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Abstract. We address satisfiability checking for the first-order theory of the
real-closed field (RCF) using satisfiability-modulo-theories (SMT) solving. SMT
solvers combine a SAT solver to resolve the Boolean structure of a given formula
with theory solvers to verify the consistency of sets of theory constraints.
In this paper, we report on an integration of Gröbner bases as a theory solver so
that it conforms with the requirements for efficient SMT solving: (1) it allows the
incremental adding and removing of polynomials from the input set and (2) it
can compute an inconsistent subset of the input constraints if the Gröbner basis
contains 1.
We modify Buchberger’s algorithm by implementing a new update operator to
optimize the Gröbner basis and provide two methods to handle inequalities. Our
implementation uses special data structures tuned to be efficient for huge sets of
sparse polynomials. Besides solving, the resulting module can be used to simplify
constraints before being passed to other RCF theory solvers based on, e.g., the
cylindrical algebraic decomposition.

1 Introduction

Formulas of first-order logic over the theory of the real-closed field (RCF) are
Boolean combinations of polynomial constraints with real-valued variables. Be
it the analysis of real-time systems, the optimization of railway schedules or the
computation of dense sphere packings in Euclidean space, many practical and
theoretical problems can be expressed in this logic. Sophisticated decision pro-
cedures and increased computational power have led to efficient tools to analyze
such formulas.

Boolean formulas are well-suited for the description of discrete systems, e.g.,
digital controllers. State-of-the-art SAT solvers, dedicated programs to determine
the satisfiability of Boolean formulas, are highly tuned for efficiency. They can
handle formulas with millions of literals and are frequently used not only in
academic research but also in industry.

The success of SAT solvers has led to an approach called satisfiability-modulo-
theories (SMT ) solving for handling first-order logic over certain theories. This
approach combines the high efficiency of SAT solvers to handle the Boolean
structure with dedicated theory solvers to check sets of constraints from the
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given theory for consistency. For the optimal combination of these modules, the-
ory solvers should be SMT compliant : they should support the extension of the
constraint set (incrementality), the removal of constraints (backtracking) and the
generation of small infeasible subsets in case of inconsistency [2, Ch. 26].

In this paper, we consider the existential fragment of the first-order logic over
the theory of the RCF. Immense advances have been made in this area in the last
decades. Besides complete decision procedures as the cylindrical algebraic decom-
position (CAD) method [4], implemented among others in the tool QEPCAD, also
incomplete methods such as the virtual substitution (VS) method [15], supported,
e.g., by the package Redlog of the computer algebra system Reduce, simplex [8]
or interval constraint propagation [9], implemented, e.g., in iSAT, are available. In
addition to such explicit methods working on the solution space, some symbolic
approaches find application in SMT solving for preprocessing by using simple
rules and basic Gröbner basis computations, or outside of SMT solvers in stan-
dalone tools, often based on some application of the Positivstellensatz [13] such
as in the tool KeYmaera.

We aim to improve the integration of the Gröbner bases methodology in
SMT solving, thereby enhancing speed and effectiveness. To reach this goal, we
have to overcome several challenges. (1) The methodology has to be adapted to
be SMT compliant and (2) to cope with typical SMT-problem structures, which
often significantly differ from algebraically hard problems. (3) As we are solving
over the RCF, we are more interested in the real radical than the ideal of our
input polynomials. (4) Finally, we need to handle inequalities as well.

Gröbner basis computations are used for preprocessing in [7] and [11]. In [13],
a combination of Gröbner basis computations with the Fourier-Motzkin method
is proposed. However, this work is not directly related to SMT. Direct relation
to SMT can be found in [10] for finding minimal infeasible subsets, and in [12]
for coping with the special structure. Saturation to approximate the real radical
is used in [11] and in [13].

We implement our approaches as a module in the SMT-solving framework
SMT-RAT, which is a C++ toolbox allowing the combination of different theory
solvers in a user-defined strategy. Our Gröbner bases module can be applied
both as a preprocessing and as a solving technique.

Regarding (1), our Gröbner bases module supports the adding and removal
of constraints as well as the computation of small infeasible subsets. The basic
features of this module are the simplification of equations and the check whether
there are common zeros of the input equations. To tackle (2), we utilize some ideas
from [12] and [14] to develop data structures that can handle a large number of
variables and huge sets of sparse input polynomials, not necessarily of low degree,
as they frequently occur in our setting. For (3), we further adapt Buchberger’s
algorithm in that we prune polynomials without real zeros in the Gröbner basis.
We implemented two different strategies to realize (4): firstly, we can encode
all inequalities as equations and compute a Gröbner basis of the extended set of
polynomials, or secondly, we reduce the polynomials belonging to the inequalities
modulo the Gröbner basis for the equations.

The rest of the paper is structured as follows: In Section 2 we recall some
basics for Gröbner bases. In Section 3 we describe our SMT framework before
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explaining our methods and their integration in Section 4. After giving some
experimental results in Section 5, we conclude the paper in Section 6.

2 Preliminaries

We denote the set of real, rational and natural numbers by R, Q and N (0 ∈ N)
respectively. We use R and Q also for the corresponding (ordered) fields over the
arithmetic operations +, · and the ordering relation <, and refer to R as the
real-closed field (RCF ). We sometimes omit the symbol · and write xy instead
of x · y.

