators allowed in our IR (cp. Sect. 3.4.4) as functions, including the data type
casts to different scalar types but without any pointer operations.

Consider again the program Example of Fig. 12. The labeled state transition Example

system shown in Fig. 13 is the translation of the example program into a control
flow automaton according to Def. 5.3. For accessibility of the presentation, we
represent binary predicate and function applications using infix notation, which is
interpreted according to the standard operator precedence, e. g., in0+ in1+ in2 <

100 stands for < (+(+(in0, in1), in2), 100).
Since we want to use SMT solving techniques to query the validity of predicates

in the CFA, we translate the memory operations into quantifier-free FOL formulae

64 predicate abstraction

that encode the assumptions and transformations over the memory. Quantifier
free FOL formulae can be expressed in terms of predicate applications, negations
and conjunctions.

Definition 5.5: A quantifier free formula φ is inductively defined as follows:Quantifier Free
Formula

φ ::= p(t1, . . . , tn)

| ¬φ1

| φ1 ∧ φ2

where φ1, φ2 are quantifier free formulae, p is a predicate symbol and t1, . . . , tn are
terms according to Def. 5.4.

Next, we will describe the encoding of CFA operations into FOL formulae. Each
operation is encoded as a relation of pre- and post-states of the transition. Pre-
and post-variables are syntactically denoted by the set of unprimed and primed
symbols.

We define an encoder function enc : Stmt→ ℒ, where ℒ is the language of FOLEncoder enc

formulae. The encoding of an assume operation is given by the assertion of the
predicate on the pre-variables conjoined with the equality between all pre- and
post-variables, which remain unchanged:

enc(ASSUME p(t1, . . . , tn)) := p(t1, . . . , tn) ∧
∧

y∈Var y′ = y

enc(ASSUME ¬p(t1, . . . , tn)) := ¬p(t1, . . . , tn) ∧
∧

y∈Var y′ = y

An assignment is encoded by asserting the equality between the post-variable that
has to be assigned with the term over the pre-variables, conjunct with equalities
between pre- and post- versions of the variables that remain unchanged:

enc(ASSIGN x t) := x′ = t ∧∧
y∈Var∖{x} y′ = y

Using the encoder enc, we can now derive a symbolic encoding of the CFA:

Definition 5.6: A control-flow-based symbolic encoding of a PLC program withSymbolic
Encoding CFA ⟨L, Stmt, G⟩ using FOL formulae is then given by the following:

∙ The variables and their domain ⟨Var,𝒟⟩,

∙ the transition system ⟨L,ℒ, G⟩, where all operations in Stmt of the CFA are
encoded as FOL formulae in ℒ using the encoder enc,

∙ the start-up phase Start ∈ L×ℒ, and

∙ the scanning phase Scan ∈ L×ℒ.

5.4 encoding of plc semantics in fol 65

In this definition, the start-up phase defines the initialization of all variables in Start-up Phase

the initial location ℓS:

Start :=
〈
ℓS,

∧
x∈Var∖VarI

x = Initx()
〉

,

where Initx() is the default value x is initialized to. The scanning phase captures the Scanning Phase

behavior of the controller between cycles, i. e., after the execution of the program
body has reached the last program location ℓE ∈ L. During this phase, the val-
ues of the variables in VarM are retained while input variables are read from the
environment; hence, their value becomes non-deterministic:

Scan :=
〈
ℓE,

∧
x∈Var∖VarI

x′ = x
〉

We can now define a symbolic encoding of a program as a tuple ⟨S, I, R⟩ as in
Def. 5.2, which can be handled with SMT solving techniques [10]. Given a theory
𝒯 chosen for the interpretation of variables and predicates, the set of states S is
defined as the set of all locations and all possible assignments consistent under 𝒯 :

S := {⟨ℓ, ν⟩ | ℓ ∈ L and ν ∈ Var→ 𝒟}

The set of initial states is defined as all those states in the start-up location with all
variables initialized accordingly:

I := {⟨ℓS, ν⟩ | ν |=𝒯 φ where ⟨ℓS, φ⟩ = Start}

The transition relation is given by pairs of states. Each transitions covers consecu-
tive locations such that the assignment of the first state over unprimed variables ν1

and the assignment of the second state over primed variables ν′2 satisfy the formula.
Additionally, a transition is possible from the last location to the first location using
the scanning phase:

R :=
{〈
⟨ℓ, ν1⟩ ,

〈
ℓ′, ν2

〉〉
| ν1, ν′2 |=𝒯 φ and

〈
ℓ, φ, ℓ′

〉
∈ G

}
∪{

⟨⟨ℓE, ν1⟩ , ⟨ℓS, ν2⟩⟩ | ν1, ν′2 |=𝒯 φ and Scan = ⟨ℓE, φ⟩ and Start = ⟨ℓS, ·⟩
}

.

5.4.3 Encoding of Timers

PLC programs can react to timer events using the standard timer FBs TP, TON and
TOF, which we described in Sect. 2.2.6. To support these timers, we extend the set
of statements Stmt with the following operations:

∙ TP n tIN tPT ,

∙ TON n tIN tPT ,

∙ TOF n tIN tPT ,

66 predicate abstraction

where n ∈ Timer is the name of the timer and tIN (timer input) and tPT (pro-
grammed time) are terms. We assume that for each timer n ∈ Timer the input and
output variables n.IN (timer input), n.Q (timer output) are part of Var. For timers
of type TON and TOF the propositional variable n.r is added to Var, which keeps
track of whether the timer is running.

Timer TP starts (setting Q to 1) if Q is 0 and there is a rising edge on input IN;
nothing is changed otherwise:

enc(TP n tIN tPT) := n.IN′ = tIN ∧
∧

x∈Var∖{n.IN,n.Q} x′ = x ∧
((n.Q = 0∧ n.IN′ > n.IN)→ n.Q′ = 1) ∧

(¬(n.Q = 0∧ n.IN′ > n.IN)→ n.Q′ = n.Q)

Timer TON is started on a rising edge of IN and stops (setting Q to 0) on falling
edges. It is defined as follows:

enc(TON n tIN tPT) := n.IN′ = tIN ∧
∧

x∈Var∖{n.IN,n.Q,n.r} x′ = x ∧
(n.IN′ > n.IN→ n.r′ ∧ n.Q′ = n.Q) ∧
(n.IN′ < n.IN→ ¬n.r′ ∧ n.Q′ = 0) ∧
(n.IN′ = n.IN→ n.r′ ↔ n.r ∧ n.Q′ = n.Q)

Timer TOF is started on a falling edge of IN and stops (setting Q to 1) on rising
edges. It is defined as follows:

enc(TOF n tIN tPT) := n.IN′ = tIN ∧
∧

x∈Var∖{n.IN,n.Q,n.r} x′ = x ∧
(n.IN′ > n.IN→ ¬n.r′ ∧ n.Q′ = 1) ∧
(n.IN′ < n.IN→ n.r′ ∧ n.Q′ = n.Q) ∧
(n.IN′ = n.IN→ n.r′ ↔ n.r ∧ n.Q′ = n.Q)

We extend the start-up phase by disabling all timers and setting all variables to 0.
The scanning phase is extended by the encoding of the elapsing time 𝒯 ℰ t(n) for
each timer n of type t: Timer TP can have a falling edge on Q if running, where as
it remains disabled with Q set to 0 otherwise:

𝒯 ℰTP(n) := n.IN′ = n.IN∧ n.Q = 0→ n.Q′ = 0

Timer TON (TOF) either remains unchanged or can have a rising (falling) edge on Q

if running:

𝒯 ℰTON(n) := n.IN′ = n.IN∧ n.r′ ↔ n.r ∧ (n.Q′ = n.Q∨ n.r ∧ n.Q = 0∧ n.Q′ = 1)

𝒯 ℰTOF(n) := n.IN′ = n.IN∧ n.r′ ↔ n.r ∧ (n.Q′ = n.Q∨ n.r ∧ n.Q = 1∧ n.Q′ = 0)

5.5 predicate abstraction 67

5.4.4 Succinct Representation of Control-Flow Automata

In our definition, we used one transition in the CFA for each instruction of the
IR. Such an encoding that handles one instruction per transition is called single-
block encoding (SBE). It has the following drawbacks: First, we have to compute
the evaluation of all formulae at each intermediate step, even if the intermediate
results are not needed (or not needed in this precision) for further steps. Second,
the conjunction of multiple intermediate steps (i. e., FOL formulae) might be easier
and thus faster to evaluate using automated decision procedures than each step
on its own. Such a conjunction of simple intermediate steps without change in
control flow is called a basic block encoding (BBE). This idea can further be improved
to control flow trees, which then is called extended-basic-block encoding (EBBE), and
even loop free fragments, called large block encoding (LBE) [12].

In our approach, we use a BBE. This can simply be achieved by conjoining the
formulae of all basic blocks. In this encoding, a basic block of the CFA is defined
as control flow edges ℓ0 → · · · → ℓi, with

∙ ℓ0 has exactly one successor and has more than one predecessors or is ℓS,

∙ ℓ1, . . . , ℓi−1 have exactly one predecessors and exactly one successor, and

∙ ℓi has exactly one predecessor and has more than one successor or is ℓE.

These basic blocks can easily determined in the CFA. We then conjoin their formu-
lae and shrink them to a single transition.

5.5 predicate abstraction

Let P = {π1, . . . , πn} be a set of predicates over the set of variables Var, which
we call the abstraction precision. The Boolean predicate abstraction of a system Abstraction

Precisioncomputes an over-approximation that keeps track where in the program each of
the predicates in P is valid or not [64, 7].

Definition 5.7: We define an abstract state as a tuple ⟨ℓ, c⟩ of a location ℓ and a Abstract State

minterm c over a set B = {b1, . . . , bn} of Boolean variables. A minterm over B is
a conjunction of all variables bi ∈ B, where each bi appears either with or without
negation.

The intuition here is that each bi corresponds to a predicate πi:

Definition 5.8: The abstraction function α maps a memory state ⟨ℓ, ν⟩ to an abstract Abstraction
Functionstate ⟨ℓ, c⟩, in which the polarity of each variable in c states the validity of the

respective predicate in ν:

α(⟨ℓ, ν⟩) := ⟨ℓ, c⟩ such that for all 1 ≤ i ≤ n : c |= bi iff ν |=𝒯 πi

68 predicate abstraction

We define the concretization function as the inverse of the abstraction function
α−1(ŝ) := {s | ŝ = α(s)}. The abstraction function over-approximates, i. e., the ab-
straction α(s) of a state s represents a region s ∈ α−1(α(s)) of states in which s is
contained.

Since we are interested in verifying universal properties, we want the abstraction
to be conservative for such properties. First, we guarantee this by assuring that all
predicates of the property are contained in the precision. Second, since we over-
approximate the system, i. e., S ⊆ α−1(α(S)), it follows that if we prove the set of
reachable states S→ to satisfy the property in the abstract system, then it is valid in
the concrete system as well. In general, the vice-versa does not hold, which gives
rise to CEGAR techniques [40], which were highlighted in Chap. 4.

5.5.1 Implementation of the Predicate Abstraction

The predicate abstraction allows us to represent a program ⟨S, I, R⟩ as a Boolean
over-approximation in terms of a Kripke structure

〈
Ŝ, Î, R̂, ÂP, L̂

〉
(cp. Sect. 2.4.1

and 2.5.2) where

∙ Ŝ := {α(s) | s ∈ S} is the set of abstract states,

∙ Î := {α(s) | s ∈ I} ⊆ Ŝ is the set of initial states,

∙ R̂ := {⟨α(s), α(s′)⟩ | ⟨s, s′⟩ ∈ R} ⊆ Ŝ× Ŝ is the transition relation,

∙ ÂP is the set of atomic propositions, and

∙ L̂ : Ŝ→ 2ÂP is the labeling function defined as L̂(⟨ℓ, c⟩) :=
{

b ∈ ÂP | c |= b
}

.

We generate this Kripke structure on-the-fly by providing two main functions: pre-
condition and strongest postcondition. The precondition p ⊆ Ŝ represents the set
of abstract initial states Î. It is defined as the set of abstract states ⟨ℓS, c⟩ at start
location, whose minterms are entailed by the start condition:Precondition

p := {⟨ℓS, c⟩ | ⟨ℓS, φ⟩ = Start and c ∧ φ ∧∧n
i=1(bi ↔ πi) is 𝒯 -Sat} .

The strongest postcondition sp : Ŝ → 2Ŝ represents to the set of successors of an
abstract state under the abstract transition relation R̂. Both Î and R̂ are sets of
abstracted states. Given a fixed location, sp can hence be characterized as the
enumeration of all minterms over B that are 𝒯 -satisfiable when conjoined with
the set and the abstraction constraint

∧n
i=1(bi ↔ πi). The strongest postcondition of

an abstract state ⟨ℓ, c1⟩ can hence be defined as the set of abstract states ⟨ℓ′, c2⟩ at
successor locations such that the minterms c1 and c2 abstract the transition formula
on the pre- and post-variables:Strongest

Postcondition
sp(⟨ℓ, c1⟩) :={〈

ℓ′, c2
〉
|
〈
ℓ, φ, ℓ′

〉
∈ G and c1 ∧ c′2 ∧ φ ∧∧n

i=1(bi ↔ πi ∧ b′i ↔ π′i) is 𝒯 -Sat
}

.

5.5 predicate abstraction 69

l1

l2

l3

l4

l5

l6

b1 ∧ b2 ∧ ¬b3
b1 ∧ b2 ∧ b3

b1 ∧ b2 ∧ b3

b1 ∧ b2 ∧ b3
b1 ∧ b2 ∧ b3 b1 ∧ b2 ∧ b3

b1 ∧ b2 ∧ ¬b3

b1 ∧ b2 ∧ ¬b3 b1 ∧ b2 ∧ ¬b3

b1 ∧ b2 ∧ ¬b3

Figure 14: Predicate abstraction of Example. Solid circles on the left and right indi-
cate the scanning phase and are connected by transitions [22].

Computing these equations can be seen as an AllSAT problem over a set of
variables [78], which in our case are B for the precondition and B′ for the strongest
postcondition. In our implementation, we use the Z3 SMT solver [89] to compute
this automatically. We iterate over each outgoing transition ⟨ℓ, φ, ℓ′⟩ ∈ G explicitly.
For each location ℓ′ we query the Z3 SMT solver for models of the formula. If it
returns a model, we extract a minterm c′2, which corresponds to an abstract state
⟨ℓ′, c2⟩. Then we conjoin the blocking clause ¬c′2 to the formula and repeat the
process, calling Z3 again. When the formula becomes unsatisfiable, we have seen
all models. When iterating among different outgoing transitions directed to the
same location ℓ′, we introduce blocking clauses to avoid double occurrences. We
memoized the result so as to avoid unnecessary solver calls.

We continue our worked example from Sect. 5.3 verifying (1). We start with the Example
Continuedset of predicates P = {π1 = (out < 100)}, since the property to verify is always

part of the precision. The property we want to verify thus becomes AG b1
2. Since

we do not have any restriction on var, a counterexample is generated. At the end
of the counterexample, the property var ≥ 100 holds, which is then assigned to
out. This gives rise to the new predicate π2 = (var < 100), which we add to P and
rerun the process. In the next refinement step we similarly detect: in0 is assigned
to var, we hence deduce πskip = (in0 < 100)3. Finally, we discover that the
previous statement can only be executed if the predicate π3 = (in0 + in1 + in2 <

100) is satisfied (from ℓ3 to ℓ4), so π3 is added to P. The abstracted state space
using predicates of P is shown in Fig. 14, where each bi represents the validity of
the corresponding predicate πi. The final state space allows us to verify formula
(1), since b1 is valid everywhere.

2 We ignore the exitpoint predicate of the program to make the presentation more accessible.
3 We skip this predicate, since it is not needed and clutters the presentation as well.

70 predicate abstraction

b1 ∧ b2 ∧ b3

b1 ∧ b2 ∧ b3

b1 ∧ b2 ∧ b3

b1 ∧ b2 ∧ b3 b1 ∧ b2 ∧ b3

b1 ∧ b2 ∧ ¬b3 b1 ∧ b2 ∧ ¬b3

l1

l2

l3

l4

l5

l6

b1 ∧ b2 ∧ ¬b3

Figure 15: Predicate abstraction with b3 scoped to ⟨ℓ3, ℓ6⟩. Solid circles on the
left and right indicate the scanning phase and are connected by tran-
sitions [22].

5.5.2 Scoping of Predicates

In the previous section, we have evaluated all predicates in every location, i. e., we
have evaluated b1, . . . , bn to either true or false without the possibility to leave it
as unknown. This approach is potentially wasteful: Consider the running example
again with notation as in Fig. 14. For the initial location ℓ1, we have to consider
the two states (b1 ∧ b2 ∧ b3) and (b1 ∧ b2 ∧ ¬b3). Note that the predicate π3 (and
thus the evaluation b3) is of no use in the initial state but only in ℓ3. In particular,
it also pollutes the path ℓ1 → ℓ2 → ℓ6, where it plays no role. In this section we
will therefore reduce the scope of certain predicates and first define:

Definition 5.9: Let ⟨L, ·, G⟩ a control flow automaton. The weak reachability relationWeak
Reachability ⪯ ⊆ L× L is defined as follows:

ℓ ⪯ ℓ′′ iff ℓ = ℓ′′ or there exists
〈
ℓ, ·, ℓ′

〉
∈ G such that ℓ′ ⪯ ℓ′′.

In other words, two locations are weakly reachable if there is a path of locations
between them.

Note that the weak reachability is a purely syntactic notation. The reachability
does not consider the transition over data variables, hence two weakly reachable
locations could be not actually reachable in a real execution. To each predicate
πi we now associate a scope

〈
ℓ̌i, ℓ̂i

〉
∈ L × L. We then redefine the abstraction

function in a way that predicates are used only if they are in the given scope:

α(⟨ℓ, ν⟩) := ⟨ℓ, c⟩ such that for all 1 ≤ i ≤ n : c |= bi iff (ℓ̌i ⪯ ℓ ⪯ ℓ̂i =⇒ ν |=𝒯 πi)

We use the weakest preconditions to automatically limit the scope for new pred-
icates. If we have a sequence of consecutive preimages with common predicate

5.6 case study 71

⟨ℓ1, φ1⟩ , . . . , ⟨ℓm, φm⟩, those predicates will use the scope ⟨ℓ1, ℓm⟩. If this sequence
passes through the scanning phase, we break it up into two different predicates
with scope ⟨ℓ1, ℓE⟩ and ⟨ℓS, ℓm⟩, respectively. If the sequence passes through the
scanning phase more than once, we do not introduce a scoping.

In our example program we would now associate the predicate scope ⟨ℓ3, ℓ6⟩ to Example
Continuedπ3. This means that, e. g., in state ℓ1 the variable b3 is not evaluated and fixed to

true. Hence only the state b1 ∧ b2 ∧ b3 appears in ℓ1, further reducing the number
of states and transitions. The complete state space using this scoping is depicted
in Fig. 15. Although the scoping is only able to reduce the number of states by two
here, we will see how powerful the scoping is in the next section.

5.6 case study

Our approach is implemented in the Arcade.PLC framework. To show the effec-
tiveness of the approach beyond the running example, we applied it to various
FBs [22]4. All experiments were performed on a MacBook Pro equipped with an
Intel Core i5 processor with 2.53 GHz and 8 GB of main memory.

For the case study, we again selected two complex safety-critical FBs from the Setup

PLCopen library [94]. We used our own implementation of the PLCopen library
implemented in ST in these experiments. The SF_ModeSelector FB has 14 inputs,
12 outputs and 5 internal variables and is implemented in 175 lines of ST. It controls
that (up to eight) different modes of operation of a machinery are selected in a
consistent way, i. e., that one mode, at most, is active at a time. Further, only for a
short period of time (while switching modes) it is possible that no mode is selected.
It additionally allows for locking of modes. We verified that (1) one mode, at most,
is selected at a time, and that (2) exactly one mode is selected if it is locked.

Moreover, we verified the SF_MutingPar FB which allows for muting a safety
function while monitoring that certain safety sensors are operated in the correct
order. It has 13 inputs and 12 internal variables. We first verified that the FB only
signals Ready when it is activated (3). Afterwards we tried to verify that a certain
safety output (AOPD) is only set when the muting lamp is switched on (4).

The results are shown in Tab. 4. The columns of the table indicate in order: Evaluation

The program, the formula checked, the abstraction used (“—” = abstractions from
the previous chapter, PA = predicate abstraction, PS = predicate abstraction with
predicate scoping), the number of states in the model, the number of transitions,
the number of predicates used, the time for generating the abstract state space
and model checking (where OOM means out of memory) and the total runtime
(including predicate discovery).

The model checking of the successful examples only took seconds. In one exam-
ple, finding the predicates was slow and took 70 s. The predicate scoping reduces

4 In this previous work [22], we also verified a safety property of a safety application. We later found
a bug in the implementation of this application, which kept the safety output stuck to zero. This
made the verification trivial. We, therefore, do not report this application here.

72 predicate abstraction

Program φ Abs. #loc #states #trans. #P tabs ttotal

Example (1) — 22 > 4k > 40M n/a OOM OOM
Example (1) PA 22 40 19 4 1 s 1 s
Example (1) PS 22 10 13 5 1 s 1 s
ModeSelector (1) PS 190 95 142 1 1 s 1 s
ModeSelector (2) PA 190 > 27k > 28k > 40 OOM OOM
ModeSelector (2) PS 190 214 291 30 2 s 72 s
MutingSeq (3) PS 211 241 374 1 3 s 1 s
MutingSeq (4) PS 211 > 10k > 14k > 100 OOM OOM

Table 4: Evaluation of the predicate abstraction and predicate scoping tech-
niques [22]

the state space further: We were not able to verify formula (2) without predicate
scoping. This example also shows the force of this abstraction: Although 30 pred-
icates were in use, the final state space comprised only 214 states. The muting FB
shows that sometimes simple invariants can be proven using a single predicate as
in (3). Yet, our approach still not scales well enough to prove (4).

Regarding the runtime, we can observe that the actual model-checking process
is performed in seconds even for the most complex programs. If the initial abstrac-
tion is not sufficient, refinement steps are necessary, which can be quite costly as
shown with formula (2) where this takes 70 s of the total runtime. This predicate
discovery seems to be the limiting factor of our current approach.

5.7 conclusion

In this chapter, we introduced a fully automatic predicate abstraction for PLC pro-
grams. The abstraction works by first translating our intermediate representation
of the PLC program into a control flow automaton, with edges represented using
first order logic. Then, repeated SMT solver calls are used to discover the validity
of predicates in the automaton. New predicates are automatically derived using
counterexample analysis. To compute less predicates in fewer locations and thus
reduce the size of the generated state spaces, we limit the scope of predicates to
program locations where they actually influence the program semantics.

The technique, in its current form, it is not always better than the approach
described in Chap. 4. The power of the predicate abstraction comes into play once
more complex predicates are necessary, e. g., predicates that relate variables using
arithmetic expressions, which is not always the case for the programs we checked.
In this case, the brute force approach using intervals can be faster than expensive
SMT solver calls. As the example programs shows, however, once more complex
predicates are required, the approach shown in Chap. 4 can no longer compete.

6
M O D E L C H E C K I N G U S I N G S A F E T Y A U T O M ATA
S P E C I F I C AT I O N S

Thus far, model checking of CTL formulae was used to verify safety-critical prop-
erties of PLC programs and function blocks. During our case studies, we faced
two disadvantages in the usability of this technique:

∙ The formalization of properties in CTL turned out to be cumbersome and
tedious. Complex properties were often wrong in the first attempt. Hence,
we focused mostly on proving invariants of the program.

∙ Due to practical considerations, only a subset of the properties of the func-
tion blocks could be translated into CTL. While this was sufficient to verify
the crucial safety-critical properties of a block, subtle problems in implemen-
tation details might have been missed.

In this chapter, we introduce safety automata as another specification formalism that
addresses both problems: Specifications written as safety automata are easier and
more intuitive to write than CTL and—in many cases—the complete specification
can be proven. We show how this formalism can be used in the verification process
of PLC programs and function blocks.

