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work of View over Lübeck April 2009 by Arne List, available under a Creative
Commons Attribution-ShareAlike License 3.0 Unported available at http://

commons.wikimedia.org/wiki/File:View_over_L%C3%BCbeck_April_2009.jpg.
Publisher: Department of Computer Science of RWTH Aachen University
ISSN 0935-3232
This is issue AIB-2015-8 of the series Aachener Informatik-Berichte,

appearing 24 April 2015, available online from
http://aib.informatik.rwth-aachen.de/

Printed in Germany
The contributions within this work are reproduced with the permission of

the respective authors. However, copyright remains with the authors and further
reproduction requires the consent of the respective authors.

http://commons.wikimedia.org/wiki/File:View_over_L%C3%BCbeck_April_2009.jpg
http://creativecommons.org/licenses/by-sa/3.0/deed.en
http://creativecommons.org/licenses/by-sa/3.0/deed.en
http://commons.wikimedia.org/wiki/File:View_over_L%C3%BCbeck_April_2009.jpg
http://commons.wikimedia.org/wiki/File:View_over_L%C3%BCbeck_April_2009.jpg
http://aib.informatik.rwth-aachen.de/


Message from the Chairs

Localization has become a major key technology in the field of medical, industrial
and logistics applications. Especially indoor applications can benefit, e.g. the
knowledge, where personnel are required, scarce resources are scattered, and
goods are moving. Similarly, autonomous vehicles require reliable localization
information for a wide range of task. Localization information in such places can
save lives, time and money. However, there is no overall easy solution that covers
all use cases. With the 1st GI Expert Talk on Localization we aim to provide a
forum for the presentation and discussion of new research and ideas in a local
setting, bringing together experts and practitioners. As a result, a considerable
amount of time is devoted to informal discussion.

In addition to traditional localization topics such as radio based localization,
we also aimed at novel technologies by encouraging submissions offering research
contributions related to algorithms, stability and reliability, and applications.
As a result the program includes a diverse set of contributions, ranging from
phase and range based radio technology approaches, topological simplifications
and clustering schemes, as well as automotive applications, including visual lo-
calization approaches.

A great deal of effort has gone into putting together a high-quality program.
We thank all authors who submitted papers to this Expert Talk, and who ulti-
mately made this program possible.

We express our appreciation to Fachhochschule Lübeck for its support, CoSA
for the organization of the meeting, RWTH Aachen University for their additional
help as well as GI and KuVS for bringing us together.

April 2015 Mathias Pelka, Jó Ágila Bitsch, Horst Hellbrück & Klaus Wehrle
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InPhase: An Indoor Localization System based on
Phase Difference Measurements

Yannic Schröder, Georg von Zengen, Stephan Rottmann, Felix Büsching and Lars Wolf
Institute of Operating Systems and Computer Networks

Technische Universität Braunschweig
Email: [schroeder|vonzengen|rottmann|buesching|wolf]@ibr.cs.tu-bs.de

Abstract—Localization is an important challenge for all ap-
plications with autonomous navigating devices. Systems like GPS
solve this challenge for most outdoor applications but such
systems are not able to operate indoors. Indoor localization
therefore is an active research topic. When it comes to locating
nodes that travel from indoors to outdoors most systems are
overwhelmed. Thus, we propose a system capable to localize nodes
in such applications by using COTS transceiver chips. We utilize
the phase measurement unit to perform distance measurements.

I. INTRODUCTION

For highly automated cars it is crucial to know their own
position to be able to navigate. In normal outdoor conditions
the challenges of localization are solved by systems like Global
Positioning System (GPS). Thinking of indoor and mixed
environments like parking garages, most of the challenges
are not satisfactorily solved by now. Of course, the use cases
for such localization techniques are not limited to automotive
applications. For example, logistics applications and industrial-
used mobile robots also need such information.

In all these applications the localization is supposed to be as
low cost as possible by retaining the accuracy. Therefore, most
devices have resource constraints, which make localization of
nodes a challenging task. Due to these constrains complex
measurements like Time Difference of Arrival (TDoA) are not
possible as only a single transceiver is available. As described
by Boukerche et al. [1] different transmission channels like a
radio pulse and a ultrasonic pulse are needed to realize this
kind of TDoA measurements. TDoA measurements can also
be realized using multiple transceivers for the same channel at
different locations which results in rather large devices. Some
transceivers support Time of Arrival (ToA) measurements but
using this for ranging is complicated as a highly synchronized
clock between the nodes is needed.

We propose an indoor localization system that fulfills
the special requirements for resource constrained devices. It
is capable to work with COTS transceiver chips like the
AT86RF233 [2] by Atmel. Due to its measurement range, it
can be used in both, indoor and outdoor scenarios. Therefore,
it is capable to cover mixed application scenarios where nodes
travel from indoors to outdoors and vice versa.

The remainder of this paper is structured as follows. In the
next section we describe existing approaches to identify the
advantages and disadvantages. Afterwards we give an overview
of our proposed system and its inner workings to measure the
distance between two nodes. Section IV investigates the chal-
lenges of estimating a position from the measured distances.

Finally, we present the setup for a competition we participate
in and also some lessons learned.

II. RELATED WORK

Several methods for distance measurements have been
proposed. Many applications typically use one of these ap-
proaches: Received Signal Strength Indicator (RSSI)-based,
time-based or phase-based measurements. In this section, we
will briefly introduce them.

A. RSSI

Basically, the strength of a radio signal decreases with
the distance between transmitter and receiver. The remaining
received power might be an indicator for the distance. In real
world scenarios, this simple approach does not work well
due to reflections which result in constructive or destructive
interference. Even in outdoor scenarios with a direct line of
sight between transmitter and receiver, these reflections occur,
e.g. on the ground.

Although it is hard to calculate the distance to a single
transmitter only based on the RSSI, so called fingerprinting
can be applied which leads to reasonable results. If the RSSI of
beacons from multiple fixed stations like WLAN access points
can be received at the same time, these values can be stored
in a central database. Later the node which needs to know its
position, submits RSSI values of its neighbors to the database
which answers with the position. Changes in the environment
(disappearing stations, . . . ) lead to inaccurate positions, even
moving object like cars will have an influence.

B. Time

Every radio signal transmitted travels with the (medium-
specific) speed of light through space which means that the
propagation time can also be used as an indicator for the
distance. For this, two variants have to be distinguished, Time
of Arrival (ToA) and Time Difference of Arrival (TDoA) [3]. If
both, the transmitter and the receiver have highly synchronized
clocks, the signal’s time of flight can be calculated if the
receiver knows the exact time when the signal was sent.
The latter method, TDoA, measures either the ToA between
multiple receiving nodes or at one single node the ToA of
signals with different propagation speeds, like ultrasound and
radio waves [4]. The Global Positioning System (GPS) run
by the United States government is another example using
the TDoA method. In this case, the receiving node uses the
different transit times of signals from satellites with a known
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Fig. 1. Ideal phase response from PMU used for distance calculation. The
indicated slope is proportional to the distance between the nodes.

position. For civil use, the accuracy of the position is about
15 m. To improve the performance of the system, Differential
Global Positioning System (DGPS) can be used. In this case,
an additional base station with a known position transmits the
error of the position usually via a local short range radio links.

C. Phase

In the near field, the magnetic and electrical field compo-
nents of electromagnetic transmitters are not in phase [5]. If
a receiver is able to measure both components of a signal
individually, the wavelength can be used to calculate the
distance between sender and receiver. Large wavelengths are
needed for precise measurements which result in huge antennas
which may be a problem for small sensor nodes.

Another option is to measure the phase difference of signals
with two signals between a transmitter and receiver. If it is
possible to transmit or receive at two frequencies at the same
time, no synchronization of clocks is required [6].

It is also possible to measure the phase difference of signals
sent sequentially [7]. No absolute synchronization between
transmitter and receiver is needed. Depending on the frequency
offset, either high ranges or a high accuracy can be achieved
with these measurements.

The approach shown in this paper uses the same method,
but we use more measurement steps and apply calculations on
the data which leads to a good result of the phase measure-
ments for distance estimation.

III. DISTANCE MEASUREMENT

Our system consists of multiple INGA [8] sensor nodes
forming a Wireless Sensor Network (WSN). The sensor nodes
are equipped with an AT86RF233 [2]. This is an IEEE 802.15.4
compliant transceiver chip that features a PMU.

We have implemented the Active Reflector (AR) method
as proposed by Kluge and Eggert [9] as distance sensor for
the Contiki operating system [10]. The AR method uses two
wireless sensor nodes to measure the phases of a transmitted
continuous wave signal between them.

For an AR measurement two nodes are needed. In our setup
we use an anchor and a tag. In the first step the anchor acts
as receiver and measures the phase of the signal transmitted
by the tag. To mitigate the effect of unsynchronized clocks
both nodes switch roles after the first measurement. Therefore,
in the second step the tag measures the phase of the signal
transmitted by the anchor. As both transceiver’s Phase Locked

d1

d2

d3

anchor

anchor

anchor

tag

+ (0, 0)

Fig. 2. Example deployment of our system in a sample room. Three fixed
nodes are used as anchors. A fourth tag is connected to a portable computer.

Loops (PLLs) run at the same frequency in transmission and
reception mode, any phase difference due to not synchronized
clocks is irrelevant.

A schematic plot of such a measurement is shown in
Figure 1. The dashed blue line represents the slope of the
phase response (solid blue line) of the channel measured by the
system. This slope is proportional to the distance between the
nodes. To start a measurement, we designed a protocol where
the tag asks an anchor to participate in a measurement of the
channel’s phase response. After the measurement is completed,
the results stored at the anchor are transmitted to the tag.
This phase measurement is repeated with different anchors
deployed at known positions.

By estimating the similarity of the measured phase re-
sponse with an ideal saw tooth signal our system calculates
a Distance Quality Factor (DQF). This DQF is used to decide
whether the measurement should be used for position calcula-
tion or if it is not good enough.

IV. POSITION ESTIMATION

After performing distance measurements to multiple an-
chors, the position of the tag is computed. We employ a heuris-
tic solver based on Sequential Least Squares Programming [11]
for this task. This solver tries to minimize an error function
for the tag’s position. The bounding box of the area where the
system is deployed and a starting position for the optimization
is used as input for the solver. This starting position is either
the last position of the tag if the optimization was successful or
a generic starting point otherwise. The error function takes the
measured distances dn, the known positions of the anchors
and the designated tag’s position from the solver as input.
From this input the distances between tag and anchors are
calculated. Then, the relative errors to the measured distances
dn are calculated. The error function does not use all measured
distances and anchors but only the ones with the best quality
as indicated by the DQF. The sum of these errors is returned
to the solver for further optimization. The solver evaluates
the error function multiple times to find a local minimum of
the error function. When the optimization is completed and
successful, the calculated position of the tag is returned. This
position can then be displayed to a user or used for other
purposes.
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V. COMPETITION

With our system we participate in the Microsoft Indoor
Localization Competition at the IPSN 2015. Figure 2 shows
the minimal deployment our system needs to be able to work.
The competition area has of course a more complex shape
and also includes multiple rooms. Depending on the size and
layout of the area to cover at least three anchors are needed.
As permitted by the competition’s rules, we will deploy ten
anchors over the whole area. Our anchors are mounted to the
walls of the setup area. The position of the anchors must
be measured as exactly as possible to ensure an accurate
localization of the tag.

The anchors are placed carefully to ensure maximum
coverage of the area. For valid measurements a direct line
of sight between the anchors and the tag is required. The
availability of the line of sight is critical as measurements
through objects other than air will result in distance errors.
Due to the directional antenna design of the INGA sensor node
it is crucial that the predominant directions of the antennas
are pointing at each other. To mitigate this requirement the
tag features an omnidirectional antenna. This allows arbitrary
placement of the tag without the requirement to align it to
the anchors. However, the anchor’s antennas must still point
at the tag to ensure a valid measurement. All sensor nodes are
placed at the same height to further reduce the effect of the
directional antennas.

