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Abstract. In this paper, we propose a novel approach for generating generic
object proposals for object discovery and recognition in continuous monocular
video. Such proposals have recently become a popular alternative to exhaustive
window-based search as basis for classification. Contrary to previous approaches,
we address the proposal generation problem at the level of entire video sequences
instead of at the single image level. We propose a processing pipeline that starts
from individual region proposals and tracks them over time. This enables to
group proposals for similar objects and to automatically filter out inconsistent
regions. For generating the per-frame proposals, we introduce a novel multi-scale
saliency approach that achieves a higher per-frame recall with fewer proposals
than current state-of-the-art methods. Taken together, those two components
result in a significant reduction of the number of object candidates compared to
frame level methods, while keeping a consistently high recall.

1 Introduction

The field of visual object recognition is currently undergoing a major paradigm
shift. There has been tremendous progress both on an image classification | ]
and on a category detection level | , | and approaches are now
available that can reliably detect a small number of object categories in very com-
plex scenes | | or that can recognize the most prominent objects in web
images from a large number of classes | , ]. Still, the recognition
problem is far from solved. Ironically enough, this is most visible when consider-
ing the problem of recognizing everyday objects in a continuous video stream that
roughly emulates what a human sees when moving through a scene (see Fig. 1).
In such a scenario, there are simply so many possible objects that it is hard to
come up with an exhaustive set of categories for which specific detectors could be
trained. In addition, those objects are typically not the central motive of a pho-
tograph (as in many current recognition benchmarks | , 1), but
they may be just another (small) part of a cluttered scene. As a result, the hith-
erto dominant paradigm of window-based classification coupled with exhaustive
search is reaching its limits.

A recent trend is therefore to invert the recognition pipeline and first gener-
ate a set of category independent object proposals | , , , ,

, ] to support and guide object search | ) ]. Such pro-
posals have been shown to be useful for, e.g., improving detection | |, self-
paced learning [ ], or unsupervised category segmentation | ]. How-

ever, most of the above-mentioned approaches are relatively unspecific — in or-
der to achieve a high recall, they often need to generate hundreds of proposal



Saliency Proposals Tracked Proposals

@ ' Object Candidates

Fig. 1: Overview of our sequence-level proposal detection. Left: proposals from
our frame-based, multi-saliency object discovery. Middle: sequence-level propos-
als from tracking. Right: Visualization of some of the candidate objects.

regions per image. In contrast, saliency-based approaches have been proposed
with the goal of finding and segmenting a single, prominent object in web im-
ages [LYST09,AST0,KF12,VXSJ13,YZL " 13]. Those approaches typically gener-
ate proposal regions that adhere better to object boundaries, but their saliency
formulation limits them to finding one or at best very few objects in an image;
they cannot be applied for finding all objects in a cluttered scene.

In this paper, we want to think this trend further. As object proposal gener-
ation methods become increasingly accurate, we envision that large-scale recog-
nition from video will be seen more and more as a retrieval problem, where a
low-level module processes the incoming video stream and generates object pro-
posals that are sent as queries to a (possibly cloud-based) recognition service.
Concrete application scenarios for such a service could be a wearable camera
(e.g., a Google Glass like device) that recognizes objects in the user’s field of
view or a mobile service robot that performs everyday tasks in people’s homes.
In such a setting, it is not necessary that every object is recognized in every
video frame. Rather, the number of recognition queries will quickly develop into
the main cost factor. It is thus desired that this number be as low as possible,
while covering all relevant scene objects by at least one query.