In the following let K be a field and x a sequence x1, . . . , xn of variables for
some n ∈ N, n ≥ 1. We call a product m =

∏
1≤i≤n x

ei
i with ei ∈ N a monomial

in x having the degree deg(m) :=
∑

1≤i≤n ei. With Mx we denote the set of all
monomials in x. A product a ·m with a ∈ K and m ∈ Mx is called a term in x
and a the coefficient of m.

A polynomial p in x is a sum of terms in x with pairwise different monomials.
By K[x] we denote the polynomial ring over K in the variables x. Let p ∈ K[x].
We say that xi ∈ p if xi occurs in p with a positive power. We define the total
degree of p as tdeg(p) := max{deg(m) | m monomial in p}.

A monomial ordering is a linear well-ordering on monomials respecting multi-
plication of monomials, i.e., a linear ordering ≺ with a minimal element such that
m1 ≺ m2 entails m1m3 ≺ m2m3 for all m1,m2,m3 ∈Mx. The leading monomial
lm(p) of p is the maximal monomial in p w.r.t. the current ordering. The leading
coefficient lc(p) of p is the coefficient of lm(p). the product lc(p)lm(p) is called
leading term lt(p) of p.

We call p ∼ 0 with ∼ ∈ {=, >,≥, 6=} a (polynomial) constraint over p. A
set of constraints over P ⊆ K[x] is a subset of {p ∼ 0 | p ∈ P,∼ ∈ {=, >,≥
, 6=}}. For a set of constraints C, we define pol(C) := {p ∈ K[x] | p ∼ 0 ∈
C}. Our input formulas are quantifier-free first-order formulas over polynomial
constraints, i.e., constraints connected by the Boolean operators ∧ and ¬. We
refer to such formulas as RCF formulas. Note that we only consider the existential
fragment of the first-order theory of the RCF here.

2.1 Gröbner bases

We briefly introduce Gröbner bases and an application to solve real-algebraic
constraint systems. More information can be found in [1].

Let R = Q[x1, . . . , xn] with a fixed monomial ordering. Given a finite set
P ⊆ R of polynomials, we define the ideal generated by P as the set 〈P 〉 :=
{
∑

p∈P rpp | rp ∈ R for each p ∈ P}. Note that the more general notion of an
ideal is also covered by our definition because, due to Hilbert’s basis theorem,
every ideal in R has a finite set of generators. Let K̃ be a field, by V

K̃
(P ) :=

{a ∈ K̃n | p(a) = 0 for all p ∈ P} we denote the K̃ variety of P , i.e., the set of
common zeros of P in K̃n.

Reduction. Let p, p′, f ∈ R with p, f 6= 0, p =
∑k

i=0 aimi, k ∈ N and let F ⊆ R.
If p′ = p − sf for some s ∈ R such that s · lt(f) = aimi for some i ∈ {0, . . . , k}
then p reduces to p′ modulo f , written p

f−→ p′. We call f the reductor of p. We
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say that p reduces to p′ modulo F , written p
F−→ p′, if p

f−→ p′ for some f ∈ F .

If no p′ ∈ R and f ∈ F with p
f−→ p′ exists, p is in normal form modulo F . If

p
F−→ . . .

F−→ p′ and p′ is in normal form modulo F then we call p′ the normal
form of P modulo F , denoted by redF (p).

Definition 1 (Gröbner basis)
Let P ⊆ R \ {0}. A finite set G ⊆ 〈P 〉 is called a Gröbner basis (GB) of P
if 〈{lt(g) | g ∈ G}〉 = 〈{lt(p) | p ∈ P}〉. Let lc(p) = 1 for all p ∈ G. We
call G minimal if lt(g) /∈ 〈lt(g̃) | g̃ ∈ G \ {g}〉 for all g ∈ G, and reduced if
m /∈ 〈lt(g̃) | g̃ ∈ G \ {g}〉 for all monomials m of g.

We always regard a reduced GB, which is unique for a given monomial ordering.
If the reduced Gröbner basis of 〈P 〉 is {1} then VR(〈P 〉) = ∅, i.e., P has no
common zeros.

Buchberger’s algorithm. In his PhD thesis, Bruno Buchberger suggested a simple
fixed-point iteration algorithm for computing a Gröbner basis [3] (see Listing 1).
The most important tool in Buchberger’s algorithm is the S-polynomial: Let
p, q ∈ R with lm(p) =

∏n
i=1 x

ei
i and lm(q) =

∏n
i=1 x

ẽi
i , then the least common

multiple of lm(p) and lm(q) is lcm(lm(p), lm(q)) =
∏n
i=1 x

max(ei,ẽi)
i =: l. We define

S(p, q) := l
lt(p) · p−

l
lt(q) · q to be the S-polynomial of p and q. The S-polynomials

of all pairs of input polynomials are computed during Buchberger’s algorithm.
We refer to a pair (p, q) whose S-polynomial is not yet computed as S-pair.

We call a mapping U : 2R × R → 2R an update operator, where 2R denotes
the power set of R. Buchberger’s algorithm uses the standard update operator
Ustd(G, s) = G ∪ {s}.

Listing 1: Buchberger’s algorithm.

