
Aachen
Department of Computer Science

Technical Report

Hackers in Your Pocket: A Survey of

Smartphone Security Across Platforms

André Egners, Björn Marschollek, Ulrike Meyer

ISSN 0935–3232 · Aachener Informatik-Berichte · AIB-2012-07

RWTH Aachen · Department of Computer Science · May 2012



The publications of the Department of Computer Science of RWTH Aachen
University are in general accessible through the World Wide Web.

http://aib.informatik.rwth-aachen.de/



Hackers in Your Pocket: A Survey of Smartphone

Security Across Platforms

André Egners, Björn Marschollek, Ulrike Meyer

Research Group IT Security
UMIC Research Center

RWTH Aachen, Germany
Email: {egners, meyer}@umic.rwth-aachen.de

bjoern.marschollek@rwth-aachen.de

Abstract. In the past research on smart phone operating system security has
been scattered over blog posts and other non-archival publications. Over the last
5 years with advent of Android, iOS and Windows Phone 7, an increasing amount
of research has also been published in the academic sphere on individual security
mechanisms of the three platfroms. However, for a non-expert it is hard to get
an overview over this research area. In this paper, we close this gap and provide
a structured easy to access overview on the security features and prior research
of the three most popular smartphone platforms: Android, iOS, and Windows
Phone 7. In particular, we discuss and compare how each of these platforms
uses sandboxing and memory protection, provides code signing, protects service
connections, provides application shop security, and handles permissions.

1 Introduction

As a result of the broad acceptance among users, Android, iOS and Windows
Phone 7 have presented themselves as a interesting new attack target of all sorts.
Nowadays, devices are considered always on, and they carry a multitude of sen-
sitive and personal information. All platforms attract increasing attention from
malware programmers trying to make a profit, e.g., by premium SMS or identity
theft. Since the operating systems are relatively new, information about their
security features as well as vulnerabilities is mainly scattered around the Inter-
net. For instance, a lot of work has previously been published in blog posts or
is available as talks at more practical IT Security conferences without proceed-
ings such as DEFCON, Black Hat, and the Chaos Communication Congress. In
roughly the last five years in creasing amount of work is also published in the
academic sphere.

In this paper, we provide an overview over the most prominent smartphone
operating systems iOS, Android, and Windows Phone 7. In particular, we discuss
the advantages and disadvantages of how each of these platforms uses sandbox-
ing and memory protection, provides code signing, protects service connections,
provides application shop security, and handles permissions. We conclude with
a high-level risk analysis providing a condensed and structured initial access to
the state-of-the-art in smart phone operating system security.

2 Threats & Protection Mechanism

This section provides an overview on attack vectors and threats for smartphone
operating systems and introduces the protection mechanisms applied in cur-
rent smartphone operating systems. Many of the attack vectors and threats are



well-known from desktop computers. However, some of the threats and attack
vectors are smartphone-OS-specific. We do not consider threats and attacks on
the baseband level of the devices, but rather focus on the application level, i.e.,
the respective operating systems.

2.1 Attack Vectors

This section is going to introduce the most important attack vectors for smart-
phone platforms. There is a wide range of ways attackers can use to attack
phones.

Applications: By opening up for third-party applications, smartphone plat-
forms expose themselves to the most severe source of attacks of all: Running
code that has not been developed by a person or company the platform ven-
dor trusts. Depending on the platform, this can be native or interpreted code,
or even both. Bad-natured developers are targeting smartphones with viruses,
worms, spyware, and other malware of all kinds. While this threat is well-known
from desktop computers, its a new threat for mobile devices, which until recently
shipped with and ran pre-installed applications only.

SMS, MMS and email: Sending a malicious SMS to a vulnerable phone only
requires knowledge of the victim’s mobile phone number (e.g., guessing a valid
phone number is easy). SMS messages with binary content will not even be
displayed to the user on most mobile phones, but be handled directly instead.
Recent attacks [31] have for instance shown that it is possible to knock a device
off the cellular network or to perform even stronger denial-of-service attacks
by making the phone reboot. In addition, SMS and email can contain links to
malicious websites that, e.g., exploit browser vulnerabilities. Email may also carry
harmful attachments that may exploit vulnerabilities of the operating system
itself or an installed viewer application.

The Internet: One of the primary sources of attacks against desktop com-
puters is the Internet and the same holds true for smartphones. Attackers can
be able to communicate with infected devices directly; either by using an appli-
cation to download content (e.g., instructions) from a server or by using a push
notification service offered, e.g., by iOS, Android, and Windows Phone 7. Vul-
nerable web or media file browsers can be a serious source of attacks as well, as
vulnerable libraries tend to be borrowed form the desktop world (e.g., the We-
bKit engine1). Infected content may exploit a browser vulnerability or harm the
system by offering manipulated files being opened by the system automatically
without the user’s consent (e.g. PDF files on iOS).

Wi-Fi, Bluetooth, and other PAN Radio Technologies: From a hardware per-
spective, almost all of today’s smartphones feature a Wi-Fi module and are able
to create (ad-hoc) networks for data exchange and communication with each
other. However, most software vendors do not yet implement this feature or
limit it to providing a network that other Wi-Fi clients can connect to in order
to share the smartphone’s Internet connection. Bluetooth has proven to be in-
secure in various versions, and attacks have been published that, e.g., allow for
SMS manipulation, phone book manipulation, and phone call initiation [6].

1 http://www.webkit.org/

4



Compromised Desktop Computers: Another attack vector is a compromised
desktop computer. Users voluntarily connect their devices to a computer, be it
to charge their battery or to perform backup and synchronization actions. As it
should be easy to detect the connection to a smartphone, it might be possible to
attack the device via an infected desktop computer.

Jailbroken Devices: All smartphone platforms employ numerous security mech-
anisms to protect the device and its owner. However, these mechanisms cut down
the freedom of the users in some aspects. Users may for example want to run
software that is considered malicious or is simply not approved by the operating
system vendor. In order to do so, the user has to jailbreak the device, i.e. to
disable at least some of the security features offered by the operating system. An
attacker may specifically target jailbroken phones.

2.2 Threat Categories

We categorized the most relevant threats according to their target into owner
threats (OT), platform threats (PT), threats to other users (OUT), and mobile
network operator threats (MNOT).

[OT-1] Premium Services: Smartphones are not only a valuable target be-
cause of the data they store, but also because of the fact that they are phones.
They can establish phone calls and send SMS or MMS messages to expensive
service numbers in foreign countries. If an attacker manages to install a dialer
or similar malware on a device, this can induce costs. Dialers and SMS trojans
have been a common form of mobile phone malware for a long time [36].

[OT-2] Identity Spoofing: Using a mobile phone or a smartphone as a proof
of identity has become increasingly popular in the past years. A way to recover
a lost Google account password is to have Google send an SMS with a confirma-
tion code to the owner’s phone number. Some banks employ similar two-factor
authentication by sending codes to a specified mobile number (known as MTAN)
in order to verify the identity of the customer before accepting a transaction. A
mobile version of the Zeus trojan has been found, which was able to intercept
SMS messages sent by the bank and disrupt the two-factor authentication. It re-
quired an attacker to gain control of both the victim’s credentials and the mobile
phone [36].

[OT-3] Denial of Service: Especially in time-critical appliances, users increas-
ingly depend on their phones. They store important contact information and
ensure constant reachability. Not being available via phone, email, or SMS may
cause delayed response to certain events due to a lack of knowledge. For in-
stance, stock-exchange brokers may be unable to sell shares well-timed and thus
lose money.

[OT-4] Threats to Privacy: Most smartphone attacks target spying on the
user and collecting data, which compromises the user’s privacy. Because smart-
phones provide a mass of information about the user, attackers are able to obtain
a detailed user profile. This includes the contact details calendar information of
the user, the contact details of his friends and business partners, which applica-
tions are installed on the phone, the data these applications collect and store, as
well as the content of SMS, MMS, and email messages. A user can be tracked by
using the different location features of the device. In combination with unique

5



identifiers that are available on many platforms, location reports can be associ-
ated to a particular phone. Even worse, if the platform allows developers to read
the phone number associated with the inserted SIM card, all harvested data can
be associated with the user himself.

[PT-1] Threats to Integrity: In this context, platform integrity does not refer
to the unmodified state of the platform in the cryptographic sense, but to an
operating system that has not been tampered with, is not compromised, and
still runs all of its security mechanisms in the way they were intended by the
vendor. If a platform is compromised by disabling some or all of the security
features, the device is often referred to as jailbroken. On most platforms, the
circumvention of the code signing requisition is entailed. However, other security
mechanisms may be suspended, e.g., manipulating the application permission
checks on Android, that users may not be aware of, even if they are intentionally
jailbreaking their devices.

[PT-2] Account Hijacking: The three operating system vendors, Google, Ap-
ple, and Microsoft, offer a free cloud account with their system. These accounts
allow shopping in the respective online shops and are used to personalize as-
sociated devices. Software licenses are stored for the account the purchase was
made with. If a device has, e.g., been restored to factory settings, it is easily
possible to reinstall all applications associated to this account. All vendors ask
for contact information of the account owner, e.g., Microsoft and Google offer
services like email and calendar. Consequently, appointments and details of the
user’s contacts can be stored in the account. Both companies offer to synchronize
this data to the accounts in order to be able to restore them to the phone at a
later time. This turns an account for the cloud services into a valuable target for
attackers.

[OUT-1] Affecting Contacts in the Address Book: Today, most operating sys-
tems store contacts in an address book and assign multiple entries to one contact.
An entry may contain the cellphone number, landline number, postal address,
email address as well as notes and other data like the date of birth. This infor-
mation is not only a valuable target for address databases of spammers, but can
also be used by malware to spread to other devices.

[MNOT-1] Carrier or an Enterprise Network: Malware-infected devices may
perform attacks on mobile communication networks and devices thereon. This
could inflict severe damage or outages on the networks for instance by trying to
spread to other devices. The creation of mobile botnets is an interesting angle
since distribution of malware is more easy in the age of apps.

Georgia Weidman created a proof of concept for a recent Android version [44].
In [45], Xian et al. describe how it would be possible to construct an Android-
based Botnet. Besides the proof-of-concept construction, the authors also elabo-
rate on mitigation techniques. Also attacks on core components of mobile com-
munication network, e.g., the HLR (Home Location Register) have been shown
by Traynor et al. in simulations [42].

2.3 Common Protection Mechanism

The three operating systems iOS, Android, and Windows Phone 7 all employ
some form of sandboxing and isolation, code signing, specify permission models
for applications, support service connections that require special protection, and

6



offer application downloads via market places. In the following we briefly discuss
these features.