6.1 motivation & overview

In Chap. 4 and Chap. 5 we investigated abstraction techniques to make the ver-
ification of PLC function blocks and programs feasible. During the verification,
different properties had to be translated into CTL. For the verification of PLCopen
function blocks, e. g., we first considered the textual description of the blocks that
contains the most important (and safety-critical) properties of the block. Addition-
ally, the description using state diagrams gave rise to further properties. Ideally,
however, the whole specification of a function block should be verified in a more
direct way. During the experiments with CTL, the author came to a similar conclu-
sion about the usability of CTL as Schlipf et al. [107, p. 5]:

We found only simple CTL equations to be comprehensible; nontrivial equa-
tions are hard to understand and prone to error.

73

74 model checking using safety automata specifications

Hence, we only verified selected properties, which is an unsatisfactory approach
when trying to prove the correctness of the whole program. To make the formal-
ization of safety specifications more intuitive, different solutions were proposed in
the past:

∙ Pattern based approaches [31, 74, 52] allow the user to select a desired prop-
erty from a list of predefined pattern. While this is a convenient and user-
friendly approach, such pattern are either inflexible or tend to explode com-
binatorially [57, slide 12].

∙ Standardized subsets of natural languages allow the user to specify the prop-
erties using plain English or German. As an example, Sicherheitsfachsprache
as defined by Mertke [84] allows for writing specifications in a subset of the
German language.

By way of contrast, our approach is based on the existing formalism in which
PLCopen function blocks are specified. This formalism is called state diagram; an
example is shown in Fig. 18 on p. 83. While these automata are used by PLCopen
to define the operation of the function blocks, we interpret them as safety automata
similar to [55] and use them for verification.

6.1.1 Bibliographic Notes & Related Work

A multitude of alternative graphical specification paradigms have been researched
in the past. Dillon et al. [51] propose the Graphical Interval Logic, which gives the
user an intuitive graphical view on the specified property. Damm and Harel [48]
propose Live Sequence Charts (LSC) as a visual formalism. LSCs build on Message
Sequence Charts, a formalism to depict the interaction between processes or ob-
jects (often in a networked environment), but add temporal operators to it. Autili
et al. [3] advocate Property Sequence Charts (PSC) another graphical formalism to
specify the order of events. Finally, Asteasuain and Braberman [2] introduce Feath-
erweight Visual Scenarios, a graphical, event-based specification language.

Our approach, however, is automata-based. It is close to PLC-automata [50] pro-
posed by Henning Dierks as a formalism for the specification and verification of
real-time systems. PLC-automata can be seen as a subset of timed automata and
allow, in contrast to our approach, for specifying timing constraints. Our safety
automata are inspired by an industry standard [94]. They are simple to verify and
additionally provide the possibility to detect over-specifications, which we success-
fully used to detect an error in an industrial specification.

The safety automata presented in this chapter were initially developed during
a masters thesis [34] and introduced to Arcade.PLC as alternative formalism for
model checking microcontroller code as well as PLC code. They are currently
evaluated from the user’s perspective to verify automotive software in an on-going
thesis.

6.2 safety automata 75

6.1.2 Contribution & Outline

First, we will formally define safety automata and some extensions in Sect. 6.2,
and describe their relation to CTL. Then, we describe a model checking algorithm
for safety automata in Sect. 6.3 that also handles certain extensions defined in this
chapter. This algorithm is implemented in Arcade.PLC and used in Sect. 6.4 to
check an industrial PLCopen library. During the case study, we found a mistake
in a specification. We detected this mistake, since a transition of an automata was
never taken during model checking. The details how such erroneous specifications
can be detected automatically are explained in Sect. 6.5. The chapter ends with a
concluding discussion in Sect. 6.6.

6.2 safety automata

The key idea of safety automata is that they are designed to recognize all safe behav-
ior of a program. An execution trace that cannot be recognized by the automaton
will be signaled as an error. In principle, safety automata are non-deterministic
finite automata:

Definition 6.1: Let AP be a set of atomic propositions. A safety automaton is a non- Safety
Automatondeterministic finite automaton defined as a tuple 𝒜 = (Q, q0, Σ, δ, ℐ), comprising

a set of states Q, an initial state q0 ∈ Q and a transition function δ ⊆ Q× Σ× Q
between states, where Σ = 2AP. The invariant map ℐ : Q → ΦAP labels each state
q ∈ Q with an invariant ℐ(q) given in propositional logic over AP.

The key idea here is that a safety automaton recognizes traces of the program.
Therefore, each transition (q, G, q′) ∈ δ is labelled with a guard G ∈ Σ. If the
proposition of the guard is fulfilled, the corresponding transition has to be taken.
If there are multiple transitions with a valid guard, a non-deterministic choice
is taken. Usually, the guards specify certain conditions on the program inputs,
possible error conditions, the firing of timers, etc. The states of the automaton are
labeled with invariants over AP. These invariants specify, e. g., a behavior of the
outputs or the local variables of the program. The automaton can remain in a state
as long as the invariant is fulfilled. A trace of the program is then recognized by
the automaton if and only if it can be recognized under these rules.

6.2.1 Formalization

To formalize, let π = ⟨s0, s1, . . . , sn⟩ be a trace of the PLC program. That is, s0 cor-
responds to the initial state, and si is a configuration of the PLC after the execution
of one cycle beginning at configuration si−1. By s |= I we denote that a state fulfills
an invariant I ∈ ΦAP, and by s |= G that it fulfills a guard G ∈ Σ. Then, a trace
π is recognized by the safety automaton 𝒜, written π ∈ L(𝒜), iff: There exists
⟨q0, . . . , qn⟩ ∈ Qn+1, ⟨G1, . . . , Gn⟩ ∈ Σn such that:

76 model checking using safety automata specifications

¬motor motor ¬motor

¬motor

start∧ ¬error

error

¬start∧ ¬error

error

acknowledge∧ ¬error
error

¬start∧ ¬error

Figure 16: Example for a safety automaton.

1. si |= ℐ(qi) for all 0 ≤ i ≤ n + 1, and

2. si |= Gi and (qi−1, Gi, qi) ∈ δ for all 1 ≤ i ≤ n.

Observe that there is no guard for the first state, only an invariant. Every successor
state then has one guard (from the transition) and one invariant (from the target
state).

Finally, we can generalize the acceptance of safety automata to models of PLCAcceptance
Criteriton programs: A model (ℳ, s) is accepted by 𝒜 iff for every path π (starting in the

initial state s of the state space) we have π ∈ L(𝒜).

6.2.2 Simplifications & Conventions

To make safety automata more succinct, we introduce some conventions. Firstly,
we assume an implicit back-edge at each node. This back-edge allows the autom-
aton to remain in its current state when no guard is fulfilled. Formally, let G*i be
the conjunction of all guards for all outgoing transitions in state qi ∈ Q, i. e.:

G*i :=
∧ {

Gj | ∃qk : (qi, Gj, qk) ∈ δ
}

(1)

We then always assume that (qi,¬G*i , qi) ∈ δ. This ensures that in each state at
least one guard is always fulfilled. If this back-edge is not explicitly given, we
implicitly assume the existence of this edge.

To exemplify, a simple safety automaton is given in Fig. 16. This automatonExample

monitors a motor, start, error and acknowledge variable. In this example, start,
error and acknowledge are inputs and motor is an output. The automaton then
monitors that the motor is only activated as long as start is activated, and, if an
error occurs, the motor is stopped and can only be restarted after acknowledge has
been set. Note that in each state, only the relevant inputs are listed. According

6.3 a model checking algorithm for safety automata 77

to our simplification, we can omit all changes to inputs that do not influence tran-
sitions between states. In the first state, e. g., the value of acknowledge does not
influence any transitions and thus was omitted in the example.

6.2.3 Relation to CTL

The expressiveness of safety automata compared to CTL is given as follows:

Proposition 6.1: Neither the set of languages described by safety automata ℒSA Expressiveness

nor by ℒCTL are proper subsets of each other, i. e., some properties can only be
described by safety automata, while others can only be described by CTL.

Proof. We give examples for properties the are recognized by one but not the other
formalism.

ℒSA ⫋ ℒCTL : CTL allows to express liveness properties such as AG AF φ, which
is not possible using safety automata, since they only allow for specifying
safety properties.

ℒCTL ⫋ ℒSA : Safety automata are able to modulo-count events. That is, by cre-
ating a loop in the specification of the required length they can, e. g., test
whether an odd number of events occurred. This is not possible in CTL, but
requires extensions [79].

6.3 a model checking algorithm for safety automata

A model checker for a safety automaton 𝒜 has to check whether each trace of
the Kripke structure ℳ is in L(𝒜), i. e., accepted by 𝒜. For this, we developed
an on-the-fly checking algorithm, that builds the (abstracted) state space while
checking whether the state space is accepted by 𝒜. If not, a counterexample can
be generated, which explains why the state space is not accepted by the automaton.

6.3.1 On-the-fly Checking

Algorithm 1 shows the on-the-fly checking algorithm. As input, the algorithm
takes an initial state s0 (from which the state space is built on the fly), the safety
automaton 𝒜 and, optionally, an AcceptState or AlarmStates (cp. Sect. 6.3.3).

The key idea of this algorithm is that it explores the synchronous product of the
state space and the safety automaton. For this, a worklist queue is maintained that
contains the tuples to be explored. Each tuple comprises (a) a state s from the state
space and (b) a set Q ′ ⊆ Q, which reflects the possible states the safety automaton
can assume when reaching state s from s0. In each step, a tuple ⟨s , Q ′ ⟩ from the
worklist is processed. For each successor state s ′ of s all possible transitions of the

78 model checking using safety automata specifications

safety automaton are determined. For this step, it is checked which guards and
which invariants are satisfied. If there is an s ′ , such that the automaton admits no
possible transitions for no q ′ ∈ Q ′ , then a counterexample is found and returned
(line 26). Otherwise, successor tuples that have not been visited yet are put on the
worklist. If the worklist becomes empty we have visited each state s of the state
space and now know that each path ending in s has at least one successor state
admissible by the automaton. Hence, the state space is accepted.

6.3.2 Counterexamples

During model checking, our algorithm keeps track of the possible states reachable
in the safety automaton while building the state space. Hence, if a state of the
state space is not reachable using transitions in the automaton, a trace π ̸∈ L(𝒜)
is found that can be output as a counterexample. From a user’s perspective,
the counterexample can now demonstrate a program trace π = ⟨s0, . . . , sn−1, sn⟩,
where the prefix ⟨s0, . . . , sn−1⟩ is recognized by the safety automaton, but the last
transition sn−1 → sn is not recognized. The corresponding states q0, . . . , qn−1 of the
safety automaton for s0, . . . , sn−1 can then be inspected by the user.

6.3.3 Extensions

We introduce two extensions to safety automata for ease in writing the specification
of certain properties. Firstly, we allow for Alarm and Accept states. That is, we allow
states to be marked to immediately accept or reject a model. Accept states thenAccept States and

Alarm States allow to generate a witness on how to reach certain state, while alarm states allow
to mark certain bad configurations. We do not allow the combination of alarm and
accept states in one automaton. Otherwise, the order in which our model checking
algorithm works would influence whether the alarm or accept is visited first. It
could hence happen that the accepting state is visited first, verifying a model that
would also reach an alarm state. Similarly, we do not allow for multiple accept
states in one automaton, since the order in which they are visited would also
depend on the actual model checking algorithm. We do, however, allow to check
for the reachability of multiple alarm states.

Secondly, we also introduce optional priorities to the transitions so as to resolvePriority of
Transitions ambiguity. Our definition of safety automata allows for overlapping conditions on

guards, i. e., the conjunction of all conditions of the guards is satisfiable. In this
case, more than one transition can be taken, which necessitates a non-deterministic
choice by the model checker. If this behavior is not wanted, one would have to alter
the guards accordingly, such that their intersection is empty. In the automaton in
Fig. 16, e. g., multiple transitions have to check for ¬error, such that if an error

signal is detected, the automaton will always assume the corresponding error state
where the motor must be switched off. To resolve this ambiguity, PLCopen state

6.3 a model checking algorithm for safety automata 79

Algorithm 1 Model Checking Algorithm for Safety Automata
Input: Start state s0

Input: Safety automaton 𝒜 = (Q, q0, Σ, δ, ℐ)
Input: (optional) AcceptState or AlarmStates
Output: result / counterexample

1: if not s0 |= ℐ(q0) then
2: return “Counterexample”, ⟨s0⟩
3: end if
4: worklist← new Queue
5: enqueue(worklist, ⟨s, {q0}⟩)
6: markedTransitions← {}
7: visited← {}
8: while not empty(worklist) do
9: ⟨s, Q′⟩ ← dequeue(worklist)

10: S′ ← getSuccessors(s)
11: for all s′ ∈ S′ do
12: Q′′ ← {}
13: for all q′ ∈ Q′ do
14: possibleTransitions← {(q′, G, q′′) ∈ δ | q′′ ∈ Q, s′ |= G, s′ |= ℐ(q′′)}
15: for all (q′, G, q′′) ∈ possibleTransitions do
16: if q′′ ∈ AcceptState then
17: return “Witness”, ⟨s0, . . . , s′⟩ // cf. Sect. 6.3.3
18: end if
19: if q′′ ∈ AlarmStates then
20: return “Counterexample”, ⟨s0, . . . , s′⟩ // cf. Sect. 6.3.3
21: end if
22: Q′′ ← Q′′ ∪ q′′

23: markedTransitions← markedTransitions∪ {(q′, G, q′′)}
24: end for
25: end for
26: if Q′′ = {} then
27: return “Counterexample”, ⟨s0, . . . , s′⟩ // cf. Sect. 6.3.2
28: end if
29: if ⟨s′, Q′′⟩ ̸∈ visited then
30: enqueue(worklist, ⟨s′, Q′′⟩)
31: visited← visited∪ ⟨s′, Q′′⟩
32: end if
33: end for
34: end while
35: unmarkedTransisitons← δ−markedTransitions // cf. Sect. 6.5.1
36: return “Valid”, unmarkedTransisitons

80 model checking using safety automata specifications

diagrams introduce priorities for transitions, which determine in which order the
transitions are checked. Only one transition can then be active at a time. By
adopting such priorities, the example automaton would be simplified by checking
the error with a higher priority than the other signals.

To implement priorities, we replace the inner loop in line 15 of Alg. 1: InsteadImplementation

of iterating over all possible transitions of one state of the safety automaton, we
only consider the transitions with the highest priority: We set possibleTransitions to
{(q′, G, q′′) ∈ δ | q′′ ∈ Q, s′ |= G} and select (q′, G, q′′) from possibleTransitions with
highest priority. This is the only transition that will be taken into account. If
s′ ̸|= ℐ(q′′) then a counterexample is returned (the highest priority transition vi-
olates the invariant). Observe that priorities and non-determinism are mutually
exclusive for safety automata: Since the presence of priorities implies that only
one transition of the safety automaton is selected in each step, non-determinism
can no longer be expressed1.

6.4 checking plcopen safety function blocks

We implemented a model checker for safety automata and a graphical user inter-
face to build safety automata into Arcade.PLC. In an industrial cooperation, we
then used safety automata to check the PLCopen safety function block (SFB) li-
brary implemented by ABB for the AC500 controller. We were able to verify 10
SFBs from this library using safety automata [23]. The results of this case study
are presented in Tab. 5. The function block names are anonymized so as to pro-
tect implementation details by ABB. For these function blocks, the runtime of the
model checking process was similar to the CTL model checking process: Most SFBs
could be verified in seconds, verifying larger SFBs took minutes. The results fur-
ther show that automata-based specification can be used without additional blow
up of states. The crucial result is that we can now check the complete specifica-
tion for the selected SFBs, since we were able to translate the complete PLCopen
specification into a safety automaton.

For the other function blocks in the library, we were not (practically) able to write
the specification as a safety automaton. The reason for this is that the PLCopenLimitations

specification of some function blocks allows for macro states (states where a cer-
tain condition is indicated by a variable instead of a constant) or complex transition
conditions that are explained in the accompanying documentation. Since safety au-
tomata only allow for simple guards in the transitions and simple invariants in the
states, such complex specifications require a flattening, i. e., an enumeration into
the possible values. For a high number of input variables this results in an explo-
sion in the number of states in the safety automata. Here, it would be necessary to

1 Non-determinism only refers to the non-deterministic transitions in the safety automaton. The PLC
model can of course still reflect non-deterministic behavior.

6.4 checking plcopen safety function blocks 81

Function Block #LOC #States #Transitions Time Memory

1 275 872 111 616 8.97 s 19.6 MB

2 312 665 85 120 8.56 s 19.0 MB

3 292 220 14 080 1.45 s 16.8 MB

4 307 2 074 530 944 50.83 s 28.9 MB

5 283 27 216 0.20 s 15.9 MB

6 229 134 4 288 0.33 s 16.2 MB

7 333 35 176 0.30 s 16.0 MB

8 210 134 4 288 0.27 s 16.2 MB

9 243 49 784 0.60 s 16.0 MB

10 238 49 784 0.70 s 16.0 MB

Table 5: Verification of an ABB PLCopen SFB library using Safety Automata

add hierarchical states as an extension to our user interface. The hierarchical states
could then be flatten into normal states yielding a safety automaton.

We observed that the usage of macro states can also cause confusion or ambigu- Ambiguity of
Macro Statesity. An example of such possibly confusing macro states is shown in Fig. 17, which

depicts an excerpt from the SF_TwoHandControlTypeIII function block [94, p. 78].
Note that the states C001, C002, C003 and C004, C005, C006 have been merged into
macro states (middle and upper right corner). Inputs B1 and B2 refers to the two
buttons this function block is supposed to supervise. The exact meaning of B1

and B2, however, has to be inferred from the accompanying documentation: For
transitions, B1 and B2 indicate that the corresponding button is pressed. By way
of contrast, in states C001 to C003 they refer to the configuration when the block
was activated (i. e., when entering state 8001). Finally, in states C004 and C005 their
meaning change again and indicate that the respective button was not pressed
before the time out.

While we manually flattened this automaton so as to write it as a safety autom-
aton, we noticed further ambiguities apart from the inconsistent usage of B1 and
B2 in the specification: In is unclear whether it is possible to switch in-between
the states in a macro state, e. g., whether it is possible to switch to C003 when en-
tering through C001 (i. e., if one button was pressed when the block was activated
and then the second button is pressed). A similar issue can be observed with the
other macro state. Here, the state C004 should be asserted when button 1 is not
pressed after the timeout in state 8006. When button 1 is pressed in the same
cycle where the timeout occurs, state C006 should be asserted. It remains unclear
whether state C005 should be asserted if button 2 is released in the same cycle or if
state C005 should only reachable from state 8005. While these ambiguities are not
safety-critical, they could be avoided by the formal semantics of safety automata.

82 model checking using safety automata specifications

PLCopen
for efficiency in automation

TC5 - Safety Version 1.0 – Official Release © PLCopen – 2003 - 2006
Part 1 – Concepts and Function Blocks Jan. 31, 2006 Page 78/149

FB also controls the release of both buttons before setting the output S_TwoHandOut again to TRUE.

State Diagram

Idle
0000

Buttons
Releas ed

8004

Button 1
Actuated

8005

N
O

T
(B

1
O

R
 B

2)

B1NOT (B1 OR B2)

 B
1

A
ND

 B
2

 A
ND

Ti
m

er
 <5

00
m

s

 Tim er elaps ed
(>500m s)

NOT (B1 OR B2)

Ready = FALSE

Ready = TRUE

S_TwoHandOut = FALSE

S_TwoHandOut= TRUE

Init
8001

 Activate

NOT (B1 OR B2)

Error 1
C001 B1
C002 B2

C003 B1&B2

B1 OR B2

12

4

2

1

 B
1

A
N

D
 B2

12

0

NOT Activate

Buttons
Actuated

8000

3

1

Locked Off
8009

NOT (B1 OR B2)

Button 1
Releas ed

8008

Button 2
Releas ed

8007

2

 B
1

A
ND

 N
O

T
B2

 N
O

T
B1

 A
ND

 B
2

 B1 AND B2

 B
1

A
N

D
 B2

1

1

2

2

1 2

 B
1

A
N

D
 N

O
T

B
2

 N
OT B1 AND B2

3

 B1 AND NOT B2

 NOT B1 AND B2
3

3

NOT (B1 OR B2)

N
O

T
(B

1
O

R
 B

2)

B1 = S_Button1
B2 = S_Button2

Error 2
C004 B1
C005 B2

C006 B1&B2

NOT (B1 OR B2)

1

1

1

Locked On
8019

1

3

NOT (B1 OR B2)

Button 2
Actuated

8006

3
B2

NOT (B1 OR B2)

2

NOT B1
AND B2

1 Tim er elaps ed
(>500m s)

3

B1 AND
NOT B2

4

 B
1

AND B2
AND

Tim
er

 <5
00

m
s

Note: The transition from any state to the Idle state due to Activate = FALSE is not shown. However these transitions have the
highest priority (0).

Figure 36: State diagram for SF_TwoHandControlTypeIII

Figure 17: Excerpt from the SF_TwoHandControlTypeIII SFB taken from [94].

6.5 detecting over-specifications

An over-specification is a (part of a) specification that is trivially fulfilled because
its evaluation does not influence the final result. If, e. g., we require that B always
happens after A, this requirement is fulfilled for a program that never exhibits A.
In this case, we over-specified the program behavior and could prove the stronger
requirement “A does never happen” without speaking about B. The key point here
is that although the specification is fulfilled, it seems that either the program is not
performing a crucial step (for which the specification is explicitly checking for) or
that the author of the specification made a mistake.2

A very interesting application of safety automata arises from the fact that they
offer a very natural way to detect such over-specifications.

6.5.1 Detecting Over-Specifications in Safety Automata

When we check an automaton-based specification, we can additionally check that
each transition of the automaton has been taken at least once. This is performed
by keeping track of which transitions have been taken while checking a safety
automaton. We added this extension in line 22 in Alg. 1. Note that this extension
will also detect whether there are unvisited states.

2 Of course, the specification could also intentionally be over-specified, so as to apply the same formula
to a set of function blocks from a library that share similar behavior. This, however, is not a typical
application.

6.5 detecting over-specifications 83

PLCopen
for efficiency in automation

TC5 - Safety Version 1.0 – Official Release © PLCopen – 2003 - 2006
Part 1 – Concepts and Function Blocks Jan. 31, 2006 Page 31/149

the discrepancy time has elapsed.
The inputs must be switched symmetrically. This means that monitoring is performed for both the switching on process as well
as the switching off process.

 State Diagram

Idle
0000

Wait for NO
8004

From Active
Wait
8005

Init
8001

Safety
Output
Enabled

8000

Error 3
C003

0

2

1

2

NOT Activ ate

Ready = FALSE

Ready = TRUE

S_AntivalentOut = FALSE

S_AntivalentOut = TRUE

Activate

S_ChannelNC
AND
S_ChannelNO

Discrepancy Time Elapsed

1

1
1

3

NOT S_ChannelNC

NOT S_ChannelNO

3

S_ChannelNC AND
NOT S_ChannelNO

2 NOT S_ChannelNC
OR S_ChannelNO

NOT S_ChannelNC
AND S_ChannelNO

Error 1
C001

Error 2
C002

NOT S_ChannelNC
AND S_ChannelNO

Discrepancy
Time Elapsed

NOT S_ChannelNC
AND S_ChannelNO

Wait for NC
8014

NOT S_ChannelNO
AND NOT
S_ChannelNC

2

S_ChannelNO

S_ChannelNC

3
1

Discrepancy
Time Elapsed

2

NOT S_ChannelNC
AND S_ChannelNO

1

1

1

Note: The transition from any state to the Idle state due to Activate = FALSE is not shown. However these transitions have the

highest priority (0).

Figure 9: State diagram for SF_Antivalent

Figure 18: Erroneous specification for the SF_Antivalent SFB taken from [94].

The model checker for safety automata that we implemented in Arcade.PLC can
hence report three different outcomes: (a) specification is valid, (b) specification is
invalid, (c) specification is valid but over-specified. In case (b), a counterexample
can be generated as seen in Sect. 6.3.2, similar to checking a CTL specification. In
case (c), we can now present the unused transitions to the user. The user then
has to decide whether these unused transitions are intentional, an error in the
specification, or an error in the program.