1 Input: Set of polynomials F , 0 /∈ F
2 Output: Gröbner basis G for 〈F 〉
3

4

5 G := F
6 while true:

7 G′ := G
8 for each {p, q} ⊆ G′, p 6= q:
9 s := redG(S(p, q))

10 if s 6= 0: G := Ustd(G, s)
11 if G = G′: break

12 return G

A reduced Gröbner basis can be obtained by removing each polynomial whose
leading term is a multiple of another leading term, and applying reduction mod-
ulo G \ {p} for the remaining p ∈ G, see [1, Table 5.5].

3 SMT-RAT

In this section, we give a short overview of our toolbox SMT-RAT [5], in which we
embed our Gröbner bases implementation. The core procedure of Buchberger’s
algorithm and its underlying data structures are implemented in the extension
GiNaCRA of the GiNaC library.
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Framework. SMT-RAT is a C++ library consisting of (1) a collection of SMT-
compliant theory solver modules which can be used to extend an existing SMT
solver to RCF and (2) an SMT solver in which these modules can be (and most
of them are) integrated to tackle RCF. The latter is intended to be a testing
environment for the development of SMT-compliant theory solvers, as the one
presented in this paper.

SMT-RAT defines three types of components (see Appendix B): manager, strat-
egy and module. In the following we first describe the functionality of a module
and show how the manager composes different modules according to a strategy
to a solver.

Modules. The main procedure of a module is check(Crcv). For a given set Crcv

of RCF formulas, called the set of received formulas, the procedure either decides
whether Crcv is satisfiable or not returning sat or unsat, respectively, or returns
unknown. Note, that a set of formulas is semantically defined by their conjunc-
tion. We can manipulate the set of received formulas by adding (removing) formu-
las ϕ to (from) it with add(ϕ) (remove(ϕ)). Since in the SMT embedding Crcv is
usually changed between two consecutive check(Crcv) calls only by adding/re-
moving constraints, the solver’s performance can be significantly improved if the
modules can make use of the results of previous checks (incrementality and back-
tracking). In case that the module determines the unsatisfiability of Crcv, it is
expected to compute at least one preferably small infeasible subset Cinf ⊆ Crcv.
Moreover, a module has the possibility to name lemmas, which are RCF tau-
tologies. These lemmas should encapsulate information which can be extracted
from a module’s internal state and propagated among other SMT-RAT modules.
Furthermore, SMT-RAT provides the feature that a module itself can ask other
modules for the satisfiability of a set Cpas of RCF formulas, called the set of
passed formulas, using the procedure runBackends(Cpas) which is controlled by
the manager.

This paper presents the implementation of a new SMT-RAT module called MGB
based on Gröbner bases; the next section gives details on its implementation.
SMT-RAT already contains various modules implementing, among others, a con-
junctive normal form transformer MCNF, a SAT solver MSAT and the modules MLRA
for simplex, MVS for VS and MCAD for CAD. Note that most of these procedures are
not complete. If a module cannot solve a problem then it either returns unknown
or consults another module as explained below.

Manager and strategy. A strategy is a directed tree T := (V,E) with a set
V of module instances as nodes and E ⊆ V × Ω × V , where Ω is a set of
conditions. Initially, the manager calls the method check(Crcv) of the module
instance given by the root of the strategy, where Crcv is a set of RCF formulas.
Whenever a module instance m ∈ V calls runBackends(Cpas), the manager calls
check(Cpas) of each module m′, for which an edge (m,ω,m′) ∈ E exists such
that ω holds for Cpas, and passes the results back tom. Furthermore, it also passes
back the infeasible subsets and lemmas provided by the invoked modules. The
module m can now benefit in its solving and reasoning process from this shared
information. In the following we write short (m,m′) for (m,ω,m) if ω = True.

Usually, the root module MCNF transforms its set of received formulas Ccnf
rcv to

an equisatisfiable set of clauses Ccnf
pas and calls runBackends(Ccnf

pas). The back-
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end is a SAT-solver module MSAT, which runs DPLL-style SAT-solving on the
Boolean abstraction of the set of received clauses Csat

rcv = Ccnf
pas. MSAT might call

runBackends(Csat
pas) for partial Boolean assignments on the corresponding set of

formulas Csat
pas; we refer to such a backend call as a theory call. The Boolean ab-

stractions of the obtained infeasible subsets and lemmas are stored as additional
clauses. Infeasible subsets and lemmas, which contain only formulas from Csat

pas,
prune the Boolean search space and hence the number of theory calls. Smaller
infeasible subsets are usually more advantageous, because they make larger cuts
in the search space. Other types of lemmas contain new formulas, so-called in-
ventive lemmas (non-inventive otherwise) and might enlarge the Boolean search
space, but they can reduce the complexity of later theory calls. This way we can
compose SMT solvers for RCF, e.g., using the simple strategy defined by the
nodes IMCNF , IMSAT and IMCAD and the edges (IMCNF , IMSAT) and (IMSAT , IMCAD).

4 Applying Gröbner bases

In this section we describe our SMT-RAT module MGB applying Gröbner bases (GB)
computations. In Section 4.1 we discuss how its design wraps a GB procedure
such as Buchberger’s algorithm, while leaving the GB procedure itself untouched.
In turn, Section 4.2 comprises how Buchberger’s algorithm can be adapted to
work inside an SMT-RAT module. Moreover, we show how to treat inequalities in
Section 4.3, how to realize a tighter SMT integration by giving lemmas in Section
4.4, and an extension to the GB module MGB which makes it more suitable for
preprocessing in Section 4.5.

