
Aachen
Department of Computer Science

Technical Report

Java Program Analysis
by Symbolic Execution

Carsten Otto

ISSN 0935–3232 · Aachener Informatik-Berichte · AIB-2013-16

RWTH Aachen · Department of Computer Science · März 2015

The publications of the Department of Computer Science of RWTH Aachen University

are in general accessible through the World Wide Web.

http://aib.informatik.rwth-aachen.de/

http://aib.informatik.rwth-aachen.de/

Java Program Analysis

by Symbolic Execution

Von der Fakultät für Mathematik, Informatik und

Naturwissenschaften der RWTH Aachen University zur

Erlangung des akademischen Grades eines Doktors der

Naturwissenschaften genehmigte Dissertation

vorgelegt von

Diplom-Informatiker

Carsten Otto

aus

Tönisvorst

Berichter: Univ.-Prof. Dr. Jürgen Giesl

Univ.-Prof. Fausto Spoto, PhD

Tag der mündlichen Prüfung: 03. März 2015

Diese Dissertation ist auf den Internetseiten der Hochschulbibliothek online verfügbar.

Carsten Otto

Lehr- und Forschungsgebiet Informatik 2

otto@informatik.rwth-aachen.de

Aachener Informatik-Bericht AIB-2013-16

Herausgeber: Fachgruppe Informatik

RWTH Aachen University

Ahornstr. 55

52074 Aachen

GERMANY

ISSN 0935-3232

Abstract

Program analysis has a long history in computer science. Even when only considering the

important aspect of termination analysis, in the past decades an overwhelming number

of different techniques has been developed. While the programming languages considered

by these approaches initially were more of theoretical importance than of practical use,

recently also automated analyses for imperative programming languages like C or Java

have been developed. Here, a major challenge is to deal with language constructs and

concepts which do not exist in simpler languages. For example, in Java one often uses dy-

namic dispatch, complex object hierarchies, or side-effects with far-reaching consequences

involving the global heap.

In this thesis, we present a preprocessing step for Java Bytecode programs in which

all such complicated language constructs are handled. This way, subsequent analyses do

not need to be concerned with these, and making use of existing techniques is easy. In

particular, we show how Symbolic Execution Graphs can be constructed which contain an

over-approximation of all possible program runs. This way, and by taking care of having

a precise approximation, the information contained in the constructed graphs can, for

example, be used to reason about the termination behavior of the original program.

Additionally to the construction of such graphs, in this thesis we present a new analysis

technique which helps end users identify parts of the analyzed code which are irrelevant

for the desired outcome. This way, programming errors causing code to be not executed

can be identified and, consequently, fixed by the user. For this technique to be useful, the

information contained in the previously constructed graph needs to be precise. We will

demonstrate that this is the case.

For the techniques presented in this thesis, a rigorous formalization is shown. To comply

with the overall goal of, for example, automated termination analysis, we also need to

implement the techniques and theoretical results. In this thesis we show how certain hard

to automate aspects can be approached, leading to a competitive implementation.

The techniques presented in this thesis are implemented in the AProVE tool. As also re-

lated techniques working on Symbolic Execution Graphs are implemented in AProVE, with

the click of a button users can analyze Java Bytecode programs for (non)termination

and find irrelevant code. In the annual International Termination Competition, it is

demonstrated that currently AProVE is the most powerful termination analyzer for Java

Bytecode programs.

Acknowledgments

First of all, I want to thank Jürgen Giesl for being my first supervisor, and more im-

portantly also for his guidance during my time in his research group. I enjoyed a lot

of freedom, his constant support, and Jürgen was always available to discuss and tackle

arising challenges.

I also want to thank Fausto Spoto, who agreed to be my second supervisor. I am

grateful for his creation of Julia, as good competition makes research more interesting.

Marc Brockschmidt has been a great office mate in the past few years, and I am very

thankful for our detailed discussions and exchanges of mind-boggling ideas. Not only

Marc, but also my other colleagues Fabian Emmes, Martin Plücker, Thomas Ströder,

and Stephanie Swiderski always made me look forward to the next day in the office, and

offered both reasonable and irrational ways to deal with the ups and downs of research,

teaching, life, and everything. In this context I also want to thank all colleagues and

students on the same floor, who helped in creating a relaxed and pleasant atmosphere.

Thomas Noll and Marc proof-read parts of my thesis, for which I am very thankful. I

also want to thank the countless developers of the free open source software which I was

glad to use. Without them, even the simplest task would have been both expensive and

frustrating.

Sincere thanks go to my family, especially my parents, who supported me my whole

life. I should have called and visited more often, and I really hope this thesis at least

compensates part of my neglect.

Last, but definitely not least, I want to thank Anke. While most of my work still is a

mystery to her, she always met me with patience, support, motivation, and love. Without

her, I would be a lonely guy, and most likely I would still be just about to start writing

this thesis.

Carsten

Contents

Introduction 1

Preliminaries 7

1. Symbolic Execution Graphs for Non-Recursive Programs 11

1.1. Related Work . 14

1.2. States . 15

1.2.1. Notation . 18

1.2.2. Heap Predicates . 19

1.2.3. Concrete States . 22

1.2.4. State Instances . 23

1.3. Idea of Graph Construction . 30

1.4. Refinement . 33

1.4.1. Integer Refinement . 35

1.4.2. Existence Refinement . 37

1.4.3. Type Refinement . 38

1.4.4. Array Length Refinement . 39

1.4.5. Realization Refinement . 40

1.4.6. Equality Refinement . 45

1.5. State Intersection . 47

1.5.1. Equivalence Relations ≡, ≡n . 48

1.5.2. Finding Conflicts . 55

1.5.3. Intersecting Values . 55

1.5.4. Intersecting States . 57

1.5.5. Validity of Equality Refinement . 67

1.6. Evaluation . 70

1.6.1. PUTFIELD . 73

1.6.2. Writing into arrays using AASTORE etc. 88

II Contents

1.6.3. Reading from arrays using AALOAD etc. 94

1.6.4. Class instances and interned Strings 99

1.7. Abstraction . 100

1.8. Symbolic Execution Graphs . 102

1.9. Conclusion and Outlook . 108

2. Automation 111

2.1. Abstract Types . 111

2.2. Merge . 112

2.3. State Positions . 122

2.3.1. RealizedPositions . 122

2.3.2. NeedJoins . 125

2.3.3. ReferencesWithMultiplePositions 125

2.3.4. NonTreeShapes . 125

2.4. Instance Check . 125

3. Recursion 127

3.1. Related Work . 132

3.2. States . 132

3.3. Context Concretization . 138

3.4. Stability of v Under Context Concretization 147

3.5. Symbolic Execution Graphs for Recursive Programs 163

3.6. Abstraction of Input Arguments . 167

3.7. Conclusion and Outlook . 169

4. Bug Detection 171

4.1. Related Work . 173

4.2. Basic Idea . 174

4.3. Detailed Procedure . 179

4.3.1. Analysis of Code Without Exceptions and Method Invocations . . . 180

4.3.2. Branches . 189

4.3.3. Method Invocations . 193

4.3.4. Exceptions . 194

4.4. Computing Results . 195

4.5. Optimizations . 197

4.6. Conjecture . 197

Contents III

4.7. Demonstration . 199

4.8. Conclusion and Outlook . 204

Conclusion 207

Appendices 211

A. Publications 211

B. Bibliography 213

Introduction

Software development is a very complex task. First, one needs to understand the require-

ments imposed by the client. Then, based on these requirements a software solution needs

to be developed. Depending on the application, this usually means that the new work has

to be integrated into existing systems. Furthermore, development should be fast. The

resulting product should be designed such that other developers can easily extend and

improve it. Last but not least, the software should always compute the correct results.

In this thesis we are concerned with the correctness of programs. A part of theoretical

computer science is software verification where techniques are developed which help in

analyzing whether a given program indeed is correct. One important aspect of any pro-

gram is its termination behavior. A program usually is only considered correct if it never

provides a wrong result and, in addition, always terminates after a finite time.

The results presented in this thesis are motivated by the question of computing the

termination behavior of a given program. While this is undecidable in general [Tur36],

in the past few decades many results have been published which help in analyzing the

termination behavior of programs written in many different programming paradigms and

languages. One of many examples is the analysis of term rewrite systems (TRSs). Work

on termination analysis of TRSs has started as early as 1970 [MN70], and many additional

results have been achieved since then. More recently, transformational techniques have

been developed which transform programs of different paradigms into TRSs. Then, by

making use of and by extending existing techniques analyzing TRSs, termination of such

programs can be shown. While in [Sch08, SGST09, SGS+10, GRS+11, GSS+12] such

transformational approaches have been developed for declarative programming languages,

in this thesis we show a related approach for the imperative programming language Java.

Common for all of these techniques is the idea to deal with all language-specific problems

by creating a graph representing all computations of the program. Based on this graph

then TRSs are created where termination of the TRSs implies termination of the original

program. With this approach concepts like unification (in the case of logic programming)

and lazy evaluation (in the case of functional programming languages), which are hard

to formalize using term rewriting, can be handled during graph construction. Likewise,

in this thesis we handle concepts like aliasing and dynamic dispatch which often occur in

imperative programs during graph construction.

2 Introduction

Contributions

The author of this thesis co-authored five peer-reviewed papers related to the analysis

of Java Bytecode programs [OBvEG10, BOvEG10, BOG11, BSOG12, BMOG12]. In

this thesis, several techniques presented in [OBvEG10, BOvEG10, BOG11] are combined

and extended substantially.

The results published in [OBvEG10] were developed together with the co-authors Marc

Brockschmidt and Christian von Essen as part of their Diploma theses. The author of

the current thesis contributed the key ideas and fundamental design choices, and together

with the co-authors worked on refining them. For [BOvEG10] the author of this thesis

refactored and extended the implementation, in parallel to the development of the for-

malization presented in the publication. The ideas leading to the results published in

[BOG11] were implemented by the author of this thesis. Moreover, the author of this

thesis substantially extended the approach in [BOG11] to a prototypical implementation

which also works with heap predicates. This is a crucial and highly challenging extension

that is not part of [BOG11].

In addition, a new and unpublished technique, developed by the author of this thesis,

building on the results presented in these papers is presented. Using this new technique

it is possible to identify specific kinds of bugs automatically, which otherwise are hard to

find. Furthermore, we give algorithms corresponding to the presented techniques, whose

automation is not trivial.

Symbolic Execution Graphs for Non-Recursive Programs

In Chapter 1 we present a technique which transforms Java Bytecode programs into

Symbolic Execution Graphs. These graphs then can be used, for example, for termination

analysis of Java Bytecode programs. In [OBvEG10] we presented the main ideas of

this approach.

In this thesis, we describe a more complete approach which considers aspects of Java

Bytecode which were left out of the paper. This includes static fields, arrays, excep-

tions, class initialization, and return addresses. A key part of the state representation,

namely how to represent fields for object instances, is refined so that the formalization

as presented in this thesis allows for a more precise analysis. Furthermore, the power of

some annotations (named heap predicates in this thesis) is strengthened. In Section 1.5

we present state intersection which makes it possible to intersect the information repre-

sented in two abstract states. Using this technique we can obtain more precise information

when using equality refinement, where in [OBvEG10] only a rather trivial approach was

presented. In [BOvEG10] we have shown that the symbolic execution as described in

[OBvEG10] indeed is correct. While certain parts of a corresponding proof are not shown

in [BOvEG10], in this thesis we show a complete proof regarding correctness of how the

Introduction 3

PUTFIELD opcode is evaluated. In this proof we consider all aspects of Java Bytecode,

i.e., static fields etc. as described above. Additionally, mistakes in [OBvEG10, BOvEG10]

w.r.t. PUTFIELD are fixed. Furthermore, as the handling of arrays differs from the han-

dling of object instances in an important aspect, in this thesis we also show correctness

of the opcodes AASTORE and AALOAD. With help of this formalization further bugs in

the implementation were found. Finally, we show that the abstraction of [OBvEG10] has

a finite depth, i.e., the analysis indeed can be used to create finite Symbolic Execution

Graphs with the desired properties. In addition to this theoretical result, we show an

algorithm used to create Symbolic Execution Graphs.

Automation

The implementation of the techniques presented in this thesis and the aforementioned

papers is rather involved. In Chapter 2 we present corresponding algorithms and discuss

how certain non-trivial aspects can be automated.

Recursion

In [BOG11] we presented an extension to the approach of [OBvEG10] so that also recursive

programs can be analyzed. However, in [BOG11], we decided not to allow usage of

annotations (resp. heap predicates) in the states. In Chapter 3, we extend the main

concept of context concretization that is needed to handle recursive programs to also

work on states containing heap predicates. As this extension was more complicated than

anticipated, not all results presented in [BOG11] could be lifted to the setting of this

thesis. Most importantly, the graph construction may not terminate even when using the

key concepts of [BOG11]. In Section 3.6 a detailed discussion of this problem and possible

solutions is given.

Bug Detection

In [BSOG12] we extended the analysis of [OBvEG10, BOG11] to find bugs related to Null-

PointerExceptions and non-termination in a given Java Bytecode program. In Chapter 4

we present another, unpublished analysis. As a result of this analysis, the user is shown

parts of the program which are proven to be irrelevant, based on a definition of relevant

results given by the user. Here, we make use of the detailed information contained in

a Symbolic Execution Graph and use this information to reason about how information

propagates in the program.

4 Introduction

Implementation

The results of [OBvEG10, BOvEG10, BOG11, BSOG12, BMOG12] and most results of

this thesis are implemented in the tool AProVE [GBE+14]. Of all the work which finally

cumulated in this thesis, the author devoted a significant part to the implementation and

related software engineering issues. In the time in which the author was actively involved

in the development of the AProVE tool, the source code base of the whole project grew

from about 240,000 source lines of code (SLoC) to about 550,000 SLoC. Of those, about

52,000 SLoC are directly related to the analysis of Java Bytecode.

As demonstrated in the annual termination competition1, this implementation indeed

is very powerful. In all competitions from 2009 to 2014, AProVE was the most powerful

tool in the category for non-recursive Java Bytecode programs. In addition, starting

with the ideas first published in [BOG11] and extended in Chapter 3, AProVE was the

most powerful tool in the category for recursive JBC programs in all competitions from

2011 to 2014. For a more detailed discussion we refer to [Bro14].

New Contributions

They main concepts of Chapters 1 and 3 have been published in [OBvEG10, BOvEG10,

BOG11]. Furthermore, this thesis contains ideas first published in [BSOG12, BMOG12,

Bro10].

In the PhD thesis of Marc Brockschmidt [Bro14] ideas related to the current thesis are

also discussed. Only by combining the disjoint contributions of both the current thesis

and the contributions of [Bro14] it is possible to analyze the termination behavior of

Java Bytecode programs. While the current thesis concentrates on the construction

of Symbolic Execution Graphs as a frontend of the analysis, in [Bro14] the corresponding

backend is shown. In particular, in [Bro14] it is shown how Symbolic Execution Graphs can

be transformed into a variant of term rewrite systems, and how the termination behavior of

such TRSs can be shown. Also note that the information contained in Symbolic Execution

Graphs can also be used for further analyses, not just termination analysis as shown in

[Bro14]. One such analysis is shown in Chapter 4.

The current thesis contains many improvements of the already published results and

several novel contributions:

Chapter 1 In this thesis we extend the results first published in [Bro10, OBvEG10,

BOvEG10, BOG11, BSOG12, BMOG12].

• We enhance the formalization of states by re-defining how fields of object in-

stances are represented (Section 1.2). Because of this, less references and heap

predicates are created when performing realization refinement (Section 1.4.5).

1See http://www.termination-portal.org/wiki/Termination-Competition

Introduction 5

• Usage of the heap predicate r =? r′ as introduced in [OBvEG10, Bro10] is

limited such that at most for one of r, r′, instance field information may be

represented. In this thesis, we remove this restriction, enabling us to retain

more precise information (Section 1.2.2).

• In this thesis we present a first formalization of state intersection (Section 1.5).

While the concept of context concretization introduced in [BOG11] is strongly

related, in [BOG11] the states may not contain heap predicates. Using state

intersection, more precise results are obtained using equality refinement (Sec-

tion 1.4.6).

• The correctness proof corresponding to the evaluation of PUTFIELD in ab-

stract states was first shown in [BOvEG10]. In this thesis we extend the proof

such that the enhanced definition of states as presented in this thesis is re-

garded (Section 1.6.1). Furthermore, work on this proof exposed a bug in

the implementation of PUTFIELD (corresponding to a proof part omitted in

[BOvEG10]).

• We first show correctness proofs for the opcodes AALOAD and AASTORE which

work on arrays in abstract states (Sections 1.6.2 and 1.6.3). The state represen-

tation for object instances and arrays differs in an important aspect. Related

proofs in the context of object instances were adapted accordingly, which also

exposed bugs in the implementation.

Chapter 2 In [Bro10, BSOG12, BMOG12] variants of the merge algorithm are presented.

However, in these algorithms operations on infinite sets are used, without giving

further information on how to implement these operations. In Chapter 2 we give a

detailed definition of the merge algorithm working only on finite sets.

Chapter 3 In [BOG11] no heap predicates were allowed, which is a severe limitation of

the technique. In Chapter 3 we extend the main concept of context concretization

to also work on states making use of heap predicates.

Chapter 4 All results of this chapter are unpublished.

Structure

After a short discussion of preliminaries, the contributions of this thesis are presented. In

Chapter 1 we present Symbolic Execution Graphs and explain how these are constructed

for non-recursive Java Bytecode programs. This technique is based on symbolic ex-

ecution and in the resulting graphs detailed information about the analyzed program is

contained, which may be used for further analyses.

6 Introduction

Then, in Chapter 2 we discuss how certain aspects of the graph construction can be

automated. Here, we especially consider parts of the formalization involving infinite data

structures and show corresponding finite structures which may be used for the implemen-

tation.

In order to also allow for an analysis of recursive programs, in Chapter 3 we discuss the

problem of call stack abstraction. Then, we develop an extension to the analysis enabling

this additional variant of abstraction.

Finally, in Chapter 4 we present an analysis which, based on the information provided in

a Symbolic Execution Graph, finds irrelevant parts of the code. Based on these results, the

user may discover bugs in the analyzed program. The thesis concludes with a discussion

of the results and future work.

Preliminaries

Throughout this thesis we will work on programs written in Java Bytecode [LYBB12].

Java Bytecode is an assembly-like object-oriented language designed as intermediate

format for the execution of Java [GJS+12] programs by a Java Virtual machine (JVM).

Furthermore, Java Bytecode is the compilation target of other languages like Clojure

[Hic08], Groovy [KGK+07], Scala [OSV08], Ruby (JRuby) [NES+11], Python (Jython)

[PR02], and JavaScript (Rhino) [Rhi].

Java and Java Bytecode

Java is an imperative, object-oriented programming language that is used in many real

world applications. Programs may work on data structures that reside on an unbounded

heap. Because of side effects local changes may also be visible by other parts of the

program. Using the concept of method overriding (dynamic dispatch) the target of a

method invocation is determined at runtime. Furthermore, because of exceptions, finally

blocks, and implicit code like static initializers, it is not easy to see which code is executed.

As an example, invoking a static method might trigger execution of arbitrary code in the

static initializer block of the corresponding class before the actual invocation is performed.

Since every Java program can automatically be compiled into a Java Bytecode

program, Java Bytecode also contains most of the features of Java. In contrast to the

Java syntax which is tailored to be user-friendly, the syntax of Java Bytecode is very

limited. Because of this, Java Bytecode is the natural choice for automated analyzers

which really are intended to analyze Java programs.

To ease presentation, in this thesis we will use examples written in Java although the

presented techniques all work on Java Bytecode instead. This also means that, while at

least basic knowledge of Java is required, a detailed understanding of Java Bytecode

is not necessary to understand this thesis. However, a few basic concepts that distinguish

Java Bytecode from Java need to be understood.

Program Format

While Java code is a human-readable string composed of pre-defined keywords, Java

Bytecode is provided in a binary format. This binary format includes components for

8 Preliminaries

individual classes (similar to the case of Java), most commonly known as files ending

in .class. For each class certain attributes (like the defined fields and details about the

class hierarchy) are stored. In addition, the methods defined in the class are part of the

representation. The code of each method is just a series of individual commands, so-called

opcodes.

When evaluating any imperative program, in each computation step a state s is trans-

formed into a state s′ by changing certain parts of s based on the evaluated code. This also

is the case for Java code. However, in Java code individual computation steps usually

are combined into more complicated statements. For example, the statement

x = f() + b;

is a composition of four smaller steps:

(1) invoke the method f() and get the result

(2) get the content of the local variable b

(3) compute the addition

(4) store the result into the local variable x

In contrast to the wealth of syntactic sugar present in Java code, in Java Bytecode

there only exists a small number of opcodes which are combined in order to achieve

the effects possible with complicated Java statements. For the example shown above, a

corresponding opcode sequence could be

INVOKESTATIC f, ILOAD 0, IADD, ISTORE 1

which directly resembles the individual steps mentioned above.

Branches (and, therefore, also loops) in a Java program are realized in Java Byte-

code using (conditional) jumps. In the same way, exception handlers are just sequences

of opcodes in the method for which the method contains the additional information where

to jump to in case of certain exceptions.

To summarize, interpreting a Java Bytecode program is performed by just applying

the effects of a single (simple) opcode to the current state and then interpreting the

subsequent opcodes, step by step.

Operand Stack

As shown in the previous addition example, in Java there may be intermediate values

that are part of a computation, but which are not necessarily stored in a local variable.

Preliminaries 9

Opcode Description

3 ICONST 0 put integer constant 0 onto operand stack
21 ILOAD n load integer from local variable n, put onto operand stack
54 ISTORE n remove integer from operand stack, store into local variable n
96 IADD replace two integers by their sum on the operand stack

153 IFEQ remove integer number from operand stack, jump to specific
target if number is 0

172 IRETURN take integer value from operand stack, return it to invoking
method

180 GETFIELD f remove object reference from operand stack, put contents of a
field f of referenced object onto operand stack

181 PUTFIELD f remove object reference and another item from operand stack,
put item into field f of referenced object

182 INVOKEVIRTUAL take arguments from operand stack, invoke method
187 NEW c Create instance of class c, put its reference onto operand stack

Figure 0.1.: Important Opcodes

By combining several individual computations, a large number of intermediate values

needs to be part of the current state. In Java Bytecode, in addition to local variables,

the state contains an operand stack for such intermediate values. For example the opcode

computing integer addition (IADD) takes both inputs from the operand stack and provides

its result value on the operand stack. So, in order to store the sum of two local variables

into another local variable, their contents first need to be put onto the operand stack and,

after the addition, the result needs to be transferred back into a local variable.

Opcodes

Although for Java Bytecode 255 different opcodes are defined, many of those differ

only in minor aspects. For example, both the opcodes ILOAD 0 and ILOAD with the

(hardcoded) argument 0 load an integer number from the first (0th) local variable. Fur-

thermore, there exist opcodes ILOAD 1 to ILOAD 3. So, in total there are five different

opcodes that each just load an integer number from a specific local variable. For the other

data types (long, float, double, and object/array references) another 20 loading opcodes

are defined. In Fig. 0.1 a small number of example opcodes is shown that can be used to

illustrate most of the aspects dealt with in this thesis. The first column shows the index

of each opcode and a more readable name which is also commonly used in the literature.

1. Symbolic Execution Graphs for

Non-Recursive Programs

Programs written in Java or Java Bytecode may make use of several techniques that

make programming real-world programs easier, but on the other hand pose significant

problems for program analysis. For example, in Java the target of a method invocation

may be determined only at runtime if the programmer decided to make use of method

overriding (dynamic dispatch). As a consequence, in order to be able to analyze such pro-

grams, the analysis must also correctly determine the targets of such method invocations

and, therefore, stick to the rather involved semantics of the corresponding opcodes. It may

be a good idea to develop an analysis that directly works on Java or Java Bytecode

programs, where complications like the one mentioned above are dealt with accordingly.

However, with this approach it is not possible to directly benefit from already existing

results in the area of static analysis.

The analysis presented in this thesis is part of the project AProVE [GBE+14] which

is also able to analyze Term Rewrite Systems (TRSs, [BN99, TeR03]). In particular,

AProVE is able to analyze the termination behavior of TRSs using many techniques [Thi07,

AG00], some dating back to 1979 [Lan79]. Instead of adapting or recreating the results

already obtained for the termination analysis of TRSs, we decided to build on these results

and transform JBC programs to TRSs in an appropriate way. This also means that the

intricacies possible in Java also somehow need to be considered when creating such a

TRS.

In the past, Termination Graphs were used for termination analysis of logic programs

(written in Prolog, [GSS+12]) and functional programs (written in Haskell, [GRS+11])

to deal with language-specifics and create TRSs corresponding to the input programs. In

this thesis, we will make use of this idea and construct Symbolic Execution Graphs for Java

Bytecode programs. These graphs deal with the language-specifics and also contain a

lot of information that may be used for further analyses, for example termination analysis

or bug detection. Recently, the ideas developed for the analysis of Java Bytecode

programs were adapted and extended to also analyze imperative programs making use of

pointer arithmetic (written in C, [SGB+14]).

An important aspect of the work presented in this chapter is that the analysis is fully

automated. One only needs to provide the input program, there is no need to annotate

12 Chapter 1. Symbolic Execution Graphs for Non-Recursive Programs

parts of the program, give any sort of hint during analysis, or even define how heap ab-

straction should be performed. Using the implementation (part of the AProVE project,

available at http://aprove.informatik.rwth-aachen.de) the claim of automated graph con-

struction and subsequent termination analysis, performed by transforming the graph into

term rewrite systems, can be verified by the interested reader.

Intuition

The main goal of this analysis is to construct a Symbolic Execution Graph for a Java

Bytecode program P so that every computation possible in P can also be reproduced by

following corresponding edges in the graph. A graph with this property then can be used

to prove termination of P by showing that there is no infinite computation path in the

graph. Also, because the graph contains an over-approximation of possible computations,

one could show that specific undesired situations (e.g., throwing a certain exception) never

occur in the program. The information in the graph can also help identifying certain bugs

in the program.

To actually obtain a precise, yet finite representation of a possibly infinite number of

computations possible for a (non-terminating) program, we use symbolic execution [Kin76]

with abstraction. We start working on a start state containing only symbolic values for the

inputs and then symbolically evaluate the program step by step. Using case analysis and

abstraction in this process we finally obtain a finite graph with the properties mentioned

above.

Structure

In the remainder of this chapter the details of this process are explained. First, we give

an overview of related work in Section 1.1. In Section 1.2 we first explain the information

needed to describe abstract states of the Java Virtual Machine. Then, in Section 1.3

we explain the idea of how to construct Symbolic Execution Graphs. The concept of

refinement, which helps to provide the information necessary for evaluation which is not

present in a state, is explained in Section 1.4. To create more precise information for

one of the refinements, and as a preparation for a technique needed in Chapter 3, in

Section 1.5 we introduce the concept of state intersection. In Section 1.6 we explain

how evaluation of abstract states can be accomplished. Here, we especially consider the

effects of write accesses. As creating a finite Symbolic Execution Graph is the goal of this

analysis, in Section 1.7 we show how this goal is achieved. Combining all concepts of this

chapter, in Section 1.8 we formally introduce the resulting Symbolic Execution Graphs

and show properties which are useful for analyses making use of Symbolic Execution

Graphs. Finally, in Section 1.9 we conclude and give an outlook on how this technique

could be extended.

13

Limitations

While this analysis is able to deal with almost all features of Java Bytecode, certain

aspects are left for future work.

Floating-point numbers For variables declared as float or double the analysis only con-

siders literals and the abstract value ⊥ denoting unknown information. Hence, if

the program behavior depends on the concrete value of such variables, the resulting

graph contains significantly less precise information when compared to our handling

of integer numbers.

Integers Integer numbers are treated as unbounded integers instead of machine-numbers

with a limited size, as usual in program analysis.

Native Methods The code executed when invoking a native method is not part of the

analyzed Java Bytecode program and usually is written in a low-level language

specific to the system the Java Virtual Machine is running on. Therefore,

analysis of such programs is out of scope and this technique does not work if native

methods are invoked. However, certain native methods pre-defined in the standard

classes of Java (e.g., java.lang.Throwable.fillInStackTrace) are correctly handled so

that programs making use of common Java features can be analyzed.

Multithreading We only consider sequential programs.

Recursion In this chapter recursive programs may lead to a non-terminating graph con-

struction (if the call stack can reach an arbitrary height). In Chapter 3 we will

discuss necessary changes to also handle recursive programs.

Class objects The virtual machine may provide object instances of java.lang.Class using

the native method getClass(). It is guaranteed that for each class the returned object

instance is the same, in other words with X x1 = new X(); X x2 = new X(); we have

x1.getClass() == x2.getClass(). Extending the analysis to maintain the necessary

information is non-trivial, as the types of objects are not always known precisely.

In Section 1.6.4 we explain how this approach can be extended to also handle Class

objects correctly.

Interned Strings The JVM offers a way to return a unique java.lang.String object for each

represented character sequence. If the character sequences in String variables s1 and

s2 with s1 != s2 are identical, we have s1.intern() == s2.intern() (where intern() is

a native method). As in the previous case, in Section 1.6.4 we explain how this

approach can be extended to also handle interned String objects correctly.

Java version This technique was developed based on the specification corresponding to

Java 6. As on a virtual machine level no significant changes are necessary to also

14 Chapter 1. Symbolic Execution Graphs for Non-Recursive Programs

support Java 7, we also implemented those changes (apart from INVOKEDYNAMIC,

see below). However, this technique might need to be adapted to also support

features introduced in newer versions of the Java language.

INVOKEDYNAMIC The opcode INVOKEDYNAMIC was added as part of the Java 7

release. The opcode is intended to be used by other (dynamic) languages that

run on a Java Virtual Machine and, starting with Java 8, it is used for lambda

expressions. This analysis is not able to work with programs containing this opcode.

1.1. Related Work

The analysis of this chapter is performed by symbolic execution with abstraction. In

[Kin76] the basic idea of symbolic execution is presented. Building on this technique, the

authors of [APV09] extend symbolic execution by also performing abstraction to ensure

termination of the analysis. The graphs of [SG95] are created using similar concepts,

where driving corresponds to evaluation and refinement as presented in this thesis, and

folding and generalization correspond to how state instances are used in the analysis

of this chapter. The technique of abstract interpretation [CC77] is very similar to our

analysis. However, in our approach we do not formally define the abstract domain, but

instead find abstract representations while we perform the analysis.

The approach of constructing graphs with the main goal of termination analysis has

already been applied to the analysis of declarative programs. In [GSSKT06, GSS+12,

GRS+11, Sch08] the authors not only present the graph construction, which directly

corresponds to the results presented in this chapter. In addition to that, the authors

present how term rewrite systems can be created based on the constructed graphs, such

that termination of these TRSs implies termination of the original declarative program.

The Symbolic Execution Graphs of this thesis can likewise be transformed to TRSs, as

detailed in [OBvEG10, Bro14]. The idea of first constructing graphs which then can

be transformed to TRSs with the goal of termination analysis has also been applied to

imperative programs written in the language C, as explained in [SGB+14].

The challenge of finding a compact representation of arbitrary heaps is also addressed

in research related to separation logic [ORY01, BCC+07, YLB+08, CRB10]. While the

presented results allow for a very precise description of abstract heaps, automatically

finding such representations is still an open problem.

There are tools explicitly designed for automated termination analysis of Java Byte-

code. The tools Julia [SMP10] and COSTA [AAC+08] abstract the heap based on path

length, which is a very simple abstraction. This allows for a very fast analysis, however

the analysis presented in this thesis is more precise and powerful for user-defined data

structures.

1.2. States 15

1.2. States

To model the states of computation used throughout the analysis, we closely follow the

structure of states used in the Java Virtual Machine. Each state consists of a call

stack, containing individual stack frames (each with local variables and the operand stack),

and a heap. The values on the heap are defined based on the possible values that may

occur in a concrete evaluation. In the case of numbers we may store the literal value,

and in the case of object instances and arrays it is possible to store the type and the

contents of fields or array elements. Different from most JVM implementations we also

place numbers on the heap and, just as for object instances and arrays, use references for

these values. By also defining that return addresses (used for the obsolete opcodes JSR,

JSR W, and RET that were used to compile try-finally blocks of Java [LYBB12, §4.10.2.5])

are references, it suffices to only allow references as the contents of local variables, the

operand stack, and fields.

We extend this model so that in addition to concrete states it is also possible to represent

abstract states. For integer numbers intervals may be used to describe the possible values,

although this could easily be extended to more precise abstract domains. For object

instances it is possible to not define the value of certain (or all) fields, abstract the type,

or describe abstract connections on the heap.

A very important assumption is that parts of the heap which are not represented ex-

plicitly are tree shaped (thus, also acyclic) and do not share with any other part of the

heap. Here, we only consider sharing between object instances and arrays. In other words,

two objects may contain a reference to the same integer number (or null) without being

sharing. Arbitrary heaps can be modelled using heap predicates which will be explained in

Section 1.2.2. Furthermore, for technical reasons we need another component containing

a split result. Usage of this component will be explained in Section 1.4.

Definition 1.1 (Abstract States) A state is defined using several components. The

first two components, call stack and heap, contain most of the actual data and are used

in most opcodes.

States := CallStack×Heap×Types×HeapPredicates ×
StaticFields×Exception× InitializedClasses× SplitResults

The call stack is composed of several stack frames for the currently running methods,

where each stack frame contains local variables and an operand stack. We define that

the first element in the CallStack component is the topmost (current) stack frame.

CallStack := (ProgramPositions× LocalVariables×OperandStack)∗

16 Chapter 1. Symbolic Execution Graphs for Non-Recursive Programs

The set ProgramPositions just contains a unique element for each opcode of the

program, for example by combining the position of each opcode with the identifier of

its method. Local variables and operand stacks are modelled using partial functions

giving access to the references stored at some local variable or at some position in the

stack. For the operand stack we define that the first element in the OperandStack

component of a stack frame is the topmost entry on the operand stack.

LocalVariables := N 7→ References

OperandStack := N 7→ References

The set References is infinite and contains the null reference in addition to all ref-

erences that are used throughout the program. In contrast to languages like C, these

references do not need to correspond to memory addresses, furthermore in Java it is

not possible to read or modify references (although, of course the referenced data may

be read and modified).

In addition to references used to reference data on the heap, the set References also

contains all return addresses which are used in the program. These return addresses

are only used by the opcodes JSR, JSR W, ASTORE*, and RET and (as a consequence

that other opcodes may not be used for return addresses) may only be stored in a local

variable or on the operand stack, but are never returned and never stored inside a field

or array.

On the heap we distinguish between object instances and arrays, and integer and

floating point numbers. We define that null 6∈ dom(Heap).

Heap := References 7→ (Instances ∪Arrays ∪ Integers ∪ Floats)

Instances := FieldID 7→ References

Arrays := References× (N 7→ References)

Integers := {{x ∈ Z | a ≤ x ≤ b} | a ∈ Z ∪ {−∞}, b ∈ Z ∪ {∞}, a ≤ b}
Floats := Q ∪ {NaN,−0,+∞,−∞} ∪ {⊥}

By defining that each field identifier from the set FieldID uniquely identifies a specific

field (so it does not only reference the name of the field, but also the containing class

and the field descriptor), we define data stored in the fields of object instances using

a simple partial function. Together with the information about the type of an object

instance this defines all aspects of an object instance. For each array we store a reference

to the integer number which is the length of the array. Only if this number is a constant

c, we may also store the contents of all field indices 0 to c − 1. Integers are defined

using intervals, and for floating point values we only use a very limited abstract domain

1.2. States 17

that only allows literals in addition to ⊥ representing arbitrary values.

Types := References 7→ 2N×(PrimTypes ∪ ClassNames)

PrimTypes := {Boolean,Char,Float,Double,Byte,Short, Integer,Long}

The abstract type of an object instance or array is defined as a set of possible types.

The number is the array depth of the type (0 if it is not an array). In case of an

array depth of at least 1, the PrimTypes component can be used to describe primitive

arrays like int[]. Using the ClassNames component individual classes (or arrays of

classes) can be described, where ClassNames contains all classes (and interfaces) of

the program.

We limit the Types component so that only types may be contained that correspond

to the information in Heap. If h is the heap of the state, t is the Types component and

for a reference r we have h(r) = f ∈ Instances we demand that t(r) ⊆ 2{0}×ClassNames

and all fields in dom(f) are defined in all classes of t(r). Furthermore, we only consider

states where the Types component is not empty for any reference r referencing an

object instance or an array. For r = null we define t(r) = ∅.

StaticFields := FieldID 7→ References

Exception := References ∪ {⊥}
InitializedClasses := ClassNames→ {Yes,No,Running}

Finally, static fields are defined globally and may be accessed from any part of the

program. The exception component is used to denote which exception, if any, is thrown

in the state. We use ⊥ to denote that no exception is thrown. For each class we store

its initialization state.

In Fig. 1.2 we show an abstract state for an arbitrary program. In this figure the

most important components of Definition 1.1 are shown in an intuitive and more readable

format.

〈0 | this : r1,max : i1 |ε〉
r1: List(next: null, value: i2)

i1 : [0,∞)
i2 : (−∞,∞)

Figure 1.2.: Abstract State

In the upper part, above the line, the call stack is shown. In this case, the call stack

contains a single stack frame. In this stack frame, the first component indicates that the

18 Chapter 1. Symbolic Execution Graphs for Non-Recursive Programs

method is at the opcode at position 0. Then, the second component defines the local

variables this and max of that stack frame1. For this the value r1 is stored, for max we

have the value i1. The last component of the stack frame is the operand stack, which in

this case is empty (as indicated by ε).

The lower part of the state defines the heap of the state. Here, we have that r1 (which

is the value of the local variable this) references a List object with fields named next

and value, referencing null and i2, respectively. For i1 the abstract value [0,∞) is given,

indicating that we just know that the value is non-negative. Similarly, for i2 we have no

further information, indicated by (−∞,∞) (which could also be written as Z).

Note that in this example we did not show how we represent arrays or floats on the heap.

Furthermore, to simplify the presentation, we combined the type information (Type in

Definition 1.1) and the information about fields of an instance (Instances). As such, for

object instances with a more abstract type or fields defined in superclasses this simplified

notation is not suitable. Last but not least, in this short example we have not included

static fields, exceptions, information about initialized classes, and the split result.

1.2.1. Notation

In the course of this thesis references will usually be named r or rx for some index x. In

the case of references pointing to data from Integers, we usually use references of the

form ix. Furthermore, we will usually name the components of a state s as follows:

s = (〈fr0, . . . , frn〉, h, t, hp, sf, e, ic, sr) with fri = (ppi, lvi, osi)

If not stated otherwise, with h and t we reference the heap resp. type information of state

s. For a state with any name x we define that hx is the heap component of x, while

tx is the type component of x. For example, if there is a state s′ then hs′ is the heap

component of this state s′. We also have hs = h, ts = t. Furthermore, we also define that

for a state s′, s, sα, . . . we identify the heap as h′, h, hα, . . . (respectively). Similarly, we

use t′ etc. for the type information of state s′ etc.

We extend this even further. In contexts where we deal with a limited set of states that

have disjoint sets of references, for a reference r we use sr to identify the state containing

r. Similarly, we use hr = hsr and tr = tsr . To be more precise, null and all return addresses

may appear in all states. However, for these references where hr is not defined, we do

not make use of the abbreviation. Further details will be explained before this notation

is actually used.

1We added local variable names for simplicity, as in Java Bytecode local variables do not have names.

1.2. States 19

1.2.2. Heap Predicates

Using the components defined in Definition 1.1 only a limited number of abstract states

can be represented. The assumption that, for example, sharing and cyclicity need to be

represented explicitly makes it impossible to represent abstract states with these features.

This problem is addressed by using heap predicates. The heap predicates defined in Defini-

tion 1.3 may be used to allow further connections between the given references. All heap

predicates are limited to references to object instances or arrays, so sharing between an

object and an integer number cannot be represented (and, since this connection is not con-

sidered to be sharing, this also is not needed). For example (r1, r2) ∈ PossibleEquality

is used to represent the states where r1 and r2 may reference the same object on the heap.

Without this predicate, the assumption states that r1 and r2 point to different objects.

Definition 1.3 (Heap Predicates)

HeapPredicates := PossibleEquality× Joins ×
Cyclic×MaybeExisting

PossibleEquality := 2References×References

Joins := 2References×References

Cyclic := References 7→ 2FieldID

MaybeExisting := 2References

Both the predicates PossibleEquality and Joins are symmetric, i.e.,

(ri, rj) ∈ PossibleEquality ⇔ (rj, ri) ∈ PossibleEquality and

(ri, rj) ∈ Joins ⇔ (rj, ri) ∈ Joins. The predicate PossibleEquality is irreflexive,

i.e., (o, o) 6∈ PossibleEquality for all o ∈ References. For every reference r

marked as maybe existing in state s we demand that h(r) = f ∈ Instances with

dom(f) = ∅.

We do not allow (o, o) ∈ PossibleEquality as we know that for any o ∈ References

the case that o references two different objects is not possible. In other words, allowing

(o, o) ∈ PossibleEquality would only allow for additional, impossible states.

The restriction that we do not retain any field information for object references marked

using MaybeExisting is helpful in ensuring termination of the graph construction.

20 Chapter 1. Symbolic Execution Graphs for Non-Recursive Programs

Notation

Elements from PossibleEquality are written as r1 =? r2. For Joins we use the

notation r1%$r2. If Cyclic(r1) = F we write r1 	F . The notation r? is used for

r ∈MaybeExisting.

In most cases the state containing the predicates is clear from the context. If not, a

subscript is used to denote the corresponding state (e.g., r1 =?
s′ r2 for state s′).

Intuition

In Fig. 1.4 the intuition for these heap predicates is shown. As explicit connections in a

state may describe arbitrary shapes (including sharing, cyclicity, . . .), the heap predicates

are only used to describe properties of the parts of the heap which are not represented

explicitly using connections of fields. Thus, when compared to the situation where heap

predicates also need to be added for explicit connections, less heap predicates need to be

introduced. This makes the analysis more precise. For example, if an object referenced

by r1 has a field f with the explicit information r1.f = r1, then for this cycle no heap

predicate r1	{f} needs to be used. However, if the field f is not represented explicitly in

the state (i.e., it is not explicitly given what the content of the field r1.f is), one would

need to use r1	{f} to allow the case r1.f = r1.

In the following examples we assume that the heap predicates are used in an abstract

state s and are used to describe connections in a concrete state c represented by s.

Heap Predicate Intuition

r1 =? r2 The objects in c corresponding to r1 and r2 may be identical.
r1%$r2 When following fields of the object corresponding to r1 in c which

are not represented explicitly in s, it is possible to reach an object
in c corresponding to r2 or an successor of this object. We use r%$r
to indicate that r may reference a non-tree shape.

r1	F In c there may be a cycle starting in an object corresponding to
r1 that uses at least one connection not explicitly represented in s.
For each such cycle only fields defined in F are used.

r? In c the corresponding object may not exist, i.e., the corresponding
reference in c may be the null reference.

Figure 1.4.: Intuition for heap predicates

State Positions

To describe this intuition, the terms successor and connection are used, but not defined.

As these concepts play an important role in the upcoming definitions and proofs, we will

define state positions. A state position π for a reference r in state s describes a path in

1.2. States 21

s (starting in, e.g., some local variable) to r. We also write s|π = r if r is the reference

at position π in state s. State positions can be used to describe connections between

references.

Definition 1.5 (State Positions) Let s = (〈fr0, . . . , frn〉, h, t, hp, sf, e, ic, sr) be a

state where each stack frame fri has the form (ppi, lvi, osi). Then SPos(s) is the

smallest set containing all of the following sequences π:

• π = LVi,j where 0 ≤ i ≤ n, lvi = ri,0, . . . , ri,mi , 0 ≤ j ≤ mi. Then s|π is ri,j.

• π = OSi,j where 0 ≤ i ≤ n, osi = ri,0, . . . , ri,mi , 0 ≤ j ≤ mi. Then s|π is ri,j.

• π = SFv where sf(v) = r. Then s|π is r.

• π = EXC where e = r 6= ⊥. Then s|π is r.

• π = π′ v for some v ∈ FieldIDs and some π′ ∈ SPos(s) where h(s|π′) = f ∈
Instances and where f(v) is defined. Then s|π is f(v).

• π = π′ i for some i ∈ N and some π′ ∈ SPos(s) where h(s|π′) = (il, f) ∈ Arrays

and where f(i) is defined. Then s|π is f(i).

• π = π′ len for π′ ∈ SPos(s) where h(s|π) = (il, f) ∈ Arrays. Then s|π is il.

As the symbols v,<, . . . will be used for another prominent feature in this thesis,

instead we use the symbols C,E,D,B to denote (proper) prefixes and suffixes of posi-

tions:

• π C π′ iff ∃τ 6= ε : πτ = π′

• π E π′ iff π = π′ or π C π′

• π B π′ iff π′ C π

• π D π′ iff π′ E π

As an example, for the state shown in Fig. 1.2 we have the following state positions:

{LV0,0,LV0,1,LV0,0 next,LV0,0 value}

Using state positions it is now possible to formally define the terms successor and

connection used before. A reference r2 is a direct successor of r1 in a state s if there are

positions π, π′ such that s|π = r1, s|π′ = r2 and π′ = πτ for some τ ∈ (FieldIDs ∪ N ∪
{len}). A reference r1 is connected to a reference r2 using a path τ if there are positions

22 Chapter 1. Symbolic Execution Graphs for Non-Recursive Programs

π, π′ such that s|π = r1, s|π′ = r2 and π′ = πτ for some τ ∈ (FieldIDs∪N∪ {len})∗. For

this we could also write π E π′.

With this we can formally describe the meaning of heap predicates. This is done by

defining which states are represented by an abstract state. We write s′ v s to denote

that s′ is represented by s, which also means that all computations that are possible when

starting in s′ are also possible when starting in s. This instance definition is especially

useful to define the relationship of abstract states to those states of a concrete evaluation

(i.e., the states that are used in a computation of a real JVM) and will be used to prove

corresponding properties of the constructed Symbolic Execution Graphs.

1.2.3. Concrete States

Before this instance definition is introduced, we first explain how concrete states are

represented using states as defined in Definition 1.1. The definition of abstract states

allows us to represent very precise information about states that may occur in some

program evaluation. This information can even be so precise that no information is

abstracted, i.e., the information contained in the state is identical to the in-memory

information used by a real JVM for a real evaluation. In order to be able to define the

relationship between the (abstract) states used in a Symbolic Execution Graph and a

concrete evaluation, we define which subset of states is made up of concrete states.

Definition 1.6 (Concrete States) A state s = (cs, h, t, hp, sf, e, ic, sr) is a concrete

state if the following restrictions are met.

• ∀r ∈ References \ {null} where t(r) = a is defined: |a| = 1. If a ⊆
2{0}×ClassNames then the only contained type is a non-abstract class.

• ∀π ∈ SPos(s) with h(s|π) ∈ Instances: h(s|π) = f , f(v) is defined for all field

identifiers v ∈ FieldIDs corresponding to the fields declared for the type t(s|π).

• ∀π ∈ SPos(s) with h(s|π) ∈ Arrays: h(s|π) = (il, f), h(il) is some integer l ≥ 0,

f(x) is defined for all 0 ≤ x < l.

• ∀π ∈ SPos(s) with h(s|π) ∈ Integers: |h(s|π)| = 1.

• ∀π ∈ SPos(s) with h(s|π) ∈ Floats: h(s|π) 6= ⊥.

• No heap predicate exists in hp.

• sr = ⊥.

1.2. States 23

1.2.4. State Instances

The following instance definition can be used to define which concrete states are repre-

sented by an abstract state. Furthermore, to obtain a finite Symbolic Execution Graph,

we need to abstract the information stored for the individual states – this abstraction is

done so that the more precise state is an instance of the more abstract state.

In the case that a long series of fields in a (more) concrete state s′ is abstracted to a

shorter series of fields in an abstract state s, we need to find out how much of it is realized

in s. In other words, while π ∈ SPos(s′) may hold, we may have that only a prefix of π

is a valid position in s.

Definition 1.7 (πs) Let s ∈ States. Given a position π, πs is the maximal prefix of

π such that πs ∈ SPos(s) and for π = πsτ and ε C τ ′ E τ we have s|πsτ ′ 6∈ SPos(s). If

the state is clear from the context, we just write π. Note that we always have πs E π.

Furthermore, it may be the case that two positions point to the same reference according

to their maximal existing prefixes in a state s, but where the remainder of the positions

is identical.

Definition 1.8 (Suffixes of positions) Given a state s and two positions π, π′ with

s|π = s|π′ we say that π, π′ have the same suffix w.r.t s iff for π = πsα and π′ = π′sβ

we have α = β.

Similar to the definition of same suffixes, we also need to know if two positions have a

common intermediate reference.

Definition 1.9 (Common Intermediate Reference) Let s be a state, α be a po-

sition and τ, τ ′ be two suffixes with {ατ, ατ ′} ⊆ SPos(s). We define that τ, τ ′ have

a common intermediate reference from α iff there are ε C τ̃ C τ , ε C τ̃ ′ C τ ′ with

s|ατ̃ = s|ατ̃ ′ .
Note that s|ατ = s|ατ ′ is not considered to be a common intermediate reference.

With these auxiliary definitions we now define when exactly a state s′ is an instance

of a state s. As already mentioned, the intuition of this instance relation is that all

computations possible in s′ are also possible in s. Thus, it is important that any value

represented in s′ also is (at least implicitly) represented in s.

In Definition 1.10(a–c) we take care that s and s′ have the same shape, i.e., the call

stack has the same height, the opcodes are identical, both or none of the states throw an

exception, and the initialization status if each class is identical.

24 Chapter 1. Symbolic Execution Graphs for Non-Recursive Programs

In Definition 1.10(d–j) we show how the individual values may be abstracted. For return

addresses no abstraction is possible, while the abstraction for floating point numbers

is very limited. Integer values may be represented using an interval, thus we can, for

example, concentrate on the sign of a number. The type of an object may be abstracted by

allowing more than one type. As we may allow that a reference points to an existing object

or null, we may abstract the null reference to a reference pointing to a possibly existing

reference (for which no field values may be represented explicitly). Finally, abstracting

instances and arrays is possible by representing less field/index information.

In Definition 1.10(k–r) we deal with the relationship of two references on the heap.

Here, we basically add the aforementioned heap predicates if we decide to not explicitly

represent certain heap shapes. In the upcoming proofs we will show that this choice

indeed can be used to represent more abstract states.

Definition 1.10 (v) Let s′ = (〈fr′0, . . . , fr′n′〉, h′, t′, hp′, sf ′, e′, ic′, sr′) and

s = (〈fr0, . . . , frn〉, h, t, hp, sf, e, ic, sr), where fr′i = (pp′i, lv
′
i, os

′
i) and fri =

(ppi, lvi, osi). We call s′ an instance of s (denoted s′ v s) iff

(a) n = n′ and ppi = pp′i for all 0 ≤ i ≤ n

(b) e′ = ⊥ iff e = ⊥

(c) ic′ = ic

For all π ∈ SPos(s′):

(d) if s′|π is a return address and π ∈ SPos(s), then s|π = s′|π

(e) if h′(s′|π) ∈ Floats and π ∈ SPos(s), then h(s|π) ∈ {h′(s′|π),⊥}

(f) if h′(s′|π) ∈ Integers and π ∈ SPos(s), then h′(s′|π) ⊆ h(s|π) ∈ Integers

(g) if t′(s′|π) is defined and π ∈ SPos(s), then t′(s′|π) ⊆ t(s|π)

(h) if h′(s′|π) = null and π ∈ SPos(s), then

• h(s|π) = null, or

• s|π? and h(s|π) = f ∈ Instances with dom(f) = ∅

(i) if h′(s′|π) = f ′ ∈ Instances and π ∈ SPos(s), then

h(s|π) = f ∈ Instances and dom(f ′) ⊇ dom(f)

(j) if h′(s′|π) = (i′l, f
′) ∈ Arrays and π ∈ SPos(s), then

• h(s|π) = (il, f) ∈ Arrays and dom(f ′) ⊇ dom(f), or

• h(s|π) = f ∈ Instances and dom(f) = ∅

1.2. States 25

〈0 | this : r1,max : i1 |ε〉
r1: List(next: r2, value: i2)
r2: List(next: null, value: i3)

i1 : [10,∞)
i2 : {7}

i3 : (−∞, 0]

(a) State s1

〈0 | this : r3,max : i4 |ε〉
r3: List(next: r4, value: i5)

r4 : List()
i4 : [0,∞)
i5 : (−∞,∞)

r4?

(b) State s2

Figure 1.11.: States to illustrate v

For all π, π′ ∈ SPos(s′):

(k) if s′|π 6= s′|π′ and π, π′ ∈ SPos(s), then s|π 6= s|π′

(l) if h′(s′|π) ∈ Instances ∪Arrays, π 6= π′, s′|π = s′|π′ , and π, π′ ∈ SPos(s), then

s|π = s|π′ or s|π =? s|π′

(m) if h′(s′|π) ∈ Instances ∪ Arrays, π 6= π′, s′|π = s′|π′ or s′|π =? s′|π′ , {π, π′} 6⊆
SPos(s), and s|π 6= s|π′ or π, π′ have different suffixes w.r.t. s, then s|π%$s|π′

(n) if there are τ, τ ′, τ 6= ε, α with π = ατ , π′ = ατ ′, τ, τ ′ have no common intermediate

reference from α in s′ (cf. Definition 1.9), s′|π = s′|π′ , and h′(s′|π) ∈ Instances ∪
Arrays, then

• π, π′ ∈ SPos(s) and s|π = s|π′ , or

• τ ′ 6= ε and s|α%$s|α, or

• τ ′ = ε and s|α%$s|α and s|α	F with F ⊆ τ (where τ is interpreted as a set of

field identifiers)

(o) if s′|π	F ′ , then s|π	F and F ⊆ F ′

(p) if s′|π? and π ∈ SPos(s), then s|π?

(q) if s′|π =? s′|π′ and π, π′ ∈ SPos(s), then s|π =? s|π′

(r) if s′|π%$s′|π′ , then s|π%$s|π′

We illustrate Definition 1.10 by using two examples, which also explain some of the

intuition behind the more complex parts of the definition.

Example 1.1 Assume we have the two states shown in Fig. 1.11. Here, in Fig. 1.11b

we use r4? to indicate that r4 is maybe existing (cf. Definition 1.3). Furthermore, we

write r4: List() to describe an object of type List where no information about its fields

26 Chapter 1. Symbolic Execution Graphs for Non-Recursive Programs

is represented. As such, the local variable this references a list of at least length one.

Similarly, in Fig. 1.11a the list stored in the local variable this has exactly two elements,

where the first element has a value of 7 and the second value is a non-positive number.

To see that we have s1 v s2, we now consider the individual conditions of Defini-

tion 1.10. For that, we first see that Definition 1.10(a) holds as both states contain

exactly one stack frame which is at the same program position. Assuming that the two

states have no set exception reference and that the class initialization information also

is identical, also Definition 1.10(b,c) hold.

For Definition 1.10(d–j) we need to consider all π ∈ SPos(s1). We have SPos(s1) =

{LV0,0,LV0,1,LV0,0 next,LV0,0 value,LV0,0 next next,LV0,0 next value}. As we do not

have return addresses, floats, or arrays in s1, we do not need to consider Defini-

tion 1.10(d,e,j). First, consider π = LV0,1 with s1|π = i1 and h1(i1) = [10,∞). Ac-

cording to Definition 1.10(f) we need to have [10,∞) ⊆ h2(s2|π) ∈ Integers. Indeed,

as we have h2(s2|π2) = [0,∞), this holds. Similarly, the condition for LV0,0 value is

met as h1(i2) = {7} ⊆ (−∞,∞) = h2(i5). For π = LV0,0 next value we have s1|π = i3,

however we have π 6∈ SPos(s2). Thus, we do not need to consider this position for Def-

inition 1.10(f). The idea behind this is that parts of the heap which are not explicitly

represented in the state may contain arbitrary data for integer fields.

We skip a detailed discussion of Definition 1.10(g,h) and instead explain Defini-

tion 1.10(i) in more detail. According to Definition 1.10(i) we only need to consider

the positions LV0,0 and LV0,0 next. For π = LV0,0 we see that h1(s1|π1) ∈ Instances

and h2(s2|π) ∈ Instances. Furthermore, we see that for both r1 and r3 the fields

next and value are defined, thus we have dom(h1(s1|π)) ⊇ dom(h2(s2|π)). In the case

of π = LV0,0 next we see that in s2 no field is defined, i.e., dom(h2(s2|π)) = ∅. Again,

the intuition here is that parts of the state which are not explicitly represented may

contain arbitrary data. Thus, the conditions of Definition 1.10(i) are also met for this

position.

Finally, we consider Definition 1.10(k–r). We see that Definition 1.10(k) is trivially

met. For Definition 1.10(l–r) we see that the preconditions are not met, as each object

instance only has a single position, we do not have any non-tree shape, and we do not

have any heap predicate in s1.

To give a better insight into Definition 1.10(k–r), we now consider another example.

Example 1.2 We first consider Definition 1.10(k) and look at s3 and s5 as in Fig. 1.12a

and Fig. 1.12c. We have s3|LV0,0 = r1 6= r2 = s3|LV0,0 next. Thus, according to Defini-

tion 1.10(k) we need to have s5|LV0,0 6= s5|LV0,0 next. The intuition is that having the same

reference in two positions of a state means that in all represented (concrete) states the

1.2. States 27

〈1 | this : r1 | r1〉
r1: List(next: r2, value: i1)
r2 : List(next: r1, value: i1)

i1 : (−∞,∞)

(a) State s3

〈1 | this : r3 | r4〉
r3 : List(value : i2)
r4 : List(value : i2)
i2 : (−∞,∞)

r3 =? r4 r3%$r4

r3%$r3 r4%$r4

r3 	next r4 	∅

(b) State s4

〈1 | this : r5 | r5〉
r5 : List(next : r5)

(c) State s5

Figure 1.12.: States to illustrate v w.r.t. heap predicates

corresponding object instances or arrays on the heap also are identical. However, this

condition is not met. Thus, we have s3 6v s5.

Now consider s3 and s4 with s4 as in Fig. 1.12b. We have s3|LV0,0 = s3|OS0,0 and, with

Definition 1.10(l) we need to have s4|LV0,0 = s4|OS0,0 or s4|LV0,0 =? s4|OS0,0 . Here the

intuition is that the =? heap predicate may be used to describe aliasing on the heap

which is not represented explicitly. As we have r3 =? r4, this condition is met.

In Definition 1.10(m) we check if explicit sharing in s3 for positions not represented

in s4 is allowed using joins heap predicates. In this case, we, for example, see that we

have s3|LV0,0 = s3|LV0,0 next next where LV0,0 next next 6∈ SPos(s4). Thus, we need to have

s4|LV0,0
%$s4|LV0,0 next next. As we have LV0,0 next nexts4 = LV0,0 and we have r3%$r3, this

condition is met. Similarly, we need to have r4%$r4 and r3%$r4 in s4, which all exist.

In Definition 1.10(n) we identify realized non-tree shapes in s3 and demand that

in s4 such shapes either are represented explicitly, or allowed using the %$ and 	

heap predicates. As in the previous case, we have s3|LV0,0 = s3|LV0,0 next next where

LV0,0 next next 6∈ SPos(s4). Thus, we need to have s4|LV0,0 next next	F for an appro-

priate value of F describing an underapproximation of the fields traversed along the

cycle. Here, the value of F = ∅ would be sufficient, but the choice of F = {next} is

also possible and more precise. Indeed, in s4 we have r3	next and, thus, the condition

is met. Similarly, we also have r4	∅.

In Definition 1.10(o–r) we only take care that for existing heap predicates in s3 we

have correspondign heap predicates in s4. As there are no heap predicates in s3 and

seeing that Definition 1.10(a–j) also hold, we conclude that s3 v s4 holds.

For future proofs we need a lemma that describes the relationship of state positions in

two states s, s′ with s′ v s.

Lemma 1.3 (Positions in instances) Let s, s′ ∈ States with s′ v s. Then

SPos(s) ⊆ SPos(s′).

28 Chapter 1. Symbolic Execution Graphs for Non-Recursive Programs

Proof. Let π ∈ SPos(s). We prove π ∈ SPos(s′) by induction on π. If π = LVi,j or

π = OSi,j, then the claim follows from the fact that ppi = pp′i (Definition 1.10(a)) and

that in verified Java Bytecode, states that correspond to the same program position

have the same local variables and the same number of entries on the operand stack. If

π = EXC then with Definition 1.10(b) also π ∈ SPos(s′). If π = SFv where c is the

class of v then with Definition 1.10(c) we know that ic(c) = ic′(c), thus π ∈ SPos(s′).

If π = π′v for some v ∈ FieldIDs, then h(s|π′) = f ∈ Instances where f(v) is

defined. As π′ ∈ SPos(s), by the induction hypothesis, we know that π′ ∈ SPos(s′)

as well. Since s′ v s, h(s|π′) = f ∈ Instances and f(v) is defined, Definition 1.10

implies h′(s′|π′) = f ′ ∈ Instances with dom(f ′) ⊇ dom(f). Thus, f ′(v) is defined and

π′v = π ∈ SPos(s′).

If π = π′i for some i ∈ N, then h(s|π′) = (il, f) ∈ Arrays where f(i) is defined. As

π′ ∈ SPos(s), by the induction hypothesis, we know that π′ ∈ SPos(s′) as well. Since

s′ v s, h(s|π′) = (il, f) ∈ Arrays, Definition 1.10 implies h′(s′|π′) = (i′l, f
′) ∈ Arrays

with dom(f ′) ⊇ dom(f). Thus, f ′(i) is defined and π′i = π ∈ SPos(s′).

If π = π′len, then h(s|π′) = (il, f) ∈ Arrays. As π′ ∈ SPos(s), by the induction

hypothesis, we know that π′ ∈ SPos(s′) as well. Since s′ v s and h(s|π′) = (il, f) ∈
Arrays, Definition 1.10 implies h′(s′|π′) = (i′l, f

′) ∈ Arrays. Thus, π′len = π ∈
SPos(s′). �

An important property of the v relation is transitivity.

Theorem 1.4 The v relation is transitive, i.e., for s1 v s2 and s2 v s3 we have s1 v s3.

Proof. We show the claim by proving the individual items of Definition 1.10. It is

important to note that for any π ∈ SPos(s3) we also have π ∈ SPos(s1) ∩ SPos(s2)

due to Lemma 1.3.

(a – c) Trivial.

Let π ∈ SPos(s1). We also need to consider the case that π ∈ SPos(s3).

(d) Trivial.

(e) If h2(s2|π) = h1(s1|π), the claim directly follows from s2 v s3. Otherwise, if

h2(s2|π) = ⊥ we also have h3(s3|π) = ⊥, thus the claim follows.

(f – g) The claim follows as ⊆ is transitive.

