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Abstract. We present a discrete adjoint version of OpenFOAM obtained by op-
erator overloading which yields, in comparison to continuous adjoint versions, a
greater flexibility and robustness. We discuss our implementation and how the
discrete adjoint version of OpenFOAM differs from existing continuous imple-
mentations. To reduce the inherent memory requirement of discrete adjoint code
we introduce a checkpointing scheme to trade computation time for memory.
Moreover we show results from a relevant reference case.

1 Introduction

In this paper we show how to apply Algorithmic Differentiation (AD) [GW08] to
an industrial size CFD code. We use the popular computational fluid dynamics
solver package OpenFOAM[foa]. OpenFOAM is open-source under the GPL and
is implemented in C++.

In section 2 we show the background of the studied CFD shape optimization
problem. We introduce and compare continuous and discrete mode for obtain-
ing derivatives of the problem. In section 3 we present the implementation of our
discrete adjoint solver discreteAdjointSimpleFoamwhich calculates derivatives
needed for shape optimization. Furthermore we implement techniques to reduce
the memory footprint of this solver. In section 4 we present results for a opti-
mization test case obtained with our discrete adjoint solver.

2 CFD and AD Background

2.1 Primal Navier-Stokes Equations

The Navier-Stokes equations for incompressible, isothermal, Newtoinian fluid
consist of the equations of momentum and mass conservation:

∂v

∂t
+ v · ∇v = ν∇2v−

1

ρ
∇p+ b (1)

∇ · v = 0 (2)

where v denotes the velocity vector, p the pressure, ν the kinematic viscosity, ρ
the density and b a vector of external body forces (e.g. gravity).

For three dimensions this leads to four equations with four unknowns. The
equation of mass conservation does not contain the pressure p, so an additional
hypothesis is needed. This leads to iteration methods such as the SIMPLE-
Algorithm [FP99]. The latter algorithm is implemented in the OpenFOAM solver
binary simpleFoamwhich calculates stationary incompressible flows with a pseudo-
time stepping scheme.



For the use case of shape optimization we add an additional resistance term
−αv to the right hand side of the momentum equation (1) and neglect external
body forces. This resistance term will allow us to penalize the velocity in indi-
vidual cells in the discretized equations. For this one aims to find cells in which
a reduction of velocity (by increasing α) will lead to an improved flow w.r.t. to
a given cost function.

∂v

∂t
+ v · ∇v = ν∇2v−

1

ρ
∇p− αv

This approach or slight variations thereof are widely used in shape optimiza-
tion [Oth08,OOB06].

2.2 Continuous Adjoint Formulation

From the primal equations of mass and momentum conservation the adjoint
counterparts can be derived analytically by variation techniques [Oth08]. These
adjoint equations can be solved along the primal equations to obtain the sensi-
tivities of the chosen cost functional J w.r.t. the parameters α:

−2D(u)v = −∇q +∇ · (2νD(u))− αu−
∂JΩ

∂v

∇ · u =
∂JΩ

∂p
.

In addition to the already introduced variables v, p, α, ν there are now also vari-
ables u for the adjoint velocity, q for adjoint pressure and J for the used cost

function. The partial derivative
∂JΩ

∂v
denotes the dependance of the cost func-

tional on the inner domain. For the use case of ducted flows this term often
vanishes, because the cost function only depends on the boundary of the domain
(e.g. total pressure loss).

The boundary conditions for the adjoint equations have to be derived by
hand for each individual cost function. For the derivation of the boundary con-
ditions for ducted flow using the total dissipation of the system as cost function
see [Oth08]. The solver adjointShapeOptimizationFoam which is available in
OpenFOAM 2.0 and following versions implements the pressure loss minimiza-
tion cost function

Jp =

∫

Γ

p dΓ

which corresponds to our discrete implementation. In [Oth08] a slightly different
total dissipation minimizing formulation is proposed:

J = −

∫

Γ

(

p+
1

2
v2
)

v · n dΓ .

For both formulations Γ denotes the inflow and outflow boundaries.
The sensitivity of the cost function J w.r.t. the resistance term for each

individual cell αi can be determined by the inner product of primal and adjoint
velocities, scaled by the cell volume Vi:

∂J

∂αi

= (vi · ui)Vi.
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2.3 Optimization Algorithm

If the sensitivities of J with respect to each αi are known (either obtained by
continuous or discrete methods), then the resistance field α can be updated by
a suitable optimization algorithm to improve the solution w.r.t. the given cost
functional.