In this section we assume Crcv to be a set of constraints. Given a constraint
c, a set of constraints C and a set of polynomials P , we use C[∼] = {p ∼
0 | p ∼ 0 ∈ C} to select constraints from C with a given comparison relation
∼ ∈ {=, >,≥, 6=} and C∼(P ) := {p ∼ 0 | p ∈ P} to construct constraints from
polynomials. We call Crsn(c) ⊆ Crcv a reason set of c if (

∧
r∈Crsn(c)

r) =⇒ c and
Crsn(C) =

⋃
c∈C Crsn(c) a reason set of C.

4.1 SMT-compliant consistency checking

In this section we show how consistency checking in an SMT-RAT module based
on a Gröbner bases core procedure can be accomplished. We do not further
specify this core procedure here. It is thus possible to plug in an off-the-shelf GB
procedure implementation such as the one in Singular.

For a given set Crcv of received constraints we denote a (GB module) state
by a tuple (A,G) ∈ 2Q[x] × 2Q[x] with 〈A ∪ G〉 = 〈pol(Crcv[=])〉 such that G is
a Gröbner basis computed during the last consistency check for the polynomials
received up to this point and A ⊆ pol(Crcv[=]) is the set of polynomials added
to Crcv[=] since then.

The incremental consistency check procedure is given in Listing 2. It operates
on Crcv and the state (A,G). The procedure possibly updates the state (A,G)
and outputs, first, an answer as to whether Crcv is sat, unsat or its consistency
is unknown, and second, an infeasible subset Cinf ⊆ Crcv in case of the answer
unsat. The first step in the procedure is the computation of a Gröbner basis of
all polynomials appearing on the left-hand-side in Crcv[=] (line 6 in Listing 2).
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Thereby we recompute the GB only if A 6= ∅, and we reuse G for the computation
of the GB of pol(Crcv[=]), what is possible because 〈pol(Crcv[=])〉 = 〈G ∪ A〉.
If the Gröbner basis is {1}, the polynomials have no common real zeros; hence,
we determine the infeasible subset Cinf as reason set of 1 = 0 (details below)
and return unsat. Otherwise, we call a module with the received inequations,
and instead of the original equations, we pass equations formed by the Gröbner
basis. This is done by the procedure runBackends described in Section 3.

Listing 2: GB module consistency check.

1 Input: Crcv, state (A,G)
2 Output: (ans, Cinf), with Cinf ⊆ Crcv

3 and ans ∈ {sat, unsat, unknown}
4

5 if A 6= ∅:
6 G := Groebner(G ∪A)

7 A := ∅
8 if G = {1}: return (unsat, Crsn(1 = 0))
9 Cpas := (Crcv \ Crcv[=]) ∪ {p = 0 | p ∈ G}

10 (r, C′inf) := runBackends(Cpas)

11 determine Cinf from C′inf
12 return (r, Cinf)

In the following, we describe the extensions around the algorithm in Listing
2 to provide the SMT compliance.

Backtracking. As in SMT solving constraints can be removed from theory solvers,
we make bookkeeping of the GB module states. Because SAT solvers mostly
use chronological backtracking we use a stack of states ((A1, G1), . . . , (Ak, Gk)),
k ∈ N \ {0}, illustrated in Figure 1: We start with an empty stack. Whenever an
equality is added, we add a state to the stack (a). After each consistency check,
we update the topmost state from the stack (b). If an equality is removed, we
remove all states from the stack which were added afterwards (c). Then, we add
the polynomials which were added after the just removed equality iteratively,
like a new equality (d).

({x}, ∅) (∅, {x}) . . .
(∅, {x, y, z})

(∅, {x,y})
(∅, {x})

(∅, {x})
({z}, {x})
(∅, {x})

(a) (b) (c) (d)

Fig. 1: The state stack in the GB module.

Infeasible subsets As argued before, the module is expected to return a subset
Cinf ⊆ Crcv in case the set of received constraints Crcv is inconsistent.

To determine such a subset, in [10] certificates for inconsistency were intro-
duced. It was also shown that minimality of these certificates is a problem which
is as hard as calculating the Gröbner basis. These certificates are basically tu-
ples of polynomials (h1, . . . ,hn) such that for an ideal I = 〈f1, . . . ,fn〉 and a
polynomial p ∈ I we have

∑n
i=1 hifi = p for suitable hi ∈ K[x̄]. In the case

of inconsistency, we have p = 1. Calculating certificates requires the reductions
within the Gröbner basis calculation to be extended to full multivariate polyno-
mial divisions, which is less efficient because we have to calculate and memorize
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quotients for each input polynomial. As we do this calculation for all reason sets,
we implemented a more naive way. The realization of small reason and infeasible
sets is obvious under the assumption that our GB procedure returns reason sets
for each p ∈ G, with G a GB.

4.2 Our Gröbner bases procedure

We describe the adaptions to Buchberger’s algorithm according to our setting
of being called in an SMT-compliant way. The implementation is based on the
description in [1].

Incrementality. As we call the GB procedure incrementally (cf. line 6 in Listing
2), we usually have to calculate Gröbner bases ofG∪A for some set of polynomials
A where G is a GB already. Instead of using Buchberger’s algorithm from scratch,
we skip all S-pairs (g1, g2), g1, g2 ∈ G as they reduce to zero.