1.2. States 29

(h) If s2|π = s1|π = null, the claim directly follows from s2 v s3. Otherwise, if s2|π?

and h2(s2|π) = f2 ∈ Instances with dom(f2) = ∅, with Definition 1.10(i,p) we

also have s3|π? and h3(s3|π) = f3 ∈ Instances with dom(f3) ⊆ dom(f2) = ∅.
Thus, the claim follows.

(i) The claim follows as ⊇ is transitive.

(j) Assume h1(s1|π) = (il,1, f1) ∈ Arrays and π ∈ SPos(s3). If h2(s2|π) = (il,2, f2) ∈
Arrays with dom(f2) ⊆ dom(f1), we also have h3(s3|π) = (il,3, f3) ∈ Arrays

with dom(f3) ⊆ dom(f2) or h3(s3|π) = f3 ∈ Instances with dom(f3) = ∅.
Thus, the claim follows. Otherwise, we have h2(s2|π) = f2 ∈ Instances with

dom(f2) = ∅. Thus, the claim follows with Definition 1.10(i).

Let π, π′ ∈ SPos(s1).

(k) Trivial.

(l) We have π, π′ ∈ SPos(s3). From s1 v s2 we conclude that s2|π = s2|π′ or s2|π =?

s2|π′ holds. With Definition 1.10(i,j) we also have that h2(s2|π) ∈ Arrays ∪
Instances. Thus, with s2 v s3 and Definition 1.10(l,q) the claim follows.

(m) With Definition 1.10(m) and s1 v s2 we may have s2|π%$s2|π′ . With Defini-

tion 1.10(r) and s2 v s3 we then also have s3|π%$s3|π′ . If we do not have s2|π%$s2|π′
then we know s2|π = s2|π′ where π, π′ have the same suffix w.r.t. s2. If we also

have s3|π 6= s3|π′ or π, π′ have different suffixes w.r.t. s3, then with s2 v s3 we

also have s3|π%$s3|π′ . Thus, the claim follows.

(n) Let π = ατ and π′ = ατ ′ with τ 6= ε and τ, τ ′ have no common intermediate ref-

erence from α in s1, and h1(s1|π) ∈ Instances∪Arrays. If {π, π′} 6⊆ SPos(s2)

or s2|π 6= s2|π′ , with Definition 1.10(n) and s1 v s2 we have s2|α%$s2|α. If τ ′ = ε

we also have s2|α	F2 with F2 ⊆ τ . Thus, with Definition 1.10(r,o) and s2 v s3

we also have s3|α%$s3|α and (if τ ′ = ε) s3|α	F3 with F3 ⊆ F2.

Otherwise, assume π, π′ ∈ SPos(s2) and s2|π = s2|π′ . Then, with Defini-

tion 1.10(n) and s2 v s3 we also have π, π′ ∈ SPos(s3) and s3|π = s3|π′ , or

s3|α%$s3|α and (if τ ′ = ε) s3|α	F3 with F3 ⊆ τ .

(o) The claim follows as ⊆ is transitive.

(p – r) Trivial. �

30 Chapter 1. Symbolic Execution Graphs for Non-Recursive Programs

1.3. Idea of Graph Construction

Using the concepts introduced so far, we now explain how to create a Symbolic Execution

Graph. A Symbolic Execution Graph is always created in the context of a known Java

Bytecode program. This means that the set ClassNames is fixed. In other words, the

case that further classes may exist is not considered in the analysis.

Furthermore, a graph is constructed for a single abstract start state. This start state

can be used, using a suitable abstraction, to represent several possible concrete start

states. For example, it is possible to create a Symbolic Execution Graph for a method

m that has a single integer argument, where all possible values for that argument are

represented in the abstract start state.

Based on this start state, the graph is constructed using a simple fixed-point algorithm

outlined in Algorithm 1. In Section 1.8 a more detailed description is presented. The

main principle here is to evaluate the opcodes contained in each state contained in the

graph, if possible. When evaluating an opcode of a state, a new state is added as a new

leaf to the graph.

If evaluation is not possible, a case analysis based on the information of the state is

performed so that in all resulting cases evaluation is possible. If, for example, a state

contains r? for some reference r and the opcode ISNULL needs to be evaluated for that

reference, this is not possible. However, if the case analysis results in two states where in

one state the reference r is replaced by null and in the other state r points to an existing

object instance, evaluation is possible in those two states. In this thesis this kind of case

analysis is named refinement.

The graph construction as just described may create an infinite graph. In order to

always guarantee creation of a finite Symbolic Execution Graph, loops in a program are

detected. By introducing more abstract states, for every loop after finite time a suitably

abstract state is found that can be used to represent all (possibly infinitely many) loop

iterations.

Example 1.5 We illustrate Algorithm 1 using the following simple Java program,

which decreases the argument until it is negative.

1 public void someMethod(int arg) {

2 while (arg >= 0) {

3 arg --;

4 }

5 return;

6 }

The corresponding Java Bytecode also is quite simple. Here, the loop is realized

1.3. Idea of Graph Construction 31

Algorithm 1: Graph construction

Input: s0 ∈ States
Output: Symbolic Execution Graph G

1: initialize G
2: AddState(G, s0)
3: for all s ∈ LeafStates(G) do
4: if s is a repetition of s′ then
5: if s v s′ then
6: connect s to s′ using an instance edge
7: else
8: ForceAbstraction(s, s′)
9: else

10: if s can be evaluated then
11: Evaluate(s)
12: else
13: Refine(s)

using the conditional branch IFLT 4 which jumps to line 4 if the topmost entry of the

operand stack, in this case the value of the local variable arg, is less than 0. For non-

negative values evaluation continues in line 2, where the value of arg is first decremented

by 1 and then evaluation again continues at the loop head.

0 ILOAD arg

1 IFLT 4

2 IINC arg -1

3 GOTO 0

4 RETURN

We now explain how the Symbolic Execution Graph shown in Fig. 1.13 can be con-

structed for this program according to Algorithm 1. At first, we only have the start

state A, which in the algorithm is named s0. For this example we created the state

such that the value of arg is arbitrary, so that the resulting Symbolic Execution Graph

represents all possible program runs for any possible value of arg.

As A does not have any successors, it is a leaf state and the loop in lines 3 – 13

of Algorithm 1 is evaluated for state A. First, we see that A is no repetition of any

other state, as it is the only state so far. Although the information in state A is quite

abstract, we can evaluate the first opcode ILOAD arg, which just loads the value of arg

into the operand stack. This evaluation results in state B, thus we connect A to B

using an evaluation edge.

State B is a leaf state. We first see that B is no repetition of any other state, as

the only other state A is at another position in the program (it is at opcode ILOAD arg

in line 0, while state B is at opcode IFLT 4 in line 1). In state B we need to evaluate

32 Chapter 1. Symbolic Execution Graphs for Non-Recursive Programs

〈0|arg: i1|ε〉
i1:(−∞,∞)

A

〈1|arg: i1|i1〉
i1:(−∞,∞)

B

〈1|arg: i1|i1〉
i1:(−∞,−1]

C

〈4|arg: i1|ε〉
i1:(−∞,−1]

D

E

〈1|arg: i1|i1〉
i1: [0,∞)

F

〈2|arg: i1|ε〉
i1: [0,∞)

G

〈3|arg: i1|ε〉
i1:[−1,∞)

H

〈0|arg: i1|ε〉
i1:[−1,∞)

I

Figure 1.13.: A simple Symbolic Execution Graph

IFLT 4, which branches to line 4 if the value on top of the operand stack is negative,

or continues in line 2 otherwise. As the information in state B does not give enough

information to decide this, we need to refine B.

As the result of refinement we obtain two states C and F , which still are at the same

opcode as state B. Both of these states are leaf states, and we first consider state C.

The information of state C still is abstract, but is precise enough to allow for an

evaluation of IFLT 4. As we know that all values in the interval (−∞,−1] are smaller

than 0, evaluation results in state D at opcode RETURN in line 4. Note that state C

is not a repetition of any other state, especially not of states B or F , as we demand at

least one evaluation edge on the path between two repeating states.

Evaluation of D finally leads to state E, which has an empty call stack. We do not

consider states with an empty call stack as leaf states. Thus, the algorithm now only

has to work on state F .

Similar to the evaluation of C to D, evaluation of state F results in state G. In G

we need to evaluate IINC arg -1. We do not know the precise value of arg in state G,

however we conclude that decrementing any value in the interval [0,∞) must result in

a value in the interval [−1,∞). Thus, we obtain state H.

Evaluation of the GOTO opcode in state H is straight forward and results in state

I. However, state I is at the same program position as state A. The path from state

A to state I contains at least one evaluation edge, and thus I is a repetition of A.

According to Algorithm 1 we now check if I v A holds and, if this is not the case,

enforce abstraction to ensure a finite graph construction. In this case I v A holds and,

1.4. Refinement 33

thus, we connect I to A using an instance edge.

Now no state of the graph is a leaf, resulting in termination of the graph construction.

While the idea of this algorithm is quite simple, three main aspects need to be regarded.

(i) Evaluation must be performed on abstract states.

(ii) It must be ensured that the states obtained using refinement cover all states repre-

sented by the unrefined state.

(iii) It must be ensured that the mentioned abstraction process indeed only is possible

finitely often.

Without property (i) this technique could, at best, only be used as a Java Bytecode

interpreter – which is uninteresting.

Without property (ii) a computation possible in the unrefined state may be impossible

after refinement, making the resulting Symbolic Execution Graph useless for termination

analysis (and other applications).

Without property (iii) we could not guarantee construction of the Symbolic Execution

Graph in finite time, which severely limits the usefulness of this technique.

Furthermore, several technical challenges need to be solved. For example, Defini-

tion 1.10 must be regarded in the abstraction process. However, the definition does

not give information about how to create a suitably abstract state as described above.

1.4. Refinement

The question whether a state can be evaluated is part of Algorithm 1. An intuition was

already given before. In general we need to refine the information of the state so that

the information necessary for (abstract) evaluation is represented. When dealing with

opcodes working on integer numbers, for example IFEQ comparing an integer to 0, the

information in the state may be too abstract in order to decide the outcome of the opcode

to evaluate. In the example of IFEQ it can happen that a reference i1 is used in the

comparison, while in the heap the information [0,∞) ∈ Integers is stored for i1. With

this information it is possible that i1 is 0, but it is also possible that this is not the case.

In order to have a deterministic evaluation, we refine the information in the state and

produce several states in this process, each of which then can be evaluated. In the example

of IFEQ we could produce a state where the reference points to the integer constant 0,

and another state where the integer is in the interval [1,∞).

However, there are also cases where it is not possible to construct a finite number of

states so that each of these states can be evaluated. For example, consider the opcode

34 Chapter 1. Symbolic Execution Graphs for Non-Recursive Programs

IF ICMPEQ that compares two integer numbers for equality. If the intervals for these

integers both contain infinitely many numbers, the idea presented above clearly cannot

be used. Instead, we make use of the split result component, which is part of each abstract

state. In this split result we encode the desired outcome of the opcode that should be

evaluated. In the example of IF ICMPEQ we would create two states, one with the split

result encoding true (meaning that both integers are equal) and another state with the

split result encoding false. In case no split result is needed, we use the split result ⊥.

Thus, even if the original state does not contain the information necessary for evaluation,

the added split results enables us to evaluate.

To make sure that the final Symbolic Execution Graph represents all possible computa-

tions, we need to make sure that during refinement of s to s1, . . . , sn all concrete states c

represented by the unrefined state (s) are also represented by at least one of the resulting

states (s1, . . . , sn). This leads us to the general definition what refinement is. The possible

values of SplitResult will be introduced in the course of this chapter.

Definition 1.14 (State Refinements) Let s ∈ States and refine: States →
2States be a refinement. This refinement is valid if and only if for all concrete states c

with c v s a state s′ ∈ refine(s) exists with c v s′.

In the course if this chapter, we will present several refinements. For all of these we

will give proofs of validity according to Definition 1.14.

Note that for refine(s) = {s1, . . . , sn} there may be a concrete state c with c v si and

c v sj for i 6= j. Furthermore, we may have c v si where c 6v s. However, the refinements

presented in the remainder of this section are designed to be as precise as reasonably

possible and, thus, avoid such outcomes.

To actually define different types of refinement, we need two auxiliary constructs that

can be used to modify states. The first construct is used to replace references in a state

by other references.

Definition 1.15 (Reference Replacement) σ : References → References is

a reference substitution if the set {x ∈ References | σ(x) 6= x} is finite. Let

s = (cs, h, t, hp, sf, e, ic, sr) be a state. We have

σ(s) = (σ(cs), hσ, t, hp, sfσ, σ(e), ic, sr)

where the application of σ to a call stack cs = 〈f0 . . . , fn〉 is defined as follows:

σ(cs) = 〈f ′0, . . . , f ′n〉 with fi = (ppi, lvi, osi) and f ′i = (ppi, lviσ, osiσ) for 0 ≤ i ≤ n

1.4. Refinement 35

The individual values on the heap are replaced as follows:

h(r)σ =

fσ if h(r) = f ∈ Instances

(σ(il), fσ) if h(r) = (il, f) ∈ Arrays

h(r) otherwise

For sσ with σ(ri) = r′i (1 ≤ i ≤ m) we also write s[r1/r
′
1, . . . , rm/r

′
m].

The second construct is used to update values in or add values to a state.

Definition 1.16 (Heap Extension) Let s be a state. To change the value referenced

on the heap, we use the notation s+ {r 7→ v}. We define that in s+ {r 7→ v} all state

components are identical to those of s, but the heap h is replaced by h+ {r 7→ v}:

(h+ {r 7→ v})(u) =

v if r = u

h(u) otherwise

Similarly, we also define f + {v 7→ r}, and t + {r 7→ T} to modify field and type

information, respectively:

(f + {v 7→ r})(u) =

r if v = u

f(u) otherwise

(t+ {r 7→ T})(u) =

T if r = u

t(u) otherwise

1.4.1. Integer Refinement

We start by defining integer refinement which works by creating a partition of the integer

value in question.

Definition 1.17 (Integer Refinement) Let s ∈ States and let r ∈ References

with h(r) = V ∈ Integers.

Let V1, . . . , Vn be a partition of V (i.e., V1 ∪ . . . ∪ Vn = V) with ∅ 6= Vi ⊆ Integers.

Moreover, si = s+ {r 7→ Vi}. Then refine(s) = {s1, . . . , sn} is an integer refinement of

s.

36 Chapter 1. Symbolic Execution Graphs for Non-Recursive Programs

In Fig. 1.13 you can see an example of integer refinement from node B to states C and

F . Here, we have (−∞,∞) = [0,∞) ∪ (−∞,−1].

Theorem 1.6 Integer refinement is valid.

Proof. Let refine(s) = {s1, . . . , sn} be an integer refinement where si = s + {r 7→ Vi}
and h(r) = V = V1 ∪ . . . ∪ Vn ⊆ Z.

Let c be a concrete state with c v s. Let Π = {π ∈ SPos(s) | s|π = r}. By

Definition 1.10(k) there is a z ∈ V such that hc(c|π) = {z} for all π ∈ Π. Let z ∈ Vi.
Then hi(si|π) = Vi for all π ∈ Π. To show c v si we only have to check Definition 1.10(f).

Let τ ∈ SPos(s) ∩ SPos(si) with hc(c|τ) = {z′} ∈ Integers. If τ 6∈ Π, then this

position was not affected by the integer refinement and thus, hc(c|τ) ⊆ hs(s|τ) =

hi(si|τ). If τ ∈ Π, then we have z′ = z and thus hc(c|τ) ⊆ Vi = hi(si|τ).

Corollary 1.7 For any integer refinement refine(s) = {s1, . . . , sn} and any concrete

state c with c v si we have c v s.

Proof. The claim holds because Vi ⊆ V . �

If using integer refinement the desired information cannot be provided, it may help to

define the result using a boolean split. By extending of how an opcode is evaluated in

the presence of a split result, the contained boolean value then provides the necessary

information which cannot directly be obtained from the state. As an example, when

evaluating IFLE for two unknown integer values, the split result true could indicate that

the evaluation succeeds as described in the specification of the opcode. The details of

such straightforward extensions are not given in this thesis.

Definition 1.18 (Boolean Split) Let s ∈ States. We demand that {true, false} ⊆
SplitResults. Let strue, sfalse be identical to s where just the split result component

is set to true resp. false. Then refine(s) = {strue, sfalse} is a boolean split of s.

1.4. Refinement 37

Theorem 1.8 Boolean split is valid.

Proof. Only the split result component of s is changed. This component is not con-

sidered in Definition 1.10, thus we have s v strue and s v sfalse. With Theorem 1.4 the

claim follows. �

Using integer refinement and boolean split it is possible to refine a state so that evalu-

ation of most opcodes working on integers is possible. For the opcodes TABLESWITCH,

LOOKUPSWITCH, and LCMP it may be necessary to use a split with more than two

outcomes. A corresponding extension to Definition 1.18 is left as an exercise for the

reader.

In general, it is always possible to provide the necessary information using splits. How-

ever, in order to have precise information in the resulting Symbolic Execution Graph, it

is necessary to use refinements instead of splits if possible.

For example, for the code if (x > 0) { a = b/x; } first an integer refinement could

be needed to evaluate x > 0. If instead of a refinement just a split is used, the resulting

state used inside the body of the if statement computing the division would not contain

the information that no division by zero is possible.

The details of how to find a suitable partition to perform an integer refinement are

omitted in this thesis. Depending on the abstract domain used to represent Integers

all kinds of optimizations could (and should) be performed in each refinement. The

implementation in AProVE uses many optimizations so that as much information about

integers is retained as feasible.

1.4.2. Existence Refinement

Similar to the test if an integer variable is 0, there also are opcodes that need to know if

a reference is the null reference or not, i.e., if the referenced data actually exists. In our

abstract representation of states a reference may be null (referenced data does not exist),

the heap can map the reference to an element from Arrays and Instances (referenced

data exists) or the heap predicate r? is used for the reference r (existence of referenced

data is unknown). If existence needs to be known for a reference r with r? in the state,

we perform existence refinement.

Definition 1.19 (Existence Refinement) Let s be a state and let r be a reference

with r? and h(r) = f ∈ Instances with dom(f) = ∅. Then refine(s) = {snull, sex} is

an existence refinement where snull = s[r/null] and sex is a copy of s where the heap

predicate r? is removed.

38 Chapter 1. Symbolic Execution Graphs for Non-Recursive Programs

Theorem 1.9 Existence refinement is valid.

Proof. Let r be the reference used in the refinement refine(s) = {snull, sex}. Let c

be a concrete state with c v s. Because in an existence refinement the state is only

altered at the positions Π = {π | s|π = r}, we only need to consider these positions.

From Definition 1.10(k) it follows that c|π = c|π′ for all π, π′ ∈ Π. Consider any

π ∈ Π. If c|π = null, then also snull|π = null. Thus, c v snull holds. Otherwise,

c|π 6= null. As the only change from s to sex was the removal of r?, we only need

to check Definition 1.10(h,p). As c|π 6= null and no heap predicate o? exists in c we

conclude c v sex.

Corollary 1.10 Let refine(s) = {snull, sex} be an existence refinement. Then for any

concrete state c with c v snull or c v sex we have c v s.

Proof. We first show snull v s. snull only differs from s in positions Π as defined in the

proof of Theorem 1.9. For all π ∈ Π we have snull|π = null and s|π = r with r? and

h(s|π) = f ∈ Instances with dom(f) = ∅. Thus, snull v s.

Finally, we show sex v s. sex is identical to s, but in s we additionally have r?.

According to Definition 1.10 the heap predicate r? may be added without consequences,

so we have sex v s. �

1.4.3. Type Refinement

There are opcodes that depend on the type of a certain object instance or array. A simple

example is the INSTANCEOF opcode, which checks if a given reference points to an object

instance or array of a specific type. If the abstract type information is not precise enough

to allow a evaluation of such opcodes, we perform type refinement.

Definition 1.20 (Type Refinement) Let s ∈ States and let r ∈ References

with ∅ 6= t(r) = T ∈ Types.

Let T1, . . . , Tn be a partition of T (i.e., T1 ∪ . . . ∪ Tn = T) with ∅ 6= Ti ⊆ Types.

Moreover, si is a copy of s where the type information t is replaced by t + {r 7→ Ti}.
Then refine(s) = {s1, . . . , sn} is a type refinement of s.

1.4. Refinement 39

Theorem 1.11 Type refinement is valid.

Proof. Let refine(s) = {s1, . . . , sn} be a type refinement of a reference r. Let t(r) =

T = T1 ∪ . . . ∪ Tn ∈ Types.

Let c be a concrete state with c v s. Let Π = {π ∈ SPos(s) | s|π = r}. By

Definition 1.10(k) there is a Tc ∈ T such that tc(c|π) = {Tc} for all π ∈ Π. Let Tc ∈ Ti.
Then ti(si|π) = Ti for all π ∈ Π.

To show c v si we only have to check condition Definition 1.10(g). Let τ ∈ SPos(s)∩
SPos(si) with tc(c|τ) = T ′ ∈ Types. If τ 6∈ Π, then this position was not affected

by the type refinement and thus, tc(c|τ) ⊆ ts(s|τ) = ti(si|τ). If τ ∈ Π, then we have

Tc = T ′ and thus tc(c|τ) ⊆ Ti = ti(si|τ).

Corollary 1.12 Let refine s = {s1, . . . , sn} be a type refinement. Then for any concrete

state c with c v si we have c v s.

Proof. The claim holds because Ti ⊆ T . �

1.4.4. Array Length Refinement

Another refinement is array length refinement. In our definition of abstract states we

emphasized the length component which is part of every concrete array by also demanding

that every abstract array has a reference to its length. This is motivated by the fact that

the behavior of most algorithms working on arrays is determined by the length of the

array instead of the actual contents. Opcodes working on arrays need to know if the

referenced data is an existing array and they need to access the length of the array. For

example, before an integer reference is read from an array, the corresponding IALOAD

opcode first checks if the index used for the access is in the bounds of the array. While

existence and type information can be provided using existence and type refinement, we

now define array length refinement which can be used to provide the array length.

Definition 1.21 (Array Length Refinement) Let s be a state and r be a reference

where no heap predicate r? exists and h(r) = f ∈ Instances with dom(f) = ∅ and

for all (l, c) ∈ t(r) we have l > 0 (i.e., we know that r references an array).

40 Chapter 1. Symbolic Execution Graphs for Non-Recursive Programs

Let i′l be a fresh reference. Then we define refine(s) = {s′} where s′ = s + {r 7→
(i′l, f

′) ∈ Arrays}+ {i′l 7→ [0,∞) ∈ Integers} with dom(f ′) = ∅.

In other words, we replace information about an object without field information by an

array with a reference to the length of the array, but still without information about the

contents of the array.

Theorem 1.13 Array length refinement is valid.

Proof. Let r ∈ References be the reference used in the refinement refine(s) = {s′}.
Let c be a concrete state with c v s. In an array length refinement the state is only

altered at or below the positions Π = {π | s|π = r}. From Definition 1.10(k) it follows

that c|π = c|π′ for all π, π′ ∈ Π. Consider any π ∈ Π. Because c is concrete and the type

information of s denotes that r is an array, we know that hc(c|π) = (il,c, fc) ∈ Arrays.

In the refinement we only changed data at positions in Π or added a fresh reference

in positions {πlen | π ∈ Π}. Therefore, we only need to check Definition 1.10(f,j). We

have h′(s′|π) = (i′l, f
′) ∈ Arrays with dom(f ′) = ∅. At positions {πlen | π ∈ Π} we

have hc(c|πlen) = hc(il,c) ∈ Integers. We also have h′(s′|πlen) = h′(i′l) ∈ Integers

with hc(il,c) ⊆ h′(i′l) = [0,∞). Therefore, c v s′.

Corollary 1.14 Let refine s = {s′} be an array length refinement. Then we have

s′ v s.

Proof. The additional information of the array length is of no consequence, as the

additional positions for the array length reference are missing in s. According to Defi-

nition 1.10(j) we have s′ v s. �

1.4.5. Realization Refinement

Similar to array length refinement, we will introduce realization refinement now. This

refinement is used if opcodes need to access a certain field in an object instance. If the

abstract information of the referenced object instance does not provide any information

about that field, we need to add this information to the state. While adding length

1.4. Refinement 41

information to an array is quite simple, in this case we also need to consider that fields

may contain references to other object instances. Because of that we might need to

introduce new heap predicates, for example to allow that a field references a cyclic data

structure.

Note that it is also possible to define fields for which no non-abstract type exists (for

example by defining a field with a type of an interface which is not implemented). In this

case the refinement just returns a state where the field contains the null reference. This

is correct since there also is no concrete state c with c v s (if s is the state for which we

applied refinement) which contains a non-null value for that field.

Definition 1.22 (Realization refinement) Let v be a field identifier. Let s be a

state and let r be a reference where no heap predicate r? exists and h(r) = f ∈
Instances. We demand that the field v is defined in each class class with (0, class) ∈
t(r). Furthermore, we demand that f(v) is undefined.

Then refine(s) = {s′} is a realization refinement with s′ defined as follows. In all

cases we introduce a new reference r′ and define f ′ = f + {v 7→ r′}.
If the type of v is a primitive p ∈ {Boolean,Char,Byte,Short, Integer,Long}

we define s′ = s+ {r 7→ f ′}+ {r′ 7→ (−∞,∞)}.
If the type of v is a primitive p ∈ {Float,Double} we define s′ = s + {r 7→

f ′}+ {r′ 7→ ⊥}.
Otherwise, the type fieldtype of v is some class, interface, or array. Let Tfieldtype ⊆

Types be the abstract type that contains exactly all arrays and non-abstract classes

which are subtypes of fieldtype. As noted above, if Tfieldtype = ∅ we (re)define r′ = null,

t′ = t+ {r′ 7→ ∅} and disregard the following definitions of s′.

Otherwise, Tfieldtype 6= ∅. Then we define a state s′ with

• h′ = h+ {r 7→ f ′ ∈ Instances}+ {r′ 7→ f ′′ ∈ Instances} where dom(f ′′) = ∅

• t′ = t+ {r′ 7→ Tfieldtype}

• hp′ = hp ∪ {r′%$r′′, r′ =? r′′ | r%$r′′} ∪ {r′	 F | r	F} ∪ {r′%$r′ | r%$r} ∪ {r′?}

Example 1.15 In Fig. 1.23 we illustrate Definition 1.22 using a short example. Here,

we perform realization refinement on r1 in state A where we realize the next field. In

B we see the modified state where the next field of r1 is set to a new reference r3. For

r3 we provide the type information (indicated by r3:List()).

As r1%$r2 exists, it may be the case that the realized field content is identical to r2,

or that it itself may reach r2. Thus, we need to add r3%$r2 and r3 =? r2. Furthermore,

42 Chapter 1. Symbolic Execution Graphs for Non-Recursive Programs

as we also have r1%$r1, we need to add r1 =? r3, r1%$r3 and r3%$r3. Similarly, the

	 heap predicate is propagated, so that we have r3	{next}. Finally, we allow the field

content to be null by adding r3? to B.

〈23|start: r1 end: r2 |ε〉
r1 : List()

r2 : List(next : null)
r1 	{next}
r1%$r2

r1%$r1

A 〈23|start: r1, end: r2|ε〉
r1 : List(next : r3)
r2 : List(next : null)

r3 : List()
r1	{next} r3	{next}
r1%$r2 r3%$r2

r1%$r1 r3%$r3

r1 =? r3 r2 =? r3

r1%$r3 r3?

B

Figure 1.23.: Realization Refinement

Using Realization Refinement to provide the content of an array

Note that Definition 1.22 can easily be extended to the case where we want to refine a

(literal) array index of an array with known size (i.e., both integer references point to

integer intervals, each containing only a single literal). This case can be compared to

realization refinement, where the array index is used instead of the field v. However, as

for arrays we demand that the content function f either is empty (i.e., dom(f) = ∅) or is

defined for all array indices, this refinement would need to be adapted so that all indices

are refined in a single step. The corresponding definition and proof are left as an exercise

for the reader.

However, if the array index or the array length are not known to be literals, this

is not possible. Instead, in Sections 1.6.2 and 1.6.3 we re-use the ideas presented in

Definition 1.22 when defining how to evaluate the corresponding opcodes.

Theorem 1.16 Realization refinement is valid.

Proof. Let refine(s) = {s′} be a realization refinement on reference r. Let c be a

concrete state with c v s. Let Π = {π | s|π = r}. Let v ∈ FieldIDs be the refined field

with type Tv. The realization refinement only changed values at and below positions

in Π. It may have added heap predicates for references at other positions, but as heap

predicates only allow more sharing effects, we do not have to consider these positions.

By Definition 1.10(k), there is fc ∈ Instances such that c|π = fc for all π ∈ Π. We

1.4. Refinement 43

prove c v s′ by checking all conditions of Definition 1.10. Let N = {πv | π ∈ Π} be

the positions that were newly created in the refinement. Let π, π′ ∈ SPos(c).

(a – d) Trivial.

(e) if hc(c|π) ∈ Floats and π ∈ SPos(s′), then either

• π ∈ SPos(s) and hc(c|π) = h(s|π) = h′(s′|π) or h(s|π) = h′(s′|π) = ⊥, or

• π ∈ N and thus h′(s′π) = ⊥

(f) if hc(c|π) ∈ Integers and π ∈ SPos(s′), then either

• π ∈ SPos(s) and hc(c|π) ⊆ h(s|π) = h′(s′|π), or

• π ∈ N and thus h′(s′π) = (−∞,∞)

(g) if π ∈ SPos(s′), then either

• π ∈ SPos(s) and t(s|π) = t′(s′|π), or

• π ∈ N and t′(s′|π) contains all non-abstract classes that may be stored in a

field of type Tv. Hence, tc(c|π) ⊆ t′(s′|π).

(h) if c|π = null and π ∈ SPos(s′), then either

• π ∈ SPos(s) \ Π and thus the claim follows since s|π = s′|π, or

• π ∈ N and thus s′|π = null, or h′(s′|π)? and h′(s′|π) = f ∈ Instances with

dom(f) = ∅

(i) if hc(c|π) ∈ Instances and π ∈ SPos(s′), then either

• π ∈ SPos(s) \ Π and h(s|π) = h′(s′|π), or

• π ∈ Π and dom(hc(c|π)) ⊇ dom(h(s|π)) = dom(h′(s′|π)) \ {v}. We also have

v ∈ dom(hc(c|π)) because the field is defined in each type in t(s|π), or

• π ∈ N and thus dom(h′(s′|π)) = ∅

(j) if hc(c|π) ∈ Arrays and π ∈ SPos(s′), then either

• π ∈ SPos(s) \ Π and h(s|π) = h′(s′|π), or

• π ∈ N and thus h′(s′|π) = f ′ ∈ Instances with dom(f ′) = ∅

(k) In s′, we only add new positions with null or a fresh reference which is different

from all existing references. Hence, the claim follows from c v s.

(l) if c|π = c|π′ , π 6= π′, hc(c|π) ∈ Instances ∪Arrays, and π, π′ ∈ SPos(s′), then

either

44 Chapter 1. Symbolic Execution Graphs for Non-Recursive Programs

• π, π′ ∈ SPos(s), and thus the claim follows since s|π = s′|π and s|π′ = s′|π′
and all heap predicates from s also exist in s′, or

• exactly one of π, π′ is in N . W.l.o.g. let π ∈ N , π′ ∈ SPos(s). Thus with

Definition 1.10(m) we had s|π%$s|π′ . Hence, in the refinement we added

s′|π =? s′|π′ , or

• π, π′ ∈ N – hence, s′|π = s′|π′ .

(m) if c|π = c|π′ , π 6= π′, hc(c|π) ∈ Instances ∪ Arrays, and {π, π′} 6⊆ SPos(s′),

then either

• exactly one of πs′ , π′s′ is in N . W.l.o.g. let πs′ ∈ N . Hence, πs ∈ Π and π′s =

π′s′ . With Definition 1.10(m) we have s|π%$s|π′ . Hence, in the refinement

we added s′|π%$s′|π′ , or

• πs′ , π′s′ ∈ N . Hence, πs, π′s ∈ Π. We have s|π = s|π′ = r. If π, π′ have

the same suffix w.r.t. s, there is no need for a joins heap predicate in s′.

Otherwise, we have s|π%$s|π′ and, thus, also s′|π%$s′|π′ , or

• πs′ 6∈ N , π′s′ 6∈ N . Then also πs = πs′ and π′s = π′s′ , and thus the claim

follows since all heap predicates from s also exist in s′.

(n) Let π = ατ and π′ = ατ ′ with τ 6= ε, τ, τ ′ have no common intermediate reference

from α in c, hc(c|π) ∈ Instances ∪Arrays, and c|π = c|π′ . Then either

• π, π′ ∈ SPos(s), and thus the claim follows since s|π = s′|π and s|π′ = s′|π′
and all heap predicates from s also exist in s′, or

• {π, π′} 6⊆ SPos(s) and αs′ ∈ SPos(s). Then the claim follows since all heap

predicates from s also exist in s′.

• {π, π′} 6⊆ SPos(s) and αs′ ∈ N . Then αs ∈ Π. Thus, we have s|α%$s|α and,

if τ ′ = ε, also s|α	F with F ⊆ τ . Thus, the claim follows since these heap

predicates are also propagated to s′|α.

(o – r) Not applicable, as c is concrete. �

Corollary 1.17 Let refine s = {s′} be a realization refinement. Then we have s′ v s.

Proof. Let Π,N be defined as in the proof of Theorem 1.16. To show the claim we do

not need to regard positions π ∈ (SPos(s) ∩ SPos(s′)) \ Π, as the states are identical

for these positions. Furthermore, for all positions π ∈ Π the type information and

1.4. Refinement 45

all heap predicates were copied from s to s′. Because of that we only need to regard

Definition 1.10(i, m, o, r).

(i) The entries f ∈ Instances are left unchanged or we add a field to the domain

of f .

(m) W.l.o.g. we assume π ∈ N , thus π 6∈ SPos(s) and πs ∈ Π.

If π′ 6∈ N we also know π′ ∈ SPos(s). We only need to consider the case that

s′|π =? s′|π′ (as we only add new references during the refinement). According to

Definition 1.22 we added s′|π =? s′|π′ only if s|π%$s|π′ .
If π′ ∈ N with π 6= π′ we know that πs, π′s ∈ Π and s|π = s|π′ . We also know

that π, π′ have the same suffix (namely v) w.r.t. s. Thus, there is no need for a

joins heap predicate in s.

(o) W.l.o.g. we assume π ∈ N . We only added s′|π	F if we had s|π	F in s where

πs ∈ Π.

(r) W.l.o.g. we assume π ∈ N . We only added s′|π%$s′|π′ if we had s|π%$s|π′ in s

where πs ∈ Π. �

1.4.6. Equality Refinement

Finally, we need to introduce equality refinement. In abstract states it is possible for two

references r, r′ to point to the same object instance or array if r =? r′ is set. For opcodes

where evaluation is not possible if this heap predicate exists (e.g., IF ACMPEQ), we create

two states: one where r and r′ point to different object instances/arrays, and one where

both point to the same object instance/array. While creating a state for the first case is

trivial, for the second state where both references point to the same object instance/array

we would like to make use of the information we had for r and r′ in the original state. In

a simple example, we might know that r references an object instance of type X, while

for r′ we might know that the referenced object instance is acyclic. When combining

this information, we could create a state containing a reference that points to an acyclic

instance of type X. Furthermore, it is possible that no corresponding concrete state exists

where r and r′ are equal. This can happen, for example, if we have a cycle with r = r′

but where no such shape is allowed (i.e., the predicate 	 is missing).

In order to combine the information of such references r and r′ and deal with invalid

states as described above, we intersect the states obtained by replacing r by r′ (i.e., s[r/r′])

and replacing r′ by r (i.e., s[r′/r]). Due to technical reasons, the references of the two

intersected states need to be disjoint (apart from null and return addresses). Before we

46 Chapter 1. Symbolic Execution Graphs for Non-Recursive Programs

explain how to compute this intersection in Section 1.5, we define equality refinement.

Definition 1.24 (Equality Refinement) Let s be a state with r =? r′, h(r) ∈
Instances ∪ Arrays, h(r′) ∈ Instances ∪ Arrays. We define s 6= as identical to

s where just the heap predicate r =? r′ is removed. The state s= is defined as

s= = intersect(s[r/r′], s̃[r′/r]) where s̃[r′/r] is a renamed variant of s[r′/r] such that the

references in s[r/r′] and s̃[r′/r] are disjoint (apart from null and return addresses). If

the intersection of the two states does not exist, we define refine(s) = {s 6=}. Otherwise,

refine(s) = {s=, s6=}. Then refine(s) is an equality refinement.

Theorem 1.18 Equality refinement is valid.

The proof is given in Section 1.5.5 on page 69.

In this section we defined several refinements. Each refinement can be used in situations

where abstract evaluation is not possible. By performing case analyses we can create states

that contain enough information so that in these states abstract evaluation can continue.

For each refinement we have shown that it is valid: all concrete states represented by the

unrefined state are also represented by at least one of the resulting states.

In Fig. 1.25 it is shown for which opcodes which refinements may be needed. Refine-

ments marked with * indicate that a split may be needed. In the case of the integer

refinement (e.g., needed for IF IMPEQ) this was already motivated. For the AASTORE

opcode which stores an object instance or array into an array, we may need to perform

a type split. It is only possible to store a value of type Y into an array of type [X if Y

is assignment compatible to X. For example, any object instance or array may be stored

into an array of type [java.lang.Object, because every (non-primitive) type is an instance

of java.lang.Object. However, there also are cases where even with a type refinement it

is not possible to determine if the types are assignment compatible. Similar to the case

of an integer split, the type of both the array and the type of the data to store into the

array may be unknown, such that using non-split type refinement an infinite number of

states would be needed. Instead, we perform a boolean split which indicates if the types

are assignment compatible or not. As also an integer split may be needed to provide the

necessary information to evaluate AASTORE, we combine integer splits and type splits

into a single split.

1.5. State Intersection 47

Opcodes Example Refinement

46–53 IALOAD existence, array length, integer*
79–82, 84–86 IASTORE existence, array length, integer*
83 AASTORE existence, array length, integer*, type*
108–115 IDIV integer
148 LCMP integer*
149–152 FCMPL float*
153–158 IFEQ integer
159–164 IF IMPEQ integer*
165–166 IF ACMPEQ equality
170 TABLESWITCH integer*
171 LOOKUPSWITCH integer*
180 GETFIELD existence, realization
181 PUTFIELD existence, realization, equality
182,185 INVOKEVIRTUAL existence, type
183 INVOKESPECIAL existence
188–189,197 NEWARRAY integer
190 ARRAYLENGTH existence, array length
191 ATHROW existence
192–193 CHECKCAST existence, type
198–199 IFNULL existence

Figure 1.25.: Opcodes needing refinement

1.5. State Intersection

As motivated above, there are situations when we have the knowledge that two references

point to the same object instance or array, while in the abstract state different pieces of

information exist. Combining information from both of these states can make the analysis

more precise. To this effect, we now introduce state intersection. While the definition

and computation of state intersections is rather involved and there are other (less precise)

methods that can be used for equality refinements (i.e., when refining r1 =? r2 one could

just replace r1 by r2 and, thus, “forget” about the information one has for r1), we are

interested in a precise analysis. Furthermore, to handle recursive programs (as explained

in Chapter 3), state intersection as explained here is fundamentally important. Before we

actually define state intersection, we introduce three main concepts.

(i) We first compute the references that must be considered to be identical. In the case

of an equality refinement for a state s with r1 =? r2 we enforce this by creating a

state s[r1/r2] and a state with s[r2/r1]. Thus, at least r1 and r2 must be considered to

be identical. Depending on the state it is possible that also further references must

point to the same information. As an example, consider a refinement of r1 =? r2

where both r1 and r2 point to an object instance with a defined field v. Then, also

r1.v and r2.v must be identical. To find references that must be considered to be

48 Chapter 1. Symbolic Execution Graphs for Non-Recursive Programs

identical, we compute a corresponding equivalence relation ≡.

This equivalence relation is extended by finding out which references must actually

be null because otherwise conflicts arise. If we have r ≡ r′, the represented values

must be identical. However, if r and r′ are in the same state and these values

are object instances or arrays but the corresponding heap predicate =? is missing,

the values can only be equal if both values are null. By exploiting missing but

necessary =? heap predicates and performing other analyses, we extend ≡ to ≡n

were we merge the equivalence classes of null and (possibly) several references. This

is helpful in obtaining a precise result.

(ii) In the next step we try to find conflicts which prevent intersection of the two states.

This is the case if there is a reference r ≡n null where the heap predicate r? does

not exist.

(iii) Finally, we intersect the values contained in the state. For integer values this corre-

sponds to the intersection of the intervals, in the case of object instances we consider

the field information stored for all equivalent references.

1.5.1. Equivalence Relations ≡, ≡n

To identify references which must represent the same object instance, array, or primitive

value, we define an equivalence relation ≡ ⊆ References×References.

Definition 1.26 (≡) For two states s, s′ let ≡ ⊆ References×References be the

smallest equivalence relation satisfying

(i) ∀π ∈ SPos(s) ∩ SPos(s′) : s|π = r ∧ s′|π = r′ → r ≡ r′

(ii) if r ≡ r′ and both hr(r) = f ∈ Instances and hr′(r
′) = f ′ ∈ Instances, then

f(v) ≡ f ′(v) for all v ∈ dom(f) ∩ dom(f ′)

(iii) if r ≡ r′ and both hr(r) = (il, f) ∈ Arrays and hr′(r
′) = (i′l, f

′) ∈ Arrays, then

f(i) ≡ f ′(i) for all i ∈ dom(f) ∩ dom(f ′) and il ≡ i′l

The first item of Definition 1.26 describes the connection between two states. The other

two items only are relevant if two references r, r′ in the same state must be equivalent,

both r and r′ have some kind of successor, and all equivalent references in the other

state do not have that successor. If the equivalent references in the other state had the

successor, the first item already would suffice. However, as we allow r =? r′ also in the

case that there is detailed information for both r and r′, the last two items help creating

a better equivalence relation.

1.5. State Intersection 49

〈23|one: r1, two: r2 |ε〉
r1 : List(next : r3)
r2 : List(next : r1)

r3 : List()

A
〈23|one: r4, two: r4 |ε〉
r4 : List(value : i1)

i1 : [0,∞)

B

Figure 1.27.: Two states illustrating Definition 1.26

Example 1.19 Consider the two states from Fig. 1.27. If we compute ≡ itera-

tively, at first we have the equivalence classes {r1}, {r2}, {r3}, {r4}, {i1}. As we

have LV0,0 ∈ SPos(A) ∩ SPos(B) with A|LV0,0 = r1 and B|LV0,0 = r4, accord-

ing to the first item we merge {r1} and {r4}. Thus, we get the equivalence classes

{r1, r4}, {r2}, {r3}, {i1}. Similarly, with LV0,1 we merge the equivalence classes for r2

and r4, giving us {r1, r2, r4}, {r3}, {i1}.
As these are the only two positions that exist in both states, we now consider the

second item of the definition. Here, we see that we have r1 ≡ r2 where for both of

the corresponding object instances we have a defined value for the next field. Thus, we

merge the equivalence classes of r3 and r1. This finally gives us {r1, r2, r3, r4}, {i1} as

the equivalence classes of ≡ .

Lemma 1.20 (≡ is sound) Let c be a concrete state with c v s and c v s′. We

assume that, apart from null and return addresses, s and s′ have disjoint references.

For all r ≡ r′ and positions π, π′ with sr|π = r and sr′ |π′ = r′ we have c|π = c|π′ .

Proof. First we show that it suffices to have a single pair of positions π 6= π′ with

c|π = c|π′ , sr|π = r, and sr′ |π′ = r′ to show the claim. With such π, π′, for any positions

π̃, π̃′ with sr|π̃ = r and sr′|π̃′ = r′, with Definition 1.10(k) we also have c|π = c|π̃ and

c|π′ = c|π̃′ as c v sr and c v sr′ . Thus, we also have c|π̃ = c|π = c|π′ = c|π̃′ .
We show the claim by using an induction. In the base case, we may have r = r′ and

r ≡ r. For any positions π, π′ with sr|π = sr′ |π′ = r = r′ with Definition 1.10(d,h,k)

and c v s, c v s′ we also have c|π = c|π′ . Next, we consider r ≡ r′ because we have

π ∈ SPos(s) ∩ SPos(s′) and s|π = r, s′|π = r′. Let π1, π2 be positions with s|π1 = r

and s′|π2 = r′. As s|π1 = s|π, with Definition 1.10(k) and c v s we have c|π1 = c|π.

Similarly, we have c|π2 = c|π. Thus, we also have c|π1 = c|π2 .
Now consider that we have r ≡ r′ because there are rp, r

′
p with rp ≡ r′p, hrp(rp) =

f, hr′p(r
′
p) = f ′, and f(v) = r, f ′(v) = r′ for some v ∈ FieldIDs. By induction, we know

50 Chapter 1. Symbolic Execution Graphs for Non-Recursive Programs

c|π = c|π′ for all π, π′ with srp |π = rp and sr′p |π′ = r′p. Thus, we also have crp |πv = cr′p|π′v.
The case involving Definition 1.26(iii) is analogous to the previous case.

Finally, we consider r ≡ r′ because we have r ≡ rm and rm ≡ r′. With r ≡ rm, by

induction, we know c|π = c|πm for all π, πm with sr|π = r and srm|πm = rm. Similarly,

we also have c|π′ = c|πm , where sr′ |π′ = r′. Combining this, we get c|π = c|π′ . �

To further simplify the definition of state intersection, we now define which additional

references are equivalent to null.

For that we need to check the reachability information contained in the states. Here,

the intuition is that concrete connections in c either need to be represented in s and s′, or

must be implicitly allowed using heap predicates. To identify existing connections without

having a concrete state c to look at, we make use of the information contained in the two

states and combine this with the information of the equivalence relation. For this, we now

define the
τ−� relation which holds if the described path must exist in all concrete states

c with c v s and c v s′.

Definition 1.28 (
τ
−�) Let ≡ as in Definition 1.26, and let r be a reference with hr(r) ∈

Instances ∪Arrays. Then we have r′
τ−� r iff one of the following conditions is met.

• We have r′ ≡ r and τ = ε.

• We have sr′|π′ = r′
τ ′−� rp = srp |πp , srp |πpτ ′′ ≡ r with τ ′′ 6= ε, and τ = τ ′τ ′′.

〈23|one: r1, two: r2, three: r3 |ε〉
r1 : List(next : r2)

r2 : List()
r3 : List()

A 〈23|one: r4, two: r5, three: r6 |ε〉
r4 : List()

r5 : List(next : r6)
r6 : List()

B

Figure 1.29.: Two states illustrating Definition 1.28

Example 1.21 Consider ≡ as computed for the two states of Fig. 1.29. First, we

see that we have r1 ≡ r4, r2 ≡ r5, and r3 ≡ r6. Thus, we also have r
ε−� r for all

r ∈ {r1, r2, r3, r4, r5, r6} and r1

ε−� r4, r4

ε−� r1, r2

ε−� r5, r5

ε−� r2, r3

ε−� r6, and r6

ε−� r3.

Furthermore, as we have A|LV0,0 = r1 and A|LV0,0 next = r2 we get r1

next−−� r2. Similarly,

we get r5

next−−� r6. By also considering equivalent references, this gives us r1

next−−� r5,

r4

next−−� r2, r4

next−−� r5, r5

next−−� r3, r2

next−−� r6, and r2

next−−� r3.

More interestingly, as we have r1

next−−� r5, B|LV0,1 = r5, and B|LV0,1next = r6, this also

gives us r1

next next−−−−� r6, r4

next next−−−−� r6, r1

next next−−−−� r3, and r4

next next−−−−� r3.

1.5. State Intersection 51

Lemma 1.22 Let c, s, s′ be states where c v s, c v s′, and c is concrete. Let s and s′

have disjoint references apart from null and return addresses.

Then for all sr′|π′ = r′
τ−� r = sr|π we have c|π′τ = c|π.

Proof. We show the claim using an induction. Let r′
τ−� r.

In the base case we have r′
τ−� r because we have r′ ≡ r and τ = ε. Thus, the claim

follows from Lemma 1.20.

We may also have r′
τ ′τ ′′−−� r because we have sr′ |π′

τ ′−� rp = srp|πp with srp |πpτ ′′ ≡ r.

With Lemma 1.20 we have c|πpτ ′′ = c|π. By induction we also have c|π′τ ′ = c|πp , thus

also c|π′τ ′τ ′′ = c|π. �

Using −� we can now check s and s′ if the corresponding connections are allowed. As

the heap predicates only are used for connections on the heap which are not explicitly

represented, we now define −_ to describe such connections based on −�.

Definition 1.30 (
τ−_) Let sr′|π′ = r′

τ−� r where τ 6= ε and π′ = π′τ sr′ . Then we have

r′
τ−_ r.

As we have r′
τ−_ r iff r′

τ−_ r̃ for all r̃ ≡ r, we define that we have r′
τ−_ [r]≡ if r′

τ−_ r.

We define that r′ −_ r holds if there is any τ 6= ε with r′
τ−_ r.

Example 1.23 Let ≡ be computed for the two states of Fig. 1.29.

According to Definition 1.30 we get r4
next−−_ r5, r4

next−−_ r2, r4
next next−−−−_ r3, r4

next next−−−−_ r6,

r2
next−−_ r3, and r2

next−−_ r6.

Lemma 1.24 Let c, s, s′ be states where c v s, c v s′, and c is concrete. Let s and s′

have disjoint references apart from null and return addresses.

Then for all sr′|π′ = r′
τ−_ r = sr|π we have c|π′τ = c|π, and π′ = π′τ sr′ .

Proof. For r′
τ−_ r we have r′

τ−� r. Thus, the claim follows with Lemma 1.22. �

52 Chapter 1. Symbolic Execution Graphs for Non-Recursive Programs

In the following lemma we now state that for any −_ connection we need to allow this

connection using the joins heap predicate.

Lemma 1.25 Let c, s, s′ be states where c v s, c v s′, and c is concrete. Let s and s′

have disjoint references apart from null and return addresses.

Then for all r′ −_ r = sr|π with sr = sr′ we have r′%$r or c|π = null.

Proof. Let sr′ |π′ = r′
τ−_ r = sr|π. With Lemma 1.24 we have c|π′τ = c|π and π′ =

π′τ sr′ . Thus, if sr = sr′ , with Definition 1.10(m) we have sr′|π′ = sr′ |π′τ = r′%$r = sr|π
or c|π = null. �

Now, we can define conditions under which references are known to be equivalent to

null. The first check we perform is to consider the intersection of types. If two references

point to the same object instance or array, the type of that referenced data needs to be

contained in all abstract types. If this is not the case no such object can exist, i.e., the

references must be equivalent to null.

Then, all references in the same equivalence class and the same state need to be pairwise

connected using the =? heap predicate. Without this heap predicate, the referenced data

must be a primitive (in Integers or Floats) or the references must be equivalent to

null.

We already explained the intuition for the third check. In essence, we make use of

implicit reachability information.

Similar to the ideas presented so far, we also demand that for non-tree shapes which

are known to exist in any concrete state c with c v s and c v s′ the corresponding heap

predicates exist.

Finally, we also demand that common abstract predecessors are marked as joining.

Definition 1.31 (≡n) Let ≡ be an equivalence relation for states s, s′ as defined in

Definition 1.26. We assume that, apart from null and return addresses, s and s′ have

disjoint references.

We define ≡n based on ≡ where we merge certain equivalence classes with the class

for null.

(i) Let r ≡ r′ and {hr(r), hr′(r′)} ⊆ Instances∪Arrays. If tr(r)∩ tr′(r′) = ∅, then

{r, r′} ⊆ [null]≡n .

(ii) Let r 6= r′ with sr = sr′ , r ≡ r′ 6≡ null, and {hr(r), hr′(r′)} ⊆ Instances ∪
Arrays. If r =? r′ does not exist, then r, r′ ∈ [null]≡n .

1.5. State Intersection 53

(iii) Let r′ −_ r. Then we have sr′ 6= sr, r
′%$r, or r ≡n null.

(iv) Let sr1 |π1 = r1

τ1−� r2 = sr2|π2 and r1

τ2−� r′2 = sr′2 |π′2 with r2 ≡ r′2, ε 6= τ1, τ1 6= τ2,

and where τ1, τ2 have no corresponding intermediate reference from r1 in sr1 . We

have r2 ≡n r
′
2 ≡n null if {π1τ1, π1τ2} 6⊆ SPos(sr1) or sr1 |π1τ2 6= sr1 |π1τ2 , and

• r1%$r1 is missing, or

• τ2 = ε and r1	F with F ⊆ τ1 does not exist.

(v) Let ra
τa−_ r and rb

τb−_ r with τa 6= τb or ra 6= rb. Then we have sra 6= srb , ra%$rb,
or r ≡n null.

In the following example we illustrate when the third check helps us to identify a

reference as being equivalent to null.

〈23|one: r1, two: r2|ε〉
r1 : List(next : r2)

r2 : List()

A 〈23|one: r3, two: r4|ε〉
r3 : List()
r4 : List()

B 〈23 |one : r5, two : r6 |ε〉
r5 : List(value: i1, next: r6)
r6: List(value: i1, next: null)

i1 : 0

C

Figure 1.32.: Two states illustrating Definition 1.31(iii)

Example 1.26 For the states A and B of Fig. 1.32 we have r3
next−−_ r4. According to

Definition 1.31(iii) we need to have r3%$r4 or r4 ≡n null.

Indeed, assume state C is a concrete state with C v A and C v B. Then, as we

have C|LV0,0 next = C|LV0,1 and LV0,0 next 6∈ SPos(B), according to Definition 1.10(m)

we need to have B|LV0,0 next = B|LV0,0 = r3%$r4 = B|LV0,1
= B|LV0,1 .

As r3%$r4 does not exist in B, we need to have r4 ≡n null.

We now show that merging references into the equivalence class of null is correct, i.e., in

all concrete states which are an instance of both input states the corresponding references

indeed are null.

Lemma 1.27 (≡n is sound) Let c be a concrete state with c v s and c v s′. We

assume that, apart from null and return addresses, s and s′ have disjoint references.

For all r ≡n r
′ and positions π, π′ with sr|π = r and sr′ |π′ = r′ we have c|π = c|π′ .

54 Chapter 1. Symbolic Execution Graphs for Non-Recursive Programs

Proof. As we only merged equivalence classes with the equivalence class [null]≡, it

suffices to only consider r with sr|π = r ≡n r′ = null and show c|π = null. In all

other cases the claim follows from Lemma 1.20. Furthermore, w.l.o.g. we assume that

r 6≡ null. We only need to consider r with hr(r) ∈ Instances ∪Arrays.

Let π with sr|π = r. We added r to [null]≡n because of one of the following cases:

(i) Let r̃ ≡ r with sr̃|π̃ = r̃. We have tr(r) ∩ tr̃(r̃) = ∅. With Lemma 1.20 and

r ≡ r̃ we know that c|π = c|π̃. Because of c v s and c v s′ we know that

tc(c|π) = tc(c|π̃) ⊆ t(sr|π) ∩ tr̃(sr̃|π̃) = ∅, thus c|π = null.

(ii) Let π̃, r̃ as in the previous case. We have r ≡ r̃, sr = sr̃, and r =? r̃ does not

exist. With r ≡ r̃ and Lemma 1.20 we know c|π = c|π̃. With Definition 1.10(l)

we conclude that hc(c|π) 6∈ Instances ∪Arrays, thus c|π = null.

(iii) The claim directly follows from Lemma 1.25.

(iv) Let sr1|π1 = r1

τ1−� r2 = sr2|π2 and r1

τ2−� r′2 = sr′2|π′2 with r2 ≡ r′2, ε 6= τ1,

τ1 6= τ2, and where τ1, τ2 have no corresponding intermediate reference from r1 in

sr1 . With Lemma 1.22 we have c|π1τ1 = c|π2 and c|π1τ2 = c|π′2 . With Lemma 1.20

we also have c|π2 = c|π′2 , thus also c|π1τ1 = c|π1τ2 .
If τ1, τ2 have a common intermediate reference from π1 in c, let τ1 = τ̃1τ̂1 with

τ̃1 6= ε and τ2 = τ̃2τ̂2 with τ̃2 6= ε such that c|π1τ̃1 = c|π1τ̃2 and τ̂1, τ̂2 have no

common intermediate reference from π1τ̃1 in c. With Definition 1.10(l) we also

have sr1|π1τ̃1 = sr1 |π1τ̃2 , or sr1|π1τ̃1 =? sr1 |π1τ̃2 , or {π1τ̃1, π1τ̃2} 6⊆ SPos(sr1). In the

first case we have a contradiction.

In all other cases, also if no common intermediate reference in c exists as described

above, the claim follows with Definition 1.10(n).

(v) Let ra
τa−_ r and rb

τb−_ r with τa 6= τb or ra 6= rb. Let sra|πa = ra, srb|πb = rb, and

sr|π = r. We also have sra = srb and ra%$rb is missing.

With Lemma 1.24 we have c|πaτa = c|π = c|πbτb . We also have πa = πaτasa and

πb = πbτbsb . Thus, the claim follows with Definition 1.10(m).

Because of one of the cases, for sr|π ≡n null we have c|π = null, thus the claim is shown.�

Corollary 1.28 Let c be a concrete state. If c v s and c v s′ then we have c|π = null

for all π ∈ {π | r ∈ [null]≡null, sr|π = r}.

1.5. State Intersection 55

1.5.2. Finding Conflicts

It may be the case that the information in the intersected states s, s′ is conflicting in the

sense that there cannot be a concrete state c with c v s and c v s′. Continuing the

graph construction with the intersection of s, s′ is not necessary and might worsen the

precision and usefulness of the whole analysis. Thus, we want to find such conflicts. The

corresponding idea already was explained: each reference r that is equivalent to null either

is null or it must have the r? heap predicate. Furthermore, the referenced data may not

be an array, and no field information may be given.

Definition 1.33 (Conflicts) Let s, s′ be two states, let ≡n be a corresponding equiva-

lence relation as defined in Definition 1.31. If there is a reference r ≡n null where r 6= null

and r? is missing or hr(r) ∈ Arrays or hr(r) = f ∈ Instances with dom(f) 6= ∅,
then the intersection of s and s′ does not exist.

Theorem 1.29 If according to Definition 1.33 no intersection of s, s′ exists, then there

is no concrete state c with c v s and c v s′.

Proof. According to Corollary 1.28 we have c|π = null for all π with sr|π = r and

r ∈ [null]≡n . Thus, with c v sr and Definition 1.10(h) we have r = null or r? with

h(r) = f ∈ Instances and dom(f) = ∅. This is not the case in sr, thus c 6v sr. �

Example 1.30 Again, consider the states of Fig. 1.32. We already have demonstrated

that r4 ≡n null holds.

However, as r4? does not exist in B, we conclude that there is no state c with c v A

and c v B.

1.5.3. Intersecting Values

In order to define the state s that is the result of intersecting s and s′, we need to intersect

the values in the states. Furthermore, we need to use a single reference that is used in

place of all references of the same equivalence class.

We first define an injective function ρ that gives a unique reference for each equivalence

class. Based on ρ we define a reference replacement σ that replaces any reference r with

56 Chapter 1. Symbolic Execution Graphs for Non-Recursive Programs

the unique reference for [r]≡n . However, we do not want to replace null or return addresses

and we also want to replace all references in the same equivalence class as null by null.

Definition 1.34 (ρ, σ) Let ≡n be an equivalence relation for states s, s′ as defined

in Definition 1.31. Let References(s) (resp. References(s′)) be the references

of s (resp. s′). For each equivalence class [r]≡n where r 6≡ null and r is no return

address, we define that ρ([r]≡n) is a fresh reference so that ρ(r) 6∈ References(s) ∪
References(s′). For [null]≡n we define ρ([null]≡n) = null, and for each equivalence class

that contains return addresses we define that ρmaps to one of these return addresses (we

later ensure that only a single return address is contained in each such equivalence class).

Let σ be the identification substitution which maps equivalent references to the same

fresh reference (and non-equivalent references to different references): σ(r) = ρ([r]≡n)

if r ∈ References(s) ∪ References(s′). If we have r = ρ([r′]≡n), for any such r, r′

we define σ(r) = r.

To ease the definition of state intersection, we also define some auxiliary functions. The

first of these is used to combine the field information we have for two object instances (or

to combine the array information of two arrays).

Definition 1.35 (f ∪ f ′) Let f, f ′ be two functions with the same signature. Then

we define the function f ∪ f ′ := ff∪f ′ with the same signature:

ff∪f ′(x) =

f(x) if x ∈ dom(f)

f ′(x) if x 6∈ dom(f) ∧ x ∈ dom(f ′)

To intersect states, we may need to intersect several values. We define binary intersec-

tions using e and use these binary intersections to intersect an arbitrary number of values

using
⋂⋂

. The symbol is used as a result for values that cannot be intersected.

1.5. State Intersection 57

Definition 1.36 (e) Let Values := Instances ∪Arrays ∪ Integers ∪ Floats ∪
{ }. The intersection e : Values×Values→ Values is defined as follows:

v e v′ =

v ∩ v′ {v, v′} ⊆ Integers ∧ v ∩ v′ 6= ∅
v {v, v′} ⊆ Floats ∧ (v = v′ ∨ v′ = ⊥)

v′ {v, v′} ⊆ Floats ∧ v 6= v′ ∧ v = ⊥
(σ(il), (f∪f ′)σ) {v, v′} ⊆ Arrays ∧ v = (il, f) ∧ v′=(i′l, f

′)

(σ(il), fσ) v=(il, f) ∈ Arrays ∧ v′=f ′ ∈ Instances ∧ dom(f ′)=∅
(σ(i′l), f

′σ) v=f ∈ Instances ∧ dom(f)=∅ ∧ v′=(i′l, f
′) ∈ Arrays

(f ∪ f ′)σ {v, v′} ⊆ Instances ∧ v = f ∧ v′ = f ′

otherwise

With this definition we intersect two integer intervals (if possible) or retain a float

literal. For arrays we combine the information we have about the contents of the arrays

by considering the union of the corresponding functions. Note that it does not matter

which reference is used for the length (i.e., il or i′l), since we only intersect values of

equivalent references and we have il ≡n i
′
l. If both an array and an instance are referenced

by r and r′, the intersection only exists if the referenced object instance does not define

any field (e.g., it may be java.lang.Object). In this case, the intersected value just is the

array. Finally, if we intersect two object instances, we combine the information we have

about the fields by considering the union of the corresponding functions, similar to the

case of arrays described above.

1.5.4. Intersecting States

Now we can finally define how to intersect two states s, s′. First, we assume that ≡n

already is computed and that no conflict exists according to Definition 1.33. The basic

idea in this intersection process is to intersect the values of each equivalence class.