Application Permission Models: All platforms in question employ a permis-
sion model for applications that restricts the access of applications to the content
and resources available on the smartphone. This for example includes accessing
the address book or being able to establish an Internet connection. The decision
which permissions an application gets is left to the user and has to be set during
installation.

Sandboxing and Isolation: In order to enforce the permission model, all plat-
forms follow the principle of least privilege. All applications are run in a sandbox
that separates running processes from each other and encapsulates access to
system resources.

Code Signing: Another central protection mechanism of all three platforms is
code signing, i.e., signing an application with a digital signature for the package
or its contents. This signature proofs the identity of the creator of an application
as well as package integrity. All platforms check the signature on each launch of
the application.

Service Connections and Remote Functionality: Performing actions remotely
is one central security feature of all smartphone platforms as they progress into
becoming cloud terminals. Vendors may invalidate or delete applications, wipe
the entire device in case it is stolen and more. Such a connection exists for all
three platforms, but neither Apple, nor Google or Microsoft extensively document
the exact purpose and protection of this connection.

App Store, Android Market, and Windows Phone Marketplace: The software
shops play a very central role on all platforms, as they are the primary or even
exclusive source of third-party applications for the systems. A client application
on the devices is used to browse the shop, display details of offered applications,
process the actual purchase, and download. Billing information is typically stored
along with the user’s account. Account credentials and the purchase is done using
the deposited payment method, e.g. via credit card.

3 Related Work

Besides the comprehensive Android developer documents [3] [2] and various other
articles on the web [37], [35], [33], [26], [24], [22], [19], [20] are discussing a broad
range of security issues of the Android operating system. Also studies with a
general focus on Android exist, e.g., by Enck et al. [16], [17] and Shabtai et
al. [39]. Other researchers explicitly focus on a single security mechanism, e.g.,
the permissions used by Android apps [18], [41], [38], [13], [1], the construction
of Android botnets [46], and inter-application communication [10].

Research on iOS is not as broadly available as for Android mostly due to its
closed nature. However, on the web there are articles discussing security issues,
e.g., covering security parctises [9] and malware [11], [21], [30] Besides the official
developer documents [4] and review guidelines of the App Store [5], other research
exists on the sandbox [7] and research by Charlie Miller [28], [29]. A very recent
security evaluation of the iOS 4 operating system has been published by Dion
A. Dai Zovi [14].

7



The available research for the newest of the platform, Windows Phone 7, is
most scarce. Again, developer documents [25] are available. Explicit details on the
system architecture can be found in [12], as well as its security architecture [27].
As jailbreaking is also important for Windows Phone 7, details on the first known
jailbreak, ChevronWP7, can be found in the article by Tom Warren [43].

4 Sandboxing & Memory Protection

Each of the three systems employs both sandboxing, i.e., confining apps into
respective separate logic domain which offer an additional level of protection for
the host system, and memory protection, i.e., low level security such as address
space layout randomization (ASLR) making it considerably harder to reliably
exploit vulnerabilities.

4.1 Android

Application-level security on is achieved by a sandboxing mechanism using UNIX
user IDs to enforce restrictions. Each application has a unique user assigned at
installation time, i.e., app as prefix followed by a consecutive number. The pack-
age contents are extracted into a directory below /data/. This directory is named
the same as the application’s bundle identifier. Only the newly created user that
is associated with the application is allowed to read and modify data inside this
application directory. The same technique is used when the application process
is launched inside its own instance of the Dalvik VM [15] with the associated
user name and the according rights. Hereby, the application is isolated on the
system and jailed in a sandbox.

The only way for applications to read each other’s data is to be assigned the
same user ID, i.e., it can be requested by an entry in the manifest file. However,
the system is only going to acknowledge the request if the requesting package is
signed by the same certificate as the application whose user ID is requested. The
benefit of shared user IDs is that two applications with the same user ID can
read and write each other’s data directly in terms of file system permissions.

Besides stack randomization Android (up to current versions) does not em-
ploy any other memory safeguard, such as address space layout randomization
(ASLR) or non-executable memory pages by using the execute-never (XN) bit
of the ARM CPU.

4.2 iOS

Every application on iOS is executed in its own sandbox. For this purpose, Apple
uses a hosted hypervisor, i.e., a virtualization technique that uses device drivers
of the system. The sandbox is realized as an extension for the TrustedBSD frame-
work called Seatbelt [7]. It allows profiles to precisely define the permissions of
applications. The same mechanism was introduced in desktop Mac OS X in ver-
sion 10.5. Each application is installed in a dedicated directory that is named
using a globally unique identifier (GUID). Below this directory, there are the
directories Documents, Library, and tmp and the .app package including resources,
binaries, and the code signature. The application is allowed to write its own
directory, however, the package is read-only.

8



In terms of memory protection iOS uses the security features of ARM pro-
cessors, the so-called XN (execute never) bit controlling whether a memory page
is executable. iOS makes heavy use of XN and protects every page on the stack,
as well as on the heap by marking them non-executable. No page can have the
permissions read, write and execute (RWX) at the same time; only RW and R X

are possible [29]. This makes sure that no application can write code to memory
and then execute it later.

A frequently used attack type to circumvent non-executable memory are
return-to-libc attacks which use buffer overflows to jump to, e.g., the C library
which provides useful routines for attackers. iOS 4.3 introduced address space lay-
out randomization (ASLR) which randomizes the memory addresses of libraries
each time they are loaded. On 64-bit systems, this makes return-to-libc attacks
very unlikely, but on 32-bit systems, this does not significantly improve the sit-
uation [40]. Yet, real multitasking is still impossible for third-party applications
and reserved for the system itself.

4.3 Windows Phone 7

Windows Phone 7 isolates running applications such that they cannot influence
each other and cannot interfere. The operating system guarantees that there al-
ways are enough resources available for the application to run by full priority to
the foreground application. Isolation also ensures confidentiality and integrity of
the application data as the data cannot be modified or read by other installed
applications. Using the sandbox, the system also prevents applications from ac-
cessing native APIs.

The system provides a host process for the application to be launched in.
Before each execution, the code is integrity checked by the runtime. Only if the
check confirms the validity of the code signature, the software will be allowed to
run and is supervised by the Execution Manager. It monitors the application’s
usage of system resources and may terminate the process if it considers the
application to be misbehaving or unresponsive.

The Windows Phone 7 security architecture uses the basic principles of iso-
lation, least privilege, and introduces chambers as a concept [27]. Each chamber
provides a security and an isolation boundary inside which processes can run.
Different security policies define the chambers and create a security level hierar-
chy. There exist four different types of chambers (and thus basic security levels).
The most permissive chamber is the Trusted Computing Base (TCB) chamber. It
allows unrestricted low-level access to almost all resources. The kernel and device
drivers run in TCB chambers. The exclusive capability of the TCB chamber is
the possibility to modify the security policy. This separates it from the Elevated
Rights Chamber (ERC), which is intended for user-level device drivers and ser-
vices that provide phone-wide functionality or shared resources that are going to
be used by other applications. Consequently, applications providing non-global
functionality, run in the third chamber, Standard Rights Chamber (SRC), which
is the default for pre-installed system applications. Finally, there is the Least
Privileged Chamber that every third-party application will run in. These cham-
bers are configured individually by the system at installation of the application.

Applications are typically executed as managed code only, the exception
are phone vendors which are allow to program native code. Every application

9



runs bytecode in a virtual machine provided by the Common Language Runtime
(CLR) which translates the code into Common Intermediate Language (CIL).
When the user starts an application, a just-in-time compiler creates native code.

4.4 Summary

All of the sandboxing mechanisms have proven to be only partially secure. It
is impossible for apps to break out of the sandboxes on their own, however,
all platforms allow app interaction with daemons, libraries or frameworks that
are running natively, and often even privileged which can ultimately lead to the
exploitation of vulnerabilities which in turn lead to privilege escalations. In terms
of memory protection, Android has the most room for improvement. Neither
does Android protect its stack or heap, i.e., both are executable, nor does it
use techniques such as ASLR. The stack used by Android is randomized, but no
additional heap base randomization is employed. In contrast du Android, Apple’s
iOS heavily uses the XN bit and does not allow app memory pages to be writable
and executable at the same time. Since iOS 4.3, ASLR is enabled, however, due to
the lack of entropy on mobile devices, it has already been defeated 2. Windows
Phone 7 mostly runs managed code, but for some hardware vendors it is also
possible to run native code. However, if unsigned code execution is possible, it
also runs native code outside of the Common Intermediate Language.

5 Application Code Signing

Signing an application creates a digital signature for the package contents. This
helps to prove the identity of the author of an application package. All platforms
perform signature checks, either prior to launching or installing the app.

5.1 Android

While the benefits of code signing are obvious, Android takes advantage of only
a few of them. If code signing used, the system only allows the execution of code
from signed application packages. However, Android does not employ a central
trusted certification authority signing all developer public keys, but instead al-
lows self-signing.

This results in developers being able to generate many different key pairs and
the corresponding certificates to sign their applications. So, the most important
use of Android code signing is for the developer to be able to update existing
applications, i.e., updates must be signed with the original signature key. More-
over, it allows to prove that two or more applications originate from the same
author. This enables secure data sharing between the author’s applications. For
example, he can request the same user ID for applications signed with the same
certificate or grant special permissions only to his own applications.

The lack of a central certification authority makes it easy to develop and dis-
tribute malicious applications. Installations are not only possible via the official
Google Market, but also by copying the application package to the SD card or
by having the user download the application directly via a browser. To protect

2 http://www.webcitation.org/65cMyk1N9

10



the user, installation from non-market sources is disabled by default, but this
setting can be easily overridden in the system settings. A malicious developer
does not need to register with Google and there is no chance to link a public key
to a developer. If the malicious developer wants to distribute his applications via
the official Market, he can do so anonymously using a prepaid credit card to pay
the registration fee of $ 25.

A major flaw of the code signing process is the fact that Android does sig-
nature checks only on code bundled with the application packet but not on all
code that is executed. Thus, any application is able to download a binary from
the Internet and execute it within its standard permissions.

5.2 iOS

Apple requires developers for their mobile platform to register and pay a fee of
$ 99 per year. In return, Apple’s certificate authority issues a certificate for the
public key of the iOS application developer who can now sign his applications.
The Apple-signed certificate is embedded into the application bundle such that
the device is able to verify the code signature and check if the public key has
been signed by Apple. In fact, signing is not only an option, but a requirement.
Prior to executing code, iOS checks if the signature is valid, if the certificate
has not expired yet, and if the public key was signed by Apple. Only if all these
criteria are met, the application is allowed to run on the device.