The tag is connected to a portable computer. The measure-
ment data is sent to this device where the position is calculated
and the result is displayed.
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Range-based Weighted-likelihood Particle Filter for
RSS-based Indoor Tracking

Zan Li, Andreea Hossmann-Picu, Torsten Braun
Institute of Computer Science and Applied Mathematics, University of Bern, Switzerland

Email:li@iam.unibe.ch, hossmann@iam.unibe.ch, braun@iam.unibe.ch

Abstract—Attractive business cases in various application
fields contribute to the sustained long-term interest in indoor
localization and tracking by the research community. Location
tracking is generally treated as a dynamic state estimation
problem, consisting of two steps: (i) location estimation through
measurement, and (ii) location prediction. For the estimation
step, one of the most efficient and low-cost solutions is Received
Signal Strength (RSS)-based ranging. However, various challenges
– unrealistic propagation model, non-line of sight (NLOS), and
multipath propagation – are yet to be addressed. Particle filters
are a popular choice for dealing with the inherent non-linearities
in both location measurements and motion dynamics. While such
filters have been successfully applied to accurate, time-based
ranging measurements, dealing with the more error-prone RSS-
based ranging is still challenging. In this work, we address the
above issues with a novel, weighted likelihood, bootstrap particle
filter for tracking via RSS-based ranging. Our filter weights the
individual likelihoods from different anchor nodes exponentially,
according to the ranging estimation. We also employ an improved
propagation model for more accurate RSS-based ranging, which
we suggested in recent work. We implemented and tested our
algorithm in a passive localization system with IEEE 802.15.4
signals, showing that our proposed solution largely outperforms
a traditional bootstrap particle filter.

I. INTRODUCTION

In the last years, research on the topic of indoor localization
and tracking has become increasingly important, motivated
by the shortcomings of the Global Positioning System (GPS)
indoors but also by the attractiveness of business cases in
various application fields such as Ambient Assisted Living
(AAL), home automation, and security. Wireless technologies
have emerged as candidates for indoor localization due to their
ubiquitousness. Particularly, WiFi is currently the dominant
local wireless network standard for short-range communication
in indoor environments and is the leading technology for
indoor localization. An alternative technology is ZigBee, a
wireless standard for short-range communication with low
power consumption. ZigBee is used in most urban area wire-
less sensor networks, which are vital components of today’s
smart city programs. It is also widely used in home automation
and industry applications. Therefore, it has attracted interests
of researchers as an alternative to WiFi localization.

Based on the target’s participation, indoor positioning sys-
tems can be classified as active localization systems and pas-
sive localization systems. In active localization, target devices
participate actively in the localization process. In contrast,
in a passive localization system, the targets (which are also
sources of packets) do not need to participate in the localization
process. Instead, several Anchor Nodes (ANs) are deployed
to passively overhear the packets from tracked devices. A

server can be used to collect useful information, e.g., RSS,
from different ANs and to run localization algorithms. Since
ZigBee devices typically have limited resources (energy and
computational power), we focus here on passive localization
systems, as they have the advantage of not using any of the
target’s resources. In addition, they are also very attractive for
third-party providers of positioning and monitoring services.

Range-based localization and tracking using RSS infor-
mation is an efficient and low cost solution for a passive
localization system. However, due to unrealistic propagation
models (e.g. typically the Log Distance Path Loss (LDPL)
model), non-line of sight (NLOS) and multipath propagation,
high accuracy ranging is still challenging. As a consequence
of the inaccuracy of RSS-based ranging, the resulting indoor
localization and tracking may also be low accuracy. Once
acquired, the ranging information is converted into the coor-
dinates of the target, possibly via a method that is robust to
ranging errors. In static scenarios, trilateration algorithms are
employed.

For mobile targets, Bayesian filters are one of the most
popular and high accuracy solutions. Bayesian filters (e.g.
Kalman filter, particle filter) estimate the position of the mobile
target by constructing prediction and measurement equations.
A Kalman filter assumes that all error terms and measurements
are Gaussian-distributed and the system is linear. An Extended
Kalman Filter (EKF) can deal with nonlinear models via Taylor
series expansion. However, it is only a suboptimal solution
and requires a Gaussian model of the measurement and state
transition noises. To handle both the non-linearity and the non-
Gaussian properties, particle filters are employed [1]. Several
works have investigated particle filters for tracking, primarily
in areas where accurate location measurements are possible,
such as time-based localization, pedestrian dead reckoning
with inertial sensors [2], fingerprinting, and data fusion [3].
However, there is little work investigating range-based particle
filters relying solely on the more error-prone RSS in complex
indoor environments. The authors of [4] investigated range-
based particle filters using RSS in an outdoor environment.
They provided a particle filter with summation of the likeli-
hoods for the range measurements from different ANs. Their
results show 4m to 6m accuracy, which is often not accurate
enough for indoor tracking.

In this work, the main contribution is a novel range-based
weighted-likelihood particle filter, solely relying on RSS for
indoor tracking. By weighting the likelihoods for different
ANs based on their ranging outputs, our proposed particle
filter impressively mitigates the influence of ranging errors
and improves the tracking accuracy. Additionally, to improve
ranging accuracy, we adopt a Non-Linear Regression (NLR)
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model to relate the measured RSS information to ranges
instead of the traditional LDPL model.

II. RANGE-BASED PARTICLE FILTER PRELIMINARIES

In this section, we introduce the preliminaries for particle
filters and state the problems for the range-based particle filter
solely relying on RSS.

To define the problem of tracking, the target state vector
xk should be estimated from the measurements z1:k, which
are collected from different ANs up to discrete time k. The
state vector, xk consists of the coordinates and moving speed
of the target. For range-based tracking, the measurements zk
comprise the range information from different ANs. Based on
the Bayesian estimation framework, the relationships between
the state vector xk and the measurement zk are as follows:

xk = f(xk−1, vk), (1)

zk = h(xk, uk), (2)

where vk is the noise for state transition and uk is the
measurement noise. Equation (1) is the prediction function and
Equation (2) is the measurement function.

One of the most widely used particle filters is Bootstrap
Particle Filter (BPF). Based on Monte Carlo methods, the
posterior Probability Density Function (PDF) p(xk|z1:k) can
be estimated by the following delta function:

p(xk|z1:k) ≈
Ns∑

i=1

wikδ(xk − xik), (3)

where xik is the ith particle and wik is the associated weight.
Ns is the total number of particles. For BPF, the weight of
each particle can be calculated as:

wik ∝ wik−1 · p(zk|xik), (4)

where p(zk|xik) is the measurement likelihood of zk for xik.

Therefore, an efficient and accurate derivation of the like-
lihood function p(zk|xik) is essential for accurate tracking by
BPF. zk is comprised of range information from N different
ANs, i.e., zk = [d1, d2, · · · , dN ]. Assuming that the range
information from different ANs are independent from each
other, a typical likelihood can be written as

p(zk|xik) = ΠN
j=1p(dj |xik). (5)

In this case, the likelihoods for the estimated ranges from
different ANs are treated equally and this kind of particle
filter is referred to as the traditional BPF in the remainder of
the paper. Different from time-based localization with specific
signals, which benefits from high accuracy ranging, RSS-
based localization normally suffers from large ranging errors.
Hence, zk normally deviates from the real values, which
makes the likelihood p(zk|xik) deviate from the real likelihood.
Correspondingly, the weight associated to each particle is
inaccurate, which results in inaccurate location estimation.

III. RANGE-BASED TRACKING ALGORITHMS DESIGN

As introduced in Section II, RSS-based ranging BPF for
indoor tracking is challenging because of the inaccurate rang-
ing information. Therefore, in this section, we will introduce
our methods for improving ranging accuracy and mitigating
the influence of inaccurate ranging on the likelihood. After
introducing a more realistic propagation model, to reduce as
much as possible the ranging error, we describe our proposal
for correcting the likelihoods of the particle filter.

A. Non-linear Regression Model

The LDPL model has been demonstrated to be an inaccu-
rate model in indoor environments. In our previous work [5],
we propose to model the relationship between the RSS values
and propagation distances as a nonlinear curve fitting problem.
Hence, we provide a nonlinear regression (NLR) model as,

d = α · eβ·RSS (6)

where d is the propagation distance, RSS is the received
power, α and β are two unknown parameters in the model
that need to be obtained from some initial measurements.

Given Nt training positions in the initial measurements,
(dn, RSSn) are collected at the nth training position. We
apply the nonlinear least square criterion, in which the sum
of squared residuals should be minimized as,

argmin
(α,β)

Nt∑

n=1

(α · eβ·RSSn − dn)2. (7)

To find the solution of this unconstrained optimization prob-
lem, the trust region algorithm [6] is applied, because it is
robust and has a strong global convergence property.

Normally, all ANs in different locations adopt the same
propagation model. However, the signal propagation from the
target to different ANs are typically very different, and, thus,
this oversimplification will introduce large estimation errors
for indoor localization. Therefore, in our work, we calibrate
the α and β pairs for different ANs.

B. Weighted Likelihood Particle Filter

After obtaining ranging information, a novel bootstrap par-
ticle filter, which adopts weighted multiplication of likelihoods
for different ANs to mitigate the ranging error influence, is
designed in our work to convert the range information to
the coordinates of the target. For the BPF filter, the range
outputs from the NLR model construct the measurement
vector as zk = [d1, d2, · · · , dN ]. The coordinates (x, y) and
moving speed (x̂, ŷ) of the target construct the state vector
xk = [x, y, x̂, ŷ].

Assuming the range measurements from different ANs
are independent, the likelihood p(zk|xik) can be written as a
multiplication of individual likelihoods from different ANs as
Equation (5). In this form, all the likelihoods from different
ANs are simply treated equally. As mentioned in Section II,
ranging outputs are always biased and correspondingly the
likelihoods from different ANs normally deviate from the
real likelihoods. Furthermore, ranging errors from different
ANs are normally different. Therefore, we propose to reduce
the contribution of the likelihoods with large ranging errors
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Fig. 1: Tracking in Different Paths
(Rectangular Points: ANs; Triangular Points: Estimated Positions; Circle Points: Ground Truth Positions)

to the whole likelihood p(zk|xik). Therefore, we provide a
Weighted-likelihood BPF (WBPF) with exponential weights
on individual likelihoods from different ANs as:

p(zt|xik) = ΠN
j=1p(dj |xik)

mj
, (8)

where mj is the exponential weight for the likelihood of the
jth AN. To reduce the contribution of the likelihoods with
large ranging estimation that normally result in large ranging
errors, the weight mj should be inversely proportional to the
range estimation as:

mj =
1/dj∑N
n=1 1/dn

. (9)

IV. MEASUREMENT SETUP AND EVALUATION

The proposed WBPF has been implemented in our passive
localization testbed [7] for IEEE 802.15.4 signals. We con-
ducted a set of measurements to evaluate our method.

A. Measurement Setup

The measurements were conducted on the third floor of
the IAM building at University of Bern. Five ANs were
deployed to capture IEEE 802.15.4 signals from a TelosB
node. The target TelosB node periodically broadcasts 5 packets
per second and the transmission power is configured to the
maximum level (Level 31). The target TelosB node is held
by a person in hand and moves along three different paths
as shown in Figure 1. In the figure, the blue circle points
indicate the ground truth positions of the moving paths and the
red triangular points are the estimated positions. The moving
speed is around 1m/s but the moving directions change for
all the three moving paths. We aggregate the packets every 0.7
seconds to estimate one location along the moving path.

B. Measurement Results and Analysis

Figure 2 summarizes the Cumulative Distribution Function
(CDF) of localization errors for our proposed WBPF and the
traditional BPF. According to the results, our proposed WBPF
significantly outperforms the traditional BPF. In more detail,
after introducing the exponential weights to different individual
likelihoods, our proposed WBPF can mitigate the influence of
ranging errors and correspondingly improve the localization
accuracy compared to the traditional BPF. WBPF improves
the median error by 28.6% compared to BPF (from 2.1m to
1.5m). 90% of the localization errors with WBPF are lower
than 2.4m, which outperforms BPF (3.5m) by 31.4%.
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Fig. 2: CDF of Localization Errors with WBPF and BPF

V. CONCLUSIONS

In this paper, we proposed a novel particle filter (WBPF)
using RSS-based tracking by exponentially weighting the indi-
vidual likelihoods according to the estimated ranges. With the
proposed algorithms, our tracking system for ZigBee signals
achieves high accuracy with a median error of 1.5m and our
proposed WBPF significantly outperforms the typical BPF.
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Abstract—With the availability of smart handsets and increase
in wireless bandwidth brought by cellular technologies such as
LTE, the demand for location based services grows. The location
information can be utilized for commercial services, network
operations, or public safety requirements. LTE facilitates location
services of user equipment (UE) by making use of UE network
information as well as radio signals measured at the network.
The serving network may support different localization methods
transparent to the UE implementation and capabilities. In this
paper, we discuss practical issues and challenges for deploying
and evaluating network-based positioning and tracking in a real
LTE network. More specifically, our focus is on small and indoor
cells. We also bring insights on experimental results for indoor
LTE setup.