We only add a heap predicate if the corresponding information is represented in both

input states, for all combinations of equivalent references. For example, we only add

σ(r) =? σ(r′) to the intersected state, if all references in the equivalence classes of r and

r′ are also marked as possibly equal. To obtain more precise results, we also make sure

that the information of abstract predecessors (w.r.t. −_) matches. Thus, there is no need

to add σ(r) =? σ(r′) if an abstract predecessor of r may not reach a reference in the

same state which is equivalent to r′. Some of these constraints on when we need to add

a heap predicate may look like superfluous optimizations. However, as state intersection

is used in Chapter 3 where very precise results are needed for correctness, we decided to

58 Chapter 1. Symbolic Execution Graphs for Non-Recursive Programs

also mention the corresponding changes here. In this slightly simpler setting (compared

to Chapter 3) it is easier to understand the reasoning behind those optimizations, which

makes it easier to understand the necessary changes in Chapter 3.

As we often need to consider references which either are in a specific equivalence class,

or are sure to reach it (w.r.t. −_), we introduce the notation r′ − t r to combine these two

possibilities.

Definition 1.37 (
τ−− t) Let ≡n as in Definition 1.31. We define that r′

τ− t r holds iff

r′ ≡n r with τ = ε, or r′
τ−_ r.

Definition 1.38 (State Intersection) Let s = (〈fr0, . . . , frn〉, h, t, hp, sf, e, ic,⊥)

and s′ = (〈fr′0, . . . , fr′n′〉, h′, t′, hp′, sf ′, e′, ic′,⊥), where fri = (ppi, lvi, osi) and fr′i =

(pp′i, lv
′
i, os

′
i). Furthermore, let s and s′ have disjoint sets of references (where only null

and return addresses may be used in both states). Let ≡n, ρ, σ as defined in Defini-

tions 1.31 and 1.34. Let References(s) and References(s′), respectively, identify

the references in the states.

We now define a function intersect : States × States → States ∪ { }. If the

intersection as described below or according to Definition 1.33 does not exist, then

intersect(s, s′) = . Otherwise, intersect(s, s′) = s where s is the state as described

below.

Let s = (〈fr0, . . . , frn〉, h, t, hp, sfσ, e, ic,⊥) where fri = (ppi, lviσ, osiσ). Using σ we

define e = ⊥ if e = ⊥, otherwise e = σ(e). The first four conditions of Definition 1.10

must hold as follows, otherwise s does not exist:

• n = n′ and ppi = pp′i for all 0 ≤ i ≤ n (Definition 1.10(a))

• e = ⊥ ⇔ e′ = ⊥ (Definition 1.10(b))

• ic = ic′ (Definition 1.10(c))

• if s′|π is a return address, then s|π = s′|π (Definition 1.10(d))

• if s|π is a return address, then s′|π = s|π (Definition 1.10(d))

We now define the type component of the intersected state. Let r ∈ References(s)∪
References(s′) where r = null or the heap maps r to a value in Instances∪Arrays:

t(σ(r)) =
⋂

r′∈[r]≡n

tr′(r
′)

1.5. State Intersection 59

For r ∈ References(s) ∪ References(s′) with r 6∈ [null]≡n we now define the heap

component:

h(σ(r)) =
⋂⋂

r′∈[r]≡n

hr′(r
′)

If for any reference r the intersection results in h(σ(r)) = , then s does not exist.

Finally, we define the heap predicates hp. Let r 6= r′ be two references with

h(σ(r)), h(σ(r′)) ∈ Instances ∪Arrays:

(a) We add σ(r)? if for all r′ ∈ [r]≡n we have r′?.

(b) We add σ(r) =? σ(r′) if we have ri ∈ [r]≡n , r
′
i ∈ [r′]≡n with ri =? r′i, and for all

ri ∈ [r]≡n , r
′
i ∈ [r′]≡n we either have ri =? r′i or ri, r

′
i are not in the same state. If

we have ra −_ [π]≡n and rb −_ [π′]≡n with sra = srb we also demand that ra%$rb
exists. Furthermore, if sr′ |πa = ra −_ [π]≡n , we need to have sr′ |πa%$r′. Similarly, if

sr|πb = rb −_ [π′]≡n , we need to have sr|πb%$r.

(c) We add σ(r)%$σ(r′) if we have ri − t [r]≡n and r′i − t [r′]≡n with ri%$r′i, and for all

ri − t [r]≡n and r′i − t [r′]≡n we either have ri%$r′i or ri, r
′
i are not in the same state.

(d) We add σ(r)%$σ(r) if we have r′ − t [r]≡n with r′%$r′, and for all r′ − t [r]≡n we have

r′%$r′.

(e) We add σ(r)	F with F =
⋃
i Fi if we have ri − t [r]≡n with ri	Fi , and we have ri	Fi

for all ri − t [r]≡n .

(f) Let [r]≡n 6= [r′]≡n be any two equivalence classes of ≡n. If

• for all r1, r2 ∈ [r]≡n we have sr1 = sr2 , and

• for all r1, r2 ∈ [r′]≡n we have sr1 = sr2 , and

• for all r1 ∈ [r]≡n , r2 ∈ [r′]≡n we have sr1 6= sr2 , and

• there are π, π′, r1, r2, τ, τ
′ with

– r1 ∈ [r]≡n with r1%$sr|π, and

– r2 ∈ [r′]≡n with r2%$sr′|π′ , and

– sr′ |πτ ∈ [r′]≡n , and

– sr|π′τ ′ ∈ [r]≡n

then we add ρ([r]≡n) =? ρ([r′]≡n) and ρ([r]≡n)%$ρ([r′]≡n)

The last item of adding heap predicates is different to the others, as here we add

heap predicates derived from other heap predicates, instead of re-using existing heap

predicates. The exact reason for this is rather technical (cf. the usages in the following

60 Chapter 1. Symbolic Execution Graphs for Non-Recursive Programs

proofs), but the main idea behind this is quite simple. In the intersected state we may

have positions which do not exist in either of the two input states. In the case that we

have two such positions where the corresponding original references (which, for example,

provide type and existence information) are not in the same state, we neither have heap

predicates nor explicit heap connections that can be used to describe possible connections

in the intersected state. Thus, we need to consider the heap predicates which exist for

corresponding predecessor references.

We now demonstrate Definition 1.38 using an example.

〈23|one: r1, two: r2|ε〉
r1 : List(next : r3)
r2 : List(next : r1)
r3 : List(value : i1)
i1 : (−∞, 1]
r1 =? r2

r2 =? r3

r1 =? r3

r1%$r1 r1%$r2

r1%$r3 r2%$r2

r2%$r3 r3%$r3

r1	∅ r2	∅ r3	∅

A

〈23|one: r4, two: r4|ε〉
r4 : List(value : i2)

i2 : [0,∞)
r4%$r4

r4 	{next}

B

〈23|one: r5, two: r5 |ε〉
r5: List(value: i3, next: r5)

i3 : [0, 1]
r5%$r5

r5 	{next}

C

Figure 1.39.: States illustrating Definition 1.38

Example 1.31 Assume we intersect A and B shown in Fig. 1.39, resulting in state C.

First, we compute the equivalence relation ≡n, resulting in r1 ≡n r2 ≡n r3 ≡n r4 and

i1 ≡n i2. We have ρ([r1]≡n) = r5 and ρ([i1]≡n) = i3.

This directly gives us the stack frame 〈23|one:r5, two:r5|ε〉.
Next, we intersect values. For [i1]≡n we intersect hA(i1) = (−∞, 1] and hB(i2) =

[0,∞), which according to Definition 1.36 results in [0, 1]. Thus, in C we have hC(i3) =

[0, 1].

For [r1]≡n we intersect four list objects. If we first consider the intersection of the

objects referenced by r1 and r2, we obtain List(next:r5). Intersecting this intermediate

result with the object referenced by r3 gives List(next: r5, value: i3). Intersecting again

with the object referenced by r4 does not add new information.

Finally, we need to consider heap predicates. No reference is marked as r?, thus we

do not need to add anything according to Definition 1.38(a). However, we have pairs of

references marked using =? heap predicates. According to Definition 1.38(b) we would

need to add r5 =? r5. However, as this heap predicate is useless, we do not show it in

C. Here it is important to understand that we not only need to have ri =? rj for all

1.5. State Intersection 61

i 6= j with i, j ∈ {1, 2, 3} to be forced to have a =? heap predicate in C. In addition

we also require certain %$ heap predicates for −_ predecessors of the references marked

as =? .

According to Definition 1.38(c,d) we need to add r5%$r5 to C. This is the case as we

have ri%$rj with ri − t [rj]≡n for all i, j ∈ {1, 2, 3}.
In Definition 1.38(e) we see that the union of the field sets is {next}. Thus, and as

the conditions are met, we add r5	{next} to C.

As the condition of Definition 1.38(f) is not met, construction of C finishes with the

state as shown in Fig. 1.39.

In order to show correctness of this intersection process (and, later, validity of equality

refinement), we need to introduce some lemmas.

Since we retained field (or array contents) information even if only one out of many

references in an equivalence class had this information, in the result we have all the

positions that the two original states had. As explained above, there may also be positions

which do not exist in neither of the input states.

Lemma 1.32 Let intersect(s, s′) = s 6= . Then SPos(s) ⊇ SPos(s) ∪ SPos(s′).

Proof. Let sr|π = r with sr ∈ {s, s′}. We show π ∈ SPos(s) by induction over the

length of π. Trivially, we have π ∈ SPos(s) if |π| = 1. Otherwise, let π = π′τ with

π′ 6= ε and |τ | = 1. By the induction hypothesis, we also have π′ ∈ SPos(s).

• If τ = v ∈ FieldIDs, we have hr(sr|π′) = f ∈ Instances with v ∈ dom(f).

According to Definition 1.36 in s we also have h(s|π′) = f ∈ Instances with

v ∈ dom(f). Thus, π ∈ SPos(s).

• If τ = i ∈ N, we have hr(sr|π′) = (il, f) ∈ Arrays with i ∈ dom(f). According

to Definition 1.36 in s we also have h(s|π′) = (il, f) ∈ Arrays with i ∈ dom(f).

Thus, π ∈ SPos(s).

• If τ = len, we have hr(sr|π′) = (il, f) ∈ Arrays. According to Definition 1.36 in

s we also have h(s|π′) = (il, f) ∈ Arrays. Thus, π ∈ SPos(s). �

Similar to the idea of validity of refinements, we need to make sure that all states repre-

sented by both of the two input states also is represented by the intersected state. Thus,

if the intersected state does not exist, then there may be no concrete state represented by

both of the input states.

62 Chapter 1. Symbolic Execution Graphs for Non-Recursive Programs

Lemma 1.33 If intersect(s, s′) = then there is no concrete state c with c v s and

c v s′.

Proof. If a conflict is found according to Definition 1.33, we already showed the claim.

Thus, the intersection may have failed due to a trivial reason (call stack height, dif-

ferent opcodes, exception, initialized classes, return addresses) or there is a reference

r ∈ References(s) ∪References(s′) with r 6∈ [null]≡n and
⋂⋂

ri∈[r]≡n

hri(ri) = .

According to Definition 1.36 this can happen in any of the following cases. Let r ≡n r
′

where r 6= r′ and r 6≡n null 6≡n r
′. Let π, π′ be positions with sr|π = r and sr′|π′ = r′.

• hr(r) = Vr ∈ Integers, hr′(r
′) = Vr′ ∈ Integers, Vr ∩ Vr′ = ∅. With

Lemma 1.27 we have c|π = c|π′ with hc(c|π) = {z} ∈ Integers. If c v s

and c v s′, we had {z} ⊆ Vr and {z} ⊆ Vr′ , thus z ∈ Vr ∩ Vr′ . As this is not the

case, the claim follows.

• hr(r) = Vr ∈ Floats, hr′(r
′) = Vr′ ∈ Floats, Vr 6= Vr′ and Vr 6= ⊥ 6= Vr′ . With

Lemma 1.27 we have c|π = c|π′ with hc(c|π) = z ∈ Floats with z 6= ⊥. If c v s

and c v s′, we had Vr, Vr′ ∈ {z,⊥} ⊆ Floats. As this is not the case, the claim

follows.

• hr(r) = f ∈ Instances, dom(f) 6= ∅, hr′(r′) = (il,r′ , fr′) ∈ Arrays. With

Lemma 1.27 we have c|π = c|π′ . Due to Definition 1.10(i,j) we cannot have c v s

and c v s′, as dom(f) 6= ∅.

• hr′(r′) = f ′ ∈ Instances, dom(f ′) 6= ∅, hr(r) = (il,r, fr) ∈ Arrays. With

Lemma 1.27 we have c|π = c|π′ . Due to Definition 1.10(i,j) we cannot have c v s

and c v s′, as dom(f ′) 6= ∅. �

As there may be positions in the intersected state that do not exist in any of the input

states, for the upcoming proofs we need a way to access the corresponding equivalence

class. For this, we introduce the notation of [π]≡n denoting the equivalence class corre-

sponding to a position π in the intersected state.

Definition 1.40 ([π]≡n) For s = intersect(s, s′) with s 6= , π ∈ SPos(s), and ≡n as

in Definition 1.31 we define [π]≡n := [r]≡n with ρ([r]≡n) = s|π.

The following lemma helps us to reason about information in s that may be at a position

which does not exist in any of the input states.

1.5. State Intersection 63

Lemma 1.34 Let 6= s = intersect(s, s′). Let c be a concrete state with c v s and

c v s′. Let π ∈ SPos(s). Then for all π′ with r ∈ [π]≡n and sr|π′ = r we have c|π = c|π′ .

Proof. Let r ∈ [π]≡n , i.e., σ(r) = s|π and sr|π′ = r. Thus, we also have s|π′ = s|π and,

hence, s|π′ ≡n s|π. With Lemma 1.27 we have c|π′ = c|π. �

The following theorem states that intersection is correct in the sense that each concrete

state represented by both of the input states also is represented by the intersected state.

Theorem 1.35 Let s, s′ ∈ States. If intersect(s, s′) = s 6= , for each concrete state

c with c v s and c v s′ we have c v s.

Proof. Let intersect(s, s′) = s 6= where s = (〈fr0, . . . , frn〉, h, t, hp, sf, e, ic,⊥), s′ =

(〈fr′0, . . . , fr′n〉, h′, t′, hp′, sf ′, e′, ic′,⊥), s = (〈fr0, . . . , frn〉, h, t, hp, sf, e, ic,⊥), fri =

(ppi, lvi, osi), fr
′
i = (ppi, lv

′
i, os

′
i), and fri = (ppi, lvi, osi). Let s, s′ be states with

disjoint sets of references (where only null and return addresses may be used in both

states). Let c be a concrete state with c v s and c v s′.

We show c v s by proving the individual items of Definition 1.10. Let π, π′ ∈
SPos(c).

(a – c) Trivial.

(d) The claim directly follows from Definitions 1.34 and 1.38.

(e) Let hc(c|π) = z ∈ Floats with z 6= ⊥. Assume π ∈ SPos(s). With Lemma 1.34

we have c|π = c|π′ for all π′ with sr|π′ = r ∈ [π]≡n . With Definition 1.10(e), for

each r ∈ [π]≡n we have hr(r) ∈ {z,⊥} ⊆ Floats. Thus, with Definition 1.36 we

then also have h(s|π) ∈ {z,⊥}.

(f) Let hc(c|π) = {z} ∈ Integers. Assume π ∈ SPos(s). With Definition 1.36 we

have h(s|π) =
⋂
r∈[π]≡n

hr(r). With Lemma 1.34, we also know that for all r with

sr|π′ = r and r ∈ [π]≡n we have c|π = c|π′ . Thus, with Definition 1.10(f) we also

have {z} ⊆ hr(r) for all r ∈ [π]≡n . Hence, the claim follows.

(g) Let tc(c|π) = {T} ∈ 2N×(Primtypes ∪ ClassNames). Assume π ∈ SPos(s). We have

h(s|π) =
⋂
r∈[π]≡n

tr(r). With Lemma 1.34 we also know that for each π′ with

sr|π′ = r we have c|π = c|π′ . Thus, with Definition 1.10(g) we also have {T} ⊆
tr(r) for all r ∈ [π]≡n . Hence, the claim follows.

64 Chapter 1. Symbolic Execution Graphs for Non-Recursive Programs

(h) We have hc(c|π) = null. Assume π ∈ SPos(s). If [π]≡n = [null]≡n then s|π = null.

Otherwise, we have s|π = r for some reference r 6= null. We need to show that r?

and h(r) = f ∈ Instances with dom(f) = ∅.
Because, with Lemma 1.34, we have c|π = c|π′ for all r′, π′ with sr′|π′ = r′ and

r′ ∈ [π]≡n , we also have r′? and hr′(r
′) = fr′ ∈ Instances with dom(fr′) = ∅

(with Definition 1.10(h) and r′ 6∈ [null]≡n). Thus, with Definition 1.38(a) we also

have r?. Furthermore, with Definition 1.36 we also have h(r) = f ∈ Instances

with dom(f) = ∅.

(i) Let hc(c|π) = fc ∈ Instances. Assume π ∈ SPos(s). With Lemma 1.34 we

know that for each π′ with sr|π′ = r and r ∈ [π]≡n we have c|π = c|π′ . Thus, with

Definition 1.10(i) we also have hr(r) ∈ Instances and dom(fc) ⊇ dom(hr(r)) for

all r ∈ [π]≡n . With Definition 1.36 we have h(s|π) =
⋃
r∈[π]≡n

hr(r) (with f ∪ f ′ as

defined in Definition 1.35). Hence, the claim follows.

(j) Let hc(c|π) = (il,c, fc) ∈ Arrays. Assume π ∈ SPos(s). With Lemma 1.34 we

know that for each π′ with sr|π′ = r and r ∈ [π]≡n we have c|π = c|π′ . For all such r

with hr(r) = fr ∈ Instances with Definition 1.10(j) we know that dom(fr) = ∅.
Similarly, if hr(r) = (il,r, fr) ∈ Arrays we have dom(fc) ⊇ dom(fr). With

Definition 1.36 we then either have

• h(s|π) = (il, f) ∈ Arrays where f =
⋃{fr | r ∈ [π]≡n ∧ (il,r, fr) = hr(r)},

or

• h(s|π) = f ∈ Instances where f =
⋃{fr | r ∈ [π]≡n ∧ fr = hr(r)} with

dom(f) = ∅.
Hence, the claim follows.

(k) We have c|π 6= c|π′ and π, π′ ∈ SPos(s). Assume we had s|π = s|π′ . Then, with

Lemma 1.34 consider π̃, π̃′ and r, r′ with sr|π̃ = r, sr′ |π̃′ = r′, r ∈ [π]≡n , r
′ ∈ [π′]≡n

so that we have c|π̃ = c|π and c|π̃′ = c|π′ . With Lemma 1.34 we then also had

c|π = c|π̃ = c|π̃′ = c|π′ . This contradicts the hypothesis and we conclude s|π 6= s|π′ .

(l) We have c|π = c|π′ with π 6= π′, hc(c|π) ∈ Instances ∪ Arrays, and π, π′ ∈
SPos(s). Thus, we need to show that s|π = s|π′ or s|π =? s|π′ . If [π]≡n = [π′]≡n

we have s|π = s|π′ . Thus, we need to consider the case that [π]≡n 6= [π′]≡n .

Let π̃, π̃′ with r = sr|π̃ ∈ [π]≡n and r′ = sr′|π̃′ ∈ [π′]≡n . As [π]≡n 6= [π′]≡n and

we ensured that the references in the states are disjoint we have r 6= r′. With

sr|π̃ ∈ [π]≡n and Lemma 1.34 we have c|π̃ = c|π. Similarly, we have c|π̃′ = c|π′ .
Thus, if sr = sr′ with Definition 1.10(l) we have sr|π̃ =? sr′|π̃′ .
Assume we have sra|πa = ra

τa−_ [π]≡n and srb|πb = rb
τb−_ [π′]≡n . With Lemma 1.24

we have c|πaτa = c|π = c|π′ = c|πbτb . We also know πaτ
′
a 6∈ SPos(sra) and πbτ

′
b 6∈

1.5. State Intersection 65

SPos(srb) for ε 6= τ ′a E τa and ε 6= τ ′b E τb. Thus, with Definition 1.10(m) we

have sra|πa%$srb |πb if sra = srb .

Now assume we have sr′ |πa = ra
τa−_ [π]≡n . With Lemma 1.24 we have c|πaτa =

c|π = c|π′ . Thus, with Definition 1.10(m) we have sr′ |πa%$r′. Similarly, we also

have sr|πb%$r for sr|πb = rb −_ [r′]≡n .

According to Definition 1.38(b) we then also have s|π =? s|π′ .
If there are no π̃, π̃′ with sr = sr′ we know that for all r̂ ∈ [π]≡n we have sr̂ =

sr 6= sr′ , π
′ 6∈ SPos(sr), and with c|π̃ = c|π = c|π′ and Definition 1.10(m) we have

sr%$sr|π′ . Similarly, for all r̂′ ∈ [π′]≡n we have sr̂′ = sr′ 6= sr, π 6∈ SPos(sr′), and

with c|π = c|π′ = c|π̃′ and Definition 1.10(m) we have sr′%$sr|π. Thus, according

to Definition 1.38(f) we also have s|π =? sπ′ .

(m) We have c|π = c|π′ with π 6= π′ and hc(c|π) ∈ Instances ∪ Arrays. We also

have {π, π′} 6⊆ SPos(s), so that we need to show s|π%$s|π′ , or s|π = s|π′ where

π, π′ have the same suffix w.r.t. s.

Let π̃, π̃′ with r = sr|π̃ − t [πs]≡n and r′ = sr′|π̃′ − t [π′s]≡n . With Lemmas 1.24

and 1.34 we have c|π̃τ̃ = c|πs and c|π̃′τ̃ ′ = c|π′s . Thus, we have τ, τ ′ with c|π̃τ̃ τ =

c|π̃′τ̃ ′τ ′ = c|πsτ = c|π′sτ ′ = c|π = c|π′ .
If sr = sr′ , with Definition 1.10(m) we have sr|π̃%$sr|π̃′ , or sr|π̃ = sr|π̃′ where π̃τ ,

π̃′τ ′ have the same suffix w.r.t. sr. In the latter case, if the joins heap predicate

sr|π̃%$sr|π̃′ is missing, we have τ̃ τ = τ̃ ′τ ′ and from sr|π̃ = sr|π̃′ we conclude

sr|π̃ ≡n sr|π̃′ , thus s|π ≡n s|π′ . With this, we also have s|π = s|π′ . Otherwise,

the joins heap predicate sr|π̃%$sr|π̃′ exists for all π̃, π̃′. With Definition 1.38(c) we

also have s|π%$s|π′ .
If there are no π̃, π̃′ with sr = sr′ we know that for all r̂ ∈ [πs]≡n we have sr̂ = sr 6=
sr′ , π′s 6∈ SPos(sr), and with c|π̃τ = c|π = c|π′ and Definition 1.10(m) we have

sr%$sr|π′ . Similarly, for all r̂′ ∈ [π′s]≡n we have sr̂′ = sr′ 6= sr, πs 6∈ SPos(sr′), and

with c|π = c|π′ = c|π̃′τ ′ and Definition 1.10(m) we have sr′%$sr|π. Thus, according

to Definition 1.38(f) we also have s|π%$sπ′ .
Thus, the claim follows.

(n) Assume π = ατ and π′ = ατ ′ where τ 6= ε and τ, τ ′ do not have a common

intermediate reference from α in c, and we have c|π = c|π′ with c|π ∈ Instances∪
Arrays. If π, π′ ∈ SPos(s), it suffices to show that s|π = s|π′ . If this does not

hold, we need to show s|α%$s|α and, if τ ′ = ε, also s|α	F with F ⊆ τ .

• First consider the case that {ατ, ατ ′} ⊆ SPos(s). If s|ατ = s|ατ ′ , the claim

follows. Otherwise, let π̃, π̃′, α̃ with r = sr|π̃ ∈ [π]≡n , r
′ = sr′|π̃′ ∈ [π′]≡n , and

rα = srα|α̃ ∈ [α]≡n .

66 Chapter 1. Symbolic Execution Graphs for Non-Recursive Programs

– First assume we have sr = sr′ = srα . With s|π 6= s|π′ we have [π]≡n 6=
[π′]≡n , thus we also have sr|π̃ 6= sr|π̃′ . With Lemma 1.34 we have c|π =

c|π̃, c|π′ = c|π̃′ , and c|α = c|α̃. Furthermore, we have c|α̃τ = c|π̃ = c|π =

c|π′ = c|π̃′ = c|α̃τ ′ . Thus, with Definition 1.10(n) we also have sr|α̃%$sr|α̃.

If τ ′ = ε, with Definition 1.10(n) we also have sr|α̃	F with F ⊆ τ .

– Now assume there are no π̃, π̃′, α̃ with r = sr|π̃ ∈ [π]≡n , r
′ = sr′|π̃′ ∈

[π′]≡n , rα = srα|α̃ ∈ [α]≡n , and sr = sr′ = srα . With Lemma 1.34 we have

c|α = c|α̃, thus we also have c|α̃τ = c|α̃τ ′ . If we do not have srα|α̃%$srα|α̃,

with Definition 1.10(n) we know that srα|α̃τ = srα|α̃τ ′ . With α̃τ =

π̃ and α̃τ ′ = π̃′ this contradicts the assumption stated above. As a

consequence, we have srα |α̃%$srα|α̃. Similarly, if τ = ε we also have

srα|α̃	F with F ⊆ τ .

If we have sr̂|π̂ = r̂
τ̂−_ [α]≡n , with Lemma 1.24 we also have c|π̂τ̂ τ = c|ατ =

c|ατ ′ = c|π̂τ̂ τ ′ where π̂τ̂ sr̂ = π̂. Thus, with Definition 1.10(n) we also have

sr̂|π̂%$sr̂|π̂.

As we have srα|α̃%$srα|α̃ for all srα|α̃ − t [α]≡n , according to Definition 1.38(d)

we have s|α%$s|α. If τ = ε, we also have srα |α̃	Fi with Fi ⊆ τ for all

srα|α̃ ∈ [α]≡n . Let sr|π′′ τ ′′−_ rα. With Lemma 1.24 we have c|π′′τ ′′ = c|α
with ε 6= τ ′′1 E τ ′′ and π′′τ ′′1 6∈ SPos(sr). Thus, with Definition 1.10(o) we

also have sr|π′′	F ′′ with F ′′ ⊆ τ . With Definition 1.38(e) we then also have

s|α	F with F ⊆ τ .

• Now assume we have {ατ, ατ ′} 6⊆ SPos(s). Consider any position α̃ with

rα = srα |α̃ and rα ∈ [αs]≡n . Let β with α = αsβ. By construction we know

α̃βsrα = α̃. According to Lemma 1.34 we have c|αs = c|α̃. Thus, we also

have c|αsβτ = c|ατ = c|ατ ′ = c|α̃βτ = c|α̃βτ ′ . As we also have {α̃τ, α̃τ ′} 6⊆
SPos(s), with Definition 1.10(n) we then also have srα|α̃%$srα|α̃. If we have

sr̂|π̂ = r̂
τ̂−_ [α]≡n , with Lemma 1.24 we also have c|π̂τ̂ τ = c|ατ = c|ατ ′ = c|π̂τ̂ τ ′

where π̂τ̂ sr̂ = π̂. Thus, with Definition 1.10(n) we also have sr̂|π̂%$sr̂|π̂.

Thus, according to Definition 1.38(d) we also have s|α%$s|α. If τ = ε, we

also have srα|α̃	F with F ⊆ τ . Let sr|π′′ τ ′′−_ rα. With Lemma 1.24 we have

c|π′′τ ′′ = c|α with ε 6= τ ′′1 E τ ′′ and π′′τ ′′1 6∈ SPos(sr). Thus, with Defini-

tion 1.10(o) we also have sr|π′′	F ′′ with F ′′ ⊆ τ . With Definition 1.38(e) we

then also have s|α	F ′ with F ⊆ τ . �

(o – r) Not applicable, as c is concrete.

1.5. State Intersection 67

1.5.5. Validity of Equality Refinement

The intersection process introduced so far only dealt with arbitrary input states. However,

in the equality refinement we use states s[r/r′] and s[r′/r]. Thus, we first need to show

the relationship of these states and s.

The main complication is that when we replace references in a state, say r by r′, then the

replaced reference (r) may occur somewhere in the heap reachable from the replacement

reference (r′). This corresponds to a cycle in the heap. By making use of the fact that

the shape of the heap is rather simple even in the presence of cycles when considering

concrete states, we can identify positions in s[r/r′] and corresponding positions in s which

lead to the same reference in both states.

Lemma 1.36 Let s be a state with r =? r′ where h(r) ∈ Instances ∪ Arrays,

h(r′) ∈ Instances ∪Arrays. Let Π = {π | s|π = r},Π′ = {π′ | s|π′ = r′}. Let c be a

concrete state with c v s and c|π = c|π′ for all π ∈ Π, π′ ∈ Π′. Let s′ = s[r/r′].

Then for any position π̂ there is a position β with s|β = s′|π̂ and c|β = c|π̂.

Proof. Let N = {πτ ∈ SPos(s′) | π ∈ Π} be the positions where s may differ from

s′. For π̂ 6∈ N the proof is trivial. Thus, we only show the claim for π̂ := πτ ∈ N with

π ∈ Π.

• If Π′ ∩ N = ∅, we have r′ = s|π′ = s′|π for all π ∈ Π, π′ ∈ Π′. We also have

s′|πτ = s|π′τ and c|πτ = c|π′τ . Thus, with β = π′τ for π′ ∈ Π′ the claim follows.

• Otherwise, let πα ∈ Π′ ∩ N with s|π = r, s|πα = r′ (α 6= ε). In other words, α

is a path leading from r to r′ in s. Then we have r′ = s|πα = s′|π. However, we

do not necessarily have s|πατ = s′|πτ , as for example s|πατ = r and s′|πτ = r′ is

possible (because r is replaced with r′ in s′).

– Assume s|πατ = s′|πτ . Then with c|π = c|π′ for all π ∈ Π, π′ ∈ Π′ we also

have c|πατ = c|πτ . Thus, with β = πατ the claim follows.

– Assume s|πατ 6= s′|πτ . Thus, we know that r is reached from r′ in s. We split

τ into τ = τ1τ2 with

∗ s|πατ1 = r

∗ for all ε 6= τ ′2 E τ2 we have s|πατ1τ ′2 6= r (τ2 = ε is allowed)

This means r does not appear along τ2. As the path from r′ to r is traversed

at least once, this is represented in τ1. Furthermore, if the path contains

multiple traversals along the cycle r′ → r → r′ → · · · , these traversals are

part of τ1.

68 Chapter 1. Symbolic Execution Graphs for Non-Recursive Programs

Then we have s|πατ2 = s′|πτ1τ2 = s′|πτ . With c|π = c|π′ for all π ∈ Π, π′ ∈ Π′

we also know c|πατ = c|πτ . Thus, with β = πατ2 the claim follows. �

Lemma 1.37 Let s be a state with r =? r′ where h(r) ∈ Instances ∪ Arrays,

h(r′) ∈ Instances ∪ Arrays. Let Π = {π | s|π = r},Π′ = {π′ | s|π′ = r′}. Then,

for every concrete state c with c v s and c|π = c|π′ for any π ∈ Π, π′ ∈ Π′ we have

c v s[r/r′] and c v s[r′/r].

Proof. W.l.o.g. we just prove c v s′ where s′ = s[r/r′]. For any position π′τ ∈ SPos(s)

with π′ ∈ Π′ we have s′|πτ = s′|π′τ for all π ∈ Π. Let N be defined as in Lemma 1.36.

We show the claim by proving the individual items of Definition 1.10. Let π ∈
SPos(c). W.l.o.g. we restrict π to π ∈ N (otherwise the claim follows from c v s).

According to Lemma 1.36 for each position π there is a position β with s|β = s′|π and

c|β = c|π. Similarly, there is a position β′ with s|β′ = s′|π′ and c|β′ = c|π′ .

(a – d) Trivial.

(e) Let π ∈ SPos(s′). With Definition 1.10(e) we have hc(c|π) = hc(c|β), h(s|β) =

h′(s′|π), and h(s|β) ∈ {hc(c|β),⊥}.

(f) Let π ∈ SPos(s′). With Definition 1.10(f) we have hc(c|π) = hc(c|β) ⊆ h(s|β) =

h′(s′|π).

(g) Let π ∈ SPos(s′). With Definition 1.10(g) we have tc(c|π) = tc(c|β) ⊆ t(s|β) =

t′(s′|π).

(h) Let c|π = null. Let π ∈ SPos(s′). We have null = c|π = c|β. With Defini-

tion 1.10(h) we have c|β = s|β = s′|π = null or s|β?, s′|π?, h(s|β) = f = h′(s′π) ∈
Instances, and dom(f) = ∅.

(i) Let π ∈ SPos(s′). We have hc(c|π) = hc(c|β) = fc ∈ Instances. Furthermore,

we have h(s|β) = f ∈ Instances and h′(s′π) = f ′ ∈ Instances with dom(f) =

dom(f ′). With Definition 1.10(i) we also have dom(fc) ⊆ dom(f). Thus, the

claim follows. Note that the only difference of f and f ′ may be that f(v) = r

whereas f ′(v) = r′.

(j) Let π ∈ SPos(s′). We have hc(c|π) = hc(c|β) = (il,c, fc) ∈ Arrays. With

Definition 1.10(j) we either have h(s|β) = h′(s′|π) = f ∈ Instances with

dom(f) = ∅ or h(s|β) = (il, f) ∈ Arrays, h′(s′|π) = (il, f
′) ∈ Arrays with

1.5. State Intersection 69

dom(fc) ⊇ dom(f) = dom(f ′). Thus, the claim follows. Note that the only

difference of f and f ′ may be that f(i) = r whereas f ′(i) = r′.

(k) Let π′ ∈ SPos(c) with c|π 6= c|π′ . Assume π, π′ ∈ SPos(s′). Let β′ with c|π′ =

c|β′ , s|β′ = s′|π′ . We have c|π = c|β and s|β = s′|π. We also have c|π′ = c|β′ and

s|β′ = s′|π′ . With Definition 1.10(k) we know s|β 6= s|β′ . Thus, the claim follows.

(l) Let c|π = c|π′ with π 6= π′ and hc(c|π) ∈ Instances ∪Arrays. Assume π, π′ ∈
SPos(s′). Let β′ with c|π′ = c|β′ , s|β′ = s′|π′ . With Definition 1.10(l) we know

s|β = s|β′ or s|β =? s|β′ . Thus, with s|β = s′|π and s|β′ = s′|π′ the claim follows.

(m) Let c|π = c|π′ with π 6= π′ and hc(c|π) ∈ Instances∪Arrays. Assume {π, π′} 6⊆
SPos(s′). Assume s′|π 6= s′|π′ or π, π′ have different suffixes w.r.t. s′. Similar to

β, we have β̃ with s|β̃ = s′|π. Also, let β̃′ with s|β̃′ = s′|π′ . Then we also have

s|β̃ 6= s|β̃′ or β̃, β̃′ have different suffixes w.r.t. s. With Definition 1.10(m) and

c v s we then have s|β̃%$s|β̃′ . Thus, we also have s′|π%$s′|π′ and the claim follows.

(n) Let π = ατ and π′ = ατ ′ with τ 6= ε and where τ, τ ′ have no common intermediate

reference from α in c. Assume c|π = c|π′ where c|π ∈ Instances ∪Arrays.

If π, π′ ∈ SPos(s′) with Definition 1.10(n) we may have s|β = s|β′ . If so, we also

have s|β = s′|π and s|β′ = s′|π′ , thus the claim follows.

Otherwise, we have β̃ with s|β̃ = s′|α. According to Definition 1.10(n) we then

have s|β̃%$s|β̃ and, if τ ′ = ε, also s|β̃	F with F ⊆ τ . Thus, we also have s′|α%$s′|α
and s′|α	F and the claim follows.

(o – r) Not applicable, as c is concrete. �

Now, we can finally prove that the equality refinement as presented on page 46 is valid.

Proof. (Equality refinement is valid) Let r =? r′ be the references used in the refine-

ment of state s. Let c be a concrete state with c v s.

• If refine(s) = {s 6=}, we need to show c v s 6=.

As s 6= is identical to s, where we just removed a =? heap predicate, we just

need to check Definition 1.10(l). Thus, assume we have c|π = c|π′ with π 6= π′

and hc(c|π) ∈ Instances ∪ Arrays. If {π, π′} 6⊆ SPos(s 6=) the claim follows.

Otherwise, if π, π′ ∈ SPos(s 6=) we need to have s 6=|π = s 6=|π′ or s 6=|π =? s 6=|π′ . If

this =? predicate exists in s 6=, the claim follows. Otherwise, π ∈ Π, π′ ∈ Π′, we

removed r =? r′, and we know intersect(s[r/r′], s̃[r′/r]) failed. With Lemma 1.33

70 Chapter 1. Symbolic Execution Graphs for Non-Recursive Programs

we know that c 6v s[r/r′] or c 6v s̃[r′/r]. With Lemma 1.37 we conclude that c

cannot exist, thus the claim is shown for all possible states c.

• If refine(s) = {s 6=, s=} where s= = intersect(s[r/r′], s̃[r′/r]) 6= , we need to show

c v s 6= or c v s=.

Let Π = {π | s|π = r},Π′ = {π′ | s|π′}. If c|π 6= c|π′ for all π ∈ Π, π′ ∈
Π′ we have c v s 6= as above. Otherwise, the claim follows from Lemma 1.37

and Theorem 1.35. �

1.6. Evaluation

Earlier we introduced abstract states (Definition 1.1) that can also be restricted to con-

crete states (Definition 1.6). An important observation is that states as defined in the

Java Language Specification can directly be adapted to concrete states as defined in this

thesis2. Thus, for every computation in a given Java Bytecode program we can create

the corresponding concrete states as defined in this thesis. Let c
jvm−−→ c′ denote a single

evaluation step on concrete states, i.e., if the current opcode of c is evaluated, the changes

are applied to c, resulting in c′.

The main goal is to construct a finite Symbolic Execution Graph for a given program

so that every possible computation starting in any state c v s, where s is the start state

of the graph, is represented in the graph. Furthermore, we want the Symbolic Execution

Graph to represent as few additional computations as possible. Thus, we want to have a

finite representation of all possible computations containing very detailed information. A

Symbolic Execution Graph with this information can then, for example, be used to show

termination of the represented computations.

Even if the start state s was concrete, in order to have a finite representation of arbitrary

infinite computations, we need to introduce abstraction. Thus, as soon as a non-concrete

abstract state needs to be evaluated, we need to know how to evaluate abstract states. In

order to have all possible computations represented in the resulting Symbolic Execution

Graph, for c
jvm−−→ c′ with c v s we need to have c′ v s′ where s′ is the result of (abstract)

evaluation of s (denoted s
Eval−−−→ s′).

While in [GJS+12] only evaluation of concrete states is specified, we will explain how this

specification can be extended to abstract states. This is trivial or simple for some opcodes,

but it is not straightforward how evaluation on abstract states should look like in other

cases. As a trivial example, consider the NOP opcode. According to the specification the

state before evaluating this opcode is identical to the state that results out of evaluation

2Here we only consider programs conforming to the limitations mentioned on page 13.

1.6. Evaluation 71

(where just the current opcode is advanced). Thus, when considering abstract states, an

adaption is straightforward. Next, we consider the POP opcode which removes the top

entry of the operand stack. To compute the desired outcome, we do not need to know the

concrete value which is removed from the operand stack. Thus, evaluation of the opcode

POP can also easily be adapted to the setting of abstract states.

Slightly more interesting is the IINC opcode which increments an integer variable stored

in a given local variable. If the information of the abstract state indicates that the variable

contains a literal, we can compute and store the result, also a literal, back into the local

variable. However, if we just have the information that the referenced data is an interval

of possible values, we need to extend the specification. If we increment by 1 and in a state

s a local variable containing a reference i1 with h(i1) = [5, 10] needs to be incremented,

in the evaluation successor s′ with s
Eval−−−→ s′ we need to consider all possible outcomes

of evaluating any of the concrete states represented by s. Thus, since 5 ∈ [5, 10] and

incrementing 5 gives 6, in s′ we need to have the information that 6 is a possible value

for the variable. Similarly, the values 7 to 11 also need to be contained. Thus, a state s′

where the variable references [5, 11] would be valid in the sense described above.

However, we also know that the variable can never contain the value 5 after incrementing

a value in [5, 10]. Thus, a more precise version of s′ may have the information where the

variable references the interval [6, 11]. Note that any of the two variants of s′ may be

used in the graph, but that the version presented first is less precise. This could lead to

additional computations represented by the Symbolic Execution Graph which however do

not correspond to concrete computations.

Additionally, we need to consider cases where evaluation is not possible with the infor-

mation provided in the state. As already mentioned when refinements were introduced,

we cannot find a single evaluation successor for a state s containing the information

h(i1) = [0, 1], the current opcode IFEQ (jumping to a certain branch target if the top

value on the operand stack is 0), and i1 on top of the operand stack. Thus, we may need

to refine certain parts of the abstract state before we can evaluate.

As a consequence, our goals when evaluating a state s are

(i) to refine s in order to make evaluation possible

(ii) to take care that for c v s, c
jvm−−→ c′, and s

Eval−−−→ s′ we also have c′ v s′

(iii) to take care that the resulting state s′ is as precise as possible

Sadly, the specification in [GJS+12] has about 600 pages and does not formalize the

semantics of Java Bytecode. Thus, it is out of scope to describe (or formalize) every

aspect of the specification in this thesis. For the same reason there also does not exist

any formalization of the Java Bytecode semantics that could be used to formally prove

correctness of this approach. However, in [KN06] a language related to Java Bytecode,

72 Chapter 1. Symbolic Execution Graphs for Non-Recursive Programs

named Jinja, is formalized. The state formalization in [KN06] and the concrete states

defined in this thesis are somewhat similar (as both are designed to represent the states

possibly created by an actual JVM) and in [BOvEG10] we already presented correctness

results based on this formalization. However, in the setting of this thesis, we use a nearly

complete subset of Java Bytecode, thus a similar approach is not feasible.

The first aspect mentioned above, regarding refinement, was already explained earlier.

Here, especially Fig. 1.25 gives the necessary information. In this thesis we will not

provide further details, as using the refinements already defined it is easily possible to

refine an abstract state such that abstract interpretation can be performed.

For the second aspect, we would need to re-define the semantics of all opcodes. As

already mentioned, we do not provide all details in this thesis. Instead, we argue that for

most opcodes, using refinement where necessary, evaluation of abstract states is straight-

forward. As an example, to evaluate an INVOKEVIRTUAL opcode a null-check needs to be

performed, the choice of the invoked method depends on the type of a certain object, and

the creation of the new stack frame is rather involved. However, using possibly several

refinements the process as outlined in [GJS+12] can easily be implemented for abstract

states. This implementation should also deal with the third goal mentioned above, which

is trivial for most opcodes and a bit more involved for (integer) arithmetic.

However, in the case of the PUTFIELD opcode which modifies an object instance on

the heap, it is not easy to see how the information for other parts of the heap (that may

be connected as indicated using heap predicates) need to be adapted. Thus, in the next

part of this section, we will introduce the semantics of PUTFIELD on abstract states and

give a proof that, indeed, no concrete computation is “lost” when evaluating this opcode

on abstract states.

The only other opcode modifying and creating connections on the heap, AASTORE

which is used to store a reference into an array, is very similar to PUTFIELD. However,

while for object instances we know which field we write into, the array index used in an

array write access or the size of the array may be unknown when evaluating the opcode

on an abstract state. In Section 1.6.2 the corresponding adaptations are presented.

Similarly, when evaluating the opcode AALOAD, which loads a reference out of an

array, it can happen that the connection between the reference read from the array and

the array itself cannot be represented explicitly. In order to correctly model these (and

other) connections on the heap, we need to add heap predicates. This process is outlined

in Section 1.6.3.

The following theorem states that evaluation of abstract states is valid, similar to the

definition of valid refinements, in the sense that no computation is lost.

Theorem 1.38 (Evaluation is valid) Let s, s′ ∈ States and s
Eval−−−→ s′ be an evalu-

ation. For all concrete states c, c′ with c v s and c
jvm−−→ c′ we have c′ v s′.

1.6. Evaluation 73

For the interesting cases of PUTFIELD, AALOAD, and AASTORE this theorem is proven

in Theorems 1.41, 1.45, and 1.49. For all other opcodes (and less interesting cases of the

three opcodes named above) evaluation is straightforward, as the necessary refinements

already dealt with all complications. As we already have shown validity of refinement,

there is not much need to also show validity of evaluation for most opcodes.

1.6.1. PUTFIELD

When evaluating the PUTFIELD opcode on abstract states, we must take into account

that the changes of the write access can also be observed from variables that share with

the object instance modified by the opcode. This is illustrated in Example 1.39.

Example 1.39 In this example, the write access in line 18 also modifies data that can

be seen by traversing the list in variable first. As a consequence of the write access, the

check in line 22 causes the program to not terminate.

1 public class List {

2 Object marker = null;

3 List next;

4

5 public static void main(String [] args) {

6 List list = new List ();

7

8 // remember first element of list

9 List first = list;

10

11 // create list of arbitrary length , marker is not set

12 for (int i = 1; i < args.length; i++) {

13 list.next = new List ();

14 list = list.next;

15 }

16

17 Object marker = new Object ();

18 list.marker = marker; // set marker at end of list

19

20 for (List cur = first; cur != null; cur = cur.next) {

21 // do not terminate if marker is set

22 while (cur.marker == marker) {}

23 }

24 }

25 }

74 Chapter 1. Symbolic Execution Graphs for Non-Recursive Programs

In the case of abstract evaluation, the references for the variables first and list would

be connected using a %$ heap predicate (after executing the loop in lines 12–15 at least

twice). Because of this, when evaluating the PUTFIELD opcode corresponding to the

write access in line 18, we must consider that a change to the reference of list might

also change data reachable from the reference of first. Consequently, we need to add a

%$ heap predicate to model that first might reach marker.

The problem made visible in Example 1.39 is that when evaluating PUTFIELD for an

abstract state it does not suffice to only change information related to the two involved

references on the operand stack. Instead, also connected references need to be regarded.

To properly model the effects of evaluating PUTFIELD we consider four situations. Let

rc, rp be the two references considered by the PUTFIELD opcode where rc is the reference

being written into some field of rp. Thus, after the write access, for any s|π = rp we have

s|π v = rc.

(i) There are successors of rc, so we need to add joins heap predicates. As one can reach

rc through rp, it then is also possible to reach the successors of rc from (abstract)

predecessors of rp.

(ii) There is a cycle/non-tree shape visible from rc. If there is an abstract predecessor

of rp, this reference then also is an abstract predecessor of the cycle/non-tree shape

and, thus, we need to add corresponding heap predicates.

(iii) There is a successor of rc with a heap predicate allowing a non-tree shape, so we

need to add the corresponding heap predicates. This is similar to the previous case.

Instead of reaching a realized cycle/non-tree shape and adding the corresponding

heap predicates, here we just need to propagate the heap predicates to the abstract

predecessors of rp.

(iv) The write access creates a new cycle/non-tree shape in the heap, so we need to add

corresponding heap predicates. There may be a path from an abstract predecessor

of rp to a successor of rc, so that with the new connection from rp to rc a second

path is created – thus, we then have a non-tree shape which possibly did not exist

before. As a consequence, we might need to add corresponding heap predicates.

The first item corresponds to the case made in Example 1.39. Here, we need to add ra%$rb
for each abstract predecessor ra of rp and each successor rb of rc. Without this, in abstract

states where the connection from the local variable first to the modified list element is

only defined using a %$ heap predicate, the comparison in line 24 of Example 1.39 cannot

evaluate to true (and, thus, we could falsely prove termination of the nonterminating

algorithm).

1.6. Evaluation 75

The second and third item can be understood best by modifying the previous example,

resulting in Example 1.40.

Example 1.40 As in Example 1.39, we remember the beginning of

the list. The write access in line 19 causes the list to be cyclic.

1 public class List {

2 List next;

3

4 public static void main(String [] args) {

5 List list = new List ();

6

7 // remember first element of list

8 List first = list;

9

10 // create list of arbitrary length

11 for (int i = 1; i < args.length; i++) {

12 list.next = new List ();

13 list = list.next;

14 }

15

16 // make list cyclic

17 List cycle = new List ();

18 cycle.next = cycle;

19 list.next = cycle;

20

21 // iterate over cyclic list

22 for (List cur = first; cur != null; cur = cur.next) {

23 }

24 }

25 }

In the case of abstract interpretation, we must also consider the case that first references

a cyclic list after the write access in line 19. This is done by adding the corresponding

heap predicate to the reference of first. Without this heap predicate the data structure

would be known to be acyclic, making it possible to falsely show termination of the

loop starting in line 22.

Finally, the fourth item deals with cases where performing the write access causes a

previously non-existing non-tree shape or cycle to be created on the heap. Detecting the

creation of such shapes is rather involved if parts of the heap are only represented using

76 Chapter 1. Symbolic Execution Graphs for Non-Recursive Programs

heap predicates. As an example, in a state with references r1 to r4 and r1%$r2, r1%$r4,

r3%$r4 evaluating PUTFIELD writing r3 into a field of r2 might create a non-tree shape:

after the write there may be two paths from r1 to r4. The first path may exist due to

r1%$r4. The second path may exist because of r1%$r2 and r3%$r4, where the “gap” from

r2 to r3 is closed by the write access.

We will now formally define which heap predicates are added when PUTFIELD is eval-

uated. Then we show that the abstract evaluation is correct, i.e., for c
jvm−−→ c′ and c v s

evaluating PUTFIELD with s
Eval−−−→ s′ also guarantees c′ v s′.

In our approach, abstract evaluation of a PUTFIELD opcode writing into a field v of rp

only works if there is no reference r with r =? rp. This is no real restriction, as we can

always use refinement to drop such heap predicates. Similarly, we only consider the cases

where rp references an object instance with a field v. Furthermore, we assume that no

exception mentioned in the section linking exceptions in the Java Language Specification

is thrown3.

Before the actual definition of PUTFIELD evaluation, we need to define two relations

∼ and that help identifying related references on the heap.

Definition 1.41 (∼s) For two references ra, rb we have ra ∼s rb iff ra =?
s rb or ra%$srb.

We write ∼ instead of ∼s if the state s is clear from the context.

Definition 1.42 (s) For two references ra, rb we have ra s rb iff there are π, ρ such

that s|π = ra ∧ (s|πρ ∼s rb ∨ s|πρ = rb). We write instead of s if the state s is clear

from the context.

In other words, ra ∼ rb describes that a connection of the references ra and rb is allowed

by some heap predicate. For ra rb we see that one may reach rb from ra.

Definition 1.43 (Evaluating PUTFIELD) Let pp0 be a PUTFIELD opcode writ-

ing into a field named v. Let s be the corresponding state where s =

(〈fr0, . . . , frn〉, h, t, hp, sf, e, ic,⊥) and fri = (ppi, lvi, osi). Let s|OS0,0 =: rc and

s|OS0,1 =: rp. Let there be no reference r with r =? rp, let there be no heap predi-

cate rp? and let f = h(rp) ∈ Instances with v ∈ dom(f).

Then we define s′ with s
Eval−−−→ s′ as s′ = (〈fr′0, fr1, . . . , frn〉, h′, t, hp′, sf, e, ic,⊥)

with fr′0 = (pp0, lv0, os
′
0). The topmost operand stack os′0 is identical to os0, where

just the two topmost elements rc and rp are removed. For the heap h′ we just update

3Detecting if one of those exceptions needs to be thrown is rather technical. As a consequence, we
decided to not mention the corresponding preconditions in Definition 1.43.

1.6. Evaluation 77

the field information for rp: h
′ = h + {rp 7→ f ′} with f ′ = f + {v 7→ rc}. We define

hp′ ⊇ hp where we add heap predicates according to the following rules:

(i) for all ra, rb with ra%$rp and rc rb we add ra%$rb

(ii) if there are π, ρ, ρ′ with ρ 6= ρ′ where s|π = rc and s|πρ = s|πρ′ , then we add ra%$ra
for all ra%$rp

(iii) if there are π, ρ, ρ′ with ρ′ 6= ε where s|π = rc and s|πρ = s|πρρ′ , then we add ra	F
for all ra%$rp where F contains all fields in ρ′

(iv) if there are π, ρ with s|π = rc and s|πρ%$s|πρ, then we add ra%$ra for all ra%$rp

(v) if there are π, ρ with s|π = rc and s|πρ	F , then we add ra	F for all ra%$rp

(vi) if there are ra, rb with ra rb, ra rp, rc rb, and the paths from ra to rp and

ra to rb have no common intermediate reference, then we add ra%$ra

(vii) if there is ra with ra rp, rc ra then we add ra	F where F contains v in

addition to the fields on the paths from ra to rp and rc to ra

When adding o	F to a state already containing the heap predicate o	F ′ this means

that after the addition we have o	F ′′ where F ′′ = F ∩ F ′.

The heap predicates added as defined in Definition 1.43 can be put into four categories:

(i) abstract predecessors of rp may reach new parts of the heap

(ii, iii) existing non-tree shapes may be reached from abstract predecessors of rp

(iv, v) abstract non-tree shapes may be reached from abstract predecessors of rp

(vi, vii) new non-tree shapes are created and may be reached from predecessors of rp

Using this definition it is possible to evaluate PUTFIELD opcodes on abstract states.

Now we show that such evaluation is correct in the sense that the resulting abstract state

also represents concrete states resulting out of a corresponding concrete evaluation of

PUTFIELD.

Theorem 1.41 Let s, s′ be states as in Definition 1.43 with s
Eval−−−→ s′. Then for all

states c, c′ with c v s and c
jvm−−→ c′ we have c′ v s′.

In order to show Theorem 1.41, we first need to discuss the changes caused by evaluating

PUTFIELD.

78 Chapter 1. Symbolic Execution Graphs for Non-Recursive Programs

Definition 1.44 (δ) Let c
jvm−−→ c′ be a concrete PUTFIELD evaluation with c, c′ as

defined in Theorem 1.41. Then let δ denote the function that maps positions in c′,

which has a shorter operand stack than c, to positions in c. For that, let |ω| = 1.

δ(ωπ) =

OS0,j+2π if ω = OS0,j

ωπ otherwise

For any state position π changed by evaluating PUTFIELD (i.e., both references consid-

ered by PUTFIELD are part of the path described by π) we can decompose π into three

parts. Informally, the first part is the longest prefix leading to the object instance we write

into, only visiting unchanged parts of the heap. The third part denotes the suffix of π

leading away from the object reference written into the field, also only visiting unchanged

parts of the heap. The second part denotes the part in between, i.e., the part of π that

goes along the written field at least once. In most cases, the second part only consists of

the written field, but in the case of cycles it may be more complicated.

Definition 1.45 (PUTFIELD decomposition) Let c
jvm−−→ c′ be a concrete PUT-

FIELD evaluation with c, c′ as defined in Theorem 1.41. For any π ∈ SPos(c′) with

c′|π 6= c|δ(π) we define its PUTFIELD decomposition as π = τβη where

• τ is the shortest prefix of π such that both c′|τ = c|OS0,1 and τv E π

• β is the longest position of the form β = v α1 v α2 v . . . v αn v for some n ≥ 0

where τβ E π, c′|τvαj = c|OS0,1 , and c′|τvρ 6= c|OS0,1 for all ε 6= ρ C αj and all

1 ≤ j ≤ n. Note that this implies c′|τβ = c′|τv = c|OS0,0 and c′|π = c|OS0,0η.

We now show that PUTFIELD decompositions can be lifted to abstract states.

Lemma 1.42 (Change of abstract states by PUTFIELD) Let s, s′, c, c′ as defined

in Theorem 1.41. For any π ∈ SPos(s′) ∩ SPos(c′) we have:

• if c′|π = c|δ(π), then s′|π = s|δ(π)

• if c′|π 6= c|δ(π), then for the corresponding PUTFIELD decomposition π = τβη we

have s′|τ = s|OS0,1 , s
′|τβ = s′|τv = s|OS0,0 , and s′|π = s|OS0,0η

1.6. Evaluation 79

Proof. According to Definition 1.43 we know s|OS0,1 6= null and no heap predicate

s|OS0,1? exists, thus with c v s we have c|OS0,1 6= null. Hence, c′|π = c|δ(π) means that

the position π is not influenced by the PUTFIELD instruction. This implies that we

also have s′|π = s|δ(π).

Now let c′|π 6= c|δ(π) and let π = τβη be the PUTFIELD decomposition. Since τ is

the shortest prefix of π with c′|τ = c|OS0,1 and τ v E π, this path is not affected by the

evaluation, i.e., c′|τ = c|δ(τ) and s′|τ = s|δ(τ).

First assume s′|τ 6= s|OS0,1 . With c|δ(τ) = c′|τ = c|OS0,1 and s|δ(τ) = s′|τ 6= s|OS0,1 ,

from c v s and Definition 1.10(l) we can conclude s|δ(τ) =? s|OS0,1 . This contradicts

Definition 1.43, where such heap predicates are not allowed. Thus, we have shown that

s′|τ = s|OS0,1 .

Now assume that s′|τβ 6= s|OS0,0 . By the definition of the evaluation, we have s′|τv =

s|OS0,0 (thus, v 6= β or we already contradicted the assumption). Recall that β =

v α1 v α2 v . . . αn v, cf. Definition 1.45. From s′|τβ 6= s|OS0,0 we can conclude that there

is a j with s′|τvαj 6= s′|τ . Let j be the minimal such number. As s′|τv = s|OS0,0 (and,

thus, s′|τvαj = s|OS0,0αj), we have s|OS0,1 = s′|τ 6= s′|τvαj = s|OS0,0αj . On the other hand,

we have c|OS0,1 = c′|τ = c′|τvαj = c|OS0,0αj . Thus, c v s and Definition 1.10(l) implies

s|OS0,1 =? s|OS0,0αj . Again, this contradicts Definition 1.43. Thus, we have shown that

s′|τβ = s|OS0,0 .

As η was not affected by PUTFIELD, s′|τβ = s|OS0,0 implies s′|π = s|OS0,0η. �

The following facts are used multiple times, which is why we introduce lemmas for

them.

Lemma 1.43 Let s, s′, c, c′ as defined in Theorem 1.41. Let π ∈ SPos(c′) and c′|π 6=
c|δ(π). Let π = τβη be the PUTFIELD decomposition with β = v α1 v α2 v . . . αn v. If

τ ∈ SPos(s′) and τβ 6∈ SPos(s′), then we have s|OS0,1%$s|OS0,0α̃j for some α̃j C αj.

Proof. There is a minimal j with τ v α1 . . . v αj 6∈ SPos(s′). We then also have

OS0,0αj 6∈ SPos(s). As c|OS0,1 = c|OS0,0αj by construction of the decomposition and as

c v s, with Definition 1.10(m) we have s|OS0,1%$s|OS0,0α̃j for some α̃j C αj. �

Lemma 1.44 Let s, s′, c, c′ as defined in Theorem 1.41. Let π 6= π′ ∈ SPos(c′) with

c′|π = c′|π′ , hc′(c′|π) ∈ Arrays ∪ Instances, c′|π 6= c|δ(π), c
′|π′ = c|δ(π′), and π 6∈

80 Chapter 1. Symbolic Execution Graphs for Non-Recursive Programs

SPos(s′). Let π = τβη be the PUTFIELD decomposition with β = v α1 v α2 v . . . αn v.

Then we have s|OS0,0 s|δ(π′).

Proof. If δ(π′),OS0,0η ∈ SPos(s), by c v s and Definition 1.10(m) we have

s|δ(π′) = s|OS0,0η or s|δ(π′) =? s|OS0,0η. If {δ(π′),OS0,0η} 6⊆ SPos(s), by c v s and

Definition 1.10(l) we may have s|δ(π′)%$s|OS0,0η̃ for some η̃ C η. If this heap predicate

does not exist, we have s|δ(π′) = s|OS0,0η
. In all cases we have s|OS0,0 s|δ(π′). �

Now, we can finally prove that evaluation of PUTFIELD as stated on page 77 is correct.

Proof. (PUTFIELD is correct) Let c, c′, s, s′ be states as defined in Theorem 1.41. We

show the claim by showing the individual items of Definition 1.10. Let π, π′ ∈ SPos(c′).

In order to be able to focus on the important aspects of the proof, namely the cases

where a position was changed by the PUTFIELD operation, we first show correctness

for the cases where all positions are left unchanged.

For that, assume c′|π = c|δ(π) and c′|π′ = c|δ(π′). Then we also have s′|π = s|δ(π) and

s′|π′ = s|π′ by Lemma 1.42.

(a – c) Trivial.

(d) Assume π ∈ SPos(s′). With c v s and Definition 1.10(d) we also have c′|π =

c|δ(π) = s|δ(π) = s′|π. Otherwise, c′|π 6= c|δ(π).

(e) Assume π ∈ SPos(s′). With c v s and Definition 1.10(e) we also have hc′(c
′|π) =

hc(c|δ(π)) = h(s|δ(π)) = hs′(s
′|π) or h(s|δ(π)) = hs′(s

′|π) = ⊥.

(f) Assume π ∈ SPos(s′). With c v s and Definition 1.10(f) we also have hc′(c
′|π) =

hc(c|δ(π)) ⊆ h(s|δ(π)) = hs′(s
′|π).

(g) Assume π ∈ SPos(s′). With c v s and Definition 1.10(g) we also have tc′(c
′|π) =

tc(c|δ(π)) ⊆ t(s|δ(π)) = ts′(s
′|π).

(h) Assume π ∈ SPos(s′). With c v s and Definition 1.10(h) we also have c′|π =

c|δ(π) = s|δ(π) = s′|π = null or h(s|δ(π)) = hs′(s
′|π) = f with dom(f) = ∅.

(i) Assume π ∈ SPos(s′). With c v s and Definition 1.10(i) we also have

hc′(c
′|π) = fc′ , hc(c|δ(π)) = fc with dom(fc′) = dom(fc), h(s|δ(π)) = hs′(s

′|π) = f

with dom(fc′) ⊇ dom(f).

(j) Assume π ∈ SPos(s′). With c v s and Definition 1.10(j) we also have hc′(c
′|π) =

hc(c|δ(π)) = (i′l, f
′) and

1.6. Evaluation 81

• h(s|δ(π)) = hs′(s
′|π) = (il, f) with dom(f ′) ⊇ dom(f), or

• h(s|δ(π)) = hs′(s
′|π) = f with dom(f) = ∅.

(k) Assume π, π′ ∈ SPos(s′). Let c′|π 6= c′|π′ . With c v s and Definition 1.10(k) we

also have s|δ(π) 6= s|δ(π′), thus s′|π 6= s′|π′ .

(l) Let π 6= π′, c′|π = c′|π′ with hc′(c
′|π) ∈ Instances ∪ Arrays. Assume π, π′ ∈

SPos(s′). With c v s and Definition 1.10(l) we also have s|δ(π) = s|δ(π′) or

s|δ(π) =? s|δ(π′), thus s′|π = s′|π′ or s′|π =? s′|π′ .