Code signing provides authentication, because the platform is able to check
if an application originates from the claimed developer, and integrity, because
it can be verified that the code has not changed after creating the signature.
Additionally, it prevents repudiation by the developer, as a valid signature can
only be generated with access to the corresponding private key. The iOS kernel
enforces the code signature check on every call of the system function execve().
It inspects the binary checking for LC CODE SIGNATURE segments. If it does not find
a signature for the address range, the signature from the binary will be loaded
and the pages will be verified.

An additional use case of code signing is to prevent libraries being directly
from the memory, because the signing is linked to the memory page permissions.
They can still be loaded from the disk, but must be signed in order to have
executable memory pages [29].

5.3 Windows Phone 7

Windows Phone only allows installing an app package, if it carries a valid Mi-
crosoft signature. The installation is performed according to the information
given in the apps’s manifest file. This is the only way for an app to influence
the installation process; it cannot run code during installation. The manifest file
will be inspected in the review process that is done by Microsoft prior to the
admission of an app to the their Marketplace. Also, apps cannot influence up-
date or un-installation processes. The decision whether any of these actions are
performed, is entirely left to the user.

The licensing mechanism of the platfrom also supports trial versions with a
limited lifetime using licenses with an expiration data. Moreover, the Marketplace

11



frequently checks for license revocations. If a license turns invalid or an apps’s
license is revoked, the Marketplace can initiate the deinstallation of the app.

Windows Phone 7 does not require the developer to sign his code, but rather
leaves this task to Microsoft. After reviewing an app on submission and deciding
to whether approval is given, the app package is will be signed by the Microsoft
generating a valid trusted signature.

5.4 Summary

The code signing mechanisms are implemented very differently on the three plat-
forms. Apple and Microsoft use a certification authority, while Android’s solution
is based on self-signed certificates. Android thus only enables a developer to prove
that he is the author of particular applications and may therefore update the ap-
plication or share data between two or more of his applications. Android’s signing
process does not protect the platform against malicious code. iOS enforces sig-
nature checks at every system call that starts a new process and hence outscores
Windows Phone in this discipline.

6 Service Connections

Android, iOS, and Windows Phone 7 each use a persistent connection to its op-
erating system vendor Google, Apple, and Microsoft. This connection is typically
used for management purposes, e.g., synchronized user accounts, installation and
removal of apps, as well as to locate lost or stolen devices.

6.1 Android

The service connection of Android is based on the GTalkService which is a TCP
connection using the XMPP protocol with SSL encryption [32]. The payload is
encoded in Google’s Protocol Buffer3 format, which is used by the official Google
Market app to communicate with the Google servers. A so called secret code can
be dialled in the telephony application to start the a GTalkService connection
monitor. Secret codes can be defined in the app’s manifest file by registering for
the android.provider.Telephony.SECRET CODE intent (see [3, 2]).

Google’s cloud-to-device messaging service is also using this connection to de-
liver its contents. Downloading and installings apps is not initiated by the Market
application on the user’s device, but rather remotely by Google’s servers by send-
ing an INSTALL ASSET intent (see [3, 2]) to the device. Security researcher Jon
Oberheide discovered [33] that this intent is invoked via the GTalkService connec-
tion, just as the REMOVE ASSET intent used to remotely remove a particular
applications. This enables Google to remotely install and uninstall applications
at will. The REMOVE ASSET intent is sent to the device indicating the app to be
removed. After successful removal, a message is left in the notification bar of
the device. Google may have the option to remove applications silently, however,
there has been no indications for the existence of this option, yet. Handling the
REMOVE ASSET intent works similar to the INSTALL ASSET intent. A malware app may
want to prevent the system from being able to remove it. The software would

3 http://code.google.com/p/protobuf/

12



have to prevent the system from receiving the REMOVE ASSET intent, which is sent
over the SSL-encrypted connection. So, prevention would only possible, if the
malware was able to break SSL.

Google has been the first vendor using this type of remote wiping. In June
2010, Google remotely removed two proof-of-concept applications by Jon Ober-
heide [33]: Rootstrap was an application that was able to download and install a
rootkit for Android and Twilight Eclipse Preview which was an alleged preview
of an upcoming cinema movie, but actually a cover for its hidden Rootstrap
functionality. Besides remote installation and removal of apps the GTalkService
connection is also used to perform important and highly security-relevant opera-
tions, e.g., wipe the user’s data. In his analysis, Oberheide points out that (apart
from the SSL encryption of the entire connection) there is no cryptography used
in the install command. Thus, an installation request could be spoofed if the
attacker manages to manipulate the SSL connection.

Prior versions of the Android Market (≤ Android 1.6) can be convinced to
disable the SSL certificate check for the communication with the Market servers.
It requires an attacker to disable system security by setting the system property
ro.secure to 0 and vending.disable ssl cert check to TRUE. This enables eavesdrop-
ping on the connection using an SSL man-in-the-middle software such as Moxie
Marlinspike’s sslsniff 4 in combination with a self-signed CA certificate. However,
newer Market versions address the issue by forcing the SSL certificate check for
installation requests. As of the version shipped with Android 2.2, the Android
Market app ignores this flag and does not trust any self-signed certificates.

6.2 iOS

Since iOS 3.1, Apple provides several security features for its devices in case
it gets lost or is stolen. The web-based MobileMe service offers to display the
current location of the device on a map, lets the user play a sound and display a
message, invokes the passcode lock immediately, or completely wipes the device
and deletes all user data. All these services are remotely available and do not
require physical access. However, for devices with 2G/3G capabilities, the remote
commands will only succeed if the SIM card is inserted and the phone is connected
to the network for identification purposes. This functionality is realized using
the persistent SSL-encrypted service connection Apple keeps to every individual
device, e.g., using Wi-Fi or the cellular data network.

Another feature that uses this connection is the Apple Push Notification Ser-
vice (APNS), which is a unidirectional communication from the service to the
device. It is used by Apple and third-party developers to send notifications to
applications, e.g., to inform the user of a new message in a social network. This
technique is important to deliver information to applications that are not cur-
rently running. Devices are identified to the APNS using so-called device tokens
that are sent to the provider by the device as soon as the user enables to app to
receive push notifications. This token is then sent by the provider to the push
gateway, along with the actual payload.

To prevent the unauthorized use of iOS devices, Apple requires an activation
via iTunes. When the device is first used, it must be connected to a computer

4 http://www.thoughtcrime.org/software/sslsniff/

13



running Apple’s iTunes software. In non-activated state, iPhones can only call
emergency numbers. Access to any other system component is denied until suc-
cessful activation. Apple requires users to register a free account (Apple ID).
Without such an account, the activation cannot be done and the device refuses
to operate beyond the emergency call screen. The activation status is monitored
by the lockdownd daemon. Also, activation can typically only be done with a
supported carrier SIM card. SIM-locked phones will not be activated with a SIM
card of an unsupported carrier. In the activation process, iTunes generates an
activation token that depends on several hardware and SIM features. This token
is sent to Apple’s activation server, which is going to validate it, generate a wild-
card ticket, and send this ticket back after digitally signing it and encrypting it
with the Tiny Encryption Algorithm [23]. The activated device stores this ticket,
also containing the token, named wildcard record.plist ticket. Circumventing the
activation process is possible. One option is to patch the running lockdownd in
RAM. A major downside of this technique is that push notifications and the
YouTube service are broken, because both require a valid device token, which
is not available if the activation protocol has not been performed correctly. The
better way to permanently hacktivate devices is using the Subscriber Artificial
Module (SAM) software method, where iTunes is used to perform the activation
protocol just in the way it is supposed to, but an official SIM card is simulated
using the SAM. iTunes then generates a valid device token. Activation is not
to be confused with SIM unlocking. Activated phones are still SIM locked, as
activation does not affect the baseband, which enforces the SIM lock. Activated,
but locked phones can use all device functions except for SIM-related ones such
as making phone calls or sending short messages.

6.3 Windows Phone 7

Microsoft’s platform offers several remote security functions via its persitent ser-
vice connection holds to Microsoft usign cellular or Wi-Fi networks. After logging
into the Windows Phone website5, it is possible to have the phone displayed on a
map or to ring it. In addition, the device can be locked remotely, i.e., a four-digit
code can be entered that is required to unlock the phone again. Without the
code, only the enclosed message can be read. If the device cannot be found, the
user has the option to whipe his device.

Windows Phone 7 also supports push notifications via the service connection,
in particular messaging applications which are currently suspended. This is an
important feature, as Windows Phone 7 does not allow multitasking and there
is always only one active application in the foreground. Three types of push
notifications are supported: Raw notifications are those received when the target
application is currently running. They will be handled by the application itself.
Toast notifications are simple text messages that are displayed to the user at
the top of the screen while the application is either in an active or suspended
state. Tile notifications can change the tile of the application, i.e., the icon on
the home screen.

Each app requesting to receive push notifications must register with the Mi-
crosoft server by requesting a unique URI that will be used by the sending

5 http://windowsphone.live.com/

14



service to identify the device. This registration is only needed once and can be
done silently at the first application launch. The service sends the URI and the
corresponding payload via HTTP to the Microsoft Push Service which will then
take care of the delivery of the message. The push service is not providing relia-
bility, i.e., devices that do not have an always on connection might never receive
the message, or the delivery may be delayed.

The raw notifications are very interesting, because they deliver raw bytes to
an application that is currently running. For instance, a weather application can
use push notifications to inform the user about new weather conditions at a user-
favored place. Instead of informing the user that there is an update and that he
has to reload it manually, the new data can be sent along with the notification.
This can also be used to send any kind of data to the phone, however, the payload
size is restricted to 1 KB per raw message.

6.4 Summary

We observed that all systems have carefully implemented the service connection
to the vendor. Theses connections are encrypted and the certificates are checked
for validity, which results in proper authentication of the remote station. All
systems support the installation of additional root CA certificates, but none al-
lows the use of user-installed certificates for the service connection. This prevents
man-in-the-middle attacks using self-signed CA certificates.

7 Software Distribution

7.1 Android

The installation of applications to Android devices is done by the PackageMan-
ager service (pm). As a service, it does not use any user interface and performs
every single installation and uninstallation action, keeps track of what applica-
tions are installed and of the state of these applications. Moreover, it does not
take care of any permissions, but instead assumes that they have been approved
by the user. This makes it necessary that the PackageManager checks if the
application that calls pm with an installation request was granted the system per-
mission INSTALL PACKAGES, which has protection level 2. As such, the requester must
be signed with the same certificate as the application that defines the permis-
sion, which is in this case, is the Android system itself. So, only vendor-approved
applications can install other applications. On a standard Android system, the
only application holding the INSTALL PACKAGES permission is the PackageInstaller
which belongs to the core system

The Android Market divides the available software into applications and
games, and subdivides them into 26 and 8 detailed categories, respectively. The
user can browse the categories and is displayed the name of the author of the
application and its price. The Market application presents a description and
screenshots. If the user decides to install the application, he taps the price tag.
The button then turns into an OK button and the text label above then says
”Accept permissions”, while the permissions requested by the application are
unveiled.