The simplest method to update α is to apply method of steepest gradient
descent with fixed stepsize:

αt+1
i = αt

i − λ
∂J t

∂αt
i

.

To obtain a steady solution after a finite number of optimization steps α is capped
below zero and above a certain threshold (otherwise α would rise indefinitely in
regions of negative sensitivities and could fall below zero in regions with positive
sensitivities, which is physically impossible)

0 ≤ α ≤ αmax.

2.4 Discrete Adjoint Formulation

We treat our optimization problem as J : IRn → IRm, J(x) → min!, where each
function evaluation J(x) implies a complete solver run on the nonlinear equation
systems. For the purpose of shape optimization m will either be one or O(1).

First order AD assumes J to be at least once continuously differentiable at
all points of interest. For a given implementation of y = J(x), a corresponding
(first-order) tangent-linear code computes a directional derivative

y(1) = J (1)(x,x(1)) ≡ ∇J · x(1),

where x(1) ∈ IRn, y(1) ∈ IRm, and ∇F = ∇F (x) ∈ IRm×n denotes the Jacobian
matrix of F. A (first-order) adjoint code computes

x(1) = J(1)(x,y(1)) ≡ ∇JT
· y(1),

where x(1) ∈ IRn and y(1) ∈ IRm. Dense Jacobians can be obtained in tangent-
linear mode at O(n) · Cost(F ), where Cost(F ) denotes the computational cost
of a single evaluation of F. The same Jacobian is obtained in adjoint mode at
O(m) · Cost(F ).

For the purpose of our OpenFOAM optimization we use the adjoint model,
because a large number of inputs (n) are mapped to a rather small amount of
outputs (m).

Second and higher derivatives can be obtained by re-applying the tangent-
linear model on the existing tangent-linear or adjoint code.

Conceptually, AD is based on the fact that each computer program can be
decomposed at run time into a single assignment code

for j = n, . . . , n+ p+m− 1

vj = ϕj(vi)i≺j ,

where i ≺ j denotes a direct dependence of the variable vj on vi. The result of
each elemental function ϕj is assigned to an unique auxiliary variable vj . The n
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independent inputs xi = vi, for i = 0, . . . , n − 1, are mapped onto m dependent

outputs yj = vn+p+j, for j = 0, . . . ,m− 1. The values of p intermediate variables

vk are computed for k = n, . . . , n+ p− 1.

Assuming differentiability of the elemental functions at the current point,
the tangent-linear mode of AD augments each elemental assignment with its
tangent-linear model as follows:

for j = n, . . . , n+ p+m− 1

v
(1)
j =

∑

i≺j

∂ϕj

∂vi
· v

(1)
i

vj = ϕj(vi)i≺j .

(3)

Directional derivatives are propagated in parallel with the original function eval-
uation.

In adjoint mode, a forward evaluation of the original program is succeeded
by the propagation of adjoints for all vi in reverse order, that is, for i = n+ p−

1, . . . , 0 :

for j =n, . . . , n+ p+m− 1

vj = ϕj(vi)i≺j

}

forward section

for i =n+ p− 1, . . . , 0

v(1)i =
∑

j:i≺j

∂ϕj

∂vi
· v(1)j















reverse section

(4)

Note that the vj computed in the forward section are potentially required as
arguments of local partial derivatives within the reverse section. They are read
in reverse with respect to the original order of their evaluation. The additional
(compared with the tangent-linear code) persistent memory requirement of the
adjoint code is O(n + p + m). The data flow reversal is the main challenge in
adjoint AD. It is responsible for black-box AD typically not being applicable to
large-scale numerical simulations. The available persistent memory may simply
not be large enough [Nau12].