(m) Let π 6= π′, c′|π = c′|π′ with hc′(c
′|π) ∈ Instances ∪Arrays. Assume {π, π′} 6⊆

SPos(s′). If s|δ(π) 6= s|δ(π′) or δ(π), δ(π′) have different suffixes w.r.t. s, then with

c v s and Definition 1.10(m) we also have s|δ(π)%$s|δ(π′). Thus, if s′|π 6= s′|π′ or

π, π′ have different suffixes w.r.t. s′, we also have s′|π%$s′|π′ .

(n) Let π = αρ and π′ = αρ′ with ρ 6= ε, where ρ, ρ′ have no common intermediate

reference from α in c′. Let c′|π = c′|π′ .
• Assume π, π′ ∈ SPos(s′). With c v s and Definition 1.10(n) we also have

s|δ(π) = s|δ(π′), thus s′|π = s′|πρ.
• Assume {π, π′} 6⊆ SPos(s′). With c v s and Definition 1.10(n) we also have

s|δ(π)%$s|δ(π′) and, if ρ′ = ε, also s|δ(π)	F with F ⊆ ρ. Thus, we also have

s′|π%$s′|π′ and, if necessary, s′|π	F .

(o – r) Not applicable, as c′ is concrete

Now we consider the remaining cases, where the positions are changed by the PUT-

FIELD operation. According to Lemma 1.42 for c′|π 6= c|δ(π) there is a position η such

that c′|π = c|OS0,0η and s′|π = s|OS0,0η. Similarly, for c′|π′ 6= c|δ(π′) there is a position η′

such that c′|π′ = c|OS0,0η′ and s′|π′ = s|OS0,0η′ .

(a – c) Trivial.

(d) Assume π ∈ SPos(s′) and c′|π 6= c|δ(π). With c v s and Definition 1.10(d) we

also have c′|π = c|OS0,0η = s|OS0,0η = s′|π.

(e) Assume π ∈ SPos(s′) and c′|π 6= c|δ(π). With c v s and Definition 1.10(e) we also

have hc′(c
′|π) = hc(c|OS0,0η) = h(s|OS0,0η) = hs′(s

′|π) or h(s|OS0,0η) = hs′(s
′|π) = ⊥.

(f) Assume π ∈ SPos(s′) and c′|π 6= c|δ(π). With c v s and Definition 1.10(f) we also

have hc′(c
′|π) = hc(c|OS0,0η) ⊆ h(s|OS0,0η) = hs′(s

′|π).

(g) Assume π ∈ SPos(s′) and c′|π 6= c|δ(π). With c v s and Definition 1.10(g) we

also have tc′(c
′|π) = tc(c|OS0,0η) ⊆ t(s|OS0,0η) = ts′(s

′|π).

82 Chapter 1. Symbolic Execution Graphs for Non-Recursive Programs

(h) Assume π ∈ SPos(s′) and c′|π 6= c|δ(π). With c v s and Definition 1.10(h) we

also have s|OS0,0η = s′|π = null or h(s|OS0,0η) = hs′(s
′|π) = f ∈ Instances with

dom(f) = ∅.

(i) Assume π ∈ SPos(s′) and c′|π 6= c|δ(π). With c v s and Definition 1.10(i) we

also have hc′(c
′|π) = hc(c|OS0,0η) = f ′, h(s|OS0,0η) = hs′(s

′|π) = f with dom(f ′) ⊇
dom(f).

(j) Assume π ∈ SPos(s′) and c′|π 6= c|δ(π). With c v s and Definition 1.10(j) we also

have hc′(c
′|π) = hc(c|OS0,0η) = (i′l, f

′) and

• h(s|OS0,0η) = hs′(s
′|π) = (il, f) with dom(f ′) ⊇ dom(f), or

• h(s|OS0,0η) = hs′(s
′|π) = f with dom(f) = ∅.

(k) Assume π, π′ ∈ SPos(s′). Let c′|π 6= c′|π′ .

• Assume c′|π = c|δ(π) and c′|π′ 6= c|δ(π′). We also have s′|π = s|δ(π) With c v s

and Definition 1.10(k) we also have s|δ(π) 6= s|OS0,0η′ , thus s′|π 6= s′|π′ .

• Assume c′|π 6= c|δ(π) and c′|π′ = c|δ(π′). This case is analogous to the previous

case.

• Assume c′|π 6= c|δ(π) and c′|π′ 6= c|δ(π′). Then with c v s and Defini-

tion 1.10(k) we also have s|OS0,0η 6= s|OS0,0η′ , thus s′|π 6= s′|π′ .

(l) Let π 6= π′, c′|π = c′|π′ with hc′(c
′|π) ∈ Instances ∪ Arrays. Assume π, π′ ∈

SPos(s′).

• Assume c′|π = c|δ(π) and c′|π′ 6= c|δ(π′). We also have s′|π = s|δ(π). Then with

c v s and Definition 1.10(l) we also have s|δ(π) = s|OS0,0η′ or s|δ(π) =? s|OS0,0η′ ,

thus s′|π = s′|π′ or s′|π =? s′|π′ .

• Assume c′|π 6= c|δ(π) and c′|π′ = c|δ(π′). This case is analogous to the previous

case.

• Assume c′|π 6= c|δ(π) and c′|π′ 6= c|δ(π′). With c v s and Definition 1.10(l)

we also have s|OS0,0η = s|OS0,0η′ or s|OS0,0η =? s|OS0,0η′ , thus s′|π = s′|π′ or

s′|π =? s′|π′ .

(m) Let π 6= π′, c′|π = c′|π′ with hc′(c
′|π) ∈ Instances ∪ Arrays. W.l.o.g. assume

π 6∈ SPos(s′). We handle both the cases that π′ ∈ SPos(s′) and π′ 6∈ SPos(s′)

here.

• Assume we have c′|π 6= c|δ(π) and c′|π′ = c|δ(π′). Let π = τβη be the PUT-

FIELD decomposition with β = v α1 v α2 v . . . αn v.

1.6. Evaluation 83

– We have τβ ∈ SPos(s′) and π = τβη 6∈ SPos(s′). Then also

OS0,0η 6∈ SPos(s), because otherwise the object at position h(s|OS0,0η)

would have been written to position π = τβη in s′. We have c|δ(π′) =

c′|π′ = c′|π = c|OS0,0η and as c v s, with Definition 1.10(m) we may

have s|δ(π′)%$s|OS0,0η
. Note that OS0,0ηs = OS0,0η̃ for some η̃ E η.

Thus we may also have s′|π′%$s′|τβη̃ and hence, s′|π′%$s′|π. Otherwise,

if the joins heap predicate does not exist, we have s|δ(π′) = s|OS0,0η

where δ(π′),OS0,0η have the same suffix w.r.t. s. Thus, we also have

s′|π′ = s′|τβη where π′, τβη have the same suffix w.r.t. s′.

– We have τ ∈ SPos(s′) and τβ 6∈ SPos(s′). With Lemma 1.43 we have

s|OS0,1%$s|OS0,0α̃j for some 1 ≤ j ≤ n and α̃j E αj. With Lemma 1.44 we

also have s|OS0,0 s|δ(π′). Thus, Definition 1.43(i) requires s′|τvα̃j%$s′|π′ .
Hence, s′|τ v α1...v α̃j%$s′|π′ and thus, s′|π%$s′|π′ .

– We have τ 6∈ SPos(s′). Then also δ(τ) 6∈ SPos(s) and as c|δ(τ) =

c|OS0,1 and c v s, with Definition 1.10(m) we have s|δ(τ)%$s|OS0,1 . With

Lemma 1.44 we have s|OS0,0 s|δ(π′). Thus, Definition 1.43(i) requires

s′|τ%$s′|π′ .

• Assume we have c′|π = c|δ(π) and c′|π′ 6= c|δ(π′). This case is analogous to the

previous case.

• Assume we have c′|π 6= c|δ(π) and c′|π′ 6= c|δ(π′). Let π = τβη and π′ =

τ ′β′η′ be the PUTFIELD decomposition with β = v α1 v α2 v . . . αn v and β′ =

v α′1 v α
′
2 v . . . α

′
n′ v.

– We have τβ ∈ SPos(s′) and τ ′β′ ∈ SPos(s′). Then OS0,0η 6∈ SPos(s)

and as c|OS0,0η = c|OS0,0η′ and c v s with Definition 1.10(m) we may

have s|OS0,0η̃%$s|OS0,0η̃′ . Thus, we have s′|τβη̃%$s′|τ ′β′η̃′ for some η̃ E η

and η̃′ E η′ and hence, s′|π%$s′|π′ .

If this joins heap predicate does not exist, we know s|OS0,0η
= s|OS0,0η′

where OS0,0η,OS0,0η
′ have the same suffix w.r.t. s. Thus, we also know

s′|π = s′|π′ where π, π′ have the same suffix w.r.t. s′. Hence, the missing

joins heap predicate is not needed.

– We have τβ 6∈ SPos(s′), τ ∈ SPos(s′), and τ ′β′ ∈ SPos(s′). Then with

Lemma 1.43 we have s|OS0,1%$s|OS0,0α̃j for some 1 ≤ j ≤ n and α̃j E αj.

So Definition 1.43(i) requires s′|τvα̃j%$s′|τ ′β′η̃′ . Hence, s′|τv α1...v α̃j%$s′|π′
and thus, s′|π%$s′|π′ .

– We have τβ ∈ SPos(s′), τ ′β′ 6∈ SPos(s′), and τ ′ ∈ SPos(s′). This case

is analogous to the previous case.

84 Chapter 1. Symbolic Execution Graphs for Non-Recursive Programs

– We have τβ 6∈ SPos(s′), τ ∈ SPos(s′), τ ′β′ 6∈ SPos(s′), and τ ′ ∈
SPos(s′). Then with Lemma 1.43 we have s|OS0,1%$s|OS0,0α̃j for some

1 ≤ j ≤ n and α̃j E αj. Furthermore, there is a minimal j′ with

τ ′ v α′1 . . . v α
′
j′ 6∈ SPos(s′). Thus we have s|OS0,0 s|

OS0,0α̃′j′
for some

α̃′j′ E α′j′ .

Thus, Definition 1.43(i) requires s′|τvα̃j%$s′|τ ′vα̃′
j′

. Hence,

s′|τ v α1...v′,α̃j%$s′|τ ′vα′1...vα′j′ and thus, s′|π%$s′|π′ .

– We have τ 6∈ SPos(s′) and τ ′β′ ∈ SPos(s′). As c|δ(τ) = c|OS0,1 and c v s

with Definition 1.10(m) we have s|δ(τ)%$s|OS0,1 . We also get s|OS0,0

s|OS0,0η̃′ for some η̃′ E η. Thus, Definition 1.43(i) requires s′|τ%$s′|τ ′β′η̃′
and thus, s′|π%$s′|π′ .

– We have τβ ∈ SPos(s′) and τ ′ 6∈ SPos(s′). This case is analogous to

the previous case.

– We have τ 6∈ SPos(s′), τ ′β′ 6∈ SPos(s′), and τ ′ ∈ SPos(s′). As c|δ(τ) =

c|OS0,1 and c v s, with Definition 1.10(m) we have s|δ(τ)%$s|OS0,1 .

Furthermore, for there is a minimal j′ with τ ′ v α′1 . . . v α
′
j′ 6∈ SPos(s′).

Thus we have s|OS0,0 s|
OS0,0α̃′j′

for some α̃′j′ C α′j′ . Due to Defini-

tion 1.43(i), we have s′|τ%$s′|τ ′vα̃′
j′

. Hence, s′|τ%$s′|τ ′v α′1...v α̃′j′ and thus,

s′|π%$s′|π′ .

– We have τβ 6∈ SPos(s′), τ ∈ SPos(s′), and τ ′ 6∈ SPos(s′). This case is

analogous to the previous case.

– We have τ 6∈ SPos(s′) and τ ′ 6∈ SPos(s′). Thus, with c v s and

Definition 1.10(m) we may have s|δ(τ)%$s|δ(τ ′) and hence, s′|π%$s′|π′ . If

this joins heap predicate does not exist, we know s|δ(τ) = s|δ(τ ′) where

δ(τ), δ(τ ′) have the same suffix w.r.t. s, thus we also have s′|τ = s′|τ ′
where τ, τ ′ have the same suffix w.r.t. s′. If β = β′ and η = η′, we do

not need to have s′|π%$s′|π′ .

Otherwise, with c v s and s|δ(τ) = s|OS0,1 we know s|δ(τ)%$s|OS0,1 .

If β 6= β′ we know that there is ρ 6= ε with v ρ = β or v ρ = β′.

Thus, as c|OS0,0ρ v = c|os0,0 , with c v s and Definition 1.10(n) we have

s|OS0,0 = s|OS0,0ρ v or s|OS0,0%$s|OS0,0 . With Definition 1.43(ii,iv), we also

add s′|π%$s′|π′ .

If β = β′ and η 6= η′, with c|OS0,0η = c|OS0,0η′ , c v s, and Defini-

tion 1.10(n) we have s|OS0,0η = s|OS0,0η′ or s|OS0,0α%$s|OS0,0α for some α.

Thus, with Definition 1.43(ii,iv) we add s′|π%$s′|π′ .

1.6. Evaluation 85

(n) Let π = αρ, π′ = αρ′ where ρ, ρ′ have no common intermediate reference from α

in c′ and let ρ 6= ε. Let c′|π = c′|π′ .

• Assume π, π′ ∈ SPos(s′).

– If c′|π = c|δ(π) and c′|π′ 6= c|δ(π′) we also have s′|π = s|δ(π), c
′|π′ = c|OS0,0η′ ,

and s′|π′ = s|OS0,0η′ by Lemma 1.42. As c|OS0,0η′ = c|δ(π) and c v s

with Definition 1.10(n) we may have s|OS0,0η′ = s|δ(π), thus we also have

s′|π′ = s′|π.

Otherwise, we have s|OS0,0η′ =? s|δ(π). With c′|αρ = c′|π = c|δ(π) =

c|δ(αρ) we also have c′|α = c|δ(α) and s′|α = s|δ(α). Furthermore, we have

c|δ(α) c|OS0,1 , as π′ = αρ′ and c|δ(αρ′) 6= c′|αρ′ . With c v s we then also

have s|δ(α) s|OS0,1 .

With s|δ(α) s|OS0,1 , s|OS0,0 s|δ(π) (as s|OS0,0η′ =? s|δ(π)) and s|δ(α)

s|δ(αρ) = s|δ(π) Definition 1.43(vi) requires s′|α%$s′|α.

We cannot have ρ′ = ε, as c′|π′ 6= c′|δ(π′) must hold.

– If c′|π 6= c|δ(π) and c′|π′ = c|δ(π′) we have a situation very similar to

the one in the previous case. However, here we may have ρ′ = ε, thus

s|OS0,0 s|δ(π′) = s|δ(α). In this case, according to Definition 1.43(vii),

we added s′|α	F with F ⊆ ρ (we only added the written field, the fields

on the path from s|δ(α) to s|OS0,1 , and the fields on the path from s|OS0,0

to s|δ(π) – all these are contained in ρ).

– If c′|π 6= c|δ(π), c
′|π′ 6= c|δ(π′) we also have c′|π = c|OS0,0η, s

′|π = s|OS0,0η,

c′|π′ = c|OS0,0η′ , and s′|π′ = s|OS0,0η′ by Lemma 1.42. As c|OS0,0η =

c|OS0,0η′ and c v s we may have s|OS0,0η = s|OS0,0η′ , thus we also have

s′|π = s′|π′ .

Otherwise, we have s′|π =? s′|π′ . If c′|α = c|δ(α) we also have s′|α = s|δ(α).

As π = αρ and π′ = αρ′, we know that c|OS0,1 is a common intermediate

reference of ρ, ρ′ for α in c′. Thus, we do not need to have s′|π%$s′|π′ .

If c′|α 6= c|δ(α), let α = ταβαηα be the PUTFIELD decomposition of α.

Then we also have c′|α = c|OS0,0ηα , and s′|α = s|OS0,0ηα . With c v s and

Definition 1.10(n) have s|OS0,0ηα%$s|OS0,0ηα and, if ρ′ = ε, s|OS0,0ηα	F
with F ⊆ ρ. Thus, we also have s′|α%$s′|α and, if ρ′ = ε, also s′|α	F
with F ⊆ ρ.

• Otherwise, we have {π, π′} 6⊆ SPos(s′). W.l.o.g. assume π 6∈ SPos(s′). We

handle both the cases that π′ ∈ SPos(s′) and π 6∈ SPos(s′) here. In all

cases we need to show s′|α%$s′|α and, if ρ′ = ε, also s′|α	F with F ⊆ ρ.

86 Chapter 1. Symbolic Execution Graphs for Non-Recursive Programs

If c′|π 6= c|δ(π), let π = τβη be the PUTFIELD decomposition with

β = v α1 v α2 v . . . αn v Similarly, if c′|π′ 6= c|δ(π′) let π′ = τ ′β′η′ and

β′ = v α′1 v α
′
2 v . . . α

′
n′ v.

– Assume we have c′|π 6= c|δ(π) and c′|π′ = c|δ(π′). Hence, with c v s, we

have s|δ(α) s|OS0,1 . Similarly, we have s|δ(α) s|δ(π′) = s|δ(αρ′). With

Lemma 1.44 we have s|OS0,0 s|δ(π′). Thus, Definition 1.43(vi) requires

s′|α%$s′|α.

If ρ′ = ε, we have s|δ(α) = s|δ(π′). Thus, we have s|OS0,0 s|δ(α).

According to Definition 1.43(vii) we then have s′|α	F with F ⊆ ρ (we

only added the written field, the fields on the path from s|δ(α) to s|OS0,1 ,

and the fields on the path from s|OS0,0 to s|δ(π′) – all these are contained

in ρ).

– Assume we have c′|π = c|δ(π) and c′|π′ 6= c|δ(π′). Hence, with c v s, we

have s|δ(α) s|OS0,1 . Similarly, we have s|δ(α) s|δ(π) = s|δ(αρ). With

Lemma 1.44 we have s|OS0,0 s|δ(π). Thus, Definition 1.43(vi) requires

s′|α%$s′|α.

If ρ′ = ε, we have c|δ(α) = c|δ(π). Thus, with c v s, Definition 1.10(n),

s|δ(α) = s′|α, and s|δ(π) = s′|π, we do not need to add a heap predicate.

– Assume we have c′|π 6= c|δ(π) and c′|π′ 6= c|δ(π′). As ρ, ρ′ have no common

intermediate reference, and both π, π′ are affected by the PUTFIELD

operation, we know c|δ(α) 6= c′|α and τ = τ ′ C α. Thus, let α = τβαηα

be the PUTFIELD decomposition of α.

∗ We have τβ ∈ SPos(s′) and τ ′β′ ∈ SPos(s′). We have c|OS0,0η =

c|OS0,0η′ and {OS0,0η,OS0,0η
′} 6⊆ SPos(s). With c v s and Def-

inition 1.10(n) we have s|OS0,0ηα
%$s|OS0,0ηα

. Thus, we also have

s′|α%$s′|α. If ρ′ = ε, we also have s|OS0,0ηα
	F and s′|α	F where

F ⊆ ρ.

∗ We have τβ 6∈ SPos(s′), τ ∈ SPos(s′), and τ ′β′ ∈ SPos(s′).

We also have α C τβ, as τ ′β′ ∈ SPos(s′). Thus, τ C α C τβ.

From this we conclude, with c|OS0,1 = c|OS0,0α1 v ...αn and c v s, that

s|OS0,0ηα
 s|OS0,1 . We also have s|OS0,0 s|OS0,0ηα

. Thus, with

Definition 1.43(vi) we have s′|α%$s′|α.

With Definition 1.43(vii), we get s′|α	F (we only added the written

field, the fields on the path from s|os0,0ηα to s|OS0,1 , and the fields on

the path from s|OS0,0 to s|OS0,0ηα
– all these are contained in ρ).

∗ We have τβ ∈ SPos(s′), τ ′β′ 6∈ SPos(s′), and τ ′ ∈ SPos(s′). This

case is analogous to the previous case.

1.6. Evaluation 87

∗ We have τβ 6∈ SPos(s′), τ ∈ SPos(s′), τ ′β′ 6∈ SPos(s′), and τ ′ ∈
SPos(s′). If α C τβ, we have s|OS0,0ηα

 s|OS0,1 and s|OS0,0

s|OS0,0ηα
, just as in the previous case. Thus, with Definition 1.43(vi,

vii), we add s′|α%$s′|α and s′|α	F where F is constructed as in the

previous case.

Otherwise, if τβ E α, there is a minimal j with τ v α1 . . . v αj 6∈
SPos(s′). We then also have OS0,0αj 6∈ SPos(s) and s|OS0,0

s|OS0,0αj
. With c v s and c|OS0,1 = c|OS0,0αj we also get s|OS0,0αj

s|OS0,1 .

Because of τβ E α and τβ 6∈ SPos(s′) we have s′|α = s′|τβ.

Thus, with Definition 1.43(vi, vii) we get s′|α%$s′|α and s′|α	F (we

only added the written field, the fields on the path from s|OS0,0αj
to

s|OS0,1 , and the fields on the path from s|OS0,0 to s|OS0,0αj
– all these

are contained in ρ).

∗ We have τ 6∈ SPos(s′) and τ ′β′ ∈ SPos(s′). This is not possible, as

τ = τ ′.

∗ We have τβ ∈ SPos(s′) and τ ′ 6∈ SPos(s′). This is not possible, as

τ = τ ′.

∗ We have τ 6∈ SPos(s′), τ ′β′ 6∈ SPos(s′), and τ ′ ∈ SPos(s′). This is

not possible, as τ = τ ′.

∗ We have τβ 6∈ SPos(s′), τ ∈ SPos(s′), and τ ′ 6∈ SPos(s′). This is

not possible, as τ = τ ′.

∗ We have τ 6∈ SPos(s′) and τ ′ 6∈ SPos(s′). With c v s and s|δ(τ) =

s|OS0,1 we know s|δ(τ)%$s|OS0,1 .

If β = β′, we have α B τβ = τ ′β′ and c|OS0,0ηαρ = c|OS0,0ηαρ′

where ρ, ρ′ have no common intermediate reference from OS0,0ηα

in c. Then, with c v s and Definition 1.10(n) we have s|OS0,0ηαρ =

s|OS0,0ηαρ′ or s|OS0,0ηα
%$s|OS0,0ηα

. Thus, with Definition 1.43(ii,iv)

we add s′|π%$s′|π′ . If ρ′ = ε, we with Definition 1.10(n) we also

have s|OS0,0ηα = s|OS0,0ηαρ or s|OS0,0ηα
	F where F ⊆ ρ. Thus, with

Definition 1.43(iii,v) we also add s′|π	F .

Otherwise, if β 6= β′ we know that there is γ 6= ε with γ v = β

or γ v = β′. Thus, as c|OS0,1γ = c|os0,1 , with c v s and Defi-

nition 1.10(n) we have s|OS0,1 = s|OS0,1γ or s|OS0,1%$s|OS0,1 . With

Definition 1.43(ii,iv), we also add s′|π%$s′|π′ .

88 Chapter 1. Symbolic Execution Graphs for Non-Recursive Programs

If ρ′ = ε, we know β′ C β and η′ = ε, as ρ, ρ′ have no common

intermediate reference from α in c′. Thus, π′ = α = τβ′ and c′|α =

c|OS0,0 . With π = τβη = τβ′ρ we also have c|OS0,0 = c|OS0,0ρ. With

c v s and Definition 1.10(n) we have s|OS0,0 = s|OS0,0ρ or s|OS0,0	F
with F ⊆ ρ. Thus, with Definition 1.43(iii,v) we add s′|π	F with

F ⊆ ρ.

(o – r) Not applicable, as c′ is concrete �

1.6.2. Writing into arrays using AASTORE etc.

Writing into an array is problematic if the necessary information about the array or the

used index is not available. In particular, the connection from the array to the reference

stored into the array cannot represented in the state without heap predicates.

First, we consider the case when the array we write into does not have any defined

index, i.e., if r is the reference of the array and h(r) = (il, f) is the data associated with

that reference, we have dom(f) = ∅.
Let s

Eval−−−→ s′ be the states involved in the evaluation of a AASTORE operation on an

abstract array. An AASTORE decomposition corresponding to the PUTFIELD decompo-

sition in Definition 1.45 is not very useful, as in s′ the position corresponding to τv does

not exist (as for the array no index is defined). Thus, a case analysis taking into account

whether τβ ∈ SPos(s′) (for β as in Definition 1.45) is not very useful. Instead, if we

write into index i of the array, we define β = i α1 i . . . αn i and build the proof based on

the existence of positions OS0,0αj ∈ SPos(s).

Definition 1.46 (Evaluating AASTORE) Let pp0 be an AASTORE opcode and let

s be the corresponding state with s = (〈fr0, . . . , frn〉, h, t, hp, sf, e, ic, sr) and fri =

(ppi, lvi, osi). Let s|OS0,0 =: rc, s|OS0,1 =: iindex, and s|OS0,2 =: rp. Let there be no

reference r with r =? rp, let there be no heap predicate rp? and let (il, f) = h(rp) ∈
Arrays with dom(f) = ∅.

Then we define s′ with s
Eval−−−→ s′ as s′ = (〈fr′0, fr1, . . . , frn〉, h, t, hp′, sf, e, ic,⊥)

with fr′0 = (pp0, lv0, os
′
0). The topmost operand stack os′0 is identical to os0, where just

the three topmost elements rc, iindex, and rp are removed. We define hp′ ⊇ hp where we

add heap predicates according to the following rules:

(i) for all rb with rc rb we add rp%$rb and ra%$rb for all ra%$rp.

(ii) if there are π, ρ 6= ρ′ where s|π = rc and s|πρ = s|πρ′ , then we add rp%$rp and

ra%$ra for all ra%$rp.

1.6. Evaluation 89

(iii) if there are π, ρ, ρ′ where s|π = rc and s|πρ%$s|πρ′ , then we add rp%$rp and ra%$ra
for all ra%$rp.

(iv) if there are π, ρ 6= ρ′ where s|π = rc and s|πρ =? s|πρ′ , then we add rp%$rp and

ra%$ra for all ra%$rp.

(v) if there are π, ρ, ρ′ with ρ′ 6= ε where s|π = rc and s|πρ = s|πρρ′ , then we add rp	F
and ra	F for all ra%$rp where F contains all fields in ρ′

(vi) if there are π, ρ with s|π = rc and s|πρ	F , then we add rp	F and ra	F for all

ra%$rp.

(vii) if there are ra, rb with ra rb, ra rp, rc rb, and the paths from ra to rp and

ra to rb have no common intermediate reference, then we add ra%$ra

(viii) if there is ra with ra rp, rc ra then we add ra	F where F contains the fields

on the paths from ra to rp and rc to ra

As an example, consider that r references an array and we write r into this array

(corresponding, for example, to r[0] = r). Then, even if the state does not explicitly give

index information for the array (i.e., h(r) = (il, f) with dom(f) = ∅), we know that after

the write access the written reference r can be reached from the array reference (also r).

This implicit information is used in Definition 1.46(viii), where we have ra = rp = r,

rc = ra = r, and the implicit connection of rp to rc using the array index.

Theorem 1.45 Let s, s′ be states as in Definition 1.46 with s
Eval−−−→ s′. Then for all

states c, c′ with c v s and c
jvm−−→ c′ we have c′ v s′.

As in the proof of Theorem 1.41 and Theorem 1.49, we define a mapping function δ. In

this case, δ is very similar to the function defined for the proof of Theorem 1.41, where

the topmost operand stack just differs by three instead of two references.

Definition 1.47 (δ) Let c
jvm−−→ c′ be a concrete AASTORE evaluation with c, c′ as

defined in Theorem 1.45. Then let δ denote the function that maps positions in c′,

which has a shorter operand stack than c, to positions in c. For that, let |ω| = 1.

δ(ωπ) =

OS0,j+3π if ω = OS0,j

ωπ otherwise

90 Chapter 1. Symbolic Execution Graphs for Non-Recursive Programs

Definition 1.48 (AASTORE decomposition) Let c
jvm−−→ c′ be a concrete AASTORE

evaluation with c, c′ as defined in Theorem 1.45. Let i be the index used in the write

access. For any π ∈ SPos(c′) with c′|π 6= c|δ(π) we define its AASTORE decomposition

as π = τβη where

• τ is the shortest prefix of π such that both c′|τ = c|OS0,2 and τi E π

• β is the longest position of the form β = i α1 i α2 i . . . i αn i for some n ≥ 0 where

τβ E π, c′|τiαj = c|OS0,2 , and c′|τiρ 6= c|OS0,2 for all ε 6= ρ C αj and all 1 ≤ j ≤ n.

Note that this implies c′|τβ = c′|τi = c|OS0,0 and c′|π = c|OS0,0η.

Lemma 1.46 (Change of abstract states by AASTORE) Let s, s′, c, c′ as defined

in Theorem 1.45. For any π ∈ SPos(c′) we have:

• if c′|π = c|δ(π) and π ∈ SPos(s′), then s′|π = s|δ(π)

• if c′|π 6= c|δ(π), then for the corresponding AASTORE decomposition π = τβη with

β = i α1 i . . . αn i we have

– s′|τ = s|OS0,2 if τ ∈ SPos(s′)

– for all 1 ≤ j ≤ n with OS0,0αj ∈ SPos(s) : s|OS0,0αj = s|OS0,2

– s′|π = s|OS0,0η if π ∈ SPos(s′)

Proof. According to Definition 1.46 we know s|OS0,2 6= null and no heap predicate

s|OS0,2? exists, thus with c v s we have c|OS0,2 6= null. Hence, c′|π = c|δ(π) means that

the position π is not influenced by the AASTORE instruction. This implies that we also

have s′|π = s|δ(π).

Now let c′|π 6= c|δ(π) and let π = τβη be the AASTORE decomposition. Since τ is

the shortest prefix of π with c′|τ = c|OS0,2 and τ i E π, this path is not affected by the

evaluation, i.e., c|τ = c|δ(τ) and s′|τ = s|δ(τ).

First assume s′|τ 6= s|OS0,2 . With c|δ(τ) = c′|τ = c|OS0,2 and s|δ(τ) = s′|τ 6= s|OS0,2 ,

from c v s and Definition 1.10(l) we can conclude s|δ(τ) =? s|OS0,2 . This contradicts

Definition 1.46, where such heap predicates are not allowed. Thus, we have shown that

s′|τ = s|OS0,2 .

Now assume that s|OS0,0αj 6= s|OS0,2 . We have c|OS0,2 = c′|τ = c′|τiαj = c|OS0,0αj . Thus,

c v s and Definition 1.10(l) implies s|OS0,2 =? s|OS0,0αj or s|OS0,2 = s|OS0,0αj . Thus, with

Definition 1.46 we have s|OS0,0αj = s|OS0,2 .

1.6. Evaluation 91

As η was not affected by AASTORE, s′|τβ = s|OS0,0 implies s′|π = s|OS0,0η. �

Lemma 1.47 Let s, s′, c, c′, i as defined in Theorem 1.45 and Definition 1.48. Let

π 6= π′ ∈ SPos(c′) with c′|π = c′|π′ , hc′(c′|π) ∈ Arrays ∪ Instances, c′|π 6= c|δ(π),

c′|π′ = c|δ(π′), and π 6∈ SPos(s′). Let π = τβη be the AASTORE decomposition with

β = i α1 i α2 i . . . αn i. Then we have s|OS0,0 s|δ(π′).

Proof. If δ(π′),OS0,0η ∈ SPos(s), by c v s and Definition 1.10(m) we have

s|δ(π′) = s|OS0,0η or s|δ(π′) =? s|OS0,0η. If {δ(π′),OS0,0η} 6⊆ SPos(s), by c v s and

Definition 1.10(l) we may have s|δ(π′)%$s|OS0,0η̃ for some η̃ C η. If this heap predicate

does not exist, we have s|δ(π′) = s|OS0,0η
. In all cases we have s|OS0,0 s|δ(π′). �

Proof. (of Theorem 1.45 (AASTORE is correct)) Let c, c′, s, s′ be states as defined in

Theorem 1.45. We show the claim by showing the individual items of Definition 1.10.

Let π, π′ ∈ SPos(c′).

If c′|π = c|δ(π) and c′|π′ = c|δ(π′), the proof is analogous to the corresponding parts of

the proof of Theorem 1.41.

Thus, we only consider the cases, where the positions are changed by the AASTORE

operation. According to Lemma 1.46 for c′|π 6= c|δ(π) there is a position η such that

c′|π = c|OS0,0η and s′|π = s|OS0,0η. Similarly, for c′|π′ 6= c|δ(π′) there is a position η′ such

that c′|π′ = c|OS0,0η′ and s′|π′ = s|OS0,0η′ .

(a – c) Trivial.

(d – l) These cases do not need to be considered, as π ∈ SPos(s′) and c′|π 6= c|δ(π)

contradict each other (π traverses through the array, but the array does not

represent any index).

(m) Let π 6= π′, c′|π = c′|π′ with hc′(c
′|π) ∈ Instances ∪ Arrays. W.l.o.g. assume

π 6∈ SPos(s′). We handle both the cases that π′ ∈ SPos(s′) and π′ 6∈ SPos(s′)

here.

• Assume we have c′|π 6= c|δ(π) and c′|π′ = c|δ(π′). Let π = τβη with β =

i α1 i . . . i αn i be the AASTORE decomposition.

– We have τ ∈ SPos(s′). With Lemma 1.47 we have s|OS0,0 s|δ(π′).
Thus, Definition 1.46(i) requires s′|π%$s′|π′ .

92 Chapter 1. Symbolic Execution Graphs for Non-Recursive Programs

– We have τ 6∈ SPos(s′). Then also δ(τ) 6∈ SPos(s) and as c|δ(τ) =

c|OS0,2 and c v s, with Definition 1.10(m) we have s|δ(τ)%$s|OS0,2 . With

Lemma 1.47 we have s|OS0,0 s|δ(π′). Thus, Definition 1.46(i) requires

s′|τ%$s′|π′ .

• Assume we have c′|π = c|δ(π) and c′|π′ 6= c|δ(π′). This case is analogous to the

previous case.

• Assume we have c′|π 6= c|δ(π) and c′|π′ 6= c|δ(π′). Let π = τβη and π′ =

τ ′β′η′ be the AASTORE decompositions with β = i α1 i . . . αn i and β′ =

i α′1 i . . . α
′
n′ i.

– We have τ ∈ SPos(s′) and τ ′ ∈ SPos(s′). If there is a j with 1 ≤ j ≤ n

and OS0,0αj 6∈ SPos(s), then with c|OS0,2 = c|OS0,0αj and c v s, with

Definition 1.10(m) we have s|OS0,2%$s|OS0,0α̃j for some α̃j E αj. Sim-

ilarly, if there is a j′ with 1 ≤ j′ ≤ n′ and OS0,0α
′
j′ 6∈ SPos(s), we

have s|OS0,2%$s|OS0,0α̃′j′
for some α̃′j′ E α′j′ . Thus, according to Defini-

tion 1.46(i) we add s′|π%$s′|π′ .

Otherwise, for all 1 ≤ j ≤ n and 1 ≤ j′ ≤ n′ we have OS0,0αj,OS0,0α
′
j′ ∈

SPos(s).

If β 6= β′ we know that there is ρ 6= ε with ρi = β or ρi = β′. Thus, as

c|OS0,2ρ = c|OS0,2 with c v s we have s|OS0,2 = s|OS0,2ρ or s|OS0,2%$s|OS0,2 .

Hence, with Definition 1.46(ii) we have s′|π%$s′|π′ .

Otherwise, if β = β′, we may have {OS0,0η,OS0,0η
′} 6⊆ SPos(s)

and s|OS0,0η
%$s|OS0,0η′

. If so, according to Definition 1.46(iii) we add

s′|π%$s′|π′ . If this heap predicate does not exist, we know that s|OS0,0η
=

s|OS0,0η′
where OS0,0η,OS0,0η

′ have the same suffix w.r.t. s. As β = β′,

we do not need to add s′|π%$s′|π′ .

Finally, we consider the remaining case that OS0,0η,OS0,0η
′ ∈ SPos(s).

With c v s we have s|OS0,0η = s|OS0,0η′ or s|OS0,0η =? s|OS0,0η′ . In the first

case, if η = η′, we do not need to add a joins heap predicate (as β = β′).

If η 6= η′ with Definition 1.46(ii) we add s′|π%$s′|π′ . In the latter case,

with Definition 1.46(iv) we add s′|π%$s′|π′ .

– We have {τ, τ ′} 6⊆ SPos(s′). Thus, with c v s and Definition 1.10(m)

we may have s|δ(τ)%$s|δ(τ ′) and hence, s′|π%$s′|π′ . If this joins heap

predicate does not exist, we know s|δ(τ) = s|δ(τ ′) where δ(τ), δ(τ ′) have

the same suffix w.r.t. s, thus we also have s′|τ = s′|τ ′ where τ, τ ′ have

the same suffix w.r.t. s′. If β = β′ and η = η′, we do not need to have

s′|π%$s′|π′ .

1.6. Evaluation 93

Otherwise, with c v s and s|δ(τ) = s|OS0,2 we know s|δ(τ)%$s|OS0,2 .

If β 6= β′ we know that there is ρ 6= ε with i ρ = β or i ρ = β′.

Thus, as c|OS0,0ρ i = c|os0,0 , with c v s and Definition 1.10(n) we have

s|OS0,0%$s|OS0,0 . With Definition 1.43(iii), we also add s′|π%$s′|π′ .
If β = β′ and η 6= η′, with c|OS0,0η = c|OS0,0η′ , c v s, and Defini-

tion 1.10(n) we have s|OS0,0η = s|OS0,0η′ or s|OS0,0α
%$s|OS0,0α

for some α.

Thus, with Definition 1.43(ii,iii) we add s′|π%$s′|π′ .

(n) Let π = αρ, π′ = αρ′ where ρ, ρ′ have no common intermediate reference from α

in c′ and let ρ 6= ε. Let c′|π = c′|π′ . We have {π, π′} 6⊆ SPos(s′). W.l.o.g. assume

π 6∈ SPos(s′). We handle both the cases that π′ ∈ SPos(s′) and π 6∈ SPos(s′)

here. In all cases we need to show s′|α%$s′|α and, if ρ′ = ε, also s′|α	F with

F ⊆ ρ.

If c′|π 6= c|δ(π), let π = τβη be the AASTORE decomposition with β =

i α1 i α2 i . . . αn i Similarly, if c′|π′ 6= c|δ(π′) let π′ = τ ′β′η′ and β′ =

i α′1 i α
′
2 i . . . α

′
n′ i.

• Assume we have c′|π 6= c|δ(π) and c′|π′ = c|δ(π′). Hence, with c v s, we

have s|δ(α) s|OS0,2 . Similarly, we have s|δ(α) s|δ(π′) = s|δ(αρ′). With

Lemma 1.47 we also have s|OS0,0 s|δ(π′). Thus, Definition 1.46(vii) requires

s′|α%$s′|α.

If ρ′ = ε, we have s|δ(α) = s|δ(π′). Thus, we have s|OS0,0 s|δ(α). According

to Definition 1.46(viii) we then have s′|α	F with F ⊆ ρ (we only added the

fields on the path from s|δ(α) to s|OS0,2 and the fields on the path from s|OS0,0

to s|δ(π′) – all these are contained in ρ).

• Assume we have c′|π = c|δ(π) and c′|π′ 6= c|δ(π′). Hence, with c v s, we

have s|δ(α) s|OS0,2 . Similarly, we have s|δ(α) s|δ(π) = s|δ(αρ). With

Lemma 1.47 we also have s|OS0,0 s|δ(π). Thus, Definition 1.46(vii) requires

s′|α%$s′|α.

If ρ′ = ε, we have c|α = c|δ(π). With c v s, Definition 1.10(n), s|δ(α) = s′|α,

and s|δ(π) = s′|π, we do not need to add a heap predicate.

• Assume we have c′|π 6= c|δ(π) and c′|π′ 6= c|δ(π′). As ρ, ρ′ have no common in-

termediate reference, and both π, π′ are affected by the AASTORE operation,

we conclude τ = τ C α. Let α = τβαηα be the AASTORE decomposition,

thus c|OS0,0ηα = c′|α.

– We have β = β′. Thus, we have c|OS0,0η = c|OS0,0η′ with η 6= η′.

If OS0,0η,OS0,0η
′ ∈ SPos(s), with Definition 1.46(ii) we add s′|π%$s′|π′ .

If also ρ′ = ε, with Definition 1.46(v) we also add s′|π	F with F ⊆ ρ.

94 Chapter 1. Symbolic Execution Graphs for Non-Recursive Programs

Otherwise, if {OS0,0η,OS0,0η
′} 6⊆ SPos(s), with c v s and Defini-

tion 1.10(n) we have s|OS0,0ηα
%$s|OS0,0ηα

and, if ρ′ = ε, s|OS0,0ηα
	F with

F ⊆ ρ. Thus, with Definition 1.46(iii,vi) we add s′|π%$s′|π′ and, if ρ′ = ε,

also s′|π	F .

– We have β 6= β′. We know that there is γ 6= ε with γ i = β or γ i = β′.

Thus, as c|OS0,2γ = c|OS0,2 , with c v s and Definition 1.10(m) we have

s|OS0,2 = s|OS0,2γ or s|OS0,2%$s|OS0,2 . With Definition 1.46(ii,iii), we also

add s′|π%$s′|π′ .
If ρ′ = ε, we know β′ C β and η′ = ε, as ρ, ρ′ have no common inter-

mediate reference from α in c. Thus, π′ = α = τβ′ and c′|α = c|OS0,0 .

With π = τβη = τβ′ρ we also have c|OS0,0 = c|OS0,0ρ. With c v s and

Definition 1.10(m) we have s|OS0,0 = s|OS0,0ρ or s|OS0,0	F with F ⊆ ρ.

Thus, with Definition 1.46(v,vi) we add s′|π	F with F ⊆ ρ.

(o – r) Not applicable, as c′ is concrete �

Definition 1.46 can only be used to evaluate a AASTORE operation if the array does

not define any index, i.e., for h(r) = (il, f) we have dom(f) = ∅. However, we may have a

situation where dom(f) 6= ∅, but the index i used to write into the array is unknown. As

the size of the array is known to be of a specific size an integer refinement on the index

variable could be used in order to result in situations where for both the array and the

index all information needed for a (trivial) evaluation is available.

As arrays tend to be very large (and, thus, the index refinement may produce many

states), instead in the implementation, we automatically transform arrays with dom(f) 6=
∅ into an array with dom(f) = ∅. This is done by replacing the old array (with

dom(f) 6= ∅) by a new and empty array (with dom(f ′) = ∅) and then storing all pre-

viously stored elements (in f) into the new array (in f ′) using the procedure outlined

in Definition 1.46. As this is rather technical, in this thesis we will not provide further

details for this workaround.

1.6.3. Reading from arrays using AALOAD etc.

Loading from an array using one of the opcodes IALOAD, LALOAD, FALOAD, DALOAD,

AALOAD, BALOAD, CALOAD, or SALOAD is trivial in a state where the array index is

known and where the content of the array is represented (i.e., if for an index i1 with

h(i1) = [i, i] ∈ Integers we have h(o) = (il, f) ∈ Arrays with i ∈ dom(f)).

In all other cases, we can add a new reference as we did in Definition 1.22, with the

only difference that we do not alter the array content function f . However, in the case of

an AALOAD opcode, we need to model the relationship between the added reference and

1.6. Evaluation 95

the other references on the heap.

In the following definition we only consider the case that we actually read from an array,

i.e., no exception is thrown (the array exists and the index is in the bounds defined by

the array size). Furthermore, we demand that no =? heap predicate exists for the array

reference. This is no real restriction, as equality refinement can be used to remove such

heap predicates.

Definition 1.49 (Evaluating AALOAD) Let s be a state evaluating AALOAD, read-

ing from an array r = s|OS0,1 at index iindex = s|OS0,0 . Let there be no reference

r̂ with r =? r̂ and let h(r) = (il, f) ∈ Arrays. Let iindex be a reference with

h(iindex) ∈ Integers. Furthermore, we demand that |h(iindex)| ≥ 2 or |h(il)| ≥ 2

(i.e., iindex or il do not reference a literal value).

Then we define s′ with s
Eval−−−→ s′ as s′ = (〈fr′0, fr1, . . . , frn〉, h′, t′, hp′, sf, e, ic,⊥).

We introduce a new reference r′ that is the value read from the array. In s′ we define

fr′0 = (pp0, lv0, os
′
0). The topmost operand stack os′0 is identical to os0, where the two

topmost elements r and i are removed and the reference r′ is added at position OS0,0.

Let the component type componenttype be some class, interface, or array. Let

Tcomponenttype ⊆ Types be the abstract type that contains exactly all arrays and

non-abstract classes which are subtypes of componenttype. As in Definition 1.22, if

Tcomponenttype = ∅ we (re)define r′ = null, t′ = t + {r′ 7→ ∅} and disregard the following

definitions of s′.

Otherwise, Tcomponenttype 6= ∅ and we define s′ using

• h′ = h+ {r′ 7→ f ′ ∈ Instances} where dom(f ′) = ∅

• t′ = t+ {r′ 7→ Tcomponenttype}
Furthermore, we extend the heap predicates as follows:

hp′ =hp

∪ {r′ =? r′′ | ∃j ∈ N : s|OS0,1j = r′′} (1)

∪ {r′ =? r′′ | ∃j ∈ N : s|OS0,1j = rγ ∧ r′′ =? rγ} (2)

∪ {r′%$r′′ | ∃τ : s|OS0,1τ = rγ ∧ r′′%$rγ} (3)

∪ {r′%$r} (4)

∪ {r′%$r′′ | ∃τ 6= ε, j ∈ N : s|OS0,1jτ = rγ ∧ r′′ =? rγ} (5)

∪ {r′%$r′′ | ∃τ 6= ε, j ∈ N : s|OS0,1jτ = r′′} (6)

∪ {r′%$r′ | ∃τ : s|OS0,1τ = rγ ∧ rγ%$rγ} (7)

∪ {r′	F | ∃τ : s|OS0,1τ = rγ ∧ rγ	F} (8)

∪ {r′ =? r′′ | r%$r′′} (9)

∪ {r′?}

96 Chapter 1. Symbolic Execution Graphs for Non-Recursive Programs

As in the proof for Theorem 1.41, for the correctness proof we need a function δ that

maps positions from c to c′.

Definition 1.50 (δ) Let c
jvm−−→ c′ be a concrete AALOAD evaluation with c, c′ as de-

fined in Theorem 1.49. For hc(c|OS0,0) = [i, i] ∈ Integers let i ∈ N be the array index

we read from.

Then let δ denote the partial function that maps positions in c′, which has a shorter

operand stack than c, to positions in c. For that, let |ω| = 1.

δ(ωπ) =

OS0,j+1π if ω = OS0,j ∧ j > 0

OS0,1 iπ if ω = OS0,0

ωπ otherwise

Lemma 1.48 Let s, s′, c, c′ as in Definition 1.50. If π 6= OS0,0 and π ∈ SPos(s′), then

δ(π) ∈ SPos(s).

Proof. When evaluating an AALOAD opcode, we drop two references from the operand

stack (the array read from, and the index) and put a reference onto the operand stack

(the value read from the array). We know that {OS0,0τ}∩SPos(s′) = {OS0,0}. Thus,

as π 6= OS0,0, π references data that also is available in s. The corresponding mapping

is given using δ in Definition 1.50. �

Theorem 1.49 Let s, s′ be a states as defined in Definition 1.49, i.e., s
Eval−−−→ s′. Let

c, c′ be concretes state with c v s and c
jvm−−→ c′. Then we also have c′ v s′.

Proof. Let s, s′, c, c′, i,Ψ as in Definition 1.50, Theorem 1.49, and Lemma 1.48. Let

Ψ = {OS0,0τ ∈ SPos(c′)} be the positions at or below the read reference on the operand

stack in c′. For all positions π ∈ SPos(s′), if δ(π) ∈ SPos(s), we have s|δ(π) = s′|π.

We prove c′ v s′ by checking all conditions of Definition 1.10. Let π, π′ ∈ SPos(c′).

W.l.o.g. we restrict to positions π ∈ Ψ. For this note that the values at SPos(s)

are left unchanged by the read access, i.e., we have s|δ(π) = s′|π for all π ∈ SPos(s),

1.6. Evaluation 97

and all heap predicates from s also exist in s′. Thus, with c v s, most conditions of

Definition 1.10 are trivially satisfied. Furthermore, the properties for the new reference

provided at position OS0,0 also correspond to Definition 1.10, as already shown in the

proof of Theorem 1.16.

To summarize, in this proof we concentrate on the relationships of references on the

heap, where we only consider connections that somehow involve the reference read from

the array.

(a–k) Trivial (cf. proof of Theorem 1.16).

(l) If c′|π = c′|π′ , π 6= π′, hc′(c
′|π) ∈ Instances ∪ Arrays, and π, π′ ∈ SPos(s′),

then we have π = OS0,0. We also know δ(π′) ∈ SPos(s), as π′ 6= OS0,0 and

π′ ∈ SPos(s′) holds.

If δ(π) = OS0,1 i ∈ SPos(s), then with c v s and Definition 1.10(l) we have

s|OS0,1 i = s|δ(π′) or s|OS0,1 i =? s|δ(π′). Thus, according to rules 1 and 2 in Defini-

tion 1.49 we also introduced the heap predicate s′|OS0,0 =? s′|π′ .
Otherwise, if OS0,1 i 6∈ SPos(s), then OS0,1 is = OS0,1 and with c v s and Defi-

nition 1.10(m) we have s|OS0,1%$s|δ(π′) (as δ(π) 6∈ SPos(s), but δ(π′) ∈ SPos(s)).

Thus, according to rule 9 in Definition 1.49 we also introduced the heap predicate

s′|OS0,0 =? s′|π′ .

(m) If c′|π = c′|π′ , π 6= π′, hc′(c
′|π) ∈ Instances ∪Arrays, and {π, π′} 6⊆ SPos(s′),

then one of the following cases holds.

• π = OS0,0 ∈ SPos(s′), π′ 6∈ SPos(s′), and

– δ(π) ∈ SPos(s). Thus, with c v s and Definition 1.10(m) we have

s|δ(π)%$s|δ(π′), as δ(π) ∈ SPos(s), but δ(π′) 6∈ SPos(s). Thus, according

to rule 3 in Definition 1.49 we added s′|π%$s′|π′ .
– δ(π) 6∈ SPos(s), thus δ(π)s = OS0,1. Thus, with c v s and Defini-

tion 1.10(m) we may have s|δ(π)%$s|δ(π′). If so, according to rule 3 in

Definition 1.49 we added s′|π%$s′|π′ . If we do not have s|δ(π)%$s|δ(π′),
we know s|δ(π) = s|δ(π′). With δ(π)s = OS0,1, according to rule 4 in

Definition 1.49 we added s′|π′%$s′|π.

• π 6∈ SPos(s′), π′ ∈ SPos(s′).

– If π′ ∈ Ψ, we have π′ = OS0,0. This case is analogous to the first case.

– If π′ 6∈ Ψ, according to Lemma 1.48 we have δ(π′) ∈ SPos(s). With

c v s and Definition 1.10(l,m) we have s|δ(π)%$s|δ(π′) or s|δ(π) =? s|δ(π′).
Thus, according to rules 3 and 5 in Definition 1.49 we have s′|π%$s′|π′ .

• π 6∈ SPos(s′), π′ 6∈ SPos(s′)

98 Chapter 1. Symbolic Execution Graphs for Non-Recursive Programs

– δ(πs′) ∈ SPos(s)

∗ π′ 6∈ Ψ. Then with c v s and Definition 1.10(m) we may have

s|δ(π)%$s|δ(π′). If so, according to rule 3 we then also have s′|π%$s′|π′ .
If we do not have s|δ(π)%$s|δ(π′), then we know s|δ(π) = s|δ(π′). With

π ∈ Ψ we know that there is a connection from s|OS0,0 i to s|δ(π′),
i.e., there exists τ with s|OS0,0 iτ = s|δ(π′). Thus, with rule 6 we add

s′|π%$s′|π′ .
∗ π′ ∈ Ψ. We have πs′ = π′s′ = OS0,1. Thus, we need s′|OS0,0%$s′|OS0,0 .

With c v s and Definition 1.10(n) we have s|OS0,1τ%$s|OS0,1τ for some

τ . Thus, according to rule 7 we add the necessary heap predicate.

– δ(πs′) 6∈ SPos(s). Thus, δ(π) = OS0,1.

∗ π′ 6∈ Ψ. Thus, with c v s and Definition 1.10(m) we have

s|δ(π)%$s|δ(π′). According to rule 3 we add s|π%$s|π′ .
∗ π′ ∈ Ψ. Thus, we have δ(π)s = δ(π′)s = OS0,1 and with c v s and

Definition 1.10(n) we have s|δ(π)%$s|δ(π′). According to rule 7 we add

s|π%$s|π′ .

(n) Let π = ατ and π′ = ατ ′ with τ 6= ε, τ, τ ′ have no common intermediate reference

from α in c′, hc′(c
′|π) ∈ Instances ∪ Arrays, and c′|π = c′|π′ . Then we have

{π, π′} 6⊆ SPos(s′) and α = OS0,0ρ for some ρ. With c v s and Definition 1.10(n)

we then have s|δ(α)	F and s|δ(α)%$s|δ(α). Thus, with rules 8 and 7 we then also

have s′|α	F and s′|α%$s′|α.

(o – r) Not applicable, as c is concrete. �

1.6. Evaluation 99

1.6.4. Class instances and interned Strings

As explained at the beginning of this chapter, the technique presented in this thesis does

not correctly handle java.lang.Class object instances resulting out of calls to the opcode

corresponding to x.class or using the native method x.getClass().

Example 1.50

1 public void test(Object x) {

2 Object y = new Object ();

3 if (x == y.class) {

4 // may be true

5 }

6 Object z = new Object ();

7 if (x == z.getClass ()) {

8 // may be true

9 }

10 }

Similarly, instances of java.lang.String created from constant strings or using the native

method x.intern() may also be identical to already existing String object instances.

Example 1.51

1 public void test(Object x) {

2 String y = new String("abc");

3 if (x == y.intern ()) {

4 // may be true

5 }

6

7 // constant strings are automatically "interned"

8 // i.e., "abc" == "abc". intern () is guaranteed

9 String z = "abc";

10 if (x == z) {

11 // may be true

12 }

13 }

With the following changes to the technique presented in this thesis, handling of Class

and String object instances can be done according to [GJS+12]. Whenever an object

100 Chapter 1. Symbolic Execution Graphs for Non-Recursive Programs

instance of type Class or String is created using the mentioned concepts, we just add the

heap predicates =? to connect the created object with all objects that may be the same

object instance.

However, it may also be the case that an object instance, e.g. a list, has a successor that

is the created Class or String object instance. If the created object did not exist at another

position in the state before, it is not possible to denote this sharing using the presented

heap predicates. Instead, when creating a new object instance of Class or String we add

%$ heap predicates to all already existing object instances that may have a successor that

is the created object instance. Note that this implicit sharing also demands minor changes

to the intersection process (Definition 1.38), which we will not present here.

In order to also represent handling of Class and String object instances using concrete

states (i.e., without heap predicates), we would need to extend the state definition to also

contain two maps. One map assigns a Class object instance to each class. The other map

assigns an object instance of type String to each interned character sequence. With this

new definition of states all concepts working on states, most prominently the instance

definition (Definition 1.10) also need to be adapted.

Note that there may be situations where getClass() or intern() is invoked on an object

instance with an unknown type or a String object representing an unknown character

sequence, respectively. In this case the maps mentioned above do not help and, as a

consequence, we need to add heap predicates.

1.7. Abstraction

In order to obtain a finite Symbolic Execution Graph even for infinite computations

with an infinite number of states, we need to introduce abstraction. As recursion is not

considered in this chapter, any nonterminating program run must traverse a loop in the

program infinitely often. Thus, there is an opcode in the program which appears in

infinitely many states of the computation. In order to introduce abstraction, before we

continue evaluation with a state, we look for similar states with the same opcode in the

graph. If such a state is found, we introduce abstraction based on the information of the

two states.

Let s1, s2 be states in the graph with the same opcodes, initialization status, and

exception status. Let sstart be the start state of the graph. If there are paths in the graph

from s|start to s1 and from s1 to s2, i.e., s2 comes after s1, we demand that s2 v s1 or

enforce abstraction. By this abstraction as described in Section 2.2 we obtain a state

s3 with s1 v s3 and s2 v s3. As s2 v s3 and s2 6v s1, with Theorem 1.4 this gives us

s2 v s3 6v s1, thus also s3 6= s1 and s1 Ĺ s3. Thus, when we add s3 to the graph, we add

a state with strictly less information than s1. By considering both the information from

s1 and s2 this process quickly reaches a suitably abstract state that represents all possible

1.7. Abstraction 101

computations of any given loop. Note that s2 = s3 is allowed and not problematic, as still

we have s1 Ĺ s2 = s3.

Thus, when we have found a suitably abstract state sn, for the next repeating state sn+1

we can make use of the fact that all computations represented by sn+1 are already repre-

sented by sn and connect sn+1 back to sn using an instance edge, denoted sn+1
Instance−−−−−→ sn

and forming a cycle in the Symbolic Execution Graph.

However, so far we did not show that starting from any state there are only finitely

many abstraction steps possible. If this was not the case, the idea explained above could

still lead to a non-terminating graph construction (where we abstract infinitely often).

Theorem 1.52 (Finite Abstraction Height) Let s0 be a state. Then there is no

infinite sequence of states s0 Ĺ s1 Ĺ s2 · · · .

Proof. Assume there is an infinite sequence of states s0 Ĺ s1 Ĺ s2 Ĺ · · · . Consider

Definition 1.10(a–r). For x ∈ {a, . . . , r} let sx0 Ĺ sx1 Ĺ sx2 · · · be the states from

that sequence in which the corresponding information was abstracted. As an example,

if x = i we know that for sij Ĺ sii+1 there is a position πj with dom(hsij(s
i
j|πj)))

dom(hsii+1
(sij+1|πj)) (i.e., in each step we lost information about at least one field). In

the case of heap predicates, adding any heap predicate introduces abstraction.

We now consider each item of Definition 1.10, except f (dealing with integers) and g

(dealing with types), and show that the corresponding sequence sx0 Ĺ sx1 Ĺ . . . must be

finite. It suffices to consider positions that exist in both states, as SPos(s) ⊆ SPos(s′)

for s′ v s (by Lemma 1.3).

(a–d) No abstraction is possible.

(e) For each position only a single abstraction step is possible.

(h) For each position only a single abstraction step is possible.

(i) As each type only has a finite number of instance fields, for each reference only a

finite number of abstraction steps is possible.

(j) Only two abstraction steps are possible.

(k) No abstraction step is possible.

(l) Only a single abstraction step is possible.

(m–r) As there are only a finite number of references in each state, only a finite number

of heap predicates can be added to the state. In the case of 	F , there are only

102 Chapter 1. Symbolic Execution Graphs for Non-Recursive Programs

finitely many instance fields known in the program, thus also only finitely many

subsets exist.

In the case of Definition 1.10(f) an infinite sequence as described above is possible.

For example, we could have the integer information [5, 5] ([5, 6] ([5, 7] (· · · . How-

ever, in our implementation we avoid this problem by using a counter for each value in

Integers. As an example, if [5, 5] with counter c1 is abstracted to [5, 6] with counter

c2, we demand c2 > c1. If we want to abstract a value with a counter above a cer-

tain threshold, we only allow abstraction to (−∞,∞). Thus, by using a counter for

values from Integers as described above, we also cannot have an infinite number of

abstraction steps involving Definition 1.10(f).

Finally, we may have an infinite sequence involving Definition 1.10(g). While

|2N×(PrimTypes∪ClassNames)| is infinite, when analyzing Java Bytecode programs we

only encounter a finite subset. As both PrimTypes and ClassNames are finite, we

only need to regard arrays. Using Java Bytecode it is possible to create multi-

dimensional arrays. However, the dimension of each created array is a constant defined

in the program, thus it may not be provided for example using an integer variable

containing an arbitrary number.

As there is no x ∈ {a, . . . , r} with an infinite sequence sx0 Ĺ sx1 Ĺ · · · , the sequence

s0 Ĺ s1 Ĺ s2 Ĺ . . . also cannot be infinite. �

Note that it is not necessary to introduce abstraction for every repetition as described

above. Instead, it suffices to abstract after the opcode was repeated for an arbitrary,

but finite, number of times. However, in our implementation, we abstract after the first

repetition.

1.8. Symbolic Execution Graphs

Using the concepts of refinement, abstract evaluation, and abstraction we can construct

a Symbolic Execution Graph for a given Java Bytecode program. However, so far we

did not define what exactly a Symbolic Execution Graph is and what its properties are.

Definition 1.51 (Symbolic Execution Graph) For a given start state s ∈ States,

the corresponding Symbolic Execution Graph is a graph G = (N,E,L) with N ⊆
States and E ⊆ N ×N . The labelling function L with dom(L) = E gives additional

information for each edge in the graph. First, it defines the type of each edge, which

either is an evaluation edge, a refinement edge, or an instance edge. For evaluation

edges, the label may provide additional information that can be used in further analyses.

For example, in the construction of term rewrite systems, relations of the form i1 ≤ i2

1.8. Symbolic Execution Graphs 103

are added to an evaluation edge if the relation was important for the evaluation of the

opcode (e.g., due to a comparison, or due to an array access where we know that the

index is within the bounds of the array).

Furthermore, we impose restrictions on G. G only is a Symbolic Execution Graph for

the start state s if

(i) it has finitely many states

(ii) the only state without incoming edges is the start state

(iii) all states with no outgoing edge have an empty call stack

(iv) each state with an evaluation successor has no other successor

(v) each state with a refine successor only has refine successors

(vi) each state with an instance successor only has instance successors

(vii) every loop in the graph contains at least one
Eval−−−→ edge

Using the techniques presented in this thesis, for any start state s ∈ States we are

able to construct a corresponding Symbolic Execution Graph as described in Algorithm 2

(which was already shown on page 31).

Algorithm 2: Graph construction

Input: s0 ∈ States
Output: Symbolic Execution Graph G

1: initialize G
2: AddState(G, s0)
3: for all s ∈ LeafStates(G) do
4: if s is a repetition of s′ then
5: if s v s′ then
6: connect s to s′ using an instance edge
7: else
8: ForceAbstraction(s, s′)
9: else

10: if s can be evaluated then
11: Evaluate(s)
12: else
13: Refine(s)

LeafStates The method LeafStates returns all states without any outgoing edge and

which have a non-empty call stack. These are the states that still need to be

evaluated, as no program end is reached and no other state exists of which it is an

instance.

104 Chapter 1. Symbolic Execution Graphs for Non-Recursive Programs

Refine The method Refine refines the state. In Section 1.4 we present several refinement

techniques that can be used to refine the information of a state so that, after a

finite number of refinement steps, evaluation of the resulting state(s) is possible.