I. INTRODUCTION

When satellite technologies like GPS fail to provide a
reasonable level of positioning accuracy in indoor and urban
canyon environments, there is a need for a positioning method
that can provide comparable results for rural and urban, city
centers, outdoor and indoor environments. With the increasing
number of LTE-capable mobile devices, users, network oper-
ators, service providers, and regulatory bodies are demanding
for low-latency and accurate location-based services (LBS).
As such, LTE requires an integrated positioning solution that
effectively combines different positioning techniques and can
meet a wide range of accuracy and performance requirements.
Network-based positioning is an interesting approach for LBS
since it is transparent to the UE [1]. It ensures a consistent and
reliable positioning performance towards a wide range of UE
manufacturers. However, position estimation can be achieved
by taking measurements from at least three different cells. A
main challenge in network-based positioning is signal over-
hearing. Unlike in GSM or CDMA, LTE radio is scheduled (by
the serving cell) with different frequency and time allocations
[2]. This unique architecture possesses a significant challenge
on LTE for supporting network-based positioning.

The authors in [3] proposed to use a modified scheduling
algorithm, which is of semi-persistent type, to set a known
pattern of physical resource allocation for a UE of interest.
In 3GPP Release 11, uplink transmission configuration can be
shared between LTE base stations (eNBs) over the so-called,
X2 interface. Hence, neighboring cells will be able to overhear
the target UE transmission. As illustrated in Figure 1, the
X2-interface does not require a dedicated physical connection
between eNBs. It is a logical interface between neighboring
cells carried over an existing IP transport network. X2 does not

Mobile
Network
Backhaul

X2 logical interface

Physical interface

eNB

eNB

Fig. 1. The X2-interface.

require significant bandwidth, however, it requires very short
latencies across the backhaul of the network to achieve real-
time coordination between eNBs. In this paper, we provide
insights into the design of LTE cloud radio access network
(C-RAN), as a possible approach to collect mobile network
measurements and advanced technique for positioning and
tracking mobile devices in real-time. Our focus on localization
is small and indoor cells as both have an important part to play
for location services especially in areas where mobile devices
cannot directly determine their position through GPS alone.

II. UPLINK RESOURCE ALLOCATION

In LTE eNB, a number of PHY and MAC layer parameters
are jointly controlling the transmission’s resource allocation
for the eNB downlink and UE uplink through a scheduler [4].
There is no dedicated channel allocated between a UE and the
serving eNB. Time and frequency resources are dynamically
shared between UEs in downlink and uplink channels. Each 1
ms, the scheduler controls which UEs are supposed to receive
data on the downlink/uplink shared channels and on which
resource blocks (RBs). One RB occupies a bandwidth of 180
KHz and spans one slot of 0.5 ms. However, the schedule
needs measurement reports about the downlink and uplink
channel conditions to make a proper allocation and ensure high
throughput. Our focus is on the uplink scheduler due to its
importance for network-based positioning. In the uplink, the
scheduler uses the following inputs to allocate radio resources
for uplink transmission [2]: (i) UE buffer status report (BSR)
indicates the amount of data available for transmission in the
uplink buffers of the UE, (ii) UE power headroom report
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(PHR) indicates the additional return power available at the
UE, and (iii) channel quality indicator (CQI). CQI is obtained
from uplink physical reference signals periodically sent by
UEs, namely, sound reference signals (SRS), and from physical
uplink shared channel (PUSCH). With this information, the
eNB gets an idea about how much bandwidth a UE is able
to use in a subframe. Before sending and receiving data,
UEs need to know some information such as (i) the radio
resource allocation, (ii) modulation and coding scheme and
its corresponding transport block size, (iii) the timing advance
alignment, and (iv) transmitting power level [2]. All this
information is sent using downlink control information (DCI)
from the serving eNB to the target UEs every 1 ms. Each
DCI is identified by the target UE radio network temporary
ID (RNTI) issued by the network.

A. X2-Interface

The X2 interface connects neighboring eNBs in a point-to-
point fashion. X2 is a logical interface between neighboring
eNBs and can be switched over the existing backhaul network.
The X2 interface consists of two parts: (i) Control-Plane (C-
Plane) responsible for establishment and release of tunnels
neighboring eNBs to allow data tunneling, and (ii) User Plane
(U-Plane), which supports the tunneling of end user packets
between the eNBs and minimize packet losses due [5].

In cellular networks, UEs might be heard by more than
one eNB. The UE connects to the eNB with the strongest
signal and interferes with cells that are operating on the same
frequency, which become more severe with heterogeneous
network deployments. The applicability of the X2-interface
indeed has several practical implementation aspects as well
as operational challenges on the network side, such as (i)
compatibility for X2 support must exist in all eNB collab-
orating in the positioning process (cooperating set), (ii) due
to high frequent configuration of the radio resources (every 1
ms), eNB cooperating set must be tightly synchronized and
connected to each other through high throughput and low
latency backhaul link connection. For lowest X2 latency, the
physical X2 connection, driven by the transport technology
(e.g. optical fiber, microwave or copper-based technologies),
should be as short as possible.

III. THE C-RAN SOLUTION

In the LTE architecture called cloud RAN (C-RAN), the
cellular area is covered by multiple remote radio heads (RRHs)
responsible for transmitted and received radio signals. All
baseband processing units (BBUs), as well as radio resources
scheduling, is typically migrated to a farm of high-performance
computing data centers and connected to their RRHs using
a fronthaul adapter. C-RAN advantages compared to conven-
tional RANs are scalability and flexibility of further RRH
deployment [6]. Deployment of C-RAN BBUs in data centres
is possible through different virtualization techniques, such
as the Linux container (LXC). An excellent use case for C-
RAN is to share network contextual information, e.g., channel
conditions, the downlink control information (DCI), or UE
statistics, between BBUs of nearby geographical RRHs. To
be specific, our aim is to use the high bandwidth connection
between the host running the virtual switch (or shared memory)

and VMs running the C-RAN as a replacement of the X2-
interface, or what we call now, the X2-like interface. The
size of DCI field varies between 3-4 bytes. The synchronous
nature of C-RAN BBUs brings some gains for the LTE X2-
like interface such as reduced signalling overhead and close-
to-instantaneous DCI information exchange between BBUs.

One use-case envisioned by the X2-like interface is
network-based positioning. Our main target is to exchange DCI
allocation between different BBU instances using a C-RAN
solution in a virtual environment. In this paper, we consider the
OpenAirInterface (OAI) software implementation of LTE. The
OAI, developed by EURECOM, is an open-source software
defined radio (SDR) implementation of LTE including both
the RAN and the evolved packet core (EPC) [6].

IV. NETWORK-BASED POSITIONING

Many methods have been developed to achieve network-
based positioning with different positioning accuracies such
as cell-ID with round trip time (RTT), TA or uplink time
difference of arrival (UTDoA) [1]. It is shown that positioning
techniques on the base of the network particularly appear to
overcome many weak points of UE-based techniques:

• Minimize the impact on UE manufacturer and sup-
ported protocols (UE agnostic).

• Take advantages of higher hardware reliability and
accuracy for collecting radio measurements.

• Collect radio measurements in the correct direction;
giving that downlink and uplink radio measurements
are not always reciprocal [8].

• Allow accessing fine-grained radio measurements for
various desired positioning accuracy.

In LTE, both the UE and the eNB are required to perform
all necessary measurements to properly characterize radio
channels and ensure the transmission’s QoS. Measurements are
used for a variety of purposes including cell selection, schedul-
ing, handover, power control, and positioning services [8]. We
present only eNB radio measurements, which are supported by
all standard eNB implementations and are interested for us to
perform network-based positioning: (i) power measurements,
such as received signal strength indicator (RSSI), and RSSI
per active subcarrier, (ii) time measurements, such as timing
advance (TA), and (iii) quality measures, such as channel
quality indicator. Each UE sends back its scanning report to the
serving eNB with the reference signal received power/quality
(RSRP/RSRQ) of the serving and neighbour cells [2].

In this work, we rely on power measurements based on
our previous experience of challenges facing indoor time
measurements. Moreover, the TA resolution is limited to 0.52
µs, which is equivalent to 78.12 m. This distance is longer
than the separation distance between eNBs in our experimental
setup. We use an advanced RSSI-based positioning techniques
based on our previous work [7].

V. EXPERIMENTAL SETUP AND EVALUATION

An indoor cloudified LTE network is built based on the
OAI hardware and software platforms to evaluate the per-
formance of network-based positioning for LTE. One UE
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Fig. 2. Experimental setup.

and four OAI eNBs connected to one OAI EPC and one
OAI home subscriber server (HSS) are used, as illustrated
in Figure 2. To build a cloudified LTE network, we ported
the OAI eNB, EPC, and HSS into LXC environment as
the virtualization technology under the control of OpenStack.
All the machines (hosts or guests) operate on Ubuntu 14.04
with the low-latency Linux kernel version 3.17 for x86-64
architectures. eNBs are configured to operate at 5 MHz in
band 7 with frequency division duplex (FDD) mode and a
single antenna. In the considered setup, each eNB is running
on a separate PC interconnected with the EPC through the
S1 interface. Furthermore, each eNB streams the real-time
radio measurement Xn information to a localization algorithm
located at the same PC running the EPC, where n is the number
of measurements.

We acquire data into sets Xn of 30 sec duration. The UE
was considered static during the acquisition time, whereas each
experiment spans a duration of 5 min. The final positioning
results are expressed in Figure 3. Blue squares represent the
real UE position and black circles represent the estimated UE
positions. Without any special hardware, any prior knowledge
of the indoor layout and any offline calibration of the system,
our system using RSSI measurements obtains an average
positioning error of 2.7 meters with a deployment density of
0.89 base stations per 100 square meters. The same system
using RSRP measurements reported by the target UE obtains
an average error of 3.3 meters.

0 10 20 30 40 50 60 70
0

5

10

15

eNB
1

eNB
3

eNB
4

UE
1

UE
2

UE
3UE

4

UE
5

UE
6

UE
7

eNB
2

Fig. 3. Network-based performance.

VI. CONCLUSION

To obtain a cost-efficient, accurate and real-time position-
ing solution, we proposed the use of network-based positioning
in LTE. We presented some challenges facing network-based
positioning, mainly, the signal overhearing by neighbouring
cells. We presented our solution using X2-like interface in C-
RAN and run a set of experiments in a real indoor environment.
Without any prior knowledge of the indoor layout and any
offline calibration of the system, results show an average
positioning error of 2.7 m using the proposed network-based
approach with a deployment of 0.89 base stations per 100
square meters.
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ABSTRACT
Most localization systems require a physical device which is
attached to the tracked object. In this project we develop
an ad-hoc Device free Passive tomography and localization
system. The system is ad-hoc in a sense that it does not re-
quire the exact relative location of nodes but instead learns the
approximative relative topology over time. Using the Soft-
ware define radio device Universal Software Radio Peripheral
1(USRP1) as a base for multiple radio links between trans-
mitter and receiver pairs, the fundamental system works by
analyzing, monitoring and processing the minimal changes
in the received radio signals, to detect changes in the en-
vironment caused by moving objects. We use a movement
detection algorithm to reconstruct the dynamic link graph.
The scheme is derived analytically, its feasibility explored for
dense networks in graphical simulations and its practicability
is demonstrated in a case study with 8 nodes. The tracking
algorithm reaches a localization accuracy below 1m.
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Indoor localization, graph topology prediction
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H.1.2. User/Machine Systems: Human information process-
ing; C.3. Special-purpose and application-based systems:
Signal processing systems; C.2.1. Network Architecture and
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INTRODUCTION
Indoor localization has been extensively studied and device-
bound techniques have high accuracy as, for instance, demon-
strated by the participants of the 2014 IPSN Indoor local-
ization competition1. Device-free RF-based recognition was
first investigated for the task of localization or tracking of an
individual. Youssef defines this approach as Device-Free Lo-
calization (DFL) in [16] to localize or track a person using
RF-Signals while the entity monitored is not required to carry

1http://research.microsoft.com/en-us/events/
ipsn2014indoorlocalizatinocompetition/

an active transmitter or receiver. Popular approaches are RF-
fingerprinting [6] and geometric models and estimation tech-
niques [17]. Another approach, tomographic imaging, has
been studied for several years, utilizing diverse systems such
as node arrays [15], moving transmitters [8] or even passive
RFID nodes [12]. The main focus of these systems is on
the generation of a maximally accurate tomographic image.
However, this aim demands for a high cost in terms of exact
node placement and the number of nodes employed.