6.5.2 Detection of a Faulty Specification

We enabled the technique to detect unused transitions in safety automata dur-
ing model checking. We then rerun the case study from Sect. 6.4. Interestingly,
it turned out that the safety automaton for the SF_Antivalent does include an Over-

Specification in
SF_Antivalent

over-specification. The automaton used by PLCopen is depicted in Fig. 18. This
automaton can be directly interpreted as a safety automaton. After model check-
ing this automaton against a manual implementation of the SF_Antivalent block,
we got a warning that the transition from state 8000 (bottom) to state 8001 with
priority 2 labeled NOT S_ChannelNC AND S_ChannelNO was never taken. The error
here is that the priorities of both transitions are swapped. Hence, if S_ChannelNC

84 model checking using safety automata specifications

is true and S_ChannelNO is false, the automaton assumes state 8005 and then state
8001, instead of going to state 8001 directly. This is not a safety problem per se but
certainly an oversight.

Note that our SF_Antivalent implementation exactly follows the specification.
Hence this error would not have been revealed using, e. g., CTL logic. Using the
safety automaton, however, we can detect this error in the specification. Note
further, that this is an error in the specification, and could thus be detected by
analyzing solely this specification (without looking at the implementation). In a
more general setting, however, our technique allows for finding over-specifications
that are only revealed by looking at the program as well as the specification.

6.6 concluding discussion & future work

In this chapter we introduced safety automata and showed how PLC function
blocks can be verified using this formalism. We introduced an algorithm for the
verification that allows for extensions such as alarm and accept states. It is addi-
tionally able to detect over-specifications. The techniques presented can readily
transferred to the verification of whole PLC programs.

6.6.1 Automata Compared to CTL

Safety automata were inspired by state diagrams used to specify PLCopen func-
tion blocks. They hence follow an established industry standard and are much
easier to write and understand than comparable CTL formulae, although not all
CTL properties can be expressed as safety automata. A key difference in speci-
fying properties using safety automata compared to CTL is that safety automata
can readily capture the full specification of a function block or a program. On the
one hand, this simplifies the verification process, since only one (complete) spec-
ification has to be written. On the other hand, the core safety function (such as
an output must not be set if a certain input is set) is no longer explicitly visible. In
this case, we believe that it is advisable to formalize these safety function explicitly,
either as automata or as CTL expressions.

Moreover, the possibility to detect over-specifications is a huge advantage when
using safety automata. By enabling this warning, we were able to detect a wrong
specification in a industry standard.

6.6.2 Future Work

A valuable extension to the safety automata described in this chapter is the possibil-
ity to express hierarchical states. In practice, such hierarchical states are necessary
to model certain PLCopen state diagrams efficiently. To check hierarchical safety

6.6 concluding discussion & future work 85

automata, either the model checker algorithm has to be extended or the hierarchies
in these automata are flattened before applying the current algorithm.

Additionally, hierarchical states should have a possibility to formulate invariants
in a variable way. To illustrate, the hierarchical stats shown in Fig. 17 on p. 82
(e. g., the state in the top right corner) have individual invariants on the variable
DiagCode depending on which state was active before. To model all PLCopen
function blocks in a succinct form, such as feature is necessary.

7
FA U LT L O C A L I Z AT I O N I N C O U N T E R E X A M P L E S

When a model checker disproves an all-quantified formula, it provides a counter-
example. Similarly, a witness can be provided for an existentially-quantified for-
mula it can validate. In the context of PLCs, counterexamples provide the precise
inputs necessary to reach a certain state of the program, usually after several cycles.
An example of such a counterexample is given in Fig. 20 on p. 89. Often, a faulty
state is non-trivial to reach, and thus counterexamples are regarded as “invaluable
in debugging complex systems.” [39]

Yet, even when a counterexample is given, the actual reason why a certain state is Locating the Bug

reachable might still be unclear. This is especially true when dealing with counter-
examples instead of witnesses, i. e., the program is erroneous but it is unknown as
to where exactly. Since the counterexample only refutes a given formula, it usually
only captures the symptom of a bug, which can be hiding everywhere in the pro-
gram. This situation is aggravated when the faulty code is executed many cycles
before the erroneous behavior is detected. This can happen, e. g., when local vari-
ables are assigned wrong values: If these variables influence the visible program
behavior only in later PLC cycles, the erroneous assignment is hard to track down.

7.1 approach

In this chapter, we will explore several techniques that try to automatically high-
light possibly causes of a counterexample. These techniques are, in their core,
heuristic approaches that might not always succeed. Especially when a bug is
caused by missing or unimplemented code, it is hard to locate the exact point
where this has happened. As we will show in this chapter, however, in many typ-
ical cases the techniques can pinpoint the problem down to a small number of
possible error candidates, sometimes even to the exact error location. Additionally,
these techniques can provide possible fixes that make the program correct.

The key idea of these approaches is that each line of the program can be exe-
cuted in different contexts, i. e., each line can be part of different program execution
traces. Some of these traces end in an error state, i. e., they are a counterexample
for a specification. Other traces, however, do not exhibit erroneous behavior. One Trace

Comparisonway to select possible error candidates is to compare good traces against bad traces.

87

88 fault localization in counterexamples

1 FUNCTION_BLOCK Antivalent

2 VAR_INPUT Activate, NC, NO: BOOL; END_VAR

3 VAR_OUTPUT Ready, Out: BOOL; END_VAR

4 VAR DiagCode: WORD; END_VAR

5
6 IF NOT Activate THEN

7 DiagCode := 16#0000;

8 ELSE

9 CASE DiagCode OF

10 16#0000:

11 IF Activate THEN

12 DiagCode := 16#8001;

13 END_IF;

14 16#8001:

15 IF NC AND NO THEN

16 DiagCode := 16#8004;

17 ELSIF NOT NC AND NOT NO THEN

18 DiagCode := 16#8014;

19 ELSIF NC AND NOT NO THEN

20 DiagCode := 16#8000;

21 END_IF;

22 16#8004:

23 IF NOT NC THEN

24 DiagCode := 16#8001;

25 ELSIF NOT NO THEN

26 DiagCode := 16#8000;

27 ELSE

28 DiagCode := 16#C001;

29 END_IF;

30 16#C001,

31 16#C002:

32 IF NOT NC AND NO THEN

33 DiagCode := 16#8000;

34 END_IF;

35 16#8014:

36 IF NO THEN

37 DiagCode := 16#8001;

38 ELSIF NC THEN

39 DiagCode := 16#8000;

40 ELSE

41 DiagCode := 16#C002;

42 END_IF;

43 16#C003:

44 IF NOT NC AND NO THEN

45 DiagCode := 16#8001;

46 END_IF;

47 16#8005:

48 IF NOT NC AND NO THEN

49 DiagCode := 16#8001;

50 ELSE

51 DiagCode := 16#C003;

52 END_IF;

53 16#8000:

54 IF NOT NC AND NO THEN

55 DiagCode := 16#8001;

56 ELSIF NOT NC OR NO THEN

57 DiagCode := 16#8005;

58 END_IF;

59 END_CASE;

60 END_IF;

61 CASE DiagCode OF

62 16#0000:

63 Ready := FALSE; Out:= FALSE;

64 16#8000:

65 Ready := TRUE; Out := TRUE;

66 ELSE:

67 Ready := TRUE; Out:= FALSE;

68 END_CASE;

Figure 19: A faulty Antivalent implementation

We present this technique in Sect. 7.3. Alternatively, we can automatically check
whether the execution of a certain program line is a necessary or sufficient condi-
tion to violate the specification. We perform this step by augmenting the specifi-Candidate

Exclusion cation with propositions about the executed lines. This technique is presented in
Sect. 7.4.

7.2 motivating example

We motivate our approach with the example program shown in Fig. 19. This
program implements an Antivalent block (cp. Sect. 6.5.2 and Sect. 8.6.3), i. e., a
monitor that the safety signal NC (normally closed) is true and NO (normally open)

7.2 motivating example 89

State: 1

Activate=FALSE, NO=FALSE, NC=FALSE, Out=FALSE

State: 2

Activate=TRUE, NO=FALSE, NC=FALSE, Out=FALSE

State: 3

Activate=TRUE, NO=FALSE, NC=FALSE, Out=FALSE

State: 4

Activate=TRUE, NO=FALSE, NC=FALSE, Out=FALSE

State: 5

Activate=TRUE, NO=TRUE, NC=FALSE, Out=TRUE

Activate=TRUE, NC=FALSE, NO=FALSE

Activate=TRUE, NC=FALSE, NO=FALSE

Activate=TRUE, NC=FALSE, NO=FALSE

Activate=TRUE, NC=FALSE, NO=TRUE

Figure 20: Counterexample for the program in Fig. 19 refuting formula (2) as gen-
erated by Arcade.PLC

is false, and sets Out only if this is the case. Typically, such blocks also have a
timer to monitor a discrepancy time, where the signals of the safety inputs are not
yet stable. For exposition, we omitted this functionality here. Similarly, we also
stripped an error output, which would signal that the inputs are not consistent.

The key safety property of this block written in CTL is:

AG φ (1)

where

φ := (¬Activate∨ NO∨ ¬NC) =⇒ ¬Out (2)

We can check the property (1) using the techniques detailed in Chap. 4. Since there
is a slight mistake in the state machine implementation in Fig. 19, this specification
is violated and the model checker generates a counterexample. A counterexample
for the specification that was generated using Arcade.PLC is depicted in Fig. 20.
Observe that the counterexample is non-trivial: Although this is the shortest trace
that violates the specification1, four invocations of the function block were nec-
essary. The programmer now would have to inspect the counterexample trace
carefully to locate the actual error. Note that although the counterexample pro-
vides all the necessary information, it is still not obvious where the error is in the
program. This situation gets worse when we consider a real (larger) Antivalent
block instead of the stripped-down example shown here.

1 Proof omitted, but easy to see once we reveal the cause of the bug.

90 fault localization in counterexamples

To find the error location, one might be tempted to evaluate (2) for each program
location instead of the observable behavior of the function block at the end of the
cycle. This, however, would only indicate that the violation occurs in line 65, which
obviously is not the erroneous program line. To manually find the error, one now
has to backtrack how line 65 can be reached (leaving error candidates in lines 20,
26, 33, 39 and 45). Careful inspection of the counterexample would then reveal that
line 33 is actually the culprit: DiagCode should have be set to 16#8001 there. In the
next section, we describe how this fault location can be detected automatically.

7.3 trace comparison

The key idea of trace comparison technique described in this section is to sam-
ple good (i. e., non-violating) runs and then compare them syntactically against
a counterexample. As we will show, this technique is often very effective and can
sometimes even provide corrections for a program. In Sect. 7.3.2, we will start by
first looking at the last cycle only. Then, we will extend the technique to full traces
so as to detect faulty code executed in earlier cycles in Sect. 7.3.3.

7.3.1 Preliminaries

We first recall the definition of a trace:

Definition 7.1: A trace π = ⟨s0, . . . , sn⟩ is a sequence of program states si. EachTrace

state represents the PLC at the end of one cycle (cp. Sect. 2.3). We write |π| = n
for the length of the trace.

Each transition between a state si and si+1 represents thus one cycle, i. e., one
invocation of the program. While executing the program, intermediate states are
generated. Since I/O is only performed at the beginning/end of the cycle, these
intermediate states are non-observable. Hence, the intermediate states are not part
of the state space. They are, however, useful in detecting an error location, since
an error occurs at one of the intermediate steps of the program.

Definition 7.2: Let π = ⟨s0, . . . , sn⟩ be a trace. An intermediate trace between stateIntermediate
Trace si and si+1 is a sequence τsi→si+1 = ⟨ι0, . . . , ιm⟩ of intermediate instructions ιj that

were executed in that cycle. Each intermediate instruction ιj can represent, e. g.,
an instruction of our IR, a line of ST code, an IL instruction, etc. For i < j we
generalize this notation and write τsi→sj for the concatenation of the intermediate
traces τsi→si+1 , τsi+1→si+2 , . . . , τsj−1→sj . Further, let τπ := τs0→sn .

7.3 trace comparison 91

7.3.2 Analysis of the Last Cycle

Let πc = ⟨s0, . . . , sn−1, sn⟩ be a counterexample trace for a safety property φ, i. e.,
φ |= si for 1 ≤ i ≤ n − 1 but φ ̸|= sn. An example for such a trace is shown in
Fig. 20: States 1–4 fulfill (2) whereas state 5 violates the formula.

In this section, we first consider the case that the error occurs in the same cycle
where it is detected, i. e., in the transition from state 4 to state 5. We are now
interested in similar traces that do fulfill the formula. Since we assume in this
section that the fault occurred in the last transition, we look at neighbors that only
deviate in the last step:

Definition 7.3: Let π = ⟨s0, . . . , sn−1, sn⟩ be a trace. A direct neighbor trace of π is a Direct Neighbor
Tracetrace π′ =

〈
s′0, . . . , s′n−1, s′n

〉
with si = s′i for 0 ≤ i ≤ n− 1, i. e., π and π′ deviate at

most in the last state.

We define the set G = {π | π is direct neighbor trace of πc and π |= φ} as the
good neighbors of a counterexample πc. We can easily construct G by inspecting
the direct neighbor traces in the state space or by regenerating the successors at
the second to last state (cp. Sect. 2.5.1). To select the closest neighbor πc from the
good neighbors in G, we need to introduce some kind of metric between traces.
This metric will be defined over the intermediate traces. Here, we choose the
Levenshtein distance [81], which is a metric for measuring the difference between
two sequences:

Definition 7.4: Let S1 ∈ Σn and S2 ∈ Σm be sequences over a common alphabet Levenshtein
DistanceΣ, with n, m their respective lengths and Sx[y] being the yth character of Sx. The

Levenshtein distance lev(S1, S2) between S1 and S2 is then inductively defined as
lev(S1, S2, n, m) with:

lev(S1, S2, i, j) :=

max {i, j} if min {i, j} = 0

min

ins(S1, S2, i, j)
del(S1, S2, i, j)
subst(S1, S2, i, j)

 otherwise

where

ins(S1, S2, i, j) := lev(S1, S2, i, j− 1) + 1

del(S1, S2, i, j) := lev(S1, S2, i− 1, j) + 1

subst(S1, S2, i, j) :=
{

lev(S1, S2, i− 1, j− 1) if S1[i] = S2[j]
lev(S1, S2, i− 1, j− 1) + 1 if S1[i] ̸= S2[j]

The Levenshtein distance can be interpreted as the minimum number of char-
acter insertions, deletions or substitutions that are necessary to transform one se-
quence into the other. It can efficiently be calculated using a dynamic program-
ming algorithm whose runtime is in 𝒪(mn) as shown by [120]. Additionally to
the Levenshtein distance, this algorithm also returns the concrete operations (i. e.,
substitutions, insertions, deletions) necessary to transform the sequences.

92 fault localization in counterexamples

The distance between intermediate traces τ0, τ1 can now be interpreted as theDistance between
Intermediate

Traces
Levenshtein distance of the syntactic comparison of the intermediate instructions:

dist(τ0, τ1) := lev(τ0, τ1) (3)

This approach is similar to [76]. Note that distance does not take any semantic
similarities of instructions or the context into account, but works purely on the syn-
tactic comparison. Hence, our distance is consistent under certain abstractions that
do not merge different program paths. This dovetails nicely with the abstraction
refinement we describe in Sect. 4.4.1, which motivates the following:

Proposition 7.1: It is sufficient to look at the abstracted 1-neighbor traces accordingAbstract Traces

to the abstractions described in Sect. 4.4.1.

Proof. We compare the instructions of an intermediate trace. Each path through
the program will lie in the same equivalence class according to this metric, inde-
pendent of the values of the variables. The techniques described in Sect. 4.4.1 will
refine values of variables until they describe a single path through the program.
Hence, each abstract trace still represents a single path through the program.

We can now apply this approach to the example program. Since the programBack to the
Example has three inputs, the counterexample trace has 23 = 8 direct neighbors. Looking

at state 4, we see that there are three equivalence classes of intermediate traces (by
syntactically comparing the executed lines):

1. Activate=TRUE and NC=FALSE and NO=TRUE: This corresponds to the single
counterexample trace shown in Fig. 20.

2. Activate=FALSE: In this case, the values of NC and NO do not matter, so we
have 4 traces.

3. Activate=TRUE and (NC=TRUE or NO=FALSE): 3 traces.

All good neighbors of the counterexample are in classes 2 and 3, since the specifica-
tion is valid there. It is easy to see that the distance between class 1 and class 3 is 1:
The only difference is line 33. The distance between class 1 and class 2 is certainly
higher. Hence, we conclude that problem might lie in the difference between class
1 and 3, which is line 33. It is indeed the case that this line is the faulty one.

The Levenshtein distance also allows us to extract a possible fix for this problem,
which is “delete line 33”. Interestingly, this yields a program that satisfies (2) and
does not just block this single counterexample. Yet, this modified program cer-A Faulty

Correction tainly does not reflect the programmers intent here and would fail to satisfy other
specifications. To summarize, we learn two lessons from this example. Firstly, the
purely syntactic suggestions for possible corrections drawn from the Levenshtein
distance are sometimes good enough to fulfill a specification. Secondly, although
a program fulfills a specification, it can be far away from the desired program. The

7.3 trace comparison 93

crucial part here is that the modified program is, from the perspective of the speci-
fication, as good as it can get, so we will likely have to rely on heuristic techniques
here that require user feedback.

We will now first generalize the approach and then present a case study, which
will helps us to assess accuracy of this technique.

7.3.3 Analysis of a Trace

Sometimes, looking at the direct neighbors is not sufficient. It could be, e. g., that
the good neighborhood G is empty because all direct neighbors violate the specifi-
cation. In general, the effect of faulty instruction could only be observable several
cycles later. For such cases, we thus want compare intermediate traces from earlier
cycles. We thus have to generalize the distance: For traces π0 and π1 (w. l. o. g.: Distance between

Traces|π0| ≤ |π1|) we define the distance as the sum over the pair-wise intermediate
traces:

dist(π0, π1) :=
|π0|−1

∑
i=0

dist(τi
0, τi

1) +
|π1|−1

∑
i=|π0|

|τ1| , (4)

where τi
j is the ith intermediate trace of πj.

Alternatively, one could define this distance as the distance between the com-
plete intermediate traces τπ0 and τπ1 . We use the cycle-wise definition here because
it will simplify considerations about possible corrections of a fault in Sect. 7.3.4.
For long counterexamples this is also faster because computing the Levenshtein
distance scales quadratic in the number of states. Since the Levenshtein distance is
a metric where the triangle inequality holds, our definition yields slightly higher
distances than comparing the complete intermediate trace.

We are now looking for the nearest satisfying neighbor trace of πc, i. e., a trace
π with π |= φ and dist(π, πc) minimal. To iteratively search for such a neighbor,
we first introduce the n-distance: Let π1 = ⟨s0, . . . , sm1⟩, π2 =

〈
s′0, . . . , s′m2

〉
be traces n-distance

and n ≤ min(m1, m2). The n-distance is the distance of the prefix of length n of π1

and π1, i. e.:

n-dist(π1, π2) := dist(⟨s0, . . . , sn⟩ ,
〈
s′0, . . . , s′n

〉
) (5)

Using this function, algorithm 2 searches for the closest neighbor, starting at s0.
This algorithm makes use of a priority queue Q, which stores all traces according
to their n-distance to πc. In each iteration, all new traces obtained by extending
the last state of the closest neighbor are added to the queue. If a trace with length
|πc| is found that fulfills φ, it is by definition the closest non-violating trace.

7.3.4 Correction Candidates

A side-effect of using the Levenshtein distance is that we also get possible cor-
rections for faulty traces. A correct can either be an insertion, a replacement or

94 fault localization in counterexamples

Algorithm 2 Find nearest non-violating trace [21]
Input: Formula φ

Input: Counterexample πc = ⟨s0, . . . , sn⟩ for φ

Output: Nearest non-violating trace π

1: Q ← new PriorityQueque
2: assert s0 |= φ

3: enqueue(Q, (⟨s0⟩ , 0))
4: while not isEmpty(Q) do
5: (curTrace, minDist) ← dequeue(Q)

6: if |curTrace| = |πc| then
7: // same length as πc and satisfies φ

8: return curTrace
9: end if

10: curState← last state of curTrace
11: successors← createCycleSuccessors(curState)
12: for all newState in successors do
13: newTrace← concat(curTrace, newState)
14: if newTrace |= φ then
15: // only follow traces that satisfy φ

16: n← |newTrace|
17: dist← n-dist(πc, newTrace)
18: enqueue(Q, (newTrace, dist))
19: end if
20: end for
21: end while
22: return “no trace found”

a deletion of an instruction. These corrections are based purely on syntactic dif-
ferences, i. e., they do not take into account whether a correction makes sense
semantically or even if it is a legal construct. We can, however, rerun the model
checking process and thus automatically check whether a correction actually fixes
the problem (or at least yields a legal program that satisfies the specification).

If the model checking run then succeeds, we can be reasonably sure to have
found the actual problem in the program. This correction can, however, still be
unsuitable for allowing the program to fit the programmers intention. As we have
seen in the example program, e. g., the correction can be a deletion of a wrong
statement, which then allows the program to fulfill the specification, but still with
a lack of the required functionality.

7.3 trace comparison 95

Program Sev. Change Loc |πc| |C| #Hit Time

EnableSwitch Simple Ass. 120 15 5 1 < 0.1 s
EnableSwitch Medium Ass. 120 80 4 1 0.5 s
EnableSwitch Simple Add. 121 81 4 0 < 0.1 s
EmergencyStop Medium Ass. 115 67 3 1 0.1 s
EmergencyStop Simple Branch. 115 13 6 1 < 0.1 s
EmergencyStop Complex Miss. 111 16 9 0 < 0.1 s
SafetyRequest Complex Miss. & Ass. 140 193 6 2 0.5 s
ModeSelector Simple Ass. 155 26 5 1 0.1 s
GuardMonitoring Complex Add. 110 17 3 2 < 0.1 s

Table 6: Case Study of the Trace Comparison technique [21]

7.3.5 Case Study

To judge the effectiveness of the trace comparison technique, we perform a case
study based on the PLCopen safety function blocks [94], where we manually in-
duced some errors. For each block, we selected some CTL property. Then, we
altered the code of each block to force a violation of these properties. We consid-
ered the errors (1) assignment of a wrong value, (2) wrong branch condition, (3)
missing code, and (4) extra (erroneous) code. Bugs can also comprise multiple
lines with multiple bug types.

We classify the bugs according to their severeness: Simple bugs incorporate a
change of a single line or assignment, e. g., the assignment var := TRUE becomes
var := FALSE. Further, we consider simple bugs to have a direct impact on the
violation of the property, i. e., the execution of the faulty line will cause the vio-
lation in the same cycle. Medium bugs may involve one to several lines of code
and indirectly influence the violation of the property. Bugs involving multiple
lines, strongly altering the program behavior, are defined as complex bugs. The
case studies were performed on a MacBook Pro (Mid 2010) with an Intel Core
i5 (2.53 GHz) and 8 GiB RAM. The results of the trace comparison approach are
shown in Tab. 6. This table includes:

∙ Severeness of the bug (Sev.)

∙ Involved bug types (Change)

∙ Number of program lines (Loc)

∙ Length of extended counterexample (|πc|)

∙ Number of error proposals (|C|)

∙ Number of correctly found errors (#Hit)

96 fault localization in counterexamples

∙ Runtime (Time)

Altered or extra lines are counted as Hit, if they are marked as an error. For
missing code and wrong branch conditions, we define a range to decide whether a
missing line is correctly identified as an error. If the missing line is marked with
an offset of at most 2 instructions in the execution order, we consider the bug to be
found. For wrong branch conditions, typically only one branch initiates the error.
Thus, we consider the bug to be found if every instruction in the erroneous branch
is marked. This trade-off is necessary, since there may exist program traces that
execute the branch condition without violating the formula.