The resulting states are added to the graph and connected to the state provided as

input using refinement edges.

Evaluate Similarly, the method Evaluate evaluates based on the given information.

The details for most opcodes are not given explicitly in this thesis. However, after

applying refinement if necessary, evaluation is straightforward for most opcodes. In

the case of PUTFIELD, AALOAD, and AASTORE detailed evaluation information is

given. For details we refer to Section 1.6. The resulting state is added to the graph

and connected to the state provided as input using an evaluation edge.

repetitions When finding out whether s is a repetition of s′, we only consider a state s′ if

it does not have an outgoing instance edge, it has no incoming refinement edge, and

there is a path from s0 to s′ to s in the graph. The state s then is a repetition of s′ if

both states have the same shape. This includes all opcodes, all return addresses, the

set exception, and the initialization state (Definition 1.10(a–c)). We also demand

that in s′ no split result is set, i.e., the corresponding component is set to ⊥.

ForceAbstraction The method ForceAbstraction calls Algorithm 3 (cf. Section 2.2)

and adds the resulting state to the graph. The input states are connected to the

resulting state using instance edges. If one of the input states already had an

outgoing non-instance edge, this edge and all states and edges which then are not

reachable from the start state are deleted from the graph.

We now show that this algorithm indeed terminates and provides a corresponding Sym-

bolic Execution Graph.

Lemma 1.53 Let s ∈ States. When applied to s, Algorithm 1 terminates.

Proof. Assume that all invoked methods terminate (we provide additional details in

Chapter 2). Then the algorithm does not terminate if either a leaf is handled infinitely

often, or an infinite number of leaves is added to the graph. The only case where no

state is added, is line 6. Here, an outgoing edge is added for a leaf, thus the number of

leaves strictly decreases.

In Evaluate and Refine new leaves are added and are connected to other states

of the graph. Thus, if this happens infinitely often, we obtain an infinite sequence of

(different) states in the graph.

1.8. Symbolic Execution Graphs 105

By construction, each sequence of refinement edges is finite. Next, we consider se-

quences of evaluation edges. If there is a sequence of different states containing an

infinite number of evaluation edges, the sequence contains two states si, sj of the same

shape (as we are only considering non-recursive programs in this chapter). For this it is

important to know that the number of opcodes and, therefore, return addresses in any

program is finite. Furthermore, as the number of known classes is finite, the number

of different initialization states also is finite. Thus, the sequence cannot be infinite as

we close a loop (in line 6), or we obtain an infinite sequence of Ĺ edges. According to

Theorem 1.52 this also is not possible.

Finally, we regard the abstraction process in ForceAbstraction. Here, note that

we only remove outgoing edges of states if we add a new instance edge. Thus, no new

leaves are created. �

Lemma 1.54 (Refinement Edges) For each state s with an outgoing refinement

edge we also have that s only has outgoing refinement edges.

Let si
Refine−−−−→ si+1

Refine−−−−→ si2 · · · be a sequence of refinement edges in the graph. If the

construction is completed, there is a sn with si
Refine−−−−→ si+1

Refine−−−−→ si2 · · · sn−1
Eval−−−→ sn.

If the construction is still running, the last state in the sequence is a leaf.

In both cases in the sequence each state only appears once.

Proof. According to Algorithm 2 we only add refinement edges as outgoing edges of a

leaf. Thus, as long as no other edge is added to a non-leaf state, each state with a single

outgoing refinement edge only has outgoing refinement edges. We only add edges to

non-leaf states in line 6. However, here we also remove all outgoing refinement edges.

Thus, each state s with an outgoing refinement edge only has outgoing refinement edges.

By construction we know that after finitely many refinement steps we reach a state

that can be evaluated. The state at the end of the refinement sequence cannot be a

repeating state, as the state at the start of the refinement sequence also is not repeating.

Thus, as we only add refinement edges pointing to leaves, each sequence of refinement

edges either ends in a leaf or with an evaluation edge.

By construction we also know that different states are created in the refinement

process (where at least the split result differs). Thus, in the sequence each state is only

contained once. �

106 Chapter 1. Symbolic Execution Graphs for Non-Recursive Programs

Theorem 1.55 Let s ∈ States. When applied to s, Algorithm 1 terminates and

produces a Symbolic Execution Graph with start state s.

Proof. According to Lemma 1.53 we know that the graph construction terminates,

i.e., we get a graph G = (N,E,L). We need to show that G actually is a Symbolic

Execution Graph.

(i) As the construction terminates, N is finite.

(ii) For every added state, except the start state, we also add an incoming edge.

Furthermore, if we remove an incoming edge, we also remove the state or ensure

that the state has another incoming edge.

(iii) The algorithm only terminates if no state without outgoing edge and with non-

empty call stack exists.

(iv) In line 6 we add an outgoing instance edge to a leaf. In ForceAbstraction

we only add instance edges to states that only have outgoing instance edges (if

not, other edges are removed). In Evaluate and Refine we only add edges to

leaves.

(v) The claim is shown in Lemma 1.54.

(vi) In line 6 we add an outgoing instance edge to a leaf. In ForceAbstraction we

remove non-instance edges.

(vii) Let si → si+1 → · · · sn → si be a loop without evaluation edges, where the states

si, . . . , sn are different.

The edge sn → si can only result out of line 6, as in all other cases we only add

incoming edges to a leaf and si already has an outgoing edge. Then we know that

sn is a repetition of si. Thus, we also know that si does not have an outgoing

instance edge and also does not have an incoming refinement edge. Thus, as sn

has a non-empty call stack, si either has at least one outgoing refinement edge or

a single outgoing evaluation edge (si → si+1). As shown in Lemma 1.54, at the

end of each refinement sequence there is an evaluation edge.

Thus, the claim is shown. �

A Symbolic Execution Graph corresponding to this definition has the interesting prop-

erty that for each concrete evaluation sequence starting in a state represented by the start

1.8. Symbolic Execution Graphs 107

state of the graph there is a corresponding path in the graph. As there are only evaluation

steps in the concrete evaluation sequence, but in the graph we may need to use refinement

or abstraction, there may be several states in the graph that correspond to a single state

in the concrete evaluation sequence.

Theorem 1.56 Let c
jvm−−→ c′ be a concrete computation step. If a Symbolic Execution

Graph G contains a state s1 with c v s1 (where s1 may be the start state of the graph),

then there also is a sequence s1, . . . , sn, s′ of states contained in G with the following

properties:

• if n > 1 there is a refine or instance edge si−1 → si for each 1 < i ≤ n

• there is an evaluation edge sn
Eval−−−→ s′ with c′ v s′

• we have c v si for all 1 ≤ i ≤ n

Proof. Let c, c′, s1 as in Theorem 1.56. As c
jvm−−→ c′, we know that c does not have an

empty call stack. With c v s1 the same holds for s1. Thus, with Definition 1.51 we

know that there is a successor state of s1.

If there is an evaluation edge s1 Eval−−−→ s′ with Theorem 1.38 we know that c′ v s′.

Otherwise, if s1 has an outgoing refinement edge, we know there is an edge s1 Refine−−−−→ s2

with c v s2 (as every refinement is valid). With Lemma 1.54 we also know that each

refinement sequence ends with sn
Eval−−−→ s′ where c v sn and c′ v s′. If we have

s1 Instance−−−−−→ s2, we have s1 v s2, thus, with Theorem 1.4, also c v s2. As each loop in

the graph contains at least one evaluation edge and both s1 and s2 have a non-empty

call stack, we know that after a finite sequence of instance edges we have sn
Eval−−−→ s′

with c v sn and c′ v s′. �

Based on Theorem 1.56 we can draw several conclusions.

Corollary 1.57 Let c1, c2, . . . be a finite or infinite concrete computation sequence.

Let G be a Symbolic Execution Graph with start state s where c1 v s. Then the graph

contains a sequence of states s1
1, . . . , s

n1
1 , s

1
2, . . . s

n2
2 , s

1
3, . . . with the following properties:

• if ni > 1 there is a refine or instance edge sj−1
i → sji for each 1 < j ≤ ni

• there is an evaluation edge snii
Eval−−−→ s1

i+1 with ci+1 v s1
i+1

• we have ci v sji for all 1 ≤ j ≤ ni

108 Chapter 1. Symbolic Execution Graphs for Non-Recursive Programs

Corollary 1.58 Let c1, c2, . . . be a finite or infinite concrete computation sequence.

Let G be a Symbolic Execution Graph with start state s where c1 v s. Then for each

ci the graph contains a state si such that ci v si.

Corollary 1.59 Let G be a Symbolic Execution Graph with start state s. Let c be a

concrete state. If for all states si contained in the graph we have c 6v si, then there is

no concrete evaluation sequence containing c and starting in any state ci with ci v s.

Corollary 1.60 Let G be a Symbolic Execution Graph with start state s. If for any

infinite path of states s1
1, . . . , s

n1
1 , s

1
2, . . . , s

n2
2 , . . . as described in Theorem 1.56 there is

no concrete computation sequence c1, c2, . . . with c1 v s and ci v sji for all i, 1 ≤ j ≤ ni,

then all concrete computation sequences starting in a concrete state c with c v s are

finite.

1.9. Conclusion and Outlook

With the results presented in Section 1.8, Symbolic Execution Graphs may be used for

several interesting further analyses. As already discussed, it is possible to prove termina-

tion of a program by constructing a corresponding Symbolic Execution Graph and then

showing that for each infinite path in the graph (i.e., a loop is traversed infinitely often),

there cannot be a corresponding concrete computation sequence. For further details we

refer to the PhD thesis of Marc Brockschmidt [Bro14].

Furthermore, the information contained in Symbolic Execution Graphs constructed as

described in this thesis is very precise. Thus, although an overapproximation of all possible

computation sequences is represented, this approximation is quite precise. In Chapter 4

we present a technique that uses the information provided in a Symbolic Execution Graph

and identifies parts of the code that do not have any influence to some intended result

defined by the user. Thus, Symbolic Execution Graphs may be used to optimize programs

and/or find bugs that are hard to find using existing tools.

The technique presented in this chapter is not able to deal with recursive programs.

This limitation is addressed in Chapter 3.

Extending this approach by better shape analysis is an interesting topic for future

work. For example, currently abstraction of doubly linked lists (i.e., linked lists with

an additional pointer to the previous list element) is far from perfect, as the structure

1.9. Conclusion and Outlook 109

of such lists cannot completely be described using the heap predicates presented in this

chapter. As a result, for algorithms working on doubly linked lists, unnecessary sharing

and cyclicity effects are introduced during graph construction.

Furthermore, one should think about possible use cases for the presented analysis.

While it is possible to create Symbolic Execution Graphs containing very precise infor-

mation, this comes at the cost of performance. If this precision is important, for example

to find certain hard to find bugs as explained in Chapter 4, this may be reasonable.

However, if termination analysis of real world Java programs is the goal, more sophis-

ticated abstraction heuristics must be found. In addition, extending the analysis to be

able to analyze only parts of a program and re-using previously computed analysis (i.e.,

modularization) is a very interesting topic for future work.

2. Automation

While Chapter 1 mostly dealt with the theoretical aspects of constructing Symbolic Exe-

cution Graphs, when implementing the techniques, one faces several technical challenges.

One of these challenges is to develop software based on the formal specifications so

that the resulting product can be extended over the course of several years. Development

of the AProVE project started in 2001 and until now about 550,000 source lines of code

have been developed. Of those, about 52,000 are directly related to the analysis of Java

Bytecode. As the intricacies of developing software such as AProVE are detached from

the specific area of software verification, we will not go into further details. Instead

we just emphasize that, in addition to the theoretical results, the individual techniques

have been implemented in AProVE. Furthermore, as the approach presented in Chapter 1

allows for different levels of abstraction, heuristics need to be applied when and how state

information is abstracted. We will not present the details of the heuristics implemented in

AProVE. Instead, we refer to [Bro14] in which the techniques presented in this thesis are

extended to analyze the termination behavior of Java programs. In [Bro14] the author

also provides experiments comparing the power of AProVE with competing tools in the

area of automated termination analysis of Java programs.

In this chapter the focus lies on algorithmic solutions to problems for which a direct

adaption of the already presented formalizations is not easily possible. Here the most

difficult aspect is how infinite data structures are handled, where the definition of state

positions (cf. Definition 1.5) is of special interest. For a state s containing cycles, the

set SPos(s) contains an infinite number of state positions. As such, especially aspects

of the instance definition (cf. Definition 1.10) which uses statements such as “For all

π, π′ ∈ SPos(s′)” are hard to automate.

2.1. Abstract Types

We start with issues related to the representation of abstract types as in Definition 1.1.

The range 2N×(PrimTypes ∪ ClassNames) of Types is infinite1 and, thus, handling abstract

types in an implementation is not straightforward. As we observed that abstract types

of the form “packageName.ClassName or any subtype” are used quite frequently, we de-

1In fact, an array has at most 255 dimensions. However, even with this limitation a naive implementation
would not work in practice.

112 Chapter 2. Automation

cided to make use of the notion of “or any subtype” in combination with the possi-

bility to express types without also meaning their subtypes. Using the suffix “|” we

denote concrete types, whereas the suffix “...” is used to denote the mentioned type and

all its subtypes. For example, the set described by {java.lang.Object...} both contains

java.lang.Object and java.lang.String, but also [I denoting an array of type int (as every

array is an object). So, in our implementation, the type information really corresponds

to a function References 7→ 2N×(PrimTypes ∪ ClassNames)×{|,...}. By also allowing entries

X... for interfaces X we can often find short representations of the types used in the

construction of the Symbolic Execution Graph.

In our implementation we answer the question “is type X contained in the abstract

type” by first looking for an entry X| or X.... If this is not contained, we expand all

entries by adding Z... for all subtypes Z of Y if Y... is contained in the abstract type.

We repeat this process as often as necessary, which is determined by height of the type

tree. For example, if we want to find out if the type Z is contained in an abstract type

{java.lang.Object...} where we have Z extends Y and Y extends java.lang.Object, we expand

twice: first we expand {java.lang.Object...} to {Y...}, then we expand to {Z...}.
To also correctly deal with arrays, in this expansion step we also expand java.lang.Object...

to [java.lang.Object... and [P for all P ∈ PrimTypes2. This expansion process is repeated

according to the array dimension of X, i.e., to find [[java.lang.String in the abstract type

{java.lang.Object...}, we first expand giving us [java.lang.Object..., then expand again to

obtain [[java.lang.Object... and finally expand a third time to obtain [[java.lang.String....

This idea is also used for other common operations on abstract types, such as intersec-

tion or subset inclusion (as used in Definition 1.10).

2.2. Merge

For ForceAbstraction in Algorithm 1 we need an algorithm that allows us to merge

the information of two states s1, s2 with s2 6v s1 into a state s3 such that s1 Ĺ s3 and

s2 v s3 hold. We only call this algorithm with input states that have the same shape, i.e.,

the call stacks have the same height, they contain the same opcodes and return addresses,

both states have the same initialization information, and both or none of the two states

have a set exception reference.

As we are interested in keeping as much information as possible, we design the algorithm

to keep all information that is present in both states, while allowing all values which are

allowed by any of the input states. This can be seen as the counterpart of the intersection

process presented in Section 1.5, where we retain information as long as it is represented

in at least one of the two input states.

2As arrays also implement the interfaces java.io.Serializable and java.lang.Cloneable, we also expand those
to array types if corresponding entries exist in the abstract type

2.2. Merge 113

As an example, consider the situation that we have s2 6v s1 for two nearly identical

states. Let the only difference be that in s2 two local variables may contain the same object

as indicated with the heap predicate r1 =? r2, while in s1 we know that the referenced

objects are different. Then, we could create the merge result state s3 as a copy of s2 with

s2 v s3 and s1 Ĺ s3.

In other situations, if we do not have s1 v s2, we still create a state that keeps as much

information as possible. For example, if for both s1 and s2 we know that a local variable

is null, this information should also be represented in s3 and there is no need to have a

more abstract value for that local variable.

In the following algorithm we consider this idea by traversing both input states simul-

taneously and storing information in s3 that is present in both states. If there is data

where one of the states has more abstract information, it is stored in s3. If neither of the

information is more abstract than the other (for example as for some local variable in s1

we have a null, while in s2 we have an existing object instance), we create more abstract

information based on the inputs (in the example, conforming to Definition 1.10(h), the

heap predicate r? would be used, and the field information of the object instance would

be abstracted, i.e., dom(f) = ∅).
Algorithm 3 is the Merge algorithm, which traverses the input states and creates the

merged state. We will show an example of how this algorithm is used in Section 2.2.1.

We first create an empty state and then set the initialization state of s1, which is identical

to the information in s2. Then, as we know that either both states have no exception

reference or an exception is set in both states, we set the exception component of the re-

sulting state accordingly. Here, in the case that exception references exist in the two input

states, the algorithm MergeReferences (shown in Algorithm 4) is used to compute

the reference used in the resulting state.

In the remainder of the Merge algorithm, the references stored in the static fields and

the call stack are merged likewise. When traversing the call stack, we make use of the fact

that both input states have the same call stack height. As we only analyze verified Java

Bytecode and the two states have the same opcode, we know that the corresponding

stack frames have the same number of local variables and entries on the operand stack.

Finally, after all references are set in the state, the heap predicates are added using various

algorithms.

The task of the algorithm MergeReferences, as shown in Algorithm 4, is not only to

return a reference that can be used in the resulting state, but also to add the referenced

data to the state. For this, depending on the type of the referenced data, we might

need to abstract information. Thus, MergeReferences first analyzes the referenced

data and then calls a specialized algorithm. As all return addresses in the input states

are identical, any return address found is returned unchanged. For primitive types, we

use MergePrimitives. While this algorithm is not shown, it is trivial for floating

114 Chapter 2. Automation

Algorithm 3: Merge

Input: s1 = (〈fr1
0, . . . , fr

1
n1
〉, h1, t1, hp1, sf1, e1, ic1,⊥) with fr1

i = (pp1
i , lv

1
i , os

1
i),

s2 = (〈fr2
0, . . . , fr

2
n2
〉, h2, t2, hp2, sf2, e2, ic2,⊥) with fr2

i = (pp2
i , lv

2
i , os

2
i)

Output: s3 = (〈fr3
0, . . . , fr

3
n3
〉, h3, t3, hp3, sf3, e3, ic3,⊥) with fr3

i = (pp3
i , lv

3
i , os

3
i)

1: create state s3 with call stack of height n1, empty heap, no local variable, . . .
2: ic3 := ic1

3: if e1 = ⊥ ∧ e2 = ⊥ then
4: e3 := ⊥
5: else
6: e3 := MergeReferences(e1, e2)
7:

8: for all v ∈ dom(sf1) do
9: sf3(v) := MergeReferences(sf1(v), sf2(v))

10:

11: for all 0 ≤ i ≤ n1 do
12: for all 0 ≤ j < sizeof(lv1

i) do
13: lv3

i (j) := MergeReferences(lv1
i (j), lv

2
i (j))

14: for all 0 ≤ j < sizeof(os1
i) do

15: os3
i (j) := MergeReferences(os1

i (j), os
2
i (j))

16: pp3
i := pp1

i

17:

18: MergeCyclicPredicates() // Definition 1.10(o), see Algorithm 8
19: MergePossibleExistence() // Definition 1.10(p), see Algorithm 9
20: MergePossibleEquality() // Definition 1.10(q), see Algorithm 10
21: MergeJoinsPredicates() // Definition 1.10(r), see Algorithm 11
22:

23: AddNewPossibleEquality() // Definition 1.10(l), see Algorithm 12
24: AddNewJoinsPredicates() // Definition 1.10(m), see Algorithm 13
25: IdentifyNonTreeShapes() // Definition 1.10(n), see Algorithm 14

2.2. Merge 115

point values (which can only be abstracted to ⊥). For integer values the task also is

simple, where attention needs to be given to disallow infinite abstraction as explained in

Section 1.7. In all other cases, one of the algorithms MergeNull, MergeArrays, and

MergeInstances is used to do the actual computation.

There may be cyclic references on the heap. Thus, when traversing the heap and

creating the merged values, we may need to merge the same pair of references more than

once (in the case of cyclic data structures possibly even infinitely often). In order to have

a terminating algorithm, we remember the resulting reference for each merged pair of

references using SetMerged in the individual merge algorithms, before traversing into

the data structures. This information is used in lines 1–2 of MergeReferences, so

that the problem hinted at above does not occur.

Finally, the type of non-primitive values is computed using MergeTypes, which is

not shown. Instead, we refer to Section 2.1.

Algorithm 4: MergeReferences

Input: r1, r2 ∈ References
Output: r3 ∈ References

1: if MergedTo(r1, r2, r3) then
2: return r3

3: if r1 is a return address then
4: return r1

5: if h1(r1) ∈ Integers ∪ Floats then
6: return MergePrimitives(r1, r2)
7: if r1 = null ∨ r2 = null then
8: r3 := MergeNull(r1, r2)
9: if h1(r1) ∈ Arrays ∨ h2(r2) ∈ Arrays then

10: r3 := MergeArrays(r1, r2)
11: else
12: r3 := MergeInstances(r1, r2)
13: t3(r3) = MergeTypes(t1(r1), t2(r2))
14: return r3

In Algorithm 5 we show MergeNull. We need to make sure that when setting r? for

some reference the referenced data contains no field information (line 7).

In Algorithm 6 we have MergeArrays. As arrays only are instances of objects without

field information, when merging an array with some instance, for the resulting instance

we do not define any field (lines 3, 5). We respect the restriction that for concrete arrays

either no index is known or we have some information for each index. Thus, if we know

that the array length is a literal in the merged state (i.e., it also is the same literal in the

input states), we retain information about the content of the array in lines 10–12.

In the case of instances, with Algorithm 7 (MergeInstances), we retain information

for each field set in both input object instances.

116 Chapter 2. Automation

Algorithm 5: MergeNull

Input: r1, r2 ∈ References
Output: r3 ∈ References

1: if r1 = null ∧ r2 = null then
2: return null
3: else
4: create fresh reference r3

5: SetMerged(r1, r2, r3)
6: add r3? to hp3

7: f3 := () // i.e., dom(f3) = ∅
8: h3(r3) := f3 ∈ Instances
9: return r3

Algorithm 6: MergeArrays

Input: r1, r2 ∈ References
Output: r3 ∈ References

1: create fresh reference r3

2: SetMerged(r1, r2, r3)
3: f3 := () // i.e., dom(f3) = ∅
4: if h1(r1) ∈ Instances ∨ h2(r2) ∈ Instances then
5: h3(r3) := f3 ∈ Instances
6: return r3

7: (i1l , f1) := h1(r1)
8: (i2l , f2) := h2(r2)
9: i3l := MergePrimitives(i1l , i

2
l)

10: if h3(i3l) is a literal then
11: for all i ∈ dom(f1) do
12: f3(i) := MergeReferences(f1(i), f2(i))
13: h3(r3) := (i3l , f3) ∈ Arrays
14: return r3

Algorithm 7: MergeInstances

Input: r1, r2 ∈ References
Output: r3 ∈ References

1: create fresh reference r3

2: SetMerged(r1, r2, r3)
3: f3 := () // i.e., dom(f3) = ∅
4: for all v ∈ dom(h1(r1)) ∩ dom(h2(r2)) do
5: f3(v) := MergeReferences(h1(r1)(v), h2(r2)(v))
6: h3(r3) := f3 ∈ Instances
7: return r3

2.2. Merge 117

The following seven algorithms all are used to add heap predicates to the merged state.

While Algorithms 8 to 11 copy over already existing heap predicates and are rather simple,

Algorithms 12 to 14 introduce new heap predicates and are rather complicated. In all of

these algorithms we deal with information from both s1 and s2 in a very similar manner.

Thus, in the representation as shown in this thesis, large parts of the algorithms are

copied, where the only changes are related to addressing s2 instead of s1. These copied

parts are shown in this smaller and less prominent font.

In Algorithm 8 (MergeCyclicPredicates) we deal with Definition 1.10(o) and add

	F heap predicates to s3 if a corresponding heap predicate exists in s1 or s2. According

to Definition 1.10(o), we also need to add heap predicates if the corresponding positions

do not exist in s3 (as indicated by πs3 in the definition). For that we make use of

RealizedPositions. The call RealizedPositions(r1, s1, s3) gives the references in

s3 which are at a position πs3 , where we have s1|π = r1. As we may have infinitely

many positions π with s1|π = r1, this is not trivial. In Section 2.3 we explain how

RealizedPositions can be implemented.

In line 3 of the algorithm we may add r3	F to hp3 even though we already have r3	F ′ .

In this case we intersect the field sets, i.e., we remove r3	F ′ and instead add r3	F∩F ′ .

Algorithm 8: MergeCyclicPredicates

1: for all r1	F∈ hp1 do
2: for all r3 ∈ RealizedPositions(r1, s1, s3) do
3: add r3	F to hp3

4: for all r2	F∈ hp2 do
5: for all r3 ∈ RealizedPositions(r2, s2, s3) do
6: add r3	F to hp3

Algorithm 9 shows MergePossibleExistence. Here, we add the r? heap predicate

to the corresponding references in s3. In the algorithms called by MergeReferences,

we store which pairs of references are merged into which resulting references. This in-

formation can be accessed by MergedTo and helps us identify which corresponding

references are used in the merged state. For example, if we merged (ra, rb) 7→ rc, in line

9 of Algorithm 9 this helps us to obtain ra when we have rb and rc.

Algorithm 9: MergePossibleExistence

1: for all r1? ∈ hp1 do
2: for all r2, r3 : MergedTo(r1, r2, r3) do
3: add r3? to hp3

4: for all r2? ∈ hp2 do
5: for all r1, r3 : MergedTo(r1, r2, r3) do
6: add r3? to hp3

In Algorithms 10 and 11 (MergePossibleEquality and MergeJoinsPredicates)

we again make use of MergedTo and RealizedPositions.

118 Chapter 2. Automation

Algorithm 10: MergePossibleEquality

1: for all r1 =? r′1 ∈ hp1 do
2: for all r2, r3 : MergedTo(r1, r2, r3) do
3: for all r′2, r

′
3 : MergedTo(r′1, r

′
2, r
′
3) do

4: add r3 =? r′3 to hp3

5: for all r2 =? r′2 ∈ hp2 do
6: for all r1, r3 : MergedTo(r1, r2, r3) do
7: for all r′1, r

′
3 : MergedTo(r′1, r

′
2, r

′
3) do

8: add r3 =? r′3 to hp3

Algorithm 11: MergeJoinsPredicates

1: for all r1%$r′1 ∈ hp1 do
2: for all r3 ∈ RealizedPositions(r1, s1, s3) do
3: for all r′3 ∈ RealizedPositions(r′1, s1, s3) do
4: add r3%$r′3 to hp3

5: for all r2%$r′2 ∈ hp2 do
6: for all r3 ∈ RealizedPositions(r2, s2, s3) do
7: for all r′3 ∈ RealizedPositions(r′2, s2, s3) do
8: add r3%$r′3 to hp3

In contrast to Algorithms 8 to 11, the remaining three Algorithms 12 to 14 introduce

heap predicates that possibly do not yet exist in the input states.

In Algorithm 12 (AddNewPossibleEquality) we identify two positions leading to

different references in an input state, where the other state contains the same reference at

these positions. This, again, is done using the information available using MergedTo.

As we know that for the two positions the same reference exists in one of the input states,

we introduce a =? heap predicate in s3.

Algorithm 12: AddNewPossibleEquality

1: for all (r1, r2, r3) : MergedTo(r1, r2, r3) ∧ h1(r1) ∈ Instances ∪Arrays do
2: for all (r′2, r

′
3) : r2 6= r′2 ∧ r3 6= r′3 ∧MergedTo(r1, r

′
2, r
′
3) do

3: add r3 =? r′3 to hp3

4: for all (r′1, r
′
3) : r1 6= r′1 ∧ r3 6= r′3 ∧MergedTo(r′1, r2, r

′
3) do

5: add r3 =? r′3 to hp3

To implement the functionality of Definition 1.10(m), we use Algorithm 13 (AddNew-

JoinsPredicates). First, we identify references which are marked as possibly being

equal (lines 2–3), and references reachable using two different positions (lines 4–5). In

NeedJoins we first check if for one of the references we have a position which does

not exist in s3 and, if this is the case, if for the two references we have positions such

that in s3 these positions do not lead to the same reference (i.e., the references at the

realized prefixes need to be connected using a joins heap predicate), or if the unrealized

parts of the positions are different (i.e., the non-tree shape existing in the input state

is not represented in s3 and must be allowed using heap predicates). Then, similar to

2.2. Merge 119

MergeCyclicPredicates in Algorithm 8, we identify the references at realized prefixes

of the corresponding positions in s3 using RealizedPositions and add a joins heap

predicate.

Algorithm 13: AddNewJoinsPredicates

1: Check1 := {}
2: for all r1 =? r′1 ∈ hp1 do
3: Check1 := Check1 ∪ {(r1, r

′
1)}

4: for all r1 ∈ ReferencesWithMultiplePositions(s1) do
5: Check1 := Check1 ∪ {(r1, r1)}
6: for all (r1, r

′
1) ∈ Check1 do

7: if NeedJoins(r1, r
′
1, s1, s3) then

8: for all r3 ∈ RealizedPositions(r1, s1, s3) do
9: for all r′3 ∈ RealizedPositions(r′1, s1, s3) do

10: add r3%$r′3 to hp3

11: Check2 := {}
12: for all r2 =? r′2 ∈ hp2 do
13: Check2 := Check2 ∪ {(r2, r′2)}
14: for all r1 ∈ ReferencesWithMultiplePositions(s1) do
15: Check2 := Check2 ∪ {(r2, r2)}
16: for all (r2, r

′
2) ∈ Check2 do

17: if NeedJoins(r2, r
′
2, s2, s3) then

18: for all r3 ∈ RealizedPositions(r2, s2, s3) do
19: for all r′3 ∈ RealizedPositions(r′2, s2, s3) do
20: add r3%$r′3 to hp3

Finally, in Algorithm 14 (IdentifyNonTreeShapes) we introduce heap predicates for

concrete non-tree shapes in the input states that are not represented in s3, corresponding

to Definition 1.10(n). With NonTreeShapes we get α, τ, τ ′ as in Definition 1.10(n). As

the name of NoCommonIntermediateReference indicates, we use this algorithm

to check if in the two given positions ατ , ατ ′ lead to a common intermediate reference

in the given input state when starting in α (cf. Definition 1.9). Again, we make use of

RealizedPositions.

Instead of formally showing correctness of the Merge algorithm, which is straight-

forward in most cases, we recognize that the main difficulty lies in how infinite position

sets are handled. Thus, in Section 2.3 we concentrate on the algorithms RealizedPo-

sitions, NeedJoins, ReferencesWithMultiplePositions, and NonTreeShapes

and explain how these can be implemented.

2.2.1 Example

As promised earlier, we now demonstrate the main aspects of the Merge algorithm by

using an example.

120 Chapter 2. Automation

Algorithm 14: IdentifyNonTreeShapes

1: for all (α, ατ, ατ ′) ∈ NonTreeShapes(s1) do
2: if NoCommonIntermediateReference(ατ, ατ ′, s1) then
3: if ατ 6∈ SPos(s3) ∨ ατ ′ 6∈ SPos(s3) ∨ s3|ατ 6= s3|ατ ′ then
4: for all r ∈ RealizedPositions(s1|α, s1, s3) do
5: add r%$r to hp3

6: if τ ′ = ε then
7: add r	τ to hp3

8: for all (α, ατ, ατ ′) ∈ NonTreeShapes(s2) do
9: if NoCommonIntermediateReference(ατ, ατ ′, s2) then

10: if ατ 6∈ SPos(s3) ∨ ατ ′ 6∈ SPos(s3) ∨ s3|ατ 6= s3|ατ ′ then
11: for all r ∈ RealizedPositions(s2|α, s2, s3) do
12: add r%$r to hp3
13: if τ ′ = ε then
14: add r	τ to hp3

〈23|one: r1, two: r9|r9〉
r1: List(value: i1, next: r2)
r2:List(value: i1, next:null)

r9 : List(next : r10)
r10 : List(self : r10)

i1 : {0}

A 〈42|one: r3, two: r11|r13〉
r3: List(value: i2, next: r4)

r4 : List(next : r5)
r5 : List(next : null)

r11 : List()
r13 : List()
i2 : [3, 5]
r11 	{next}
r13 	{next}

B

〈42|one: r6, two: r12|r14〉
r6: List(value: i3, next: r7)
r7 : List(next : r8)

r8 : List()
r12 : List()
r14 : List()
i3 : [0, 5]
r8?

r12 	∅
r14 	∅

r12 =? r14

r12%$r12

r12%$r14

r14%$r14

C

Figure 2.1.: States illustrating Algorithm 3

Example 2.1 Consider the states shown in Fig. 2.1. We merge states A and B and

obtain state C.

We start with MergeReferences(r1, r3). As we did not merge r1 and r3 already,

the result is obtained by invoking MergeInstances(r1, r3). In MergeInstances

we create a fresh reference r6 for the result and remember that r1 and r3 are merged

into r6. As both instances define the fields value and next, we obtain an object in-

stance where these field are defined. The content of the value field is computed using

MergeReferences(i1, i2), while the content of the next field is computed using

MergeReferences(r2, r4). The first invocation leads to MergePrimitives (which

is not shown in this thesis), and we obtain i3 with the data [0, 5].

Computing MergeReferences(r2, r4) is similar to the previous computation.

2.2. Merge 121

However, for r2 we have the value field information. As this information is not present

in r4, we do not include it in the resulting object instance. The next field again is

present in both object instances, and its content is computed by calling MergeRef-

erences(null, r5).

As one of the arguments is null, we call MergeNull(null, r5). This call results in

an object instance r8 without field information, which is marked as possibly existing.

Now consider the call MergeReferences(r9, r11) made for the local variable two.

This, again, results in MergeInstances to be invoked. We see that the next field

of r11 is not represented. Thus, we obtain r12 for which no field information is ob-

tained. Note that the cycle represented in A is not traversed during computation of

MergeReferences.

Next, we consider the operand stack of the states, leading to MergeReferences(r9,

r13). Based on this we obtain r14 in C.

At this point, the loop shown in lines 11–16 of the Merge algorithm is finished. In

the next steps, we need to consider the heap predicates.

We start with MergeCyclicPredicates. The only cyclic heap predicate exists

for r11 and r13 in B. The realized positions for r11 in C only lead to r12, while for r13

we get r14. Thus, we add r12	{next} and r14	{next} to C. Note that the added heap

predicates do not allow cycles which only traverse the self field, as it is the case for r10.

The algorithms MergePossibleExistence, MergePossibleEquality, and

MergeJoinsPredicates copy over existing heap predicates, similar to Merge-

CyclicPredicates. However, as no such heap predicates exist in A or B, these

algorithms are not considered in this example.

Next, we consider AddNewPossibleEquality. The idea of this algorithm is to

add the =? heap predicate to two references which correspond to the same reference in

one of the input states. In our example, this is the case for r12 and r14, which both result

out of r9 in A. The algorithm detects this by investigating the information we add every

time we ran MergeReferences. Here, we added the information (r9, r11) 7→ r12 and

(r9, r13) 7→ r14. Thus, we add r12 =? r14.

Next, we look at AddNewJoinsPredicates. Here, we see that r9 and r10 can be

reached by more than one position in A. Thus, we add (r9, r9) and (r10, r10) to Check1.

For r9 we see that in C the positions do not lead to the same reference. However, as all

positions also exist in C, we do not need to add a joins heap predicate. This is different

in the case of r10. Here, we see that we need to add r12%$r12, r12%$r14, and r14%$r14.

Finally, in IdentifyNonTreeShapes we see that we have a cycle in A. This cycle

(leading from r10 back to r10 using the field self) causes us to add heap predicates to r12

and r14 in C. We already have r12%$r12 and r14%$r14. Furthermore, we already have

	{next} for these two references. However, we need to add 	{self}, which means that we

122 Chapter 2. Automation

intersect the field sets and obtain 	∅ for both r12 and r14.

2.3. State Positions

As for states containing cyclic data structures the set of state positions is infinite, actually

implementing the aforementioned algorithms using the concepts described so far is non-

trivial. However, even in the presence of cycles the set of references in any state is finite.

2.3.1. RealizedPositions

To compute RealizedPositions, we need to consider a finite subset of state positions.

In this subset we limit the loop traversals represented in each contained position. First

we consider state positions without any loop traversal. In Definition 2.2 for any position

π we define π̂ as its cycle-free variant. Since we use an inductive definition, it is clear how

to compute π̂ for any position π.

Definition 2.2 (π̂) Let π ∈ SPos(s). If |π| = 1, then π̂ := π. Otherwise, if we have

τ 6= ε with s|π1 = s|π1τ and π = π1τπ2 (i.e., τ traverses a cycle in s), then π̂ := π̂1π2. If

no such τ exists, then π̂ := π.

In addition to cycle-free positions we also need to consider positions that contain at

most a single cycle traversal. If a position π has this property, we indicate this as [≤1cπ].

A position π traverses exactly one cycle in s if

• π = π1τπ2 with τ 6= ε and s|π1τ = s|π1 (i.e., it contains a cycle τ), and

• π̂ = π1π2 (i.e., τ is the only part of the position containing a cycle), and

• the references at s|π1ρ for ε E ρ C τ are different (i.e., τ only is a single cycle

traversal without any subcycles).

Definition 2.3 ([≤1cπ]) Let π ∈ SPos(s). If π = π̂, then we have [≤1cπ]. Otherwise,

if π cannot be decomposed as π = π1τπ2 where π̂ = π1π2 (i.e., s|π1 = s|π1τ), then we

do not have [≤1cπ]. Finally, let π = π1τπ2 with s|π1 = s|π1τ and τ 6= ε. Then [≤1cπ] iff

|{s|π1ρ | ε E ρ C τ}| = |τ |.

2.3. State Positions 123

For RealizedPositions(r, s, s′) we need to compute a set Ψ := {s′|π | π ∈ Π} where

Π := {π | s|π = r}. In the case of a cyclic data structure in s, Π is infinite. Thus, the

set notation of Ψ may not be helpful to actually compute the (finite) set Ψ in finite time.

Instead, we show how to compute a finite set Ω ⊆ Π so that Ψ = {s′|π | π ∈ Ω}.
The main idea is to limit the infinite set Π to the finite subset that only contains

positions where each contained cycle is traversed at most once.

Definition 2.4 (Ω) Let r be a reference in a state s. Let Π = {π | s|π = r}. Then

Ω := {π | π ∈ Π ∧ [≤1cπ]}.

Now we show that indeed Ψ = {s′|π | π ∈ Ω}. For this we show that for all π ∈ Π \ Ω

there is a π′ ∈ Ω with s′|π′ = s′|π. In other words, even if π is not contained in Ω, we have

another reference π′ that gives us the same reference in s′.

The main idea in this proof is to not consider cycle traversals contained in π if the

corresponding cycle also can be traversed in s′. Thus, by considering a position that

contains at most a single cycle traversal, using π′ we can reach the same end reference as

π does in s′.

Lemma 2.2 Let s′ be a state. Let r, s,Π,Ω as in Definition 2.4.

Then {s′|π | π ∈ Π} = {s′|π | π ∈ Ω}.

Proof. As Ω ⊆ Π we only need to show that for each π ∈ Π \ Ω there is π′ ∈ Ω with

s′|π′ = s′|π.

Thus, let π ∈ Π \Ω. We know π̂ ∈ Ω. If s′|π̂ = s′|π, the claim directly follows. Thus,

assume s′|π̂ 6= s′|π. Then we know π can be split as π = π0α1π1 · · ·αnπn where n > 0,

π̂ = π0 · · · πn, αi 6= ε, and s|π0···πi = s|π0···πiαi+1
for all 1 ≤ i < n.

With s′|π̂ 6= s′|π we also know that there is 1 ≤ i < n with π0 · · · πi E π0 · · · πiαi+1s′ C

π0 · · · πiαi+1 (i.e., part of the cycle is not realized in s′) or s′|π0···πiαi+1
6= s′|π0···πi (i.e.,

the cycle does not end in the reference at the start of the cycle).

So far, we did not limit the shape of the cycle αi+1, thus it may contain repetitions

of a single cycle traversal, or subcycles. Thus, by removing subcycles from αi+1 we

obtain α′i+1 with [≤1cα′i+1] and π0 · · · πi E π0 · · · πiα′i+1s′
C π0 · · · πiα′i+1 or s′|π0···πiα′i+1

6=
s′|π0···πi+1

. Hence, we also have π0 · · · πiα′i+1πi+1 · · · πn ∈ Ω with s′|π0···πiα′i+1πi+1···πn =

s′|π. �

As we now have shown that the finite set Ω suffices for the task of computing Re-

alizedPositions, we finally show that Ω can be computed using ComputeOmega

124 Chapter 2. Automation

(Algorithm 15). In the first part (lines 1–16) we traverse the state using all possible

positions. If we run through a cycle (line 6), we stop traversing the state with suffixes

of the current position. Furthermore, we remember the cycle in Continuations. For each

reached position π′, which by construction is cycle-free, we store all τ 6= ε with s|π′ = s|π′τ
where π′τ contains exactly one cycle. In Positions we collect all cycle-free positions of

the state.

The second part of the algorithm, lines 18–24, uses the information computed in the

first part. For each cycle-free position π, we mark π as part of the result. Furthermore,

we also add positions based on π where we added a single cycle traversal. For this, we

consider all prefixes of π and, for each prefix where a cycle is known, we add the position

resulting out of adding a cycle to the result set.

Using Algorithm 15 it is trivial to implement RealizedPositions such that we have

RealizedPositions(r, s, s′) = {s′|π | π ∈ Ω} = {s′|π | s|π = r}.

Algorithm 15: ComputeOmega

Input: s ∈ States, r ∈ References
Output: Ω as in Definition 2.4

1: Positions := ∅
2: Continuations := ∅
3: Todo := {π ∈ SPos(s) | |π| = 1}
4: while ∃π : π ∈ Todo do
5: Todo := Todo \ {π}
6: if ∃π′, τ 6= ε with π = π′τ ∧ s|π′ = s|π′τ then
7: add τ to Continuations(π′)
8: else
9: add π to Positions

10: if h(π) = f ∈ Instances then
11: for all v ∈ dom(f) do
12: Todo := Todo ∪ {πv}
13: else if h(π) = (il, f) ∈ Arrays then
14: Todo := Todo ∪ {πlen}
15: for all i ∈ dom(f) do
16: Todo := Todo ∪ {πi}
17:

18: Result := ∅
19: for all π ∈ Positions do
20: add π to Result
21: for all π1π2 = π ∧ π1 6= ε do
22: for all τ ∈ Continuations(π1) do
23: add π1τπ2 to Result
24: return Result

2.4. Instance Check 125

2.3.2. NeedJoins

In AddNewJoinsPredicates we use NeedJoins to find out whether a joins heap

predicate needs to be added. By using the positions computed in ComputeOmega,

this can easily be determined. For the given two references we first compute two sets of

positions using ComputeOmega. Then for each combination of positions contained in

the two sets we check the requirements as stated in Definition 1.10(m).

2.3.3. ReferencesWithMultiplePositions

Here, we can also use ComputeOmega by computing the positions for each (non-

primitive) reference known in the state. Then we return the references for which Com-

puteOmega returns more than one position.

2.3.4. NonTreeShapes

The algorithm NonTreeShapes should return all positions α, ατ, ατ ′ such that s|ατ =

s|ατ ′ where τ 6= ε. Again, there may be infinitely many such (triples of) positions. How-

ever, again it is safe to ignore positions α containing cycles that also are realized in

s3. Thus, by considering only the positions as computed by ReferencesWithMul-

tiplePositions and then computing α, τ, τ ′ based on these, we can easily implement

NonTreeShapes.

2.4. Instance Check

In Section 2.2 we presented an algorithm enabling us to merge two states. However, for

the graph construction we not only need to merge states, but we also need to check if

s1 v s2 holds. Instead of using another algorithm for this task, we re-use the Merge

algorithm and add little modifications that enable us to also compute s1 v s2 using this

already existing algorithm.

When determining if s1 v s2 holds, we compute Merge(s1, s2). Whenever we add

information from s1 to s3 , we check if all of this information is also represented in s2. For

example, in line 3 of Algorithm 9 we add r3? to s3 because we have the heap predicate

r1? for a reference r1 in s1. If we do not have r2?, we know that either

• r2 is null and, thus, in s2 we do not consider the possibility that r2 exists, or

• r2 is known to be existing and we do not consider the possibility that r2 is null.

In both cases, we have s1 6v s2. Similarly, if in MergeArrays we have the case that

h1(r1) ∈ Instances and h2(r2) ∈ Arrays (lines 4–5 in Algorithm 6), we know that

126 Chapter 2. Automation

s1 6v s2 as in s1 the referenced instance may be a (non-array) object, while it is known to

be an array in s2.

Thus, as soon as a conflict as indicated above is found in the merge process, we know

s1 6v s2. Only if merging is possible without finding information in s1 that is not repre-

sented in s2, we know that s1 v s2 holds.

As the shape of s1 and s2 may be different, additional (simple) checks need to be

implemented.

3. Recursion

In this chapter we extend the technique presented in Chapter 1 so that also recursive

programs may be analyzed. The reason for the limitation in the previously presented

approach is that in recursive programs the call stack may grow without bounds. As in

our setting we usually provide method arguments as abstract values, we may not only

obtain call stacks of unbounded height for non-terminating methods, but also for methods

where the execution depends on the input values.

Example 3.1 When computing the factorial function n! using the method factorial,

the height of the call stack may be n. If n is not a concrete value, but instead an

abstract value like [0,∞) ∈ Integers, we cannot provide a finite upper bound to the

call stack height, even though factorial always terminates.

1 public int factorial(int n) {

2 if (n <= 1) {

3 return 1;

4 } else {

5 return n * factorial(n - 1);

6 }

7 }

For the corresponding problem in non-recursive programs (i.e., loops that may be non-

terminating) we abstract the data contained in the states to obtain a finite representation

of all possible computations. However, abstraction of the call stack is not as simple.

Call Stack Abstraction

The frames in the call stack contain information about local variables and the operand

stack. Thus, in order to abstract the call stack, we need a way to abstract this data.

While for non-recursive programs the number of state positions of length one (i.e., local

variables, operand stack entries, static fields, and the exception reference) is bounded by

some finite number, for recursive methods the number of such positions in a state may

128 Chapter 3. Recursion

grow without bounds. In Example 3.1, for each frame on the call stack a different value

of n is stored.

To work around this problem, in our analysis we do not retain information for each

frame of the call stack, as in the case of recursion there may be an unbounded number

of stack frames corresponding to the same recursive method. Instead, we only represent

at most one stack frame corresponding to a recursive method in each state and disregard

information about the other stack frames. In the case of Example 3.1 this also means

that for a concrete state containing several stack frames for factorial, in the constructed

Symbolic Execution Graph we only have abstract states representing the topmost of these

stack frames.

As the data of the lower stack frames corresponding to calls to recursive methods is not

part of our state representation, suitable abstract values must be inferred when continuing

evaluation after a recursive method returns. In Example 3.1, as only information about

the topmost stack frame of the factorial recursion is represented in our abstract state,

when returning from factorial invoked from a recursive call in line 5, we not only need the

returned value to continue evaluation, but also need the value of n stored in the frame

below the one we are returning from, as it is used in a multiplication.

For primitive values, as in Example 3.1, this problem can easily be solved by just

assuming that parts of the heap which are not explicitly represented contain (−∞,∞) ∈
Integers or ⊥ ∈ Floats. However, in the case of object instances and arrays a similar

idea directly leads to states containing very little information: each object instance may

be null, it may be of any type, it may be cyclic, and it may share with any other object

instance. For most subsequent analyses this huge loss of information is not acceptable,

e.g., proving termination usually is problematic if possibly cyclic objects are part of the

computation.

Example 3.2 The method length recursively computes the length of the List object

provided as this. Assuming that the list is acyclic, this algorithm terminates.

In test we compute the length twice. If after returning from the first call we do

not have the information that list is acyclic (if we do not have any information about

the lower stack frames when returning from the last frame of length) we cannot show

termination of the second invocation of length.

129

1 public class List {

2 List next;

3

4 public int length () {

5 if (next == null) {

6 return 1;

7 } else {

8 return 1 + next.length ();

9 }

10 }

11

12 public static void test(List list) {

13 list.length ();

14 list.length ();

15 }

16 }

One idea to solve this issue is to combine the information of the return state with infor-

mation contained in the state of the call site. The lower stack frames are not represented

in the return state, but this information is part of the state of the call site. In a sense, the

call site defines the context of the invocation and determines where evaluation continues.

When returning from a method we create states corresponding to each possible call site

so that all possible execution paths are represented in the resulting Symbolic Execution

Graph. Furthermore, we can re-use the information available in the lower stack frames,

and thus avoid the aforementioned problem. We call this process context concretization.

Using context concretization, for Example 3.2 the state of the call site in line 13 indicates

that list is acyclic. Thus, we can retain this information when returning and continuing

analysis with the call in line 14.

Side Effects

If in Example 3.2 at the end of the recursion (at the end of the list, in line 6) we insert

the additional code next = this, we modify the list to be cyclic and, thus, must not show

termination of any following invocation of length on the same list. This also means that

the invocation in line 14 of test does not terminate for the algorithm modified as explained

above. Thus, when returning from the first invocation of length in line 13, we may not

assume that list is acyclic, although this was the case before the invocation. However, the

state of the call site corresponding to the invocation in line 13 contains the information

130 Chapter 3. Recursion

that the list is acyclic. Thus, we may not re-use this information when returning from

this invocation and constructing the context concretization.

In Chapter 1, we add heap predicates to mimic the effects of write accesses to references

for which the connections to the modified parts of the heap are not represented explicitly.

For the example above, Definition 1.43 assures that a 	 heap predicate is introduced

where necessary. However, in the recursive example we need to add the heap predicate

for a reference that is not represented in the state where we evaluate the write access.

Thus, even in the presence of side-effects, the information in the states of the call sites

is not updated and, thus, may contain invalid information which we may not re-use after

the invoked method returns.

In order to be able to remember that a write-access may have changed information

that is part of the state of a call site, we extend the definition of states and introduce the

concept of input arguments as another component. The details of this component will be

defined in the course of this chapter. For now, it suffices to understand that the contained

information helps us to propagate changes (side-effects) during execution of some method

so that, when returning and constructing the context concretization, we can disregard the

outdated, invalidated information in the state of the call state. As such, the concept of

using additional input arguments is similar to the idea of using shadow variables which,

for example, are also used in COSTA [AAC+08].

Furthermore, if we know that some data was not changed, we may be able to combine

the information of the return state and the state of the call site, possibly creating more

precise information in the context concretization.

Idea of Graph Construction

We now explain the idea of how the graph construction as explained in Chapter 1 is

adapted. For this, we illustrate all main concepts presented in this chapter using a simple

example. In Fig. 3.1 we develop an example Symbolic Execution Graph for factorial as

shown in Example 3.1. First, consider Fig. 3.1a. Analysis starts with the start state s0.

After a refinement corresponding to if (n <= 1) in line 2 of the program, the left branch

leads to a program end, shown as sε with an empty call stack. The predecessor state s

only contains a single stack frame and corresponds to return 1 in line 3. We call states like

s return states. On the right we have the recursive call to factorial, which corresponds to

line 5 in the code. Let ŝ be the state created as the result of evaluating the call, such that

ŝ contains two stack frames for the factorial method – one corresponding to the invocation

starting in s0, and one on top corresponding to the recursive call. We call states like

ŝ invoking states. As explained earlier, we do not want to have states containing more

than one stack frame corresponding to any recursive method, as this might lead to a call

stack of unbounded height. Indeed, continuing analysis of ŝ using only the concepts of

131

s0

s

sε

ŝ

(a)

s0

s

sε

ŝ

s̈

(b)

s0

s

sε

ŝ

s̈

s̊

(c)

s0

s

sε

ŝ

s̈

s̊

s̃

(d)

s0

s

sε

ŝ

s̈

s̊

s̃

(e)

Figure 3.1.: Constructing a Symbolic Execution Graph for a recursive program

Chapter 1 would lead to an infinite graph, assuming an upper bound of ∞ for num.

Instead, starting with ŝ we make use of new concepts. In a first step, shown in Fig. 3.1b,

we create a call state s̈ which is a copy of ŝ, but in addition the top stack frame (which

was just created for the recursive call) contains input arguments. We connect ŝ to s̈ using

an input arguments creation edge.

Then, shown in Fig. 3.1c, based on s̈ we create a state only containing the topmost

stack frame, shown as s̊. We connect s̈ to s̊ using a call edge. This abstraction of s̈ still

contains the input arguments created for s̈ and we call such states call stack abstraction

states. If now also those input arguments are represented in s0 and we have s̊ v s0, we

connect s̊ to s0 using an instance edge.

The graph Fig. 3.1c does not contain states corresponding to code following a return

from a recursive call. In the example of factorial, the multiplication in line 5 is not shown.

Thus, in Fig. 3.1d we extend the graph by adding the context concretization s̃ of s and s̈.

This state s̃ corresponds to the code following the recursive call in s̈ where the invoked

method returns as described in s. We add a context concretization edge from s to s̃. With

this information we then continue the graph construction, starting with dropping the top

stack frame according to the RETURN opcode inherited from s. This leads to another

program end.

As we created another return state corresponding to line 5 in the program, we now need

to perform context concretization with this return state and s̈. While this is not shown

in Fig. 3.1, we already introduced all concepts needed to construct a Symbolic Execution

Graph for recursive programs.

132 Chapter 3. Recursion

Structure

In Section 3.1 we present related work. Then, in Section 3.2 we introduce the adaptations

to abstract states as defined in Chapter 1 and also define states with a special role in the

process of context concretization, for example call states. In Section 3.3 we then explain

how context concretization is performed. A large part (indeed, the largest part of this

chapter) is devoted to showing stability of v under context concretization in Section 3.4.

This result forms the basis of most of the upcoming proofs. Then, in Section 3.5 we

show how the concept of context concretization is used to construct Symbolic Execution

Graphs, making use of several new types of edges. In Section 3.6 we discuss a problem

that causes the created graphs to be infinite. Finally, in Section 3.7 we conclude and give

an outlook on possible extensions.

3.1. Related Work

There are at least two main approaches for analyzing recursive programs. One such

approach is to compute summaries which describe the effects of the invoked methods.

Then, whenever a method is invoked, the effects described by the corresponding summary

are applied instead of continuing analysis of the invoked method. Of course, in the case

of recursive methods computing such summaries is not easy. The approach of summary

computation is discussed, for example, in [CPR09, CDOY09, RHS95, JLRS04].

The tools Julia [SMP10] and COSTA [AAC+08], which were introduced previously, also

are able to analyze recursive Java Bytecode programs. Here, the heap is abstracted

using integers and, as such, the effects of recursive method invocations can be computed

comparatively easy.

Another approach is to inline function calls, possibly resulting in states with a call

stack of unbounded height. Here, an abstraction of the call stack is performed. In [RC11]

the authors present how the call stack can be abstracted using techniques similar to those

used to abstract shapes on the heap.

In [BOG11] we already presented the key concepts of the technique presented in this

chapter. However, we did not allow the usage of heap predicates (then named annotations)

in the states.

3.2. States

We need to add input arguments to our state definition, so that side effects can be detected

and made visible when performing context concretization.

3.2. States 133

Definition 3.2 (Input Arguments) Let InputArguments be a new component

used in the upcoming state definition. For that we define

InputArguments = 2References×(States7→References)×B

Here, the first component describes the reference used in the state for the input

argument. The second component is a function that, given a state, gives a reference

in that state which is represented by the input argument. In the third component we

encode if the input argument may have been changed, or is left unchanged.

We will usually write (λ, γ,X/) to represent a single input argument where X/
indicates that we know if the input argument is left unchanged, or not. If we know that

an input argument is left unchanged, we write (λ, γ,X). For possibly changed input

arguments we write (λ, γ,).

Using Definition 3.2 we now re-define states such that stack frames may contain input

arguments.

Definition 3.3 (Abstract States with Input Arguments) We extend Defini-

tion 1.1 by adding a new component InputArguments to each frame of the call

stack.

CallStack :=(ProgramPositions× LocalVariables

×OperandStack× InputArguments)∗

From now on, for states we will use the standard notation

s = (〈fr0, . . . , frn〉, h, t, hp, sf, e, ic, sr) with fri = (ppi, lvi, osi, iai)

Furthermore, let |s| be the height of the call stack of s. A state s is concrete only if

all InputArguments components are empty.

With input arguments in a state, we also have state positions for the corresponding

references.

Definition 3.4 (State Positions) Let s = (〈fr0, . . . , frn〉, h, t, hp, sf, e, ic, sr) be a

state where each stack frame fri has the form (ppi, lvi, osi, iai). Then SPos(s) is the

smallest set containing all of the following sequences π (where we just added the first

entry in addition to those of Definition 1.5:

134 Chapter 3. Recursion

• π = IAi,γ where (λ, γ,X/) ∈ iai for some 0 ≤ i ≤ n. Then s|π is λ.

• π = LVi,j where 0 ≤ i ≤ n, lvi = ri,0, . . . , ri,mi , 0 ≤ j ≤ mi. Then s|π is ri,j.

• π = OSi,j where 0 ≤ i ≤ n, osi = ri,0, . . . , ri,mi , 0 ≤ j ≤ mi. Then s|π is ri,j.

• π = SFv where sf(v) = r. Then s|π is r.

• π = EXC where e = r 6= ⊥. Then s|π is r.

• π = π′ v for some v ∈ FieldIDs and some π′ ∈ SPos(s) where h(s|π′) = f ∈
Instances and where f(v) is defined. Then s|π is f(v).

• π = π′ i for some i ∈ N and some π′ ∈ SPos(s) where h(s|π′) = (il, f) ∈ Arrays

and where f(i) is defined. Then s|π is f(i).

• π = π′ len for some π′ ∈ SPos(s) where h(s|π) = (il, f) ∈ Arrays. Then s|π is

il.

In the explanations so far, we introduced several new kinds of states, for example call

states. We will now formally define these states.

An invoking state contains information about the invoked method (in the topmost stack

frame) and in the remainder of the stack the context of this invocation, including the used

arguments, is available. In addition, the topmost stack frame does not contain any input

argument. Invoking states are created using evaluation and abstraction as defined in

Chapter 1.

Definition 3.5 (Invoking State) We call s an invoking state if the topmost stack

frame does not contain any input argument, i.e., ia0 = ∅. Furthermore we demand that

• in the graph there is a state s′ with s′
Eval−−−→ s and |s| = |s′|+ 1, or

• in the graph there is a state s′ with s′
Instance−−−−−→ s and s′ is an invoking state.

For each invoking state s we have |s| > 1. Also note that in Java Bytecode the

exception reference may not be set when a method is invoked, i.e., for an invoking state

s we always have s|EXC = ⊥. Furthermore, in the topmost stack frame the operand

stack is empty, i.e., there is no position π ∈ SPos(s) with π D OS0,j for any j.

Based on an invoking state, we create a corresponding call state. A call state contains

the input arguments we need to detect side effects visible to references in the lower stack

frames, which are not represented in the analysis following the call state. In order to

be able to detect all side effects, we need to have input arguments for all arguments

3.2. States 135

of the invoked method. Furthermore, as references stored in static fields may also be

changed by the invoked method, we also provide input arguments for these. These ideas

are represented in Definition 3.6(ii).

Additionally, certain predecessors and all successors of these changeable references also

need to be provided using input arguments. As an example, we might have two arguments

provided in local variables x and y with a common predecessor reference. If we now

connect x and y using a write access like x.f = y, this predecessor now represents a non-

tree shape on the heap. To have the necessary information, we demand input arguments

for predecessors in Definition 3.6(iv).

For technical reasons, we add input arguments according to Definition 3.6(v).

With Definition 3.6(vi) we limit that input arguments may only be created for references

as described in Definition 3.6(ii–v).

Note that using abstraction of the preceding invoking state, it is possible to decrease

the number of necessary input arguments. For example, if one decides to not represent

successors of arguments provided to the method explicitly (i.e., one ensures that dom(f) =

∅ for the corresponding object instances), this may cause less input arguments to be

created according to Definition 3.6(ii).

Analogously, if one decides not to allow explicit connections from some predecessor

reference to a reference provided as an argument, possibly less input arguments need to

be created according to Definition 3.6(iv).

Definition 3.6 (Call State) In the course of this chapter, call states will be denoted

as s̈ = (〈f̈ r0, . . . , f̈ rm〉, ḧ, ẗ, ḧp, s̈f ,⊥, ïc,⊥) with f̈ ri = (p̈pi, l̈vi, ösi, ïai). We call s̈ a

call state if

(i) in the graph there is an invoking state s with s
IA Creation−−−−−−−→ s̈

(ii) an input argument exists for every reference reachable from the invoked method:

∀π ∈ {SFv,LV0,j} : s̈|π λ̈→ ∃(λ̈, γ̈,X/) ∈ ïa0

(iii) for each (λ̈, γ̈,X/) ∈ ïa0 with IA0,γ̈ v ∈ SPos(s̈), we also have (λ̈′, γ̈′,X/) ∈ ïa0

with λ̈′ = s̈|IA0,γ̈ v.

(iv) an input argument exists for all predecessors of reachable references:

∀π ∀π′ : λ̈ s̈|π′ ∧ s̈|π s̈|π′ ∧ π ∈ {SFv,LV0,j} → ∃(λ̈, γ̈,X/) ∈ ïa0

(v) for each (λ̈, γ̈,X/) ∈ ïa0 with λ̈ =? λ̈′ we have (λ̈′, γ̈′,X/) ∈ ïa0.

(vi) for each (λ̈, γ̈,X/) ∈ ïa0 we have s̈|π λ̈, or λ̈ s̈|π′ ∧ s̈|π s̈|π′ , or λ̈ =? λ̈′

s̈|π′ ∧ s̈|π s̈|π′ for any π ∈ {SFv,LV0,j} and any π′, λ̈′.

(vii) the reference of each input argument is referenced by the corresponding mapping:

∀(λ̈, γ̈,X/) ∈ ïa0 : γ̈(s̈) = λ̈ (i.e., s̈|IA0,γ̈
= λ̈)

136 Chapter 3. Recursion

We now demonstrate Definition 3.6 using an example.

〈0 |one : r1, two : r2 |ε〉
〈23|one: r3, two: r4|r1, r2〉

r1 : List()
r2 : List(next : r5)

r3 : List()
r4 : List()
r5 : List()
r2%$r3

A

(r1, (B 7→ r1),X) (r2, (B 7→ r2),X)
(r3, (B 7→ r3),X) (r5, (B 7→ r5),X)
〈0 | one : r1, two : r2 | ε〉
〈23 | one : r3, two : r4 | r1, r2〉
r1 : List() r2 : List(next : r5)

r3 : List()
r4 : List() r5 : List()

r2%$r3

B

Figure 3.7.: States illustrating Definition 3.6

Example 3.3 Consider states A and B shown in Fig. 3.7. Here, state A is an invoking

state, connecting to the call state B. The input arguments of B are shown above the

corresponding stack frame.