2.5 Discrete vs. Continuous Adjoint Formulation

The different approaches to the determination of adjoints may lead to differences
in the results. In the continuous approach the equations to determine the adjoint
quantities are derived analytically from the primal equations. This assumes that
the exact primal solution can be obtained by solving the primal equations. Those
systems (primal & adjoint) are discretized and solved coupled in variables (the
primal velocity v appears in the adjoint equations) but independently in terms
of numerical methods. So the discretization of equations and the accuracy of the
solution may differ between primal and adjoint solutions. The discrete approach
on the other hand generates the adjoints directly from the primal discretization.
Thus the adjoints correspond to the results of the solution of the primal equa-
tions. It is important to note that these adjoints are exact for the steps taken in
the given program. But if the solution of the primal equations has not converged
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Fig. 1. Comparison of continuous and discrete adjoint model. Solid edges belong to the contin-
uous model, dashed lines correspond to the discrete model

yet, the adjoints, while giving the exact adjoints of the iteration history, may
not give the desired adjoints of the primal solution.In Fig. 2.5 we illustrate the
different approaches to continuous and discrete adjoint calculation.

3 Implementation of the Discrete Adjoint

3.1 Operator Overloading

The operator overloading approach implements the steps required to differentiate
a program described in eq. (3) and eq. (4) by overloading the elemental functions
ϕj in the code. This allows to propagate the partial derivatives in case of tangent
linear mode or to store the required intermediate values which are needed in the
reverse section. We store these intermediate values in a data structure called tape.
The data flow reversal corresponds to the interpretation of the discrete adjoint
code. Details on the implementation of operator overloading can be found in
[Nau12,GW08].

We use the operator overloading tool dco/c++ [LLN11]. It can be used to
obtain first derivatives by tangent linear or adjoint mode. Furthermore second
and higher order derivatives are obtained by applying tangent-linear or adjoint
modes to the first-order models again [Nau12]. There are other overloading tools
available such as ADOL-C [WG12], FADBAD [BS96] or CppAD [Bel12]. Refer
to www.autodiff.org for a comprehensive list of tools.

3.2 Enabling Operator Overloading in OpenFOAM

In order to be able to perform operator overloading one has to replace all floating
point variables relevant to the calculation of the cost functional with an active

data type. In dco/c++ this type is called dco::a1s::type. As it is hard to
identify the relevant variables in such a big project as OpenFOAM, and choosing
a too limited set of variables might affect the flexibility of the framework, the
most convenient way is to replace them all. dco/c++ has methods to identify
if variables need to be included into the tape. This so called activity analysis
[KRE+06] keeps the overhead induced by replacing all floating point values with
active datatypes low (see Tab. 2).

OpenFOAM features a highly modular and abstracted program structure. It
uses global typedefs for its datatypes which simplifies the switching of the used
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data type from floating point values to our new active data type for the whole
framework.

3.3 Black-Box AD Approach

By Black-Box we mean applying the operator overloading technique to a program
without further exploiting knowledge about the underlying program structure.
Of course to be able to use the overloading tools, complete access to the sources
of the program is needed.

With the help of our discrete adjoint OpenFOAM framework the calculation
of derivatives is quite forward. Here we will briefly present how to adjoin a

complete solver run to obtain derivatives
∂J

∂αi

of the Navier-Stokes equations

with additional resistance term as presented in section 2.1. Note that this only
calculates the sensitivities of the cost-function w.r.t. one given state of α and
does not imply an optimization. Listing 1.1 shows the main routine of a solver
executable discreteAdjointSimpleFoamwhich is derived from the OpenFOAM
standard solver simpleFoam. In the code U corresponds to v, p to p and alpha

to α. The inclusion of the resistance term αv is handled in line 16. The only
additional overhead comes from:

– memory allocation for the tape (line 4)
– initializing the cost function (line 3)
– registering the individual entries of alpha as inputs (lines 6-7)
– evaluation of the cost function (lines 43-49)
– setting of output adjoints and interpretation (lines 53-54)
– retrieving the calculated sensitivities (lines 56-60)

The calculation of the cost function can easily be replaced by other formula-
tions, as there are no strong limitations to what can be evaluated (for example
J can depend on any value of p or v, regardless if it is lying in the domain or
on the boundary, in contrast to the continuous version where only values on
the boundary can be evaluated without altering the governing equations). Some
examples which come to mind are:

– minimization/maximization of the velocity in a certain cell / a cell set
– maximization of curl in a certain region (mixing)
– achieving prescribed outflow fractions over multiple outlets

Listing 1.1. Discrete adjoint solver derived from simpleFoam, additional state-
ments are marked with //dco:

1 int main ( int argc , char ∗argv [ ] ) {
2 // [ I n i t i a l i z a t i o n s , a d d i t i o n a l i n c l ud e s omi t ted ]
3 sca larDouble J = 0 ; //dco : r e s u l t v a r i a b l e f o r co s t func .
4 dco : : a1s : : g l ob a l t ap e = dco : : a1s : : tape : : c r e a t e ( ) ; //dco : c r ea t e tape
5

6 for ( int i =0; i<alpha . s i z e ( ) ; i++)
7 g loba l tape−>r e g i s t e r v a r i a b l e ( alpha [ i ] ) ;
8

9 for ( runTime++; ! runTime . end ( ) ; runTime++){
10 # inc lude ”readSIMPLEControls .H”
11 p . s t o r ePr ev I t e r ( ) ;
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12 tmp<fvVectorMatrix> UEqn
13 (
14 fvm : : div ( phi , U)
15 − fvm : : l a p l a c i a n (nu , U)
16 + fvm : : Sp ( alpha , U)
17 ) ;
18 UEqn ( ) . r e l ax ( ) ;
19 s o l v e (UEqn( ) == −fv c : : grad (p ) ) ;
20

21 p . boundaryField ( ) . updateCoef fs ( ) ;
22 vo lS ca l a rF i e l d rAU = 1.0/UEqn ( ) .A( ) ;
23 U = rAU∗UEqn ( ) .H( ) ;
24 UEqn . c l e a r ( ) ;
25 phi = fvc : : i n t e r p o l a t e (U) & mesh . S f ( ) ;
26 adjustPhi ( phi , U, p ) ;
27

28 // Non−or thogona l pres sure co r r e c t o r loop
29 for ( int nonOrth=0; nonOrth<=nNonOrthCorr ; nonOrth++){
30 fvSca la rMat r ix pEqn( fvm : : l a p l a c i a n (rAU, p) == fvc : : d iv ( phi ) ) ;
31 pEqn . se tRe fe r ence ( pRefCell , pRefValue ) ;
32 pEqn . s o l v e ( ) ;
33

34 i f ( nonOrth == nNonOrthCorr )
35 phi −= pEqn . f l u x ( ) ;
36 }
37

38 # inc lude ” con t i nu i t yEr r s .H”
39 p . r e l ax ( ) ; // E x p l i c i t l y r e l a x pres sure f o r momentum cor r e c t o r
40 U −= rAU∗ fv c : : grad (p ) ; // Momentum cor r e c t o r
41 U. correctBoundaryCondit ions ( ) ;
42

43 // CALCULATE COST FUNCTION J = Sum over p at i n l e t
44 J = 0 ;
45 f o rA l l ( p re s su rePatches ( ) , prpI ){
46 l a b e l patchI = mesh . boundaryMesh ( ) . f indPatchID ( pre s su rePatches ( ) [ prpI ] ) ;
47 const fvPatch& patch = mesh . boundary ( ) [ patchI ] ;
48 J += gSum(p . boundaryField ( ) [ patchI ]∗ patch . magSf ( ) ) ;
49 }
50 runTime . wr i t e ( ) ;
51 }
52

53 dco : : a1s : : s e t ( J , 1 . 0 , −1); //dco : ca l c . s e n s i t i v i t i e s o f J w. r . t . the inpu ts a lpha
54 g loba l tape−>i n t e r p r e t a d j o i n t ( ) ; //dco : r e v e r s e i n t e r p r e t a t i o n o f the tape
55

56 double dJda=0;
57 for ( int i = 0 ; i<alpha . s i z e ( ) ; ; i++){
58 get ( alpha [ i ] , dJda ,−1) ; //dco : r e t r i e v e the s e n s i t i v i t i e s from the tape
59 sens [ i ] = dJda ; //dco : save s e n s i t i v i t i e s in o b j e c t
60 }
61 runTime . wr i t e ( ) ;
62 return ( 0 ) ;
63 }