15



The fact that one and the same button is used to show the details of an
application and to approve security-relevant permissions is a major design flaw.
Due to Android’s multitasking capabilities, some components of applications are
allowed to run in the background and can take up resources. If a device is almost
out of memory and starts reacting sluggishly, the user might tap a second time
thinking that his first tap has not been recognized or he barely missed the button.
When the system finally becomes responsive again, it interprets the second tap
and installs the application.

The Android Market application on the phone communicates with the Market
using Google’s Protocol Buffer format over HTTPS. The Protocol Buffers project
is open-source and defines a serialization format and an interface description
language. Despite the fact that details on the Market API are not disclosed, it was
possible to reverse-engineer a large part of it. Developers on Google Code, created
a project called android-market-api6 . It provides a third-party implementation
of a subset of the Market API, such as loading comments for an application in
the Market.

However, the implementation does not provide the means to download appli-
cation packages. This can be done by a simple HTTP GET request and needs
the following data: The authentication token with the Android Market of a le-
gitimate user; the user ID that belongs to the same account as the auth token;
the asset identifier of the package that is supposed to be downloaded and a valid
Android device ID.

One option to obtain the identifier and token is to take a look at the traffic a
device produces when installing an application from the Market. After receiving
the INSTALL ASSET intent, the device performs a GET request. The user ID can be
read from one request and stays the same for all following ones. Unfortunately,
there is no other way to obtain the user ID yet, because it seems to be linked to
the account name in an undisclosed way. The authentication token and the device
ID can also be read from the Android device, using the permissions GET ACCOUNTS

and USE CREDENTIALS.

Besides the Android Market, there are several other application shops for
Android that follow a similar approach, i.e., offering applications via a client
application. The platform makes this possible by allowing third-party applica-
tions to install other packages with the user’s consent. The alternative shops
must equalize their disadvantage that the number of applications they offer is
significantly smaller than the official Market’s. For example, many accept other
payment methods like PayPal or Amazon Payments. The most important alter-
native shops are GetJar, AndroidPIT, and the Amazon Appstore. After all, the
alternative software shops act inside the granted permissions by the user and
they are prevented by the system to install applications on their own without
asking the user. Installations are eventually handled by the Android system ser-
vice PackageManager. Hence, they are not relevant from a security perspective

Application packages that have been copied to the device can be installed
by using a file browser and web browser. When tapping an .apk file in the file
browser, the PackageInstaller activity is launched and the user is asked to grant
the permissions that the application requires. If the URL of an application pack-
age is entered, the browser automatically downloads the file. As soon as the

6 http://code.google.com/p/android-market-api/

16



downloads completes, the user can tap the file in the notification area and the
PackageInstaller is launched. By default, however, the installation of non-market
sources is disabled and must be explicitly enabled by the user in the system
settings.

Another option is to use Android Debug Bridge (ADB) shipped with the An-
droid SDK. The adb command allows the user to install an .apk from the computer
to a USB-connected device by running adb install /path/to/application.apk. To
use this feature, the user must enable the debugging mode via USB in the system
settings and connect his device via a USB cable.

Web-Based Market: In February, 2011, Google introduced a new additional
web-based interface for its Market application to be usable from a desktop com-
puter as well. Users can now access the market via a browser from a desktop
computer and buy and install applications remotely.

Google installs software that has been bought via the mobile Market appli-
cation using the INSTALL ASSET intent to Android handsets, which means that the
installation is triggered remotely by Google, not locally by the Market applica-
tion. This is also true for applications purchased from the web. As soon as the user
accepts the permissions requested, his handset starts downloading and installing
immediately. No further interaction with and thus not even physical access to
the device is required. It suffices to possess a victim’s Google account credentials
to remotely install software on his device. This makes Google credentials an even
more valuable goal for attackers, because they can also access the victim’s private
data stored on his mobile phone by remotely installing malware. The web-based
Market demonstrates that application installations are completely independent
from the Market application; unlike for Apple’s and Microsoft’s markets, where
the installation is a task that is exclusively performed by the respective market
application.

Only a few days after the official launch of the web-based Market, Ober-
heide discovered a serious cross-site scripting (XSS) vulnerability in the Market
website [34]. In the publishing interface, developers are asked for an application
description. This text field allowed an attacker to enter JavaScript code that
was executed on a customer’s computer while browsing the application page in
the web Market. Oberheide also demonstrated an exploit that achieved arbitrary
code execution on the user’s device.

To install an application from the web-based Market, the browser sends a
HTTP POST request to http://market.android.com/install. The body of
the request must contain four variables: The bundle identifier of the application
that is to be installed, the field xhr (which is always 1), the device identifier of
the target device and the authentication token for the Market. The latter two
could be read from a cookie that was set by the Market on the desktop computer
after logging in. The bundle identifier is very easy to obtain as the developer
chooses it himself and even if the attacker is not the developer of the malware,
the identifier is displayed in the web-based market. So the necessary HTTP
POST request for installing a malicious application could easily be performed
using AJAX. This does not directly give an attacker code execution, because
the application is only installed but not launched directly. However, the attacker
could register his malware for the PACKAGE ADDED broadcast intent, which is sent

17



whenever a new application is installed, and then just install another arbitrary
application using the same technique. This causes the intent to be fired and the
first application to launch. Thus, the goal of code execution on a device could be
achieved without ever having access to the device itself or any user credentials.
The victim just needed to browse the web Market and open the page of the
malicious application. Google fixed the web-Market vulnerability by the end of
February, 2011, by disallowing the cookie to be read from a script and fixing the
XSS vulnerability.

Quality Management: Compared to the other two operating systems with
a similar Market application, iOS and Windows Phone 7, the Android Market
employs a very liberal policy. There is no further validation or review of the ap-
plication, which makes it very easy to offer malware to a wide range of customers.

The Android Market’s security model relies entirely on the community to
identify and report malicious applications. This implies that there is a certain
number of users required to sacrifice themselves and try out new applications.
Users can flag an application as inappropriate using one of the explanatory
statements ”sexual content”, ”graphic violence”, ”hateful or abusive content”
or ”other objection”. However, malware applications typically hide their mali-
cious routines behind useful functionality; many users will not notice the secret
features and never flag the application as inappropriate. One of the first malware
applications found, Droid09, was phishing for bank accounts. In February 2011,
Google removed a group of more than 50 malware-infected applications [26]. An
approval process similar to the one Apple and Microsoft enforce for applications
on their App Store or Marketplace, respectively, could have most likely prevented
the admission to the official Android Market. Static code analysis would have
uncovered the hidden functions as well.

One very important security feature is the so-called safe mode the device can
boot to. Most devices enter this mode by holding a particular key pressed while
booting. In safe mode, no third-party applications are allowed to run. This allows
to clean an infected system without being interfered by protection mechanisms
of the malicious software. However, there is malware that roots the phone (or
especially target rooted phones) and copies itself to the system partition. This
will reinstall the malware at the next boot.

Copy Protection: Until mid-2010, the Android Market offered the option to en-
able ”copy protection” when posting an application. The difference between pro-
tected and unprotected applications was that unprotected packages were saved
in /data/app, while the protected applications went to /data/app-private. From the
first directory, the debug shell is able to read and pull the packages to a desktop
computer, transfer them to another phone and run the application there. The
/data/app-private directory cannot be read by the debug shell. However, on rooted
phones the user can read any file. In fact, apart from this artificial separation, no
further protection has been implemented. Even worse, once the applications have
been pulled from a rooted phone, they are copied to /data/app on any other phone
automatically at installation; where they can easily be read and distributed by
everyone.

18



In July 2010, Google added the possibility for developers to query the Market
server and see if the current user has actually purchased the application that is
running [8]. This rudimentary licensing mechanism requires a data connection
which may be unavailable at times, or blocked on purpose by user with rooted
phones.

7.2 iOS

The very first iPhone generation did not allow any third-party applications to
run natively on the device. Instead, developers were encouraged at the Worldwide
Developers Conference 2007 to write web apps; applications that ran on the web,
but mimicked the iOS UI elements and behaved like they were running natively
on the device. An advantage of this policy is security, because no third-party code
is run on the device. However, due to slow network speed (the classic iPhone did
not support 3G networks), user experience suffered.

With the release of the iPhone 3G and iOS version 2.0, Apple opened the
device for third-party applications. Developers could pay an annual $ 99 registra-
tion fee and distribute their applications via the new online software shop App
Store. The client application for the App Store allows to purchase, download
and install directly from the device. The App Store can also be accessed via the
iTunes software from a desktop computer. All software that is bought for an
iOS device is connected to the user’s Apple ID which enables sharing it across
devices. The App Store is the only Apple-legitimate source to install third-party
software on the device.

Review Policy: Apple employs a strict policy of which applications are allowed
in its App Store. Its App Store Review Guidelines [5] clearly state that Apple
will ”reject Apps for any content or behavior that we believe is over the line”.
Applications which Apple does not approve will be rejected. Common reasons
for a rejection are that an application is malfunctioning, unstable, uses private
API calls, or behaves otherwise maliciously. For the end user, this is a huge
quality improvement and security advantage, because Apple performs a set of
analysis techniques to unveil unwanted or malicious behavior and prevent large
parts of malware to be released to the devices, albeit the review process is not
bullet-proof.

During the review process, Apple performs a detailed analysis of the binaries
submitted by developers. This analysis involves both automatic and manual tests
for malicious behavior of any kind, private API calls and poorly programmed
software that does not function or does not comply with Apple’s human-interface
guidelines. Moreover, trial versions and software that Apple simply does not want
on the App Store will be rejected [5]. Apple’s review process is known to be rather
strict and hence created large customer confidence in the store. However, it does
not protect from applications that serve a legitimate purpose, but use hidden
malicious features, e.g., posting phone details to the Internet.

Copy Protection: Apple uses its FairPlay digital rights management to protect
applications. Each application is encrypted using a master key, which is stored
within the package in an encrypted fashion. User keys can be used to decipher the

19



master key and eventually the application bundle. When a customer purchases an
application, a new user key is generated to encrypt the master key, which makes
user keys unique per user and application. Every device using an application must
hold the user key in order to decrypt the respective application’s master key. The
keys are transferred to devices on synchronization with iTunes. Likewise, the user
keys are stored in an encrypted manner, such that they can only be read by Apple
software. In practice, users are allowed to install a purchased application to any
number of iOS devices he owns.