In this paper, we propose a system which supports random
ad-hoc placement of nodes by learning the topology of the
node placement.

In order to open new application cases for radio tomographic
imaging, it is necessary to greatly reduce the configuration
cost originating from exact relative node placement require-
ments. For instance, given a small number of 6–8 nodes scat-
tered arbitrarily over the place we ask whether it is possible
to obtain some (lower accuracy) tomographic image ad-hoc
from those set of nodes. Our system is capable to abstract
from this requirement ant do learn the topology of the net-
work and approximate relative locations of nodes. The ap-
proach is capable of tracking location of a single moving sub-
ject with reasonable accuracy.

RELATED WORK
Tomography describes the visualization of objects via a pen-
etrating wave. An image is then created by analyzing the re-
ceived wave or its reflections from objects. A detailed intro-
duction to obstacle mapping based on wireless measurements
is given in [8, 7]. Radio tomography was, for instance, ex-
ploited by Wilson et al. in order to locate persons through
walls in a room [15]. In their system, they exploit variance
on the RSSI at 34 nodes that circle an area. Nodes in their
system implement a simple token-passing protocol to syn-
chronize successive transmissions of nodes. these transmit-
ted signals are received and analyzed by the other nodes in
order to generate the tomographic image, heavily relying on
Kalman filters. The authors were able to distinguish a va-
cant area from the area with a person standing and a person
moving. In addition, it was possible to identify the location
of objects and to track the path taken by a person walking at
moderate speed. An individual image is taken over windows
of 10 seconds each. By utilizing the two-way received power
fluctuations among nodes, an average localization error of 0.5
meters was reached [14].

It was reported in [1] that the localization accuracy of such
a system can be greatly improved by slightly changing the
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location of sensors, thus exploiting spatial diversity. The au-
thors present a system in which nodes are attached to disks
equipped with motors in their center for rotation. With this
setting it is possible to iteratively learn a best configuration
(spatial location) of nodes with respect to their relative phase
offset.

Wagner et al. implemented a radio tomographic imaging sys-
tem with passive RFID nodes instead of sensor nodes. Im-
plementing generally the same approach as described above,
they could achieve good localization performance with their
system. However, they had to implement a suitable schedul-
ing of the probabilistically scattered transmissions of nodes in
order to compensate the less controllable behavior of passive
RFID [11]. In later implementations, they improved their sys-
tem to allow on-line tracking [12] and a faster iterative clus-
tering approach to further speed up the time to the first image
generated [13]. This image is then of rather low accuracy but
is iteratively improved in later steps of the algorithm. With
this approach, it was possible to achieve a localization error
of about 1.4m after only one second and reach a localization
error of 0.5m after a total of about seven seconds in a 3.5m2

area.

Utilizing moving transmit and receive nodes and compressive
sensing theory [2, 3, 10] it is possible to greatly reduce the
number of nodes required. For instance, Gonzalez-Ruiz et
al. consider mobile robotic nodes that mount transmit and
receive devices and circle the monitored target in order to
generate the tomographic image [5]. In particular, they re-
quired only two moving robots attached with rotating angular
antennas in order to accurately detect objects in the moni-
tored area. Each robot takes new measurements every two
centimeters. Overall, after about 10 seconds a single image
can be taken. The authors detail their implemented frame-
work in [4] and the theoretical framework for the mapping
of obstacles, including occluded ones, in a robotic coopera-
tive network, based on a small number of wireless channel
measurements in [9].

In all these approaches, accurate relative location of nodes is
required in order to generate the image. We will consider,
instead, the generation of a tomographic image when the rel-
ative location of nodes is initially unknown to the system.

PROBLEM STATEMENT AND SYSTEM DESIGN
We consider two related problems

1. Given a known network of USRP nodes, track human
movement

2. Given just the signal received at USRP receive nodes, but
not the relative order of nodes, predict the topology of the
USRP network based on the movement of a single human

Challenge
In this project, we assume an equal number of USRP trans-
mit and receive nodes, which span a network of radio links
with which we localize and track human movement. The in-
dividual links are identified at the receive nodes via different
frequencies utilized for transmission. The receive nodes shift

their center frequency every 100 µs – 500 µs to scan all chan-
nels as detailed in algorithm 1. We implement 4 baseband
frequencies 899.5 MHz, 900MHz, 900.5MHz, 901MHz. The
higher or lower frequency distance is degrade the USRP func-
tionalities. For example: the higher frequency setting elimi-
nates the frequency interference, but the delay time for fre-
quency shifting is higher. For our real-time application, the
frequency distance is optimized at 0.5 MHz. At the begin-

Data: Receiving Signal Sr

Result: Receiving Power Pr

initialization;
set fmax, fmin;
set FFT Hamming Window size WH= 1024;
set frequency step fstep = 100 kHz;
while fr in range (fmin, fmax) do

read current Pr;
if f == f1 then

set new nearest center frequency fc;
Pr = 10 ∗ log∑100

i=1 Si/USRPrate;
else

;
end
set next center frequency f = f + fstep;

end
Algorithm 1: The algorithm to iteratively sense the radio
links

ning, we create a list of feature. This set of features is the
result of a feature selection and manual feature reduction we
conducted on a total of 14 features and their pair-wise com-
bination. The feature values are used as predictors for move-
ment along each individual link.

Topology reconstruct step
In this phase, we will implement the motion detect between
node base on the know movement route of human which in-
teracts with the link between transmitter and receiver. The
structure of the USRP node network will be observed by an-
alyzing event in time series based.

In order to capture also simple scenarios, we assume that
each node operates only as either transmitter or receiver.
Let T1 ,T2,...,Tk be the transmit nodes and R1,R2,...,Rn be
the receive nodes which process the captured signals. We
assume a weighted undirected graph with weights dij , i ∈
(1, . . . , k), j ∈ (1, . . . ,m), for a link between Ti and Rj and
weights nTij , nRij to represent the neighborhood relation be-
tween Ti and Tj or Ri and Rj respectively. Without loss of
generality, we assume here that transmit and receive nodes
are placed opposite to each other since this would be a nat-
ural choice to maximize the number of links that span the
monitored area.

The purpose of our algorithm is to identify which links are
intercepted by a person moving in the monitored area and to
assign neighborhood relations between neighboring nodes in
this graph based on the sequence in which radio links in this
network are intercepted.
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The weights dij and nij are initialized to 0. When a link Ti–
Rj is detected to be intercepted by comparing the δ value in
algorithm 2, the corresponding weight dij is set to 1. Simi-
larly, when interception is no linger detected, it is set back to
0.

With each interception we also obtain timestamps from the
USRP receive devices cf. algorithm 2. With the help of these
timestamps, a sequence of interceptions is build and from
which the neighborhood relations can be inferred.

Data: Receiving Power Pr

Result: Location predict base on link dij
initialization Link Array Dij ;
while true do

read current Pr;
calculate δ = Pt − Pt−1 if δ > threshold then

set dij=1 Pr = 10 ∗ log∑100
i=1 Si/USRPrate;

else
;

end
set dij=0;

end
Algorithm 2: Algorithm to update the link graph

For instance, when the link T1–R1 is intercepted followed
by an interception of the link T1–R2, this is an indication
that R1 and R2 are neighbors in the graph and the algo-
rithm would raise its confidence on the weight nR12. Over
time, all nRij and nTij are gradually degraded by the degrading
factor α ∈ [0, 1[. In practice, these sequences are signifi-
cantly blurred by measurement noise but by observing these
sequence of link-interceptions over a longer period of time, it
is possible to build up confidence on these neighborhood re-
lations. The actual locations are then predicted based on how
many links are intercepted (wij = 1) and which links these
are. For ease of presentation and noise reduction, we asso-
ciate a Markov graph (based on the learned neighborhood re-
lations) with distinct locations within the measurement space
(cf. figure 1 for an exemplary model with 12 possible pre-
dicted locations from a 4× 4 network of transmit and receive
nodes).

The Markov graph contains transition arcs only between
neighboring nodes. In this way, noise causing successive pos-
itive predictions of links from non-neighboring nodes can be
abstracted from. The predicted state is used as a location pre-
diction and overlayed on top of the link graph to display the
predicted location on the screen.

TEST AND EVALUATION
We implement two test in different room in our Informatic
faculty building, which are show in video2. Based on the fi-
nal test result, the accuracy of the system is evaluated. When
predicting the location of a moving object, some amount of
noise and tracking delay must occur due to the time it takes
to collect measurements from the USRP device and the pro-
gram processing delays. The delay time also depends on the
2https://www.youtube.com/watch?v=9GeHSCogAA0&feature=youtu.be.

Figure 1. Markov chain with a set transition model. The choice of the
future state depends only on the present state

sampling rate and graph generation parameter, in our test the
delay time is between 0.5 to 2 seconds. We test the movement
through 12 known locations of a moving human are compared
with the graph output. At each known location, the tracking
object moves forward or backward randomly. The average es-
timated position location is plotted. Base on our position res-
olution, our error estimated 0.8 meters to 1.2 meters. Besides,
our error ratio is different between each coordinate axis. In
our topology, the movement which is orthogonal the link has
higher accuracy than the other orients.

The source code is available at: 3
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Abstract—Location-Based Services (LBS) require the knowl-
edge of a user’s position for manifold purposes in indoor and
outdoor environments. For those applications several methods
can be used, such as a Global Navigation Satellite System (GNSS).
Since GNSS are not available in indoor environments or deep
street canyons other techniques are required for the localization
process.

In this paper a topological map is used to implement a indoor
localization system for smartphone users. Benefit of this kind
of map is that the position is reduced to one dimension, which
simplifies the localization process in a considerable way. The
map consists of vertices, which could be important points such as
crossings or a ending point of a path, and edges, which represent
ways between the vertices.

The localization process utilizes different sensors of the smart-
phone, such as the accelerometer, bluetooth low energy and the
integrated rotation vector. To combine all of these information a
Extended Kalman Filter (EKF) is introduced and evaluated in
an office building.

Index Terms—Bluetooth Low Energy; Topological Map; Pedes-
trian Dead Reckoning; Indoor Localization; Smartphone; Ex-
tended Kalman Filter

I. INTRODUCTION

Localization of human operators is the basis of any
Location-Based Service (LBS). LBS provide information or
services with respect to the current position. There are many
existing applications such as restaurant finders or museum
guides, which provide information about an exhibit or lead
the way to a certain point of interest.

In order to estimate a users position in a wireless system
there are several techniques to accomplish this goal. An easy
way to compute the position is to use the Received Signal
Strength Indicator (RSSI). Most radio receivers in a wireless
system have the ability to measure the strength of a signal. This
signal strength can be translated to a distance by using a path
loss model, as we do in this project. Another method is the
use of a radio map. Here an offline phase is performed to take
RSSI measurements at specified points with known positions.
In the online phase the current measured RSSI values of the
user are compared to the initial taken measurements. Due to
this relation a user can be localized [1].

Due to the increasing demand for indoor positioning sys-
tems, wireless localization has been an important research
field in the past years. In [2] a system is presented, which
fuses RSSI measurements with a step detection, step length
and orientation estimation. This combination increases the

accuracy many times over than the stand alone usage. Similar
observations were made in [3] where the authors used a
combined UWB/INS System.

Due to the popularity of smartphones, which are mostly well
equipped with GPS, WiFi and inertial sensors, there are many
researchers working on such locating systems as presented
in [4] or [5]. Also map aided approaches are very popular
as the authors used in [6] or [7], where the accelerometer
of a smartphone is used to detect the users steps as well
as the heading and fuse this information with data from
OpenStreetMap (OSM).

II. BLUETOOTH LOW ENERGY BEACONS

Beacons based on Bluetooth Low Energy are usually small
battery-powered devices with a low power consumption and a
long life cycle. They provide a broadcast which contains the
identity of the transmitting beacon in a periodic time interval.
It can be used for location-based advertisement, such as mobile
couponing, or other LBS. Here we used the broadcasts to
determine the RSSI, which is used to compute the distances
between the users and the beacons.