Unfortunately the simplicity of this approach comes with a price. The tape has to
store the whole iteration process. In each outer (pseudo-) time iteration (lines 9-
51) sparse linear equation systems for the solution of v (lines 12-18) and p (lines
30-32) are constructed. These systems are solved with iterative solvers. This
iterative solver is called d times for the solution of v with d = 2 for 2D and d = 3
for 3D cases. The equation for p needs to be solved n times where n equals the
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number of non-orthogonal correction steps for p. If there are additional variables
for turbulence the number of solver calls increases even further. All those inner
solver calls and iterations have to be taped. This leads to a considerable memory
consumption which will exceed the available memory of most machines for all
but simple problems. Table 1 lists the memory consumption of the tape holding
10 outer time steps for a coarse testproblem with 1300 cells using different inner
solvers. The total tape memory needed is 1167MB for the left case and 1358MB
for the right case, leading to an additional overhead not related to the solvers of
about 19MB for both cases (for U we measure the difference in tape size from
line 12 to line 19, for p we measure the difference from line 21 to line 39.)

Table 1. Memory requirements for ten outer time steps for two different choices of the inner
solvers. The convergence criterium is ǫ = 10−6 for all solvers. nNonOrthCorr=1. The used
geometry consists of 1300 quad-cells (2D).

variable solver total iterations tape memory

U PBiCG 93 348MB
p GAMG 160 800MB

variable solver total iterations tape memory

U smooth 260 280MB
p DICPCG 387 1060MB

In the following we present typical run times for the execution of the Open-
FOAM solver. We inspect the following cases:

– unaltered passive version of simpleFoam, i.e., with double datatype still in
place

– discrete adjoint version of simpleFoam, i.e. double datatype replaced with
dco::a1s::type, to study the overhead introduced by the active datatype

– discreteAdjointSimpleFoam with taping but without interpretation

– full discreteAdjointSimpleFoam with taping and interpretation

Table 2. Execution times for the different solver runs. The whole program execution is mea-
sured, ten time steps are calculated.

solver execution time [s] factor

passive simpleFoam 1.07 1.00
active simpleFoam 2.27 2.12

tape discreteAdjointSimpleFoam 11.9 11.12
full discreteAdjointSimpleFoam 15.9 14.85

We observe that introducing the active datatype roughly doubles the run
time if no further actions are undertaken. This shows that the replacement of
all floating-point values by active datatypes does not have a dramatic effect on
the run time. After we registered some dependent variables in the tape, the run
time roughly increases by a factor of five. This is a result that lies in the range
one expects from solutions obtained with AD by overloading. If one includes
the tape interpretation into the timing the factor increases again by a factor of
roughly 1.3. This shows that the tape interpretation is quite efficient and a major
part of the effort is already done while creating the tape (a process often called
preaccumulation [UNF+08]).
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One should note that discreteAdjointSimpleFoam includes the additional re-
sistance term in the momentum equations, while simpleFoam does not. For this
example the resistance term α was chosen as α ≡ 0, so the term should not have
any influence on the number of solver iterations and consequently should not
have a major influence on run time.

3.4 Checkpointing

In order to reduce the amount of memory occupied by the tape created in the
forward run one can introduce a technique called checkpointing [GPRS96]. Only
parts of the forward execution are taped, the rest is executed in passive mode
(i.e. with taping switched off). As we taped only a part of the forward execution
we can interpret only this part in the reverse interpretation sweep. After the
reverse sweep the partially calculated adjoints are stored in memory and the
tape can be erased. Then the program is executed in forward mode again to tape
the next part of the program. Afterwards the stored adjoints can be restored and
the reverse interpretation can be resumed with the new tape. This alternation
between forward execution and reverse interpretation is repeated until the whole
program has been taped and interpreted.

To decrease the amount of operations needed to return from the start of
the recalculation to the point where the tape is activated again, we can save the
program state (create a checkpoint) at given intervals (in the case of OpenFOAM
the fields U, p, phi need to be saved). If such checkpoints exist one can resume
the forward calculation from the nearest checkpoint instead of needing to start
from scratch again.

One has to find a reasonable trade-off between computation time, memory
needed for checkpoint storage and memory needed for taping the forward run.
There are numerous ways to do this efficiently, for example one could use the
revolve algorithm [GW00].Currently we use an equidistant checkpointing scheme,
i.e., checkpoints are written after a given constant number of iterations. See Fig. 3
for a visualization of the needed steps to implement this checkpointing scheme.