However, FairPlay has been proven to be defective and can be circumvented.
The application binary is the only part that is encrypted. Therefore, the program
code in memory is unprotected, enabling attackers to use a debugger to suspend
the program and create a dump of the memory to obtain the unencrypted bi-
nary code. Finally, the encrypted part of the binary is replaced with the plain
counterpart and the application’s manifest file. This file contains declarative in-
formation on the application and is modified such that the system does not try to
decrypt the binary and signature checks are turned off, as the signature is invalid
after the modification. There have been applications similar to Apple’s official
App Store that allowed downloading pirated applications for free. Of course, this
only works if the device allows the execution of unsigned code, as the installer
application would never be approved for the App Store and the unencrypted ap-
plications additionally carry an invalid signature. In particular the device must
be jailbroken in order to turn off signature checks.

7.3 Windows Phone 7

Microsoft’s implementation of an online software shop is called Windows Phone
Marketplace. It acts as a gatekeeper for third-party software, being the one cen-
tral source of third-party applications for their devices. The Marketplace is the
only official way to obtain software; side-loading applications is not supported.
Developers must submit their application package to Microsoft for review, before
the application is published. In this process, Microsoft performs both a manual
and an automatic analysis of the binary in order to exclude malware and find
poorly implemented applications. Additionally, there are tests that confirm if
the application is indeed written in the Common Intermediate Language (CIL),
a completely stack-based, object-oriented and type-safe assembly language. The
type-safety makes buffer overflows impossible and thus takes away a severe dan-
ger. This is, however, a constraint to the .NET framework. Standard C# allows
unsafe methods by adding the unsafe keyword to the method signature, leaving
the CIL and producing native code. Applications that use unsafe code will be
rejected by Microsoft. Hence, the user is supposed to only see well-written, high-
performance applications, and gain the confidence that Marketplace applications
are of good quality.

If the application complies with the rules and Microsoft decides to approve
the application, it is going to be digitally signed and an appropriate license will
be issued. This license also provides a copy protection functionality to ensure
that a legally purchased application cannot be transferred to another phone. In
order to be able to post applications to the Marketplace, developers must register
with Microsoft and pay an annual $ 99 registration fee. In return, Microsoft will
sign their applications and issue licenses.

20



The Marketplace can conveniently be accessed from an application on the
phone and via the Zune software for Windows PCs. Browsing the Marketplace
requires a Windows Live ID to process the payment and store licenses for pur-
chased applications in order to be able to download them again in case of a phone
restore or after an uninstallation.

Besides its gatekeeper function, the Marketplace offers non-repudiation. De-
velopers must prove their identity before releasing applications to the Market-
place. Depending on the key that is used for the code signature, applications can
always be tracked back to the original developer.

Additionally, the Marketplace also provides a protection of intellectual prop-
erty. As software piracy is rather significant, also on mobile devices, there is the
need for such a mechanism. Each application is not only signed by Microsoft,
but it also has an according license that is needed in order to run. This license
is saved with the Windows Live ID and queried at every application launch.
Thus, even if attackers manage to sideload applications, there is still the need to
circumvent the licensing mechanisms.

7.4 Summary

Despite iOS encrypting all binaries, they reside in memory in the clear which
enables attackers to attach a debugger and dump the binary. These binaries can
then be run on jailbroken phones. Android and Windows Phone 7 score with
the option for developers to contact the vendor’s servers from an application in
order to verify if the account associated with the phone indeed owns a license
for the application. For Android, this feature is only available for applications
targeting Android 2.2 and higher. Applications that want to target older version
of Android as well cannot use this feature.

While similar statements hold true for the Windows Phone 7 Marketplace, the
Android Market follows an opposite concept. Google permits every application
on the Market as long as the developer is registered with Google. There is no
review whatsoever and the whole security concept relies on the user community to
identify and flag malicious applications. This has caused the Android Market to
be flooded with an overabundance of malicious applications of all kinds. Leaving
the task to the community seems to be irresponsible, but at least, Google has
proven to maintain very short reaction times if a really dangerous application is
spotted on their Market.

8 Permission Model

8.1 Android

In contrast to iOS, Android employs a very fine-grained application permission
model. As of API version 11, 116 different permissions are predefined [2]. De-
velopers are free to add custom permissions to protect their applications. An
application that uses an SQLite database to store addresses may want to allow
others to access the datasets, but only if the user agrees. An application has to
explicitly request every single permission it is going to use in its manifest file.
This model is supposed to make it impossible to hide undesired activities for

21



applications. While it may sound reasonable for a Tetris game to request Inter-
net access to maintain an online highscore list, it would be suspicious if it also
requested the permission to read the address book.

If an application component attempts to perform an action that is protected
by the need for a particular permission, Android raises a SecurityException and
the action will fail. Depending on the component type, permissions can be en-
forced at the time the application calls a protected function in the system; when
starting a new activity to disallow the start of third-party applications, when ac-
cessing a content provider, when binding or starting a service, and when sending
or receiving broadcasts to exclude applications without permission from receiv-
ing or sending. Developers can, at any time, check if the calling process has
more fine-grained permissions that have been defined by calling the context’s
checkCallingPermission() method.

URI Permissions: Content providers are often protected by permissions, but
may want to pass a URI to another application for data transfer. For example, the
mail application protects the emails from being read without permission; how-
ever, a third-party image viewer requests to display an image attachment. The
image viewer is handed a URI to the data with the Intent.FLAG GRANT READ URI PER-

MISSION flag set by the caller.

Protection Levels: Permissions are categorized in four protection levels, 0
to 3: Category-zero permissions are normal permissions with a low-risk factor
that typically only affect the application scope. They are automatically granted
by the system without explicit approval, optionally the user sees the permission
request prior to the installation. Only if the user gives his consent to all requested
permissions, the application is installed. Dangerous permissions, belonging in
category 1, are higher-risk permissions that for instance allow costly services like
initiating a phone call, access to the device’s sensors or user data. Protection level
2 holds permissions which are granted only if the installation candidate is signed
with the private key corresponding to the same certificate as the application that
defined the permission. These signature permissions are useful for developers to
make sure that third-party applications cannot be granted this permission, even if
the user would consent. Permissions on the highest level 3 can only be granted by
the system to applications that are contained in the system image, or to ones that
are at least signed with the same certificate as the system image. Representatives
of this category are the permission to install new system applications or to change
security settings.

Granularity: Even though there exists a fine-grained permission model, its
application suffers from some weaknesses. The most important one is that the
user is only able to grant or deny all permissions at once. There is no chance
to grant or deny particular permissions. This forces the user to refrain from
installing an application that might be useful, but requests too many permissions.
Moreover, permissions that have been granted can only be revoked by uninstalling
the affected application. This is a strong plea to the user’s discipline. He might
want to test an application and not care about the permissions dialog.

22



8.2 iOS

The permission model that is used by iOS is implemented in an implicit fash-
ion. By default, the model restricts access to sensitive frameworks. However, it
does not protect as many functions as the other systems do. For instance, every
application is automatically allowed to access the Internet or to use the camera.
Developers do not need to care about permissions that have to be requested,
because the system displays the security prompt at the first use of a protected
framework automatically. If the user allows access to the framework, iOS remem-
bers this decision and does not ask again. If, however, the user decides to deny the
access two consecutive times, access is permanently denied for this application.
Protected frameworks are for example the AddressBook framework, CoreLoca-
tion and the push notification service. As far as the location discovery and push
notifications are concerned, the user can, at any time, change his mind and grant
or revoke the permission afterwards in the system settings. Interestingly enough,
the access to the address book cannot be revoked once it is granted.

8.3 Windows Phone 7

Applications must request permission for accessing protected APIs or resources
(e.g., location services or network access) during the deployment process. Capa-
bilities are declared in a so-called application manifest file. The creation of the
capability list is done by a detection utility shipped with the developer tools. This
makes sure that an application requests exactly the capabilities it needs in order
to run. The requested capabilities are displayed to the user in the Marketplace
application on the phone and he is asked to explicitly approve them prior to the
installation process. Minimal capabilities are automatically granted, which can
only affect the application’s own scope. For example, writing an isolated storage
file is allowed without special request. The permission checks are enforced at
runtime.

The use of the capabilities detection utility ensures that all and not too many
capabilities are declared by the application. However, granting the permissions
is still the user’s responsibility. The automatic generation of the capabilities list
does not add additional security benefits, because if an application tried to per-
form an action that uses a protected resource without declaring the appropriate
capability, the execution would fail at runtime.

8.4 Summary

With respect to the permission models, none of the platforms provides a satis-
fying solution. Non of the models is robust in its application (i.e. applications
without a particular permission cannot gain this permission otherwise), fine-
grained enough to restrict applications to the least privileges they need, and
flexible enough to allow the user to revoke particular permissions at the same
time. For instance, Apple fails horribly regarding the granularity by only pro-
tecting address book, location and push notifications. The permission models
promise application-level security to the user, but do not realize it in an accept-
able manner.

23



9 Jailbreaking

This section covers a selection of popular jailbreaking techniques for Android,
iOS, and Windows Phone 7.

9.1 Jailbreaking Android

There have been several exploits that can be used to root current Android de-
vices. The Android Exploit Crew7 around Sebastian Krahmer has published the
source code of several implementations. With some minor modifications, these
exploits can be used in applications that are distributed via the Market. A simple
way would be to set the setuid flag of the standard Android shell sh, such that
the shell is always executed with root permissions. Hence, every application can
use the shell to gain full access to the system. Applications with root access can
read any data and post it to any service they want. Be it SMS messages, emails,
address book entries and such. Even Google authentication tokens can be read.

If the rooting functionality is hidden as an appealing game or useful appli-
cation, the user may not even notice that his device is rooted. As Android ap-
plications can be easily reverse-engineered, an existing application can be taken
from the Market and the rooting functionality can be embedded. This is what
the so-far most sophisticated Android malware, DroidDream, did. It took exist-
ing applications, decompiled them, equipped them with an exploit and silently
rooted the device [19, 20].

Exploiding the Linux Device Manager udev: One important rooting method
is an exploit called exploid. It exploits a vulnerability in the Linux device man-
ager udev, described in CVE 2009-1185. The dev daemon monitors and evaluates
hotplug events, that is connected or disconnected devices. The daemon is no-
tified by the kernel about these events using a NETLINK message. Versions prior
to 1.4.1 did not verify that the message indeed originates from the kernel and
accepted messages from user space. This enables attackers to gain root privileges
by sending NETLINK messages to udev.