First, we see that according to Definition 3.6(ii) we need to have input arguments

for r1 and r2, as these references are available in local variables of the topmost stack

frame. Thus, the invoked method may access the referenced data through these local

variables.

Then, as r5 is a successor of r2, we also need to have an input argument for r5

according to Definition 3.6(iii).

With Definition 3.6(iv) we also need to have an input argument for r3, as r3 is a

possible predecessor of r2, for which we have an input argument. This way, if r2 is

modified, we also know that the write access may have influenced the predecessor r3.

The condition of Definition 3.6(v) is not met, thus we do not need to add additional

input arguments.

The limitation stated in Definition 3.6(v) states that for every created input argument

certain conditions need to be met. This is the case in our example, as we only introduced

input arguments which are necessary according to other parts of the definition.

Finally, according to Definition 3.6(vii) we also need to make sure that the mapping

function references the reference used to represent the input argument. In this example

we just re-used the reference names we already had in state A.

A call state s̈ always represents older information when compared to a state s which

results out of the invocation started in s̈. When computing the context concretization of s̈

and s, we only are interested in changes applied during the evaluation leading from s̈ to s,

as these represent side effects which possibly are visible when returning from the method

and continuing analysis following the invocation in s̈. In other words, when performing

3.2. States 137

context concretization with s̈ and s, the information in s̈ either is still valid or outdated,

but it never is more recent than the information in s. Thus, in the next definition we say

that a reference is marked as changed not only if a corresponding input argument with

this information exists, but we also demand that the reference is not contained in a call

state.

Definition 3.8 (Changed References r , Unchanged References rX) Let r be

a reference in a state s. We define that r holds iff s is not a call-state and there is an

input argument (λ, γ,) ∈ ian with s|IAn,γ r. If for r we do not have r , we have

rX.

Now we define the remaining states which we need to address when constructing Sym-

bolic Execution Graphs for recursive methods. A program end is a state in which the

program ends and no further evaluation is possible.

Definition 3.9 (Program End) A state s is a program end if |s| = 0, i.e., it does

not contain any stack frame.

When returning from a recursive call, the Symbolic Execution Graph contains a corre-

sponding program end. However, as the call stack of a program end is empty, we do not

have any information about, for example, a returned reference. Thus, for each program

end we define the corresponding return state which, when evaluated, leads to a program

end.

Definition 3.10 (Return State) A state s is a return state if there is a program end

s′ with s
Eval−−−→ s′. Note that we must have |s| = 1.

Note that return states contain a RETURN opcode in the topmost and only stack frame,

or an exception is thrown but not caught in the current method.

Finally, we also consider call stack abstraction states, e.g. s̊ in Fig. 3.1c. In a call stack

abstraction state we only represent the topmost stack frame of the corresponding call

state.

Definition 3.11 (Call Stack Abstraction State)

Let s̈ = (〈f̈ r0, . . . , f̈ rm〉, ḧ, ẗ, ḧp, s̈f ,⊥, ïc,⊥) be a call state. Then we define that

s = (〈f̈ r0〉, ḧ, ẗ, ḧp, s̈f ,⊥, ïc,⊥)

is the corresponding call stack abstraction state.

138 Chapter 3. Recursion

3.3. Context Concretization

In Section 1.5, the equivalence relations≡ and≡n help us identify corresponding references

in the input states. Likewise, we now make use of similar equivalence relations identifying

which parts of the return state correspond to which parts of a call state. The input

arguments introduced in Definition 3.3 form the basis of these relations. If an input

argument of a state corresponds to a reference of a calling state, then the corresponding

data must be identical.

In contrast to the situation in Section 1.5 we may have changed data in one state and

outdated data in another state. In such situations we must take care not to consider

references equivalent, as the outdated information does not necessarily correspond to the

information of the other state. However, as the length of an array cannot be changed,

even for arrays that may have changed we know that the length of the array stays the

same.

Definition 3.12 (≡) Let s = (〈fr0, . . . , frn〉, h, t, hp, sf, e, ic,⊥) with |s| > 0 and

s̈ = (〈f̈ r0, . . . , f̈ rm〉, ḧ, ẗ, ḧp, s̈f ,⊥, ïc,⊥) be a call state (thus, |s̈| > 1), where fri =

(ppi, lvi, osi, iai) and f̈ ri = (p̈pi, l̈vi, ösi, ïai). Furthermore, let s and s̈ have disjoint sets

of references (where only null and return addresses may be used in both states). Let

≡ ⊆ References×References be the smallest equivalence relation which satisfies

the following conditions:

(i) ∀(λ, γ,X/) ∈ ian : s̈ ∈ dom(γ)→ λ ≡ γ(s̈)

(ii) if r ≡ r′, {hr(r) = f, hr′(r
′) = f ′} ⊆ Instances, and rX and r′X or sr = sr′ ,

then f(v) ≡ f ′(v) for all v ∈ dom(f) ∩ dom(f ′)

(iii) if r ≡ r′, {hr(r) = (il, f), hr′(r
′) = (i′l, f

′)} ⊆ Arrays, and rX and r′X or

sr = sr′ , then f(i) ≡ f ′(i) for all i ∈ dom(f) ∩ dom(f ′)

(iv) if r ≡ r′ and {hr(r) = (il, f), hr′(r
′) = (i′l, f

′)} ⊆ Arrays, then il ≡ i′l

We now illustrate Definition 3.12 using an example.

Example 3.4 Consider the two states from Fig. 3.13. State A is a call state where

we created input arguments for the two references r1 and r2. State B is a state which

resulted out of the call shown in state A, i.e., the only stack frame of B is in the same

method as the topmost stack frame of A.

The input arguments in B indicate that r3 corresponds to r1 in A, and r4 corresponds

to r2. Thus, we get r1 ≡ r3 and r2 ≡ r4.

3.3. Context Concretization 139

(r1, (A 7→ r1),X)
(r2, (A 7→ r2),X)
〈0 | one : r1 | ε〉
〈23 | one : r2 | r1〉
r1 : List(next : r2)
r2 : List(next : r1)

A (r3, (A 7→ r1),)
(r4, (A 7→ r2),X)
〈42 | one : r3 | ε〉

r3: List(value: i1, next: r3)
r4: List(value: i2, next: r3)

i1 : 0
i2 : 1

B

Figure 3.13.: Two states illustrating Definition 3.12

Furthermore, the input argument for r3 indicates a (possible) change. Because of

this we do not identify r2 and r3 as being equivalent, although we have r1 ≡ r3 and the

referenced objects have r2 and r3 as next successors, respectively.

The intuition behind this restriction is that r3 and r1 really represent the same object

in the heap, but at different points in time. While for example the type information

of this object cannot be changed during execution (which we will exploit lateron), the

invoked method may have written different values in the fields of r3. Indeed, while in

A the list represented by r1 has exactly two different elements, in B the corresponding

list now only contains a single element (which forms a cycle). Thus, we must not take

information available through next into account when intersecting the values r1 and r3.

As in Section 1.5, we now extend ≡ to ≡n. While the definition of ≡n does not differ

from the definition in Chapter 1, the relations −� and −_ used in it need to be adapted

such that the effects of changed references are handled as intended. For this, we first

define when an equivalence class is marked as changed. The idea is that we may not

consider information which is part of a changed equivalence class, if the information is

only available in the call state (and, thus, possibly is outdated).

Definition 3.14 (Changed Equivalence Class) Let [r]≡ be an equivalence class.

We write [r] ≡ if there is a reference r′ ∈ [r]≡ with r′ . If no such r′ exist, we write [r]X≡.

We now define r′
τ−�
≡
r to indicate that with the knowledge in ≡ we know that when

starting in a reference equivalent to r′ and following the edges described by τ (where it

is allowed to continue with an equivalent reference in each step), one ends in a reference

equivalent to r. As write accesses may delete a path segment only present in s̈, in this

case we take care to only consider information in s.

140 Chapter 3. Recursion

Definition 3.15 (
τ
−�
≡

) Let s, s̈,≡ as in Definition 3.12. Let r be a reference with

hr(r) ∈ Instances∪Arrays. Then we have r′
τ−�
≡
r iff one of the following conditions

is met.

• We have r′ ≡ r and τ = ε.

• We have sr′|π′ = r′
τ ′−�
≡
rp = srp |πp , srp |πpτ ′′ ≡ r with τ ′′ 6= ε, and τ = τ ′τ ′′. If [r′] ≡,

we also have sr′ = s. If [rp]

≡, we also have srp = s.

If the equivalence relation ≡ is clear from the context, we just write r′
τ−� r instead

of r′
τ−�
≡
r.

As we have r′
τ−�
≡
r iff r′

τ−�
≡
r̊ for all r̊ ≡ r, we define that r′

τ−�
≡

[r]≡ holds if r′
τ−�
≡
r.

Using r′
τ−�
≡
r we now extend r′

τ−_ r as in Definition 1.30 to the setting of this chapter.

As we need to deal with invalidated information in s̈, and we have to consider several

different equivalence classes, the previous definition of r′ −_ r needs to be adapted ac-

cordingly.

We use r′
τ−_ r to describe that r′ is an abstract predecessor of r in the sense that one

cannot continue from r′ using τ . Thus, certain properties of r need to be expressed using

heap predicates for r′. As an example, if we know that r is cyclic, we need to have r′	.

Definition 3.16 (r′
τ−_
≡
r) Let sr′|π′ = r′

τ−�
≡
r where τ 6= ε and π′ = π′τ sr′ . Then we

have r′
τ−_
≡
r.

As we have r′
τ−_
≡
r iff r′

τ−_
≡
r̊ for all r̊ ≡ r, we define that r′

τ−_
≡

[r]≡ holds if r′
τ−_
≡
r.

If the equivalence relation ≡ is clear from the context, we just write r′
τ−_ r instead

of r′
τ−_
≡
r. Furthermore, we define that r′ −_ r holds if we have r′

τ−_ r for any τ 6= ε.

From now on we use r′ −_ r as in Definition 3.16 and override the previous Defini-

tion 1.30. With those updated definitions, we now define ≡n.

Definition 3.17 (≡n) Let s, s̈,≡ as in Definition 3.12. We define ≡n based on ≡ as

in Definition 1.31, where we use the updated Definitions 3.15 and 3.16.

As in Chapter 1, the information about equivalent references may be conflicting.

3.3. Context Concretization 141

Definition 3.18 (Conflicts) Let s, s̈,≡n as defined in Definition 3.17. If there is a

reference r ≡n null where r 6= null and r? is missing or hr(r) ∈ Arrays or hr(r) = f ∈
Instances with dom(f) 6= ∅, then the context concretization of s and s̈ does not exist.

We also redefine r′
τ− t r using Definitions 3.16 and 3.17.

Definition 3.19 (r′
τ−− t r) Let ≡n as in Definition 3.17. We define that r′

τ− t r holds

iff r′ ≡n r with τ = ε, or r′
τ−_ r.

As in Chapter 1, we will use ρ and σ to provide references in the state resulting out of

context concretization.

Definition 3.20 (ρ, σ) Let ≡n as defined in Definition 3.17. We define ρ, σ according

to Definition 1.34.

When intersecting the values of two equivalent references, we need to take care that

part of that information may be invalid due to side effects. For example, we must not

retain the information of the field contents of some object instance in s̈, if in s we possibly

have overwritten all field contents of an equivalent reference.

Thus, we extend the definition of e by not only providing the values to intersect, but

also expressing if that data is known to be valid. The idea is to only regard field or array

index information for the more dominant value. If a value is known to be unchanged (X),

its information is only part of the result if the other value is in the same state or it is

also known to be unchanged. Thus, as soon as data from s which is marked as changed

is intersected with any information in s̈, only the information of s is retained.

Definition 3.21 (eX) Let Values as in Definition 1.36. Then we have

eX : (Values× {X, })2 → Values× {X, }

and define (v, vX) eX (v′, v′X) as follows.

142 Chapter 3. Recursion

(v, vX) eX (v′, v′X) condition

(σ(il), fσ),) {v = (il, f), v′} ⊆ Arrays ∧ vX = ∧ v′X = X

(σ(il), f
′σ),) {v, v′ = (i′l, f

′)} ⊆ Arrays ∧ vX = X ∧ v′X =
(σ(il), (f ∪ f ′)σ), vX) {v = (il, f), v′ = (i′l, f

′)} ⊆ Arrays ∧ vX = v′X

(σ(il), fσ), vX) v = (il, f) ∈ Arrays ∧ v′ = f ′ ∈ Instances

∧ dom(f ′) = ∅ ∧ (vX = ∨ vX = v′X)

(σ(il), f
′σ),) v = (il, f) ∈ Arrays ∧ v′ = f ′ ∈ Instances

∧ dom(f ′) = ∅ ∧ vX = X ∧ v′X =
(,) v ∈ Arrays ∧ v′ = f ′ ∈ Instances ∧ dom(f ′) 6= ∅
(σ(i′l), f

′σ), v′X) v = f ∈ Instances ∧ v′ = (i′l, f
′) ∈ Arrays

∧ dom(f) = ∅ ∧ (v′X = ∨ vX = v′X)

(σ(i′l), fσ),) v = f ∈ Instances ∧ v′ = (i′l, f
′) ∈ Arrays

∧ dom(f) = ∅ ∧ vX = ∧ vX = X

(,) v = f ∈ Instances ∧ v′ ∈ Arrays ∧ dom(f) 6= ∅
(fσ,) {v = f, v′} ⊆ Instances ∧ vX = ∧ v′X = X

(f ′σ,) {v, v′ = f ′} ⊆ Instances ∧ vX = X ∧ v′X =
((f ∪ f ′)σ, vX) {v = f, v′ = f ′} ⊆ Instances ∧ vX = v′X

(v e v′,) otherwise (with e as in Definition 1.36)

In order to successfully perform context concretization, we only need to regard a state

s that corresponds to the call state s̈. In Definition 3.22 we check the corresponding

conditions, so that in the definition of context concretization we know that s and s̈ are

valid input states. In Definition 3.22(i–iii) we compare some fundamental properties of

the states, namely that the invoked method corresponds to the method in s and that the

initialization state allows for a possible evaluation from s̈ to s (i.e., no class which was

initialized in s̈ is not initialized anymore in s). In Definition 3.22(iv), which corresponds

to Definition 1.10(d), we take care that only states which may represent the same compu-

tation are considered in context concretization. Finally, in Definition 3.22(v,vi) we ensure

that the input arguments created for s̈, which are needed for any context concretization

with s̈, also are represented in s.

Definition 3.22 (s and s̈ are valid for context concretization) Let s and s̈ be

states as defined in Definition 3.12. We define that s and s̈ are valid for context

concretization only if the following conditions are met:

(i) The opcode ppn is in the same method as the opcode p̈p0.

(ii) For all classes cl with ïc(cl) = YES we have ic(cl) = YES.

3.3. Context Concretization 143

(iii) For all classes cl with ïc(cl) = RUNNING we have ic(cl) ∈ {RUNNING,YES}.

(iv) For each class [r]≡n where r is a return address we have r′ = r for all r′ ∈ [r]≡n .

(v) For each input argument in ïa0 we have a corresponding input argument in s:

∀(λ̈, γ̈,X/) ∈ ïa0 → ∃(λ, γ,X/) ∈ ian : γ̈ = γ.

(vi) For every input argument for s̈ we have a corresponding input argument in ïa0:

∀(λ, γ,X/) ∈ ian : s̈ ∈ dom(γ)→ ∃(λ̈, γ̈,X/) ∈ ïa0 : γ = γ̈

With these auxiliary definitions we can now define the context concretization of a state

s with a call state s̈, giving us a state s̃ that defines how we return from a recursive

method. Here, we closely follow the idea of state intersection to combine the information

available in s and s̈. For the upcoming correctness proofs we do not only show context

concretization if s is a return state, but also for arbitrary states. However, in the actual

analysis we only use context concretization for s if s is a return state.

In addition to the concepts already explained for state intersection, the main idea of

context concretization is to combine the two states s and s̈. Here, the call stack of s̃ is

built using the stack frames of s on top and all but the topmost stack frame of s̈ below

that. This corresponds to the idea that s̈ represents the context of the method invocation,

and s contains information about the invoked method.

In contrast to Chapter 1 we may also have input arguments in the states. Indeed, if s̃

is the state resulting out of context concretization of s and s̈, there may be a call state s̈′

so that we may also need to compute the context concretization of a state resulting out

of s̃ (then in the role of the return state) and s̈′. Thus, we need to add input arguments

to s̃ which can be used in such situations.

The input arguments in s are only used to compute s̃, thus these are dropped and not

represented anymore in s̃. Likewise we do not need to consider the input arguments in

the topmost stack frame of s̈.

Let ms̈ be the method represented in the lowest stack frame of s̈. Likewise, let ms be

the method represented in the lowest stack frame of s, i.e., ms is the method invoked

from s̈. The lowest stack frame of s̈ may contain input arguments which may be used

in another context concretization, when ms̈ returns. Thus, in s̃ we must take care to

add corresponding input arguments. Let m be any such method where ms̈ is invoked.

Evaluation of ms may have caused side effects which are observable from ms̈. Furthermore,

there may be side effects in ms that also are observable from m. Thus, we need to update

the input arguments added to the lowest stack frame of s̃ such that these changes are

represented. Because of that, if we find an input argument in the topmost stack frame

of s̈ for which the corresponding input argument in s is marked as changed, we look for

input arguments in the lowest stack frame of s̈ which may reach the input argument in the

144 Chapter 3. Recursion

topmost stack frame. If such an input argument exists, we use its information to create

an input argument in the lowest stack frame of s̃ which is marked as changed. Thus,

side effects initially observed in s are propagated to s̃ and, consequently, also to states

resulting out of further context concretizations.

The computation of the heap predicates in s̃ is similar to the ideas used for state

intersection. However, as there may be outdated information in s̈ not all heap predicates

may be considered when creating s̃. For example in s̈ we may have a reference r for

which no r	F exists. Thus, in the setting of state intersection we can be sure that r

indeed is acyclic (or all cycles are explicitly represented). However, if a reference r′ in s

which is equivalent to r has been changed, we do not know for sure that the reference

representing r and r′ in s̃ is acyclic. Instead, in the case of changes we must only regard

the information available in s.

Definition 3.23 (Context Concretization) Let s, s̈,≡n, ρ, σ as defined in Defini-

tions 3.17 and 3.20. Let fri = (ppi, lvi, osi, iai) for 0 ≤ i ≤ n be the stack frames of s

and let f̈ ri = (p̈pi, ïai, ösi, ïai) for 0 ≤ i ≤ m be the stack frames of s̈. Let s and s̈ be

valid in the sense of Definition 3.22, and let there be no conflict as in Definition 3.18.

We define a function cc : States × States → States ∪ { }. If the context con-

cretization as described below does not exist, then cc(s, s̈) = .

We define cc(s, s̈) = s̃ with

s̃ = (〈f̃ r0, . . . , f̃ rn, f̃ rn+1, . . . , f̃ rn+m〉, h̃, t̃, h̃p, sfσ, ẽ, ic,⊥)

Call Stack We define f̃ ri = (ppi, lviσ, osiσ, ∅) for 0 ≤ i ≤ n, f̃ ri = (p̈pi, l̈viσ, ösiσ, ∅)
for n+ 1 ≤ i < n+m, and f̃ rn+m = (p̈pm, l̈vmσ, ösmσ, ĩa) with ĩa as follows.

If we have (λ̈, γ̈,) ∈ ïam, then we also have (λ̈σ, γ̈,) ∈ ĩa. Otherwise, assume

we have (λ̈, γ̈,X) ∈ ïam. If there is (λ̈′, γ̈′,X/) ∈ ïa0 with [λ̈′] ≡n
and λ̈ λ̈′, then

we have (λ̈σ, γ̈,) ∈ ĩa. Otherwise, we have (λ̈σ, γ̈,X) ∈ ĩa.

Exception Using σ we define ẽ = ⊥ if e = ⊥, otherwise ẽ = σ(e).

Types We now define the type component t̃. Let r ∈ References(s) ∪
References(s̈) where r = null or the heap maps r to a value in Instances ∪
Arrays:

t̃(σ(r)) =
⋂

r′∈[r]≡n

tr′(r
′)

Heap For r ∈ References(s) ∪ References(s̈) with r 6∈ [null]≡n and r is no re-

turn address we now define the heap component (cf. Definition 3.21). We define

h̃(σ(r)) = r∩ with

3.3. Context Concretization 145

(r∩,X/) =

X/ ⋂⋂
r′∈[r]≡n

(hr′(r
′), r′X)

Here, we have r′X = if [r′] ≡n
and sr′ = s, and r′X = X otherwise.

If for any reference r the intersection results in h̃(r) = , then s̃ does not exist.

Heap Predicates Finally, we define the heap predicates h̃p. Let r 6= r′ be two refer-

ences with {h̃(σ(r)), h̃(σ(r′))} ⊆ Instances ∪Arrays:

(a) We add σ(r)? if for all r′ ∈ [r]≡n we have r′?.

(b) We add σ(r) =? σ(r′) if we have [r]≡n 6= [r′]≡n , and ri ∈ [r]≡n , r
′
i ∈ [r′]≡n with

ri =? r′i, and for all ri ∈ [r]≡n , r
′
i ∈ [r′]≡n we either have ri =? r′i or ri, r

′
i are

not in the same state. If we have ra −_ [π]≡n and rb −_ [π′]≡n with sra = srb
we also demand that ra%$rb exists. Furthermore, if sr′ |πa = ra

τa−_ [π]≡n , we

need to have sr′ |πaτa%$r′. Similarly, if sr|πb = rb
τb−_ [π′]≡n , we need to have

sr|πbτb%$r.
(c) We add σ(r)%$σ(r′), if [r] ≡n

or [r′] ≡n
, there exist r1 − t [r]≡n , r2 − t [r′]≡n with

r1%$r2 and sr1 = sr2 = s, and for all r1 − t [r]≡n , r2 − t [r′]≡n with sr1 = sr2 = s

we have r1%$r2.

(d) We add σ(r)%$σ(r′), if [r]X≡n
and [r′]X≡n

, there exist r1 − t [r]≡n , r2 − t [r′]≡n with

r1%$r2, and for all r1 − t [r]≡n , r2 − t [r′]≡n we have r1%$r2 or r1, r2 are not in

the same state.

(e) We add σ(r)%$σ(r), if [r] ≡n
and there exists r′ − t [r]≡n with sr′ = s and

r′%$r′, and for all r′ − t [r]≡n with sr′ = s we have r′%$r′.

(f) We add σ(r)%$σ(r), if [r]X≡n
and there exists r′ − t [r]≡n with r′%$r′, and for

all r′ − t [r]≡n we have r′%$r′.

(g) We add σ(r)	F with F =
⋃
i Fi, if [r] ≡n

and there exists r′ − t [r]≡n with

sr′ = s and r′	F ′ , and for all r′ − t [r]≡n with sr′ = s we have r′	Fi .

(h) We add σ(r)	F with F =
⋃
i Fi, if [r]X≡n

and there exists r′ − t [r]≡n with

r′	F ′ , and for all r′ − t [r]≡n we have r′	Fi .

We now show the basic concepts of Definition 3.23 using an example.

Example 3.5 Consider the states shown in Fig. 3.24 where we apply context con-

cretization of B with A (which is a call state). We first check that the two states are

valid for context concretization as in Definition 3.22. This is the case, as we assume the

opcodes of the topmost stackframes are in the same method. Furthermore, for every

146 Chapter 3. Recursion

(r1, (A 7→ r1),X)
(r2, (A 7→ r2),X)
〈0 | one : r1 | ε〉

(r1, (D 7→ r5),X)
〈23 | one : r2 | r1〉

r1: List(value: i1, next: r2)
r2 : List(next : r1)

i1 : 0

A
(r3, (A 7→ r1),)
(r4, (A 7→ r2),X)
〈42 | one : r3 | ε〉

r3: List(value: i2, next: r3)
r4: List(value: i3, next: r3)

i2 : [0, 1]
i3 : 1

B 〈42 | one : r6 | ε〉
(r6, (D 7→ r5),)
〈23 | one : r7 | r6〉

r6: List(value: i4, next: r6)
r7: List(value: i5, next: r6)

i4 : [0, 1]
i5 : 1

C

Figure 3.24.: Two states illustrating Definition 3.12

input argument in A we also have a corresponding input argument in B, and for each

input argument of B referencing data in A we also have an input argument in A.

We also have no conflict (Definition 3.18), thus we now construct the resulting state

cc(A,B) = C, shown in Fig. 3.24. The call stack is constructed by taking the frames

of B, but removing the input arguments. Below we add the lower stack frame of A,

where we modify the input arguments.

We have an input argument for r1 in A, which is created for a call state named D

(not shown in this example). As we have r1 ≡n r3 and we have r3 , the added input

argument is also marked as possibly changed.

The values in C are created based on Definition 3.21. We start with r2 ≡n r4. As

both these references are left unchanged, we use the field information of both referenced

instances and obtain List(next:r7, value: i5). Here, i5 is the reference used for [i3]≡n .

We also intersect r1 ≡n r3. However, we have r3 . Thus, the field information of r1

is not used in this intersection. Instead, we just consider the values of r3. This results

in List(value: i4, next:6).

As there are no heap predicates in A nor B, construction of C is now finished.

This definition now allows us to reason about instances of states even if only parts of

the call stack are represented. We may have s′ v s where the call stack of s is lower than

the call stack of s′. Here, the main idea is to repeatedly apply context concretization to s

until s′ and the resulting state have a call stack of the same height. If we obtain s̃ based

on s with |s̃| = |s′|, we can check s′ v s̃ similar to how we did it in Chapter 1. The only

relevant change is that, for s′ v s with |s′| = |s|, the two states must have equivalent

input arguments. Furthermore, if any input argument in s′ is marked as changed, the

corresponding input argument in s must also be marked as changed. This idea results in

the following recursive definition.

3.4. Stability of v Under Context Concretization 147

Definition 3.25 (v) Let s and s′ be two states. If |s′| > |s|, we have s′ v s iff there

is a call state s̈ such that cc(s, s̈) = s̃ and s′ v s̃.

Otherwise, if |s′| ≤ |s|, we have s′ v s iff the conditions of Definition 1.10(a–r) are

satisfied (which also means we have |s′| = |s|) and the following additional condition

holds:

(s) For each (λ′, γ′,X/) ∈ ia′i we have (λ, γ,X/) ∈ iai with γ′ = γ, and for each

(λ′, γ′,X/) ∈ iai we have (λ′, γ′,X/) ∈ ia′i with γ = γ′.

For each (λ′, γ′,) ∈ ia′i we have (λ, γ,) ∈ iai with γ′ = γ.

Intuitively for two states s′ and s with |s′| = |s| and s′ v s we expect that the more

abstract state s does not contain any state position which does not exist in s′.

Lemma 3.6 (Positions in Instances) For states s′ v s with |s′| = |s| we have

SPos(s′) ⊇ SPos(s).

Proof. According to Definition 3.25(s) for input arguments we have the same set of

positions of the form IAi,γ. The remainder of the proof corresponds to the proof of

Lemma 1.3. �

3.4. Stability of v Under Context Concretization

As the second part of Definition 3.25 does not differ much from Definition 1.10, it is

not hard to see its use. However, in the first part we take context concretization into

account when defining state instances. Thus, we need to understand that applying context

concretization to states retains the relation defined by v.

Theorem 3.7 (Stability of v) Let s, s′ ∈ States with |s′| = |s|, s′ v s, and let s̈

be a call state. If we have cc(s′, s̈) = s̃′, then we also have cc(s, s̈) = s̃ with s̃′ v s̃.

The proof of Theorem 3.7 actually is quite involved and is split into several auxiliary

lemmas. The main reason for this is that five different states (s′, s, s̈, s̃′, s̃) are involved,

in addition to that we need to consider two equivalence relations, and also deal with

complications due to side effects (i.e., the states may represent outdated information).

Finally, the proofs already done for state intersection have to be adapted.

148 Chapter 3. Recursion

In most of the upcoming lemmas, we consider a very specific situation. Thus, we first

define this situation with all relevant symbols so that we can simply refer to this definition

later.

Definition 3.26 (Situation) Let s′, s, s̈, s̃′, s̃ be states where s̈ is a call state, s′ v s

with |s′| = |s|, cc(s, s̈) = s̃, and cc(s′, s̈) = s̃′. We assume that, apart from null and

return addresses, s, s′, s̈ have disjoint references. Furthermore we have ≡′ constructed

for s′ and s̈, and ≡ constructed for s and s̈ (as defined in Definition 3.12). Let ≡′n and ≡n

be the corresponding extensions according to Definition 3.17. Based on Definition 3.20,

let σ′, ρ′ be used for s̃′, likewise let σ, ρ be used for s̃.

For sr ∈ {s, s̈} we define

�
sr :=

s̈ if sr = s̈

s′ if sr = s

Note that we have |sr| = | �sr| and
�
sr v sr. We also extend this notation to

�
tr and

�

hr.

First, we show how the equivalence relation ≡n created for a state s and a call state s̈

relates to ≡′n created for s′ and the same call state s̈. To simplify the proof, we first show

the claim for ≡ instead of ≡n.

Lemma 3.8 Let s′, s,≡′,≡ as in Definition 3.26.

Then for all sr|π = r ≡ r′ = sr′ |π′ we have
�
sr|π ≡′ �

sr′ |π′ .

Proof. First we show that it suffices to have a single pair of positions π 6= π′ with

sr|π = r ≡ r′ = sr′ |π′ and
�
sr|π ≡′ �

sr′ |π′ to show the claim. Then, for any positions π̊, π̊′

with sr |̊π = r and sr′ |̊π′ = r′, with s′ v s and Definition 3.25(k) we also have
�
sr|π =

�
sr |̊π

and
�
sr′|π′ =

�
sr′ |̊π′ . Thus, with

�
sr |̊π =

�
sr|π ≡′ �

sr′ |π′ =
�
sr′ |̊π′ we also have

�
sr |̊π ≡′ �

sr′ |̊π′ .
We show the claim by using an induction. Assume we have r ≡ r′ because r = r′.

If sr = sr′ = s̈, the proof is trivial. If sr = sr′ = s, for any positions π, π′ with

s|π = s|π′ = r = r′ with Definition 3.25(k) and s′ v s we also have s′|π = s′|π′ , thus

s′|π ≡′ s′|π′ . If sr = s, sr′ = s̈, consider any positions π, π′ with s|π = r and s̈|π′ = r′.

With Definition 3.25(d,h) and s′ v s we also have s|π = s′|π = r, thus s′|π ≡′ s̈|π′ . The

case with sr = s̈, sr′ = s is analogous.

Next, we consider r ≡ r′ because we have r = λ and (λ, γ,X/) ∈ ian with γ(s̈) =

r′. Thus, we have s|IAn,γ = r = s|π. According to Definition 3.25(s) we also have

(λ′, γ′,X/) ∈ ia′n with γ′ = γ, thus also γ′(s̈) = r′ = γ(s̈) and s′|IAn,γ′ ≡′ r′. With
�
sr = s′,

�
sr′ = s̈, s|IAn,γ = s|IAn,γ′ = r, and s′|IAn,γ′ ≡′ s̈|π′ = r′ the claim follows.

3.4. Stability of v Under Context Concretization 149

Now consider that we have r ≡ r′ because there are rp, r
′
p with rp ≡ r′p, hrp(rp) =

f, hr′p(r
′
p) = f ′, and f(v) = r, f ′(v) = r′ for some v ∈ FieldIDs where rpX and

r′pX, or srp = sr′p . By induction, we know
�
srp |π ≡′

�
sr′p|π′ for all π, π′ with srp |π = rp

and sr′p |π′ = r′p. With Definition 3.25(s) we also know that
�
srp |πX and

�
sr′p |π′X, or

�
srp =

�
sr′p . Thus, with Definition 3.25(i) we also have

�
srp|πv ≡′

�
sr′p |π′v. The cases

involving Definition 3.12(iii,iv) are analogous.

Finally, we consider r ≡ r′ because we have r ≡ rm and rm ≡ r′. With r ≡ rm, by

induction, we know
�
sr|π ≡′ �

sr|πm for all π, πm with sr|π = r and srm|πm = rm. Similarly,

we also have
�
sr′ |π′ ≡′ �

sr′|πm , where sr′|π′ = r′. Combining this, we get
�
sr|π ≡′ �

sr′ |π′ . �

Before we extend the proof to ≡n, we need to reason about the relations −� and −_.

Lemma 3.9 Let ≡′,≡ as in Definition 3.26.

Then for sr′ |π′ = r′
τ−�
≡
r = sr|π we have

�
sr′ |π′

τ−�
≡′

�
sr|π.

Proof. We show the claim using an induction. In the base case we have r′
τ−�
≡
r with

r′ ≡ r. Thus, the claim follows with Lemma 3.8.

Otherwise, we have r′
τ ′τ ′′−−�
≡

r with r′
τ ′−�
≡
srp|πp , srp |πpτ ′′ ≡ r. If [r′] ≡, we know sr′ = s

and
�
sr′ = s′. If [rp]

≡, we know srp = s and

�
srp = s′.

With Lemma 3.6 we know that for πpτ
′ ∈ SPos(srp), π ∈ SPos(sr), and π′ ∈

SPos(sr′) we also have πpτ
′ ∈ SPos(

�
srp), π ∈ SPos(

�
sr), and π′ ∈ SPos(

�
sr′). With

Lemma 3.8 we know that
�
srp |πpτ ′′ ≡′

�
sr|π.

By induction we know
�
sr′|π′

τ ′−�
≡′

�
srp|πp . We also have

�
srp |πpτ ′′ ≡′

�
sr|π. Thus,

�
sr′ |π′τ ′ −�

≡′
�
sr|π. �

Lemma 3.10 Let ≡′,≡ as in Definition 3.26.

Then for all sr′|π′ = r′
τ−_
≡
r = sr|π we have

�
sr′ |π′τ

τ ′−− t �sr|π for π′τ = π′τ �
sr′
τ ′.

Proof. Let sr′ |π′ = r′
τ−_
≡

r = sr|π with τ 6= ε. Thus, we also have r′
τ−�
≡

r. With

Lemma 3.9 we have
�
sr′ |π′

τ−�
≡′

�
sr|π. If [r′] ≡, we know sr′ = s. Thus, if [r′] ≡′ we also have

�
sr′ = s′.

150 Chapter 3. Recursion

If π′ = π′τ �
sr′

, we have
�
sr′ |π′ τ−_

≡′
�
sr|π. Otherwise we have π′τ ′ ∈ SPos(

�
sr′) for some

ε 6= τ ′ E τ and π′τ sr′ = π′τ ′. If τ ′ = τ , with Definitions 3.12 and 3.15 we have
�
sr′ |π′τ ≡′ �

sr|π, thus also
�
sr|π ≡′n

�
sr′|π′τ . If τ ′ C τ , with Definitions 3.12 and 3.15 we

have
�
sr′|π′τ ′

τ ′′−�
≡′

�
sr|π where τ = τ ′τ ′′ and also have

�
sr′ |π′τ ′ τ ′′−_

≡′
�
sr|π. �

Now, as we have shown auxilliary lemmas for −� and −_, we can show that ≡′n holds if

≡n holds.

Lemma 3.11 Let ≡′n,≡n as in Definition 3.26.

Then for all r ≡n r
′ and all π, π′ with sr|π = r and sr′ |π′ = r′ we have

�
sr|π ≡′n

�
sr′ |π′ .

Proof. As we already have shown Lemma 3.8, we only need to regard references r with

r ≡n null and show
�
sr|π ≡′n null for all π with sr|π = r. In all other cases the claim

follows from Lemma 3.8. Furthermore, w.l.o.g. we assume that r 6≡ null. We only need

to consider r with hr(r) ∈ Instances ∪Arrays.

Let π with sr|π = r. We have r ∈ [null]≡n because of one of the following cases:

(i) Let r̊ with sr̊ |̊π = r̊ ≡ r. We have tr(r) ∩ t̊r (̊r) = ∅. With s′ v s and Defini-

tion 3.25(g) we have
�
tr(

�
sr|π) ⊆ tr(r) and

�
t̊r(

�
sr̊ |̊π) ⊆ t̊r (̊r). Thus, we also have

�
tr(

�
sr|π) ∩ �

t̊r(
�
sr̊ |̊π) = ∅ and, hence, r ≡′n null. Thus, the claim follows.

(ii) Let π̊, r̊ as in the previous case with sr̊ = sr and r 6= r̊. We know that r =? r̊

does not exist. With s′ v s and Definition 3.25(q) we know
�
sr|π =? �

sr̊ |̊π also does

not exist. With Definition 3.25(l) we also know that
�
sr|π 6= �

sr̊ |̊π. Thus, the claim

follows.

(iii) Assume we have sr′ |π′ = r′ −_
≡
r = sr|π with sr = sr′ . We also may assume that

r%$r′ does not exist. According to Lemma 3.10 we have
�
sr′|π′ − t �sr|π.

If
�
sr′ |π′ −_ �

sr|π, with Definition 3.17(iii) we have
�
sr′ |π′%$ �

sr|π or r ≡′n null. Then,

with Definition 3.25(r) we know r ≡′n null, as r%$r′ does not exist.

Otherwise, if
�
sr′ |π′τ ≡′ �

sr|π, with Definition 3.18 we may have
�
sr′|π′τ =

�
sr|π or

�
sr′|π′τ =? �

sr|π. As π′τ 6∈ SPos(sr′), with Definition 3.25(m) we have r%$r′. Again,

this is a contradiction. Thus, we have
�
sr|π ≡′n null.

(iv) Let sr1|π1 = r1

τ1−� r2 = sr2 |π2 and r1

τ2−� r′2 = sr′2|π′2 with r2 ≡ r′2, ε 6= τ1,

τ1 6= τ2, and where τ1, τ2 have no corresponding intermediate reference from r1 in

sr1 . With Lemma 3.9 we have
�
sr1|π1

τ1−� �
sr2|π2 and

�
sr1|π1

τ2−� �
sr′2|π′2 .

3.4. Stability of v Under Context Concretization 151

If τ1, τ2 have a common intermediate reference from π1 in
�
sr1 , let τ1 = τ̊1τ̂1 with

τ̊1 6= ε and τ2 = τ̊2τ̂2 with τ̊2 6= ε such that
�
sr1|π1τ̊1 =

�
sr1|π1τ̊2 and τ̂1, τ̂2 have no

common intermediate reference from π1τ̊1 in
�
sr1 . With Definition 1.10(l) we also

have sr1|π1τ̊1 = sr1|π1τ̊2 , or sr1|π1τ̊1 =? sr1|π1τ̊2 , or {π1τ̊1, π1τ̊2} 6⊆ SPos(sr1). In the

first case we have a contradiction.

In all other cases, also if no common intermediate reference in
�
sr1 exists as de-

scribed above, the claim follows with Definition 1.10(n).

(v) Let ra
τa−_ r and rb

τb−_ r with τa 6= τb or ra 6= rb. Let sra |πa = ra, srb|πb = rb,

and sr|π = r. We also have sra = srb and ra%$rb is missing, furthermore we have

πaτasa = πa and πbτbsb = πb.

With Lemma 3.10 we have
�
sra|πaτa

τ ′a−− t �sr|π and
�
srb|πbτb

τ ′b−− t �sr|π.

First consider that we have
�
sra|πaτa

τ ′a−_ �
sr|π and

�
srb|πbτb

τ ′b−_ �
sr|π. If

�
sra |πaτa 6=

�
srb|πbτb or τ ′a 6= τ ′b, with Definition 3.17(v) we have

�
sra |πaτa%$

�
srb|πbτb or

�
sr|π ≡′n null.

In the former case, with Definition 3.25(r) we have sra|πa%$srb|πb . Due to this

contradiction, we know
�
sr|π ≡′n null. If we have

�
sra|πaτa =

�
srb|πbτb and τ ′a = τ ′b,

with Definition 3.25(m) we have sra|πa%$srb|πb . As this results in a conflict, we

may disregard this case.

If exactly one of
�
sra |πaτa −_

�
sr|π and

�
srb|πbτb −_

�
sr|π, with Definition 3.17(iii) and

Definition 3.25(r) we have sra |πa%$srb|πb or
�
sr|π ≡′n null. If { �

sra|πaτa ,
�
srb|πbτb} ⊆

[
�
sr|π]≡′n , with Definition 3.17(ii) and Definition 3.25(m) we have sra |πa%$srb|πb or
�
sr|π ≡′n null. �

As part of showing s̃′ v s̃ we first show that a state s̃′ exists.

Lemma 3.12 (Context Concretization exists) Let s′, s, s̃′, s̈ as in Definition 3.26.

If cc(s′, s̈) = s̃′, then we also have cc(s, s̈) = s̃.

Proof. As s̃′ is a context concretization of s′ with s̈, we have |s′| > 0. With |s| = |s′| =
n+ 1 we then also have |s| > 0. We also need to have that ppn and p̈p0 are in the same

method. With s′ v s and Definition 3.25(a) this claim follows. Furthermore, we must

show that there is no class cl with ic(cl) = NO and ïc(cl) ∈ {YES, RUNNING},
nor ic(cl) = RUNNING and ïc(cl) = YES. With Definition 3.25(c) we have ic = ic′.

Thus, the claim follows.

Assume we have s̃′|π = r where r is a return address. Then we know that π ∈
{LVi,j,OSi,j}. We have π ∈ SPos(s̃) and with Definition 3.25(d) and r = σ′(r) = σ(r)

152 Chapter 3. Recursion

the claim follows. We need to show that the input arguments of s match those of s̈.

This is trivial, as with s′ v s, |s′| = |s| and Definition 3.25(s) the claim directly follows.

We need to show that for ≡n none of the used intersections results in . Thus,

assume we have r ≡n r
′. Let π, π′ be positions with sr|π ≡n sr′|π′ . With Lemma 3.11

we also have
�
sr|π ≡′n

�
sr′ |π′ . As the context concretization of s′ with s̈ exists, we have

(
�

hr(
�
sr|π),X/) eX (

�

hr′(
�
sr′ |π′),X/) 6= (,X/). With s′ v s we conclude that also

(hr(sr|π),X/) eX (hr′(sr′|π′),X/) 6= (,X/).

Finally, we also need to show that there is no conflict according to Definition 3.18.

For that, assume we have a reference r ≡n null where r 6= null and r? is missing, or

hr(r) ∈ Arrays, or hr(r) = f ∈ Instances with dom(f) 6= ∅. As there is no conflict

w.r.t. s′ and s̈, we know
�
sr|π = null or

�
sr|π = f ′ ∈ Instances with dom(f ′) = ∅ and

�
sr|π? for all π with sr|π = r. With Lemma 3.11 and s′ v s (Definition 3.25(j)) we know

that hr(r) 6∈ Arrays. Furthermore, according to Definition 3.25(p) we have r? and

with Definition 3.25(i) we also have dom(f) = ∅. Thus, the claim is shown. �

We now show, similar to Lemma 3.6, that the context concretization of a more abstract

state does not have a position which does not exist in the context concretization of the

more concrete state. In order to be able to conveniently reference positions in a state

resulting out of context concretization, we first introduce a new notation.

Definition 3.27 ([π]≡n) Let ≡n, s̃ as in Definition 3.26. For π ∈ SPos(s̃) we define

[π]≡n := [r]≡n with ρ([r]≡n) = s̃|π.

Lemma 3.13 (State Positions for Context Concretization) Let s̃′, s̃ be defined

as in Definition 3.26. Then we have SPos(s̃′) ⊇ SPos(s̃).

The main idea in the proof is that we only disregard available field information for

the context concretization if the non-call state indicates that the corresponding object

instance may have changed. As such change markers also must exist in more general

states (according to the instance definition), such fields are also disregarded in more

general states.

An analogous claim holds for arrays and array index information. Array length infor-

mation is always retained in context concretization (as it is in the intersection process

outlined in Section 1.5), as the length of an array instance is immutable.

3.4. Stability of v Under Context Concretization 153

Proof. We show the claim using a structural induction on π. Let π ∈ SPos(s̃). If

π = IAi,γ the claim follows from Definition 3.25(s) and Definition 3.23. If π = LVi,j or

π = OSi,j, the claim follows as we have |s′| = |s| and ppi = pp′i for all i. If π = SFc,

the claim follows with ic = ic′. If π = EXC the claim follows from Definition 3.23.

Now, assume we have π = π′ τ with |τ | = 1. By induction we have π′ ∈ SPos(s̃).

Let r ∈ [π′]≡n with sr|π̂′ = r, π̂′ τ ∈ SPos(sr) and sr|π̂′ τ ∈ [π]≡n .

If we have τ = v, we have hr(r) = f ∈ Instances with v ∈ dom(f) 6= ∅. With

s′ v s we then have
�

hr(
�
sr|π̂′) = f ′ ∈ Instances with v ∈ dom(f) ⊆ dom(f ′). Thus,

π̂′ v ∈ SPos(
�
sr). With Definition 3.18 we have h̃′(s̃′|π′) = f̃ ′ ∈ Instances. If [

�
sr |̊π]X≡′n ,

with Definition 3.21 it is rather straight-forward that we also have v ∈ dom(f̃ ′). If

[
�
sr |̊π] ≡′n , w.l.o.g. assume sr = s. Thus, by Definition 3.21 we also have v ∈ dom(f̃ ′).

Thus, we have π′ v ∈ SPos(s̃′) and the claim follows.

The proof for τ = i is similar, and for τ = len the claim directly follows from

Definition 3.21 (as the length of an array is immutable). �

Lemma 3.14 Let ≡′n,≡n as in Definition 3.26. Then if sr|π′ = r ∈ [π]≡n we also have
�
sr|π′ ∈ [π]≡′n .

Proof. With Lemma 3.13 we know π ∈ SPos(s̃′), thus [π]≡′n 6= ∅. It suffices to

show that there is sr|π′ = r ∈ [π]≡n with
�
sr|π′ ∈ [π]≡′n . Then the claim follows with

Lemma 3.11.

We show the claim using a structural induction on π. First we consider |π| = 1.

• If π ∈ {SFv,EXC,OSi,j,LVi,j, IAi,γ} for 0 ≤ i < |s| = |s′|, according to Defini-

tion 3.23 we have s̃|π = σ(s|π), thus s|π ≡n sr|π′ . With Lemma 3.11 we also have

s′|π ≡′n
�
sr|π′ . As s̃′|π = σ′(s′|π), we have s′|π ∈ [π]≡′n , thus

�
sr|π′ ∈ [π]≡′n .

• If π ∈ {OSi,j,LVi,j, IAi,γ} with |s| = |s′| ≤ i < |s̃| = |s̃′|, let π̈ be the same

position but in stack frame i′ = i − |s| + 1, i.e., π̈ ∈ {OSi′,j,LVi′,j, IAi′,γ} with

1 ≤ i′ < |s̈|. Then we have s̃|π = σ(s̈|π̈), thus s̈|π̈ ∈ [π]≡n and sr|π′ ≡n s̈|π̈.

With s|π′ ≡n s̈|π̈ and Lemma 3.11 we also have
�
s|π′ ≡′n s̈|π̈. As s̃′|π = σ′(s̈|π̈),

with s̈|π̈ ∈ [π]≡′n we then also have
�
s|π′ ∈ [π]≡′n .

Now we consider π = π1τ with |τ | = 1. By induction we know that for all srp|πp =

rp ∈ [π1]≡n we have
�
srp |πp ∈ [π1]≡′n .

First assume τ = v ∈ FieldIDs. W.l.o.g. pick rp such that hrp(rp) = f ∈ Instances

with v ∈ dom(f), and f(v) = srp |πp v ∈ [π]≡n . Also, if [
�
srp]

≡n

, we pick rp such that srp =

154 Chapter 3. Recursion

s. Similar to the proof of Lemma 3.13, we have
�
srp|πp v ∈ [π]≡′n . With srp|πp v ∈ [π]≡n

and
�
srp |πp v ∈ [π]≡′n the claim follows.

As in the proof of Lemma 3.13, the proof for v = i and v = len is analogous (or even

simpler). �

In the following pages we will present more auxialliary lemmas which are used in the

upcoming proof of Theorem 3.7.

Preparation for proof step (l)

We first present lemmas which are used to show the proof step corresponding to Defini-

tion 3.25(l). Here, for a specific situation we need to have two references in the same state.

For this we make use of the input arguments and show that these guarantee existence of

such references.

The first lemma shows that for equivalent references this equivalence results out of an

input argument if the references are in different states.

Lemma 3.15 Let s, s̈,≡n as in Definition 3.26.

Assume we have sr|π1 = r ≡n r
′ = s2|π2 with h(r) ∈ Instances ∪Arrays.

(i) If sr = s and sr′ = s̈, we have input arguments (λ, γ,X/) ∈ ian and (λ̈, γ̈,X/) ∈
ïa0 with γ = γ̈, s|IAn,γ ≡n r, and s̈|IA0,γ̈

= r′.

(ii) Analogously, if sr = s̈ and sr′ = s, we have input arguments (λ, γ,X/) ∈ ian and

(λ̈, γ̈,X/) ∈ ïa0 with γ = γ̈, s|IAn,γ ≡n r
′, and s̈|IA0,γ̈

= r.

(iii) If sr = sr′ = s̈ and we have an input argument (λ̈, γ̈,X/) ∈ ïa0 with s̈|IA0,γ̈
= r,

then we also have an input argument (λ̈′, γ̈′,X/) ∈ ïa0 with s̈|IA
0,γ̈′

= r′.

(iv) Analogously, if sr = sr′ = s̈ and we have an input argument (λ̈, γ̈,X/) ∈ ïa0

with s̈|IA0,γ̈
= r′, then we also have an input argument (λ̈′, γ̈′,X/) ∈ ïa0 with

s̈|IA
0,γ̈′

= r.

Proof. We only show proofs for the first and third item, as the proofs for the other

items are analogous (when swapping the roles of r and r′). We have r ≡n r
′ and show

the claim using an induction.

• First, consider that we have sr = s and sr′ = s̈.

3.4. Stability of v Under Context Concretization 155

We know h(r) ∈ Instances∪Arrays, thus r 6= r′. If there is an input argument

(λ, γ,X/) ∈ ian with λ = r and γ(s̈) = r′, we have r = λ ≡n γ(s̈) = r′ as in

Definition 3.12(i). With Definition 3.22(vi) we also know that there is an input

argument (λ̈, γ̈,X/) ∈ ïa0 with γ = γ̈. Then we have s|IAn,γ = r and s̈|IA0,γ̈
= r′.

Thus, the claim is shown.

Now assume r ≡n r
′ because we have s|π′1 ≡n s̈|π′2 as in Definition 3.12(ii) where

π1 = π′1 v, π2 = π′2 v, h(s|π′1) = f1 ∈ Instances, and ḧ(s̈|π′2) = f2 ∈ Instances

with v ∈ dom(f1)∩dom(f2) and s|π′1X. By induction we know there is an input ar-

gument (λ̈, γ̈,X/) ∈ ïa0 with s̈|IA0,γ̈
= s̈|π′2 . Thus, we also have s̈|IA0,γ̈ v = r′. With

Definition 3.6(iii) we then also have an input argument (λ̈′, γ̈′,X/) ∈ ïa0 with

s̈|IA
0,γ̈′

= r′. With Definition 3.22(v) we have an input argument (λ′, γ′,X/) ∈ ian
with γ̈′ = γ′ and s|IAn,γ′ ≡n s̈|IA

0,γ̈′
≡n r

′ ≡n r. The proof for Definition 3.12(iii)

is analogous.

If we have r ≡n rm and rm ≡n r
′, the proof trivially follows by transitivity of ≡n

if srm = s. If we have r ≡n rm ≡n r
′ with srm = sr′ = s̈, by induction we know

there are input arguments (λ̈, γ̈,X/) ∈ ïa0 and (λ, γ,X/) ∈ ian with γ̈ = γ,

s|IAn,γ ≡n r, and s̈|IA0,γ̈
= rm. Furthermore, by induction we know there also is

an input argument (λ̈′, γ̈′,X/) ∈ ïa0 with s̈|IA
0,γ̈′

= r′. Thus, the claim is shown.

• Now consider that we have sr = sr′ = s̈ where an input argument (λ̈, γ̈,X/) ∈ ïa0

exists with s̈|IA0,γ̈
= r.

If r = r′, the claim immediately follows. We cannot have r ≡n r
′ with Defini-

tion 3.12(i), as sr = sr′ = s̈. Thus, consider that we have r ≡n r
′ with Defini-

tion 3.12(ii) where we have s̈|π′1 ≡n s̈|π′2 with π1 = π′1 v, π2 = π′2 v, ḧ(s̈|π′1) = f1 ∈
Instances, ḧ(s̈|π′2) = f2 ∈ Instances, and v ∈ dom(f1)∩dom(f2). With Defini-

tion 3.6(vi) we have s̈|π3 r or r s̈|π4 ∧ s̈|π3 s̈|π4 with π3 ∈ {SFv,LV0,j}. In

the former case, we have s̈|π3 r and s̈|π′1 r. Thus, with Definition 3.6(iv) we

have an input argument (λ̈′, γ̈′,X/) ∈ ïa0 with s̈|IA
0,γ̈′

= s̈|π′1 . In the latter case,

we also have s̈|π′1 s̈|π4 . Thus, with Definition 3.6(iv) we also have (λ̈′, γ̈′,X/)

as above. By induction we have an input argument for s̈|π′2 and, with Defini-

tion 3.6(iii), the claim follows. The proof for Definition 3.12(iii) is analogous.

If we have r ≡n rm ≡n r
′, we either have srm = s̈ or srm = s. In both cases, the

claim follows by induction. �

In the following lemma we make use of the input arguments to guarantee that for a

specific situation we always have two references which are in the same state.

156 Chapter 3. Recursion

Lemma 3.16 Let s̃′, s̃,≡′n,≡n as in Definition 3.26.

For all positions {π, π′} ⊆ SPos(s̃) with s̃′|π ≡′n s̃′|π′ and h̃′(s̃′|π) ∈ Instances ∪
Arrays there are r, r′ with r ∈ [π]≡n , r

′ ∈ [π′]≡n , and sr = sr′ .

Proof. Let r = sr|π1 ∈ [π]≡n and r′ = sr′|π2 ∈ [π′]≡n . If sr = sr′ , the claim is shown.

Thus, w.l.o.g. assume we have sr = s, and sr′ = s̈. Then the claim follows with

Lemma 3.15. �

Preparation for proof step (o)

For the proof step for Definition 3.25(o) we need to reason about abstract predecessors of

certain references. Thus, in the following lemmas we show some properties for predeces-

sors.

Lemma 3.17 Let s̃′, s̃,≡′n ,≡n as in Definition 3.26. Let π ∈ SPos(s̃′). Let
�
sr|π′ =

r
τ−_ [πs̃]≡′n . If [πs̃]

≡′n , let sr = s.

Then we have
�
sr|π′ ττ ′−−_ [π]≡′n where π = πs̃τ

′.

Proof. If πs̃ = π, the claim is trivially shown. Thus, assume π = πs̃τ
′ with τ ′ 6= ε. As

�
sr|π′ τ−_ [πs̃]≡′n , we know π′τ �

sr
= π′. With π ∈ SPos(s̃′) the claim follows. �

Lemma 3.18 Let s̃′, s̃,≡′n,≡n as in Definition 3.26. Let π ∈ SPos(s̃′). Let
�
sr|π′ = r ∈

[πs̃]≡′n where π = πs̃τ . If [πs̃]

≡′n , let sr = s.

Then we have
�
sr|π′τ

τ ′−− t [π]≡′n with π′τ = π′τ �
sr
τ ′.

Proof. If πs̃ = π, the claim is trivially shown. Thus, assume π = πs̃τ with τ 6= ε. If
�
sr = s̈ we know π′τ s̈ = π′ or [πs̃]

≡n

. In the latter case we also have
�
sr = s, thus for

�
sr = s̈ we know π′τ s̈ = π′ and [πs̃]

X
≡′n . Thus, if

�
sr = s̈ we have s̈|π′τ

τ−_ [π]≡′n . Otherwise,

if sr = s we may have π′τ s 6= π′. If π′τ s = π′τ we have s′r|π′τ ∈ [π]≡′n . Otherwise we

have s′r|π′τ
τ ′−_ [π]≡′n with π′τ sτ

′ = π′τ . �

3.4. Stability of v Under Context Concretization 157

Lemma 3.19 Let s̃′, s̃ as in Definition 3.26. Let π ∈ SPos(s̃′) and let τ with π = πs̃τ .

Let sr|πa = r
τa−− t [πs̃]≡n where sr = s if [πs̃]

≡n

.

Then we have
�
sr|πaτaτ

τ ′−− t [π]≡′n with πaτaτ �
sr
τ ′ = πaτaτ .

Proof. If sr|πa ∈ [πs̃]≡n , with Lemma 3.14 we have
�
sr|πa ∈ [πs̃]≡′n . According to

Lemma 3.18 we have
�
sr|πaτ

τ ′−− t [π]≡′n with πaτ = πaτ �
sr
τ ′. If sr|πa

τa−_ [πs̃]≡n , with

Lemma 3.10 we have
�
sr|πaτa

τ ′a−− t [πs̃]≡′n with πaτa�
sr
τ ′a = πaτa. If

�
sr|πaτa

τ ′a−_ [πs̃]≡′n , with

Lemma 3.17 we also have
�
sr|πaτa

τ ′aτ−−_ [π]≡′n . If
�
sr|πaτa ∈ [πs̃]≡′n , with Lemma 3.18 we

have
�
sr|πaτaτ

τ ′−− t [π]≡′n with πaτaτ �
sr
τ ′ = πaτaτ . �

Preparation for proof step (m)

Finally, as a last preparation step, we deal with Definition 3.25(m). For this, we directly

show that the necessary heap predicates exist. For this we make use of the lemmas

previously presented, and also show that (similar to the case of Definition 3.25(l)) for a

specific situation we always have references in the same state as guaranteed by the input

arguments.

Lemma 3.20 Let s̃′, s̃ as in Definition 3.26. Assume we have s̃′|π = s̃′|π′ or s̃′|π =? s̃′|π′
with π 6∈ SPos(s̃), h̃′(s̃′|π) ∈ Instances ∪ Arrays, and π 6= π′. Furthermore we

have s̃|π 6= s̃|π′ or π, π′ have different suffixes w.r.t. s̃. Let sra|πa = ra − t [πs̃]≡n and

srb|πb = rb − t [π′s̃]≡n .

Then, if sra = srb , we have ra%$rb. If [πs̃]

≡n

or [π′s̃]

≡n

we only show this for sra =

srb = s.

Proof. Let π = πs̃τ and let π′ = π′s̃τ
′. With Lemma 3.19 we have

�
sra|πaτaτ − t [π]≡′n

and
�
srb|πbτbτ ′ − t [π′]≡′n . If

�
sra |πaτaτ ∈ [π]≡′n and

�
srb|πbτbτ ′ ∈ [π′]≡′n , with Definition 3.17(ii)

and Definition 3.23(b) we have
�
sra|πaτaτ =

�
srb |πbτbτ ′ or

�
sra |πaτaτ =? �

srb|πbτbτ ′ . Thus,

with Definition 3.25(m) we may have sra|πa%$srb|πb . Otherwise, we have ra = rb and

πaτaτ, πbτbτ
′ have the same suffix w.r.t. sra = srb . From this we can conclude that

τa = τb. As [πs̃]≡n 6= [π′s̃]≡n or τ 6= τ ′, we have ra 6= rb. Thus, we know ra%$rb.
Now consider that we have

�
sra|πaτaτ ∈ [π]≡′n and

�
srb|πbτbτ ′ −_ [π′]≡′n If [π]≡n = [π′]≡n we

also have
�
srb|πbτbτ ′ −_

�
sra |πaτaτ . Thus, with Definition 3.17(iii) and Definition 3.25(r) we

158 Chapter 3. Recursion

have ra%$rb. Otherwise, we have [π]≡n 6= [π′]≡n . Then, with Definition 3.23(b) we have
�
srb|πbτbτ ′%$

�
sra|πaτaτ . Thus, with Definition 3.25(r) we have ra%$rb. The case where we

have
�
sra|πaτaτ −_ [π]≡′n and

�
srb|πbτbτ ′ ∈ [π′]≡′n is analogous.

Lastly, consider the case where we have
�
sra |πaτaτ −_ [π]≡′n and

�
srb|πbτbτ ′ −_ [π′]≡′n .

Then, with Definition 3.23(b), Definition 3.17(v), and Definition 3.25(m,r) we have

ra%$rb. �

Lemma 3.21 Let s, s̈,≡n as in Definition 3.26. If we have s|π − t s̈|π′ with ḧ(s̈|π′) ∈
Instances∪Arrays, then there is an input argument (λ̈, γ̈,X/) ∈ ïa0 with s̈|IA0,γ̈

=

s̈|π′ . We also have s|IAn,γ̈ ≡n s̈|π′ .

Proof. Let s|π τ− t s̈|π′ . We show the claim using an induction on τ . If τ = ε, we have

s|π ≡n s̈|π′ . Thus, with Lemma 3.15 the claim follows.

Now let τ = τ ′τ ′′ with |τ ′′| = 1. Thus, we have s|π τ−_ s̈|π′ . With Definition 3.16 we

know πτ ′τ ′′s = π and s|π
τ−� s̈|π′ .

If τ ′ = ε, with Definition 3.15 we have s|π ≡n sx|πx for some sx|πx with sx|πxτ ′′ ≡n s̈|π′ .
If srx = s, we have s|πxτ ′′ ≡n s̈|π′ . Then, with Lemma 3.15 the claim follows. If srx = s̈,

with Lemma 3.15 we have an input argument (λ̈, γ̈,X/) ∈ ïa0 with s̈|IA0,γ̈
= s̈|πx . With

Definition 3.6(iii) we also have an input argument (λ̈′, γ̈′,X/) ∈ ïa0 with s̈|IA
0,γ̈′

=

s̈|πxτ ′′ . Then the claim follows with Lemma 3.15.

If τ ′ 6= ε, we have s|π τ ′−− t sx|πx and sx|πxτ ′′ ≡n s̈|π′ for some sx|πx . If sx = s̈, by

induction we have an input argument (λ̈, γ̈,X/) ∈ ïa0 with s̈|IA0,γ̈
= s̈|πx . With Defi-

nition 3.6(iii) we also have an input argument (λ̈′, γ̈′,X/) ∈ ïa0 with s̈|IA
0,γ̈′

= s̈|πxτ ′′ .
If sx = s, we have s|πxτ ′′ ≡n s̈|π′ . In both cases the claim follows with Lemma 3.15. �

Lemma 3.22 Let s̃′, s̃ as in Definition 3.26. Furthermore, assume we have s̃′|π = s̃′|π′
or s̃′|π =? s̃′|π′ with {π, π′} 6⊆ SPos(s̃), h̃′(s̃′|π) ∈ Instances ∪Arrays, and π 6= π′.

Then there are sr1|π1 = r1 ∈ [πs̃]≡n and sr2|π2 = r2 ∈ [π′s̃]≡n with sr1 = sr2 .