7.3.6 Discussion

The proposed error candidates significantly reduce the effort to locate the bugs in
the program. Even in case of an inaccurate candidate, it still provides a good start-
ing point for locating the bug manually. Only in two instances the proposed error
candidates were not useful. In one case, this was caused by missing code, which,
in principle, is harder to detect than wrong code. Offering results in far less than a
second in most cases, our technique requires low effort and is directly applicable
as a starting point for debugging. The results of checking the SafetyRequest func-
tion block outline the efficient simplification of the search space. In this case, the
extended counterexample yields 193 locations, which makes manual examination
infeasible. Our technique reduces the vast search space to six lines containing two
errors.

The quality of error correction proposals, however, depends highly on the non-
violating trace that is used to compare to the counterexample trace. An ideal
non-violating trace, e. g., would differ in its execution only by the erroneous in-
structions. Many specifications we checked in our case study were of the form
φ ⇒ ψ. A counterexample will thus fulfill φ while violating ψ. A non-violating
trace can, however, fulfill the formula by violating φ. Though syntactically similar,
the resulting trace might greatly differ in its semantics. Corrections proposed by
the Levenshtein distance might thus be misleading. In literature, this is referred to
as the multiple nearest witnesses problem [76]. We alleviate this problem by offering
the programmer the possibility to manually skip traces that do not yield sufficient
explanation. Alternative non-violating traces produced this way may offer more
error candidates, while giving a better explanation of the error.

As we have seen in the case study, the trace comparison technique works fast if
we can enumerate the paths using the techniques described in Chap. 4. If, however,
the programs are more complex and it is no longer possible to efficiently inspect all
paths, a different approach is needed. In the next section we will describe another
approach that is purely based on repeated model checker calls, and hence, can
readily be applied to other abstraction techniques such as the predicate abstraction
described in Chap. 5.

7.4 candidate exclusion 97

7.4 candidate exclusion

In this section, we describe a different heuristic to locate faulty statements in
counterexamples. The key idea of this technique is to test whether the execu-
tion of certain lines is a necessary or a sufficient condition for the violation to occur.
We can do this by augmenting the original specification, adding a clause that tests
whether a certain line number was executed. We therefore introduce the atomic
proposition ℒcycle(ℓ) to denote that line ℓ was executed in the last cycle to our spec-
ification mechanism2. The model checker can then be used to test, e. g., whether
certain lines are always part of a counterexample. As in the last section, we assume
that φ is an invariant and πc a counterexample for φ with intermediate trace τπc .

If we want to test whether the execution of a line ℓ is a sufficient condition to Sufficient
Conditioninduce a violation of φ, we can check the following formula:

Reachsuf(φ, ℓ) := AG (ℒcycle(ℓ) =⇒ ¬φ). (6)

A counterexample of Reachsuf(φ, ℓ) indicates that the line ℓ can be executed with-
out violating φ in the same cycle, i. e., ℓ is not sufficient. We can also ask whether Necessary

Conditionthe execution of ℓ is necessary for the violation:

Reachnec(φ, ℓ) := AG (¬φ =⇒ ℒcycle(ℓ)). (7)

If this formula is violated, we obtain a counterexample that hits other lines than ℓ

and eventually also violates φ. Formulae (6) and (7) can now be used to iteratively
test each line of a counterexample:

Definition 7.5: Let L be the set of line numbers of the program. The necessary error Sufficient and
Necessary Error
Candidates

candidates set Candnec(φ) and sufficient error candidates set Candsuf(φ) for a property
φ are defined as:

Candnec(φ) := {ℓ ∈ L | Reachnec(φ, ℓ) is true} (8)

Candsuf(φ) := {ℓ ∈ L | Reachsuf(φ, ℓ) is true} (9)

We can now apply this technique to our worked example, with φ defined as Worked Example

in (2). We obtain that Candsuf(φ) = {33} (since all other lines can also be executed
in good contexts). This is exactly the faulty line and hence a more precise result
compared to the trace comparison technique. For the necessary error candidates,
we obtain Candnec(φ) = {6, 9, 32, 33, 61, 65}. We can thus conclude that the exe-
cution of line 33 is necessary and sufficient to cause the error, which is a strong
result.

We will now extend this conceptually simple technique in different directions to
be more powerful in practice.

2 The labeling of the states with such atomic propositions is performed without overhead while build-
ing the state space.

98 fault localization in counterexamples

7.4.1 Testing Multiple Lines at Once

First, we want to speed up the process of calculating Reachsuf(φ) by testing multi-
ple lines at once. If L0 is a set of lines, we can check whether each of the lines in
L0 is sufficient to induce a counterexample by checking Reachsuf(φ, L0), where:

Reachsuf(φ, L) := AG (
∨
ℓ∈L

ℒcycle(ℓ) =⇒ ¬φ) (10)

If this formula is violated, we obtain counterexample π. Assume that Lπ is the
set of lines covered in the last cycle of π. We now know that all lines in Lπ are
not sufficient to induce an error. We set L1 := L0 − Lπ and repeat this process,
checking Reachsuf(φ, L1). This process will eventually converge to a set L′: In each
step we remove a line, otherwise the formula Reachsuf(φ, L) becomes true. Note
that the formula is trivially true for an empty set. Similarly, we can test whether
multiple lines are necessary using

Reachnec(φ, L) := AG (¬φ =⇒
∧
ℓ∈L

ℒcycle(ℓ)) (11)

and an analogue process.

7.4.2 Testing Multiple Cycles

Thus far, we used the proposition ℓ ∈ ℒcycle to test whether a line was executed
in the last cycle before the formula was violated. Similar to the trace comparison,
a canonical question now is relating to how we can extend this technique to lines
that were executed in the past.

We can generalize the necessary condition and test for lines that are necessary
to execute to induce an error. To do so, we check the opposite condition: Is there a
path that violates φ without executing a line ℓ:

Reach*nec(φ, ℓ) := ¬E (¬ℒcycle(ℓ) U ¬φ). (12)

We define Cand*nec(φ) analogue to Def. 7.5 using this advanced criterion.
Similarly, we can try to generalize Reachsuf(φ, ℓ) to check whether the execution

of ℓ will always end eventually in an error state:

Reach*suf(φ, ℓ) := AG (ℓ ∈ ℒcycle =⇒ AF ¬φ). (13)

This formula, however, has not been proven useful in practice: Since a counter-
example usually depends on (non-deterministic) inputs, not all continuations after
a faulty line was executed will eventually end in an error state: Some successor
states will, e. g., just loop, waiting for new inputs. This is sufficient to invalidate
(13). Weakening the second part of this formula to EF ¬φ also does not help: DueResettable

Programs to their reactive nature, typical PLC programs and function blocks are resettable.

7.4 candidate exclusion 99

1 IF cond1 THEN

2 (* Block 1 *)

3 ...

4 ELSE

5 (* Block 2 *)

6 ...

7 END_IF;

8 IF cond2 THEN

9 (* Block 3 *)

10 ...

11 ELSE

12 (* Block 4 *)

13 ...

14 END_IF;

Figure 21: Example

That means that it is always possible to reset the program to the initial state, by,
e. g., setting some Reset, Activate or EN input. It is hence always possible to (a)
execute each line of the program, then (b) reset the program (c) reach the error
state. Thus, each line of the program would be a sufficient error candidate un-
der this condition. We will, therefore, conclude that all sufficient error candidates
occur in the last cycle before the violation and so only test necessary lines using
Reach*nec(φ, ℓ).

7.4.3 Coincidental Correctness & Preconditions

Sometimes, a bug is not caused by a single faulty statement but by multiple
(wrongly interacting) statements. In this case, locating the exact necessary and
sufficient error lines can be more convoluted. To exemplify, Fig. 21 shows a pro-
gram excerpt with four basic blocks. Each cycle, condition cond1 switches between
block 1 and block 2 and condition cond2 switches between block 3 and block 4. We
assume that a bug only manifests itself if an instruction from block 1 and an in-
struction from block 3 is executed. In this case, neither instructing is sufficient to
trigger the bug, because we can execute block 1 and then block 4, or block 2 and
then block 3. Such behavior is called coincidental correctness [6]. What happens in Coincidental

Correctnessthis case is that Candsuf(φ) is an empty set.
A way to handle such cases is to allow conjunctions of executed lines as sufficient

error candidates. Note, however, that trying all possible conjunctions of lines is
computationally expensive, even when restricting this to the candidates already
found necessary.

Therefore, we use a different approach: We alter the definition of sufficient error
candidates to take into account preconditions. The key idea here combines two Preconditions

insights: (a) The last intermediate trace of a counterexample contains the sufficient

100 fault localization in counterexamples

error candidates and (b) which instructions are executed in the last trace is—due
to the cyclic scanning mode—completely determined by a precondition, i. e., the
values of input variables and the local variables of the program at the beginning
of the cycle.

To exemplify, consider the last transition of the counterexample shown in Fig. 20.
Its precondition is composed of two factors: Firstly, the program has to be in
state ψc

M := Diagcode = 16#C002 (this corresponds to the penultimate state of the
counterexample). Then, the precondition ψc

I := Activate∧ ¬NC∧ NO on the inputs
entails that the last (violating) state is reached. Observe that ψc := ψc

I ∧ ψc
I entails

the violation: ψc implies that all lines are error candidates, since their execution
will inevitable yield to an error. The key idea now is that we can weaken the
precondition to exclude as many lines as possible as potential error candidates. If
the precondition is as weak as possible, but there are still error candidates left, it
is likely that the error is caused by these candidates.

In the following, we always decompose a precondition ψ := ψI ∧ ψM into a pre-
condition ψI on the input configuration and ψM on the local variables (cp. Def. 2.2Sufficient Error

Candidate under
Precondition

in Sect. 2.5.1). Given precondition ψ := ψI ∧ ψM, we can test whether a line is a
sufficient error candidate under ψ using:

ReachψI ,ψM
suf (φ, ℓ) := AG (ψM =⇒ AX (ψI ∧ ℒcycle(ℓ) =⇒ ¬φ)). (14)

What this formula expresses is that for all successor states of ψM being true, where
ψI is true and ℓ was executed, φ is violated. We define CandψI ,ψM

suf (φ) analogue to
Def. 7.5. This set can be efficiently determined using an algorithm similar to the
one described in Sect. 7.4.1. Observe that Candtrue

suf (φ) = Candsuf(φ).
We are now interested in sufficiently weak preconditions such that CandψI ,ψM

suf (φ)Computing
Preconditions is not empty. To compute such preconditions, we use the following approach:

1. Let ψ be the precondition of the last step of a counterexample written in
conjunctive normal form ψ =

∧
i ψi. Observe that Candψ

suf(φ) is not empty,
since ψ fixes a path of the program.

2. Set ψ0 := true. For each i, repeat:

3. Set ψ− := ψi ∧∧
j>i ψj. If Candψ−

suf(φ) = {} then set ψi+1 := ψi ∧ ψi otherwise
set ψi+1 := ψi.

This algorithm iteratively weakens the precondition ψ by removing conjuncts. A
conjunct is not removed if its removal would cause the set of candidates to become
empty. The final ψn (for n conjuncts) is hence a weaker precondition such that
Candψn

suf(φ) is not empty. It is not necessarily the weakest precondition, however
we only have to try each conjunct once. We favor this faster approach against the
weakest precondition because of the heuristic nature of potential error candidates.

Another benefit of this extension is that we can now also handle violations of
specifications that depend not only on the lines executed but also on certain values

7.5 discussion & comparison 101

of variables: If, e. g., a specification is only violated if a certain variable v is greater
than zero (but the control flow of the program does not depend on this property),
then Candsuf(φ) is empty. The error candidates under precondition Candv>0

suf (φ),
however, can now reveal the error.

7.4.4 Multiple Necessary Error Candidates

It can also happen that we have two bugs in the program, e. g., in block 1 and Multiple Bugs

block 2 of Fig. 21. If these two bugs happen to cause the same violation, then
unfortunately neither the execution of block 1 nor block 2 is a necessary condition
for the bug. Hence, Candnec(φ) does not contain the necessary lines that cause
either violation. In this case, the technique fails to extract either of the bugs from
a counterexample.

7.4.5 Case Study

We repeated the case study from Sect. 7.3.5 using the candidate exclusion tech-
nique. The results are presented in Tab. 7. All programs are evaluated in the same
way as we used for the Trace Comparison technique.

The most important difference is that we could not perform the technique on
the ModeSelector function block. Here, we had to cancel the process after 1 hour,
since the model checker calls took too long ruling our candidates. In this case, the
technique fails. Additionally, in the third EmergencyStop problem, the faulty code
was almost hit, hence we put the 1 in parentheses.

In all other cases, the candidate exclusion technique was able to detected the
faulty line while reducing the number of candidates to 1–8. Note that the number
of hits is slightly better than the Trace Comparison technique, which did not find
the error location in two instances. The number of potential candidates, however,
is higher for the Candidate Exclusion technique.

7.5 discussion & comparison

In summary, we conclude that neither the trace comparison nor the candidate
exclusion technique distinguished themselves as being superior. Both techniques
are suitable heuristics to narrow down the possible error locations and, sometimes,
even able to find the exact error location. While the Candidate Exclusion technique
sometimes cannot be applied since it takes too long, it did find the error location in
all other cases. Its runtime and number of potential candidates, however, is higher
than the Trace Comparison.

The Trace Comparison technique was tailored for the abstraction techniques de-
tailed in Chap. 4 and is not readily transferable to other verification techniques.

102 fault localization in counterexamples

Program Sev. Change Loc |πc| |C| #Hit Time

EnableSwitch Simple Ass. 120 15 6 1 < 1 s
EnableSwitch Medium Ass. 120 80 6 1 3 s
EnableSwitch Simple Add. 121 81 8 1 1 s
EmergencyStop Medium Ass. 115 67 2 1 1 s
EmergencyStop Simple Branch. 115 13 6 1 < 1 s
EmergencyStop Complex Miss. 111 16 1 (1) < 1 s
SafetyRequest Complex Miss. & Ass. 140 193 3 2 3 s
ModeSelector Simple Ass. 155 26 — — ∞
GuardMonitoring Complex Add. 110 17 6 1 3 s

Table 7: Case Study of the Candidate Exclusion technique

Its big advantage, on the other hand, it that this technique also generates possible
corrections for the error.

By way of contrast, the candidate exclusion technique works without knowledge
of the internals of the model checker or tweaking the state space generator and thus
can easily applied to other abstraction techniques, verification algorithms or even
model checkers.

7.6 related work

Wong and Debroy [123] present a survey about different counterexample-based
software fault localization techniques that have been studied for programming
different languages. We present the most important works that relate to the tech-
niques we described in this chapter.

Renieris and Reiss [102] also inspect nearest neighbors. They compile so-called
program spectra, which represent information gathered during the execution of a
trace. These spectra are then interpreted as binary vectors and compared using the
Hamming distance. Groce et al. [65] describe a semi-automatic approach that also
uses distance metrics to explain counterexamples. The also observe that there is no
single best algorithm for fault localization because of the inherently subjective na-
ture of the problem. Similar to our approach, Kumazawa and Tamai [76] then use
the Levenshtein distance as a metric for comparison, which also gives the correc-
tion proposals. In contrast to our approach, they analyze infinite counterexample
traces and liveness properties.

Sülflow and Drechsler [117] evaluated SAT-based techniques to locate errors in
PLC programs written in IL. Their approach only consider the faulty trace and
does not take information of the non-violating traces into account. They use tech-
niques and correction-based debugging [113] to reduce the potential error locations
for the user.

7.7 conclusion & future work 103

In this chapter, we presented and compared two approaches the for automatic
error localization in counterexamples for PLC programs. As other authors, we
used the Levenshtein distance for one technique, yet geared towards the cyclic
scanning mode of PLC programs.

7.7 conclusion & future work

In this chapter, two heuristics were presented that allow to extract the possible
cause of a violation of a property from a program. The key idea of these tech-
niques is to compare violating and non-violating runs to gain knowledge about
possible erroneous program locations. During our experiments and during our
work on other model checking techniques, the techniques presented in this chap-
ter helped tremendously to assess the validity of a counterexample. Due to their
heuristic nature and the general problem to define what an exact cause of an error
is—especially when an error is caused by missing code—the techniques cannot
always succeed. Yet, the techniques were successful most of the time during our
experiments and could reduce the potential error locations to a few candidates.

A limitation of the presented techniques is that they work purely on syntactic
differences of whether a line is executed or not. Using semantic analyses [54]
that take the actual values of the program variables into account, the accuracy
could be further improved. This is especially so for programs with longs chains of
instructions without branches.

8
S TAT I C A N A LY S I S O F P L C P R O G R A M S

In the previous chapters, we were concerned with verifying user-specified proper-
ties via model checking. The properties could either be provided as CTL formulae
or automata. In this chapter, we will focus on inferring properties of PLC programs
directly, without the need for user-supplied specifications. The goal is threefold:
First, we want to provide a possibility to inspect possible values of variables. The
user should, e. g., be able to inspect a succinct representation of the outputs of
a PLC program, which can easily be checked for consistency. Second, we want
to find potentially erroneous PLC code automatically. That is, we are looking for
code that exhibits undefined1 or implementation-defined (potentially ill-defined)
behavior. This includes divisions by zero and out of bounds accesses of arrays, as
well as suspicious constructs such as unreachable code or redundant assignments.
Finally, we want to infer program properties that can speed up other analyses. If,
e. g., we can infer a summary of the behavior of a function block, we can skip the
evaluation of certain function block in the model checker. This approach will be
further investigated in Chap. 9.

A key difference to the previous chapters is that we are no longer restrained to
the observable behavior of the PLC. Since we are inspecting the behavior executed
during the cycle, we also consider the intermediate instructions of the PLC.

8.1 approach

Our approach operates on the control flow graph (CFG) of the program. This Control Flow
Graphgraph contains all instructions of our intermediate representation. Two nodes are

connected using a directed edge if they are connected w. r. t. the control flow of the
program. For each node we then compute an over-approximation of all possible
values that are stored in each variable during the execution of the controller. The
analysis is performed in a flow-sensitive way based on the work of [44]. Function
and function-block calls can optionally be handled in a context-sensitive way. The
key idea of this static analysis is to use abstract interpretation to simulate the

1 By undefined behavior we subsume constructs that are either explicitly marked as undefined (such as
accessing the current result after a function block call) or not clearly defined in the standard such as
overflow of integer variables.

105

106 static analysis of plc programs

program not over a concrete domain such as integers, but over an abstract domain
such as intervals. This is achieved by keeping track of the abstract values of each
variable in each node of the CFG. Then, each edge of the CFG is abstractly executed
and merged with the information of its successor nodes until the system stabilizes,
i. e., all values have been seen.

To make the approach applicable to large programs comprising a large number
of variables and program lines, we implemented two optimizations:

∙ We only track variables that are visible in the current context. That means
that, e. g., we do not track the variables of the caller of a function block in the
callee.

∙ We only track variables that are live at the current instruction. Live means
that they are not over-written before being read again.

While the former optimization is based on a purely syntactic property, the latter is
determined using a pre-analysis.

Once the static analysis has finished, we can present the information directly or
we can further apply a set of checks to the computed variable ranges. For each
division, e. g., we now check whether the divisor might be zero. We also check
for correct indirect accesses, i. e., whether arrays and structured types are accessed
using an index with correct bounds and correct types. Finally, our techniques
allow for the checking of conditional expressions that are always evaluated to true
or false as well as for unreachable code. Such a detailed analysis is currently not
offered even by commercial PLC tools; an overview is given by [95].

8.1.1 Contribution & Outline

In Sect. 8.2, we detail our static analysis approach. This approach is based on
abstract interpretation, with two crucial liveness based optimizations (Sect. 8.2.6
and Sect. 8.3) to reduce the size. Sect. 8.5 describes the checks we implemented on
top of the static analysis results. In Sect. 8.6, we show the results of an industrial
case study, for which we implemented a specific check for the controllers used
there. We also checked our own implementation of the PLCopen safety function
block library. We start by giving an overview of related work.

8.1.2 Related Work

To the best of our knowledge, Bornot et al. [33] were the first to describe a static
analysis for PLCs. Their approach is also based on abstract interpretation, yet is
limited to the interval domain and small Instruction List programs. Our work
aims at verifying large scale PLC programs and therefore introduces abstractions
to limit the scope of variables (cp. Sect. 8.2.6 and Sect. 8.3) and additional (bit-

8.2 static analysis process 107

Program'
Parser'/'
Compiler'

CFG1
Builder'

Sta7c'
Analysis'

Check1
Engine'Results'

Intermediate'

Representa7on'

Annotated'

CFG'

CFG'

Checks'
ARCADE.PLC'

Figure 22: The static analysis process with Arcade.PLC [28].

wise and value-set) domains. Both works are fundamentally based on the abstract
interpretation framework described by Cousot and Cousot [44].

Chen et al. [37] describe a technique to make computing fixed points more ef-
ficient using so-called context projections. In their paper, reachability is examined
as a special case of context projection. In this work we use a liveness based pre-
analysis to make the analysis more efficient that follows a similar line of research.

Gourcuff et al. [63] examine abstractions for model checking PLC programs by
taking the dependency of expressions and variables into account. In [62], they
also verify Structure Text programs, yet their approach is limited to a subset of
the language. They, e. g., do not allow for loops, while our approach supports all
Structured Text features.

The techniques and results presented in this chapter were in part presented in
previous publications. Part of the static analysis process in Sect. 8.2 is described in
[115] and [28]. The latter also describes the localization of function block variables
in Sect. 8.3. The ideas of the analysis for the correct usage of retain variables de-
scribed in Sect. 8.4.1 was first published in [68]. Some ideas for the summarization
of FBs described in Sect. 8.7 were published in [27]. The results of the case study
given in Sect. 8.6.1 were first presented in [115].

8.2 static analysis process

Our analysis process comprises four steps, which are depicted in Fig. 22:

1. We translate the PLC program into an intermediate representation (IR), as
shown in Sect. 3.4, i. e., we operate on the same IR used for model checking.

2. We then create a control flow graph (CFG) out of the IR.

3. This CFG is then analyzed in a flow-sensitive way using an abstract interpre-
tation framework, yielding an annotated CFG. In the annotated CFG, every

108 static analysis of plc programs

Sta>c&
Analysis&

RDA&LVA&

Intermediate&
Representa>on&

Pointer&
Analysis&

CFG&
Builder&

Widening&

PreA
Analysis&

PostA
Analysis&

Annotated&
CFG&

Figure 23: The detailed steps of the value-set analysis for PLC programs.

node contains an over-approximation of the values each variable can assume
in this node.

4. Finally, we run a set of predefined checks on the annotated CFG and show
possible warnings to the user. The user can also inspect the raw results of
the analysis.

The abstraction interpretation step is further divided into detailed steps shown
in Fig. 23. We explain these steps in the following.

8.2.1 Pointer Analysis

The pointer analysis infers for each pointer and reference of the program a list of
potential pointees, i. e., variables it might point to during runtime. This analysis is
run as the first static analysis step even before building the CFG. This is necessary,
because the results of the pointer analysis are needed for the CFG builder to infer
possible destinations of indirect function blocks calls2. For the analysis, we first
gather all pointer variables and internal references (cp. Sect. 3.4.4).

2 While indirect function block calls are not defined in the standard, it is possible in some dialects to
create an array of function blocks, and then call the ith function block in this array.

8.2 static analysis process 109

1 FUNCTION_BLOCK SMALL_EXAMPLE

2 VAR_INPUT A, B: BOOL; END_VAR

3 VAR R : R_TRIG; END_VAR

4 VAR_OUTPUT OUT: INT; END_VAR

5
6 R(CLK := B);

7 IF NOT A OR R.Q THEN

8 OUT := 1;

9 ELSIF NOT A AND R.Q THEN

10 OUT := 2;

11 ELSE

12 OUT := 3;

13 END_IF;

14 END_FUNCTION_BLOCK

Figure 24: The example program (extended version of [28]).

Then our analysis works in a control insensitive way (usually called Andersen-
style analysis in literature, due to [1]). It inspects all Assign, Alias, Member and
Index instructions of the program, thereby collecting all possible pointees on the
right hand side and updating the left hand side accordingly. That is, each write
to a pointer updates the set of its pointees. We merge it (or, if there is an indirect
write, all of them) with the set on the right hand side. These steps are repeated
until the system stabilizes.