Reason set calculation. We calculate the origin set Corg(p) of a polynomial p
as follows: If p is added to our module, Corg(p) = {p}. Furthermore, for p =

S(p1, p2) and p1
p2−→ p, we set Corg(p) = Corg(p1) ∪Corg(p2). Then Crsn(p = 0) =

Corg(p). The set representations are realized by bit vectors, thus, the complexity
of computing the union is linear in the number of polynomials.

Data structures. We base our implementation of data structures on [14] and use a
compressed heap during the reduction and for storing S-pairs. However, the term
and ideal representations are adapted based on the following observations: The
number of variables in the system is usually high and, due to incrementality, we
do not have a fixed bound on the number of variables at initialization. However,
most polynomials appearing are sparse, i.e., they consist of few terms only, each
containing a small number of variables.

A term a·
∏n
i=1 x

ei
i is represented as (a, [(xi1 , ei1), . . . , (xik , eik)],

∑n
i=1 ei) with

{i1, . . . , ik} = {i ∈ {1, . . . , n} | ei > 0} and ij < ij+1 for all 1 ≤ j < k. In our
context, this representation seems more suitable than those from [14]. The degree
is saved for fast access. For the ideal representation, we propose the adaption of
the index structure from [12], which reduces the number of potential reductors.
This can be done in two ways, but both indexing strategies are based on the
observation from Appendix C. Instead of searching for a suitable reductor in a
single container of polynomials, we introduce lists lx for each variable x. We have
two possibilities to fill these lists. Either each lx is filled with all polynomials p
with x ∈ lm(p) and during the reduction of p we only search in an arbitrary lx
whereas x ∈ lm(p), or we add each polynomial p to a single list lx with x ∈ lm(p)
and during the reduction of p we search in all lx where x ∈ lm(p). To reduce the
number of terms which appear during the reduction, we order the polynomials
in the index explained above according to the number of terms.

Real radical. Since calculating the real radical is hard, [11] proposes the itera-
tive application of simple rules to the ideal to approximate the real radical. We
propose to take this one step further. Instead of alternatingly calculating the GB
and applying such rules, we integrate the rules within the calculation of the GB.
For a given set of polynomials P , such a procedure thus no longer yields a GB
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for the ideal. However, we neither require the procedure the calculate the real
radical of P . We only require that it preserves the common real zeroes.

Definition 1 (Real-radical-preserving GB procedure). A procedure G with
input P ⊆ Q[x] and output G(P ) ⊆ Q[x] is called a real-radical-preserving GB
procedure if VR(P ) = VR(G(P )) and G(P ) is a GB of P .

To achieve such a procedure, we modify the update operator in Buchberger’s
algorithm (line 10 in Listing 1).

Definition 2 (Real-radical-preserving update operator). Let U be an up-
date operator and ≺ a monomial ordering. U is said to be real-radical preserving
if for each P ⊆ Q[x] and s ∈ Q[x] \ {0}, where s is in normal form modulo P ,
we have that U(P, s) = P ∪Q for some Q ⊆ Q[x] such that VR(Q) = VR(〈s〉) and
all q ∈ Q are in normal form modulo P .

Note that if U is a real-radical-preserving update operator, VR(U(P, s)) =
VR(P ∪ {s}), i.e., U extends P by polynomials which have the same real roots
as s. The following theorem formalizes the relation between the used update
operator and the GB procedure.

Theorem 1. If the update operator in the Buchberger algorithm is modified into
a real-radical-preserving update operator, then the modified Buchberger algorithm
is a real-radical-preserving GB procedure.

The proof is included in Appendix D. In Appendix E we give some computation-
ally cheap rules composing the real-radical-preserving update operator which is
used in our implementation.

4.3 The handling of inequalities

Our implementation offers two different approaches to deal with a received in-
equality p ∼ 0.

The first approach equalizes the inequation by introducing a new variable y
according to the following valid equivalences [13]:

p ≥ 0⇔ ∃y.p− y2 = 0, p > 0⇔ ∃y.py2 − 1 = 0, p 6= 0⇔ ∃y.py − 1 = 0

The resulting equation can then be handled as before.
In the second approach we reduce p to q := redP (p) w.r.t. some subset P of a

GB G. If q ∈ Q, then either q ∼ 0 and we do not have to pass it to our backends,
or q 6∼ 0 and we obtain Crsn(C=(P )) ∪ {p ∼ 0} as infeasible subset and return
unsat. In order to allow the correct interaction of the reduction of p ∼ 0 with
the GB module stack, we store the most relevant reductions in a reduction chain
RC(p ∼ 0) ⊆ Q[x]× N, defined by the following cases.

– If a new inequality p ∼ 0 is added, RC(p ∼ 0) is empty and our stack is
((A1, G1), . . . , (Ak, Gk)), k ≥ 1, then we set

RC(p ∼ 0) = {(p, 0)} ∪ {(redGk
(p), k) | redGk

(p) 6= p},

i.e., we add the original polynomial p of the inequality with the index 0 and
p reduced modulo the top-most Gröbner basis from the stack with index k.
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– If a new state (Aj , Gj) is added to the stack, we set

RC(p ∼ 0) = RC(p ∼ 0) ∪ {(redGj (q), j)}

where (q,m) ∈ RC(p ∼ 0) with m = max{i ∈ N | (q′, i) ∈ RC(p ∼ 0)}, i.e.,
(q,m) is the entry with the largest index in the reduction chain RC(p ∼ 0),
redGj (q) 6= q.