Android does not use a new udev executable, but major parts of its code have
been moved to the init process which runs with root privileges. By exploiting the
vulnerability, unprivileged users can gain root access. It tricks the init process to
perform attacker-defined actions by copying itself to a directory that is writable
for an unprivileged user, e.g., anywhere on the SD card. It tries the typically
world-writable directories /sqlite stmt journals and /data/local/tmp; one or both
may not exist, depending on the device used, so the last resort is the current
working directory. Then, it sends a NETLINK KOBJECT UEVENT message that is ma-
nipulated such that its own copy is executed as soon as the next hotplug event
is triggered. Inside the exploit the root user id is checked. If this is the case, it
copies the original sh to /system/bin/rootshell and sets the setuid bit, such that
the shell always runs with root permissions. This vulnerability has been patched
by Android 2.2.

7 http://c-skills.blogspot.com/

24



Zygote Jailbreak zimperlich: The zygote jailbreak zimperlich follows a similar
approach, but exploits a different vulnerability. On Android, there is a maximum
number of user processes that are allowed and this limit can be queried by ulimit

-a (In case of the HTC Desire Z running Android 2.2, for example, this limit is
2983).

The exploit forks processes until the maximum number of allowed processes
is reached. As the exploit is triggered by a Dalvik application, the zygote is
responsible for setting the correct Linux user ID for the newly forked process. If,
however, the limit of user processes is reached, the setuid() system call performed
by the zygote fails. Its original intent is to limit the privileges of the new process
by setting the user id to the (unprivileged) one associated to the application.
However, the zygote process does not check the return value of the setuid() call.
If the call fails, the newly forked process will remain with root privileges that
originate from its parent process, the zygote.

Once the privileges have been escalated, the exploit creates a copy of the sh

shell in /system/bin/rootshell with the setuid flag set. This vulnerability has also
been patched by Android versions greater than 2.2.

9.2 Jailbreaking iOS

The main goal of jailbraking an iOS device is to allow the execution of unsigned
code. In order to do so, code signatures have to be circumvented. These checks
are implemented in the kernel which also enforces them, as soon as the execve()

system call is executed on a binary. In addition, all applications run as the un-
privileged user mobile, i.e., even if code execution of unsigned binaries is possible,
the attacker must escalate his privileges.

The kernel is loaded from the system partition, which is mounted read-only. It
is compressed with all kernel extensions and this archive is encrypted and signed.
However, the kernel cache, which contains the kernel and its linked extensions
from the last boot, can be changed by root user. And still, even if the manipula-
tion succeeds, the kernel cache is signed as well and a modification would cause
the signature check by iBoot to fail. Thus, the device would not boot.

A chain of trust prevents manipulations of the kernel, iBoot and the low-level
bootloader (LLB), unless there is an according vulnerability. Everything except
the bootROM is signature checked. So, the most promising angle to jailbreak
is to attack the bootROM itself and sequentially patch out all signature checks
in the chain of trust. The great advantage in bootROM exploits is that they
cannot be fixed by Apple, as a hardware revision is needed in order to eliminate
the vulnerability. Therefore, a jailbreak is always possible in future iOS versions,
even if the vulnerabilities have been removed from the LLB, iBoot and the kernel.
The signature checks just have to be patched out again.

However, besides this permanent jailbreaking technique, there are others
which are reversible through a firmware update. Depending on which component
of the boot sequence exhibits vulnerabilities, every stage is a potential entry
point for jailbreakers. The general idea for a userland jailbreak is to exploit a
vulnerability that allows code execution, deploy the jailbreak payload, gain root

access by using a privilege escalation exploit, and finally patch the boot sequence
components. Each of these exploited vulnerabilities is fixable by Apple with a
software update, though. It can still be relevant to attackers that want to gain

25



(temporary) root access to the device via an application, if they manage to pass
the App Store review process.

Pwnage Tool and redsn0w: The Pwnage Tool is a jailbreak tool developed
by the iPhone DevTeam8 that modifies the original firmware that is provided by
Apple such that the device will be jailbroken once this modified firmware version
has been installed. It uses an original Apple IPSW firmware file to integrate the
jailbreak payload. The manipulated version meets the requirements described in
the previous section to jailbreak the iPhone (patching out signature checks, for
example) and may contain custom software. Additionally, the intended firmware
update for the baseband can optionally be denied by replacing the new baseband
firmware version with an older one that can be exploited. This is very important
for the carrier unlock, because there is no option to downgrade the baseband yet.

The newest versions of the PwnageTool use the so-called limera1n exploit that
profits from an insecure handling of USB commands in the DFU mode causing a
heap overflow. The DFU mode is used to install firmware and is directly entered
from the bootROM (on key press or via USB command). It starts a stripped-down
version of iBoot, called iBSS and iBEC. Thanks to the limera1n exploit, signature
checks on the kernel and the update RAMdisk can be circumvented. Next, the
kernel is loaded and the RAMdisk determines the update steps to be performed.
On completion, the iPhone reboots and the boot sequence corresponds to the
broken chain of trust with the modified kernel.

redsn0w is another jailbreaking tool by the iPhone Dev Team. It uses the
same technique as the Pwnage Tool, but offers less customization options. It
requires an iPhone in DFU mode, uses limera1n, and sends its jailbroken kernel
and update RAMdisk. Apart from the jailbreak, no further customization can
be done.

Star/Jailbreakme.com: The most famous userland jailbreak is Star that
is used by the website jailbreakme.com. At the time of writing it is able to
jailbreak iOS versions 3.1.2 through 4.0.1. It exploits a vulnerability (CVE 2010-
1797) in the Compact Font Format (CFF) font parser that allowed unsigned code
execution and additionally used a privilege escalation exploit for the IOSurface

kernel extension. The userland process MobileSafari was used as injection vector,
as it automatically opens PDF files. The exploit redirects the user to a PDF
file that includes a malformed font in order to exploit the vulnerability in the
CFF library libCGFreeType.A.dylib using a simple stack buffer overflow attack.
A long payload for a buffer in cff decoder parse charstrings() allows the attacker
to control the program counter. After gaining code execution, the payloads for
obtaining root access and the post-install instructions can be deployed. IOSurface
was exploited using the technique of return-oriented programming and resulted
in root access. The Star source code has been published9 by the author. The
vulnerabilities have been fixed in iOS 4.0.2, however, there are still many devices
in use that are not upgraded to recent iOS versions, e.g., 1st-gen iPhones.

This serious attack demonstrates how to gain root access and arbitrary code
execution by exploiting a userland application. Similar unpatched vulnerabilities
could be used to drive-by infect devices and gain full access.

8 http://blog.iphone-dev.org/
9 https://github.com/comex/star

26



greenpois0n: Greenpois0n is the name used for a jailbreak and a toolkit.
The jailbreak uses the same limera1n exploit as the Pwnage Tool in combina-
tion with a userland exploit. The toolkit is open-source software10 consisting
of five modules: Syringe is the injector module that helps to boot devices into
a jailbroken state. Cyanide assists in deploying iBoot payloads, and Dioxin is
the module for developing userland jailbreaks Anthrax helps to build RAMdisk
jailbreaks in the redsn0w style, and Arsenic allows deeper changes in original
firmware packages, for instance to exchange the baseband firmware.

9.3 Jailbreaking Windows Phone7

With its release in October 2010, Windows Phone 7 is the newest smartphone
operating system under consideration here. So far, there is only one known vul-
nerability. However, this vulnerability enabled attackers to install applications
that have not passed Microsoft’s review process. These applications were never
signed by Microsoft and never appeared on the Marketplace. The ChevronWP7
software for desktop PCs allows users to sideload applications that are not avail-
able in the Marketplace. This is usually a feature that is exclusive to registered
and paying developers, because they must be able to test their applications on
their phones. The ChevronWP7 employs a fake Microsoft server and fools the
device into thinking that it is legitimately registered as a developer phone.

ChevronWP7 only bypasses the code signing and licensing mechanism of
Windows Phone 7, because the system then accepts and runs non-Marketplace
applications. It does not touch any other protection mechanism of the platform.
Microsoft has acknowledged the problem and fixed it in the NoDo version of
Windows Phone 7. After all, the vulnerability was not too serious, because no
security mechanism of the system was compromised. This functionality can also
be legitimately achieved by developers for the yearly fee of $ 99. Moreover, Win-
dows Phone 7 calls home to Microsoft every two weeks in order to find unlocked
developer devices that must be locked again, because the developer is not a legal
subscriber in the developer program anymore. For this purpose, a device identi-
fier is sent to Microsoft and compared to the ones stored on Microsoft’s servers.
ChevronWP7-unlocked phones will not appear on this whitelist and the devices
will be re-locked [43].

10 Comparison

This section contrasts the protection mechanisms of the platforms. Table 1 shows
the results of an evaluation of the solutions of the three operating systems, using
the ratings ++, +, ◦, − and −−, from best to worst.

All of the sandboxing mechanisms have proven to be only partially secure. It is
impossible for applications to break out of the sandboxes on their own, however,
all platforms allow app interaction with daemons, libraries or frameworks that
are running natively, and often even privileged. This opens up to the exploitation
of vulnerabilities that lead to privilege escalations.

In terms of memory protection, Android has the most room for improvement.
Neither does it protect its stack or heap (both are executable), nor does it use

10 https://github.com/Chronic-Dev

27



Protection Mechanism A
n
d
ro
id

iO
S

W
P
7

Sandboxing ◦ ◦ +
Memory Protection −− + +
Code Signing − ++ +
Service Connection ++ ++ ++
Jailbreak Prevention −− − +
(Application) Copy Protection + − ++
Application Shop Security −− ++ ++
Permission Model − −− −

Table 1. Security Perspective on Protection Mechanisms

techniques such as ASLR in a reasonable way. The randomize va space option
is set to 1, which means that the stack is randomized, but there is no heap base
randomization. Apple, in turn, makes heavy use of the XN bit of the processor
and never allows any application memory page to be writable and executable
at the same time. Since iOS 4.3, ASLR is enabled, however, due to the lack of
entropy on mobile devices, it has already been defeated. Windows Phone 7 only
runs managed code. However, if unsigned code execution is possible, it also runs
native code outside of the Common Intermediate Language.

The code signing mechanisms are implemented very differently on the three
platforms. Apple and Microsoft use a certification authority, while Android’s
solution is based on self-signed certificates. Android thus only enables a devel-
oper to prove that he is the author of particular applications and may therefore
update the application or share data between two or more of his applications.
Android’s signing process does not protect the platform against malicious code.
iOS enforces signature checks at every system call that starts a new process and
hence outscores Windows Phone in this discipline.

We observed that all systems have carefully implemented the service con-
nection to the vendor. Theses connections are encrypted and the certificates are
checked for validity, which results in proper authentication of the remote sta-
tion. All systems support the installation of additional root CA certificates, but
none allows the use of user-installed certificates for the service connection. This
prevents man-in-the-middle attacks using self-signed CA certificates.