We therefore propose to address the object proposal generation problem on
the level of entire video sequences. Instead of generating a large set of proposal
regions for each frame, we are interested in reporting a small and consolidated
number of object proposals for an entire video. For this, we take advantage of the
temporal coherence of video input in order to track and evolve region proposals
over time. We start from a set of region proposals for each frame and build upon
a fast segmentation based low-level tracker [BROZ] to propagate each of those
regions independently over the next frames. Tracking fulfills a dual purpose in
this procedure. First, it allows us to link independently extracted proposals from
different frames that correspond to the same object. Second, it acts as a natural
filter to improve proposal quality. Single-frame proposals often extend beyond
object boundaries due to bad color contrast or suboptimal object viewpoint.
When a tracker is initialized to such a proposal region, it will quickly diverge when
the camera moves due to parallax effects. We take advantage of this effect through
a series of consistency checks, terminating bad tracks already at an early stage.
We then rank the remaining region tracks using shape, contrast, and tracking
quality criteria and condense them into a set of sequence-level object proposals.
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As our experiments will show, this procedure results in a great reduction in the
number of object candidates at a consistently high recall.

In detail, this paper makes the following contributions: 1) We propose the
first approach for sequence-level object proposal generation from video. Starting
from a set of candidate regions extracted from each frame, our approach tracks
each object candidate independently over time and subjects it to a series of
consistency tests. As a result of this procedure, it can group proposals that
pick out the same object and select the best representative among them. In
addition, it can take advantage of camera motion to filter out region proposals
that do not correspond to object boundaries. 2) In order to generate the per-frame
object proposals, we present a novel method based on multi-scale saliency that
achieves a higher per-frame recall with fewer proposals than current state-of-the-
art methods | , ]. 3) We demonstrate that the combination of those
two approaches results in a concise scene summary consisting of a small number
of high-quality sequence-level object proposals that could be used as queries to a
recognition service. 4) We present a new benchmark dataset for object discovery
from video consisting of very challenging video sequences of cluttered scenes with
detailed object annotations and use this dataset to compare our approach to the
state-of-the-art. We will make the dataset publicly available upon publication.

The paper is structured as follows. The next section discusses related work.
Sec. 3 then gives an overview of our approach and highlights the main design
goals. Sec. 4 presents our saliency based object proposal generation approach,
after which Sec. 5 describes the proposed pipeline for tracking and consolidating
object proposals over time. Experimental results are reported in Sec. 6.

2 Related Work

Unknown object segmentation. The capability to detect and segment un-
known objects is of considerable interest for many applications in mobile robotics
[ |, autonomous vehicles | | and general visual scene analysis
[ ]. Many approaches in those areas either assume an active camera
[ , ] or make use of 3D cues from an RGB-D sensor | , ,

]. Our focus is on extracting object hypotheses from the video stream
of a moving, monocular camera (e.g., from a Google Glass-like setup), where
we cannot control the camera motion and we do not have ready access to 3D
information.

Object Proposal Generation. Object proposal generation approaches |

, , , ] proceed by sampling a set of candidate regions
and ranking them according to their “objectness”, i.e., to the likelihood that the
region corresponds to a full object. | ] randomly sample bounding boxes to
define the candidate regions and rank them using a Naive Bayes framework com-
bining global saliency, color contrast, edge density, and location cues. | | gen-
erate multiple figure/ground segmentations by solving a constrained parametric
min-cuts problem from a grid of seed points and learn a ranking classifier based
on Gestalt cues. | | create occlusion boundary based seed regions [ ]
and group them using a learned affinity measure between regions. They then use
structured learning based on appearance features and overlap penalty terms for
ranking. | | follow a similar strategy, but use a variety of complementary
grouping criteria and color spaces starting from superpixels by [ ] to sam-



ple more diverse proposals in a selective search for object hypotheses. [ ]
also start from superpixels [ | and randomly group connected superpixels
by sampling partial spanning trees that have high sums of edge weights. The
main effort in those approaches is spent on learning a good prediction model
to rate the “objectness” of a segment based on a set of pixel or region based
cues. In our work, we use the much simpler idea that the content of a good seg-
ment should differ from the content of the surrounding region. This is a property
that is captured by the center-surround contrast that is at the heart of saliency
approaches.