– If an equality is removed such that the new stack size is k′, then we remove
all (p, i), i > k′ from RC(p ∼ 0).

– If p ∼ 0 is removed, we simply delete RC(p ∼ 0).

4.4 Learning

In the following we consider that a constraint p ∼ 0 ∈ Crcv is deduced from Crcv\
{p ∼ 0} by the Gröbner module using a subset P of a Gröbner basis. If we achieve
a constant value, i.e. redP (p) ∈ Q, and redP (p) ∼ 0 holds, we obtain the non-
inventive lemma Crsn(C=(P ))→ (p ∼ 0). Note that redP (p) ∈ Q and redP (p) 6∼ 0
implies unsatisfiability. If redP (p) is a linear polynomial and P contains at least
one nonlinear constraint, we share the inventive lemma Crsn(C=(P )∪{P ∼ 0})→
(redP (p) ∼ 0). In successive theory calls, unsatisfiability may then be detected
by a more efficient linear solver. Note, that linear solvers are usually capable of
detecting such deductions if P consists of linear constraints only. Finally, if G is
the obtained Gröbner basis and q =

∑
tix ∈ G for some terms ti and a variable

x such that tdeg(q) is sufficiently small, e.g., less then the maximum degree
occurring in Crcv, we learn the inventive lemma Crsn(q) → (x = 0 ∨

∑
ti = 0).

It forms a case splitting and at least one case reduces the complexity of the
subsequent theory call significantly.

4.5 Iterative variable elimination

In Section 4.2 we have discussed the embedding of rules for the real radical into
the GB procedure. However, some rules from [11] and [13] are not (yet) suitable
for this kind of integration, e.g., rules involving a case splitting, which is optimally
resolved by learning as discussed in the previous subsection.

Another example is the iterative variable elimination (IVE) as introduced in
[13]. In practice, a GB G often contains polynomials of the form t − x, where t
is a term not containing x. IVE removes t − x from G and substitutes x by t
in the remaining set, yielding G′ = (G \ {t − x})[t/x], which is in general not a
GB. Then, it applies the GB procedure to obtain a GB and repeats these two
steps until a fixpoint is reached. The strict embedding of this rule into the GB
procedure is not straightforward, as potentially all GB elements are affected.
In our GB module, we have to apply the encountered substitutions also to the
received inequalities.

When applying IVE, we have to preserve the module’s SMT compliance,
which turns out to be rather straightforward for the provided mechanisms. The
incrementality can be guaranteed as all substitutions can be applied to the
polynomials of added constraints belatedly. In order to provide backtrackabil-
ity, we add the substitutions to the stored module state. We define the reason
set of a constraint c′ := c[t/x] we obtained by applying a substitution to be
Crsn(c′) := Crsn(c) ∪ Crsn(t− x = 0) and identify infeasible subsets as before.
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With IVE we are able to detect the infeasibitity of a set of constraints more
often. Moreover, the constraints we pass to our backends contain less variables by
the cost of an in general higher complexity in the remaining variables. A drawback
of IVE is that it blows up the reason sets of the constraints and therefore leads
to larger infeasible subsets.

5 Experimental results

The symbolic computations we present in this paper can significantly improve the
performance of an SMT-RAT solver instance. We tested six different MGB settings
with the SMT-RAT strategy S := (V,E) where V :={IMCNF , IMSAT , IMLRA , IMGB , IMVS , IMCAD}
with IM an instance of module M and E := {(IMCNF , IMSAT), (IMSAT , IMLRA), (IMLRA , IMGB),
(IMGB , IMVS), (IMVS , IMCAD)}. Since MLRA performs significantly faster on many instances
containing linear constraints, it is positioned before MGB. All MGB settings imple-
ment the approaches explained in the Sections 4.1 and 4.2. The settings GBnp
and GBp reduce inequalities, GBt transforms them. GBnp and GBt, however, set
Cpas = Crcv, while GBp passes constraints as described in Section 4.1. GBIVEp , GBIVEnp ,
GBIVEt are the extensions of the aforementioned settings by IVE. The computa-
tional effort and thus the room for optimization stepwise increases with enabling
transformation and IVE. Passing the constraints has a major influence on the
backends. We compared all settings with the reference strategy Sref := (Vref, Eref)
where Vref := V \{IMGB} and Eref := (E \{(IMLRA , IMGB), (IMGB , IMVS)})∪{(IMLRA , IMVS)}.

Table 1 # instances more than δ ms faster/slower than SMT-RAT with Sref.