One of the most severe problems of iOS is its copy protection mechanism.
Despite iOS encrypting all binaries, they reside in memory in the clear as a whole.
This enables attackers to attach a debugger and dump the binary. These binaries
can then be run on jailbroken phones. Android and Windows Phone 7 score with
the option for developers to contact the vendor’s servers from an application in
order to verify if the account associated with the phone indeed owns a license
for the application. For Android, this feature is only available for applications
targeting Android 2.2 and higher. Applications that want to target older version
of Android as well cannot use this feature.

The most important discipline from a security perspective is preventing appli-
cations from gaining full access to the device, i.e., jailbreaking. Android and iOS
have deficits due to the fact that applications are allowed to run natively, while
Microsoft will not allow applications containing native code on its Marketplace.

28



Apple tries to compensate the risk of native code execution with the establish-
ment of a review process that precedes every admission to the App Store. These
review process techniques have proven to detect the largest part of malware and
misbehaving applications. However, it is neither fully transparent, nor can one
be sure that every malware incident is reported by Apple. Reported malware
incidents on the App Store only involved minor privacy issues such as unique de-
vice identifiers being transmitted. The address book, which used to be readable
by applications without user consent, is now protected and requires permissions.

While similar statements hold true for the Windows Phone 7 Marketplace, the
Android Market follows an opposite concept. Google permits every application
on the Market as long as the developer is registered with Google. There is no
review whatsoever and the whole security concept relies on the user community to
identify and flag malicious applications. This has caused the Android Market to
be flooded with an overabundance of malicious applications of all kinds. Leaving
the task to the community seems to be irresponsible, but at least, Google has
proven to maintain very short reaction times if a really dangerous application is
spotted on their Market.

With respect to the permission models, none of the platforms provides a
satisfying solution. Non of the models is robust in its application (i.e. applica-
tions without a particular permission cannot gain this permission otherwise),
fine-grained enough to restrict applications to the least privileges they need, and
flexible enough to allow the user to revoke particular permissions at the same
time. For instance, Apple fails horribly regarding the granularity by only pro-
tecting address book, location and push notifications. The permission models
promise application-level security to the user, but do not realize it in an accept-
able manner.

11 Conclusion

In this paper we have given a structured and comprehensive overview on the most
prominent mobile operating systems Android, iOS, and Windows Phone 7. We
presented a number of threats and attack vectors all platforms have in common,
and detailed the most relevant security mechanisms of each platform. We have
seen that today’s smartphones feature operating systems that do not fall short
on the ones of desktop computers, and as such, they also inherit many of their
problems and vulnerabilities. As for desktop computers today, it is essential to
maintain an up-to-date smartphone operating system. However, this responsi-
bility mainly resides with the smartphone vendors, which tend to stop updating
older devices. As a consequence these devices remain without the chance to fix
existing vulnerabilities. Overall, the security mechanisms of the three platforms
under discussion leave significant room for improvement.

Acknowledgments

Parts of the work presented in this article have been supported by the ASMONIA
research project, partially funded by the German Federal Ministry of Education
and Research (BMBF).

29



References

1. Permission re-delegation: Attacks and defenses. In 20th Usenix Security Symposium, 2011.
2. The Developer’s Guide. http://developer.android.com/guide/, 2011. Retrieved on 2011-

05-09.
3. Android Developers. What is Android? Android Developers, http://developer.android.

com/guide/basics/what-is-android.html, May 2011.
4. Apple Developer. iOS Technology Overview, October 2010.
5. Apple Developer. App Store Review Guidelines for iOS apps, 2011.
6. Seyed Morteza Babamir, Reyhane Nowrouzi, and Hadi Naseri. Mining Bluetooth Attacks in

Smart Phones. Communications in Computer and Information Science, 87:241–253, 2010.
7. Dionysus Blazakis. The Apple Sandbox. Arlington, VA, January 2011.
8. Tim Bray. Licensing Service For Android Applications. Android Developers Blog, http:

//android-developers.blogspot.com/2010/07/licensing-service-for-android.html,
July 2010. Retrieved on 2011-05-19, archived at http://www.webcitation.org/5yn8Bv7KJ.

9. Jason Chen. Aurora Feint iPhone App Delisted For Lousy Se-
curity Practices. Gizmodo.com, http://gizmodo.com/5028459/

aurora-feint-iphone-app-delisted-for-lousy-security-practices, July 2008.
Retrieved on 2011-05-20.

10. Erika Chin, Adrienne Porter Felt, Kate Greenwood, and David Wagner. Analyzing inter-
application communication in Android. pages 239–252, 2011.

11. Graham Cluley. First iPhone worm discovered - ikee changes wallpaper to Rick Astley
photo. Sophos Naked Security Blog, http://nakedsecurity.sophos.com/2009/11/08/

iphone-worm-discovered-wallpaper-rick-astley-photo/, November 2009. Retrieved
on 2011-05-22, archived at http://www.webcitation.org/5ys7LWTko.

12. Istvan Cseri. Windows Phone Architecture: Deep Dive. April 2011.
13. Lucas Davi, Alexandra Dmitrienko, Ahmad-Reza Sadeghi, and Marcel Winandy. Privilege

Escalation Attacks on Android. In Proceedings of the 13th international Conference on

Information Security, ISC’10, pages 346–360, Berlin, Heidelberg, 2011. Springer-Verlag.
14. Dino A. Dai Zovi. Apple iOS 4 Security Evalution. Trail of Bits LLC, http://www.

trailofbits.com/research.html, 2011.
15. David Ehringer. The Dalvik Virtual Machine Architecture. 2010.
16. W. Enck, M. Ongtang, and P. McDaniel. Understanding android security. Security Privacy,

IEEE, 7(1):50 –57, jan.-feb. 2009.
17. William Enck, Damien Octeau, Patrick McDaniel, and Swarat Chaudhuri. A study of

android application security. In Proceedings of the 20th USENIX conference on Security,
SEC’11, pages 21–21, Berkeley, CA, USA, 2011. USENIX Association.

18. Adrienne Porter Felt, Erika Chin, Steve Hanna, Dawn Song, and David Wagner. Android
Permissions Demystified. In Proceedings of the 18th ACM conference on Computer and

communications security, CCS ’11, pages 627–638, New York, NY, USA, 2011. ACM.
19. Aaron Gingrich. Malware Monster: DroidDream Is An Android Nightmare, And We’ve

Got More Details. Android Police, March 2011. Retrieved on 2011-05-19, archived at
http://www.webcitation.org/5ynIuuEgO.

20. Aaron Gingrich. The Mother Of All Android Malware Has Arrived: Stolen Apps Released
To The Market That Root Your Phone, Steal Your Data, And Open Backdoor. Android
Police, March 2011. Retrieved on 2011-05-19, archived at http://www.webcitation.org/
5ynIYoxLb.

21. Dan Goodin. Backdoor in top iPhone games stole user data, suit claims. The
Register, http://www.theregister.co.uk/2009/11/06/iphone_games_storm8_lawsuit/,
November 2009. Retrieved on 2011-05-23, archived at http://www.webcitation.org/

5ytg1Rclo.
22. Dan Goodin. Researcher outs Android Exploit Code. The Register, http://www.

theregister.co.uk/2010/11/06/android_attack_code/, November 2011. Retrieved on
2011-05-20, archived at http://www.webcitation.org/5yoxrzjcq.

23. Jerry Hauck, Jeffrey Bush, Michael Lambertus Brouwer, and Daryl Mun-Kid Low. Ser-
vice Provider Activation with Subscriber Identity Module Policy. United States Patent
Application Publication, No. US 2009/0061934, January 2008.

24. Xuxian Jiang. Android 2.3 (Gingerbread) Data Stealing Vulnerability. http://www.csc.

ncsu.edu/faculty/jiang/nexuss.html, January 2011. Retrieved on 2011-05-20, archived
at http://www.webcitation.org/5youAnT9n.

30



25. Henry Lee and Eugene Chuvyrov. Beginning Windows Phone 7 Development. Apress, New
York, 2010.

26. Kevin Mahaffey. Security Alert: DroidDream Malware Found in
Official Android Market. http://blog.mylookout.com/2011/03/

security-alert-malware-found-in-official-android-market-droiddream, March
2011. Retrieved on 2011-05-09, archived at http://www.webcitation.org/5yYBUjtUS.

27. Microsoft Corp. Windows Phone 7 Security Model, windows phone 7 guides for it profes-
sionals edition, December 2010.

28. C. Miller. Mobile attacks and defense. Security Privacy, IEEE, 9(4):68 –70, july-aug. 2011.
29. Charlie Miller and Vincenzo Iozzo. Fun and Games with Mac OS X and iPhone Payloads.

April 2009.
30. Dan Moren. Third iPhone worm targets jailbroken iPhones in Europe, Australia. Mac-

world, http://www.macworld.com/article/144039/2009/11/iphone_worm.html, Novem-
ber 2009. Retrieved on 2011-05-22, archived at http://www.webcitation.org/5ys9Xu18f.

31. Collin Mulliner and Nico Golde. SMS-o-Death. 27th Chaos Communication Congress,
Berlin, December 2010. Talk given on 2010-12-27.

32. Jon Oberheide. A Peek Inside the GTalkService Connection, June 2010. Retrieved on
2011-05-09, archived at http://www.webcitation.org/5yY0FxfjH.

33. Jon Oberheide. Remote Kill and Install on Google Android. http://jon.oberheide.

org/blog/2010/06/25/remote-kill-and-install-on-google-android/, June 2010. Re-
trieved on 2011-05-09, archived at http://www.webcitation.org/5yYCucC6N.

34. Jon Oberheide. How I Almost Won Pwn2Own via XSS, March 2011. Retrieved on 2011-
05-09, archived at http://www.webcitation.org/5yXyUFBhy.

35. Jon Oberheide and Zach Lanier. TEAM JOCH vs. Android: The Ultimate Showdown.
Washington, DC, January 2011.

36. Fahmida Y. Rashid. Mobile Malware, Hacktivism Top List of Major Security Con-
cerns, April 2011. Retrieved on 2011-05-14, archived at http://www.webcitation.org/

5yfcdXadP.
37. Erick Schonfeld. Touching The Android: It’s No iPhone, But

It’s Close. TechCrunch, http://techcrunch.com/2008/09/23/

touching-the-android-its-no-iphone-but-its-close/, September 2008. Retrieved on
2011-05-19, archived at http://www.webcitation.org/5ynWx29YF.

38. Rene Mayrhofer Sebastian Höbarth. A framework for on-device privilege escalation exploit
execution on Android. In IWSSI, 2011.

39. A. Shabtai, Y. Fledel, U. Kanonov, Y. Elovici, S. Dolev, and C. Glezer. Google android: A
comprehensive security assessment. Security Privacy, IEEE, 8(2):35 –44, march-april 2010.