In free space the power of a signal decreases proportional
inverse quadratic to the distance between anchor and tag. In
real applications this model is not applicable, because the
signal is affected by several environment dependent effects.
Therefor the following path loss model is often used to
estimate the power of a signal P (da) transmitted by beacon a
at a given distance da [8]:

P (da) = P0 − 10np log10

(
da

d0

)
(1)

where P0 is the signal power at a short reference distance d0
and np is the path-loss exponent. In order to determine values
for P0, d0 and np a series of measurements has been done.
The smartphone (Google Nexus 4) was placed at different
distances to a beacon, from 1 m to 30 m with a step size
of 1 m. Figure 1 shows the measured RSSI values in blue
and the fitted path loss model in red. It can be seen that
the measurements have an inaccuracy of a few dBm, which
results, due to the characteristic of the path loss model, in
different distance errors depending on the real distance. As
shown in figure 2 the error gains fast with the distance between
smartphone and beacon.
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Fig. 1: Reference measurement
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III. TOPOLOGICAL MAP

The topological map is one of the key features of this
project. In many other applications two dimensional floor plans
are used to support the localization process. But there are some
disadvantages using this kind of map. The initial effort to
create a map, which is usable for the localization, is fairly large
and another map representation is needed for the navigation.
The topological map is represented by a graph which consists
of vertices and edges.

• A vertex is the representation of important points like
crossings or doors of an office room. At those points a
higher accuracy is needed for the navigation. Therefore
each point is equipped with a BLE beacon.

• An edge represents the connection between two vertices.
Every edge needs a associated distance for the localiza-
tion.

Fig. 3: Demonstration environment

Figure 3 shows our demonstration area in the computer
science department at the University of Applied Sciences and
Arts in Dortmund. The graph is here underlaid with the real
floor plan for visualization purposes but actually it is not
needed.

Another benefit while using topological maps is that the
positioning process is reduced to a one dimensional problem,
which is much easier to handle.

IV. EXTENDED KALMAN FILTER

The Kalman Filter, which was first introduced in [9],
is a recursive state estimator of a linear dynamic system.
The filter handles incomplete and noisy measurement-data by
minimizing the mean squared error. If the state transition or
the measurement model is modeled by non-linear equations,
the Extended Kalman Filter can be used instead [10]. The EKF
linearizes the non-linear system by using a first order Taylor
expansion. Here we used a mixed model. The state transition
is a linear process with:

xk = Ak−1xk−1 + ωk. (2)

And the non-linear function h relates the current state to
the measurement zk:

zk = h(xk) + νk. (3)

The random variables ωk and νk represent the noise of the
state transition and the measurement. They are assumed to
be white, mutually independent and normally distributed with
covariances Qk and Rk respectively.
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The initial position is computed by a simple algorithm.
It takes the two strongest RSSI values from a five seconds
measurement series into account and computes the position.

The state consists of the position on the current edge xk
and the walking speed vx,k:

xk =

[
xk
vx,k

]

.

(4)

The state transition matrix is build as follows:

Ak =

[
1 dt
0 1

]

.

(5)

The process covariance Qk is assumed to be stable an thus
it has a constant value.

A. RSSI Measurement Model
Every time a single RSSI measurement is received the EKF

is performed. To use the already introduced path loss model
from 1 as measurement function h in the EKF the distance da

between the estimated user position and the ath beacon has
to be computed:

da =
√

(xk − xa)2 + (ya)2 + (ha)2. (6)

xk and xa denote the positions of the user respectively of the
ath beacon on the current edge. ya and ha are constant values
and set if there is a known offset between the ath beacon and
the edge.

The measurement vector zRSS
k consists of the RSSI value

of the current beacon P (da):

zRSS
k = P (da) + νRSSI

k (7)

In this case the measurement covariance RRSS
k is a constant

value;

B. Velocity Measurement Model
The velocity is obtained from a step detection which utilizes

the accelerometer of the smartphone. How the step detection
works is already presented and explained more detailed in [11].
The measurement model of the velocity, is build quite simple:

zvk = |vx,k|+ νv
k . (8)

If there is no step detected, it is assumed that the user is
not moving. So the measurement covarianceRv

k of the random
variable νv

k is assigned to a very small value in case of zero
velocity and a higher value for non-zero velocities.

V. EXPERIMENTAL RESULTS

Figure 4 shows some early experimental results of the
project. Therefore we made a test walk in the already intro-
duced office building from figure 3. The walk was made from
the entry in the bottom to the end of the floor in the top and
back afterwards.

A comparison between an basic EKF which uses only RSSI
values and a version which combines the RSSI values with a
velocity derived from a step detection is shown. The combined
version shows a quiet better accuracy than the basic one.
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Fig. 4: 1D position on a simple test walk
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Abstract—TRACLUS is a widely-used partitioning and
grouping framework for trajectories. However, suitable clus-
tering results representing the building’s topologies are hardly
obtained when applying the framework to indoor trajectories
with noise. In this work, this problem is demonstrated on an
inertial indoor positioning data set created using a filtered
dead-reckoning system based on step-counting. Using Douglas-
Peucker algorithm as a different segmentation strategy to
TRACLUS and a minor correction to the distance weightings
of TRACLUS, we show that this framework is still applicable
for this data set.

Keywords-Indoor Trajectories; Segmentation; Density Clus-
tering; TRACLUS

I. INTRODUCTION

In the last decade, modern mobile devices with integrated
sensors have generated new possibilities and challenges for
indoor localization and tracking. More and more location
data from mobile users is becoming available and has to
be processed with the methods of data science, such as
trajectory clustering algorithms, in order to understand and
use this valuable personal information. This topic is of high
interest for many fields in the scientific and commercial
world. We see an important application domain in filtering of
noise and uncertainty in indoor positioning systems without
map information: the clustering structure of trajectories
creates a valuable “map”, which can be used to assess
the probability location in particle filtering or multiple-
hypothesis tracking navigation approaches.

In this work, we focus on a well-known and widely-
used trajectory clustering framework and algorithm named
TRACLUS [1] and show its deficits for a real-world in-
ertial indoor positioning data set. We demonstrate, how
these deficits can be solved with minimal changes of the
proposed framework. Using Douglas-Peucker algorithm [2]
as another segmentation strategy, and a slightly up-weighted
angle distance, we receive more adequate clustering results
representing the topology of the corresponding building.

The remainder of the paper is organized as follows: The
next Section II shortly introduces the TRACLUS frame-
works and the relevant definitions. In Section III, we first
describe the used dataset, its internal structure, and the
results of the original TRACLUS algorithm. Then, we show
that a different segmentation leads to the expected results.
Finally, Section IV concludes the paper.

II. THE TRACLUS ALGORITHM

The TRACLUS algorithm [1] is a widely-used parti-
tioning and clustering framework performing density-based
clustering on line segments, rather than grouping trajectories
as a whole. This is due to the fact that capturing the distance
between non-local objects is infeasible and, therefore, some
locality is reconstructed by a splitting methodology. In
order to get line segments, the trajectory is partitioned on
segmentation points representing significant changes of the
trajectory’s behavior. Hence, as a first step, segmentation
points have to be found. For trajectory segmentation, sev-
eral approaches have been presented in literature [2]–[4].
TRACLUS performs an approximate solution based on the
minimum description length (MDL) principle in order to find
the optimal tradeoff between preciseness and conciseness.

In a second step, the line segments from the parti-
tioning phase are clustered with respect to their density-
connectedness. Different density-based clustering algorithms
can be found in literature such as DBSCAN [5] or DEN-
CLUE [6]. TRACLUS is similar to DBSCAN and searches
density-connected sets of line segments which are marked
as clusters. As in case of DBSCAN, two parameters are
required: ε defining the threshold for the ε-neighborhood of
line segments, and minLns, defining the minimum amount
of lines which have to be inside an ε-neighborhood in order
to create a cluster.

In order to compute the ε-neighborhood of a line segment,
a distance function is needed focusing on segment char-
acteristics. TRACLUS proposes three distances capturing
different aspects of similarity: parallel distance (PD), per-
pendicular distance (PPD), and angle distance (AD). These
are joined into a single distance measure by a weighted sum,
with weight αi = 1 by default:

d = α1PD + α2PPD + α3AD

In a final step, all clusters are checked if their trajectory
cardinality is greater that a predefined threshold which is
minLns by default. Otherwise they are removed from the
result set of clusters. This is done, because a cluster of
segments coming from a small set of trajectories could
lead to a cluster of trajectories containing less than minLns
individual trajectories.
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III. CLUSTERING OF INERTIAL INDOOR POSITIONING
DATA

In order to extract reasonable map information from
inertial sensor systems, this section proposes to use a
blind clustering approach without any map information and
demonstrate its feasibility on a real-life dataset.

A. The Dataset

Using a dead-reckoning system based on step counting
and a digital compass, we created several traces inside our
building which are depicted in Figure 1(a). For reference,
Figure 1(b) depicts the schematic floor plan of the building.
The dataset consists of a user walking into each of the
hallways, turning there and walking back. It suffers from
accumulating errors as there are no reference measurements
integrated into the system, however, the used sensory and
filtering led to quite accurate results as can be seen. The
dataset consists of 10 trajectories for a total of 10,386 step
estimates of varying length and direction.

(a) Representation of data set (b) Schematic floor plan

Figure 1. Data set created within our office building

Using this dataset, we would expect to find four clusters
representing the horizontal hallways and either one or three
clusters representing the vertical interconnections between
them. We expected this as the trajectories in these clusters
would have been similar to each other in direction and length
as well as near to each other while they would not be near
to trajectory parts in other hallways.

B. TRACLUS Results

For clustering, we used TRACLUS in two different fash-
ions: First, we perform segmentation and distance weight-
ings as proposed in the original publication.

Performing this with a value of minLns = 3, we varied
the parameter ε and were unable to produce the expected
results: For large values of ε, of course, too few clusters were
detected. For smaller values, however, some of the clusters
broke up into two different ones and clusters got rejected
based on that they did not meet the minLns threshold any-
more rendering those candidates as noise. Figure 2 depicts
a situation for ε = 1.8. While some clusters start breaking
wrongly into two different clusters (low part of Figure 2(b)),

highly unrelated clusters are being joined such as the T-
shaped cluster in the middle. This is due to problems with
the segmentation and especially with short segments therein,
see Figure 2(a). These short segments are taken as similar
with each other by the original TRACLUS construction [1].

It is clear from this figure, that no other value of ε would
have created the expected results: smaller values increase
the splitting of relevant clusters, larger values will not lead
to a breakup of the T-shaped cluster. Consequently, we have
to change the algorithm in another way.

From Figure 2(a), we observe that the MDL-based seg-
mentation of TRACLUS results in very small segments
which actually do not capture any trend change in their
definitions. In order to change that, we decided to use the
Douglas-Peucker line simplification algorithm in order to
capture a segmentation of the input trajectories which is
less sensitive to small perturbations. As you can see in
Figure 3(a), the Douglas-Peucker simplification rejects more
points as compared to the original TRACLUS segmentation.
Furthermore, it keeps those points where durable changes in
orientation actually take place. As a first effect, this reduces
the computational overhead. More importantly, however, the
clusters capture more information: The line segments that
we expect to fall into same clusters not only have similar
orientation, but have similar length and some nearness of
endpoints. In order to get a distance measure sensitive
to the differences in angles between those segments and
not overemphasizing the nearness of completely parallel
segments of similar length, we had to change the weighting
in the original TRACLUS distances towards angle distance.
Note that executing the original TRACLUS with these
modified weightings led to an even worse clustering result,
as a lot of non-related segments have similar orientation.
Using Douglas-Peucker segmentation, however, the result of
clustering with modified weightings is depicted in Figure
3(b). This result finds all clusters as expected without the
topmost cluster, which is anyways underrepresented in the
dataset and correctly removed, due to its low trajectory
cardinality.

In summary, we showed that the TRACLUS framework is
still applicable to inertial indoor trajectories. However, the
TRACLUS segmentation is too sensitive to measurement
variations. We changed the segmentation as well as the
distance weightings such that the intuitive notion of a cluster
in the given dataset is actually reached.

Note that we did not yet show that this approach is
generally advantageous for indoor trajectories. Still, we
provide an example and an approach, which is tailored to
the nature of inertial trajectories. Therefore, we expect that
this approach will be applicable to other datasets in which
measurement perturbations would lead to short segments as
well as in which large segments can be extracted, which
capture the actual structure of the dataset.
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(a) TRACLUS segmentation result (b) TRACLUS clustering result with ε = 1.8

Figure 2. Results of using TRACLUS in its original form on inertial tracking data.