Object Saliency Criteria. Saliency and visual attention have been intensely

investigated for decades in human perception [ | as well as in computer
vision | , ]. While early computational models have been mainly de-
signed to simulate human eye movements | |, interest has recently increased

to use saliency for object proposal generation as a pre-processing step for clas-
sification. However, the main focus has so far been on web images | ,

, , , ], which often exhibit photographer bias. Many
saliency methods have taken advantage of the special properties of such im-
ages, e.g., that objects are often large and seldomly intersect with the image
borders | , ]. In our application, such assumptions fail and it is nec-
essary to focus on methods that work well without them.

The key element of saliency methods is usually a measure of center-surround
contrast. While this was traditionally addressed with biologically inspired Differ-
ence-of-Gaussian methods | |, several other methods were recently proposed
to compute this contrast. For example, [ , , | use information the-
ory to compute the difference between center and surround distributions. Other
methods compute the center-surround contrast on superpixels | |. This
is especially useful when solving the task of detecting salient objects, which is
a combination of saliency computation and segmentation. Other approaches ad-
dress this task by applying a segmentation method to salient blobs, e.g., Graph
Cuts | ].

A main limitation of the above approaches is that they are targeted at finding
the most salient object in a scene in the sense of a global pop-out measure. In
order to make saliency usable for our purpose, we therefore need to adapt the
saliency formulation such that it yields proposals covering all objects in an image.
We achieve this using a novel multi-scale saliency described in Sec. 4.

3 Overview of our Approach

The goal of our approach is to generate a concise set of object proposals that
cover the relevant objects in a cluttered scene (see Fig. 1). Contrary to the
existing literature | , , |, however, we address the problem
at the sequence instead of at the frame level. Thus, the main conceptual novelty
is in how per-frame region proposals are used to obtain sequence-level results.
Fig. 1 outlines the main steps of our approach. For each frame of the in-
put video sequence, we extract the top-k proposal regions using the multi-scale
saliency method described in Sec. 4. We then track all proposals over time and
use the tracker confidence as an additional proposal quality criterion. If a tracked
region stays consistent over significant camera motion, this is a strong indicator
that the tracked region contour indeed corresponds to a valid object boundary.



After each frame, we check for duplicates and allow new region proposals to su-
persede existing ones if they exhibit a better quality score. Thus, our approach
builds up a set of region trajectories that span different viewpoints, increasing
the chance for valid objects to be nicely delineated from their neighbors. From
the final set of trajectories, we then report the best-scoring candidates and se-
lect a representative view for each of them that could be used as a query for
recognition. The following sections flesh out this pipeline in more detail.

4 Generating Object Proposals

In this section, we introduce our new method to generate object proposals based
on a combination of segmentation and saliency. Compared to current state-of-
the-art methods, our approach achieves a higher per-frame recall with fewer pro-
posals, which is especially important for our application of video-based proposal
selection. The object proposals are generated in three steps: first, we segment
the image into perceptually coherent regions (superpixels); second, we compute
a saliency map that highlights salient image regions; finally, saliency is used to
select and combine superpixels that form an object proposal. An overview of the
approach is shown in Fig. 2.

The combination of segmentation and saliency corresponds to human per-
ception, where first, so-called proto-objects | | are detected by segmentation
processes that bundle parts of the visual field and that are believed to exist on
all levels of the visual system [ ]. Second, these proto-objects are combined
by focused attention (e.g., saliency) to form coherent objects | ].

Superpixel Segmentation. We use the popular graph-based segmentation
method by Felzenszwalb and Huttenlocher | ] to obtain perceptually co-
herent segments (superpixels) that form the basis for our object proposals. We
chose the parameter k, which determines the scale of observation, to slightly
over-segment the image, since assembling superpixels is later accomplished by
saliency selection. An example segmentation obtained with this method is shown
in Fig. 2(b).

Multi-Scale Saliency Computation. For our target applications, we have to
choose a saliency method which operates on video data and does not incorporate
elements such as center bias or background priors based on image boundaries.
Additionally, we are interested in methods that have the potential to run in real-
time. Since state-of-the-art saliency methods are usually only able to detect one
or a few objects per frame, we also have to extend the method in a way that
enables us to detect many, preferably all, objects in a cluttered scene.