40. Hovav Shacham, Eu-jin Goh, Nagendra Modadugu, Ben Pfaff, and Dan Boneh. On the
effectiveness of address-space randomization. In CCS ’04: Proceedings of the 11th ACM

Conference on Computer and Communications Security, pages 298–307. ACM Press, 2004.
41. Wook Shin, Sanghoon Kwak, Shinsaku Kiyomoto, Kazuhide Fukushima, and Toshiaki

Tanaka. A Small But Non-negligible Flaw in the Android Permission Scheme. In Pro-

ceedings of the 2010 IEEE International Symposium on Policies for Distributed Systems

and Networks, POLICY ’10, pages 107–110, Washington, DC, USA, 2010. IEEE Computer
Society.

42. Patrick Traynor, Michael Lin, Machigar Ongtang, Vikhyath Rao, Trent Jaeger, Patrick
McDaniel, and Thomas La Porta. On cellular botnets: measuring the impact of malicious
devices on a cellular network core. pages 223–234, 2009.

43. Tom Warren. Windows Phone 7 calls home to re-lock ChevronWP7 unlocked devices,
December 2010. Retrieved on 2011-05-19, archived at http://www.webcitation.org/

5yn7uK8Zd.
44. Georgia Weidman. Transparent Botnet Control for Smartphones over SMS (ShmooCon’11.

January 2011.
45. Cui Xiang, Fang Binxing, Yin Lihua, Liu Xiaoyi, and Zang Tianning. Andbot: towards

advanced mobile botnets. pages 11–11, 2011.
46. Cui Xiang, Fang Binxing, Yin Lihua, Liu Xiaoyi, and Zang Tianning. Andbot: towards

advanced mobile botnets. In Proceedings of the 4th USENIX conference on Large-scale

exploits and emergent threats, pages 11–11. USENIX Association, 2011.

31



32



Aachener Informatik-Berichte

This list contains all technical reports published during the past three years.

A complete list of reports dating back to 1987 is available from:

http://aib.informatik.rwth-aachen.de/

To obtain copies please consult the above URL or send your request to:

Informatik-Bibliothek, RWTH Aachen, Ahornstr. 55, 52056 Aachen,

Email: biblio@informatik.rwth-aachen.de

2009-01 ∗ Fachgruppe Informatik: Jahresbericht 2009

2009-02 Taolue Chen, Tingting Han, Joost-Pieter Katoen, Alexandru Mereacre:

Quantitative Model Checking of Continuous-Time Markov Chains

Against Timed Automata Specifications

2009-03 Alexander Nyßen: Model-Based Construction of Embedded

Real-Time Software - A Methodology for Small Devices

2009-05 George B. Mertzios, Ignasi Sau, Shmuel Zaks: A New Intersection Model

and Improved Algorithms for Tolerance Graphs

2009-06 George B. Mertzios, Ignasi Sau, Shmuel Zaks: The Recognition of Tol-

erance and Bounded Tolerance Graphs is NP-complete

2009-07 Joachim Kneis, Alexander Langer, Peter Rossmanith: Derandomizing

Non-uniform Color-Coding I

2009-08 Joachim Kneis, Alexander Langer: Satellites and Mirrors for Solving In-

dependent Set on Sparse Graphs

2009-09 Michael Nett: Implementation of an Automated Proof for an Algorithm

Solving the Maximum Independent Set Problem

2009-10 Felix Reidl, Fernando Sánchez Villaamil: Automatic Verification of the

Correctness of the Upper Bound of a Maximum Independent Set Algo-

rithm

2009-11 Kyriaki Ioannidou, George B. Mertzios, Stavros D. Nikolopoulos: The

Longest Path Problem is Polynomial on Interval Graphs

2009-12 Martin Neuhäußer, Lijun Zhang: Time-Bounded Reachability in

Continuous-Time Markov Decision Processes

2009-13 Martin Zimmermann: Time-optimal Winning Strategies for Poset Games

2009-14 Ralf Huuck, Gerwin Klein, Bastian Schlich (eds.): Doctoral Symposium

on Systems Software Verification (DS SSV’09)

2009-15 Joost-Pieter Katoen, Daniel Klink, Martin Neuhäußer: Compositional

Abstraction for Stochastic Systems

2009-16 George B. Mertzios, Derek G. Corneil: Vertex Splitting and the Recog-

nition of Trapezoid Graphs

2009-17 Carsten Kern: Learning Communicating and Nondeterministic Au-

tomata

2009-18 Paul Hänsch, Michaela Slaats, Wolfgang Thomas: Parametrized Regular

Infinite Games and Higher-Order Pushdown Strategies

2010-01 ∗ Fachgruppe Informatik: Jahresbericht 2010

2010-02 Daniel Neider, Christof Löding: Learning Visibly One-Counter Au-

tomata in Polynomial Time

33



2010-03 Holger Krahn: MontiCore: Agile Entwicklung von domänenspezifischen

Sprachen im Software-Engineering

2010-04 René Wörzberger: Management dynamischer Geschäftsprozesse auf Ba-

sis statischer Prozessmanagementsysteme

2010-05 Daniel Retkowitz: Softwareunterstützung für adaptive eHome-Systeme

2010-06 Taolue Chen, Tingting Han, Joost-Pieter Katoen, Alexandru Mereacre:

Computing maximum reachability probabilities in Markovian timed au-

tomata

2010-07 George B. Mertzios: A New Intersection Model for Multitolerance

Graphs, Hierarchy, and Efficient Algorithms

2010-08 Carsten Otto, Marc Brockschmidt, Christian von Essen, Jürgen Giesl:

Automated Termination Analysis of Java Bytecode by Term Rewriting

2010-09 George B. Mertzios, Shmuel Zaks: The Structure of the Intersection of

Tolerance and Cocomparability Graphs

2010-10 Peter Schneider-Kamp, Jürgen Giesl, Thomas Ströder, Alexander Sere-

brenik, René Thiemann: Automated Termination Analysis for Logic Pro-

grams with Cut

2010-11 Martin Zimmermann: Parametric LTL Games

2010-12 Thomas Ströder, Peter Schneider-Kamp, Jürgen Giesl: Dependency

Triples for Improving Termination Analysis of Logic Programs with Cut

2010-13 Ashraf Armoush: Design Patterns for Safety-Critical Embedded Systems

2010-14 Michael Codish, Carsten Fuhs, Jürgen Giesl, Peter Schneider-Kamp:

Lazy Abstraction for Size-Change Termination

2010-15 Marc Brockschmidt, Carsten Otto, Christian von Essen, Jürgen Giesl:

Termination Graphs for Java Bytecode

2010-16 Christian Berger: Automating Acceptance Tests for Sensor- and

Actuator-based Systems on the Example of Autonomous Vehicles

2010-17 Hans Grönniger: Systemmodell-basierte Definition objektbasierter Mod-

ellierungssprachen mit semantischen Variationspunkten

2010-18 Ibrahim Armaç: Personalisierte eHomes: Mobilität, Privatsphäre und

Sicherheit

2010-19 Felix Reidl: Experimental Evaluation of an Independent Set Algorithm

2010-20 Wladimir Fridman, Christof Löding, Martin Zimmermann: Degrees of

Lookahead in Context-free Infinite Games

2011-01 ∗ Fachgruppe Informatik: Jahresbericht 2011

2011-02 Marc Brockschmidt, Carsten Otto, Jürgen Giesl: Modular Termination

Proofs of Recursive Java Bytecode Programs by Term Rewriting

2011-03 Lars Noschinski, Fabian Emmes, Jürgen Giesl: A Dependency Pair

Framework for Innermost Complexity Analysis of Term Rewrite Systems

2011-04 Christina Jansen, Jonathan Heinen, Joost-Pieter Katoen, Thomas Noll:

A Local Greibach Normal Form for Hyperedge Replacement Grammars

2011-07 Shahar Maoz, Jan Oliver Ringert, Bernhard Rumpe: An Operational

Semantics for Activity Diagrams using SMV

2011-08 Thomas Ströder, Fabian Emmes, Peter Schneider-Kamp, Jürgen Giesl,

Carsten Fuhs: A Linear Operational Semantics for Termination and

Complexity Analysis of ISO Prolog

2011-09 Markus Beckers, Johannes Lotz, Viktor Mosenkis, Uwe Naumann (Edi-

tors): Fifth SIAM Workshop on Combinatorial Scientific Computing

34



2011-10 Markus Beckers, Viktor Mosenkis, Michael Maier, Uwe Naumann: Ad-

joint Subgradient Calculation for McCormick Relaxations

2011-11 Nils Jansen, Erika Ábrahám, Jens Katelaan, Ralf Wimmer, Joost-Pieter

Katoen, Bernd Becker: Hierarchical Counterexamples for Discrete-Time

Markov Chains

2011-12 Ingo Felscher, Wolfgang Thomas: On Compositional Failure Detection

in Structured Transition Systems

2011-13 Michael Förster, Uwe Naumann, Jean Utke: Toward Adjoint OpenMP

2011-14 Daniel Neider, Roman Rabinovich, Martin Zimmermann: Solving Muller

Games via Safety Games

2011-16 Niloofar Safiran, Uwe Naumann: Toward Adjoint OpenFOAM

2011-18 Kamal Barakat: Introducing Timers to pi-Calculus

2011-19 Marc Brockschmidt, Thomas Ströder, Carsten Otto, Jürgen Giesl: Au-

tomated Detection of Non-Termination and NullPointerExceptions for

Java Bytecode

2011-24 Callum Corbett, Uwe Naumann, Alexander Mitsos: Demonstration of a

Branch-and-Bound Algorithm for Global Optimization using McCormick

Relaxations

2011-25 Callum Corbett, Michael Maier, Markus Beckers, Uwe Naumann, Amin

Ghobeity, Alexander Mitsos: Compiler-Generated Subgradient Code for

McCormick Relaxations

2011-26 Hongfei Fu: The Complexity of Deciding a Behavioural Pseudometric on

Probabilistic Automata

2012-01 ∗ Fachgruppe Informatik: Annual Report 2012

2012-02 Thomas Heer: Controlling Development Processes

2012-03 Arne Haber, Jan Oliver Ringert, Bernhard Rumpe: MontiArc - Architec-

tural Modeling of Interactive Distributed and Cyber-Physical Systems

2012-04 Marcus Gelderie Strategy Machines and their Complexity

2012-05 Thomas Ströder, Fabian Emmes, Jürgen Giesl, Peter Schneider-Kamp,

and Carsten Fuhs Automated Complexity Analysis for Prolog by Term

Rewriting

∗ These reports are only available as a printed version.

Please contact biblio@informatik.rwth-aachen.de to obtain copies.

35