Proof. Let sra|πa = ra ∈ [πs̃]≡n and srb|πb = rb ∈ [π′s̃]≡n . If there are such ra, rb with

srb = srb , the claim is shown.

W.l.o.g. assume for all sra|πa ∈ [πs̃]≡n we have sra = s, and for all srb |πb ∈ [π′s̃]≡n we

have srb = s̈.

3.4. Stability of v Under Context Concretization 159

We have π′ ∈ SPos(s̃′). If [π′s̃]

≡n

, we know there is a reference src |πc ∈ [π′s̃]≡n

with src |πc . With Definition 3.8 we know src = s. Otherwise, if [π′s̃]
X
≡n

, we have

src |πc ∈ [π′s̃]≡′n with src |πcτ ∈ [π′s̃τ]≡′n and π′s̃τ E π′ where, if π′ 6∈ SPos(s̃), we have

τ 6= ε. If src = s′, with Lemma 3.15 we have an input argument (λ′, γ′,X/) ∈ ia′n with

s′|IAn,γ′ ≡′n s̈|πb . With Definition 3.25(s) we then also have (λ, γ,X/) ∈ ian with γ = γ′

and s|IAn,γ ≡n s̈|πb .
If src = s̈ and s̈|πcτ ∈ [π′s̃τ]≡′n for τ as above, we have a contradiction if π′ 6∈ SPos(s̃).

Thus we only need to consider the case that π 6∈ SPos(s̃) and π′ ∈ SPos(s̃), thus also

π′s̃ = π′. According to Lemma 3.18 we have s′|πaτ ′ − t [π]≡′n for πs̃τ
′ = π.

If [π]≡′n = [π′]≡′n , we know s̈|πb ∈ [π]≡′n . Thus, we also have s′|πaτ ′ − t s̈|πb . With

Lemma 3.21 we then also have an input argument (λ̈, γ̈,X/) ∈ ïa0 with s̈|IA0,γ = s̈|πb .
With Definition 3.22(v) we have s|IAn,γ̈ ≡n s̈|πb ≡n [π′s̃]≡n .

If s̃′|π =? s̃′|π′ , with Definition 3.23(b) we know s̈|πd ∈ [π]≡′n for some πd, as only s̈

contains references equivalent to [π′]≡n . Thus, with s′|πaτ ′ − t s̈|πd and Lemma 3.21 we

also have an input argument (λ̈, γ̈,X/) ∈ ïa0 with s̈|IA0,γ̈
= s̈|πd . As we have s̈|πd =?

s̈|πb , with Definition 3.6(v) we then also have an input argument (λ̈′, γ̈′,X/) ∈ ïa0 with

s̈|IA
0,γ̈′

= s̈|πb . Then, with Definition 3.22(v) we have s|IA
n,γ̈′
≡n s̈|πb ∈ [π′]≡n .

Thus, the claim is shown. �

Lemma 3.23 Let s̃′, s̃ as in Definition 3.26. Assume we have s̃′|π = s̃′|π′ or s̃′|π =? s̃′|π′
with π 6∈ SPos(s̃), h̃′(s̃′|π) ∈ Instances∪Arrays, and π 6= π′. Furthermore we have

s̃|π 6= s̃|π′ or π, π′ have different suffixes w.r.t. s̃.

Then we have s̃|πs̃%$s̃|π′s̃ .

Proof. Let sra|πa = ra − t [πs̃]≡n and srb|πb = rb − t [π′s̃]≡n . If sra = srb , with Lemma 3.20

we have ra%$rb. According to Lemma 3.22 we know that such ra, rb exist. Thus, with

Definition 3.23(c,d) the claim follows. �

Proof

Now, after defining and proving correct 17 auxiliary lemmas, we finally show that Theo-

rem 3.7 holds.

160 Chapter 3. Recursion

Proof. (of Theorem 3.7 on page 147) We make use of the symbols as in Defini-

tion 3.26.

With Lemma 3.12 we have a context concretization s̃ of s with s̈. Thus, we need to

show s̃′ v s̃. As we have |s′| = |s|, we also have |s̃′| = |s̃|.
We need to show Definition 3.25(a–s).

(a) With s′ v s we have p̃p′i = pp′i = p̃pi = ppi for all 0 ≤ i ≤ n and p̃p′i = p̈pi−n = p̃pi

for all n < i ≤ n+m.

(b) If s̃′|EXC = ⊥, we also have s′|EXC = ⊥. With Definition 3.25(b) we also have

s|EXC = ⊥ and s̃|EXC = ⊥. Similarly, if s̃′|EXC 6= ⊥, we also have s̃|EXC 6= ⊥.

(c) We have ĩc
′
= ic′ = ic = ĩc.

Let π ∈ SPos(s̃). According to Lemma 3.14 for each r ∈ [π]≡n with sr|π′ = r we

have
�
sr|π′ ∈ [π]≡′n .

(d) s̃′|π is a return address. Then, with Definition 3.25(d) we have s̃′|π = s̃|π.

(e) We have h̃′(s̃′|π) = Ṽ ′ ∈ Floats. Let h̃(s̃|π) = Ṽ .

Thus, for each r as above we have
�

hr(
�
sr|π′) ∈ {Ṽ ′,⊥}. With Definition 3.25(e)

we also have hr(r) ∈ {Ṽ ′,⊥}. Thus, we have Ṽ ∈ {Ṽ ′,⊥}.

(f) We have h̃′(s̃′|π) = Ṽ ′ ∈ Integers. Let h̃(s̃|π) = Ṽ .

For each r as above we have Ṽ ′ ⊆
�

hr(
�
sr|π′). With Definition 3.25(f) we also have

Ṽ ′ ⊆ hr(r). Thus, we have Ṽ ′ ⊆ Ṽ .

(g) We have t̃′(s̃′|π) = Ṽ ′ ∈ Types. Let t̃(s̃|π) = Ṽ .

For each r as above we have Ṽ ′ ⊆ �
tr(

�
sr|π′). With Definition 3.25(g) we also have

Ṽ ′ ⊆ tr(r). Thus, we have Ṽ ′ ⊆ Ṽ .

(h) We have s̃′|π = null. Let s̃|π = r̃.

According Definition 3.18 for each r as above we have
�
sr|π′ = null or

�

hr(
�
sr|π′) =

f ∈ Instances with dom(f) = ∅ and
�
sr|π′?. With Definition 3.25(h,i,p) we also

have sr|r = null or hr(r) = f ∈ Instances with dom(f) = ∅ and r?. Thus, with

Definition 3.23(a) we have r̃ = null or h̃(r̃) = f̃ ∈ Instances with dom(f̃) = ∅
and r̃?.

(i) We have h̃′(s̃′|π) = f̃ ′ ∈ Instances and π ∈ SPos(s̃).

According to Definition 3.21, for each r as above we have
�

hr(
�
sr|π′) ∈ Instances.

Furthermore, we have dom(f̃ ′) ⊇ dom(
�

hr(
�
sr|π′)) if

�
sr = s′ or [π]X≡′n . With Defini-

tion 3.25(i) we also have dom(f̃ ′) ⊇ dom(hr(r)) if sr = s or [π]X≡′n .

3.4. Stability of v Under Context Concretization 161

If we have [π] ≡′n , we also have [π] ≡n
. Thus, according to Definition 3.21 we then

only need to regard r ∈ [π]≡n with sr = s. Thus, we have h̃(s̃|π) = f̃ ∈ Instances

with dom(f̃ ′) ⊇ dom(f̃).

(j) We have h̃′(s̃′|π) = (̃i′l, f̃
′) ∈ Arrays.

According to Definition 3.21, for each r as above we have
�

hr(
�
sr|π′) = f ′ ∈

Instances with dom(f ′) = ∅ or
�

hr(
�
sr|π′) ∈ Arrays. Let f ′ with

�

hr(
�
sr|π′) =

(i′l, f
′) ∈ Arrays or

�

hr(
�
sr|π′) = f ′ ∈ Instances, and let f with hr(r) = (il, f) ∈

Arrays or hr(r) = f ′ ∈ Instances.

We have dom(f̃ ′) ⊇ dom(f ′) if
�
sr = s′ or [π]X≡′n . With Definition 3.25(i,j) we also

have dom(f̃ ′) ⊇ dom(f) if sr = s or [π]X≡′n .

If we have [π] ≡′n , we also have [π] ≡n
. Thus, according to Definition 3.21 we then

only need to regard r ∈ [π]≡n with sr = s. Thus, we have h̃(s̃|π) = f̃ ∈ Instances

with dom(f̃) = ∅, or h̃(s̃|π) = (̃il, f̃) ∈ Arrays with dom(f̃) ⊆ dom(f̃ ′).

Let {π, π′} ∈ SPos(s̃′).

(k) We have s̃′|π 6= s̃′|π′ and π, π′ ∈ SPos(s̃). With [π]≡′n 6= [π′]≡′n and Lemma 3.11

we also have [π]≡n 6= [π′]≡n . Thus, the claim follows.

(l) We have s̃′|π = s̃′|π′ , h̃′(s̃′|π) ∈ Instances ∪ Arrays, and π, π′ ∈ SPos(s̃). If

[π]≡n = [π′]≡n , the claim follows. Thus, we only consider the case that [π]≡n 6=
[π′]≡n and show that s̃|π =? s̃|π′ .

As s̃′|π = s̃′|π′ , we also have [π]≡′n = [π′]≡′n . Let sr|π1 = r ∈ [π]≡n and sr′|π2 = r′ ∈
[π′]≡n . With Lemma 3.14 we have

�
sr|π1 ∈ [π]≡′n and

�
sr′ |π2 ∈ [π′]≡′n , thus

�
sr|π1 ≡′n

�
sr′ |π2 . If we have sr = sr′ , we also have

�
sr =

�
sr′ . Thus, with Definition 3.17 we

have
�
sr|π1 =

�
sr′ |π2 or

�
sr|π1 =? �

sr′ |π2 . With Definition 3.25(l,q) we have r =? r′.

Assume we have sra |πa = ra
τa−_ [π]≡n and srb|πb = rb

τb−_ [π′]≡n . As [π]≡n 6= [π′]≡n ,

we know ra 6= rb or τa 6= τb. With Lemmas 3.10 and 3.14 we then also have
�
sra|πaτa − t [π]≡′n and

�
srb|πbτb − t [π]≡′n . With Definition 3.25(m,r) and Defini-

tion 3.17(iii,v) we then also have ra%$rb if sra = srb .

Now consider that we have sr′ |πa
τa−_ [π]≡n , thus we also have

�
sr′ |πaτa − t [π]≡′n . If

�
sr′ |πaτa ∈ [π]≡′n , with Definition 3.17(ii) and Definition 3.25(m) we have sr′|πa%$r′.
If

�
sr′|πaτa −_ [π]≡′n , with Definition 3.17(iii) we have

�
sr′ |πaτa%$r′. Thus, with

Definition 3.25(r) we also have sra|πa%$r′. Similarly, for sr|πb
τb−_ [π′]≡n we have

sr|πbτb%$r.

Thus, if we have
�
sr =

�
sr′ , with Definition 3.23(b) we have s̃|π =? s̃|π′ . Now we

consider the case that for all sr|π1 = r ∈ [π]≡n and sr′ |π2 = r′ ∈ [π′]≡n we have

162 Chapter 3. Recursion

sr 6= sr′ . According to Lemma 3.16 this case is not possible. Thus, the claim is

shown.

(m) We have s̃′|π = s̃′|π′ or s̃′|π =? s̃′|π′ with π 6= π′. We also have h̃′(s̃′|π) ∈
Instances ∪ Arrays and {π, π′} 6⊆ SPos(s̃). Furthermore, we may assume

s̃|π 6= s̃|π′ or π, π′ have different suffixes w.r.t. s̃. Thus, we need to show s̃|π%$s̃|π′ .
W.l.o.g. assume π 6∈ SPos(s̃). Then the claim directly follows from Lemma 3.23.

(n) We have {ατ, ατ ′} ⊆ SPos(s̃′) with h̃′(s̃′|ατ) ∈ Instances ∪ Arrays, s̃′|ατ =

s̃′|ατ ′ , and τ 6= ε. Furthermore τ, τ ′ have no common intermediate reference from

α in s̃′.

With s̃′|ατ = s̃′|ατ ′ we have [ατ]≡′n = [ατ ′]≡′n . Let srα|α̊ = rα − t [αs̃]≡n with

α = αs̃β. With Lemma 3.19 we have
�
srα |α̊βτ − t [ατ]≡′n and

�
srα|α̊βτ ′ − t [ατ ′]≡′n .

Thus, we also have
�
srα|α̊β

β̊τ−� [ατ]≡′n and
�
srα|α̊β

β̊τ ′−−� [ατ ′]≡′n where α̊β = α̊β �
srα
β̊.

With Definition 3.17(iv) we have
�
srα|α̊βτ =

�
srα|α̊βτ ′ , or

�
srα|α̊β%$

�
srα|α̊β and, if

τ ′ = ε, also
�
srα|α̊β	F ′i with F ′i ⊆ τ . Then, with Definition 3.25(n,o,r) we have

srα|α̊%$srα|α̊ and, if τ ′ = ε, also srα |α̊	Fi with Fi ⊆ τ .

(o) We have s̃′|π	F ′ . With Definition 3.23(g,h) we have F ′ =
⋃
i F
′
i with F ′i as follows.

We have
�
sr̊|π′	F ′i for all

�
sr̊|π′ = r̊ − t [π]≡′n . If [π] ≡′n , we only regard the cases where

�
sr̊ = s′.

Let τ with πs̃τ = π and consider any sr|π1 = r
τ1−− t [πs̃]≡n where sr = s if [πs̃]

≡n

.

With Lemma 3.19 we have
�
sr|π1τ1 − t [πs̃]≡′n and

�
sπ1τ1τ − t [π]≡′n . Thus, we also

have
�

sπ1τ1τ	F ′i with F ′i ⊆ F ′ if sr = s or [πs̃]
X
≡n

. With Definition 3.23(g,h) and

Definition 3.25(o) we then have sr|π1	Fi with Fi ⊆ F ′. Combined, we have s̃|π	F
with F ⊆ F ′.

(p) We have s̃′|π? and π ∈ SPos(s̃). According to Lemma 3.14 for each r ∈ [π]≡n

with sr|π′ = r we have
�
sr|π′ ∈ [π]≡′n . With Definition 3.23(a) we have

�
sr|π′? for all

such r. Thus, with Definition 3.25(p) we also have sr|π′?. Then the claim follows

with Definition 3.23(a).

(q) We have s̃′|π =? s̃′|π′ , thus s̃′|π 6= s̃′|π′ . We also have {π, π′} ⊆ SPos(s̃). Consider

any sr|π1 = r ∈ [π]≡n and sr′|π2 = r′ ∈ [π′]≡n with sr = sr′ . With Lemma 3.14

we have
�
sr|π1 ∈ [π]≡′n and

�
sr|π2 ∈ [π′]≡′n . According to Definition 3.23(b) we have

�
sr|π1 =? �

sr|π2 . With Definition 3.25(q) we then also have sr|π1 =? sr|π2 .
Assume we have sra|πa = ra

τa−_ [π]≡n and srb|πb = rb
τb−_ [π′]≡n . As [π]≡n 6= [π′]≡n ,

we know ra 6= rb or τa 6= τb. With Lemmas 3.10 and 3.14 we then also

have
�
sra |πaτa − t [π]≡′n and

�
srb|πbτb − t [π′]≡′n . With Definition 3.23(b), Defini-

tion 3.25(m,r), and Definition 3.17(iii,v) we then also have ra%$rb if sra = srb .

3.5. Symbolic Execution Graphs for Recursive Programs 163

Now consider that we have sr′ |πa
τa−_ [π]≡n . Then we also have

�
sr′|πaτa − t [π]≡′n . If

�
sr′ |πaτa ∈ [π]≡′n , with Definition 3.23(b) and Definition 3.25(m) we have sr′|πa%$r′.
If

�
sr′ |πaτa −_ [π]≡′n , with Definition 3.23(b) we have

�
sr′|πaτa%$r′. Thus, with Def-

inition 3.25(r) we also have sr′ |πa%$r′. Similarly, for sr|πb
τb−_ [π′]≡n we have

sr|πbτb%$r.
Thus, with Definition 3.23(b) we have s̃|π =? s̃|π′ .

(r) We have s̃′|π%$s̃′|π′ .
We first consider the case that π = π′. Let sr|π1 = r

τ1−− t [πs̃]≡n with sr = s

if [πs̃]

≡n

. With Lemma 3.19 we have
�
sr|π1τ1 − t [πs̃]≡′n . We also have

�
sr|π1τ1τ − t

[π]≡′n for π = πs̃τ . According to Definition 3.23(e,f) we have
�
sr|π1τ1τ%$

�
sr|π1τ1τ

if sr = s or [πs̃]
X
≡n

. Thus, we also have sr|π1%$sr|π1 and the claim follows with

Definition 3.23(e,f).

Now consider that π 6= π′. Let sr|π1 = r ∈ [πs̃]≡n and sr′|π2 = r′ ∈ [π′s̃]≡n

with sr = sr′ . With Lemma 3.19 we have
�
sr|π1τ − t [π]≡′n and

�
sr|π2τ ′ − t [π′]≡′n where

π = πs̃τ and π′ = π′s̃τ
′. With Definition 3.23(e,f) we have

�
sr|π1τ%$

�
sr|π2τ ′ if sr = s,

or [πs̃]
X
≡n

and [π′s̃]
X
≡n

. Thus, we also have sr|π1%$sr|π2 and the claim follows with

Definition 3.23(e,f).

(s) This directly follows from Definition 3.23 and Definition 3.25(s).

Thus, the claim holds. �

3.5. Symbolic Execution Graphs for Recursive Programs

We now show that the edges used in the graph are sound, similar to Theorem 1.56. In

the case of instance edges this is shown by proving that the v relation is transitive.

Using Theorem 3.7, transitivity of v can now easily be proved by reducing it to the

case of states with call stacks of the same size. For this case, we proved transitivity of v
already in Theorem 1.4.

Lemma 3.24 (v is transitive) Let s, s′, s′′ be states with s1 v s2 and s2 v s3. Then

s1 v s3.

164 Chapter 3. Recursion

Proof. We have |s1| ≥ |s2| ≥ |s3|. From s1 v s2 we can conclude that there is a state

s̃′ that can be obtained by repeated context concretization of s2 such that |s1| = |s2|
and s1 v s̃′. Let s̃ be the state resulting from s3 by performing the same context

concretizations. Thus, |s̃′| ≥ |s̃| and, by Theorem 3.7, we have s̃′ v s̃. Hence, by

further context concretization of s̃, we can obtain a state ˜̂s with |s̃′| = |˜̂s| and s̃′ v ˜̂s.

Hence, we now have |s1| = |s̃′| = |˜̂s| and s1 v s̃′ v ˜̂s. Thus, Theorem 1.4 implies

s1 v ˜̂s. Since ˜̂s was obtained by repeated context concretization from s3, this also

implies s1 v s3. �

After having shown the soundness of instance edges, we now prove the soundness of

context concretization edges.

Lemma 3.25 (Soundness of Context Concretization Edges) Let c v s for a re-

turn state s and c
jvm−−→ c′. Then there exists a context concretization s̃ of s with a call

state s̈ such that c v s̃ and where s and s̃ are connected with a context concretization

edge.

Proof. As c
jvm−−→ c′, c cannot be a program end. As the top stack frames of c and s are

at the same program position, we obtain |c| ≥ 2 and thus, |c| > |s|. Hence, according

to Definition 3.25, there exists a state s̃′ obtained by repeated context concretization

from s such that |c| = |s̃′| and c v s̃′. Since |c| > |s|, we must perform at least one

context concretization step from s to s̃′. Let s̃ be the result of performing the first of

these context concretizations on s. Then, by Definition 3.25, we also have c v s̃. �

To prove soundness of input arguments creation edges, we need to consider the fact

that input arguments are added to the topmost stack frame. However, according to

Definition 3.25(s) we may only have c v s̈ for a concrete state c and |c| = |s̈| if there is no

input argument in s̈. However, we know that from every call state s̈ we have an outgoing

call edge leading to a state s′ where the lower stack frames are not represented.

Assume we have c
jvm−−→ c′ with c v s. If s is an invoking state and s̈ is the corresponding

call state, thus s is connected to s̈ using an input arguments creation edge, we also consider

the state s′ where s̈ is connected to s′ using a call edge. Then we show c′ v s′. As

|c′| > |s′| = 1, we must use context concretization to show c′ v s′, thus we do not need

input arguments in c′.

3.5. Symbolic Execution Graphs for Recursive Programs 165

Lemma 3.26 (Soundness of Input Arguments Creation and Call Edges)

Let s be an invoking state, let s̈ = (〈f̈ r0, . . . , f̈ rm〉, ḧ, ẗ, ḧp, s̈f ,⊥, ïc,⊥) be the corre-

sponding call state, and let s′ = (〈f̈ r0〉, ḧ, ẗ, ḧp, s̈f ,⊥, ïc,⊥) be the corresponding call

abstraction state. Then s v s′.

Proof. Context concretization of s′ with s̈ results in a state that is identical to s̈ (up

to renaming of variables). This implies s̈ v s′ by Definition 3.25. As s and s̈ only differ

by the input arguments added to the top stack frame, we also have s v s′. �

It remains to show that also refinement edges and evaluation edges are correct. How-

ever, as the proof of Theorem 3.7 already is very complex, we decided to not also formally

show correctness for these edges. Furthermore, in [BOG11] (Lemmas 11, 12, and 14) we

already have shown correctness of these edges in a similar setting. Thus, the interested

reader may adapt these proofs to the setting of this thesis.

In the case of evaluation edges, similar to the situation in Chapter 1, the PUTFIELD

opcode is of special interest. As evaluation of PUTFIELD may alter information also

visible in lower stack frames, which is not explicitly represented in this analysis, we must

take care to regard these changes using other means. In this setting, the created input

arguments represent the references of the lower stack frames. Thus, whenever a reference

r is modified using PUTFIELD and we have an input argument (λ, γ,X/) with λ r,

we mark the input argument as changed (thus, in the successor state we have (λ′, γ′,)

with γ = γ′). As the information of changed input arguments is regarded in context

concretization, soundness follows.

Conjecture 3.27 (Soundness of Refinement Edges) Let c be a concrete state

with c v s and let refine(s) = {s1, . . . , sn}. Then there exists a state si ∈ refine(s) with

c v si.

Conjecture 3.28 (Soundness of Evaluation Edges) Let c be a concrete state with

c
jvm−−→ c′ and c v s. If s

Eval−−−→ s′ then we have c′ v s′.

3.5.1 Graph Construction

Using the concepts introduced in this chapter, most notably context concretization, we

now show how Symbolic Execution Graphs are constructed for recursive methods. In

166 Chapter 3. Recursion

Algorithm 16 we show the updated version of Evaluate as used in Algorithm 1. Here,

we only need to consider three changes:

• When evaluating opcodes like PUTFIELD, we need to also mark input arguments as

changed (cf. line 20). Otherwise, we can evaluate just as in Chapter 1.

• When a new method is invoked, i.e., we have an invoking state, we create the

corresponding call state by adding input arguments to the state (cf. lines 1–4).

Afterwards, for the call state we create a state consisting only out of the topmost

stack frame (cf. lines 5-8)

• If we encounter a return state, we perform context concretization with all call states

and add the resulting states to the graph. However, as this may result in infinitely

many return states with infinitely many states resulting out of context concretiza-

tion, using ForceAbstraction we take care that this cannot happen (cf. lines

9–17).

Algorithm 16: Evaluation

Input: s ∈ States, Symbolic Execution Graph G
1: if s is an invoking state then
2: create state s′ as a copy of s
3: add input arguments to s′ according to Definition 3.6
4: connect s to s′ using an input arguments creation edge
5: else if s is a call state then
6: create state s′ as a copy of s
7: remove all but the topmost stack frame of s′

8: connect s to s′ using a call edge
9: else if s is a return state then

10: if there is a return state s′ of the same shape then
11: if s v s′ then
12: connect s to s′ using an instance edge
13: else
14: ForceAbstraction(s, s′)
15: else
16: for all call states s̈ with cc(s, s̈) = s̃ do
17: connect s to s̃ using a context concretization edge
18: else
19: Evaluate as in Chapter 1
20: if necessary, mark input arguments as changed

As even in the case of recursive methods no state may contain an unbounded number

of stack frames, Algorithm 16 is better suited for recursive programs when compared to

the analysis in Chapter 1. However, we still need to ensure that only a finite number of

input arguments exists in each state. This is addressed in Section 3.6.

3.6. Abstraction of Input Arguments 167

We now finally prove the soundness of Symbolic Execution Graphs, i.e., that every

concrete Java Bytecode evaluation corresponds to a computation path in the Symbolic

Execution Graph.

Theorem 3.29 (Soundness of Symbolic Execution Graphs) Let c, c′ be con-

crete states with c
jvm−−→ c′. If a Symbolic Execution Graph contains a state s with

c v s, then the graph contains a path from s to a state s′ with c′ v s′.

Proof. We prove the theorem by induction on the sum of the lengths of all paths from

s to the next evaluation edge. This sum is always finite, since we required that every

cycle of a Symbolic Execution Graph must contain at least one evaluation edge. We

perform a case distinction on the type of the outgoing edges of s.

If s has an instance edge to s′, then s v s′ and by Lemma 3.24 we also have c v s′ and

the claim follows from the induction hypothesis. If s has an input arguments creation

edge to s̈, we also have a call edge from s̈ to s′. Thus, with Lemma 3.26 we have

c v s′ and the claim follows from the induction hypothesis. If the outgoing edges of s

are context concretization or refinement edges to s1, . . . , sn, we know by Lemma 3.25

and Conjecture 3.27 that there is an si with c v si. Again, then the claim follows from

the induction hypothesis. Finally, if there is an evaluation edge from s to s′, we know

by Conjecture 3.28 that c′ v s′. �

3.6. Abstraction of Input Arguments

According to Definition 3.6 we need to add input arguments to the state whenever a

recursive method is invoked. If the number of input arguments is bounded, the graph

construction as shown in Section 3.5.1 terminates. However, there may be programs for

which an unbounded number of input arguments is necessary. Indeed, in Example 3.30 a

simple algorithm is shown for which the graph construction as presented in this chapter

does not terminate.

Example 3.30 The algorithm length recursively computes the length of the current

List. For the invocation in line 8, input arguments are created both for next (which is an

argument of the invoked method) and this (which is a predecessor of next). Furthermore,

which is crucial, we also need to add an input argument for any input argument we

already created for previous calls, as the corresponding reference also is a predecessor

of next.

168 Chapter 3. Recursion

1 public class List {

2 List next;

3

4 int length () {

5 if (next == null) {

6 return 1;

7 }

8 return 1 + next.length ();

9 }

10 }

One could optimize Definition 3.6 such that less input arguments need to be created.

However, there always are cases where one needs to create additional input arguments

similar to the situation shown in Example 3.30.

In order to have a finite graph construction, one possibility is to merge two or more

input arguments into one input argument. In Example 3.30 it might suffice to only create

an input argument representing any predecessor of the current list element, so that a

single input argument suffices to represent the information of an unbounded number of

stack frames.

However, in order for this idea to work, several changes to the technique presented so

far would be necessary:

Instance Definition Assume that from s to s′ we merge two input arguments into one

with the intention that s v s′ holds. Then in most cases in s′ the merged input

argument is represented by a single reference r, while in s the two input arguments

are represented by two different references r′ 6= r′′. Thus, Definition 3.25(k) would

need to be adapted accordingly. One idea is that Definition 3.25(k) does not need

to hold for the case of merged input arguments.

Evaluation We must take care that any reference representing a merged input argument

cannot be used in the actual computation. For example code corresponding to

if (x == x) is problematic, if the reference used for x may represent two different

object instances on the heap. Even if the reference used for a merged input argument

is only reachable using heap predicates, using refinement it may be possible to create

a situation where this reference is made available on the operand stack. Thus, we

may need to have special rules for example how =? is treated in the case of merged

input arguments.

3.7. Conclusion and Outlook 169

Write Accesses When, for example, evaluating PUTFIELD, it may be necessary to treat

merged input arguments differently.

Context Concretization When returning from a method containing a merged input argu-

ment, we need to split (un-merge) the merged input argument so that the reference

corresponding to the stack frame we return to is represented, but we also still have

the (merged) input argument corresponding to the (unbounded) number of lower

stack frames.

In [RC11] the authors discuss this problem in another setting, where cutpoints corre-

spond to our definition of input arguments.

To summarize, input arguments and their usage as demonstrated in this chapter seem

to be a great help in constructing Symbolic Execution Graphs for recursive programs.

However, the technique still needs to be adapted so that only a finite number of input

arguments is necessary. The idea of merging input arguments may be helpful with this.

3.7. Conclusion and Outlook

Using the technique presented in Chapter 1, for recursive programs the construction might

not terminate as states with an unbounded number of stack frames could be created. In

this chapter, we presented an extension that enables call stack abstraction. With this, it

is possible to also represent recursive programs using states with a bounded number of

stack frames. In order to reason about the necessary information lost in the abstraction,

we introduced input arguments and the concept of context concretization.

As the main contribution of this chapter, we have shown that using context concretiza-

tion it indeed is possible to introduce call stack abstraction and still create Symbolic

Execution Graphs with the desired correctness properties. Here the main challenge was

the extension of the formalization already shown in [BOG11] so that context concretiza-

tion as presented in this thesis also works on states making use of heap predicates.

However, the presented technique does not suffice to guarantee construction of a finite

Symbolic Execution Graph for recursive programs (as discussed in Section 3.6). As such,

corresponding adoptions are left for future work.

The Symbolic Execution Graphs created using the techniques presented in this thesis

are created in the context of the whole program, meaning that every opcode (and class and

method) that may be executed is known in advance. While the states created for different

methods form clusters in the graph (which only are connected using call edges and context

concretization edges), the creation of input arguments still depends on the individual call

states. Thus, it is not possible to analyze a method without having detailed information

about all possible call sites. As a consequence, in order to analyze code making use of,

for example, collection classes in java.util, we also need to analyze these library classes.

170 Chapter 3. Recursion

Analysis of library classes which are known prior to the analysis and which do not

change seems to be redundant. Furthermore, preliminary experiments have shown that

the analysis does not scale to larger programs making use of many different methods (and

classes).

For future work, one idea is to make the construction of Symbolic Execution Graphs

more modular by abstracting the information currently represented in call states and

carried over to the invoked method (in the form of input arguments). A discussion of this

idea and first results are presented in [Fro13]. Furthermore, in this thesis we left out a

possible optimization regarding static fields. According to Definition 3.23 we disregard

information about static fields in the call state s̈. Instead, one could simply extend

Definition 3.23 such that also information about static fields in the call state is retained,

if that static field is known to be left unchanged by the invoked method.

4. Bug Detection

The Symbolic Execution Graphs as presented in Chapters 1 and 3 can not only be used to

prove termination, but also contain a lot of detailed information that can easily be used

for other analyses. In this chapter we present a technique that helps to find bugs which

are hard to find without having as detailed information.

This technique is based on the idea of running a precise dead code analysis on the

Symbolic Execution Graph constructed for a program. Then, instead of eliminating dead

code, we show parts of the program containing dead code to the user. We assume that

most (if not all) code is indeed intended to have a purpose. Because of this, bugs leading

to dead code can be identified using this method.

Example 4.1 (Bug) Assume that the method createGraph() creates new graph ob-

jects so that graphOne and graphTwo do not share on the heap. Then the algorithm

adds all nodes from graphOne which are connected to a node stored in the variable

source to graphTwo. In Example 4.18 on page 200 you can also find the complete code

of this example.

1 Graph graphOne = createGraph ();

2 Graph graphTwo = createGraph ();

3

4 Node source = graphTwo.getRootNode ();

5 for (Node node : graphOne.getNodes ()) {

6 if (areConnected(source , node)) {

7 graphTwo.addNode(node);

8 }

9 }

Due to a bug the source node is taken from graphTwo, so that the following calls to

areConnected for node from graphOne and source from graphTwo always return false.

Because of this the intended operation of adding node to graphTwo never is executed.

If the user is interested in the value of graphTwo, our analysis is able to give the in-

formation that the code in lines 4–9 can be ignored for this purpose. A user, confronted

with this result, could easily see that it should influence the intended result and then

find and fix the bug mentioned above.

172 Chapter 4. Bug Detection

To find bugs as shown in Example 4.1, the analysis must be able to have precise infor-

mation about the heap. In the example, it must be known that source and node do not

share. While gathering this information makes other approaches more complicated, we

can just use the information already available in Symbolic Execution Graphs. Further-

more, this technique also benefits from most optimizations in the construction of Symbolic

Execution Graphs. For example, if stronger heap predicates are introduced, the Symbolic

Execution Graph contains more detailed information and this technique automatically

provides better results.

Goal of the analysis

The goal of most dead code analyses is to identify code that can be removed without influ-

encing the result of the computation. A more formal definition is given in Conjecture 4.17,

which is introduced after explaining the details of the analysis.

In classical dead code analyses, for example those implemented in optimizing compilers

that remove dead code, code influencing the termination behavior must not be considered

dead code [Ben05].

In the technique presented here, we do not remove code and, therefore, may ignore

the fact that code can influence the termination behavior of a program. Furthermore, as

already introduced, there exist other techniques to prove or disprove termination which

can be used if the user is interested in these questions.

Example 4.2 (Termination behavior) In this example, the loop including the call

to someMethod may not terminate and, therefore, must not be considered as dead code

intended for removal. However, if we ignore possible non-termination and are only

interested in code influencing the value of res, we may conclude that lines 2–5 are not

relevant.

1 int res = 2;

2 int i = 0;

3 while (someMethod(i)) {

4 i++;

5 }

6 return res;

The goal of this analysis is to identify dead code that can be considered irrelevant for

desired outcomes. For that, the user needs to mark certain parts of the code as relevant.

Based on this definition other parts of the program must consequently be marked as

relevant and, finally, code not marked as relevant is considered irrelevant.

4.1. Related Work 173

Example 4.3 (Relevance) In the following method, the sum of the arguments a and

b is returned. Additionally the method contains a computation that is not needed to

compute the sum.

1 public int add(int a, int b, int c) {

2 int res = a + b;

3 int temp = res/c;

4 return res;

5 }

If we define that only the return value of add is relevant, our analysis can provide the

information that the computation of temp in line 3 is irrelevant.

However, we may also be interested in exceptions thrown by a method. In the

example above, if we are interested in thrown exceptions, we must consider that the

division res/c could throw an instance of ArithmeticException and, therefore, must not

be considered irrelevant.

Structure

After discussing related work in Section 4.1, in Section 4.2 we present the core idea of this

technique and explain which important aspects need to be regarded. Then, in Section 4.3,

we extend the core idea to cover most aspects of Java and formalize the presented ideas,

resulting in algorithms performing the analysis. In Sections 4.4 and 4.5 we discuss how to

present the obtained results to the user and discuss optimization ideas. In Section 4.6 we

present a conjecture which states how the results of this analysis can be interpreted. In

Section 4.7 we demonstrate the power of the analysis. Finally, in Section 4.8 we conclude

and discuss how the presented results can and should be extended.

4.1. Related Work

The technique presented here is a constraint-based, inter-procedural, and context-sensitive

data flow analysis [NNH99]. Some concepts used in this chapter correspond to the idea

of program dependence graphs as in [FOW87].

In the past decades many techniques reasoning about or transforming code have been

developed. Most importantly, dead code analyses as part of compilers may compute similar

results [ASU85].

In contrast to most analyses, this analysis concentrates on finding and reporting bugs

to the programmer. In [WZKSL13] the authors present a technique which identifies and

reports unstable code. Here, the programmer may have used constructs with undefined

174 Chapter 4. Bug Detection

1 int a = foo ();

2 int b = a;

3 int res = -a;

4 b++;

5 return res;

(a) Java program

1 INVOKESTATIC foo()

2 ISTORE_1 // store to a

3 ILOAD_1 // load a

4 ISTORE_2 // store to b

5 ILOAD_1 // load a

6 INEG // -a

7 ISTORE_3 // store to res

8 IINC 2, 1 // b++

9 ILOAD_3 // load res

10 IRETURN // return res

(b) corresponding Java Bytecode

Figure 4.1.: Small Java example

behavior. As such, compilers with corresponding optimizations may remove such code,

possibly not behaving as intended by the programmer.

Tools like FindBugs [AHM+08] and Coverty [BBC+10] also make use of static analysis

to find bugs in programs. However, while these tools are focussed on providing results for

large programs, the used analyses are less precise.

To our knowledge, the technique of this chapter is the first to heavily rely on a pre-

computed analysis (viz. Symbolic Execution Graphs) in order to keep the analysis itself

simple.

4.2. Basic Idea

We construct a simple propositional formula that can easily be used to provide the desired

information. For that, we associate a propositional variable with each opcode in the

program and add implications to the formula so that variables set to true in a minimal

model of the formula identify relevant opcodes. To construct the formula, a simple fixed-

point algorithm is run on the finished Symbolic Execution Graph.

As we create a formula which consists of conjunctions over implications, in this chap-

ter we define that implications have a higher precedence than conjunctions. This eases

readability of the presented formulas, i.e.

a→ b ∧ c→ d = (a→ b) ∧ (c→ d) 6= a→ (b ∧ c)→ d

In the following example we will introduce the idea informally. For that, we assume

that for each opcode we know which data is the corresponding input and output. This

information is not directly available in the Symbolic Execution Graph, so that in later

sections we need to extend the analysis to also provide this information. Nevertheless,

the example gives a first understanding of the fundamental ideas used in this chapter.

4.2. Basic Idea 175

Example 4.4 (Formula construction) In Fig. 4.1a Java code is shown that negates

a value returned by a method foo(). In Fig. 4.1b the corresponding Java Bytecode

with 10 opcodes is shown.

Assume that we have propositional variables Relx for each of those opcodes (i.e.,

1 ≤ x ≤ 10) used to encode that the corresponding opcode in line x is relevant. At

the end of the analysis the values assigned to these variables are used to compute the

result which is presented to the user.

Furthermore, assume for each such x the variables Inx and Outx are used to denote

the relevance of all inputs resp. outputs of the xth opcode.

Thus, in this example we use three variables (Relx, Inx,Outx) for each opcode. Al-

though we only are interested in the relevance of each opcode (for which we use Relx), in

the case of opcodes with multiple inputs or outputs it is possible to only mark specific

inputs or outputs as relevant. Details of this idea will be presented later.

Without the need for any further analysis, we can construct the following implica-

tions. These denote that, if the output of an opcode is relevant, also the opcode itself

is relevant. Furthermore, if an opcode is relevant then also its inputs are relevant. As

an example, for the ILOAD 1 instruction in line 5 we get Out5 → Rel5 ∧ Rel5 → In5.

Rel10 → In10 ∧∧
2≤x≤9

Outx → Relx ∧ Relx → Inx ∧

Out1 → Rel1

In the main part of the analysis we connect these variables by analyzing which inputs

correspond to which outputs. If an input is relevant, then also the output providing

the value is relevant.

In2 → Out1 ∧ In3 → Out2 ∧ In4 → Out3︸ ︷︷ ︸
call foo(), store result to a and b

∧ In8 → Out4︸ ︷︷ ︸
increment b

∧

In5 → Out2 ∧ In6 → Out5 ∧ In7 → Out6 ∧ In9 → Out7 ∧ In10 → Out9︸ ︷︷ ︸
compute -a, store to res, return res

If the user decides to consider the result of the IRETURN opcode as relevant, this

corresponds to setting Rel10 to > (true). Then, in all models of the formula also the

variables corresponding to the relevance of the opcodes at positions {1, 2, 5, 6, 7, 9, 10}
must be set to >. Because we only consider minimal models, the variables for the

relevance of the other opcodes {3, 4, 8} are set to ⊥ (false), indicating that these are

not relevant for the computation of res. Indeed, the opcodes {3, 4, 8} correspond to the

Java code int b = a; b++, which does not contribute to the returned value res.

176 Chapter 4. Bug Detection

As seen in the preceding example we need to identify the opcodes providing the inputs

for succeeding opcodes. However, because we work on arbitrary Java Bytecode instead

of code compiled from Java source code, usage of intermediate values on the operand stack

may be close to arbitrary.

Example 4.5 (Useless Input) Both the code in line 4 and the addition (1 + 2) in

line 3 produce the value 3 as output. However, the true origin for the returned value is

the result of the IADD opcode, as the value introduced in line 4 is removed in line 5.

1 ICONST_1

2 ICONST_2

3 IADD

4 ICONST_3

5 POP

6 IRETURN

The analysis starts with the task of finding out which opcode provides the value 3

returned by IRETURN. In order to also deal with abstract values, we (also) use references

to describe inputs and outputs of opcodes. Assuming that iconst3 is the only reference

used for the value 3 in this example, we use the pair ({iconst3}, {In6}) to denote that

the origin of the reference iconst3 is as relevant as the input of the IRETURN opcode.

The next analyzed opcode, POP, also has an input, which also is the reference named

iconst3. Because of this we now have two items in the list of references to look for,

namely [{(iconst3}, {In6}), ({iconst3}, {In5})]. Here, the most current entry is shown

on the right and it contains the information that the last origin of iconst3 (only) is as

relevant as In5, the input of POP.

When now analyzing ICONST 3 we not only see that this opcode provides a reference

we are looking for, but we also can use the information from the list to see that the

output of the ICONST 3 opcode is the input of the POP opcode. Because of this we

add the implication In5 → Out4 and remove the item ({iconst3}, {In5}) from the list.

When considering IADD the remaining entry ({iconst3}, {Rel6}) in the list provides the

information that its output is the input for IRETURN (i.e., we add In6 → Out3). In

total we can conclude that the code in lines 4 and 5 is not relevant for the returned

value (if we initially only set Rel6 to >).

In order to also compute correct results for cases as in Example 4.5, we mimic the

operand stack of Java Bytecode by using a list of inputs. This list contains pairs of

references and propositional variables encoding the relevance of the input. This way we

can distinguish different usages of the same reference.

In the case of objects, the value is not only provided by passing around the reference,

4.2. Basic Idea 177

but also by writing to fields of the object. Also, changes to objects contained in fields of

an object change its value. Similarly, arrays contain cells that may be changed by writing

into them. Because of this we need to track write accesses in addition to the origin of the

object or array.

Example 4.6 (Write Accesses to Objects) In this example, if the returned List

object is marked as relevant, the origin of the object (the method invocation in line 4)

must also be considered as relevant. Because the write accesses in lines 5 and 6 change

the content of a relevant object, we also need to mark the corresponding opcodes as

relevant. Furthermore, because x is written into list, for which we need to detect changes,

changes to x also are relevant. This means that the write access in line 2 also is relevant

for the value of list. In total, in this example all code must be considered as relevant.

1 List x = createList ();

2 x.value = someNumber ();

3

4 List list = createList ();

5 list.value = someNumber ();

6 list.next = x;

7

8 return list;

In order to achieve the desired effect, when analyzing the RETURN opcode we use the

tuple ({list}, {Rel8}) to indicate that side effects to the returned reference list must be

considered as relevant in case the user is interested in the returned value. With this

information analysis of the write accesses in lines 5 and 6, which write to the reference

mentioned in the tuple, leads to the implications Rel8 → Rel6 and Rel8 → Rel5. When

considering the write access in line 6, we additionally consider the tuple ({x}, {Rel8})
when analyzing the preceding code. This leads to the encoding of

Rel8 → Rel6 ∧ Rel8 → Rel5 ∧ Rel8 → Rel2.

In combination with the analysis of input values as described in the previous examples,

in this example all lines of code must be marked as relevant for the returned value of

list.

Making use of the Symbolic Execution Graph

The explanations mentioned so far do not differ much from known techniques for dead

code analysis. However, in our analysis we do not work on the level of the individual

178 Chapter 4. Bug Detection

opcodes, but instead consider states in the Symbolic Execution Graph. An immediate

benefit is that the Symbolic Execution Graph already contains detailed information about

the heap.

Example 4.7 (Sharing Information)

1 List list = createList ();

2 List anotherList = something ();

3 anotherList.value ++;

4 return list;

If the relation between list and anotherList is not known, it must be assumed that the

write access in line 3 also affects the value of list. Therefore, it would be unsafe to

mark the code in lines 2 and 3 as irrelevant. However, if the Symbolic Execution Graph

contains the information that list and anotherList do not share, it is safe to mark lines

2 and 3 as irrelevant for list.

When working on a Symbolic Execution Graph we can also make use of the fact that

the graph can contain path-sensitive information. In the construction of the Symbolic

Execution Graph we may have several states corresponding to a single opcode in the

program. For example, when evaluating a conditional opcode, the Symbolic Execution

Graph may contain two branches, where in each branch refined information corresponding

to the evaluation of the condition is stored. This information is used in all following states

of the Symbolic Execution Graph, so that the case analysis of subsequent branching

opcodes may result in less cases.

Example 4.8 (Path-Sensitive Analysis)

1 List list = createList ();

2 boolean isNull = (list == null);

3 int res = 0;

4 if (isNull && list != null) {

5 res++;

6 }

7 return res;

The code in line 5 is never executed because the corresponding condition is never

fulfilled. The constructed Symbolic Execution Graph may contain two branches, one

for the case that list is null, one for the case that list is not null. Therefore, we might also

know that the branch condition is not satisfied. With our path-sensitive analysis the

graph does not contain states for line 5. Because of that we do not add any implications

4.3. Detailed Procedure 179

connecting the return value with the opcodes corresponding to the code in line 5. As

a consequence we can conclude that the code creating and using list is not relevant for

the returned value.

4.3. Detailed Procedure

In this section we will formalize the ideas presented in Section 4.2. For this, in Section 4.3.1

we first consider programs without exceptions and method invocations and introduce the

concepts of tracking data and inputs, which together are used to find all code that somehow

creates or influences data that is marked as relevant. With these, we then present an

algorithm computing this analysis. In Section 4.3.2 we provide a more in-depth analysis

of how branches (including loops) can be handled to provide better results. Finally, in

Sections 4.3.3 and 4.3.4 we explain how the technique can be extended to also analyze

programs with method invocations and exceptions.

Preliminaries

During the analysis a propositional formula is constructed, which only consists of con-

junctions of implications. We demand that each implication has the form a → b where

a and b are propositional variables. As the constructed formula only contains such im-

plications, finding the (minimal) model is straightforward by setting all variables to ⊥.

However, after the formula is constructed, the user may pick any subset of these vari-

ables and manually assign them to >, for example to indicate that specific results of the

computation are relevant. Because of the specific form of the formula finding a minimal

model is straightforward by propagating the values, starting with the variables set to >
by the user. Based on the user’s choice of variables set to > a minimal model then gives

information about parts of the program which can be considered irrelevant.

In the following definitions we will often work with states of the Symbolic Execution

Graph and information provided in the topmost stack frame of a state (e.g., the current

opcode). The following notation simplifies access to this information.

Definition 4.2 (Notation) If not stated otherwise, for a state s in the Symbolic

Execution Graph which is not a program end, let op(n) be the opcode of the topmost

stack frame in s. Furthermore, let ex(s) be the exception reference contained in the

topmost stack frame of s. If the exception reference is not set, we define ex(s) := ⊥.

180 Chapter 4. Bug Detection

Opcodes Example Description In Out

1–20, 168, 201 ICONST 0 constant value 0 X
21–45 ILOAD 0 load from local variable 0 X
54–78 ISTORE 0 store to local variable 1 ×
46–53 IALOAD load from array 2 X
79–86 IASTORE store to array 3 X
87 POP pop from operand stack 1 ×
96 – 115, 120–131 IADD binary arithmetic 2 X
116–119 INEG unary negation 1 X
133–147 I2L conversion 2 X
148–152 LCMP binary comparison 2 X
153–158, 198–199 IFEQ unary branching comparison 1 ×
159–166 IF ICMPEQ binary branching comparison 2 ×
170–171 TABLESWITCH branch with several targets 1 ×
172–176 IRETURN return a value 1 X
178 GETSTATIC read from static field 0 X
179 PUTSTATIC write to static field 1 ×
180 GETFIELD read from instance field 1 X
181 PUTFIELD write to instance field 2 ×
187 NEW create new instance 0 X
188–189 NEWARRAY create new array 1 X
190 ARRAYLENGTH get length of array 1 X
191 ATHROW throw exception 1 ×
192 CHECKCAST check cast 1 ×
193 INSTANCEOF instance of 1 X

Figure 4.3.: properties of most opcodes

4.3.1. Analysis of Code Without Exceptions and Method Invocations

To ease the presentation, we first restrict the analysis to code that never throws an ex-

ception and never invokes any method. After we presented the analysis for this simplified

code, we remove the restrictions and adapt the technique accordingly.

In a first step, we define propositional variables and implications which are used as the

basis of the formula.

Definition 4.4 (Initial Variables and Implications) Let N be the set of states in

the Symbolic Execution Graph. For each state n ∈ N we introduce variables and add

implications to the formula as follows. If n is a program end, nothing is done. For each

other state we introduce the variables Reln (used to encode the relevance of state n)

and Relop(n) (used to encode the relevance of opcode op(n)). We add the implication

Reln → Relop(n) to indicate that op(n) is relevant if any state with that opcode is

relevant. This way, we only show the user the information that an opcode is irrelevant

if all states corresponding to this opcode are not found to be relevant. In other words,

4.3. Detailed Procedure 181

parts of the program may be only relevant to a special case of the computation, which

may correspond to one of many branches in the Symbolic Execution Graph. As such,

to only show the desired result for such special cases, we need to consider all states for

each opcode.

In Fig. 4.3 properties for 230 out of all 256 opcodes are shown. For those we can

directly define which variables we need and which implications we add:

If, according to Fig. 4.3, op(n) is an opcode with output, we introduce the variable

Outn,1 and add the implication Outn,1 → Reln. If op(n) has i inputs, we introduce

the variables Inn,1 to Inn,i. Furthermore, we add the implications Reln → Inn,1 to

Reln → Inn,i.

For the remaining 25 opcodes we need further explanations.

• The opcodes RET, NOP, IINC, GOTO, GOTO W, RETURN, and WIDE do not

have input or output values we want to encode using propositional variables, so

nothing needs to be done.

• The opcodes BREAKPOINT, IMPDEP1, IMPDEP2, MONITORENTER, MONI-

TOREXIT, and INVOKEDYNAMIC are not supported by this analysis.

• Handling of the invoke opcodes INVOKEVIRTUAL, INVOKESPECIAL, IN-

VOKESTATIC, and INVOKEINTERFACE is explained in Section 4.3.3.

For the following opcodes we state how many inputs and outputs they have. For

i inputs and j outputs we introduce the variables Inn,1 to Inn,i and Outn,1 to Outn,j.

We also add the implications Reln → Inn,1 to Reln → Inn,i and Outn,1 → Reln to

Outn,j → Reln.

• The opcode SWAP has 2 input and 2 outputs.

• The opcodes DUP, DUP X1, and DUP X2 each have 1 input and 2 outputs.

• The opcodes DUP2, DUP2 X1, and DUP2 X2 either have 1 input and 2 outputs

or 2 inputs and 4 outputs, depending on the content of the operand stack. In

the Symbolic Execution Graph it can directly be seen which of those two variants

exists in a given state.

• The opcode POP2 can have 1 or 2 inputs, depending on the content of the operand

stack. As in the case of DUP2, this information can be directly seen in the

Symbolic Execution Graph.

• The opcode MULTIANEWARRAY has i inputs where i is a constant defined for

each occurrence of this opcode. This constant can easily be seen in the Symbolic

Execution Graph.

182 Chapter 4. Bug Detection

The variables introduced in Definition 4.4 need to be connected with those of other

states so that the constructed formula also contains information about which parts of the

program are influenced by other parts. In order to find out the necessary connections, we

need to consider which influences can exist in a program.

Tracked Data and Inputs

In the analysis, we make use of two similar concepts to capture how data is modified and

provided to other parts of the program. With Inputs we are able to find which preceding

opcode provides the value used by some opcode. This was motivated in Example 4.5.

By having Tracked Data we are able to detect write accesses as already motivated in

Example 4.6. We also use this concept to find code that writes into local variables and

static fields.

For references corresponding to object instances or arrays it may be necessary to find

preceding opcodes providing the reference (for example by creating the object or loading

it from some field) where, in addition to that, we are also interested in code that changes

the contained data. In this case, we make use of both concepts.

Certain properties of referenced data cannot be changed. For example, the length of

an array cannot be modified. Thus, for the analysis of ARRAYLENGTH opcodes we do

not need to track changes (Tracked Data) to the array. However, we might need to find

the origin of the data (Inputs).

Tracked Data

We first consider the case of local variables. An opcode reading from a local variable

(e.g., ILOAD) provides the value that was last stored into the local variable. Because of

this, we just need to remember which local variable we are interested in and then visit the

states leading to the current state in reverse order. As soon as an opcode is found that

defines the value of the local variable, we add the implication that the storing opcode

(and, therefore, also its input) is as relevant as the input of the reading opcode.

In the case of static fields we have a very similar situation, where we consider opcodes

reading from/writing into static fields instead of reading from/storing into local variables.

The same idea can also be used to find opcodes that change objects or arrays for which

such changes need to be found. As we already saw in Example 4.6, when looking for

changes to r it does not suffice to find the last opcode that changes r. Instead, we need

to consider all opcodes up to the point where r is created.

In Fig. 4.5 you can see all opcodes for which we need to track references, local variables,

or static fields. In Example 4.5 we already motivated that we need to track references as

data may be abstracted. The data may also be stored into and read from local variables

or static fields, so we also define when to track local variables and static fields. As an

4.3. Detailed Procedure 183

example, if we are interested in where the value provided by an ILOAD 0 opcode comes

from, we know that it was stored into the first local variable. Thus, we start tracking the

local variable, which helps us finding the ISTORE 0 opcode providing the value we are

interested in. Note that, for example, it is not necessary in the case of an ARRAYLENGTH

opcode to detect changes to the array because the array length is immutable. Similarly,

we do not need to track the objects investigated by the opcodes IFNULL or INSTANCEOF.

In Fig. 4.6 we define which opcodes modify data that may be tracked for an opcode

mentioned in Fig. 4.5.

Opcodes Example Tracked

21–45 ILOAD 0 local variable
46–53 IALOAD reference of array
178 GETSTATIC static field
180 GETFIELD reference of object
132 IINC local variable
169 RET local variable

Figure 4.5.: data tracked for certain opcodes

Opcodes Example Modified

54–78 ISTORE 0 local variable
79–86 IASTORE reference of array
179 PUTSTATIC static field
181 PUTFIELD reference of object
132 IINC local variable

Figure 4.6.: tracked data changed by opcodes

In the algorithm presented later in this section we will use the variable Track that maps

each state to a set of references, local variables, and static fields we need to track. In Track

we not only store data for which we need to find code changing it (this can be a local

variable, a static field, or a set of references). In addition we store the reason for tracking

the data using propositional variables. Then, if in the analysis we find modifications to

tracked data (e.g. a write access to a tracked reference), we can add the corresponding

implication. The propositional variables need to be included in Track, as without this

information we do not know how relevant changes to tracked data are.

As an example, we may track references {r1, r2} and denote that opcodes modifying

these references inherit the relevance encoded in proposition variables {Reln,Relm}. If

we now change r1 in an opcode for which we encode the relevance as Relp, we add the

implications Reln → Relp and Relm → Relp.

184 Chapter 4. Bug Detection

Inputs

As seen in Example 4.5, to find the origin of inputs for an opcode, we need to use a stack

where each element contains the reference that is the input and the propositional variable

which will be used to create the desired implication. Because of details explained later in

this chapter, it does not suffice to consider only a single reference here, so we use a set of

references instead of a single reference. Also, we use a set of variables instead of a single

variable here.

It is quite straightforward to define the inputs of certain states, based on Definition 4.4.

As an example, if we have an IADD opcode reading two references from the operand stack,

we create inputs for those two references.

However, the list we use for a specific state must not only contain the corresponding

inputs, but also the remaining inputs of all following opcodes need to be regarded.

Example 4.9 The bytecode for the expression 1 + 2 is shown in the first column of

the following table. In the second column the operand stack is shown before execution

of the corresponding opcode.

Code Operand stack Inputs

1 ICONST 1 ε []

2 ICONST 2 iconst1 [({iconst1}, {In3,1})]
3 IADD iconst1, iconst2 [({iconst1}, {In3,1}), ({iconst2}, {In3,2})]

While the opcodes in line 1 and 2 do not have any input, the opcode in line 3 has two

inputs. We use a list of inputs [({iconst1}, {In3,1}), ({iconst2}, {In3,2})] for the addition

in line 3. The opcode in line 2 creates the reference iconst2 and, thus, we have found

the origin of one of the inputs for the IADD opcode. The opcode in line 2 has no input,

so in contrast to IADD the input list should be empty. However, as we still need to

find the origin of iconst1, which is relevant for the IADD opcode, we treat iconst1 as an

input to ICONST 2. When analyzing ICONST 1 we see that it provides the reference

iconst1 that is an input for the opcode in line 3. This leads to the desired implications

In3 → Out2 and In3 → Out1.

To implement the idea hinted at in Example 4.9, we define the inputs list for a given

state based on the inputs list of all direct successors in the graph. Here, the general idea

is to have the entries of the successor states at the front of the list, while inputs needed for

the current opcode are added at the end of the list. This way, when we analyze an opcode

creating a reference contained in the list, the list contains the information of where the

data is used and, thus, how relevant it is to provide it.

If the edge between two states n and m in the graph is an evaluation edge or an instance

4.3. Detailed Procedure 185

edge, then m is the only successor of n. Because of this, we can just append the list of

inputs created for the opcode in n to the list representing the inputs of m.

In the case of a refine or split edge, we may have several successors m1,m2, . . . of a state

n in the graph. Thus, we need to take care that when propagating information from mi

to n, no information is lost which was already propagated for some other mi′ . However,

as all successors m1,m2, . . . share the same opcode, the corresponding inputs lists have

the same length. Because of this it also is straightforward how to combine several lists of

the successors into the start of the single list used for the current state.

In the algorithm presented in the next subsection we use the variable Inputs that maps

each state of the Symbolic Execution Graph to a list of entries as described above, each

entry containing a set of references and a set of propositional variables.

Algorithm

We now present the algorithm that produces implications connecting the propositional

variables encoding the relevance of the states, based on tracked data and inputs. Because

of loops in the Symbolic Execution Graph we use a simple fixed-point algorithm.

Example 4.10 (Instance Field Only Read in Loop) Below, code containing a

simple loop is shown. To the right a simplified version of a Symbolic Execution Graph

is shown, where the edge from state F to state B closes a cycle using an instance edge

(corresponding to the loop in lines 3–5).

1 int res = 0;

2 int incr = someValue ();

3 for (int i = 0; i < 100; i++) {

4 res += incr;

5 }

6 return res;

A

B

C

D

E

F

When computing the relevance of the program, starting with the state D corresponding

to the return of res, we may first propagate the information along the (reversed) path

D ← C ← B ← A. During this computation there is no reason to add an implication

that could cause the write access to incr in line 2 to be relevant. However, when now

considering the edges B ← F and F ← E corresponding to the loop body, we see that

we need to track writes to incr because the code in line 4 reads from that local variable

and influences the value of res. As a consequence, we need to re-examine states C, B,

and A with the updated information that writing to incr is relevant for res, leading to

the result that, indeed, the method invocation in line 2 is relevant for the returned

value.

186 Chapter 4. Bug Detection

The algorithm CreateFormula, shown in Algorithm 17, first initializes the formula

with implications connecting the variables used for the outputs and inputs of a state with

the variable encoding the relevance of a state (InitFormula in line 6, cf. Definition 4.4).

Before the actual computation starts, the user needs to define references for which

changes are relevant and should be detected (InitialTrack). For example, the user may

decide that for computations finishing in an end state n, where the only incoming evalu-

ation edge corresponds to evaluation of RETURN r, changes to r should be tracked. This

would lead to InitialTrack(n) = {({r}, {Relr})} where Relr is set to >. Marking references

using InitialTrack may only be done for end states. This information is then propagated

in the graph, so that for all opcodes influencing the value corresponding implications are

added. Without this information, as the program possibly does not contain an opcode

reading from these references, the analysis would not have any reason to find changes to

the referenced objects or arrays and, thus, would not add implications that could cause

the corresponding parts of the program to be marked as relevant.

Starting with the end states of the graph, for a state n the information of a successor

state m is propagated to n. This is ensured by first dealing with the end states (for which

no successors exist) in lines 9–12. Then, in line 14, m 6∈ Todo at first only holds for end

states. Thus, analysis starts with the edges leading to end states, for example from states

containing RETURN opcodes.

In the case of an evaluation edge, we use Eval (Algorithm 18). In the case of refine,

split, or instance edges, we use RefineSplitInstance (Algorithm 19). Both algorithms

modify the variables Track and Inputs, containing the information we need to propagate.

Furthermore, they add implications to the formula ϕ and add predecessor states to Todo,

if they need to be re-analyzed. This was hinted at in Example 4.10. The following

explanations of the individual algorithms give further details.

Evaluation Edges

In Algorithm 18 we deal with the case of two states n and m, where the edge (n,m) is an

evaluation edge. In lines 3–4 we copy the Inputs list and Track set of the successor state

m, taking care of possible renamings. In the case of Track we also remove entries that

are non-existent in n using GC (for Garbage Collection). This can happen, for example,

when writes to a reference are tracked where the corresponding object is not yet created

in n.

In lines 5–9 we deal with the case that in n an output is created for which an entry

in Inputs exists. If this is the case, we add implications to ϕ, indicating that state n is

as relevant as the inputs it provides. Here, CreatedOutputs returns the references

and the corresponding variables of the output, if any, according to Definition 4.4. As

motivated in Example 4.5, we need to find the corresponding entry in the Inputs list,

even if CreatedOutput is contained more than once. Thus, the function Rightmost-

4.3. Detailed Procedure 187

Algorithm 17: CreateFormula

Input: Symbolic Execution Graph G = (N,E,L), InitialTrack
Output: propositional formula ϕ encoding the relevance of states

1: Todo = N
2: Track = ∅
3: Inputs = ∅
4:

5: // initial implications according to Definition 4.4
6: ϕ = InitFormula(G)
7:

8: // initialize end states
9: for all n ∈ EndStates(N) do

10: Track(n) = InitialTrack(n)
11: Inputs(n) = ∅
12: Todo = Todo \ {n}
13:

14: while ∃n ∈ Todo ∧ (n,m) ∈ E ∧m 6∈ Todo : do
15: if L(n,m) = Eval then
16: // propagate information for evaluation states
17: Eval(Todo,Track, Inputs, ϕ, n,m)
18: else if L(n,m) ∈ {Refine,Split, Instance} then
19: // combine information for refine, split, and instance edges
20: RefineSplitInstance(Todo,Track, Inputs, n,m)
21:

22: Todo = Todo \ {n}
23:

24: return ϕ

Variables returns the propositional variables of the rightmost entry in Inputs(n) which

contains CreatedOutput. The function RemoveRightmost then removes this entry from

Inputs(n).