Set (# instances) δ GBnp GBIVEnp GBp GBIVEp GBt GBIVEt Any

Key (421)
5 102/36 120/44 110/46 119/51 183/45 178/56 252/4
500 29/0 29/1 28/5 27/6 31/2 35/0 36/0

Met (8276) 25 267/231 175/416 352/434 254/613 167/1410 239/1401 698/77

Bounce (180) 500 0/0 0/1 10/11 77/7 0/0 1/0 78/0

We regard three example sets: Bounce is an extension of examples intro-
duced in [5]. Key and Met originate from the tools KeYmaera and MetiTarski.
Details of our benchmarks can be found in Appendix A, here we give a summary.
Table 1 shows for each setting how many instances ran more than δ milliseconds
faster/slower than the reference solver. In the last column, we give results for
a hypothetical optimal solver, which always takes the setting yielding the best
running time. Although many instances are not significantly influenced in terms
of running time by the MGB, we observe a critical speed-up on specific instances.
For Key, improvements are gained by detecting unsatisfiability, which in most
cases occurs during the reduction of inequalities. Here the received constraints
are more suitable for passing. For Bounce, the MGB has only effect if the resolved
identities are passed by GBIVEp . A heuristic choice of the right setting increases
the overall performance, and is essential for Met.
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6 Conclusion and future work

In this work, we made use of the strength of traditional computer algebra proce-
dures to resolve weaknesses of SMT solving for RCF. In particular, we integrated
Gröbner bases computations in a module of an SMT solver. Moreover, we adapted
the implementation of the Buchberger algorithm and its data structures to reflect
differences in treated problems. To meet our requirement of real solutions, we
embedded saturation rules for the real radical within the Buchberger algorithm,
which makes the module more powerful. Experimental results show that certain
problems are solved much faster using our new theory solver module.

As a next step we want to optimize the heuristics used in our Gröbner bases
module and do other improvements, e.g., by developing new saturation rules or
by algorithmic improvements tailored towards special input problem structures.
We are also interested in integrating further methods based on (lexicographic)
Gröbner bases, and especially in realizing applications of the Positivstellensatz.
Another open point is the choice of the SMT-RAT strategy. For instance, the
interplay between the GB and the CAD module could be much more dynamic
as compared to one fixed strategy with fixed CAD settings.
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on theorem proving saturation loops. In: Decision Procedures in Software, Hardware and
Bioware. No. 10161 in Dagstuhl Seminar Proc. (2010)
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Appendix

A Experimental results

All benchmarks were run on an 2.1 GHz AMD Xeon core with a 200 second
time-out per instance, as well as a memory limit of 4 GB. We did not experience
any solver hitting the memory limit. In Table 2 the number of solved instances
within the time limit are given, as well as their cumulative time. The results
are split into the sat and the unsat instances respectively. In Table 3 we give
an extended form of Table 1. All Gröbner bases computations were carried out
with the graded reverse lexicographic order. The revised update operator was
especially helpful for the GBt setting. In Bounce, no unsatisfiability was found by
the Gröbner module. For Key, GBt detects unsatisfiability between inequalities
relatively often, which accounts for its good performance. However, in cases with
a majority of (mostly linear) inequalities, the transformation prevents a fast
detection of trivial conflicts.

Table 2 Running times and solved instances.

Bounce (180) Met (8276) Key (421)
# time # time # time

Sref 101 135.7 7107 16350.4 385 573.6
- sat 84 135.3 4780 8507.4 0 0.0
- unsat 17 0.5 2327 7843.0 385 573.6

GBnp 101 135.7 7088 16149.7 408 381.9
- sat 84 135.1 4774 7985.6 0 0.0
- unsat 17 0.6 2314 8164.2 408 381.9

GBIVEnp 101 138.4 7096 16167.4 407 376.1
- sat 84 137.8 4773 8077.0 0 0.0
- unsat 17 0.6 2323 8090.5 407 376.1

GBp 93 73.7 7037 16484.2 405 68.6
- sat 76 73.3 4776 8195.6 0 0.0
- unsat 17 0.5 2261 8288.7 405 68.6

GBIVEp 127 32.7 7037 15794.5 405 72.2
- sat 81 18.3 4777 7976.3 0 0.0
- unsat 46 14.4 2260 7818.2 405 72.2

GBt 101 142.9 6850 17840.2 409 385.3
- sat 84 142.3 4671 9633.1 0 0.0
- unsat 17 0.6 2179 8207.0 409 385.3

GBIVEt 101 136.0 6875 17767.9 412 377.8
- sat 84 135.4 4666 9768.6 0 0.0
- unsat 17 0.6 2209 7999.3 412 377.8

Any 137 95.8 7224 18463.7 414 595.1
- sat 88 67.4 4902 10102.9 0 0.0
- unsat 49 28.5 2322 8360.8 414 595.1



Table 3 # instances more than δ ms faster/slower than SMT-RAT with Sref.

Set(# instances) δ GBnp GBIVEnp GBp GBIVEp GBt GBIVEt Any

Key (421)
5 102/36 120/44 110/46 119/51 183/45 178/56 252/4
25 32/4 33/7 30/8 31/11 38/5 47/8 48/0
500 29/0 29/1 28/5 27/6 31/2 35/0 36/0

Met (8276)
5 1201/1718 1017/1487 1483/1612 1371/1995 1203/2676 1263/2669 2644/182
25 267/231 175/416 352/434 254/613 167/1410 239/1401 698/77
500 37/118 59/96 96/206 80/206 103/820 122/807 251/17

Bounce (180)
5 34/37 6/69 59/25 117/9 1/87 11/63 128/1
25 10/10 2/23 51/13 105/8 1/68 6/14 109/1
500 0/0 0/1 10/11 77/7 0/0 1/0 78/0

F
ro
n
te
n
d

Manager

Strategy

ConditionCondition Condition
. . .

Module Module Module Module . . .