As the basis for our saliency computation, we chose the method proposed
in | |, which has been shown to outperform seven other state-of-the-art
saliency methods. It is an adaption of CoDi-Saliency [ | with several im-
provements (new center-surround ratio, Gaussian instead of DoG pyramid, dif-
ferent distance measure). The method has the advantage that it computes precise
saliency maps, it works for large as well as for small objects, it is applicable to
web images as well as to video frames, and it is real-time capable. Briefly stated,
the saliency computation works as follows. Operating on a scale-space structure
(Gaussian pyramid, 2 scales and 4 octaves), computations are performed for in-
tensity and color features. For both, center and surround contrasts are computed
for different sizes at each pixel location, where color features are computed in an



Fig. 2: Object proposal generation: a) original image, b) superpixel segmentation
c) for octaves 1 and 2, their specific saliency maps, d) salient blobs obtained
by region-growing, e) combining superpixels into object proposals with help of
salient blobs, and e) bounding boxes of the object proposals.

opponent-color space with a red-green and a blue-yellow axis. While the original
CoDi-system is based on normal distributions that represent center and surround
regions and are compared with the Ws-distance, our adapted approach simply
computes the Manhattan distance of the mean values of the distributions, which
corresponds effectively to a Difference-of-Gaussian approach (detailed explana-
tion in | ]). As shown in | | this results in comparable quantitative
results in terms of precision and recall, while the computation is faster and the
saliency maps are cleaner and less blurry. This is of special importance when
using saliency to extract object proposals.

In this paper, we now extend the method from [ | to a multi-scale
approach with split octaves. For this, we regard the octaves of the scale-space
structure independently instead of fusing them into a single saliency map. Since
objects of different sizes will achieve the strongest response at different octaves,
this enables us to detect nested proposals. If, for example, an apple lies on a
plate, ideally one scale octave will highlight the apple and another one the plate,
resulting in proposals for both objects. Thus, the octave-specific saliency maps
result in more proposals, finding also difficult objects which are missed otherwise.
In the following, we call the octave-specific saliency maps .S;, with layers (octaves)
[ € [1,..,4], where each map is the sum of the two scale maps of that layer.
Examples of two octave-specific saliency maps can be seen in Fig. 2(c). In Sec. 6,
we will show that while the single saliency map approach achieves a higher recall
for few proposals per frame, we achieve higher recall values for a larger number
of proposals. Thus, especially when aiming at finding all objects in a cluttered
scene, the split-octave method is preferable.

The next step for proposal generation is to extract salient blobs from the
saliency maps. In contrast to current state-of-the-art saliency methods, we are
interested in finding a large number of objects per frame. Thus, simple thresh-
olding of the saliency maps, which works reasonably well for images with one or
a few prominent objects per frame, is not sufficient. Instead, we extract several
blobs of different extents at each local maximum in the maps ;. Thus, we deter-
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Fig. 3: Overview of the tracking pipeline for obtaining sequence-level proposals.

mine the local maxima {my, ..., my} within each octave-specific saliency map Sj,
where m = (mg, m,). After ranking the maxima by their saliency S;(mg,my),
seeded region growing | | is applied to each of the maxima, starting from

the most salient one, to obtain salient blobs. We denote the salient blob of m as
B,,,. The region growing step takes each maximum m as a seed and recursively
investigates its neighboring pixels: if the saliency of a neighbor pixel p is above
a threshold, the pixel is assigned to B,,. The threshold is set relative to the
saliency of m. That means, p is assigned to By, if Si(pz,py) > t - Si(mg, my).
We use three different thresholds ¢t = 0.5, 0.6, and 0.7. The result of this method
is a set of three nested salient blobs of different extents for each local maxi-
mum. This method differs from [ ], where adaptive thresholding is used to
extract blobs from the saliency map. As our experiments will show, the region
growing approach obtains more proposals, with higher precision as well as higher
recall, when considering more than about 30 proposals per frame.