(a) Douglas-Peucker segmentation (b) TRACLUS using Douglas-Peucker (εDP = 2), modified distance
weight (α3 = 2), and ε = 6

Figure 3. Results of using Douglas-Peucker for segmentation together with TRACLUS clustering on inertial tracking data.

IV. CONCLUSION AND FUTURE WORK

In this work, we have addressed the problem of clustering
inertial indoor positioning data. We have shown that the
widely-used TRACLUS algorithm in its original form does
not fit to this problem. Furthermore, we have demonstrated
that the clustering results not only depend on both parame-
ters ε and minLns, but also on the used segmentation strat-
egy. Replacing the TRACLUS segmentation with Douglas-
Peucker, the clustering results became more adequate for our
purpose.

For future work, we want to enhance our investigations
using different parameters and a large number of indoor data
sets. We plan to use various distances for trajectories in order
to compute the ε-neighborhood and evaluate the quality of
returned clusters by using well-known quality measures for
clustering as well as novel application-centered measures
which capture the special situation inside buildings and other
complex surroundings.

REFERENCES

[1] J.-G. Lee, J. Han, and K.-Y. Whang, “Trajectory clustering:
a partition-and-group framework,” in Proceedings of the 2007

ACM SIGMOD international conference on Management of
data. ACM, 2007, pp. 593–604.

[2] D. H. Douglas and T. K. Peucker, “Algorithms for the reduction
of the number of points required to represent a digitized line
or its caricature,” Cartographica: The International Journal for
Geographic Information and Geovisualization, vol. 10, no. 2,
pp. 112–122, 1973.

[3] M. Potamias, K. Patroumpas, and T. Sellis, “Sampling trajec-
tory streams with spatiotemporal criteria,” in Scientific and
Statistical Database Management, 2006. 18th International
Conference on. IEEE, 2006, pp. 275–284.

[4] P. Katsikouli, R. Sarkar, and J. Gao, “Persistence based online
signal and trajectory simplification for mobile devices,” 2014.

[5] M. Ester, H.-P. Kriegel, J. Sander, and X. Xu, “A density-based
algorithm for discovering clusters in large spatial databases
with noise.” in Kdd, vol. 96, 1996, pp. 226–231.

[6] A. Hinneburg and H.-H. Gabriel, “Denclue 2.0: Fast clustering
based on kernel density estimation,” in Advances in Intelligent
Data Analysis VII. Springer, 2007, pp. 70–80.

23



24



Lane-Level Localization on Lanelet Maps Using
Production Vehicle Sensors

Johannes Rabe, Sascha Quell, Marc Necker
Research and Development

Daimler AG
Sindelfingen, Germany

{johannes.rabe, sascha.quell, marc.necker}@daimler.com

Christoph Stiller
Institute of Measurement and Control

Karlsruhe Institute of Technology
Karlsruhe, Germany

stiller@kit.edu

Abstract—An approach for localization for lane-accurate nav-
igation systems is proposed. The method uses a particle filter to
determine the ego-vehicle’s lane and the lateral and longitudinal
position within this lane on a lanelet map. As inputs a visual
sensor for lane-marking detection, radar information on moving
objects in the surroundings, the digital map, yaw rate, and
odometry – all available in a current production vehicle – are
used. The algorithm has proven successful in tests in over 97%
of the time.

I. INTRODUCTION

Imagine you are driving your car somewhere you have
never been before and find yourself in this situation: You
exit a roundabout, the road immediately splits into five lanes
and you are supposed to turn left at the next intersection
as outlined in Fig. 1. Future navigation systems shall help
you in this situation and provide lane-level maneuver advise.
They shall not only inform about the optimal lane leading to
your destination, but also propose lane changes that might be
required. For this purpose, it is of course necessary to robustly
determine the current lane of the ego-vehicle in any situation.

The most crucial point is in front of complex intersections
where accurate lane advise is most beneficial. Furthermore, de-
termining the ego-lane with acceptable accuracy on highways
after traveling several kilometers and performing a couple of
lane changes is a doable task. Trying the same in city roads
and in situations like the one introduced in Fig. 1, however,
can quickly become more difficult.

So far, there has been a lot of research on accurate localiza-
tion of vehicles, especially in the context of advanced driver
assistance systems and automated driving. Many publications
use special maps containing landmarks collected by cameras,
lidar or radar sensors [1], [2], [3]. However, this approach is
currently not feasible for the purpose of a navigation system
that shall be able to work on most roads of the network.

In our approach, we use abstract data from a camera and
radar sensors available in a current production Mercedes-Benz
S-Class as well as a lanelet map [4]. This data is fused with a
particle filter yielding an estimate for the currently driven lane
as well as the lateral and longitudinal position in this lane. The
combination of radar and camera data allows for positioning
both in cases of heavy traffic, where lane markings may be

Fig. 1. Lane-level navigation advising the driver to take the fourth lane to
turn left after exiting a roundabout. The green line shows a possible route.

hidden behind other vehicles, as well as in cases of low traffic,
where the positioning relative to other vehicles is limited.

After an overview over related work, the following Section
III describes the basic properties sensors and data used in
the particle filter. Section IV presents the actual sensor fusion
process. Exemplary results are provided in Section V before
a conclusion and outlook on further work is given in Section
VI.

II. RELATED WORK

A couple of different approaches for the determination of
the ego-lane have been proposed in previous work. In [5], a
particle filter method for ego-localization on a precise digital
map is presented. The measurement model includes absolute
positioning with a low cost GPS, a highly precise map and the
position and orientation angle of the ego-vehicle in its lane
as computed by image analysis. The system state contains the
vehicle’s coordinates in reference to the map and its orientation
angle.

A similar approach is followed by [6]. However, the es-
timated system state consists of link and lane id of a map
and the offset relative to the beginning of the link. The vision
sensor tracks the distances to the next lane-markings on the
left and right side as well as their types.

In [7], an algorithm based solely on vision is presented.
Spatial ray features are used to analyze the layout of the road
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scene to determine the number of lanes to the left and right
of the ego-vehicle.

The approach shown in [8] is even capable of exact posi-
tioning in small city streets without lane-markings. However,
a laser-scanner is required for measuring street and building
structures in the environment of the vehicle which is currently
neither state-of-the-art in production vehicles and nor is it
expected in the near future due to its prohibitive costs.

III. SENSORS

For the localization algorithm, mainly the three sensors
described in the following are used.

A. Lanelet Map

Lanelet maps were originally proposed in [4] in the context
of automated driving. These maps contain geometrical and
topological properties of the road network. Every lane and
driving option is stored as a “lanelet”, geometrically described
by its left and right boundary. As every lanelet shares nodes
with its predecessor and successor, the geometrical represen-
tation can be converted into a graph containing the topological
information and allowing for routing through the network.

The map used in this work was hand-made in the JOSM
editor based on Bing satellite images. To allow for an evalua-
tion of the estimated ego-lane in comparison to a ground truth
ego-lane, we added an initialization step to find neighboring
lanes and enumerate the road segments.

B. Lane Marking Detection

A stereo camera mounted behind the windshield and com-
puter vision algorithms allow for detection of lane markings in
front of the vehicle. The information provided contains, among
others, the distance to the closest marking on the left and right
side of the camera, its type (continuous, dashed, . . . ), and the
yaw difference between the vehicle coordinate system and the
detected marking.

C. Moving Radar Objects

In case of obstructed sight due to heavy traffic in front of
the vehicle, fewer lane markings can be detected. Therefore,
information from a front radar about moving objects in front
of the ego-vehicle is used. For each moving object, the relative
position xv and yv in vehicle coordinates and an estimate for
its type (car, truck, . . . ) is provided. With this data, the ego-
vehicle localization can be supported: If there are vehicles
moving in a similar direction as the ego-vehicle two lanes left
of the ego-vehicle, it is quite likely that the ego-vehicle is not
on one of the two leftmost lanes. The same holds accordingly
for other detected positions.

IV. SENSOR DATA FUSION

The localization algorithm fuses the signals from the afore-
mentioned sensors using a particle filter. It estimates the
posterior density of the system state xk at time k given
the sensor measurements z0, . . . , zk up to the current time
step, p (xk|z0, . . . , zk). For this a motion and measurement
model as described in the following are used. The system

state consists of the vehicle position in two dimensions and its
corresponding heading angle. This leads to a three-dimensional
state vector xk = (xk, yk, ψk), where xk and yk refer to the
East and North component of a local East-North-Up (ENU)
frame, respectively, and ψk to the heading angle in the East-
North-plane.

The particle filter is initialized based on a GPS fix contain-
ing latitude and longitude in a World Geodetic System 1984
(WGS-84) coordinate frame and an estimate for the heading
since the previous GPS fix. The particles’ 2D position and
their heading are drawn randomly from a normal distribution
around this GPS position.

To avoid degenerate sets of particles, the particles are
periodically resampled according to their original accumulated
weight [9].

A. Motion Model

The motion model for the prediction step is based on
wheel odometry sensors and a yaw rate sensor. The vehicle
is modeled as a point in space that rotates according to the
measured yaw rate and always moves straight forward into its
heading direction. This model has shown to be reasonable in
comparisons with alternative motion models.

B. Measurement Model

In the update step, the observations from the sensors men-
tioned in Section III are used to assign weights to the set of
particles.

1) Digital Map: For the digital map weight, the pseudo-
distances of each particle to the left and right borders of
lanelets in its near environment are determined as described
in [4]. Based on these pseudo-distances, on-road lanelets can
be assigned to lanelets. The weight for particles i which
couldn’t be assigned to any lanelet is set to a minimum value
wmap,i = wmap,min. For each on-road particle, the weight is
calculated from the difference in heading ∆ψi between the
mean pseudo-tangent at its position on the lanelet and the
particle heading ψi but lower bounded by the same minimum
value that is assigned to off-road particles:

wmap,i = max (cos (∆ψi) , wmap,min) . (1)

2) Type of Lane-Marking: For the particle weight based
on the detected lane-marking type, we assume a highway-like
road marking with continuous lines on the outer boundaries
of a road and dashed or similar not continuous lines between
adjacent lanes of one road. The markings on both sides are
treated independently and depend on the lanelet that a particle
has been assigned to in the digital map weight step. For
example, a dashed left marking leads to a reduced weight for
particles on the leftmost lane, whereas particles on all other
lanes get assigned a higher weight.

3) Distance to Lane-Marking: Apart from the marking
type, also the distance to the road marking plays a role. For this
purpose, the pseudo-distance to the left or right boundary of
the lanelet estimated during the lanelet weight is compared to
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the distance to the respective marking detected by the camera.
The difference ∆di between both leads to a weight

wmd,i = max

({
exp

(
− (∆di)

2

2σ2

)
, wmd,min

})
(2)

for particle i, where the standard deviation σ depends on the
confidence level of the lane marking detection algorithm. A
special treatment is performed for cases where the detected
lane-marking might be ambiguous.

4) Moving Radar Objects: The fourth component of the
update step is the weight based on the objects detected by the
front radar. For this purpose, moving objects classified as cars
or trucks are projected onto the map based on their estimated
relative position and the heading and position of each particle.
The resulting point in space is then in turn tested whether it lies
upon a road in the digital map. Depending on this mapping,
a higher or lower weight is applied.

V. PRELIMINARY RESULTS

The proposed algorithm has been tested in a simulation
environment on different roads. Over a test set of around 12
minutes of roads in city and rural roads with up to five lanes,
the algorithm has estimated the correct lane in 97.5% of the
time.

However, any test track may contain single-lane segments
or long parts without turns that make the estimation easier,
as well as traffic lights which lead to distorted time measure-
ments. Therefore, the mere percentage of correct estimates
over time or distance is not the most meaningful performance
measure for an inner-city ego-lane estimation and we are
currently working on an improved measure as well as a proper
data set. This shall take into account that the problem becomes
easier on single lanes and with frequent lane changes, but also
that the estimation is most crucial in the approach of a complex
intersection.

So long, we want to show exemplarily how the algorithm
handles the situation shown in Fig. 1. The roundabout is shown
at the bottom left corner of Fig. 2 and left by the vehicle toward
the five lane road. The particle filter correctly determines the
fourth lane as the most likely hypothesis with some particles
remaining as concurrent hypotheses on the third and second
lane.

As has already been found in [6], the observation of the
distance to the detected road markings is very helpful as it
allows for an easy detection of lane changes.