8.2.2 Control-Flow-Graph Builder

After the pointer analysis, the CFG of the program is built. First, we build a graph
for each POU. The nodes of this graph are the instructions of the IR (cp. Sect. 3.4.4).
Two nodes n0 and n1 are connected using a directed edge n0 → n1 if the control
flow reaches from n0 to n1 (either because n1 is direct successor of n0 or there is
a jump from n0 to n1). Multiple successors can only arise from conditional jumps.
In this case, edges are labeled with constraints covering the conditions according
to the conditional branch instructions.

In the next step, call edges are added for all CALL instructions to other POUs,
resulting in a so-called super graph of the program. We add return edges from Super Graph

the exit node of the called POU to a return node in the CFG. The return node
will later gather the effect of the call. We support two different ways of handling
the granularity of the analysis of calls: First we can analyze a POU in a context-
insensitive way. This means that the code for a function or a function block instance
will only appear once. Multiple calls to this instance will then result in multiple
edges to the same entry. Consequently, return edges will be generated to all return
nodes, which allows the entrance of the POU from one call site, but the exit to
a different call site, effectively over-approximating the possible behavior. While

110 static analysis of plc programs

entry node

exit node

638 CALL R6B8

return node

entry node

exit node

608 ASSIGN Q <--- CLK AND NOT6M8

648 UNLESS 6NOT6A8 OR Q8 GOTO 7

618 ASSIGN M <--- CLK

658 ASSIGN OUT <--- 1 678 UNLESS 6NOT6A8 AND Q8 GOTO 10

628 RETURN

668 GOTO 11 688 ASSIGN OUT <--- 2 6108 ASSIGN OUT <--- 3

6118 RETURN

698 GOTO 11

new cycle

local

NOT6A8 OR Q NOT 6NOT6A8 OR Q8

NOT6A8 AND Q NOT 6NOT6A8 AND Q8

call

return

Figure 25: The CFG of the example program showing the internal representation.
Nodes with actual instructions have a unique label, which is used to
associate analysis information.

this is generally faster because less code has to be analyzed, we also allow for
analyzing POUs in a context-sensitive way. To enable a context-sensitive analysis,Context-Sensitive

Analysis a POU declaration can be marked with a special pragma (cp. Sect. 3.4.2). Then, the
CFG builder will generate a new copy of the CFG of the POU for each invocation of
a POU instance. Most standard function blocks in our implementation are already
marked, since their body is quite short, whilst they still benefit highly from a
context-sensitive analysis.

In the following, we exemplify all steps of the algorithms using the exampleWorked Example

ST program shown in Fig. 24, which is an extended version of the program used
in [28]. This program performs the following operation on the inputs A and B

in every cycle: First, an R_TRIG function block instance R is called to detect a
rising edge on B (signaled in R.Q). Then, if NOT A or R.Q is set then OUT is set to
1; if otherwise NOT A and R.Q is set then OUT is set to 2; if neither applies then
OUT is set to 3. The corresponding CFG of this program is shown in Fig. 25. In
our IR, both IFs statements are translated into conditional branch statements with
the corresponding constraints written in the outgoing edges. The scanning cycle
is indicated by the left-most edge. The instance of the R_TRIG function block is
shown in the right.

8.2 static analysis process 111

8.2.3 Static Analyses Dataflow Framework

We use a data-flow framework to implement the further flow-sensitive analyses on
the CFG. Such a framework is defined over a lattice (L,⊑,⊥,⊤) (cp. Sect. 3.3.1),
i. e., a po-set w. r. t. ⊑. We define two analysis-dependent operations for states
S ⊆ L:

transform operation for op f op : S→ S

join operation ⊔ : S× S→ S (1)

The transform operation f op captures the semantics of an operation op on a set
of states S. The join operation monotonically merges the information of multiple
states into one state. For each node n in the CFG, we now associate a state Sn to
n, which is initially ⊥. We build data-flow equations on the CFG between these Data-Flow

Equationsnodes using the transform and join operation:

Sout
n := f op(Sn) where op is the operation of n

Sn := ⊔i∈Pred(n)S
out
i where Pred(n) are the predecessors of n

These equations are evaluated until the system becomes stable. Observe that the
monotonicity of the join operators ensures that always S ⊑ S′. Termination, how-
ever, still has to be carefully evaluated if L admits infinitely ascending chains.

To efficiently compute a fixed-point, we perform the analysis using a work-list Work List
Algorithmalgorithm. In the first step, we put all successors edges of the entry node into the

work-list. Then, the following steps are performed:

1. If the work-list is empty: Stop.

2. Get edge e out of the work-list. Suppose e connects nodes n0 and n1, Sn0 and
Sn1 are their associated states and the instruction of n0 is op.

3. Perform transform operation Sout
n0

:= f op(Sn0).

4. Merge Sout
n0

and Sn1 resulting in Sin
n1

:= Sout
n0
⊔ Sn1 .

5. Unless Sin
n1
⊑ Sn1 put the successor edges of n1 into work-list.

6. Associate Sin
n1

with node n1.

7. Goto step 1.

We organize the work-list in way such that the edges are processed in reverse
postorder by implementing the work-list as a priority queue where the offset of
the node in the translation unit is the priority. This is not crucial for correctness
but ensures that the system stabilizes faster by first computing earlier nodes in the
CFG.

112 static analysis of plc programs

This framework can be applied to either analyzing a single program or a whole
controller, where multiple POUs interact using shared global variables (cp. Fig. 4
on p. 15). If we are analyzing a single program, we assume that all global variables
have an unknown value. If, on the other hand, we are analyzing a whole controller,
we set the global variables to their default value, which allows us to analyze the
interaction of global variables between programs.

8.2.4 Live Variable & Reaching Definition Analysis

Live Variable Analysis (LVA) is a data flow analysis that determines the set of live
variables for each node in the CFG (cp. [109], Chap. 1.15).

Definition 8.1: A variable is called live if its value is read somewhere in a successorLive Variable

node (or, in other words, if its value is not overwritten on all successor paths before
it is read). We call a variable dead iff it is not live.

Using our framework this analysis is implemented by traversing the CFG in
reverse order (i. e., by reversing the direction of all edges and starting in the exit
node). The lattice is ℘(2Var), i. e., each state is a bitset where each live variable
is marked. ⊥ denotes that all variables are dead. For each variable v, we define
further:

f op(S)(v) =

0, if v is unconditionally written but not read by op

1, if v is read, or read and written by op

S(v), otherwise

The join operation defines a variable live if it is live in either state:

(S0 ⊔ S1)(v) := max(S0(v), S1(v))

In the example CFG in Fig. 25, we have A live in nodes {0, 1, 2, 3, 4, 5, 7} sinceLVA Example

they are no longer needed after these nodes, and are reset at the beginning of the
next cycle. Similarly, variable B is only live in node 3, because it is not read after
the call. R.Q become live in node 1 and stays live in nodes {1, 2, 4, 5, 7}. Finally,
Out is live in nodes {2, 5, 7} since it is an output variable and thus relevant at the
end of the cycle. It is dead at the other nodes since it is overwritten before being
read again.

LVA is a backward analysis, i. e., the CFG is processed in reverse order. A vari-
able is set live, if its value is used (i. e., it is read / it appears on the right hand side
of an expression) and a variable is set dead, if its value is overwritten (it appears
on the left hand side of an assignment).

Complementary to the LVA, the Reaching Definition Analysis (RDA) computesReaching
Definition

Analysis
a list of nodes for every variable in every node. This list indicates all possible
places where the variable has been defined previously.

Definition 8.2: Let n be a node in the CFG and v be a variable. A reaching definitionReaching
Definitions of v in n is a node d in the CFG, with:

8.2 static analysis process 113

∙ v is written in d, and

∙ there is a path d → n0 → · · · → ni → n and v is not unconditionally over-
written in n0 . . . ni.

The RDA is implemented using our framework by traversing the CFG in forward
order. For each variable, the lattice is ℘(2Nodes), i. e., each state is a bitset where
the reaching definitions are marked. ⊥ denotes that no definitions are reachable.
For each variable v, we define the following data-flow equations:

f op(S)(v) =

{n} , if v is unconditionally written in n by op

S(v) ∪ {n} , if v is conditionally written in n by op

S(v), otherwise

The join operation merges the reaching definitions:

(S0 ⊔ S1)(v) := (S0 ∪ S1)(v)

Continuing the example shown in Fig. 25, the reaching definitions of Output in RDA Example

node 11 are nodes {5, 8, 10}.

8.2.5 Value-Set Analysis

We now present the core analysis. For every node of the CFG, the value-set analysis
(VSA) determines an over-approximation of the possible values each variable can
assume in this node. This information is the basis for all further analysis, and
builds on the pointer analysis (and—as an optimization—on the LVA and RDA
analyses results).

To speed up the VSA, we first perform a pre-analysis. In this pre-analysis, we Pre-Analysis

determine the set of variables that are not aliased by a pointer and are syntactically
constant, i. e., never written during the runtime. For this, we check the points-to
sets of all pointers determined in the pointer analysis. Then, we iterate over all
instructions in the CFG that perform an assign or a call. If a variable never appears
on the left hand side of an assign, and also not as an output parameter of a call, it
can be assumed constant. Hence, these variables do not have to be tracked during
the VSA. Depending on the dialect and which style the PLC program was written
in, it may be that a great number of variables are used as constants, and thus that
the total number of variables can be reduced.

We then perform an abstraction interpretation using our data-flow framework Data-Flow
Equationsand our abstract domains defined in Sect. 3.3. Each transfer function f op and the

join operator ⊔ is defined according to the domains. Since such a system converges
very slowly for intervals or might even diverge with an infinite chain of increasing
interval bounds, careful considerations have to be taken to assure termination. We
defer a solution for this to Sect. 8.2.7.

114 static analysis of plc programs

The analysis presented thus far already results in a valid over-approximation.
We do not, however, consider the conditional branch instructions, which manifestConditional

Branches themselves as constraints on the edges of the CFG. Since these constraints provide
valuable information to make the analysis more precise (by restricting the set of
possible values in the current branch), we want to incorporate them. This can
be done by intersecting the current abstract state with the branching constraint
using the ⊓ operator. For this, we use the constraint solver presented in Sect. 4.3
to generate reachable intervals for simple arithmetic and Boolean constraints. A
more systematic way to perform this using a SAT-based refined scheme has been
presented by us in the past [17]. Yet, for efficiency reasons, we use the hand-written
constraint solver.

Note that the value-set analysis works on the CFG that already incorporatesContext-Sensitive
Analysis edges for call instructions to other POUs. The decision as to whether the analysis

is performed in a context-sensitive or context-insensitive manner is thus decided
by our CFG builder.

We continue our example from Fig. 25. The VSA will start at the entry node,Worked Example

setting the inputs A, B to ⊤, the output OUT to ⊥. The value of B is passed to the R_-

TRIG block, setting its CLK, M and Q to ⊤. We obtain in node 5: OUT = 1, A = Q = ⊤
(this cannot be represented more exactly using our domains) and in node 7: A = 1,
Q = 0. We then get in node 8: OUT = 2, A = Q = ⊥ and in node 10: OUT = 3, A = 1,
Q = 0. Finally, in node 11 we merge the results to OUT = [1, 3], A = Q = ⊤. After
the next iteration the system stabilizes.

8.2.6 Value-Set Analysis with Sparse Memory States

Thus far, we computed the abstract value for each variable in each node in the
CFG. This is potentially wasteful and can seriously impact the applicability of the
technique to real programs, especially if the program contains a huge number of
variables only relevant to parts of the program. To alleviate this problem, we turn
to an abstraction that only keeps track of a part of the variables.

Once we have the liveness information in each node, we can make use of the
liveness information to select the relevant variables. The key idea here being that
it is not necessary for us to have to store the abstract values of dead variables,
since their values are not used in the future (either because they are not used at
all, or they are overwritten before being used again). In practice, this results in
much smaller abstract states. Even for our small example program, the number of
variables that have to be stored in each abstract state would be roughly half the
amount, i. e., it is not necessary to store the value of Out in nodes {0, . . . , 7} and it
is only necessary to store the value of A in nodes {0, 1, 2, 3, 4, 7}.

8.2 static analysis process 115

8.2.7 Widening

Crucial for the termination of the data-flow algorithm in Sect. 8.2.3, is step (5),
which puts the successor edges of n1 into the work-list unless Sin

n1
⊑ Sn1 . If Sin

n1
only

slightly increases each iteration, the convergence might be too slow in practice.
If the domain admits infinite ascending chains, it might even fail to terminate.
Therefore, we use widening to accelerate this process. If an edge in the CFG is
analyzed more times than a certain threshold, we activate widening for this edge.
During widening, we directly saturate our abstract value while merging two states.
We use 5 as the default threshold, but allow for a reconfiguration. We selected 5
because it turned out to be a good middle ground between runtime and precision,
especially when sets of discrete values (e. g., enumeration values, diagnosis codes,
etc.) are summarized using our value-set domain. Widening operators have been
extensively researched in the past, see [43] for an overview. We implement special
widening for intervals only, all other domains are directly widened to ⊤. For
intervals, we first set the increasing interval bound to ±∞.

To illustrate the widening process with intervals, suppose a program that is
incrementing the variable x by 1 in a loop. Suppose further that we have at the
start of the loop x ∈ [1, 10] and thus x′ ∈ [2, 11] at the end of the loop. For the
next iteration, we now merge x and x′. That is, we compute x′′ = x ⊔ x′ = [1, 11].
Once we activate widening, we compute x′′ = x∇x′ = [1, ∞], where ∇ denotes the
widening operator. Widening thus sets the upper interval bound directly to ∞.

In practice, the widening step is crucial to make analyzing PLC programs with
for-loops and counters possible, since the static analysis algorithm would other-
wise take too long to find a fixed point. A simple counter implemented using the
DINT type, for example, would require 232 steps to converge without widening,
while the approach using widening converges after the threshold of 5 iterations.

8.2.8 Post-Analysis

In the last step, we perform a post-analysis to produce the annotated CFG. We
cannot directly use the results from the values-set analysis, since we do not store
the values of all variables in each node but only the live variables. In our worked
example, e. g., the variable Out is not live in node 8. It is not live, because its
value is unconditionally overwritten and its new value does not depend on the
old value. While Out becomes live after the assignment, we do not have its value
right before the assignment available. Yet, we want to annotate Out with its old
value to enable certain warnings. If, e. g., Out already contains the value that is
written to it, the assignment has no effect and might thus be erroneous. Hence,
we want to annotate all variables that appear in each node of the CFG with their
values. To do so, we first check whether the values are stored in the value-set
information of this node. This is the case if the variable is live. Otherwise, we
make use of the RDA information: To reconstruct the old value of variables that

116 static analysis of plc programs

are not live, we read the value in all possible reaching definitions and merge the
values. We obtain an annotated CFG where all variables in each are annotated
with an over-approximation of the values that are possible in this node.

8.3 localization of function block variables

We use the LVA to compute the liveness of variables of the program. This liveness,
however, is computed in a scope-agnostic way, i. e., a variable that is live at the
end of a function call (because its value is needed in the next call of this function)
will be live in the caller’s scope. The result of this is that internal variables of func-
tion blocks—even if they cannot be accessed from outside—are live everywhere.
Tracking the values of these variables in the whole CFG is wasteful if they are only
accessed inside the function block.

To exemplify, such a situation is depicted in Fig. 26 (1). Suppose that the variable
a is only accessed in the function block FB (indicated by one read and one write).Local Variables

Due to the read, it is live at the call statement to the FB call3, making it live in the
calling program, effectively becoming live almost everywhere. This is indicated
as solid lines in the figure, while the dotted line indicates the part where it is
dead between the read and the write. Note that this happens, although it is never
accessed in the calling program. It would also happen if it was not visible in the
calling program.

To alleviate this situation, we introduce another technique. The key idea be-
ing that there is no need to not propagate liveness information of local variables
through call edges. The result is shown in Fig. 26 (2). The local variable a is live
at the beginning of the FB (due to the read), but the liveness is not propagated
through the call edge, effectively making it dead in the caller’s scope. Observe
that while it is dead at the return edge, it is live from the write to the end of the
function. When performing the value-set analysis, we have to add a data flow edge
from the end of the function to its start. We then propagate the results from the
exit node of the FB directly to the entry node. The result is that we do not have to
track the value of a in the main program.

Thus far, we considered variables that cannot be accessed from outside. Input
and output variables, however, can also be accessed from the caller’s scope, cp.
Sect. 2.2.7. In the following, we discuss how we handle these cases.

If a is not a local variable but an output, its value can be read outside of the FB.Output Variables

Suppose it is read after the call, as depicted in Fig. 26 (3). Then, a is live at the read
outside the FB. Since liveness propagates backwards, a becomes live at the return
statement as well. The important aspect here is that although a is accessed outside
the FB, it is still not live everywhere in the caller’s context.

Finally, suppose a is an input variable. Then, a can be written outside the FBInput Variables

as shown in Fig. 26 (4). We distinguish between the two different ways to pass

3 Recall that liveness is propagated backwards.

8.3 localization of function block variables 117

PROGRAM FB

entry

...

...

...

...

...

read a

write a

...

exit

call

return

(1)

PROGRAM FB

entry

...

...

...

...

...

read a

write a

...

exit

call

return

(2)
PROGRAM FB

entry

...

...

...

read FB.a

...

read a

write a

...

exit

call

return

(3)

PROGRAM FB

entry

write FB.a

...

...

...

...

read a

write a

...

exit

call

return

(4)

Figure 26: Localization strategy for FB variables. Edges where a is live are drawn
as solid lines, edges where a is dead are dotted. (1) naïve approach, (2)
scoping of LVA, (3) reading a outside of its scope, (4) writing a outside
of its scope [28].

118 static analysis of plc programs

1 PROGRAM Program

2 VAR (* RETAIN *)

3 first_cycle : bool := true;

4 END_VAR

5 VAR

6 a : int := 0;

7 b : int := 1;

8 c : int := 0;

9 END_VAR

10 if first_cycle then

11 (* initialization block *)

12 c := 2;

13 end_if;

14 first_cycle := false;

15 a := b / c;

16 END_PROGRAM

Figure 27: PLC program with initialization [68].

parameters to FBs (cp. Sect. 2.2.7): First, the value of a can be passed as a (named
or unnamed) parameter in the call statement as an argument. In this case, a is
overwritten in the call-edge and thus not live before the call edge. If, however, a
is not passed in the call, the previous value (possible set in the caller context) is
relevant, and thus a should be live at the call site.

Applying these checks to our running example, we get the following results:
Since we have in node 7: A=1 and R.Q=0, we can infer that NOT A AND R.Q is always
evaluated to false. Additionally, it is impossible to take edge 7 → 8 and thus, we
can warn about dead code in node 8. We can hence detect this logic error in the
program, map the node to its location in the source file and present the error to
the user.

8.4 initializations & partial unrolling

In a PLC program it is sometimes necessary to run initialization code only in the
first scan cycle. The program in Fig. 27, e. g., uses the variable first_cycle to
control the execution of the initialization block. Therefore, the program initializes
the variable first_cycle to true and sets it to false in all later cycles.

Observe that the initial value for the variable c is 0, but it is directly set to 2 in
the initialization block. Hence, there is no division by zero in line 15. The value set
analysis, however, would infer that c can be {0, 2} at the start of the program and
because first_cycle can be {true, false} it would generate a spurious division-
by-zero warning.

To avoid such warnings, we unroll the program once. That is, we analyze the
program once without considering the PLC cycle. Then, we use the value-set
information of all variables at the end of the program to re-analyze the program,

8.5 implementation of checks 119

now considering the PLC cycle. In the example, we would infer that first_cycle
is always false and c is always 2 after the first cycle, thus avoiding the spurious
warning.

8.4.1 Retain Variables

As we have seen in Sect. 2.2.4, variables can retain their value between restarts of
the PLC. Effectively, this means that the program is restarted with all variables
reset to their initial value, while some variables marked as RETAIN or PERSISTENT

still contain their previous value. On the one hand, this makes the partial unrolling
technique unsound, since we do not consider these new initial values (without the
unrolling technique, however, our approach is sound, since we consider all possible
values for all variables). On the other hand, inducing new behavior after a restart
of the PLC via the use of retain variables is most likely not the indented behavior
of the programmer. Hence, we want to warn about these situations.

To detect additional behavior induced by retain variables, we implemented the Detecting
Unwanted
Behavior of
Retain Variables

following analysis [68]: After the first unrolling and analysis of the program, we
start a second analysis. This time, we keep the computed value sets of the retain
variables and reset all other variables to their initial values. We again perform an
unrolling step and then analyze the cyclic behavior of the program. Now we have
two annotated CFGs: one from the first analysis and one from the analysis after
the first restart of the PLC. By comparing the value-sets in both CFG, we can detect
all nodes where new behavior can arise due to a restart. We issue a warning for
these cases.

We merge the values of both CFGs and use the result as the annotated CFG on
which all further checks are implemented on. This makes the analysis sound again,
even with the unrolling technique.

8.5 implementation of checks

Once the static analysis returns an annotated CFG we run our checks, which are
detailed in the following section. The checks are implemented on top of a frame-
work that offers to inspect different categories of the program, depending on the
granularity and type of object they have to check:

∙ Checks can inspect certain instructions. To check whether the index of an
array is out of bounds, we only have to inspect all Index instructions.

∙ Checks can inspect the expressions in all instructions filtering out certain
operations.

∙ Checks can inspect the global summary of the variables.

Using this framework, we implemented the following checks:

120 static analysis of plc programs

Division by zero

For every division expression in the program, we check whether the number 0 is
contained in the computed values of the divisor and warn, if this is possible. This
value can be obtained from the variable annotation in the CFG node containing
the division operation.

Overflow

For each assignment, this check verifies that all values on the right hand side
expression fit into type of the left hand side without overflowing. That is, we test
whether the set of values of the right hand side is a subset of the values that the
type of the right hand side allows. We are thus able to detect possible overflows.
This check works for all Assign instructions and all assignments to the parameters
for Call instructions.

Array index out-of-bounds

For each array access, we check whether the result of the index expression is within
the bounds of the array. Otherwise, we issue a warning that includes the interval
the index variable might lie in, such that the developer can check the legitimacy of
this warning.

Constant Variables

We check for variables that only contain a constant value during execution. This
either indicates a stylistic issue, in which case the variables should be declared as
constants. Alternatively, it might indicate a problem in the program.

Constant Written Variables

This check is an extension of the previous one. First, we analyze which variables
are written to in the program. We then issue this warning for all variables that
are written to and still have a constant value during execution. While the previous
check usually only indicates a stylistic issue (all variables that contain a constant
should be marked as a constant), this warning indicates a real problem: A variable
does not change its value during runtime although the program writes to it.

Missing Case Labels

For each case statement, we check for missing case labels. That is, if a case state-
ment has no else clause, we check that each value in the case expression is handled.
Otherwise, we issue a warning that contains the values that are not handled.

8.5 implementation of checks 121

Unreachable Code

We mark the beginning of each position in the code that is unreachable.

Condition always true/false

For each Boolean condition that determines conditional control flow in the pro-
gram, we check whether the outcome can be true or false. If this is not the case,
i. e., the variables are too constrained to allow for different outcomes, we issue a
warning.

Partial condition always true/false

We check for each Boolean expression in the program whether the outcome can
be true or false. Note that in contrast to the previous check this one also checks
partial expressions. It is therefore more sensitive than the previous check.

Redundant assignment

If we can prove that the right and left hand side of an assignment always contain
the same (single) value, i. e., a value is stored into a variable that is already stored
there (in every context), then we issue a warning.

Assignment might loose precision

We issue a warning if the interval computed for the right hand side of an assign-
ment of a variable, or a parameter, does not fit into the type bounds of the assignee.

Possible violation of assertion

We defined an ASSERT function in a dedicated ARCADE namespace. This function
takes a BOOL input value and has an empty implementation. If we cannot statically
prove that the input value is true, we issue a warning. This allows the user to
manually insert many different kinds of checks into the code.