Combining the salient blobs of all maxima, we obtain for each octave a set
of salient regions which are used in the next section to form object proposals.
Some of the salient blobs are displayed in Fig. 2(d).

From Superpixels to Object Proposals. To generate object proposals, we
combine several superpixels based on their overlap with the salient blobs from the
previous section. Every superpixel that is covered by a salient blob by at least 30%
is chosen to belong to the proposal formed by this salient blob. Next, we perform a
non-maximum suppression step where we discard proposals that overlap strongly
with other proposals (more than 80% in both ways). Some examples of proposals
that are obtained this way are shown in Fig. 2(e).

Finally, the set of all proposals for one image is obtained by combining the
proposals of all octaves. Since a saliency value can be assigned easily to each
proposal by computing the average saliency of the corresponding salient blob,
the proposals can be ranked. This is especially useful for applications in which
real-time criteria require a prioritization of proposals.

5 Tracking object proposals

Fig. 3 shows an overview of the proposed tracking pipeline for generating sequence-
level object proposals. For each frame, we initialize new tracks using the N high-
est scoring object proposals. Since two tracks might end up covering the same
area, we check for duplicates and merge tracks overlapping by more than 70%.
Next, we compute a set of quality features for each tracked region combining



appearance cues and tracking confidence. We terminate inconsistent tracklets,
i.e., regions which have become too small, too big, have moved too fast, or have
a very low tracking score. Using an RBF-kernel SVM, we then score and re-rank
all remaining tracklets. Tracklets which score negatively multiple times in a row
are also discontinued (this counter is reset if there is a new proposal for the same
region). Whenever intermediate results are required for evaluation, we perform
frame-level model selection (non-maximum suppression based on bounding box
overlap) to obtain the top-k proposals. After performing this procedure for an
entire sequence, we consolidate tracks by merging tracklets showing the same
object and selecting an iconic representative view for each remaining track. We
then report sequence-level object proposals ordered by their SVM score.

5.1 Level Set Segmentation and Tracking

For tracking reqion proposals, we use the segmentation-based level set approach
described in | | with the second-order optimization for the tracking com-
ponent from [ |. This probabilistic framework segments and tracks regions
using their color distribution. It has been shown to be very fast and robust to
motion blur, appearance changes (e.g., due to viewpoint variations) and rapid
camera movement, as well as to automatic initializations | |. It is par-
ticularly suitable for our task, since it does not only track the position, but also
the region of the target object. The tracked segmentation is adapted in every
frame to account for viewpoint changes and non-rigid deformations. Our re-
implementation is able to track and re-segment a single region at approximately
40 fps.

LS Segmentation. Starting from an initialization region, the object is first
segmented. Foreground and background probabilities Py and P, are modeled
with color histograms and the contour is described with a level set embedding
function ®, which is evolved to optimize the energy functional from [ ]-

LS Tracking. The object’s location is modeled as the position p of the object
frame, a rectangular region around the contour, described by the parameters of
a warp that transforms the object frame into the image. As in [ |, we choose
the warp to include translation, scale, and rotation to cope with camera motion.
In each frame, the object is tracked by performing a rigid registration of the
contour, such that the foreground and background model optimally match the
image content. We define the tracker confidence as follows:

conf(Ty) = Y Prxi)+ D> Bixi), (1)
i€fg(T}) i€bg(Ty)
where Pf(x;) is proportional to the probability of pixel x; belonging to the fore-
ground (frequency of the pixel’s color in the foreground color model), P, analo-
gous for background. For more details please refer to | ]-

Trajectory Initialization and Duplicate Removal. In each frame, we use
N object proposals to initialize new tracklets. We filter out proposals that are
thinner than 10 pixels and initialize the LS segmentation with a region 4 pixels
larger than the proposal. In case there already is a tracklet which strongly over-
laps with the new proposal, no new tracklet is started. Moreover, since tracklets
can evolve to the same region, we merge tracklets that overlap significantly. In
our implementation we use an overlap threshold of IOU > 70%.
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[Frame level features

“ Track level features ]

Object dimensions: width, height, aspect ratio.