VI. CONCLUSION AND OUTLOOK

We have presented a method for lane-level localization of
a current production vehicle using sensors available ex works,
namely vision, radar, yaw rate, and wheel odometry, and
a digital map. The algorithm is capable of determining the
current lane of the ego-vehicle in many cases based on lane-
marking detection and other traffic, even without a certain
number of lane changes required between initialization and
the first stable lane estimate.
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Fig. 2. Localization result on five lane road. The weighted average position
with respect to the lane as blue boxes and history of the overall average as a
blue line. The estimated lanelets are highlighted in green.

Future work will contain the production of a proper data
set as well as the determination of a useful performance
measure. We will also compare the influence of the different
sensors used on the overall result as well as different weighting
of separate sensors. A next step is the use of an actual
commercial map on roads where it is available in reasonable
detail as well as the examination of the influence of missing
or wrong information on the result. The behavior over very
long distances on more or less straight roads has yet to be
evaluated.

REFERENCES

[1] J. Ziegler, P. Bender, M. Schreiber, H. Lategahn, T. Strauss, C. Stiller,
T. Dang, U. Franke, N. Appenrodt, C. G. Keller, E. Kaus, R. G. Herrtwich,
C. Rabe, D. Pfeiffer, F. Lindner, F. Stein, F. Erbs, M. Enzweiler,
C. Knöppel, J. Hipp, M. Haueis, M. Trepte, C. Brenk, A. Tamke,
M. Ghanaat, M. Braun, A. Joos, H. Fritz, H. Mock, M. Hein, and E. Zeeb,
“Making Bertha Drive–An Autonomous Journey on a Historic Route,”
IEEE Intelligent Transportation Systems Magazine, vol. 6, no. 2, pp. 8–
20, 2014.

[2] C. Tessier, C. Debain, R. Chapuis, and F. Chausse, “Simultaneous
landmarks detection and data association in noisy environment for map
aided localization,” in Intelligent Robots and Systems, 2007. IROS 2007.
IEEE/RSJ International Conference on. IEEE, 2007, pp. 1396–1401.

[3] H. Lategahn and C. Stiller, “City GPS using stereo vision,” in Vehicular
Electronics and Safety (ICVES), 2012 IEEE International Conference on.
IEEE, 2012, pp. 1–6.

[4] P. Bender, J. Ziegler, and C. Stiller, “Lanelets: Efficient Map Represen-
tation for Autonomous Driving,” in The 25th IEEE Intelligent Vehicles
Symposium, Dearborn, Michigan, USA, Jun. 2014.

[5] F. Chausse, J. Laneurit, and R. Chapuis, “Vehicle localization on a digital
map using particles filtering,” in Intelligent Vehicles Symposium, 2005.
Proceedings. IEEE. IEEE, 2005, pp. 243–248.

[6] I. Szottka, “Particle filtering for lane-level map-matching at road bifur-
cations,” in Intelligent Transportation Systems, ITSC. IEEE International
Conference on, 2013, pp. 154–159.
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Testbed for automotive indoor localization

Daniel Becker1, Fabian Thiele1, Oliver Sawade2, Ilja Radusch2

Abstract— To enable intelligent vehicular indoor applications
highly accurate localization is required. There is a high number
of different approaches which are however difficult to compare
due to a lack of a common evaluation methodology. Thus, we
present a testbed for vehicular indoor localization, to enable
the benchmarking of different approaches under comparable
conditions. As a first building block, we present a simple yet
highly accurate ground truth system based on off-the-shelf
infrastructure cameras and printable markers. Our employed
marker detection algorithm and systematic 3-layer projection
approach achieves a median accuracy of 0.48cm and 0.05
degrees for 2D position and orientation.

I. INTRODUCTION

There are countless applications for vehicles operating
indoors, ranging from intelligent vehicles to industrial robots
and automated warehouses. Requirements in terms of local-
ization accuracy and reliability tend to correlate with the
degree of automation. Especially for completely automated
systems (i.e. operating without human supervision), localiza-
tion requirements are particularly high.

In recent years, intelligent and automated vehicles for
indoor carparks have attracted a significant attention of the
research community as these systems have the potential to
alleviate congestion problems in modern cities. One of the
core technologies to enable this vision of indoor automated
driving is highly accurate localization. To achieve it, a mul-
titude of different localization approaches based on various
technologies (e.g. cameras, laser scanners, odometry, etc.)
can be applied [1] [2] [3]. However, the performance of these
systems is often condensed into a few numerical values for
the median, standard deviation, minimum, maximum error
or quantiles of the localization accuracy. Nevertheless, the
comparison of different techniques based on these metrics
is often difficult as they are not clearly defined and testing
conditions vary significantly. Thus, the necessity for a ve-
hicular indoor testbed arises, in order to benchmark different
localization techniques in identical conditions [4] [5].

Our goal is to develop a testbed for automotive indoor
localization techniques in parking scenarios. One essential
building block for a testbed is a Ground Truth system, i.e. a
localization system that is highly accurate and robust, ideally
surpassing the desired localization accuracy of the productive

1Daniel Becker and Fabian Thiele are with the Daimler
Center for Automotive Information Technology Innovations
(DCAITI), Ernst-Reuter-Platz 7, 10587 Berlin, Germany
{daniel.becker,fabian.thiele}@dcaiti.com

2Oliver Sawade and Ilja Radusch are with the Fraun-
hofer Institute for Open Communication Technologies
(FOKUS), Kaiserin-Augusta-Allee 31, 10589 Berlin, Germany
{oliver.sawade,ilja.radusch}@fokus.fraunhofer.de

system by an order of magnitude. In particular for the task
of automated driving in indoor carparks, an accuracy of at
least 10cm and 1◦ for position and orientation is commonly
quoted as sufficient [1] [2]. Thus, an accuracy of at least 1cm
and 0.1◦ would be ideal for the Ground Truth system.

Outdoors, GNSS based systems are often used as Ground
Truth. A common variant is DGPS (Differential GPS) where
the accuracy is improved by adding stationary transponders
at fixed known locations. Under typical outdoor conditions,
1m localization accuracy can be achieved [4]. However,
in indoor spaces or other conditions without line-of-sight
to the navigation satellites, the accuracy of GNSS systems
decreases or ceases entirely [4].

In this work, we present a highly accurate yet cost-
effective Ground Truth system based on customary
infrastructure cameras and printable optical markers forming
an important building block of our automotive indoor testbed.

II. METHODOLOGY

The backbone of the proposed Ground Truth approach is a
reference grid with a chessboard pattern and a camera facing
down onto the grid, as shown in Fig. 1. This figure shows
the placement of the reference grid in our testbed [3] and
the coverage of the camera onto the grid (indicated in blue).
The grid consists of alternating black/white square shapes
with a side length of 16.4cm. The camera is at a mounting

Grid x 
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[m]

UTM Easting 
[m]

UTM Northing 
[m]

Cam x 
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Fig. 1: Reference chessboard grid and camera view in indoor
carpark environment, showing camera (blue), reference grid
(red) and global UTM (black) coordinate systems.
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(a) Prepocessed input image (b) Detected contours (c) Edge refinement (d) Marker ID sampling

Fig. 2: Image processing steps of the marker detection algorithm.
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Fig. 3: Test vehicle equipped with color markers and refer-
ence laser pointers, top view (left) and side view (right).

height H (cf. Fig. 3) of 2.75m and its view covers a total
area of 2.1m x 3.4m. Also, 4 map objects are shown in
Fig. 1 (1 wall, 1 square pillar and 2 round pillars). These
map objects are represented in a given indoor map with
geographic coordinates (UTM [6]). Thus, each map object
is located on 3 coordinate systems: 1. global (e.g. UTM
in meters) 2. reference grid (in meters) 3. camera view
(in pixels). Multiple grids and cameras are possible but for
simplicity’s sake we assume there is only one of each.

The goal of the presented approach is to automatically
detect objects in the camera view and project the position
into the reference grid as well as global coordinate system -
as accurately as possible. We developed a detection algorithm
for printable squared colored markers as shown in Fig. 2.
This algorithm consists of multiple steps, including prepro-
cessing of the image, detecting of the approximate contours,
edge refinement using grayscale gradients and sampling of
a unique ID based on the color pattern. As a result, this
algorithm yields the central position in the camera view (in
pixels) as well as a unique identifier (max 32 combinations).

In the second step, the camera view position (pixels)
is projected onto the reference grid (meters) by utilizing
a homography projection matrix obtained during an initial
calibration process for each camera image. The calibration
process utilizes two sets of corresponding camera view and
reference plane positions (i.e. chessboard corners, cf. Fig. 1)
and determines a projection matrix HA by utilizing OpenCV
function cvFindHomography() [7]. HA describes 2 rotations
and 1 translation and can be multiplied with a camera view
position to yield the corresponding reference plane position.

The third and last step is the determination of the
global position (e.g. UTM projection [6] coordinate in
meters) which is done similarly to the projection step
between camera view and reference grid. The required two
sets of corresponding points are generated from known
characteristic positions of structural elements (e.g. corners,
pillars) where both the global and reference grid coordinate
is known. Thus, OpenCV function cvFindHomography()
[7] can be applied and yields a projection matrix HB , able
to convert reference grid to global coordinates and vice versa.

III. EVALUATION

We equipped our underground carpark test site [3] with
AXIS Q1604 (FW: 5.40.3.1) network cameras at mounting
heights of 2.75m which provide MJPEG encoded images at
24fps and a resolution of 1280x720px via Gigabit Ethernet.
A Smart Fortwo acts as test vehicle equipped with markers
at a mounting height of 0.23m. The software is written in
C++ making use of the library OpenCV 2.4.9 and runs on
a computer with Intel(R) Core(TM) i7-4700MQ and 16GB
RAM with Ubuntu 12.04 LTS (64 bit).

A. Overall Positioning Error

As shown in Fig. 3, we attached two laser pointers to the
test vehicle which project a point onto the grid that can be
measured manually. Assuming the manual measurements are
done at an accuracy of at least 1mm is sufficient as reference
position for evaluating our proposed approach.

As the mounting of markers and laser pointers is rigid, the
displacement is constant over time. To be able to compare
marker position pref,M and manually measured position
pref,L1, we perform a shift to the vehicle reference point:

pref,V =̂ pref,L1 =̂ pBref,M (1)

Consequently, we define the error in terms of position as:

Epos = |pref,V − pBref,M | (2)

Also, the error for the orientation angle is defined as:

Eθ = |θref,L − θref,M | (3)

In order to determine the overall positioning error, the
vehicle was placed at 15 different positions in the camera
view, i.e. variations in pref,V and θref,L.
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Fig. 4: Evaluation results, Cumulative Density Functions (CDF) of A) position error Epos in cm, B) orientation error Eθ in
◦ and C) detection time ∆Tdet and total time ∆Ttotal in ms.

Fig. 4 A) displays a Cumulative Density Function (CDF)
of the position error Epos. The median error position and
orientation is 0.48cm and 0.05◦ resp. and the maximum
error is 0.8cm and 0.3◦ resp. Consequently, the system is
accurate enough to meet the initially stated high requirements
for localization systems (i.e. 1.0cm and 0.1◦ for automated
driving scenarios).

B. Performance and robustness

Fig. 4 C) shows the measured timings of the marker de-
tection algorithm ∆Tdet and the total detection time ∆Ttotal
that includes ∆Tdet time as well as all remaining processing
(e.g. loading an image from the camera, performing the ho-
mography projection, etc). In the worst case, the processing
rate would be about 12Hz. Hence, real-time processing of
even fast moving objects is possible.

Moreover, false positive Rfp and false negative rate Rfn
of the marker detection indicate the overall robustness.
Let i, j and n be the number of false, missed and total
detections resp. Thus, we define Rfp = i

n and Rfn = j
n .

In our experiments, there have been incorrectly detected
markers. However, the identifiers of these misdetections
were not within the valid numeric range of the actual used
markers and could be filtered out. Thus, both Rfp and Rfn
turned out to be zero, i.e. every marker has been captured
without any mismatches. Above all, illumination is a highly
important factor influencing the performance of optical
localization systems. We have conducted all experiments
under realistic lighting conditions [3].