Possible violation user defined check

We issue a warning for each invocation of a POU instance where we cannot prove
an annotated pre-condition (cp. Sect. 3.4.2).

Possible new behavior caused by retain variables

As described in Sect. 8.4.1, we issue a warning if a reanalysis after a PLC restart
permits new behavior (using retain variables) compared to a normal start. The
warning can generate false positives if a programmer is, e. g., counting the number
of restarts. It detects, however, many situations where retain variables are used in
an inconsistent way.

122 static analysis of plc programs

Program #loc #FBs time #W1 #W2 #FP

App1 / Program1 233 3 < 1 s 6 0 0
App2 / Program2 2776 100 11 s 0 8 0
App2 / Program3 169 5 3 s 0 0 0
App2 / Program4 2684 100 146 s 0 301 0
App2 / Program5 206 12 < 1 s 0 0 0
App3 / Program6 344 12 < 1 s 3 0 0
App4 / Program7 3339 18 40 s 9 50 9

Table 8: Part of the case study with anonymized program names [115].

Output written multiple times

It is usually good programming practice that each output variable is written at
most once per cycle. This check verifies that an output variable will not be written
multiple times per cycle. It is performed by checking at each write access of an
output variable that the reaching definitions are still empty. If not, an error is
presented that contains the previous write location.

8.6 case studies

We evaluated the static analysis in various projects. In the following, we present
the results of an industrial case study and the results verifying our own PLCopen
library implementation.

8.6.1 Industrial Programs

In an industrial cooperation, we checked a real-world project written for the ABB
Compact Control Builder AC800M [28, 115]. This project comprises about 20 so-Industrial Project

called applications, which are different programs interacting using global variables.
In each application about 1000 global variables were used. In total, the project con-
tains more than 100 programs, with about 50 000 lines ST code. In the programs,
up to 100 function blocks were used. Each POU contains between 100 and 3500
lines of ST code. We could finish the static analysis, including all of our checks
on all programs, in about 10 minutes. Without the LVA based optimization tech-
nique, we were not able to finish the static analysis. The high number of global
variables and FB variables required in this project meant it was too costly to store
the information in every CFG node.

We selected some representative programs of the case study and anonymized
their names. The results are shown in Tab. 8. The table shows the program weResults

checked, the number of lines of ST code in the program (not including the func-
tions and function blocks used in the program), the number of function blocks

8.6 case studies 123

used (#FBs), the time for running the static analysis, the number of warnings in
the program (#W1) and the number of warnings in other organization units (#W2),
e. g., the function blocks used in the program.

Our checks can trigger in every location of the program, including the function
blocks that are used in the program. This, however, results in a number of false
positives for some warnings (summarized in #W2). The reason for this is that the
function blocks provide many extra functions, which are not necessarily used in
the main program. To give a concrete example, a function block might have an in-
put Enable to control the activation of some function. If the main program always
enables this functionality, this input is hard-wired to true in every call. This then
results that the warning condition is always true at the corresponding IF Enable

THEN statement in the function block is generated. Therefore, we disabled these
warnings for the function blocks and only activated them in the main program.
After this change, the remaining warnings were mostly stylistic warnings about
variables that could be declared as constants and redundant compares (#W1).

8.6.2 Specific Warning: Illegal GetStructComponent / PutStructComponent

Programs written for the AC800M PLC can make use of special firmware func-
tions called GetStructComponent and PutStructComponent. Using these functions
the nth component of a structured data type can be accessed, which is needed to
support array-like data structures4. For every access, n must be greater than 0
or less than the number of elements in the struct, otherwise an error is signaled.
Additionally, it is detected if the accessed element is of the wrong type. These are,
however, runtime checks that are not prevented or detected at compile time.

A wrong program can thus fail at runtime, which motivates new warnings for
the offline checking of correct usage of the functions GetStructComponent and
the corresponding PutStructComponent. For this specific case study, we hence
implemented the following checks:

∙ For each call of GetStructComponent and PutStructComponent we infer the
interval for the index expression. We then check whether there are actually
elements in the structure for all values in this interval. If not, we issue a
warning that the structure might be accessed outside of its bounds.

∙ Additionally, we check that all elements of the structure with index in the
inferred range have the same type. The rationale is that if they have a differ-
ent type, the call to GetStructComponent or PutStructComponent might fail
at runtime. We issue a warning if the type check fails.

124 static analysis of plc programs
7

One remaining error potential is that the specification might
be erroneous. A state diagram, e. g., might have a subtle bug
such as a missing transition. It is, therefore, highly advised to
check the most important safety critical properties (e. g., an
output has to be false if a certain input is not set) using CTL or
ptLTL. The resulting formulae are then easily checked by hand.
They will catch errors in a program that was written for an
erroneous state diagram. Checking just the corresponding safety
automaton of the state diagram will not catch this problem,
since the program behaves correctly according to the wrong
diagram.

In the next section, two static analyses are introduced that
allow for verification without the explicit need for specification.
These techniques dovetail with model checking and can—as
the experiments will reveal—also find bugs in the specification.

VI. Static Analyses

The last section was concerned with proving certain speci-
fications for a given PLC program. A major obstacle for the
applicability of these methods is that the specifications have
to be formulated in certain logics or automata, which is time
consuming and error prone. In this section, techniques are
presented that statically infer and/or check properties of a PLC
program without having to manually formulate a specification.
These techniques are sometimes called push button techniques,
since they can directly be applied by the developer without the
specification e↵ort.

A. Value-Set Analysis

The first technique is the value-set analysis [7], which infers
an over-approximation of the set of the values each program
variable can assume during execution. That is, the formal model
as described in Sect. IV-A is analyzed and for each program
variable, a summary of all the di↵erent values is built. This
summary takes the di↵erent abstract domains into account and
thus provides a succinct representation of the possible values.

To exemplify, a typical output of the value-set analysis for
the SF Antivalent function block would look as follows:
• Output Ready: {false, true}
• Output S AntivalentOut: {false, true}
• Output Error: {false, true}
• Output DiagCode:

– [0, 16#C003]
– h⇤ ⇤ 000000000 ⇤ 0 ⇤ ⇤ ⇤i
– {0, 16#8000, 16#8001, 16#8004, 16#8005, 16#8014,

16#C001, 16#C002, 16#C003}
That is, the outputs Ready, S AntivalentOut and Error
might all assume the values true and false. If one of these
outputs was, e. g., stuck-to-zero this problem would immedi-
ately be obvious to the developer. For the output DiagCode
we get a list of possible values in di↵erent representations:
Firstly, the value is represented as the interval [0, 16#C003]
(The prefix 16#.. indicates hexadecimal constants). Then, the
bitwise representation is shown. Finally, the value is represented
as a set of distinct values. The latter representation is the
most suitable of this variable type. A missing value or a

22 CASE DiagCode OF
23 (* ... *)
68 16#8000:
69 IF NOT S_ChannelNC OR S_ChannelNO THEN
70 DiagCode := 16#8005;
71 T_1(IN:=1, PT:= DiscrepancyTime);
72 ELSIF NOT S_ChannelNC AND S_ChannelNO THEN
73 DiagCode := 16#8001;
74 END_IF;
75 END_CASE; unreachable

Fig. 5. Code fragment of SF Antivalent implementation showing unreach-
able code

wrongly coded value would immediately become obvious to
the developer. If, e. g., one would assign 8004 to DiagCode
instead of 16#8004 (i. e., a missing hexadecimal specifier) then
the value 16#1f44 would appear in the list, thereby making the
mistake obvious. Especially when developing function blocks,
this helps tremendously to catch bugs early.

B. Static Analysis with Predefined Checks

Static analysis can also be used to automatically compute the
values for all program variables in each program location [34].
This is performed by first building the control flow graph (CFG)
of the program. Then, the abstract simulator of Arcade.PLC is
used as an abstract interpretation framework [25] to compute
an over approximation of all program variables for each CFG
node. This information can then be used to run a set of
predefined checks, e. g.: division-by-zero, array index-out-of-
bounds, unreachable code, expression always true/false, etc.

The authors ran the static analysis checks implemented in
Arcade.PLC on the function blocks library. Important errors
in the development version of the function block library
could be found just by using these checks. If, e. g., the state
numbers were written incorrectly (by using the wrong coding
or copy&paste errors) this resulted in unreachable code that
implemented the state machine. It was also possible to detect
if-statements that were always true because some condition
was set wrongly.

A very curious warning, however, was raised in the imple-
mentation of the SF Antivalent function block: In line 73 as
shown in Fig. 5 of this function block the code is unreachable.
The problem with the condition in the elsif-statement is that
if NOT S ChannelNC AND S ChannelNO is true, then NOT
S ChannelNC OR S ChannelNO is true as well and thus the
first then-branch is taken. The code is indeed unreachable. At
first, the authors suspected a bug in their implementation but
on further inspection the function block was implemented as
demanded by the specification as shown in Fig. 2.

It turned out that this is actually a mistake in the specification
of the SF Antivalent function block: The priorities of the
transitions out of the Safety Output Enabled state (state 8000
in the bottom of Fig. 2) are swapped. This was confirmed by
PLCopen and is already corrected.

VII. Conclusion & Lessons Learned

This article assessed the application of formal methods
on PLC programs, which was conducted over several years.

Figure 28: Code fragment of SF_Antivalent implementation showing unreachable
code caused by an erroneous specification.

8.6.3 PLCopen Safety Function Blocks

We also checked our own PLCopen safety function block library. All blocks could
be checked in seconds. Most warnings were stylistic: Variables were tested twice
and some sub-expressions in IF statements were always true/false. These warn-
ings were harmless and usually caused by a literal copy of the respective expres-
sions from the PLCopen standard. Redundant compares, e. g., are often used
because the specification is written in a conservative way, i. e., input signals are
tested again although they were already checked in a higher priority transition.
One warning, however, caught our attention. This warning indicated unreachable
code and is shown in Fig. 28. It was raised in the SF_Antivalent block and is
caused by the same problem that we discussed in Sect. 6.5.2 (cp. Fig. 18 on p. 83).
We can hence detect this problem either using static analysis or automata-based
model checking.

8.7 calculation of summaries

The value-set analysis computes an over-approximation of the set of values each
variable can take at each program location. Thus far, this information was used
to produce warnings for problematic code. We can also use this information to
summarize the behavior of programs or function blocks. This summary can then
be presented to the user or be used for further analyses [27].

We implemented two summaries. The first one merges the values of each vari-
able in all nodes of the CFG. It hence gives an overview of the ranges each variable
resides in during the cycle. The second summary takes only the visible behavior
into account and hence only summarizes the values of each variable at the begin-
ning and end of every cycle (by taking only the input and exit nodes into account).

4 The Array type is missing on this platform.

8.8 conclusion & future work 125

We use the results of this analysis in Chap. 9 to speed up the model checking
process.

This summary takes the different abstract domains (cp. Sect. 3.3) into account
and thus provides a succinct representation of the possible values. To exemplify,
a typical output of the summary of the visible behavior for the SF_Antivalent

function block would look as follows:

∙ Output Ready: {false, true}

∙ Output S_AntivalentOut: {false, true}

∙ Output Error: {false, true}

∙ Output DiagCode:

– [0, 16#C003]

– ⟨* * 000000000 * 0 * * *⟩
– {0, 16#8000, 16#8001, 16#8004, 16#8005, 16#8014, 16#C001, 16#C002,
16#C003}

That is, the outputs Ready, S_AntivalentOut and Error might all assume the val-
ues true and false. If one of these outputs was, e. g., stuck-to-zero this problem
would immediately be obvious to the developer. For the output DiagCode we get a
list of possible values in different representations: Firstly, the value is represented
as the interval [0, 16#C003]5. Then, the bitwise representation is shown. Finally,
the value is represented as a set of distinct values. The latter representation is the
most suitable of this variable type. A missing value or a wrongly coded value
would immediately become obvious to the developer. If, e. g., one would assign
8004 to DiagCode instead of 16#8004 (i. e., a missing hexadecimal specifier, so the
value is decimal) then the value 16#1f44 would appear in the list, thereby mak-
ing the mistake obvious. Especially when developing function blocks, this helps
tremendously in catching bugs early.

8.8 conclusion & future work

In this chapter, we detailed how we implemented an efficient static analysis for
PLC code. The core of this analysis computes an over-approximation of the values
for each variable in each program location. This information can then be presented
to the user, used in further checks, or stored for further analyses. Crucial for the
efficiency of the analysis is the LVA information that allows to reduce the abstract
program states to manageable sizes. With these techniques, we could apply our
approach to large industrial programs.

5 The prefix 16#.. indicates hexadecimal constants

126 static analysis of plc programs

Using the checks we implemented, we were able to automatically detect many
real world bugs in PLC programs, while at the same time having a very low num-
ber of false positives. We were also able to implement PLC specific checks, which
can detect the misuse of certain firmware functions or inconsistent use of retain
variables.

In contrast to the approaches using model checking, which we presented in the
previous chapters, the static analysis works as a push button technique, i. e., it can
be used without any manual effort by the user, especially without any effort in
formulating the specifications. In practice, this means that many program errors
can be detected without any additional costs, which makes the static analysis very
attractive from the user’s point of view.

The current drawback of the analysis lies in the domains we provided. Since
we only implement non-relational domains such as intervals, relations between
variables are not captured precisely. Sometimes, this can cause false positives, as
in the following program fragment:

1 VAR

2 A : ARRAY[0..5] OF INT;

3 I, J: INT;

4 END_VAR

5 J:=0;

6 FOR I := 0 TO 5 DO

7 A[J] := 0;

8 J := J + 1;

9 END_FOR;

Here, we can infer that I ∈ [0, 5], but not that I = J. Hence, we get a spurious
warning in line 7 since we cannot infer the correct interval for J. In the future,
(weak) relational domains such as convex polyhedra [46], two variables per in-
equality [111], or octagons [87] can be implemented for such cases so as to further
reduce the number of remaining false positives.

9
S TAT I C A N A LY S I S & M O D E L C H E C K I N G I N T E R P L AY

We implemented model checking techniques to verify specific program properties
defined by the user, either by formulating CTL expressions or by safety automata.
We also implemented static analyses that work without the need for specification
by performing pre-defined checks or by computing program summaries. In this
chapter, we will show how these technique can interact, allowing more efficient
abstractions to verify larger programs. This will finally allow us to verify the safety
application introduced in the beginning (Fig. 1 on p. 2). On the other hand, we
will also explore techniques to improve the static analysis results using the model
checker.

The idea of using static analysis for state space reductions has also been applied
to verifying microcontroller binary code [104].

9.1 verification of a safety application

We now come back to the safety application shown at the beginning in Fig. 1 on
p. 2. We want to verify that whenever either the emergency stop button is activated
(using one of the redundant sensors) or the light curtain is triggered, the safe stop
functionality is activated, which will then ensure that the motor eventually stops.
Putting all of these requirements into a single formula is too complex, so we break
it down into sub-problems. First, we want check that whenever the emergency
stop buttons signals S1_S_EStopIn_1 or S1_S_EStopIn_2 become false1 then the
safety stop is activated:

AG ((¬S1_S_EStopIn_1∨ ¬S1_S_EStopIn_2)
=⇒ ¬SF_SafeStop1_1.S_StopIn) (1)

Similar, we want to verify this property for the light curtain:

AG (¬S2_S_ESPE_In_1 =⇒ ¬SF_SafeStop1_1.S_StopIn) (2)

1 These signals are implemented using reverse logic, so false means stop requested.

127

128 static analysis & model checking interplay

Finally, we want to verify that the safe stop SFB correctly responds and the motor
eventually comes to a stop:

AG ((¬SF_SafeStop1_1.S_StopIn
∧ Internal_Acknowledge

∧ SF_SafeStop1_1.Activate)

=⇒ EF S_Stopped) (3)

Here, Internal_Acknowledge refers to an internal signal acknowledged by the mo-
tor once it has actually stopped.

Verifying the properties (1), (2), and (3) using the techniques described thus far is
not possible, since the state space of the application is too large. We will, therefore,
introduce additional abstractions that make use of the information inferred by the
static analysis. In the end, these abstractions will allow us to verify the safety
properties of this application.

9.1.1 Modular Abstractions

The structure of our properties (and, vice versa, the structure of the safety applica-
tion) suggests that we modularly check only parts of the application. For property
(1), e. g., evaluating the SF_Equivalent and SF_EmergencyStop blocks is strictly
necessary. Due to the AND connecting to the other blocks, however, the application
cannot easily be reduced using slicing techniques [121]. We will hence introduce
a technique where we can selectively abstract blocks away or substitute them back
in, based on the formula that is verified and potential counterexamples.

The modular abstraction [13] replaces a call to a function block instance in a pro-Modular
Abstraction gram by a summary of the effects of the call. This means that we first compute the

summary of each function block using the static analysis, which over-approximates
the potential ranges of the output variables. Instead of calling a function block in
a program, we can now over-approximate the effect of the call by assigning the
summary to the output variables (and other variables that are externally visible).
We can thus save the execution of the FB and all refinements the execution would
entail during verification. Technically, we introduce new input variables MAi of
the caller of the FB for each output of the called FB. These inputs are then only
constrained to the summarized value-set of the called FB. On each call, the new
MAi variables are then copied in the variables of the abstracted FB. Consequently,
the modular abstraction can only be applied to function block instances that are
only called once per cycle (which is the typical usage).

Of course, not all function blocks are suitable for such an abstraction. To findSelecting Suitable
Blocks a good abstraction that is still precise enough for us to verify certain properties,

we augment the counterexample-based refinement scheme introduced in Chap. 4:
We first replace all function block calls. If then a counterexample depends on a
summarized function block call, we replace it back and restart.

9.1 verification of a safety application 129

kM

kk

kw

k

w

N

4

6

7

5 8

9

TckMms

FALSE

FALSE

FALSE

FALSE

TckMMms

PLCopenfSF_Equivalent_k

PLCopenfSF_Equivalent

Activate Ready

S_ChannelA S_EquivalentOut

S_ChannelB Error

DiscrepancyTime DiagCode

PLCopenfSF_EmergencyStop_k

PLCopenfSF_EmergencyStop

Activate Ready

S_EStopIn S_EStopOut

S_StartReset Error

S_AutoReset DiagCode

Reset

PLCopenfSF_ESPE_k

PLCopenfSF_ESPE

Activate Ready

S_ESPE_In S_ESPE_Out

S_StartReset Error

S_AutoReset DiagCode

Reset

PLCopenfSF_SafeStopk_k

PLCopenfSF_SafeStopk

Activate Ready

S_StopIn S_Stopped

AxisID Error

MonitoringTime DiagCode

Reset

Acknowledge

AND

INM AND

INk

AND

INM AND

INk

*&
*&
*&
*&

*&
*&
*&
*&

*&
*&
*&
*&

*&
*&
*&
*&

1 InputDevice1_active 2 S1_S_EStopIn_1

3 S1_S_EStopIn_2 4 S0_RESET

5 InputDevice2_active 6 S2_S_ESPEIn

7 S0_RESET 8 AxisID_1

9 S3_DriveReset 10 S_Stopped

11 Error

12 DiagCode

Figure 29: The abstracted example program.

This technique, however, is not sufficient to verify the safety application either.
The reason is that we want to verify (1), we first get an abstracted program as
shown in Fig. 29. This programs admits a spurious counterexample, but we can-
not easily decide which block (SF_EmergencyStop_1 or SF_ESPE_1) to replace first.
Depending on whether we want to verify (1) or (2), the former or the latter is
the correct choice. In the next section we describe a heuristic that allows us to
automatically select the correct block for the refinement for both formulae.

9.1.2 Selecting Modular Refinements using Forward Slicing

Slicing [121, 119, 58] is a program analysis that extracts a part of program, a so-
called program slice, w. r. t. a certain criterion. Such slicing criteria can be, e. g., a
set of variables or a set of statements of the program. Using forward slicing one can
then extract a slice that contains all parts of the program that can be influenced by
the criterion. Backward slicing, on the other hand, will extract a slice of all parts of
the program that can influence the property, i. e., the behavior of a certain criterion
in the slice is indistinguishable from the original program. Slicing is performed
by removing all program fragments that are—syntactically—independent from the
behavior of the criterion in interest. To give a concrete example, assume a program
is composed of two FBs that are not connected (neither via control nor via data
flow). To verify a property about the input/output variables of one of the FBs,

130 static analysis & model checking interplay

only that FB has to be considered since the FBs cannot influence each other. A
slicer can detect this using backward slicing on the property in question.

For our analysis we use a slicer that works on the CFG of our IR, which was
implemented independently of this work. It can perform forward and backward
slicing for a set of program locations or for a set of program variables. When verify-
ing properties, backward slicing is of special interest, for it returns a semantically
equivalent program reduced to the property of interest. In particular when the
safety function is part of a larger program, it allows to extract the relevant parts of
the program, which will greatly reduce the state space.

The safety applications and functions block we analyzed in this work, however,
were already reduced to their core safety function and not part of a larger appli-
cation. All remaining functionality was heavily intertwined and hence, slicing did
not have much effect in reducing the program size.

Instead of using backward slicing to produce a reduced program w. r. t. a safety
property, we can also use forward slicing to analyze the influence of a property on
the program. Here, we use forward slicing to select a block for refinement in theForward Slicing

modular abstraction. Therefore, we compute the forward slice of all variables used
in the specification. For formula (1), e. g., we would compute the forward slice of
S1_S_EStopIn_1, S1_S_EStopIn_2 and SF_SafeStop1_1.S_StopIn, which would in-
dicate that these variables have influence on the SF_Equivalent, SF_EmergencyStop
and SF_SafeStop block (as well as the AND block). The SF_ESPE block is not in the
slice. Hence, we infer that we substitute the other blocks before we substitute the
SF_ESPE block.

When proving formula (2), on the other hand, the SF_Equivalent and the SF_-

EmergencyStop blocks are not in the slice, and hence the SF_ESPE block is substi-
tuted first. For this application, it turns out that this strategy is ideal in finding
a suitable order of refinements. Yet, to verify the safety properties, we have to
introduce another static analysis based abstraction.

9.1.3 State Space Reduction using Liveness Analysis

In Sect. 8.2.4 we introduced the LVA analysis, which determines the set of live
variables for each program location. We used the results of this analysis to reduce
the number of variables that have to be tracked during the static analysis.

This analysis is now used to further speed up the model checking process by
reducing the state space. The key insight here is the following: Variables that
are not live at the end of the cycle cannot influence the next program cycle, since
their value is never read before being overwritten. We can, therefore, reset these
variables to their default value in each program configuration. The effect of this
is that states that differ only in dead variables only have to be handled once. This
allows us to further abstract states reducing the size of the state space.

Since the value of dead variables is not read, this optimization is sound. Dead
variables can, however, still play an important role if they are used in the specifi-

9.1 verification of a safety application 131

Property #states #transitions Time

(1) 26 444 1 723 574 6 min 5 s
(2) 2 178 64 540 4 s
(3) 2 736 114 086 7 s

Table 9: Evaluation of the verification of the safety application.

cation. Therefore, we evaluate the specification before we reset the dead variables.
After resetting these variables, states with an evaluation of the specification can
be equal (since they only differ in dead variables). To distinguish between such
states, we also store the evaluation of the atomic propositions as part of the PLC
configuration. This incurs no further overhead since (a) the labeling of the atomic
propositions is stored anyway as part of the model checking process, and (b) it will
only discriminate between states when it is made necessary due to the specifica-
tion.

In practice, the state space reduction using liveness analysis will reset at least all
input and temporary variables of the program. It will further reset other variables
that are not explicitly marked as temporary. When a counterexample is found, Counterexample

Replaythe values of the input variables become especially crucial in understanding the
counterexample. If their value is missing due to the abstraction, important infor-
mation is missing. To make the counterexample more expressive, we have to use
the counterexample analysis and replay techniques to add back the values of the
dead variables as described in Sect. 4.5.1. As a result, the abstraction has no effect
on the counterexamples when presented to the user.