Tracker confidence: c.f. Section 5.1.

Color contrast: x? distance of color histograms

[ ]

Bwd tracker confidence: when tracking the cur-
rent region backwards into the previous frame.

Region symmetry: Maximum overlap of both

Bwd tracking overlap: Overlap between last

contour halves (over 10 rotations of center axis). ||contour and backwards-tracked contour.
Color symmetry: Minimal x2? distance of color
histograms (over 10 rotations)

Contour convexity: #pixels in region / #pixels
in its convex hull.

#Non-empty bins in color histogram.

Table 1: Frame level and track level features used for ranking tracked regions.

5.2 Consistency Checks and Proposal Re-ranking

We maintain proposal quality in two stages. We make the assumption that correct
object regions can be tracked, but not each region which can be tracked is an
object. In the first stage, we simply terminate tracklets that have degenerated
and are clearly not tracking a consistent region anymore. This stage makes no
decision about whether the tracked region is an object or not, it simply finds
failed tracks. In the second stage, we use an SVM classifier to score and re-rank
each tracked region and filter out low-scoring tracklets.

Region Quality Features. Ideally, we would like to use the saliency scores
from the proposal generation stage also for judging the quality of tracked re-
gions. However, the absolute saliency scores are incomparable between frames.
We therefore compute a larger set of features which are used in both stages. These
can be divided into frame-level and track-level features, as shown in Tab. 1.

Consistency Checks. There are several criteria by which failed tracklets can
be identified. If the tracking algorithm cannot distinguish foreground from back-
ground or has lost the target, the typical behavior is extreme scaling or movement
of the contour. Thus we sort out regions which become very small, very big, or
which moved very fast. We also discontinue tracklets whose tracking score is be-
low 0.7 or whose convexity score is below 0.3. Moreover, we perform backward
tracking, i.e., we track the region one frame into the past to see if it ends up
on the same region it was coming from. If the overlap of the region in the last
frame and the backwards tracked region is too low (below 0.4) or the backward
tracking score is too low (below 0.7) we also discontinue the track.

SVM Re-Ranking. Since tracks might drift or fail at some point, each frame
in a track is scored independently. We train a Gaussian RBF kernel SVM to clas-
sify regions into objects and non-objects. Since the data we want to classify can
only be computed from tracklets, we create the training feature vectors by run-
ning our system without any duplicate removal and with less strict consistency
checks on a separate training set. We initialize new tracklets from the saliency
object proposals in every 5% frame and track all proposals independently un-
til the tracklets are terminated. This results in a large number of tracklet frame
characteristics with both positive and negative examples. We then train the SVM
using cross-validation and a grid search for the SVM parameters.

When applying our approach to a new test sequence, we use the SVM to
score each tracked region. If the classification is negative more than M times in
a row, the tracklet is discontinued. Whenever there is a new proposal that is a
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Fig. 4: Precision and recall per frame averaged over all sequences. Red: our
saliency proposals, compared to two internal (green and pale blue), and three
external baselines (black, blue and pink).

duplicate for a tracked region, the tracklet’s counter is reset in order to avoid
periodic re-initialization of tracklets for the same region.

5.3 Sequence-Level Proposal Selection

After performing tracking for the entire video sequence, we first merge tracklets
that show the same object across small tracking gaps using the approach by
[ |. Finally, we rank the resulting tracks by their SVM scores and report
the top-ranking results. For visualization, we select a representative view of each
tracked region as the frame with maximal SVM score. Altogether, this results in
a massive reduction in the number of object proposals compared to the frame-
level input, since each track can now be represented by a single proposal. Fig. 6
shows some sequence-level proposals that can be obtained by our approach.