IV. CONCLUSION AND OUTLOOK

In this work, we introduced a highly accurate yet cost-
effective Ground Truth system as a first building block for
an automotive indoor testbed. The proposed approach relies
on printable colored markers, a reference grid and custom-
ary network cameras. Furthermore, automated calibration
processes significantly reduce the amount of manual effort.
The proposed system is suitable for vehicles or wheeled
robots, where a marker can be mounted at a fixed height.
In a detailed evaluation, we determined a median error for
position and orientation of 0.48cm and 0.05◦ resp. and

a maximum error of 0.8cm and 0.3◦ resp. The system’s
detection performance proves to be highly reliable under
realistic conditions.

Our long term vision is the creation of a testbed for
benchmarking a vast range of localization techniques
under comparable conditions. The next steps include
the implementation of a standardized set of evaluation
metrics reflecting different aspects of the localization
performance. Moreover, it would be beneficial to equip
the testbed infrastructure with additional sensors to capture
environmental effects potentially influencing the localization
performance. For instance, the occupancy status of all
parking lots, barometric pressure and camera streams
from the viewpoint of the test vehicle can be recorded.
Ultimately, a replay mechanism could be implemented for
testing localization algorithms with real data recorded during
test runs. This would speed up development as the number
of test runs can be reduced and challenging situations can
be reproduced easily.
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Abstract—Due to the rapid development of affordable, intel-
ligent, and mobile devices, especially in the area of wearable
computing (e.g., Google Glass, etc.), the implementation of ap-
plications for computational vision is more and more feasible. In
this context, we propose a new concept for a pedometer, which
is based on visual feature points. The introduced method is part
of a visual odometry procedure, which is used for positioning on
basis of optical feature points and their corresponding vectors. In
order to realize the pedometer, video recordings shot from a first
person perspective become analyzed. In a first step, feature points
are extracted out of each of the video’s frames. Subsequently, a
pace movement is calculated by using the euclidian norm between
equal feature points of successive frames. In the following, the
concept is compared to classical pedometers, which are commonly
based on an accelerometer or related inertial sensors. Besides the
successful recognition of a user’s paces, we take a brief look at
popular techniques for feature point processing, e.g., SURF, ORB,
and BRISK, regarding their suitability for visual pace detection,
which is also subject of this paper. Especially their characteristics
concerning robustness and computational costs for successful pace
recognition are relevant in this context.

I. INTRODUCTION

Pace recognition and its counting gained a lot of popu-
larity during the last months. Several studies showed, that
the usage of pedometers animate users to undertake more
physical activities, which results in improving their health as
well as the facilitation of a more healthy way of life in general
[8]. Furthermore, pedometers are capable of supporting indoor
positioning systems in terms of being an additional positioning
sensor [6].

In order to measure the number of paces of a pedestrian,
his body movements become tracked and analyzed with the
help of an inertial sensor. Due to the development of today’s
micro controllers, it is possible to pilot inertial sensors in an
electronic way. This results in them being much smaller and
cheaper than their predecessors and today, it is even common
that several inertial sensors are plugged into one mobile device.
But despite their comprehensive distribution – due to occurring
inaccuracies, inertial sensors are not suitable for all kinds
of applications. Depending on the current use case, it may
be reasonable to substitute them by other technologies (e.g.,
cameras, positioning sensors, data transmission technologies,
etc.). Smartphone or body cameras are used for recording our
everyday life in private as well as in work environments, e.g.,
the surveillance of public operations carried out by security
personal. Their small and robust design enables users to record

their everyday life situations from a first person perspective and
in high definition quality.

After providing a brief overview across related work and
technologies in Section II, we introduce a visual-based pe-
dometer in Section III, which extracts a pedestrian’s paces out
of video material recorded with a body-worn action camcorder.
For the pace measurement itself, a procedure based on feature
point processing is used. The advantage of this method,
compared to the inertial sensor-based standard procedures, is
the possibility of analyzing taken video material even after
its recording. Moreover, different techniques of visual feature
point processing are examined concerning their suitability
for pace detection. Subsequently, we present the concept’s
evaluation in Section IV, followed by a forecast on this matter
in Section V.

II. RELATED WORK

Classical odometry methods, based on visual analysis ap-
proaches, are enabling the estimation of a covered distance
by processing video sequences. Its main area of usage is the
positioning and navigation of robots or vehicles, where single
cameras [12] or stereo cameras [1] as well as omni-directional
cameras are used [15]. One approach for motion detection de-
mands the cameras to be straightened into a frontal or a ground
direction. Subsequently, feature points become extracted out
of each frame of the taken video, in order to analyze them
for match points. On basis of these feature matches, a recon-
structed optical stream allows the approximation of camera
motions [11]. Other approaches facilitate the calculation of
changing light conditions out of the image’s color and gray-
scale intensities instead of using feature points [5]. Originally,
these methods were designed for vehicles and robots, which
is why they are not suitable for the usage in combination
with cameras worn by humans. Furthermore, measuring errors,
evoked by different movement patterns during running or
walking, do occur. While the direction of a movement can be
detected in an easy way, the estimation of distances is no trivial
task and leads to the need of adjusting the analysis methods for
the usage with human beings. Liu et al. use approaches based
on visual pedometers, similar to dead-reckoning methods for
pedestrians [10]. In order to detect paces, the three movement
axes are monitored by dead-reckoning to detect conspicuous
accelerations [13]. In contrast, the visual pedometer counts the
changes of movement directions of equal feature vectors during
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a defined span of time. This increases the visual odometrie’s
quality of results.

III. CONCEPT

In this section we explain our visual-based pedometer
concept, which is meant to recognize and count a pedestrian’s
paces by analyzing video data taken with an action camcorder
fastened on his body. Initially, the camera’s perspective is
aligned to match the user’s first person view – but subsequently
its installation in different positions, e.g., on the user’s torso,
are a matter of following examinations. The main concept
of counting paces facilitates the analysis of feature points,
extracted out of the recorded video material, as well as their
relation to each other. DiVerdi et al. [4] and Jirawimut et al.
[7] indicate, that camera movement caused by a carrier’s body
movement can be reconstructed by feature point extraction
from successive frames and their analysis. By extending this
procedure, relative movement changes of all feature points
aroused by the camera’s movement can be used for identifying
individual pace patterns and furthermore, for recognizing the
paces a user takes. Figure 1 illustrates movement changes of
equal feature points in two successive frames.

Fig. 1: Vector movement of equal feature points between two
successive frames.

In detail, the process is subdivided into five steps: 1) All
feature points are extracted out of each frame; 2) all feature
points of one frame are compared to its counterparts of the
next successive frame; 3) the euclidian norm of all extracted
feature points between two successive frames is calculated; 4)
the euclidian norm’s sign in relation of its positive or negative
alterations in direction of the Y-axis is changed if necessary;
5) all values belonging to one pair of frames are summed.

Figure 2 shows the visualized course of a short sequence
of a video recording taken by a pedestrian. We recorded a
continuous, 10-minute-long scenario, in which one subjects
walked a predefined indoor route. The video was taken with
an action camcorder providing a resolution of 1920 x 1080
pixels and using the H.264 video codec. In this context, a
distinct, characteristic, and reoccurring trend, which resembles
the pedestrian’s paces, is visible. Relying on procedures using
a classical inertial sensor for modeling a pedometer [9], [10],
similar jiggling patterns as well as the corresponding single
paces are about to become recognized by using a feature point
detection instead of an accelerometer.

Fig. 2: Relative vector movement of the visual pedometer
procedure

All in all, three different feature point procedures are
utilized. Part of the examination is the question, if less ro-
bust feature point procedures are also suitable for the imple-
mentation of a pedometer. First, the popular SURF feature
point procedure is used. Due to its robustness, it is one of
the most well-established systems [2]. Anyways, one of its
biggest disadvantages occurs during its execution. Despite sev-
eral advancements and adjustments concerning the demanded
resources as well as the needed execution time, its usage
is computationally intensive. In contrast, at the expense of
lowering the analysis’ results quality, BRISK [3] and ORB
[14] are faster and more resource preserving.

IV. EVALUATION

For evaluation, video sequences of a walking person with
an action cam on its chest, were recorded. In a first step, the
challenge was to determine the number of paces taken. Figure
3 shows the results of an auto-correlated sequence, which
was determined by using the visual pedometer concept. The
individual paces, all in all 16 during the whole video length,
are easy and clear to identify out of the given jiggling pattern.
Especially the results of videos taken in the test area’s straight
corridors were exceptionally good.

Fig. 3: Video sequence showing 16 estimated steps – auto-
correlated step estimation with SURF feature detector.
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In a following evaluation, we wanted to examine the
performance of other feature point methods, such as ORB and
BRISK, in combination with our visual pedometer concept.
Because of their different needs concerning the device’s re-
sources, this matter is of particular relevance. As visualized
in Figures 4a and 4b, it was not possible to reconstruct
the test user’s individual paces by using alternative feature
point algorithms. Furthermore, even after applying an auto-
correlation, a significant jiggling pattern is not detectable. A
reason for that may be the lack of enough robust feature points.
Moreover, because of the occurrence of to much false positive
feature matches, the results are influenced negatively again.
The robustness of SURF, evoked by a more strict process
for matching feature points, are reasons for its successful
embedding into the context of our proposed visual-based
pedometer concept.

(a) BRISK

(b) ORB

Fig. 4: Relative vector movement of the visual pedometer
procedure with BRISK and ORB feature detectors

V. CONCLUSION

Pedometers will gain a growing significance in our daily
life, especially concerning the monitoring and tracking of

activities as well as supporting existing indoor and outdoor
positioning systems. The fundament of our proposed concept is
based on the comparison of out of successive frame’s extracted
feature points and its visual based procedure expands the
possibilities of implementing a pedometer. The video material
used for the analysis is shot out of a first person perspective.
Changes in movement are analyzed in respect of periodical
features, which indicate single paces. Independent of the fact,
that classical pedometers, which are relying on an inertial
sensor, will also be indispensable in the future, our concept
enables devices without an additional inertial sensor to count
its user’s paces by the analysis of camera data. Furthermore,
existing video recordings shot from a first person perspective
can be analyzed at any time without depending on the moment
of their creation.
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9:00 - 9:30: Welcome and Introduction Horst Hellbrück, FH Lübeck
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– InPhase: An Indoor Localization System based on Phase Difference Measure-
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Yannic Schröder, Georg von Zengen, Stephan Rottmann, Felix Büsching, Lars
Wolf
Technische Universität Braunschweig

– Range-based Weighted-likelihood Particle Filter for RSS-based Indoor Track-
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Zan Li, Andreea Hossmann-Picu, Torsten Braun
University of Bern

– Towards Real-Time Network-Based Positioning in LTE
Islam Alyafawi, Navid Nikaeiny, Torsten Braun
Universität Bern
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– Adhoc Topology retrival using USRP
Chuong Thach Nguyen, Stephan Sigg, Xiaoming Fu
University of Goettingen

– Topological Localization with Bluetooth Low Energy in Office Buildings
Julian Lategahn, Thomas Ax, Marcel Müller, Christof Röhrig
University of Applied Sciences and Arts in Dortmund

– Clustering of Inertial Indoor Positioning Data
Lorenz Schauer, Martin Werner
Ludwig-Maximilians Universität
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13:00 - 14:00: 3rd. Session - Visual Localization

– Lane-Level Localization on Lanelet Maps Using Production Vehicle Sensors
Johannes Rabe, Sascha Quell, Marc Necker, Christoph Stiller
Daimler AG, Karlsruhe Institute of Technology

– Testbed for automotive indoor localization
Daniel Becker, Fabian Thiele, Oliver Sawade, Ilja Radusch
Daimler Center for Automotive Information Technology

– Enabling Pedometers on Basis of Visual Feature Point Conversion
Chadly Marouane, Andre Ebert
Research & Development VIRALITY GmbH, Ludwig-Maximilians-Universität
München
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2012-05 Thomas Ströder, Fabian Emmes, Jürgen Giesl, Peter Schneider-Kamp,

and Carsten Fuhs: Automated Complexity Analysis for Prolog by Term

Rewriting

2012-06 Marc Brockschmidt, Richard Musiol, Carsten Otto, Jürgen Giesl: Auto-

mated Termination Proofs for Java Programs with Cyclic Data

2012-07 André Egners, Björn Marschollek, and Ulrike Meyer: Hackers in Your

Pocket: A Survey of Smartphone Security Across Platforms

2012-08 Hongfei Fu: Computing Game Metrics on Markov Decision Processes

2012-09 Dennis Guck, Tingting Han, Joost-Pieter Katoen, and Martin R.
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