In lines 10–18 we add implications for each tracked local variable, static field, or refer-

ence which is modified by n. Detecting modifications of local variables and static fields is

quite straightforward, as the opcodes mentioned in Fig. 4.6 directly name the correspond-

ing variable or field. However, to detect changes to an object we do not only need to find

direct writes to the references mentioned in Track, but we also need to take sharing on

the heap into account. For example, if we have a list of the form a → b → c and the

value inside the list element c is changed, this also modifies data visible from the first list

element a. Because of that we define that a reference r in state s is modified if r r′

(cf. Definition 1.42) and r′ is the direct target of a write access. The modified references

are computed using Written as shown in line 15.

If any reference r is modified, we start tracking the reference that is stored into r

(line 15). In the case of a modified object or array we continue tracking it, as a single

188 Chapter 4. Bug Detection

Algorithm 18: Eval

Input: Todo,Track, Inputs, ϕ as in Algorithm 17, states n and m
Output: modifications to Todo,Track, Inputs, ϕ

1: InputsOld = Inputs(n)
2: TrackOld = Track(n)
3: Inputs(n) = RenameInputs(Inputs(m), n,m)
4: Track(n) = GC(RenameTrack(Track(m), n,m), n)
5: for all (CreatedOutput,Outn,i) ∈ CreatedOutputs(n) do
6: if InVars = RightmostVariables(Inputs(n),CreatedOutput) then
7: // n creates an output we are looking for
8: Inputs(n) = RemoveRightmost(Inputs(n),CreatedOutput)
9: ϕ = ϕ ∧∧

In∈InVars In→ Outn,i
10: for all (T,Vars) ∈ Track(n) ∧ T is modified by n do
11: // n changes T which is tracked
12: ϕ = ϕ ∧∧

Var∈Vars Var→ Outn,i
13: if T is a reference then
14: // also track the source
15: Track(n) = Track ∪ {(Written(n),Vars)}
16: else
17: // stop tracking local variable or static field
18: Track = Track \ {(T,Vars)}
19: Inputs(n) = Inputs(n) ∪NewInputs(n)
20: Track(n) = Track(n) ∪NewTrack(n)
21: if Inputs(n) 6= InputsOld ∨ Track(n) 6= TrackOld then
22: Todo = Todo ∪Predecessors(n)

object instance or array may be changed by an arbitrary number of preceding opcodes.

Instead, any tracked local variable or static field is only written once and we do not need

to find further opcodes writing into the variable or field. Thus, the corresponding entry

is removed. Using the functions NewInputs and NewTrack we find out the direct

inputs of n and new data we need to track. These are added to Inputs and Tracks so

that, when analyzing preceding states, we can see which states influence the behavior of

n. The actual content of NewInputs and NewTrack is built based on Definition 4.4

and Fig. 4.6. Finally, in lines 21–22 we check if the information in Track or Inputs differs

from a previous run of Eval on (n,m). If this is the case, we need to (re)consider all

predecessor states with the updated information.

Refine, Split and Instance Edges

In Algorithm 19 we deal with states n and m where (n,m) is a refine, split, or instance

edge. While there can only be a single outgoing evaluation edge for each state, there may

be several outgoing edges of n. Because of that, for evaluation edges, we re-computed

the information we need to store for a state solely based on the information we have for

the unique successor state. However, in the case of refine or split edges the information

4.3. Detailed Procedure 189

we store for a state depends on the values of all successor states. This algorithm is also

used for instance edges. While there can be no other outgoing edge of n if (n,m) is an

instance edge, no computation is done from n to m. Therefore, we use the same renaming

techniques presented here also for instance edges.

In the case that we do not have any information for n, we just copy the information of

the successor state (lines 4–5 and 8–9). Here, as in Algorithm 18, we take care of possible

renaming and remove entries that do not exist, yet. Because of equality refinement it can

happen that a single reference r in m corresponds to two references r′, r′′ with r′ =? r′′

in n. In this case the set {r′, r′′} is used in n where the set containing r was used in m.

Furthermore, due to instance refinements it can happen that in m the heap contains the

information x.f = r (indicating that some object x contains the reference r in its field f)

while in n this information does not exist. To solve this problem, RenameTrack adds

the reference of the predecessor object (which is refined from n to m) in place of r.

If we already have information for state n (because we already dealt with any successor),

we must not forget this information. Instead, we combine the information from the state

m with the already existing information. This is done in lines 7 and 11. In the case of

Inputs (line 7) we make use of the fact that the lists of n and m have the same length.

Now, we just combine the corresponding entries in the list by considering the union of the

references and variables components, respectively. The variable Track contains a set of

tuples for n, where the first component is a set of references, a local variable, or a static

field. The second component is a set of propositional variables. MergeTrack combines

the entries for local variables and static fields by just taking the union of the variables.

In the case of references, corresponding entries (taking possible renaming and refinement

into account) also are identified and the union of variables is taken. As in Algorithm 18

we (re)add all predecessor states to Todo if we updated any information for the state (in

lines 12–13).

4.3.2. Branches

The procedure presented so far is incomplete in the sense that for states of branching

opcodes no implications are added. As a consequence these opcodes and also the inputs

that determine the branching behavior are not considered to be relevant. To correct this,

we need to define when a branch is relevant and how to detect this.

Example 4.11 (Relevant Branch) In this example the opcode incrementing res

clearly is relevant, if we assume that the returned value is relevant. Depending on

the value of x line 4 is skipped, so the branch in line 3 and its input x must also be

considered to be relevant.

190 Chapter 4. Bug Detection

Algorithm 19: RefineSplitInstance

Input: Todo,Track, Inputs as in Algorithm 17, states n and m
Output: modifications to Todo,Track, Inputs

1: InputsOld = Inputs(n)
2: TrackOld = Track(n)
3:

4: if Inputs(n) is undefined then
5: Inputs(n) = RenameInputs(Inputs(m), n,m)
6: else
7: Inputs(n) = MergeInputs(Inputs(n),RenameInputs(Inputs(m), n,m))
8: if Track(n) is undefined then
9: Track(n) = GC(RenameTrack(Track(m), n,m), n)

10: else
11: Track(n) =

MergeTrack(Track(n),GC(RenameTrack(Track(m), n,m), n))
12: if Inputs(n) 6= InputsOld ∨ Track(n) 6= TrackOld then
13: Todo = Todo ∪Predecessors(n)

1 int res = 0;

2 int x = someNumber ();

3 if (x > 0) {

4 res++;

5 }

6 return res;

The key idea that can already be seen in this simple example is that a branch is relevant

if, by branching to a certain target, a relevant opcode may be skipped. In other words,

because the value of res is relevant, it is important to know whether the increment

operation in line 4 is executed or not.

Even if all possible branch targets contain relevant code, the choice which of these

is executed (which also means, which of those is not executed) makes the branching

decision relevant. In the example above, we could add another branch target like else

res- -. Then both res++ and res- - are relevant. As it is important to know which of

those statements is executed, also the branch condition is relevant.

Theoretically it is possible that the code in all branch targets is equivalent. In these

cases our analysis would be less precise than possible. However, as these cases are

pathological and determining equivalence of arbitrary code is an undecidable problem,

we just accept this imprecision.

To better understand the concept of a relevant branch, we also need to think about

irrelevant branches. Instead of defining a branch as relevant if its branching behavior

4.3. Detailed Procedure 191

influences the series of opcodes that is executed (which is true for virtually all branches),

we take the relevance of the code reachable in the individual branch targets into account.

Example 4.12 (Irrelevant Branch) Depending on the value of x the code in line 4

or line 6 is skipped. Thus, if the value of x is relevant, also the branch condition is

relevant.

1 int res = 0;

2 int x = someNumber ();

3 if (x > 0) {

4 x++;

5 } else {

6 x--;

7 }

8 return res;

However, if we only consider the returned value to be relevant, we do not introduce any

corresponding implication that could mark the branch as relevant.

Loops

Loops in a Java program are implemented in Java Bytecode using branches that

either branch to the loop body or skip it. At the end of the loop body an unconditional

(non-branching) jump leads back to code computing the inputs for the branch of the loop

condition.

In order to be able to identify irrelevant branches that correspond to loops, we must

re-visit the idea of skipping code. Clearly, if by taking a branch some relevant code is

skipped, the branch must be considered as relevant. However, in a loop we have a different

situation. Here the relevant code can be skipped by executing the loop body, but it might

be executed eventually when the loop terminates.

Example 4.13 (Loop Relevance) In each traversal of the loop, the relevant code in

line 6 is skipped. However, as soon as the loop finishes, it will be executed. In other

words, on each execution path leading to the code in line 6 (either by traversing the loop

at least once but only finitely often or by skipping it entirely), the loop only determines

how many irrelevant computations are done before the relevant computation in line 6

is executed.

192 Chapter 4. Bug Detection

1 int res = 0;

2 int x = getRandomNumber ();

3 while (x > 0) {

4 x = getRandomNumber ();

5 }

6 res ++;

7 return res;

It is easy to see that the loop does not influence the value of res. If it is terminating,

we clearly should mark it as irrelevant. However, we also need to consider the case

that the loop does not terminate. Then the computation starting in line 6 never is

executed. However, a non-terminating loop can be seen as a different kind of bug.

There already exist techniques to find non-terminating loops (or prove that all loops

are terminating). Because of that we delegate the task of proving termination to the

user and may mark loops as irrelevant even though they may be non-terminating –

which is what an optimizing compiler removing dead code must not do.

The ideas presented in the previous examples are now combined into a definition of

when a branching opcode must be considered as relevant. First, we need to define the

function R that computes the reachable opcodes inside the same method.

Definition 4.7 (Reachable Opcodes) Let G = (N,E,L) be a Symbolic Execution

Graph. Let o be an opcode in method m. Then we define R(o) as the minimal set with

• ∀n ∈ N : op(n) = o⇔ o ∈ R(o)

• ∀(n,m) ∈ E : R(op(m)) ⊆ R(op(n))

Definition 4.8 (Branch Relevance) Let ob be a branching opcode. Let o1, . . . , on

(with n > 1) be the branching targets of ob. Then we define ob to be relevant if there

exists a branch target oi and an opcode o ∈ R(ob) where o 6∈ R(oi) and o is relevant.

Following this definition, a loop can only be relevant if it contains relevant code in the

loop body (because the loop body may be skipped). However, relevant code executed

after the loop terminates (e.g., line 6 in Example 4.13) does not cause the loop to be

relevant (because, even when traversing the loop, it may still be executed).

4.3. Detailed Procedure 193

In Definition 4.8 we assume that the relevance of every single opcode is known. However,

this is not the case in this analysis. Instead of directly marking a branch as relevant, we

provide implications that cause the branch to be relevant if certain opcodes are relevant.

Definition 4.9 (Implications Encoding Branch Relevance) Let ob, o1, . . . , on as

in Definition 4.8. Then we add the implications

{Relo → Relob | o ∈ R(ob) ∧ o 6∈ R(oi) ∧ 1 ≤ i ≤ n}

4.3.3. Method Invocations

When a method is invoked, the arguments of the method are provided on the operand

stack. Then, after evaluation of the invoke opcode, the arguments are removed from

the operand stack and a new stack frame is put on top of the one containing the invoke

opcode. In that new frame the arguments previously stored on the operand stack are now

stored as local variables.

First consider an edge (n,m) where n contains a method invocation and m is at the

start of the invoked method. If in the analysis we are interested in the contents of a local

variable in m, we now need to adapt the analysis as the contents of the local variable in

m may correspond to an argument provided on the operand stack in n. Thus, if we have

an entry in Track corresponding to a local variable in m, we need to use this entry to

create a corresponding Inputs entry in n. To take care of this special case, the functions

RenameInputs and MergeTrack used in Eval need to be changed accordingly.

When returning from a method without return value, the topmost stack frame is

dropped and the opcode of the stack frame below that is advanced. If a value is re-

turned, when evaluating the return opcode the (only) reference on the operand stack is

put onto the operand stack of the stack frame below. By defining that the corresponding

return opcodes both have a single input value and also have a single value as output, the

presented algorithm already produces the intended implications.

Using these changes we can integrate invoke and return opcodes into the already pre-

sented algorithm so that the origin of data can be followed through method invocations.

However, so far we did not define when a method invocation is relevant. Here, the intu-

ition is that a method invocation is relevant if any relevant code is executed. Therefore,

we just need to consider all opcodes in the invoked method and add implications for each

so that the relevance information is propagated to the invoke opcode.

194 Chapter 4. Bug Detection

Definition 4.10 (Method Invocation Relevance) Let n be a state with opcode o

invoking a method. Let m be the evaluation successor of n where o′ is the current

opcode (which is the first opcode of the invoked method). Then we add implications

{Relx → Relo | x ∈ R′(o′)}

Here, R′ is defined like R, but just considers opcodes in the same method as o′.

Extension of this approach to also handle recursive methods as in Chapter 3 is not part

of this thesis and instead is left for future work.

4.3.4. Exceptions

If an opcode throws an exception, this exception may be handled by dedicated code

(corresponding to code in a catch clause of Java). If no such handler exists, the current

stack frame is removed from the call stack and evaluation continues as if the invoke opcode

(which now is at the top of the call stack) threw the exception.

We start with the situation that an exception is thrown when evaluating state n, for

example because of a division by zero. The successor state m is a copy of n, where

the operand stack is empty and an exception reference is noted in the topmost stack

frame. For most opcodes that can throw an exception, there also exists the possibility

of standard evaluation (in fact, only ATHROW always throws an exception). Because of

this we need to consider most opcodes that may throw a caught exception as branching

opcodes, where one branch corresponds to standard evaluation and the other branch

corresponds to throwing an exception which is caught in another part of the method.

Similarly, if an opcode throws an exception which is not caught, relevant parts of the

method that correspond to evaluation without throwing the exception may be skipped.

Example 4.14 (Exception) If b = 0 an exception is thrown and the method abruptly

terminates. However, in this case also the code in line 4 is not executed. Therefore,

assuming that the side effect on someObject is relevant, also the otherwise irrelevant

computation in line 3 is relevant, as it defines whether the exception is thrown or not.

1 int a = someNumber ();

2 int b = someNumber ();

3 int tmp = a/b;

4 someObject.value ++;

5 return;

4.4. Computing Results 195

Because the internal exception handling process only works depending on the type of

the exception, we do not need to track any changes to the exception reference. Therefore,

we define NewTrack(m) = ∅ for all states m with ex(m) 6= ⊥ (cf. Definition 4.2).

We extend the definition of CreatedOutputs by defining CreatedOutputs(n) =

{({e}, {Reln})} for states n that throw an exception e. This way, if in m the exception

reference e is an input, state n is marked as relevant as this input. In the evaluation of n

to m the operand stack is emptied. If the operand stack in n contains j references, this

evaluation corresponds to evaluating POP j times. Thus, we treat the dropped references

as inputs to the (implicit) POP operations:

NewInputs(m) = [({r1}, ∅), . . . , ({rj}, ∅)]

These entries correspond to the reference on the operand stack of the topmost stack frame

which are removed, but which are not considered to be inputs for n. Since these are

dropped without influencing succeeding code, we use the empty variable set. With these

modifications we can deal with edges (n,m) where evaluation of n throws an exception.

In order to detect if by throwing an exception relevant code may be skipped, we add

implications as in Definition 4.9. If the graph contains the information that the exception

is caught, we just need to consider the opcode handlers as additional branching targets of

the opcode. If it is possible that the exception is uncaught we define an additional dummy

branching target with R() := ∅. This way, we add implications for all opcodes that

can be skipped if an exception is thrown.

Finally, we consider the case of how a caught exception is handled after it is thrown.

Depending on the type of the exception set in the topmost stack frame, the opcode is

changed to the code handling the exception. Additionally, in the topmost stack frame the

exception component is unset and the exception reference is placed on the operand stack

(as the only element). For states n where the opcode is changed to the handler opcode

and the set exception is moved to the operand stack, we just define NewInputs(n) =

CreatedOutputs(n) = ∅. With these modifications the algorithm already presented

also handles the case that an exception is caught.

4.4. Computing Results

As already mentioned, this analysis computes a propositional formula ϕ that can be used

to identify code that is irrelevant for some intended result as defined by the user. A very

natural choice is to mark the returned value of some method in addition to the exceptions

leading to crashes as relevant.

With this choice, where the propositional variables corresponding to the parts defined

as relevant are set to >, a minimal model of ϕ is computed. With this model we can then

196 Chapter 4. Bug Detection

identify irrelevant opcodes by checking if the corresponding variables are set to ⊥.

However, just showing the user all irrelevant opcodes is not very helpful. For exam-

ple, the opcode POP which removes an entry from the operand stack never is relevant.

This opcode is used, for example, in the case of invoking a method with return value

where this return value is not used in the program. A common example is the method

java.util.Collection.remove(Object o) which provides a boolean result indicating if the ar-

gument was removed from the collection. When just calling remove without checking the

returned value, the superfluous boolean value is removed from the operand stack using

POP. So, instead of letting the user inspect all POP opcodes in the program, it would

be better to ignore occurrences of POP in the result. This idea can be extended to

other opcodes, all of which are not used for real computations designed by the program-

mer: GOTO W, JSR, JDR W, RET, WIDE, POP, POP2, DUP, DUP X1, DUP X2, DUP2,

DUP2 X1, DUP2 X2, SWAP, NOP, RETURN (without return value). For all these opcodes

we always define the relevance to be neutral.

In the case of a NEW opcode, we may trigger initialization of a class (which, in turn,

may call arbitrary code). Thus, if this side effect is relevant, also the NEW opcode is

marked as relevant. However, we never mark a NEW opcode as irrelevant, as this opcode

also does not correspond to a real computation designed by the programmer (thus, NEW

either is relevant or neutral). Instead, invoking a constructor on the created object or

storing the created object into a variable may be irrelevant.

When compiling Java to Java Bytecode for every created object also a constructor

of each super class, up to java.lang.Object, is invoked. In the case that the constructors

do nothing relevant, the corresponding INVOKESPECIAL opcodes are marked as irrele-

vant. However, for the programmer it is not possible to create an object without this

invocation. Therefore, we detect which INVOKESPECIAL opcode marked as irrelevant

can be considered relevant if each call to the constructor of java.lang.Object (which does

nothing observable outside the Java Virtual Machine) is marked as relevant. These

invoke opcodes (and all ALOAD 0 opcode immediately preceding them) then are shown

as neutral code to the user, so that it is easier to concentrate on real bugs.

With these changes, every opcode of the program can be marked as relevant, neutral,

or irrelevant. Neutral opcodes may be used as part of relevant computations, but also as

part of irrelevant computations. So, when showing the results of the analysis to the user,

neutral opcodes are ignored. When now considering large parts of the program marked

as irrelevant (with an arbitrary number of neutral opcodes in between), showing these to

the user can help finding bugs.

4.5. Optimizations 197

4.5. Optimizations

In our experiments we found some minor tweaks that can be implemented in order to get

better results. A simple example is the negation using INEG. The Symbolic Execution

Graph may contain the information that the argument is 0. Assuming state n corresponds

to this negation, by replacing the implications Outn,1 → Reln and Reln → Inn,1 with

Outn,1 → Inn,1 we would transfer the relevance of the result to the (identical) input

without marking the negation itself as relevant. Thus, with this optimization it is possible

to find useless negations in the code.

Similar ideas can be used for other arithmetic operations like multiplication with 1,

storing reference x into a local variable already containing x, or executing assignments

x.f = y where the content of field f already is y.

4.6. Conjecture

In this section we develop a conjecture with the goal to formally state the idea behind

irrelevant code. In most cases irrelevant code can be removed without influencing the

result of the computation. For example one could remove any INEG opcode without

altering the semantics of the program if it is ensured that the created output is identical

to the provided input. In more complicated situations this is not possible. Instead the

irrelevant code must remain or be replaced by other opcodes so that the resulting program

is still valid (and verifiable) Java Bytecode, as hinted at in the following example.

Example 4.15 (Irrelevant Return Value) The method set returns a boolean value

indicating if the content of the field was changed or not.

1 public class Test {

2 Object f;

3

4 public void main(String [] args) {

5 Test t = new Test ();

6 t.set(args);

7 }

8 private boolean set(Object x) {

9 Object old = this.f;

10 this.f = x;

11 return x != old;

12 }

13 }

The (only) invocation in line 6 does not make use of this value. Therefore, the compu-

198 Chapter 4. Bug Detection

tation in lines 9 and 11 is irrelevant. The corresponding opcodes cannot be removed,

since the method set needs to return a boolean value. In the following code the com-

putation in line 11 is replaced by a constant. Since the returned value is not used, this

program is equivalent.

1 public class Test {

2 Object f;

3

4 public void main(String [] args) {

5 Test t = new Test ();

6 t.set(args);

7 }

8 private boolean set(Object x) {

9 this.f = x;

10 return true;

11 }

12 }

One possibility might also be to change the signature of the set method so that the

return type is void. Then, however, one would also need to replace all invoking opcodes,

as these reference the signature of the invoked method.

Similar to the previous example, opcodes which provide an irrelevant computation

result, but sometimes throw an exception, cannot be removed from the program since the

exception sometimes needs to be thrown.

Example 4.16 (Irrelevant Opcode with Exception) Assume the returned value

is relevant. The result of the division 1/x is not relevant. However, the opcode comput-

ing the division may throw an exception (if x is 0). Throwing this exception is relevant

because it leads to res++, influencing the returned value which is marked as relevant.

1 int res = 0;

2 int x = someNumber ();

3 try {

4 int y = 1/x;

5 x++;

6 } catch (ArithmeticException e) {

7 res++;

8 }

9 return res;

By replacing the division (which produces an irrelevant output) by code that throws

4.7. Demonstration 199

the same exception in the same situations it is possible to simplify the code.

1 int res = 0;

2 int x = someNumber ();

3 try {

4 if (x == 0) {

5 throw new ArithmeticException ();

6 }

7 } catch (ArithmeticException e) {

8 res ++;

9 }

10 return res;

Thus, one cannot simply remove all opcodes marked as irrelevant, and obtain an equiv-

alent program. However, allowing the removal of irrelevant opcodes is the core result

of this analysis. Instead of giving (complicated) details of how to transform a program

accordingly, we leave this to future work and just define how the programs constructed

using the information of which code is irrelevant or relevant may look like.

Conjecture 4.17 Consider a program P for which we computed the irrelevant opcodes

using the technique explained in this chapter.

A program P ′ is created by replacing only irrelevant opcodes in P by arbitrary code

such that P ′ is verified bytecode [Ler03] and this analysis, when run on P ′ using an

initial relevance information corresponding to that specified for P , identifies all the

replacement opcodes as irrelevant.

Consider a finite computation sequence in P , starting in a state s. Let vP be a

value computed in this sequence which is marked as relevant by the user. Then, for

all programs P ′ as described above, the computation sequence in P ′, starting in s,

computes a corresponding value vP ′ which is identical to vP .

The main conclusion from Conjecture 4.17 is that programs that result out of just

removing irrelevant opcodes, where the resulting program still is valid bytecode, compute

the same results (if these are marked as relevant by the user).

4.7. Demonstration

We implemented the technique presented in this chapter and experimented on small,

artificial programs which trigger certain parts of the program to be irrelevant. These ex-

periments confirmed that the technique indeed works. However, mainly because obtaining

200 Chapter 4. Bug Detection

Symbolic Execution Graphs for real programs is a future goal, we did not find actual bugs

in real-world programs, yet.

In Example 4.1 a small program was presented which contains a simple bug. On the

following pages you can see un-abbreviated code for this example, where the analysis is

indeed able to indicate irrelevant code as explained earlier.

Example 4.18 This example shows the complete code for Example 4.1.

1 import java.util.Iterator;

2

3 public class Graph {

4 public List nodes;

5

6 public static void main(String [] args) {

7 Random.args = args;

8

9 Graph graphOne = createGraph ();

10 Graph graphTwo = createGraph ();

11

12 Node source = graphOne.getRootNode ();

13 for (Node node : graphTwo.getNodes ()) {

14 if (Node.areConnected(source , node)) {

15 graphOne.addNode(node);

16 }

17 }

18

19 Graph res = graphOne;

20 }

21

22 public static Graph createGraph () {

23 int num = Random.random ();

24 Graph res = new Graph ();

25 for (int i = 0; i < num; i++) {

26 Node node = new Node(i);

27 res.addNode(node);

28 }

29

30 int max = Random.random ();

31 for (int i = 0; i < max; i++) {

32 Node start = res.getNode(Random.random ());

33 Node end = res.getNode(Random.random ());

34 if (start != null && end != null) {

4.7. Demonstration 201

35 start.addEdge(end);

36 }

37 }

38

39 return res;

40 }

41

42 public Node getNode(int id) {

43 List cur = nodes;

44 while (cur != null) {

45 if (cur.content.id == id) {

46 return cur.content;

47 }

48 cur = cur.next;

49 }

50 return null;

51 }

52

53 public Node getRootNode () {

54 return this.nodes.content;

55 }

56

57 public List getNodes () {

58 return nodes;

59 }

60

61 public void addNode(Node node) {

62 this.nodes = new List(node , this.nodes);

63 }

64 }

65

66 class List implements Iterable <Node > {

67 Node content;

68 List next;

69

70 public List(Node c, List n) {

71 this.content = c;

72 this.next = n;

73 }

74

75 public Iterator <Node > iterator () {

202 Chapter 4. Bug Detection

76 return new Iterator <Node >() {

77 Node cur = null;

78 List next = List.this;

79

80 public boolean hasNext () {

81 if (this.next != null) {

82 this.cur = next.content;

83 return true;

84 }

85 return false;

86 }

87

88 public Node next() {

89 this.next = this.next.next;

90 return this.cur;

91 }

92

93 public void remove () {

94 }

95 };

96 }

97 }

98

99 class Node {

100 public int id;

101 List out;

102

103 public Node(int i) {

104 this.id = i;

105 }

106

107 public void addEdge(Node end) {

108 this.out = new List(end , this.out);

109 }

110

111 public static boolean areConnected(Node node , Node other) {

112 for (Node n : node.out) {

113 if (n == other) {

114 return true;

115 }

116 }

4.7. Demonstration 203

117 return false;

118 }

119 }

120

121 class Random {

122 static int count;

123 static String [] args;

124

125 public static int random () {

126 int res = args[count]. length ();

127 count ++;

128 return res;

129 }

130 }

In Fig. 4.11 the control flow graph of the main method is shown, where opcodes analyzed

to be irrelevant are shown in a diamond shape. Relevant opcodes have a rectangle shape,

and neutral opcodes (an unconditional JMP and the RETURN opcode) are shown as ovals.

A colored variant of this representation is computed automatically, the user does not have

to provide any more input than the program to analyze.

Using the presented analysis, one could simplify the code according to Conjecture 4.17

and obtain the following code. As you can see, the programmer then can easily see that

his intentions are not met, and the bug can be found.

Example 4.19 When marking res in line 19 as relevant and removing code from Ex-

ample 4.18 identified as irrelevant using this analysis, the main method can be simplified

as follows:

1 public static void main(String [] args) {

2 Random.args = args;

3

4 Graph graphOne = createGraph ();

5 createGraph ();

6

7 Graph res = graphOne;

8 }

204 Chapter 4. Bug Detection

4.8. Conclusion and Outlook

We presented a technique which makes use of the information available in the Symbolic

Execution Graph created for a specific program. By analyzing definitions and usages

of values in the program based on the information available in the Symbolic Execution

Graph and a subsequent constraint-based analysis, it is possible to point the programmer

to code which does not contribute to the intended results. For this, the analysis makes use

of the inter procedural and context sensitive nature of the analysis presented in Chapter 1.

Thus, in addition to showing possible bugs like throwing NullPointerExceptions or non-

termination as demonstrated in [BSOG12] and proving termination, this demonstrates

that Symbolic Execution Graphs can also easily be used for further analyses.

In a next step, the ideas of this chapter should be formalized and shown correct. For

this, it is necessary to properly define the desired outcome of the analysis. As already

hinted at in Section 4.6, directly removing irrelevant code is not possible in all cases.

Showing which code is found to be irrelevant to the user, for example by showing a colored

control flow graph, is not hard to accomplish. However, in order to prove correctness of

this approach, first a program transformation resulting out of this technique needs to be

defined.

Furthermore, a graphical user interface where the user (programmer) can define the

inputs to the algorithm (which opcodes and references are relevant) should be created.

This information could also be provided by adding Java annotations to the program (for

example @relevant). The results of the analysis should be presented in a practical way,

for example by directly highlighting the analyzed code.

Finally, if one likes to extend this technique to find bugs in real-world programs, it is

necessary to create Symbolic Execution Graphs reasonably fast. Thus, we refer to the

conclusion of Chapters 1 and 3.

4.8. Conclusion and Outlook 205

0 LOAD args

1 WRITE to args

26 LOAD i$

28 java.util.Iterator.hasNext

4 Graph.createGraph

7 STORE to graphOne

8 Graph.createGraph

11 STORE to graphTwo

12 LOAD graphOne

13 Graph.getRootNode

16 STORE to source

17 LOAD graphTwo

18 Graph.getNodes

21 List.iterator

24 STORE to i$

33 EQ 0

66 LOAD graphOne36 LOAD i$

67 STORE to res38 java.util.Iterator.next

69 RETURN43 CHECKCAST Node|

46 STORE to node

48 LOAD source

49 LOAD node

51 Node.areConnected

54 EQ 0

63 JMP

57 LOAD graphOne

58 LOAD node

60 Graph.addNode

Figure 4.11.: Result of analysis

Conclusion

In this thesis we developed a new transformation from imperative programs written in

Java Bytecode to Symbolic Execution Graphs. One application of these graphs is

termination analysis of the original programs, as discussed in detail in the PhD thesis of

Marc Brockschmidt [Bro14].

In Chapter 1, we presented a technique based on symbolic execution with abstraction

to transform any non-recursive Java Bytecode program into a Symbolic Execution

Graph. Using refinement and a quite precise abstraction the information contained in the

individual states is very detailed. In comparison, the tools COSTA [AAC+08] and Julia

[SMP10] use path length abstraction, yielding less precise results. In order to obtain this

precise abstraction, we use several heap predicates to describe connections on the heap.

Furthermore, we have shown how, using refinement, evaluation is possible even if critical

information is not directly available due to abstraction. Here, the novel concept of state

intersection plays an important role in maintaining a high level of information. Using

this information, proving termination of complex algorithms is possible, as demonstrated

in the annual termination competition. On grounds of the contributions presented in

Chapter 1, AProVE was the most powerful tool in all competitions in the category for

non-recursive JBC programs from 2009 to 2014. For a detailed evaluation and comparison

with other tools, we again refer to [Bro14].

In Chapter 2, we discuss technical aspects of the technique presented in Chapter 1. As

in the formalization many data structures of infinite size (most notably position sets for

states containing cycles) are used, implementing algorithms using these data structures

is far from trivial. In this chapter we present the algorithm used to merge states in the

graph construction which only works on finite sets even if the position sets for the involved

states are infinite.

In Chapter 3, we discuss how the approach of Chapter 1 can be extended to recursive

programs. Here, the main problem is that when analyzing a recursive program, the call

stack may grow without bounds. To solve this problem, we introduce a form of call

stack abstraction where input arguments are used to replace abstracted parts of the heap.

Using context concretization we then show how the analysis can be extended to also work

on recursive states, so that the call stack height remains bounded. Here, as information

corresponding to the call site is not explicitly represented in the states, side effects of

the invoked method are propagated accordingly. Additionally, following the approach

208 Conclusion

presented in Chapter 1, the technique is tuned to provide precise information in the

resulting states even if the invoked method has side effects. Using these ideas, AProVE

won the category for recursive JBC programs in all competitions from 2011 to 2014. In

the competitions in 2009 and 2010 the ideas first presented in [BOG11] and extended in

Chapter 3 were not implemented, yet.

In Chapter 4, we present a novel analysis making use of the information contained

in Symbolic Execution Graphs. Here, we reason about the flow of information in the

given program and, based on an initial marking provided by the user, identify parts

of the program which could be left out without influencing the desired result. Based

on the assumption that the user intended all parts of the program to be relevant for

the computation, this analysis helps finding unintentional programming mistakes. As

the Symbolic Execution Graph already contains information about sharing and aliasing

effects on the heap, this analysis provides precise results without the need for additional

complex computation.

In Chapters 1 and 3 parts of the presented techniques were published already. However,

in this thesis we have adapted these techniques to a more general setting in which most

of the concepts available in Java Bytecode may be represented (exceptions, static

fields, etc.). Furthermore, the heap predicates used in this thesis are substantially more

precise than the variants already presented. Most notably, the formalization of context

concretization using heap predicates in this thesis is very involved, whereas in [BOG11]

heap predicates were left out completely. In total, in this thesis the formalization of the

techniques is much more complete, which also led to the discovery of several bugs.

Future Work

While the techniques presented in this thesis are designed to be as precise as possible,

for termination analysis of real-world programs this is not always necessary. Instead,

constructing Symbolic Execution Graphs for larger programs in a reasonable time is a

huge challenge when trying to retain as much information as possible. In order to use this

approach for a wider range of programs, some means of using a less precise abstraction

must be found. In [CGJ+00] the authors present an approach in which the level of

abstraction is dynamically adapted based on where termination proofs fail and, thus,

more information needs to be provided. Investigating if this approach can be adapted to

the setting of this thesis seems to be promising.

In the case of recursive programs, the formalization of Chapter 3 should be completed.

The open problem of input arguments abstraction needs to be solved in order to allow for

a finite graph construction. Furthermore, the states once created for a specific recursive

method may also be useful for a subsequent analysis of a different program calling the same

method. By extending how the connection of call states and returning states as currently

Conclusion 209

needed for context concretization is realized, the approach might become suitable for

modularization.

Finally, the analysis presented in Chapter 4 should be formalized. An intuitive GUI

should help users to actually find bugs. To show the power of the technique, one should

also investigate a wide range of programs and try to find bugs.

A. Publications

[1] Carsten Fuhs, Rafael Navarro-Marset, Carsten Otto, Jürgen Giesl, Salvador Lucas,

and Peter Schneider-Kamp. Search techniques for rational polynomial orders. In In-

telligent Computer Mathematics, pages 109–124, Springer, 2008.

[2] Carsten Otto, Marc Brockschmidt, Christian von Essen, and Jürgen Giesl. Automated

termination analysis of Java Bytecode by term rewriting. In Proceedings of the 21st In-

ternational Conference on Rewriting Techniques and Applications (RTA ’10), volume 6

of Leibniz International Proceedings in Informatics, pages 259–276. Schloss Dagstuhl-

Leibniz-Zentrum für Informatik, 2010. Extended version (with proofs) appeared

as technical report AIB-2010-08, available online at http://sunsite.informatik.

rwth-aachen.de/Publications/AIB/2010/2010-08.pdf.

[3] Marc Brockschmidt, Carsten Otto, Christian von Essen, and Jürgen Giesl. Termi-

nation graphs for Java Bytecode. In Verification, Induction, Termination Analysis,

volume 6463 of Lecture Notes in Computer Science, pages 17–37. Springer, 2010.

Extended version (with proofs) appeared as technical report AIB-2010-15, available

online at http://sunsite.informatik.rwth-aachen.de/Publications/AIB/2010/

2010-15.pdf.

[4] Marc Brockschmidt, Carsten Otto, and Jürgen Giesl. Modular termination proofs of

recursive Java Bytecode programs by term rewriting. In Proceedings of the 22nd Inter-

national Conference on Rewriting Techniques and Applications (RTA ’11), volume 10

of Leibniz International Proceedings in Informatics, pages 155–170. Schloss Dagstuhl-

Leibniz-Zentrum für Informatik, 2011. Extended version (with proofs) appeared

as technical report AIB-2011-02, available online at http://sunsite.informatik.

rwth-aachen.de/Publications/AIB/2011/2011-02.pdf.

[5] Marc Brockschmidt, Thomas Ströder, Carsten Otto, and Jürgen Giesl. Automated

detection of non-termination and NullPointerExceptions for Java Bytecode. In Revised

Selected Papers of the 2nd International Conference on Formal Verification of Object-

Oriented Software (FoVeOOS ’11), volume 7421 of Lecture Notes in Computer Science,

pages 123–141. Springer, 2012. Extended version (with proofs) appeared as technical

report AIB-2011-19, available online at http://sunsite.informatik.rwth-aachen.

de/Publications/AIB/2011/2011-19.pdf.

http://sunsite.informatik.rwth-aachen.de/Publications/AIB/2010/2010-08.pdf
http://sunsite.informatik.rwth-aachen.de/Publications/AIB/2010/2010-08.pdf
http://sunsite.informatik.rwth-aachen.de/Publications/AIB/2010/2010-15.pdf
http://sunsite.informatik.rwth-aachen.de/Publications/AIB/2010/2010-15.pdf
http://sunsite.informatik.rwth-aachen.de/Publications/AIB/2011/2011-02.pdf
http://sunsite.informatik.rwth-aachen.de/Publications/AIB/2011/2011-02.pdf
http://sunsite.informatik.rwth-aachen.de/Publications/AIB/2011/2011-19.pdf
http://sunsite.informatik.rwth-aachen.de/Publications/AIB/2011/2011-19.pdf

212 Bibliography

[6] Marc Brockschmidt, Richard Musiol, Carsten Otto, and Jürgen Giesl. Automated

termination proofs for Java programs with cyclic data. In Proceedings of the 24th

International Conference on Computer Aided Verification (CAV ’12), volume 7358 of

Lecture Notes in Computer Science, pages 105–122. Springer, 2012. Extended version

(with proofs) appeared as technical report AIB-2012-06, available online at http:

//sunsite.informatik.rwth-aachen.de/Publications/AIB/2012/2012-06.pdf.

[7] Jürgen Giesl, Marc Brockschmidt, Fabian Emmes, Florian Frohn, Carsten Fuhs,

Carsten Otto, Martin Plücker, Peter Schneider-Kamp, Thomas Ströder, Stephanie

Swiderski, and René Thiemann. Proving termination of programs automatically with

AProVE. In Proceedings of the 7th International Joint Conference on Automated Rea-

soning (IJCAR ’14), volume 8562 of Lecture Notes in Artificial Intelligence, pages

184–191. Springer, 2014.

http://sunsite.informatik.rwth-aachen.de/Publications/AIB/2012/2012-06.pdf
http://sunsite.informatik.rwth-aachen.de/Publications/AIB/2012/2012-06.pdf

B. Bibliography

[AAC+08] Elvira Albert, Puri Arenas, Michael Codish, Samir Genaim, Germán Puebla,

and Damiano Zanardini. Termination analysis of Java Bytecode. In Pro-

ceedings of the 10th International Conference on Formal Methods for Open

Object-Based Distributed Systems (FMOODS ’08), volume 5051 of Lecture

Notes in Computer Science, pages 2–18. Springer, 2008.

[AG00] Thomas Arts and Jürgen Giesl. Termination of term rewriting using depen-

dency pairs. Theoretical Computer Science, 236(1-2):133–178, 2000.

[AHM+08] Nathaniel Ayewah, David Hovemeyer, J. David Morgenthaler, John Penix,

and William Pugh. Using static analysis to find bugs. Software, IEEE,

25(5):22–29, 2008.

[APV09] Saswat Anand, Corina S. Păsăreanu, and Willem Visser. Symbolic execution

with abstraction. International Journal on Software Tools for Technology

Transfer, 11(1):53–67, 2009.

[ASU85] Alfred V. Aho, Ravi Sethi, and Jeffrey D. Ullman. Compilers: Principles,

Techniques, and Tools. Addison Wesley, 1985.

[BBC+10] Al Bessey, Ken Block, Ben Chelf, Andy Chou, Bryan Fulton, Seth Hallem,

Charles Henri-Gros, Asya Kamsky, Scott McPeak, and Dawson Engler. A

few billion lines of code later: using static analysis to find bugs in the real

world. Communications of the ACM, 53(2):66–75, 2010.

[BCC+07] Josh Berdine, Cristiano Calcagno, Byron Cook, Dino Distefano, Peter

O’Hearn, Thomas Wies, and Hongseok Yang. Shape analysis for compos-

ite data structures. In Proceedings of the 19th International Conference on

Computer Aided Verification (CAV ’07), volume 4590 of Lecture Notes in

Computer Science, pages 178–192. Springer, 2007.

[Ben05] Nick Benton. Semantics of program analyses and transformations. Lecture

Notes for the PAT Summer School, Copenhagen, 2005.

214 Bibliography

[BMOG12] Marc Brockschmidt, Richard Musiol, Carsten Otto, and Jürgen Giesl. Au-

tomated termination proofs for Java programs with cyclic data. In Proceed-

ings of the 24th International Conference on Computer Aided Verification

(CAV ’12), volume 7358 of Lecture Notes in Computer Science, pages 105–

122. Springer, 2012. Extended version (with proofs) appeared as techni-

cal report AIB-2012-06, available online at http://sunsite.informatik.

rwth-aachen.de/Publications/AIB/2012/2012-06.pdf.

[BN99] Franz Baader and Tobias Nipkow. Term Rewriting and all that. Cambridge

University Press, 1999.

[BOG11] Marc Brockschmidt, Carsten Otto, and Jürgen Giesl. Modular termination

proofs of recursive Java Bytecode programs by term rewriting. In Proceedings

of the 22nd International Conference on Rewriting Techniques and Applica-

tions (RTA ’11), volume 10 of Leibniz International Proceedings in Infor-

matics, pages 155–170. Schloss Dagstuhl–Leibniz-Zentrum für Informatik,

2011. Extended version (with proofs) appeared as technical report AIB-

2011-02, available online at http://sunsite.informatik.rwth-aachen.

de/Publications/AIB/2011/2011-02.pdf.

[BOvEG10] Marc Brockschmidt, Carsten Otto, Christian von Essen, and Jürgen Giesl.

Termination graphs for Java Bytecode. In Verification, Induction, Termi-

nation Analysis, volume 6463 of Lecture Notes in Computer Science, pages

17–37. Springer, 2010. Extended version (with proofs) appeared as techni-

cal report AIB-2010-15, available online at http://sunsite.informatik.

rwth-aachen.de/Publications/AIB/2010/2010-15.pdf.

[Bro10] Marc Brockschmidt. The Finite Interpretation Graph: A versatile source for

automated termination analysis of Java Bytecode. Diploma thesis. RWTH

Aachen, 2010.

[Bro14] Marc Brockschmidt. Termination analysis for imperative programs operating

on the heap. PhD thesis. RWTH Aachen, 2014.

[BSOG12] Marc Brockschmidt, Thomas Ströder, Carsten Otto, and Jürgen Giesl. Auto-

mated detection of non-termination and NullPointerExceptions for Java

Bytecode. In Revised Selected Papers of the 2nd International Conference

on Formal Verification of Object-Oriented Software (FoVeOOS ’11), vol-

ume 7421 of Lecture Notes in Computer Science, pages 123–141. Springer,

2012. Extended version (with proofs) appeared as technical report AIB-

2011-19, available online at http://sunsite.informatik.rwth-aachen.

de/Publications/AIB/2011/2011-19.pdf.

http://sunsite.informatik.rwth-aachen.de/Publications/AIB/2012/2012-06.pdf
http://sunsite.informatik.rwth-aachen.de/Publications/AIB/2012/2012-06.pdf
http://sunsite.informatik.rwth-aachen.de/Publications/AIB/2011/2011-02.pdf
http://sunsite.informatik.rwth-aachen.de/Publications/AIB/2011/2011-02.pdf
http://sunsite.informatik.rwth-aachen.de/Publications/AIB/2010/2010-15.pdf
http://sunsite.informatik.rwth-aachen.de/Publications/AIB/2010/2010-15.pdf
http://sunsite.informatik.rwth-aachen.de/Publications/AIB/2011/2011-19.pdf
http://sunsite.informatik.rwth-aachen.de/Publications/AIB/2011/2011-19.pdf

Bibliography 215

[CC77] Patrick Cousot and Radhia Cousot. Abstract interpretation: A unified lat-

tice model for static analysis of programs by construction or approximation

of fixpoints. In Proceedings of the 4th Symposium on Principles of Program-

ming Languages (POPL ’77), pages 238–252. ACM Press, 1977.

[CDOY09] Cristiano Calcagno, Dino Distefano, Peter O’Hearn, and Hongseok Yang.

Compositional shape analysis by means of bi-abduction. ACM SIGPLAN

Notices, 44(1):289–300, 2009.

[CGJ+00] Edmund Clarke, Orna Grumberg, Somesh Jha, Yuan Lu, and Helmut Veith.

Counterexample-guided abstraction refinement. In Computer aided verifica-

tion, pages 154–169. Springer, 2000.

[CPR09] Byron Cook, Andreas Podelski, and Andrey Rybalchenko. Summarization

for termination: no return! Formal Methods in System Design, 35(3):369–

387, 2009.

[CRB10] Renato Cherini, Lucas Rearte, and Javier O. Blanco. A shape analysis for

non-linear data structures. In Proceedings of the 17th International Sympo-

sium on Static Analysis (SAS ’10), volume 6337 of Lecture Notes in Com-

puter Science, pages 201–217. Springer, 2010.

[FNMO+08] Carsten Fuhs, Rafael Navarro-Marset, Carsten Otto, Jürgen Giesl, Salvador

Lucas, and Peter Schneider-Kamp. Search techniques for rational polynomial

orders. In Intelligent Computer Mathematics, pages 109–124. Springer, 2008.

[FOW87] Jeanne Ferrante, Karl J. Ottenstein, and Joe D. Warren. The program

dependence graph and its use in optimization. ACM Transactions on Pro-

gramming Languages and Systems (TOPLAS), 9(3):319–349, 1987.

[Fro13] Florian Frohn. Modular termination analysis for Java Bytecode. Master

thesis. RWTH Aachen, 2013.

[GBE+14] Jürgen Giesl, Marc Brockschmidt, Fabian Emmes, Florian Frohn, Carsten

Fuhs, Carsten Otto, Martin Plücker, Peter Schneider-Kamp, Thomas

Ströder, Stephanie Swiderski, and René Thiemann. Proving termination

of programs automatically with AProVE. In Proceedings of the 7th Interna-

tional Joint Conference on Automated Reasoning (IJCAR ’14), volume 8562

of Lecture Notes in Artificial Intelligence, pages 184–191. Springer, 2014.

[GJS+12] James Gosling, Bill Joy, Guy Steele, Gilad Bracha, and Alex Buckley. The

Java Language Specification. California, USA, 2012.

216 Bibliography

[GRS+11] Jürgen Giesl, Matthias Raffelsieper, Peter Schneider-Kamp, Stephan Swider-

ski, and René Thiemann. Automated termination proofs for Haskell by

term rewriting. ACM Transactions on Programming Languages and Sys-

tems, 33(2):7:1–7:39, 2011.

[GSS+12] Jürgen Giesl, Thomas Ströder, Peter Schneider-Kamp, Fabian Emmes, and

Carsten Fuhs. Symbolic evaluation graphs and term rewriting – a general

methodology for analyzing logic programs. In Proceedings of the 14th Inter-

national Symposium on Principles and Practice of Declarative Programming

(PPDP ’12), pages 1–12. ACM Press, 2012.

[GSSKT06] Jürgen Giesl, Stephan Swiderski, Peter Schneider-Kamp, and René Thie-

mann. Automated termination analysis for haskell: From term rewriting to

programming languages. In Term Rewriting and Applications, pages 297–

312. Springer, 2006.

[Hic08] Rich Hickey. The Clojure programming language. In Proceedings of the 2008

symposium on dynamic languages (DL ’08). ACM Press, 2008.

[JLRS04] Bertrand Jeannet, Alexey Loginov, Thomas Reps, and Mooly Sagiv. A

relational approach to interprocedural shape analysis. In Static Analysis,

pages 246–264. Springer, 2004.

[KGK+07] Dierk Koenig, Andrew Glover, Paul King, Guillaume Laforge, and Jon Skeet.

Groovy in action. Manning Publications Co., 2007.

[Kin76] James C. King. Symbolic execution and program testing. Communications

of the ACM, 19:385–394, 1976.

[KN06] Gerwin Klein and Tobias Nipkow. A Machine-Checked Model for a Java-like

Language, Virtual Machine and Compiler. ACM Transactions on Program-

ming Languages and Systems, 28(4):619–695, 2006.

[Lan79] Dallas Lankford. On Proving Term Rewriting Systems Are Noetherian.

Louisiana Tech Univ., Math. Department, 1979.

[Ler03] Xavier Leroy. Java bytecode verification: algorithms and formalizations.

Journal of Automated Reasoning, 30(3-4):235–269, 2003.

[LYBB12] Tim Lindholm, Frank Yellin, Gilad Bracha, and Alex Buckley. The Java

Virtual Machine Specification. Oracle America, Inc., 2012.

[MN70] Zohar Manna and Steven Ness. On the termination of markov algorithms.

In Proceedings of the Third Hawaii International Conference on System Sci-

ence, pages 789–792, 1970.

Bibliography 217

[NES+11] Charles O. Nutter, Thomas Enebo, Nick Sieger, Ola Bini, and Ian Dees.

Using JRuby: Bringing Ruby to Java. Pragmatic Bookshelf, 2011.

[NNH99] Flemming Nielson, Hanne R. Nielson, and Chris Hankin. Principles of pro-

gram analysis. Springer, 1999.

[OBvEG10] Carsten Otto, Marc Brockschmidt, Christian von Essen, and Jürgen Giesl.

Automated termination analysis of Java Bytecode by term rewriting. In Pro-

ceedings of the 21st International Conference on Rewriting Techniques and

Applications (RTA ’10), volume 6 of Leibniz International Proceedings in In-

formatics, pages 259–276. Schloss Dagstuhl–Leibniz-Zentrum für Informatik,

2010. Extended version (with proofs) appeared as technical report AIB-

2010-08, available online at http://sunsite.informatik.rwth-aachen.

de/Publications/AIB/2010/2010-08.pdf.

[ORY01] Peter O’Hearn, John C. Reynolds, and Hongseok Yang. Local reasoning

about programs that alter data structures. In Proceedings of the 15th Inter-

national Workshop on Computer Science Logic (CSL ’01), volume 2142 of

Lecture Notes in Computer Science, pages 1–19. Springer, 2001.

[OSV08] Martin Odersky, Lex Spoon, and Bill Venners. Programming in Scala. Ar-

tima, 2008.

[PR02] Samuele Pedroni and Noel Rappin. Jython Essentials: Rapid Scripting in

Java. O’Reilly & Associates, Inc., 2002.

[RC11] Xavier Rival and Bor-Yuh Evan Chang. Calling context abstraction with

shapes. ACM SIGPLAN Notices, 46(1):173–186, 2011.

[Rhi] https://developer.mozilla.org/en-US/docs/Rhino.

[RHS95] Thomas Reps, Susan Horwitz, and Mooly Sagiv. Precise interprocedural

dataflow analysis via graph reachability. In Proceedings of the 22nd ACM

SIGPLAN-SIGACT symposium on Principles of programming languages,

pages 49–61. ACM, 1995.

[Sch08] Peter Schneider-Kamp. Static Termination Analysis for Prolog using Term

Rewriting and SAT Solving. PhD thesis, RWTH Aachen, 2008.

[SG95] Morten H. Sørensen and Robert Glück. An algorithm of generalization

in positive supercompilation. In Proceedings of ILPS’95, the International

Logic Programming Symposium. Citeseer, 1995.

http://sunsite.informatik.rwth-aachen.de/Publications/AIB/2010/2010-08.pdf
http://sunsite.informatik.rwth-aachen.de/Publications/AIB/2010/2010-08.pdf
https://developer.mozilla.org/en-US/docs/Rhino

218 Bibliography

[SGB+14] Thomas Ströder, Jürgen Giesl, Marc Brockschmidt, Florian Frohn, Carsten

Fuhs, Jera Hensel, and Peter Schneider-Kamp. Proving termination and

memory safety for programs with pointer arithmetic. In Proceedings of the

7th International Joint Conference on Automated Reasoning (IJCAR ’14),

volume 8562 of Lecture Notes in Artificial Intelligence, pages 208–223.

Springer, 2014.

[SGS+10] Peter Schneider-Kamp, Jürgen Giesl, Thomas Ströder, Alexander Sere-

brenik, and René Thiemann. Automated termination analysis for logic pro-

grams with cut. Theory and Practice of Logic Programming, 10(4-6):365–

381, 2010.

[SGST09] Peter Schneider-Kamp, Jürgen Giesl, Alexander Serebrenik, and René Thie-

mann. Automated termination proofs for logic programs by term rewriting.

ACM Transactions on Computational Logic, 11(1), 2009.

[SMP10] Fausto Spoto, Fred Mesnard, and Étienne Payet. A termination analyser for

Java Bytecode based on path-length. ACM Transactions on Programming

Languages and Systems, 32(3):8:1–8:70, 2010.

[TeR03] TeReSe. Term Rewriting Systems. Cambridge University Press, 2003.

[Thi07] René Thiemann. The DP Framework for Proving Termination of Term

Rewriting. PhD thesis, RWTH Aachen, 2007.

[Tur36] Alan M. Turing. On computable numbers, with an application to the

Entscheidungsproblem. Proceedings of the London Mathematical Society,

2:230–265, 1936. Available online at http://www.turingarchive.org/

browse.php/B/12.

[WZKSL13] Xi Wang, Nickolai Zeldovich, M Frans Kaashoek, and Armando Solar-

Lezama. Towards optimization-safe systems: analyzing the impact of un-

defined behavior. In Proceedings of the Twenty-Fourth ACM Symposium on

Operating Systems Principles, pages 260–275. ACM, 2013.

[YLB+08] Hongseok Yang, Oukseh Lee, Josh Berdine, Cristiano Calcagno, Byron Cook,

Dino Distefano, and Peter W. O’Hearn. Scalable shape analysis for systems

code. In Proceedings of the 20th International Conference on Computer

Aided Verification (CAV ’08), volume 5123 of Lecture Notes in Computer

Science, pages 385–398. Springer, 2008.

http://www.turingarchive.org/browse.php/B/12
http://www.turingarchive.org/browse.php/B/12

Curriculum Vitae

Name Carsten Otto

Geburtsdatum 24. September 1983

Geburtsort Tönisvorst

Bildungsgang

1994–2003 Bischöfliches Albertus-Magnus-Gymnasium Viersen-Dülken

Abschluss: Allgemeine Hochschulreife

2003–2008 Studium der Informatik an der RWTH Aachen

Abschluss: Diplom

2008–2013 Wissenschaftlicher Angestellter am Lehr- und Forschungsgebiet

Informatik 2 (Prof. Dr. Jürgen Giesl), RWTH Aachen

221

Aachener Informatik-Berichte

This list contains all technical reports published during the past three years. A complete

list of reports dating back to 1987 is available from:

http://aib.informatik.rwth-aachen.de/

To obtain copies please consult the above URL or send your request to:

Informatik-Bibliothek, RWTH Aachen, Ahornstr. 55, 52056 Aachen,

Email: biblio@informatik.rwth-aachen.de

2012-01 Fachgruppe Informatik: Annual Report 2012

2012-02 Thomas Heer: Controlling Development Processes

2012-03 Arne Haber, Jan Oliver Ringert, Bernhard Rumpe: MontiArc - Architec-

tural Modeling of Interactive Distributed and Cyber-Physical Systems

2012-04 Marcus Gelderie: Strategy Machines and their Complexity

2012-05 Thomas Ströder, Fabian Emmes, Jürgen Giesl, Peter Schneider-Kamp,

and Carsten Fuhs: Automated Complexity Analysis for Prolog by Term

Rewriting

2012-06 Marc Brockschmidt, Richard Musiol, Carsten Otto, Jürgen Giesl: Au-

tomated Termination Proofs for Java Programs with Cyclic Data

2012-07 André Egners, Björn Marschollek, and Ulrike Meyer: Hackers in Your

Pocket: A Survey of Smartphone Security Across Platforms

2012-08 Hongfei Fu: Computing Game Metrics on Markov Decision Processes

2012-09 Dennis Guck, Tingting Han, Joost-Pieter Katoen, and Martin R.

Neuhäußer: Quantitative Timed Analysis of Interactive Markov Chains

2012-10 Uwe Naumann and Johannes Lotz: Algorithmic Differentiation of Nu-

merical Methods: Tangent-Linear and Adjoint Direct Solvers for Systems

of Linear Equations

2012-12 Jürgen Giesl, Thomas Ströder, Peter Schneider-Kamp, Fabian Emmes,

and Carsten Fuhs: Symbolic Evaluation Graphs and Term Rewriting —

A General Methodology for Analyzing Logic Programs

2012-15 Uwe Naumann, Johannes Lotz, Klaus Leppkes, and Markus Towara:

Algorithmic Differentiation of Numerical Methods: Tangent-Linear and

Adjoint Solvers for Systems of Nonlinear Equations

2012-16 Georg Neugebauer and Ulrike Meyer: SMC-MuSe: A Framework for

Secure Multi-Party Computation on MultiSets

2012-17 Viet Yen Nguyen: Trustworthy Spacecraft Design Using Formal Methods

2013-01 ∗ Fachgruppe Informatik: Annual Report 2013

http://aib.informatik.rwth-aachen.de/

222

2013-02 Michael Reke: Modellbasierte Entwicklung automobiler Steuerungssys-

teme in Klein- und mittelständischen Unternehmen

2013-03 Markus Towara and Uwe Naumann: A Discrete Adjoint Model for Open-

FOAM

2013-04 Max Sagebaum, Nicolas R. Gauger, Uwe Naumann, Johannes Lotz, and

Klaus Leppkes: Algorithmic Differentiation of a Complex C++ Code

with Underlying Libraries

2013-05 Andreas Rausch and Marc Sihling: Software & Systems Engineering

Essentials 2013

2013-06 Marc Brockschmidt, Byron Cook, and Carsten Fuhs: Better termination

proving through cooperation

2013-07 André Stollenwerk: Ein modellbasiertes Sicherheitskonzept für die ex-

trakorporale Lungenunterstützung

2013-08 Sebastian Junges, Ulrich Loup, Florian Corzilius and Erika Ábrahám:

On Gröbner Bases in the Context of Satisfiability-Modulo-Theories Solv-

ing over the Real Numbers

2013-10 Joost-Pieter Katoen, Thomas Noll, Thomas Santen, Dirk Seifert, and

Hao Wu: Performance Analysis of Computing Servers using Stochastic

Petri Nets and Markov Automata

2013-12 Marc Brockschmidt, Fabian Emmes, Stephan Falke, Carsten Fuhs, and

Jürgen Giesl: Alternating Runtime and Size Complexity Analysis of

Integer Programs

2013-13 Michael Eggert, Roger Häußling, Martin Henze, Lars Hermerschmidt,

René Hummen, Daniel Kerpen, Antonio Navarro Pérez, Bernhard

Rumpe, Dirk Thißen, and Klaus Wehrle: SensorCloud: Towards the

Interdisciplinary Development of a Trustworthy Platform for Globally

Interconnected Sensors and Actuators

2013-14 Jörg Brauer: Automatic Abstraction for Bit-Vectors using Decision Pro-

cedures

2013-19 Florian Schmidt, David Orlea, and Klaus Wehrle: Support for error

tolerance in the Real-Time Transport Protocol

2013-20 Jacob Palczynski: Time-Continuous Behaviour Comparison Based on

Abstract Models

2014-01 ∗ Fachgruppe Informatik: Annual Report 2014

2014-02 Daniel Merschen: Integration und Analyse von Artefakten in der mod-

ellbasierten Entwicklung eingebetteter Software

2014-03 Uwe Naumann, Klaus Leppkes, and Johannes Lotz: dco/c++ User

Guide

223

2014-04 Namit Chaturvedi: Languages of Infinite Traces and Deterministic Asyn-

chronous Automata

2014-05 Thomas Ströder, Jürgen Giesl, Marc Brockschmidt, Florian Frohn,

Carsten Fuhs, Jera Hensel, and Peter Schneider-Kamp: Automated Ter-

mination Analysis for Programs with Pointer Arithmetic

2014-06 Esther Horbert, Germán Mart́ın Garćıa, Simone Frintrop, and Bastian

Leibe: Sequence Level Salient Object Proposals for Generic Object De-

tection in Video

2014-07 Niloofar Safiran, Johannes Lotz, and Uwe Naumann: Algorithmic Dif-

ferentiation of Numerical Methods: Second-Order Tangent and Adjoint

Solvers for Systems of Parametrized Nonlinear Equations

2014-08 Christina Jansen, Florian Göbe, and Thomas Noll: Generating Inductive

Predicates for Symbolic Execution of Pointer-Manipulating Programs

2014-09 Thomas Ströder and Terrance Swift (Editors): Proceedings of the In-

ternational Joint Workshop on Implementation of Constraint and Logic

Programming Systems and Logic-based Methods in Programming Envi-

ronments 2014

2014-14 Florian Schmidt, Matteo Ceriotti, Niklas Hauser, and Klaus Wehrle:

HotBox: Testing Temperature Effects in Sensor Networks

2014-15 Dominique Gückel: Synthesis of State Space Generators for Model

Checking Microcontroller Code

2014-16 Hongfei Fu: Verifying Probabilistic Systems: New Algorithms and Com-

plexity Results

2015-01 ∗ Fachgruppe Informatik: Annual Report 2015

2015-05 Florian Frohn, Jürgen Giesl, Jera Hensel, Cornelius Aschermann, and

Thomas Ströder: Inferring Lower Bounds for Runtime Complexity

2015-06 Thomas Ströder and Wolfgang Thomas (Editors): Proceedings of the

Young Researchers’ Conference “Frontiers of Formal Methods”

∗ These reports are only available as a printed version.

Please contact biblio@informatik.rwth-aachen.de to obtain copies.

	Introduction
	Preliminaries
	Symbolic Execution Graphs for Non-Recursive Programs
	Related Work
	States
	Notation
	Heap Predicates
	Concrete States
	State Instances

	Idea of Graph Construction
	Refinement
	Integer Refinement
	Existence Refinement
	Type Refinement
	Array Length Refinement
	Realization Refinement
	Equality Refinement

	State Intersection
	Equivalence Relations , n
	Finding Conflicts
	Intersecting Values
	Intersecting States
	Validity of Equality Refinement

	Evaluation
	PUTFIELD
	Writing into arrays using AASTORE etc.
	Reading from arrays using AALOAD etc.
	Class instances and interned Strings

	Abstraction
	Symbolic Execution Graphs
	Conclusion and Outlook

	Automation
	Abstract Types
	Merge
	State Positions
	RealizedPositions
	NeedJoins
	ReferencesWithMultiplePositions
	NonTreeShapes

	Instance Check

	Recursion
	Related Work
	States
	Context Concretization
	Stability of Under Context Concretization
	Symbolic Execution Graphs for Recursive Programs
	Abstraction of Input Arguments
	Conclusion and Outlook

	Bug Detection
	Related Work
	Basic Idea
	Detailed Procedure
	Analysis of Code Without Exceptions and Method Invocations
	Branches
	Method Invocations
	Exceptions

	Computing Results
	Optimizations
	Conjecture
	Demonstration
	Conclusion and Outlook

	Conclusion
	Appendices
	A. Publications
	B. Bibliography