9.1.4 Final Analysis

After enabling the modular abstraction with replacements selected by the forward
slicing and the LVA-based state space reductions, we can now verify the safety
application. When checking (1) with modular abstraction, we first abstract all FBs
to their summary. Hence a counterexample is generated in the first step. Then, we
select possible refinements using the forward slicer, which will substitute back the
SF_Equivalent and SF_EmergencyStop blocks. The LVA based abstraction is now
powerful enough to verify (1). Similar results are obtained for the other formulae.

The results proving all three properties for the safety application are shown in
Tab. 9. We can now prove all safety properties in this application. The only man-
ual step during the verification was the formalization of the properties in CTL. All
abstractions steps were performed automatically using Arcade.PLC and the tech-
niques described. It is important to observe that the conjunction of the properties
cannot directly be verified, since the automatic abstraction cannot be performed
as easily in this case. Therefore, we advocate to break down complex properties,

132 static analysis & model checking interplay

such as the behavior of the safety application, into simplex sub-problems. These
simplified formulae provide two advantages: They are more easily expressed in
a formal language such as CTL or a safety automaton, and it is often easier to
prove their validity using a model checker since simpler properties allow for more
aggressive abstractions.

9.2 using the model checker to augment static analysis results

In this section we will now turn to enhancing the static analyzer results using the
model checker. Since the static analyzer always works on an over-approximation
of the program semantics, its results (e. g., in form of warnings) can be spurious.
Additionally, it does not provide a proof, explanation or trace for its results. Often,
this means that the user has to manually verify whether a warning is indeed legiti-
mate or whether it originates from the over approximation. Even if it is legitimate,
a trace to reproduce a failure is often desired.

In this case, the model checker can be used to produce such a trace, which ex-
plains and strengthens the results of the static analyzer. The results of the function
block summary (cp. Sect. 8.7) can be analyzed in a straightforward way using the
model checker: For each value (or for each range of values) the model checker
can be asked to produce a witness for these values by checking, e. g., the formula
EF var = value.

Finally, the model checker can also be used to prove the reachability of the state-Detecting
Unreachable Code ments of the program [112]. While the static analysis already provides a warning

for unreachable lines, this warning will only catch unreachable lines in the over-
approximated semantics. This means that a line marked unreachable by the static
analysis is definitely unreachable, whereas a line that not marked might still not
be reachable. Using the model checker, these properties can be verified for all lines
such that all unreachable lines are caught. At the same time, the model checker pro-
vides a witness for each reachable line, which can aid test case generation [112, 30].

9.3 conclusion

In this chapter, we connected the static analysis results and the model checker
results to create more powerful analyses. First, we used the static analysis to
summarize function blocks, which then allowed us to verify the safety function
introduced in the first chapter. Crucial for this analysis was the modular abstrac-
tion. It works by abstracting function blocks by their summary, which are then
only refined if they are influencing a specification. We determined this influence
using counterexamples and forward slicing. Additionally, an LVA based abstrac-
tion that resets unused variables gave rise to a further reduction of the size of the
state spaces. The key component of these techniques is to use the results of the
static analysis in the model checker.

9.3 conclusion 133

Secondly, we demonstrated how the model checker can be used to strengthen
the results of the static analysis. It can, e. g., produce a witness for certain (illegal)
values in variables or prove that the values are infeasible and only a result of the
over-approximation of the static analysis. Additionally, it can be used to prove the
reachability of the statements of the program. Ultimately, this can be integrated in
a test case generation framework, where, e. g., a line coverage of the test cases is
achieved using the model checker.

10
C O N C L U S I O N

This dissertation studied the formal methods model checking and static analysis to
check PLC programs for correctness. Therefore, we created the tool Arcade.PLC
based on the existing [mc]square model checker. It provides both, automatic ab-
straction techniques to make industrial PLC programs or function blocks amenable
for a formal analysis, but also a graphical user interface that guides the user in the
application of formal methods. It thus tries to bridge the gap between the theory
of formal methods and formal methods in practice.

10.1 formal methods in practice

In practice, the use of formal methods is hindered by technical limitations, i. e.,
memory or time constraints due to the complexity of the algorithm, but also us-
ability issues, i. e., the manual effort to prepare and model the programs and for-
malize the specifications. In Arcade.PLC we therefore implemented features that
automatically extract an abstracted model using CEGAR-techniques (Chap. 4) and
a predicate abstraction (Chap. 5). Further, we implemented intuitive automata-
based formalisms (Chap. 6) and automatic error localization techniques (Chap. 7)
to make formal methods for PLC programs more accessible. Finally, we imple-
mented a static analysis that detects common programming errors (Chap. 8) as a
push button technology, which requires no manual effort from the user.

It is possible to use Arcade.PLC for the verification of function blocks, function
block libraries, or programs. It can be used by vendors of function block libraries
to check for problems using the static analysis, but also to verify that the function
blocks conform to their specification using the model checker. Users of function
block libraries can use the model checker to verify that the safety function is im-
plemented correctly.

Another important aspect and design goal of Arcade.PLC is that it can be ap-
plied to incomplete source code, i. e., programs where some functions or variables
are still missing. It is thus possible to apply our methods, especially the static
analysis, early during the implementation phase. This gives feedback about poten-
tial problems or special cases that where not yet considered in the implementation
process.

135

136 conclusion

The formal methods implemented in Arcade.PLC hence achieve multiple goals,
with increasing complexity for the user:

1. The static analysis is a light-weight technique that requires almost no effort
from the user apart from importing the programs into Arcade.PLC. It can
readily detect typical problems, for highly safety-critical as well as normal
code. Inspecting the results of the static analysis still requires manual ef-
fort, but due to the low number of false positives we saw in practice, gives
valuable feedback.

2. The model checker can be used to verify the behavior of function blocks. Us-
ing the automata-based specification formalisms introduced in Arcade.PLC,
this requires only moderate effort from the user.

3. The model checker can be used to verify the safety function of an application
using CTL. This step, however, usually requires deeper knowledge on how
to specify the safety function and how to interpret the results.

To summarize, we think that the formal methods implemented in Arcade.PLC
are ready to be deployed effectively in practice. Especially the static analysis can
be used without additional effort while finding many problems early in the imple-
mentation phase.

10.2 future work

Currently, Arcade.PLC offers support for PLC programs written in Instruction
List, Statement List, Structured Text, and Function Block Diagram. In the future,
the missing languages Sequential Function Chart (SFC) and Ladder Diagram (LD)
could be added. While a translation from SFC into our IR is possible and straight-
forward, the precision of the analysis of such a translation is likely to be very low.
The reason for this is that SFC allows for multiple program locations to be active
at the same time, which makes an analysis that works in a flow-sensitive way very
imprecise: The analysis will infer that all program locations can be active and thus
will propagate information between all steps of the SFC, independent of whether
such transitions are actually possible. A static analysis geared towards analyzing
SFCs, perhaps directly based on the representation of the SFC, could provide much
better results since it could restrict the control flow to the set of possible transitions.

For FBDs, similar extensions might be an interesting line of research. Although
FBDs are supported by the current approach, many warning of the static analysis
are not directly transferable to FBDs. The warning for unreachable code, e. g., is not
directly applicable to FBDs. Additionally, unreachable code is typical if the body
of an FBD is implemented in ST but a Boolean input is hard-wired, which triggers
the execution of this code. This is not necessary an error in the program, since the
functionality of this block might just be unneeded for the application. Hence, we

10.2 future work 137

believe that more research is necessary to extract more suitable warnings for FBDs.
Additional work in the user interface is required to present these warnings.

Further, a deeper integration into common PLC development tools might be a
valuable extension in the future. Currently, exporting a PLC program from a de-
velopment tool and then importing it back into Arcade is a tedious task that takes
valuable time. The benefits of an integration into a PLC development toolchain
are threefold: First, it would simplify the general accessibility of the programs
without the need for export and import functionality. At the same time, parsing
of the programs could be easier by accessing internal data structures. Finally, it
could provide a better (accustomed) user interface when presenting the problems
and warnings.

From a technical standpoint, more advanced abstraction techniques could also
be integrated into our framework. Recently, IC3-based1 algorithms [38] were used
for model checking invariants. These algorithm compute inductive invariants by
repeated SAT or SMT solver calls. This line of research could be a valuable exten-
sion for the model checker of Arcade.PLC.

A limitation of our current static analysis is that all abstract domains we imple-
mented are non-relational. In the futures, relational domains such as convex poly-
hedra [46], difference bound matrices [80, 124], two variables per inequality [111]
or octagons [87] could greatly enhance the precision of our results.

Finally, we recently developed a framework for automatic test case generation
using our abstraction refinement in Arcade.PLC [112, 30]. While the initial results
look very promising, a systematic approach using concolic testing [110] techniques
might generate better results.

1 IC3 stands for Incremental Construction of Inductive Clauses for Indubitable Correctness

B I B L I O G R A P H Y

[1] L. O. Andersen. Program Analysis and Specialization for the C Programming
Language. Dissertation, DIKU, University of Copenhagen, Copenhagen, Den-
mark, 1994.

[2] F. Asteasuain and V. Braberman. Specification patterns can be formal and
still easy. In SEKE (International Conference on Software Engineering and Know-
ledge Engineering), pages 430–436, 2010.

[3] M. Autili, P. Inverardi, and P. Pelliccione. Graphical scenarios for specifying
temporal properties: an automated approach. Automated Software Engineer-
ing, 14(3):293–340, 2007.

[4] C. Baier and J.-P. Katoen. Principles of Model Checking. The MIT Press, 2008.

[5] T. Ball, B. Cook, S. Das, and S. K. Rajamani. Refining approximations in
software predicate abstraction. In Tools and Algorithms for the Construction and
Analysis of Systems (TACAS 2004), volume 2988 of Lecture Notes in Computer
Science, pages 388–403. Springer, 2004.

[6] T. Ball, M. Naik, and S. K. Rajamani. From symptom to cause: Localizing
errors in counterexample traces. In Proceedings of the 30th ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages, POPL ’03, pages
97–105, New York, NY, USA, 2003. ACM.

[7] T. Ball, A. Podelski, and S. K. Rajamani. Boolean and cartesian abstraction
for model checking C programs. In TACAS, volume 2031 of LNCS, pages
268–283. Springer, 2001.

[8] M. Bani Younis and G. Frey. Formalization of existing PLC programs: A
survey. In CESA, 2003.

[9] L. Baresi, M. Mauri, A. Monti, and M. Pezze. PLCTools: Design, formal
validation, and code generation for programmable logic controllers. In SMC,
pages 2437–2442, 2000.

[10] C. Barrett, R. Sebastiani, S. Seshia, and C. Tinelli. Satisfiability modulo theo-
ries. Handbook of Satisfiability, 185:825–885, 2009.

[11] E. Beckschulze, S. Biallas, and S. Kowalewski. Static analysis of lockless
microcontroller C programs. In Proceedings Seventh Conference on Systems
Software Verification (SSV 2012), EPTCS, pages 103–114, 2012.

139

140 Bibliography

[12] D. Beyer, A. Cimatti, A. Griggio, M.E. Keremoglu, and R. Sebastiani.
Software model checking via large-block encoding. In Formal Methods in
Computer-Aided Design, 2009. FMCAD 2009, pages 25–32. IEEE, 2009.

[13] S. Biallas, D. Bohlender, and S. Kowalewski. Boolean and modular abstrac-
tions for programmable logic controllers. In Dependable Control of Discrete
Systems (DCDS’13), pages 97–102. IEEE, 2013.

[14] S. Biallas, J. Brauer, D. Gückel, and S. Kowalewski. On-the-fly path reduction.
Electronic Notes in Theoretical Computer Science, 274C:3–16, 2011. 4th Interna-
tional Workshop on Harnessing Theories for Tool Support in Software (TTSS
2010).

[15] S. Biallas, J. Brauer, A. King, and S. Kowalewski. Loop leaping with closures.
In Antoine Miné and David Schmidt, editors, 19th Static Analysis Symposium,
Lecture Notes in Computer Science, pages 214–230. Springer Berlin Heidel-
berg, 2012.

[16] S. Biallas, J. Brauer, and S. Kowalewski. Counterexample-guided abstraction
refinement for PLCs. In 5th International Workshop on Systems Software Veri-
fication (SSV 2010), Vancouver, Canada, pages 2–12, Berkeley, CA, USA, 2010.
USENIX Association.

[17] S. Biallas, J. Brauer, and S. Kowalewski. Sat-based abstraction refinement
for programmable logic controllers. In Dependable Control of Discrete Systems
(DCDS’11), pages 96–101. IEEE, 2011.

[18] S. Biallas, J. Brauer, and S. Kowalewski. Arcade.PLC: A verification platform
for programmable logic controllers. In Proceedings of the 27th IEEE/ACM Inter-
national Conference on Automated Software Engineering, ASE 2012, pages 338–
341. ACM, 2012.

[19] S. Biallas, J. Brauer, S. Kowalewski, and B. Schlich. Automatically deriving
symbolic invariants for PLC programs written in IL. In Eckehard Schnieder
and Geza Tarnai, editors, FORMS/FORMAT 2010, pages 237–245. Springer
Berlin Heidelberg, 2011.

[20] S. Biallas, G. Frey, S. Kowalewski, B. Schlich, and D. Soliman. Formale
Verifikation von Sicherheits-Funktionsbausteinen der PLCopen auf Modell-
und Code-Ebene. In Tagungsband Entwicklung und Betrieb komplexer Automa-
tisierungssysteme (EKA 2010), pages 49–57. ifak Magdeburg, 2010.

[21] S. Biallas, N. Friedrich, H. Simon, and S. Kowalewski. Automatic error cause
localization of faulty PLC programs. In Dependable Control of Discrete Systems
(DCDS’15), volume 48, pages 79–84. Elsevier Ltd, 2015.

Bibliography 141

[22] S. Biallas, M. Giacobbe, and S. Kowalewski. Predicate abstraction for pro-
grammable logic controllers. In 18th International Workshop on Formal Methods
for Industrial Critical Systems (FMICS 2013), pages 123–138, 2013.

[23] S. Biallas, V. Kamin, S. Kowalewski, B. Schlich, S. Sehestedt, and S. Stat-
telmann. Verifikation von sicherheitsgerichteten SPS-Programmen mit Hilfe
von Safety-Automaten. In VDI Wissensforum, editor, Automation 2013, VDI
Berichte. VDI-Verlag, 2013.

[24] S. Biallas, S. Kowalewski, and B. Schlich. Leistungsfähige Verifikation von
industriellen SPS-Programmen mittels Model-Checking und statischer Ana-
lyse. In AUTOMATION 2011, Baden-Baden, Germany, number 2143 in VDI-
Berichte, pages 67–72, Düsseldorf, 2011. VDI-Verlag.

[25] S. Biallas, S. Kowalewski, and B. Schlich. Automatische Wertebereichsanal-
yse – Formale Verifikation für SPS-Programme. Automatisierungstechnische
Praxis (atp EDITION), 54. Jahrgang, 7-8/2012, pages 68–74, 2012.

[26] S. Biallas, S. Kowalewski, and B. Schlich. Automatische Wertebereichsanal-
yse von SPS-Programmen. In AUTOMATION 2012, Baden-Baden, Germany,
number 2171 in VDI-Berichte, pages 79–83, Düsseldorf, 2012. VDI-Verlag.
Long version (12 pages) on CD-ROM.

[27] S. Biallas, S. Kowalewski, and B. Schlich. Range and value-set analysis for
programmable logic controllers. In Proceedings of the 11th International Work-
shop on Discrete Event Systems, pages 378–383, Guadalajara, Mexico, 2012.
IFAC.

[28] S. Biallas, S. Kowalewski, S. Stattelmann, and B. Schlich. Efficient handling of
states in abstract interpretation of industrial programmable logic controller
code. In Proceedings of the 12th International Workshop on Discrete Event Systems,
pages 400–405, Cachan, France, 2014. IFAC.

[29] S. Biallas, M. Chr. Olesen, F. Cassez, and R. Huuck. Ptrtracker: Pragmatic
pointer analysis. In 13th IEEE International Working Conference on Source Code
Analysis and Manipulation (SCAM 2013), 2013.

[30] S. Biallas, H. Simon, S. Kowalewski, S. Hauck-Stattelmann, and B. Schlich.
Automatische testfallgenerierung für sps-programme mittels zeilenüberdeck-
ung. In AUTOMATION 2015, pages 100–111. VDI, 2015.

[31] F. Bitsch. Verfahren zur Spezifikation funktionaler Sicherheitsanforderungen für
Automatisierungssysteme in Temporallogik. PhD thesis, Universität Stuttgart,
Holzgartenstr. 16, 70174 Stuttgart, 2007.

[32] D. Bohlender. Bachelor thesis: Modulare und Boolesche Abstraktion von SPS-
Programmen, 2013. Lehrstuhl für Informatik 11, RWTH Aachen University.

142 Bibliography

[33] S. Bornot, R. Huuck, B. Lukoschus, and Y. Lakhnech. Utilizing static analysis
for programmable logic controllers. In ADPM, pages 183–187, 2000.

[34] A. Braining. Master thesis: Model-Checking Automaten-basierter Spezifika-
tionen für eingebettete Systeme, 2013. Lehrstuhl für Informatik 11, RWTH
Aachen University.

[35] J. Brauer, T. Noll, and B. Schlich. Interval analysis of microcontroller code
using abstract interpretation of hardware and software. In SCOPES 2010.
ACM, 2010.

[36] G. Canet, S. Couffin, J.-J. Lesage, A. Petit, and P. Schnoebelen. Towards the
automatic verification of PLC programs written in instruction list. In 2000
IEEE International Conference on Systems, Man, and Cybernetics, Nashville, TN,
USA, volume 4, pages 2449–2454. IEEE Computer Society Press, 2000.

[37] L. Chen and W. L. Harrison III. An efficient approach to computing fixpoints
for complex program analysis. In Proceedings of the 8th International Conference
on Supercomputing, ICS ’94, pages 98–106. ACM, 1994.

[38] A. Cimatti and A. Griggio. Software model checking via IC3. In Proceedings of
the 24th International Conference on Computer Aided Verification, CAV’12, pages
277–293, Berlin, Heidelberg, 2012. Springer-Verlag.

[39] E. M. Clarke. The Birth of Model Checking. Springer-Verlag, Berlin, Heidelberg,
2008.

[40] E. M. Clarke, O. Grumberg, S. Jha, Y. Lu, and H. Veith. Counterexample-
guided abstraction refinement. In Computer Aided Verification (CAV 2000),
Chicago, USA, volume 1855 of Lecture Notes in Computer Science, pages 154–
169. Springer, 2000.

[41] E. M. Clarke, O. Grumberg, S. Jha, Y. Lu, and H. Veith. Progress on the
state explosion problem in model checking. In Informatics - 10 Years Back. 10
Years Ahead, volume 2000 of Lecture Notes in Computer Science, pages 176–194.
Springer, 2001.

[42] E. M. Clarke, O. Grumberg, and D. A. Peled. Model Checking. The MIT Press,
1999.

[43] A. Cortesi. Widening operators for abstract interpretation. In Sixth IEEE
International Conference on Software Engineering and Formal Methods, pages 31–
40, 2008.

[44] P. Cousot and R. Cousot. Abstract interpretation: A unified lattice model for
static analysis of programs by construction or approximation of fixpoints. In
Conference Record of the Fourth Annual ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages, pages 238–252. ACM, 1977.

Bibliography 143

[45] P. Cousot and R. Cousot. Refining model checking by abstract interpretation.
Automated Software Engineering, 6:69–95, 1999.

[46] P. Cousot and N. Halbwachs. Automatic discovery of linear restraints among
variables of a program. In Proceedings of the 5th ACM SIGACT-SIGPLAN
Symposium on Principles of Programming Languages, POPL ’78, pages 84–96,
New York, NY, USA, 1978. ACM.

[47] R. Cytron, J. Ferrante, B. K. Rosen, M. N. Wegman, and F. K. Zadeck. Eff-
ciently computing static single assignment form and the control dependence
graph. ACM Transaction on Programming Languages and Systems, pages 451–
590, 1991.

[48] W. Damm and D. Harel. LSCs: Breathing life into message sequence charts.
Formal Methods in System Design, 19(1):45–80, 2001.

[49] D. Darvas, B. Adiego, A. Vörös, T. Bartha, E. Viñuela, and V. Suárez. Formal
verification of complex properties on PLC programs. In 34th IFIP International
Conference on Formal Techniques for Distributed Objects, Components and Systems
(FORTE), pages 284–299, 2014.

[50] H. Dierks. PLC-Automata: A New Class of Implementable Real-time Au-
tomata. Theor. Comput. Sci., 253(1):61–93, February 2001.

[51] L. K. Dillon, G. Kutty, L. E. Moser, P. M. Melliar-smith, and Y. S. Ramakr-
ishna. A graphical interval logic for specifying concurrent systems. ACM
Transactions on Software Engineering and Methodology, 3:131–165, 1994.

[52] M. B. Dwyer, G. S. Avrunin, and J. C. Corbett. Patterns in property spec-
ifications for finite-state verification. In Proceedings of the 21st International
Conference on Software Engineering, ICSE ’99, pages 411–420, New York, NY,
USA, 1999. ACM.

[53] E. A. Emerson. Handbook of Theoretical Computer Science, volume B, chapter
Temporal and Modal Logics, pages 995–1072. The MIT Press, 1991.

[54] E. Ermis, M. Schäf, and T. Wies. Error invariants. In FM 2012: Formal Methods,
volume 7436 of Lecture Notes in Computer Science, pages 187–201. Springer
Berlin Heidelberg, 2012.

[55] G. Frey, B. Schlich, R. Drath, and R. Eschbach. Safety automata – A new
specification language for the development of PLC safety applications. In
Emerging Technologies Factory Automation (ETFA), 2012 IEEE 17th Conference
on, pages 1–8, Sept 2012.

[56] N. Friedrich. Bachelor thesis: Precise Counterexamplegeneration for Pro-
grammable Logic Controllers, 2013. Lehrstuhl für Informatik 11, RWTH
Aachen University.

144 Bibliography

[57] V. Gafni. About the Compilation of CSL, a Real-Time — pattern
based — Specification Language. http://www.cs.tau.ac.il/~amiramy/

SoftwareSeminar/CSL_TAU_Talk_July_09.ppt. Accessed: 2015-09-14.

[58] K. Gallagher and D. Binkley. Program slicing. In Frontiers of Software Mainte-
nance, pages 58–67, Sept 2008.

[59] M. Giacobbe. Master thesis: Predicate Abstraction of PLC Programs using
SMT Solving, 2013. Lehrstuhl für Informatik 11, RWTH Aachen University.

[60] T. Goldschmidt, M. Murugaiah, C. Sonntag, B. Schlich, S. Biallas, and P. We-
ber. Cloud-based control: A multi-tenant, horizontally scalable soft-PLC. In
CLOUD 2015, 2015.

[61] T. Goldschmidt, M. Murugaiah, C. Sonntag, B. Schlich, S. Biallas, and P. We-
ber. Cloud-basierte Steuerungen: Eine horizontal skalierbare, multi-tenant-
fähige Soft-SPS. In VDI Wissensforum, editor, Automation 2015, VDI Berichte.
VDI-Verlag, 2015.

[62] V. Gourcuff, O. De Smet, and J. M. Faure. Efficient representation for formal
verification of PLC programs. In 8th International Workshop on Discrete Event
Systems, pages 182–187, 2006.

[63] V. Gourcuff, O. De Smet, and J.-M. Faure. Improving large-sized PLC pro-
grams verification using abstractions. In Proceedings of the 17th IFAC World
Congress, pages 5101–5106, 2008.

[64] S. Graf and H. Saïdi. Construction of Abstract State Graphs with PVS. In
CAV, volume 1254 of LNCS, pages 72–83. Springer, 1997.

[65] A. Groce, S. Chaki, D. Kroening, and O. Strichman. Error explanation with
distance metrics. Int. J. Softw. Tools Technol. Transf., 8(3):229–247, June 2006.

[66] D. Gückel. Synthesis of State Space Generators for Model Checking Microcon-
troller Code. Dissertation, Fakultät für Mathematik, Informatik und Natur-
wissenschaften der RWTH Aachen, November 2014.