6 Evaluation

Dataset. We introduce a new benchmark dataset for the evaluation of object
discovery methods from video. It consists of five challenging video sequences
recorded in real-world indoor environments containing a high degree of clutter.
The sequences have on average about 600 frames and contain up to 80 objects. In
contrast to many popular benchmarks | , |, our dataset contains
real-world images without photographer bias and with a large amount of objects
and clutter. In each frame, there are on average 23 objects visible, but some
views contain up to 43 objects. Object ground truth in terms of pixel-precise
binary maps was annotated manually on every 30th frame, keeping the identity
of objects over frames. This makes it possible to evaluate on a sequence level. We
will make the dataset and the annotations publicly available upon publication.
In the following, we will first evaluate our new saliency-based object propos-
als, and second the sequence-level proposals obtained by tracking over frames.

Saliency Proposals. We first evaluate the quality of our saliency-based pro-
posals with some internal and external baselines. Our proposed method is the
saliency computation with region growing and split octaves (red curve in Fig. 4).
As internal baselines, we used the method from | | that computes a sin-
gle saliency map with adaptive thresholding (pale blue in Fig. 4), as well as
an extended version of this method with region growing, but still with a single
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saliency map (green in Fig. 4). We measure precision and recall of proposals
on a per-frame level, where precision is the percentage of proposals that corre-
sponds to a ground truth object (valid proposals), and recall is the percentage of
ground truth objects that were discovered by the method. Precision and recall
are plotted as a function of the number of proposals per frame. Fig. 4 shows the
average results over all sequences. The results show that the new region growing
method outperforms adaptive thresholding consistently in precision and recall.
The region-growing, single saliency method is slightly higher than the split-octave
method in terms of precision, and also recall is very good for a small number of
proposals/frame. However, it starts to saturate at about 40 proposals/frame, and
for more than 90 proposals/frame the recall is considerably higher for the split-
octave version. This is important for our application in which we have up to 43
objects visible per frame, so we chose the split-octave method for the remaining
evaluations.

As external baselines, we chose some recent methods with available source
code that have shown good performance for proposal detection, namely the ob-
jectness measure of Alexe et al. | |, the Prime Object Proposals of Manén
et al. | | (RP), and the contour detector with hierarchical image segmenta-
tion of Arbelaez et al. | | (gPDb). For all methods, we rank the proposals
according to their quality (our saliency proposals: saliency measure; | |:
objectness measure; [ |: proposals are ranked already; [ | do not
provide a score for their hierarchical regions. We extract regions with a water-
shed algorithm and use the difference between the maximum and the minimum
contour score as region score). Since | | and | ] deliver bounding
boxes instead of pixel-precise regions, we use the smallest surrounding rectangle
around the regions also for | | and our own method to make the methods
comparable. Fig. 4 shows that our object proposals have consistently a higher
precision and recall than all the other methods.
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Fig. 6: Correct tracking proposals (initialized with 200 saliency proposals).

In our video scenario, it is not only of interest how many objects are detected
on a frame level, but even more how many objects of the real-world are found
over the whole sequence. Some objects might not be found in one frame, but
in another one. Therefore, we additionally measure the global recall,i.e., the
percentage of discovered objects from all objects that are visible over the entire
sequence. The global recall is plotted over time to show how the detection rate
develops. Since not all objects are visible in each frame, there is a maximal limit
of recall that can be achieved. We plot this curve as a theoretical upper bound
(in yellow). We evaluated all methods when considering 50, 100, or 200 proposals
per frame. For better visibility, we plot all these curves only for one sequence and
only show the 200 proposals/frame version for the other plots (complete plots in
appendix). Since the sequences have a different number of frames, we consider
them separately here and show them in Fig. 5. The plots show how the global
recall evolves over time. When considering 200 proposals per frame, we are able
to detect most objects over the whole sequence (between 75% (coffee machine
seq.) and 96% recall (kitchen C')). With these values, our method outperforms
all other methods (except seq. kitchen C, in which RP and our method achieve
the same performance level). Note also that with only 100 proposals, we still
detect the same number of objects as the second best method RP did with 200
proposals. The results in the other sequences are similar.