Fig. 2: A snapshot of an SMT-RAT composition.

B SMT-RAT structure

As depicted in Figure 2, SMT-RAT consists of a manager, a strategy and modules
as described in Section 3 and a frontend which (1) provides the interfaces to an
external SMT solver or (2) parses the input file to an RCF formula.

C Observation regarding index structures for the ideal

Let p, p′ ∈ K[x̄] be polynomials with 0 6= p 6= p′ and P ⊆ K[x̄] a set of polyno-
mials.

For the below corollary of the properties of
P−→, we need another notion of

reduction, which we also use in our implementation. We say that p top-reduces

to p′ modulo P , denoted by p
P
� p′, if p′ = p − sf for some s ∈ K[x̄] such that

s · lt(f) = akmk where p =
∑k

i=0 aimi, k ∈ N. In other words, top reduction is
a reduction with regard to the leading term only. In particular, we implement
the ordinary reduction as defined in Sec. 2.1 by top reduction (cf. [6, Proof of
Theorem 3]).

Corollary 1. 1. We define the set of polynomials Q = {q ∈ P | ∀x ∈ lm(q).x ∈
lm(p)}, such that in the leading monomials of polynomials in Q only variables

occur which also occur in lm(p). Then it holds that p
P
� p′ implies p

Q
� p′.

2. We define the set of polynomials Q′ = {q ∈ P | ∃x ∈ lm(q).x ∈ lm(p)},
such that in the leading monomials of polynomials in Q′ at least one variable

occurs which also occurs in lm(p). Then it holds that p
P
� p′ implies p

Q′

� p′.

We write a | b, for a, b ∈ N, if there exists a k ∈ N such that a · k = b.
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Proof (Corrolary 1).

1. Assume p
P\Q
� p′. Then lm(q) | lm(p) for some q ∈ P \Q. Let lm(q) =

∏n
i=1 x

αi

and lm(p) =
∏n
i=1 x

βi . It follows from the definition that αi ≥ βi for all
1 ≤ i ≤ |x̄|, and especially that βi > 0 implies αi > 0. Now for an arbitrary
q ∈ P \Q we know that there exists a x ∈ lm(p) with x 6∈ lm(q). Let j be the
index of this x. Then βj > 0, but αj = 0. Contradiction.

2. Clear from the fact that Q ⊆ Q′.

D The real radical preserving update routine

Let (C,+, ·) denote the algebraically closed field (ACF). Whenever possible, we
omit the operators and write C to denote the ACF. With lt(P ) we denote {lt(p) |
p ∈ P}.

Proof (Theorem 1).
We use the notation of Listing 1 and Definition 2.

Termination. For the main loop, we have that either G = G′ and the algorithm
terminates, or s = redG(S(p, q)) 6= 0 for some p, q ∈ G′. Now, we argue that
the latter case might happen only finitely often, i.e., the update operator is
only called finitely often. We claim that 〈lt(G′ ∪ Q)〉 ⊇ 〈lt(G)〉. Therefore,
we notice that if U(G′, s) is called, we have that all q ∈ Q are in normal
form modulo G′, and thus, lt(q) /∈ 〈lt(G′)〉. We thus get an ascending chain
of ideals, which eventually stabilizes by the ascending chain condition.

Correctness. We have to show the following claims.

1. G is a Gröbner basis of F .
2. VR(G) = VR(F ).

Proof of 1.: Upon termination, for every s = S(p, q), p, q ∈ G we have
redG(s) = 0. Thus by [1, Theorem 5.48] we have that G is a Gröbner ba-
sis.

Proof of 2.: We show that in each iteration it holds that VR(〈G′〉) = VR(〈G′∪
Q〉). First, notice that all S(p, q) with p, q ∈ G′ are in 〈G′〉, and so is redG′(p)
for p ∈ G′. Thus, for any s in U(G′, s) we have that s ∈ 〈G′〉, thus 〈s〉 ⊆ 〈G〉.
Therefore, we get VC(〈s〉) ⊇ VC(〈G′〉) and VR(〈s〉) ⊇ VR(〈G′〉). From the
definition, VR(〈Q〉) ⊇ VR(〈G′〉). Now for 〈G′〉 ∪ 〈Q〉 = I, we get VR(I) =
VR(〈G′〉) ∩ VR(〈Q′〉) and thus VR(I) = VR(〈G′〉).

E Embedded rules

We give three rules, in order of practical relevance on the tested benchmarks.
Furthermore, for any field K ′ and variety VK′ , we define the vanishing ideal of
VK′ as I(VK′) = {p ∈ K[x] | p(a) = 0 for all a ∈ VK′}.

1. Calculating the separable part is not so cheap, but for single monomials it is
trivial. ∏n

i=0 xi
ei ∈ 〈P 〉 J = {i | ei > 0}∏
i∈J xi ∈ I(VR(〈P 〉))
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2. This rule is based on the positive semi-definiteness of sums of squares. It was
also applied in [13]. ∑

s2i ∈ 〈P 〉
si ∈ I(VR(〈P 〉))

3. A rather special rule which helped very little. This rule was used differently
in [11].

x2m+1
i − x2n+1

j ∈ 〈P 〉 (2n+ 1) | (2m+ 1) i 6= j

x
2m+1
2n+1 − xj ∈ I(VR(〈P 〉))
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