[67] D. Gückel and S. Kowalewski. Automatic derivation of abstract semantics
from instruction set descriptions. In Proceedings of the 6th International Work-
shop on Systems Software Verification (SSV 2011), pages 18–32. TU Dresden,
2011.

[68] S. Hauck-Stattelmann, S. Biallas, B. Schlich, S. Kowalewski, and R. Jetley.
Analyzing the restart behavior of industrial control applications. In Nikolaj
Bjørner and Frank de Boer, editors, FM 2015: Formal Methods, volume 9109
of Lecture Notes in Computer Science, pages 585–588. Springer International
Publishing, 2015.

http://www.cs.tau.ac.il/~amiramy/SoftwareSeminar/CSL_TAU_Talk_July_09.ppt
http://www.cs.tau.ac.il/~amiramy/SoftwareSeminar/CSL_TAU_Talk_July_09.ppt

Bibliography 145

[69] T. Henzinger, R. Jhala, R. Majumdar, and G. Sutre. Lazy abstraction. In
Proceedings of the 29th ACM SIGPLAN-SIGACT symposium on Principles of pro-
gramming languages, POPL ’02, pages 58–70, New York, NY, USA, 2002. ACM.

[70] International Electrotechnical Commission. IEC 61508: Functional Safety of
Electrical, Electronic and Programmable Electronic Safety-Related Systems. Inter-
national Electrotechnical Commission, Geneva, Switzerland, 1998.

[71] International Electrotechnical Commission. IEC 61131: Programmable Con-
trollers. International Electrotechnical Commission, Geneva, Switzerland,
2003.

[72] International Electrotechnical Commission. IEC 60848: GRAFCET specifica-
tion language for sequential function charts. International Electrotechnical Com-
mission, Geneva, Switzerland, 2013.

[73] International Electrotechnical Commission. IEC 62714: Engineering data ex-
change format for use in industrial automation systems engineering - Part 1: Archi-
tecture and General Requirements. International Electrotechnical Commission,
Geneva, Switzerland, 2014.

[74] S. Konrad and B.H.C. Cheng. Facilitating the construction of specification
pattern-based properties. In Requirements Engineering, 2005. Proceedings. 13th
IEEE International Conference on, pages 329–338, Aug 2005.

[75] B. Kormann and B. Vogel-Heuser. Automated test case generation approach
for PLC control software exception handling using fault injection. In IECON
2011 - 37th Annual Conference on IEEE Industrial Electronics Society, pages 365–
372, 2011.

[76] T. Kumazawa and T. Tamai. Counterexample-based error localization of be-
havior models. In Mihaela Bobaru, Klaus Havelund, GerardJ. Holzmann,
and Rajeev Joshi, editors, NASA Formal Methods, volume 6617 of Lecture Notes
in Computer Science, pages 222–236. Springer Berlin Heidelberg, 2011.

[77] R. P. Kurshan. Computer-aided verification of coordinating processes: the automata-
theoretic approach. Princeton University Press, Princeton, NJ, USA, 1994.

[78] S. K. Lahiri, R. Nieuwenhuis, and A. Oliveras. SMT Techniques for Fast Pred-
icate Abstraction. In CAV, volume 4144 of LNCS, pages 424–437. Springer,
2006.

[79] F. Laroussinie, A. Meyer, and E. Petonnet. Counting CTL. In Luke Ong, edi-
tor, Foundations of Software Science and Computational Structures, volume 6014
of Lecture Notes in Computer Science, pages 206–220. Springer Berlin Heidel-
berg, 2010.

146 Bibliography

[80] K.G. Larsen, F. Larsson, P. Pettersson, and Wang Yi. Efficient verification
of real-time systems: compact data structure and state-space reduction. In
Real-Time Systems Symposium, 1997. Proceedings., The 18th IEEE, pages 14–24,
Dec 1997.

[81] V. I. Levenshtein. Binary codes capable of correcting deletions, insertions,
and reversals. Soviet Physics Doklady, 10(8):707–710, 1966.

[82] O. Ljungkrantz, K. Åkesson, Chengyin Yuan, and M. Fabian. Towards indus-
trial formal specification of programmable safety systems. Control Systems
Technology, IEEE Transactions on, 20(6):1567–1574, Nov 2012.

[83] K. L. McMillan. Lazy abstraction with interpolants. In Proceedings of the 18th
international conference on Computer Aided Verification, CAV’06, pages 123–136,
Berlin, Heidelberg, 2006. Springer-Verlag.

[84] T. Mertke. Formale Spezifikation reaktiver Systeme mit einer Sicherheitsfachsprache.
Dissertation, Brandenburgisch Technische Universität Cottbus, August 2004.

[85] T. Mertke and G. Frey. Formal verification of PLC-programs generated from
signal interpreted petri nets. In 2001 IEEE International Conference on Systems,
Man, and Cybernetics, Tuscon, AZ, USA, volume 4, pages 2700–2705. IEEE
Computer Society Press, 2001.

[86] T. Mertke and T. Menzel. Methods and tools to the verification safety-related
control software. In SMC, pages 2455–2457, 2000.

[87] A. Miné. The octagon abstract domain. Higher Order Symbol. Comput.,
19(1):31–100, March 2006.

[88] I. Moon. Modeling programmable logic controllers for logic verification.
IEEE Control Systems Magazine, 14(2):53–59, 1994.

[89] L. Moura and N. Bjørner. Z3: An Efficient SMT Solver. In TACAS, volume
4963 of LNCS, pages 337–340. Springer, 2008.

[90] M. Musuvathi, D. Y. W. Park, A. Chou, D. R. Engler, and D. L. Dill. CMC: A
Pragmatic Approach to Model Checking Real Code. SIGOPS Oper. Syst. Rev.,
36(SI):75–88, 2002.

[91] G. J. Myers and C. Sandler. The Art of Software Testing. John Wiley & Sons,
2004.

[92] T. Noll and B. Schlich. Delayed nondeterminism in model checking embed-
ded systems assembly code. In Hardware and Software: Verification and Testing
(HVC 2007), Haifa, Israel, volume 4899 of Lecture Notes in Computer Science,
pages 185–201. Springer, 2008.

Bibliography 147

[93] O. Pavlovic, R. Pinger, and M. Kollmann. Automated formal verification
of PLC programms written in IL. In 4th International Verification Workshop
(VERIFY’07), Bremen, Germany, number 259 in CEUR Workshop Proceedings,
pages 152–163. CEUR-WS.org, 2007.

[94] PLCopen TC5. Safety Software Technical Specification, Version 1.0, Part 1: Con-
cepts and Function Blocks. PLCopen, Germany, 2006.

[95] H. Prähofer, F. Angerer, R. Ramler, H. Lacheiner, and F. Grillenberger. Op-
portunities and challenges of static code analysis of IEC 61131-3 programs.
In IEEE 17th Conference on Emerging Technologies Factory Automation (ETFA),
pages 1–8, Sept 2012.

[96] R. Ramler, W. Putschögl, and D. Winkler. Automated testing of industrial
automation software: Practical receipts and lessons learned. In Proceedings
of the 1st International Workshop on Modern Software Engineering Methods for
Industrial Automation, MoSEMInA 2014, pages 7–16, New York, NY, USA,
2014. ACM.

[97] J. Regehr and U. Duongsaa. Deriving abstract transfer functions for analyz-
ing embedded software. In ACM SIGPLAN/SIGBED Conference on Language,
Compiler, and Tool Support for Embedded Systems (LCTES 2006), Ottawa, Canada,
pages 34–43. ACM, 2006.

[98] J. Regehr and A. Reid. HOIST: A system for automatically deriving static
analyzers for embedded systems. ACM SIGOPS Operating Systems Review,
38(5):133–143, 2004.

[99] T. Reinbacher and J. Brauer. Precise control flow reconstruction using bool-
ean logic. In Samarjit Chakraborty, Ahmed Jerraya, Sanjoy K. Baruah, and
S. Fischmeister, editors, International Conference on Embedded Software (EM-
SOFT 2011), pages 117–126. ACM, 2011.

[100] T. Reinbacher, J. Brauer, M. Horauer, and B. Schlich. Refining assembly code
static analysis for the Intel MCS-51 microcontroller. In Industrial Embedded
Systems (SIES’09), Lausanne, Switzerland, pages 161–170. IEEE Computer So-
ciety Press, 2009.

[101] T. Reinbacher, M. Horauer, B. Schlich, J. Brauer, and F. Scheuer. Model
checking embedded software of an industrial knitting machine. International
Journal of Information Technology, Communications and Convergenceonvergence,
pages 186–205, 2010.

[102] M. Renieris and S. P. Reiss. Fault localization with nearest neighbor queries.
In 18th IEEE International Conference on Automated Software Engineering (ASE
2003), 6-10 October 2003, Montreal, Canada, pages 30–39, 2003.

148 Bibliography

[103] B. Schlich. Model Checking of Software for Microcontrollers. Dissertation, RWTH
Aachen University, Aachen, Germany, June 2008.

[104] B. Schlich, J. Brauer, and S. Kowalewski. Application of static analyses for
state space reduction to microcontroller binary code. Sci. Comput. Program.,
76(2):100–118, 2011.

[105] B. Schlich, J. Brauer, J. Wernerus, and S. Kowalewski. Direct model checking
of PLC programs in IL. In Dependable Control of Discrete Systems (DCDS’09),
Bari, Italy, pages 28–33, 2009.

[106] B. Schlich and S. Kowalewski. Model checking C source code for embedded
systems. International Journal on Software Tools for Technology Transfer (STTT),
2009.

[107] T. Schlipf, T. Buechner, R. Fritz, M. M. Helms, and J. Koehl. Formal verifi-
cation made easy. IBM Journal of Research and Development, 41(4&5):567–576,
1997.

[108] A. Schumacher. Bachelor thesis: Verifikation von STL-Programmen mit
[mc]square, 2011. Lehrstuhl für Informatik 11, RWTH Aachen University.

[109] H. Seidl, R. Wilhelm, and S. Hack. Compiler Design – Analysis and Transforma-
tion. Springer, 2012.

[110] K. Sen, D. Marinov, and G. Agha. CUTE: A concolic unit testing engine for
C. In European Software Engineering Conference/Foundations of Software Engi-
neering (ESEC/FSE 05), pages 263–272. ACM Press, 2005.

[111] A. Simon and A. King. The two variable per inequality abstract domain.
Higher-Order and Symbolic Computation, 23(1):87–143, 2010.

[112] H. Simon, N. Friedrich, S. Biallas, S. Hauck-Stattelmann, B. Schlich, and
S. Kowalewski. Automatic test case generation for PLC programs using cov-
erage metrics. In ETFA, 2015. To appear.

[113] A. Smith, A. Veneris, M. F. Ali, and A. Viglas. Fault diagnosis and logic
debugging using boolean satisfiability. Trans. Comp.-Aided Des. Integ. Cir. Sys.,
24(10):1606–1621, November 2006.

[114] D. Soliman and G. Frey. Verification and Validation of Safety Applications
based on PLCopen Safety Function Blocks using Timed Automata in Uppaal.
In 2nd IFAC Workshop on Dependable Control of Discrete Systems (DCDS), 2009.

[115] S. Stattelmann, S. Biallas, B. Schlich, and S. Kowalewski. Applying static code
analysis on industrial controller code. In 19th IEEE International Conference on
Emerging Technologies and Factory Automation (ETFA). IEEE, 2014. To appear.

Bibliography 149

[116] A. Sülflow and R. Drechsler. Verification of PLC programs using formal
proof techniques. In G. Tarnai and E. Schnieder, editors, Formal Meth-
ods for Automation and Safety in Railway and Automotive Systems (FORMS/-
FORMAT 2008), Budapest, Hungary, pages 43–50, Budapest, Hungary, 2008.
L’Harmattan.

[117] A. Sülflow and R. Drechsler. Automatic fault localization for programmable
logic controllers. In Eckehard Schnieder and Géza Tarnai, editors, FORMS/-
FORMAT, pages 247–256. Springer, 2010.

[118] R. Šusta. Verification of PLC Programs. PhD thesis, CTU-FEE Prague, 2002.

[119] F. Tip. A survey of program slicing techniques. Technical report, Amsterdam,
The Netherlands, The Netherlands, 1994.

[120] R. A. Wagner and M. J. Fischer. The string-to-string correction problem. J.
ACM, 21(1):168–173, January 1974.

[121] M. Weiser. Program slicing. In Proceedings of the 5th international conference
on Software engineering (ICSE 81), San Diego, USA, pages 439–449. IEEE Press,
1981.

[122] B. Wichmann, A. Canning, D. L. Clutterbuck, L. A. Winsborrow, N. J. Ward,
and D. W. R. Marsh. Industrial perspective on static analysis. Software Engi-
neering Journal, pages 69–75, 1995.

[123] W. E. Wong and V. Debroy. A survey of software fault localization, 2009.
Technical Report UTDCS-45-09. Department of Computer Science. The Uni-
versity of Texas at Dallas.

[124] S. Yovine. Model checking timed automata. In Lectures on Embedded Systems,
volume 1494 of Lecture Notes in Computer Science, pages 114–152. Springer
Berlin Heidelberg, 1998.

A A C H E N E R I N F O R M AT I K - B E R I C H T E

This list contains all technical reports published during the past three years. A
complete list of reports dating back to 1987 is available from:

http://aib.informatik.rwth-aachen.de/

To obtain copies please consult the above URL or send your request to:

Informatik-Bibliothek, RWTH Aachen, Ahornstr. 55, 52056 Aachen,
Email: biblio@informatik.rwth-aachen.de

2013-01 ⇤ Fachgruppe Informatik: Annual Report 2013
2013-02 Michael Reke: Modellbasierte Entwicklung automobiler

Steuerungssysteme in Klein- und mittelständischen Unternehmen
2013-03 Markus Towara and Uwe Naumann: A Discrete Adjoint Model for

OpenFOAM
2013-04 Max Sagebaum, Nicolas R. Gauger, Uwe Naumann, Johannes Lotz,

and Klaus Leppkes: Algorithmic Differentiation of a Complex C++
Code with Underlying Libraries

2013-05 Andreas Rausch and Marc Sihling: Software & Systems Engineering
Essentials 2013

2013-06 Marc Brockschmidt, Byron Cook, and Carsten Fuhs: Better termination
proving through cooperation

2013-07 André Stollenwerk: Ein modellbasiertes Sicherheitskonzept für die ex-
trakorporale Lungenunterstützung

2013-08 Sebastian Junges, Ulrich Loup, Florian Corzilius and Erika Ábrahám:
On Gröbner Bases in the Context of Satisfiability-Modulo-Theories
Solving over the Real Numbers

2013-10 Joost-Pieter Katoen, Thomas Noll, Thomas Santen, Dirk Seifert, and
Hao Wu: Performance Analysis of Computing Servers using Stochastic
Petri Nets and Markov Automata

2013-12 Marc Brockschmidt, Fabian Emmes, Stephan Falke, Carsten Fuhs, and
Jürgen Giesl: Alternating Runtime and Size Complexity Analysis of
Integer Programs

2013-13 Michael Eggert, Roger Häußling, Martin Henze, Lars Hermerschmidt,
René Hummen, Daniel Kerpen, Antonio Navarro Pérez, Bernhard
Rumpe, Dirk Thißen, and Klaus Wehrle: SensorCloud: Towards the
Interdisciplinary Development of a Trustworthy Platform for Globally
Interconnected Sensors and Actuators

151

152 aachener informatik-berichte

2013-14 Jörg Brauer: Automatic Abstraction for Bit-Vectors using Decision Pro-
cedures

2013-16 Carsten Otto: Java Program Analysis by Symbolic Execution
2013-19 Florian Schmidt, David Orlea, and Klaus Wehrle: Support for error

tolerance in the Real-Time Transport Protocol
2013-20 Jacob Palczynski: Time-Continuous Behaviour Comparison Based on

Abstract Models
2014-01 ⇤ Fachgruppe Informatik: Annual Report 2014
2014-02 Daniel Merschen: Integration und Analyse von Artefakten in der mod-

ellbasierten Entwicklung eingebetteter Software
2014-03 Uwe Naumann, Klaus Leppkes, and Johannes Lotz: dco/c++ User

Guide
2014-04 Namit Chaturvedi: Languages of Infinite Traces and Deterministic

Asynchronous Automata
2014-05 Thomas Ströder, Jürgen Giesl, Marc Brockschmidt, Florian Frohn,

Carsten Fuhs, Jera Hensel, and Peter Schneider-Kamp: Automated Ter-
mination Analysis for Programs with Pointer Arithmetic

2014-06 Esther Horbert, Germán Martín García, Simone Frintrop, and Bastian
Leibe: Sequence Level Salient Object Proposals for Generic Object De-
tection in Video

2014-07 Niloofar Safiran, Johannes Lotz, and Uwe Naumann: Algorithmic Dif-
ferentiation of Numerical Methods: Second-Order Tangent and Ad-
joint Solvers for Systems of Parametrized Nonlinear Equations

2014-08 Christina Jansen, Florian Göbe, and Thomas Noll: Generating Induc-
tive Predicates for Symbolic Execution of Pointer-Manipulating Pro-
grams

2014-09 Thomas Ströder and Terrance Swift (Editors): Proceedings of the Inter-
national Joint Workshop on Implementation of Constraint and Logic
Programming Systems and Logic-based Methods in Programming En-
vironments 2014

2014-14 Florian Schmidt, Matteo Ceriotti, Niklas Hauser, and Klaus Wehrle:
HotBox: Testing Temperature Effects in Sensor Networks

2014-15 Dominique Gückel: Synthesis of State Space Generators for Model
Checking Microcontroller Code

2014-16 Hongfei Fu: Verifying Probabilistic Systems: New Algorithms and
Complexity Results

2015-01 ⇤ Fachgruppe Informatik: Annual Report 2015
2015-02 Dominik Franke: Testing Life Cycle-related Properties of Mobile Ap-

plications
2015-05 Florian Frohn, Jürgen Giesl, Jera Hensel, Cornelius Aschermann, and

Thomas Ströder: Inferring Lower Bounds for Runtime Complexity
2015-06 Thomas Ströder and Wolfgang Thomas (Editors): Proceedings of the

Young Researchers’ Conference “Frontiers of Formal Methods”

aachener informatik-berichte 153

2015-07 Hilal Diab: Experimental Validation and Mathematical Analysis of Co-
operative Vehicles in a Platoon

2015-08 Mathias Pelka, Jó Agila Bitsch, Horst Hellbrück, and Klaus Wehrle
(Editors): Proceedings of the 1st KuVS Expert Talk on Localization

2015-09 Xin Chen: Reachability Analysis of Non-Linear Hybrid Systems Using
Taylor Models

2015-11 Stefan Wüller, Marián Kühnel, and Ulrike Meyer: Information Hiding
in the Public RSA Modulus

2015-12 Christoph Matheja, Christina Jansen, and Thomas Noll: Tree-like
Grammars and Separation Logic

2015-13 Andreas Polzer: Ansatz zur variantenreichen und modellbasierten
Entwicklung von eingebetteten Systemen unter Berücksichtigung
regelungs- und softwaretechnischer Anforderungen

2015-14 Niloofar Safiran and Uwe Naumann: Symbolic vs. Algorithmic Differ-
entiation of GSL Integration Routines

2016-01 ⇤ Fachgruppe Informatik: Annual Report 2016
2016-02 Ibtissem Ben Makhlouf: Comparative Evaluation and Improvement of

Computational Approaches to Reachability Analysis of Linear Hybrid
Systems

2016-03 Florian Frohn, Matthias Naaf, Jera Hensel, Marc Brockschmidt, and
Jürgen Giesl: Lower Runtime Bounds for Integer Programs

2016-04 Jera Hensel, Jürgen Giesl, Florian Frohn, and Thomas Ströder: Prov-
ing Termination of Programs with Bitvector Arithmetic by Symbolic
Execution

2016-05 Mathias Pelka, Grigori Goronzy, Jó Agila Bitsch, Horst Hellbrück, and
Klaus Wehrle (Editors): Proceedings of the 2nd KuVS Expert Talk on
Localization

2016-06 Martin Henze, René Hummen, Roman Matzutt, Klaus Wehrle: The
SensorCloud Protocol: Securely Outsourcing Sensor Data to the Cloud

⇤ These reports are only available as a printed version.
Please contact biblio@informatik.rwth-aachen.de to obtain copies.

	Introduction
	Formal Verification of PLC Code
	Contribution & Outline
	Model Checking
	Static Analysis
	Combining Model Checking and Static Analysis

	Related Work
	Bibliographic Notes & Contributions by the Author

	Formal Verification of PLC Code
	A Brief History of Programmable Logic Controllers
	Status Quo
	Program Organization Units
	Modes of Operation
	Programming Languages
	Variables, Data Types, Lifetime and Scope
	General Organization
	Timers
	Function Block Calls
	Standard & Vendor-Specific Extensions

	PLCopen
	Formal Verification using Model Checking
	Kripke Structures
	CTL Formulae
	Counterexamples and Witnesses

	Model Checking PLC Programs
	Concrete Model
	Abstract Model for PLC Programs

	Implementation
	Arcade.PLC
	Organization
	Generic Simulator and Abstract Domains
	Lattices
	Intervals
	Bitsets
	Extensions
	Reduced Product

	Translation to the Intermediate Representation
	Parsers
	Annotations using Pragmas
	Pragmatic & Practical Considerations
	Instructions

	Counterexample-Guided Abstraction Refinement
	Approach
	Related Work
	Contributions & Outline

	Worked Example
	Constraint Solver
	Constraints on Abstract Values
	Constraints on Expressions
	Transforming Constraints

	Refinements
	Refinement of Input Variables
	Refinement of Local Variables

	State Space Organization
	Counterexample Analysis
	Worked Example

	Case Studies
	Conclusion

	Predicate Abstraction
	Overview & Outline
	Related Work
	Worked Example
	Encoding of PLC semantics in FOL
	Encoding of Variables and the Program
	Translating PLC Programs as FOL Formulae
	Encoding of Timers
	Succinct Representation of Control-Flow Automata

	Predicate Abstraction
	Implementation of the Predicate Abstraction
	Scoping of Predicates

	Case Study
	Conclusion

	Model Checking using Safety Automata Specifications
	Motivation & Overview
	Bibliographic Notes & Related Work
	Contribution & Outline

	Safety Automata
	Formalization
	Simplifications & Conventions
	Relation to CTL

	A Model Checking Algorithm for Safety Automata
	On-the-fly Checking
	Counterexamples
	Extensions

	Checking PLCopen Safety Function Blocks
	Detecting Over-Specifications
	Detecting Over-Specifications in Safety Automata
	Detection of a Faulty Specification

	Concluding Discussion & Future Work
	Automata Compared to CTL
	Future Work

	Fault Localization in Counterexamples
	Approach
	Motivating Example
	Trace Comparison
	Preliminaries
	Analysis of the Last Cycle
	Analysis of a Trace
	Correction Candidates
	Case Study
	Discussion

	Candidate Exclusion
	Testing Multiple Lines at Once
	Testing Multiple Cycles
	Coincidental Correctness & Preconditions
	Multiple Necessary Error Candidates
	Case Study

	Discussion & Comparison
	Related Work
	Conclusion & Future Work

	Static Analysis of PLC Programs
	Approach
	Contribution & Outline
	Related Work

	Static Analysis Process
	Pointer Analysis
	Control-Flow-Graph Builder
	Static Analyses Dataflow Framework
	Live Variable & Reaching Definition Analysis
	Value-Set Analysis
	Value-Set Analysis with Sparse Memory States
	Widening
	Post-Analysis

	Localization of Function Block Variables
	Initializations & Partial Unrolling
	Retain Variables

	Implementation of Checks
	Case Studies
	Industrial Programs
	Specific Warning: Illegal GetStructComponent / PutStructComponent
	PLCopen Safety Function Blocks

	Calculation of Summaries
	Conclusion & Future Work

	Static Analysis & Model Checking Interplay
	Verification of a Safety Application
	Modular Abstractions
	Selecting Modular Refinements using Forward Slicing
	State Space Reduction using Liveness Analysis
	Final Analysis

	Using the Model Checker to Augment Static Analysis Results
	Conclusion

	Conclusion
	Formal Methods in Practice
	Future Work

	Bibliography