Tracking Proposals. We now evaluate the proposals generated by the tracker
in comparison to the saliency proposals with which the tracker was initialized.
Fig. 7 shows precision and recall over the number of proposals per frame. Our
tracker is able to achieve a higher recall than the saliency proposals. The in-
creased recall shows that the tracker is able to track good proposals into later
frames, where they are not among the saliency proposals. In Fig. 8 we show the
global recall over time compared to saliency proposals. Again, the tracker is able
to achieve significantly higher recall. Fig. 6 shows the correct proposals made by
the tracker in some example frames.

7 Conclusion

We have presented a new method for object proposal generation on a sequence-
level. It is especially well suited for videos from mobile devices in which it is
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important to limit the cost factor of recognition queries. Our method consists of
two steps: first, a new frame-based object proposal detector based on multi-scale
saliency determines proposals with a higher per-frame recall that current state-of-
the-art methods. We show that this method is able to detect most of the objects in
a scene even in very complex scenarios with plenty of objects and a high degree of
clutter. Second, the proposals are tracked over time in order to group proposals
that belong to the same real-world object and filter out inconsistent regions.
Thus, our approach delivers a set of region trajectories that combine different
views of an object. These two components result in a significant reduction of
proposals compared to frame-based methods, while keeping a consistently high
recall. We show that we are able to detect on average 88% of the objects with
this method. Finally, we select a representative view for each track that can be
used as a query for recognition in future work.

Acknowledgements This research has been funded by the DFG project ”Si-
tuiertes Sehen zur Erfassung von Form und Affordanzen von Objekten” (FR
2598/5-1 and LE 2708/1-1) under the D-A-CH lead agency programme.
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A Appendix: Complete Set of Plots

A.1 Precision/Recall (200 proposals)

Here, in Fig. 9 and 10, we show the plots that correspond to Fig. 4. While Fig. 4
showed the average values of all sequences, we show here the results for each
sequence separately. As in Fig. 4, we measure the precision and the recall frame-
wise. Hereby, precision is the percentage of valid proposals, recall the percentage
of discovered objects in a frame. The red curve shows the saliency proposals, the
green and pale blue approach are variants of our method that serve as internal
baselines. The black, blue and pink curve denote the methods [MGV13] (RP),
[ADF12] (objectness), and [AMEMI11] (gPb) which are used as external baselines.
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A.2 Global Recall Over Time

The plots in this section correspond to Fig. 5. They show the global recall over
time, that means the percentage of real-world objects of the sequence that are
have been detected at least once up to a specific point in time.

While above we showed only the 200-proposals-per-frame evaluation for bet-
ter visibility (except for kitchen A), we show here additionally the evaluations for
using 100 and 50 proposals per frame. Here again, the red curve is our saliency
proposals, the other curves are the baseline methods.
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A.3 Precision and Recall over Absolute Number of Proposals

In this section we show the precision and recall over the absolute number of
proposals. With this evaluation we show how many individual objects were found
in the whole sequence, regardless of which frame they were found in. For the
saliency proposals this means we consider all proposals for every annotated frame.
For the tracking proposals one proposals consists of one tracklet. Figures 12 to
16 show the plots, as well as the number of objects and number of frames for the
five different sequences. These results show that with the tracking stage we can
significantly reduce the number of proposals while still achieving higher precision
and recall than with the saliency proposals. In all of the sequences we only need
between 500 and 750 track-level proposals per sequence to reach above 80% recall
— compared to the 200 saliency proposals per frame for each frame of the sequence
that we start from, this is a significant reduction!

These plots should not be confused with the global recall over time, where
the accumulated recall over the course of the video is shown.
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Fig. 14: Kitchen B: contains 58 individual objects in 34 annotated frames (1011
frames total).
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Fig. 15: Kitchen C: contains 23 individual objects in 24 annotated frames (704
frames total).
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