Table 3. Example of the memory needed for one typical taping step or checkpoint on a unit-
cube blockmesh. The spacial resolution in each direction is doubled from row to row. The tape
sizes depend on the amount of solver iterations to convergence and are thus not constant.

Problem size n Checkpoint Memory [MB/Checkpoint] max. Tape Memory [MB/Step]

1000 0.174 46.53
8000 1.180 488.3
64000 8.620 5934

3.5 Implementation of the Optimization Algorithm

We use the steepest gradient descent algorithm as introduced in section 2.3. To
obtain the needed derivatives the solver is run with fixed α for a fixed number
of iterations. If necessary checkpointing is applied. Those iterations are then
adjoined to obtain the sensitivities of the cost functional w.r.t. α. After this the
field α can be updated with a steepest gradient descent step. Afterwards the
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Fig. 2. Needed calculation steps for primal run and complete interpretation of six time steps
with one intermediate checkpoint (at t=3) and one (left) resp. two (right) taped time steps.
Shaded Time steps are checkpointed, circled time steps are taped for interpretation and under-
lined steps need to be recomputed from the last checkpoint.
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Fig. 3. Visualization of the steps needed to connect the chunks of reverse interpretation to
retrieve the correct adjoints. For this example we consider nine time steps, place checkpoints
every three time steps and assume we can tape three time steps at a time.

derivatives w.r.t. this new state need to be obtained, so new solver iterations
need to be taped. This process is repeated until a set number of optimization
steps are completed or α has converged.

4 Results

4.1 Maximization of Velocity in a Specified Single Cell

For this example we examine a rectangular duct of length 10 l× 1 l. At the inlet
x = 0 l we prescribe a constant velocity magnitude of vin and a zero-gradient
condition for the pressure. At the outlet (x = 10 l) we fix p and apply a zero-
gradient condition to the velocity. We set the boundaries y = 0 l and y = 1 l
as no-slip walls. We chose vin such that the Reynolds number Re = vinl

ν
equals

Re = 10. We assume laminar incompressible steady flow.

The optimization goal is to maximize the velocity component in x-direction
in cell ip which lies nearest to the midpoint pm = (5 l, 0.5 l). To obtain a solution
which still retains a reasonable pressure loss we also introduce a dependence of
the cost functional on pressure loss (otherwise the optimizer would place material
everywhere but in the desired cell). As the optimizer is configured to minimize
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a given cost functional we transform the maximization to a minimization by
switching the sign:

J = c1 · Jv + c2 · Jp = min!.

where Jv and Jp are defined as follows:

Jv = − vxi

∣

∣

i=ip

Jp =

∫

Γ

p dΓ .

Γ denotes the inflow and outflow boundaries.

For this example we set c1 = 1 and c2 = 0.001. We examine two meshes, one
401 × 41 × 1 cubic cell block mesh and one finer 801 × 81 × 1 cubic cell block
mesh. For both meshes the solution converges to a hourglass shape (see Fig. 4).
This shape features a channel through cell ip with a height of just one cell where
α = 0. The geometries are symmetric to the x- and y- axis when the origin is
placed in the point pm. Due to leakage in the punished cells the analytic optimal
solution for vxip

can not be reached, but if one thinks of these cells as completely
blocked (α → ∞) it is clear that these solutions would be optimal solutions,
as the whole flow has to pass through cell ip. The convergence history (Fig. 5)
shows that the cost function J does indeed decrease monotonically.

Fig. 4. Optimized shapes for the maximization of velocity. Coarse mesh on the left, fine mesh
on the right.
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Fig. 5. convergence history of the cost functions over 100 optimization steps for the coarse
optimization case
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5 Conclusion & Outlook

We presented a new approach to adjoining OpenFOAM and its application to
shape optimization. Subsequent work will be done to improve the optimization
algorithm by replacing the steepest descent algorithm by a pseudo-Newton algo-
rithm like BFGS [NW99] or even a Newton algorithm. The latter requires second
derivatives, which also can be obtained by the AD tool dco/c++. With a more
sophisticated optimizer we can also introduce complex constraints like volume
constraints. Another area for improvement is to replace the used equidistant
checkpointing scheme by revolve [GW00]. The techniques shown can be poten-
tially applied to all solvers in OpenFOAM, so the optimization can be extended
to, for example, turbulent compressible flows.
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