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Abstract. Heap-based data structures play an important role in modern pro-
gramming concepts. However standard verification algorithms cannot cope with
infinite state spaces as induced by these structures. A common approach to solve
this problem is to apply abstraction techniques. Hyperedge replacement gram-
mars provide a promising technique for heap abstraction as their production rules
can be used to partially abstract and concretise heap structures. To support the
required concretisations, we introduce a normal form for hyperedge replacement
grammars as a generalisation of the Greibach Normal Form for string grammars
and the adapted construction.

1 Introduction

The verification of programs that use pointers to implement dynamic data struc-
tures is a highly challenging and important task, as memory leaks or derefer-
encing null pointers can cause great damage especially when software reliability
is at stake. As objects can be created at runtime, dynamic data structures in-
duce a possibly infinite state space and therefore cannot be handled by standard
verification algorithms. Abstraction techniques such as shape analysis [18] that
yield finite representations for these data structures are a common way to address
this problem. Other popular techniques are separation logic [10, 14] (duality with
HRGs is observed in [4]) and regular tree automata theory [2].

Our approach is to verify pointer-manipulating programs using hyperedge re-
placement grammars (HRGs) [7]. Dynamic memory allocation and destructive
updates are transcribed on hypergraphs representing heaps. Production rules of
the HRG reflect employed data structures. Terminal edges model variables and
pointers, whereas nonterminal edges represent abstract parts of a heap. Thus,
hypergraphs are heap configurations that are partially concrete and partially
abstract, such that heap fragments relevant for the current program state are
concrete while a finite heap representation is archived. Concretisation of ab-
stract heap fragments is obtained by classical forward grammar rule application,
abstraction by backward application. This use of HRGs has been first proposed
by us in [15]; tool support and the successful verification of the Deutsch-Schorr-
Waite tree traversal algorithm have been reported in [8]. Graph grammars for
heap verification have also been advocated in, e.g. [18, 13, 11, 1, 12]. Primarily
this yields a rather intuitive and easy-to-grasp heap modelling approach, where
no abstract program semantics is needed. In particular, it avoids a (often te-
dious) formal proof how this relates to a concrete semantics, see e.g. [3]. Pointer
statements such as assignments and object creation are realised on concrete sub-
graphs only. Thus if pointer assignments “move” program variables too close to
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abstract graph fragments, a local concretisation is carried out. To enable this,
our heap abstraction HRGs are required to be in a specific form that is akin to
the well-known Greibach normal form (GNF) for string grammars.

In [15] we proposed to use the GNF introduced in [6] for this purpose, re-
stricting manageable data structures to ones where each object is referenced by
a bounded number of objects. This paper defines a normal form for HRGs as
a generalisation of the original GNF for string grammars. Compared to [6], it
allows us to model data structures without restrictions to referencing and in gen-
eral results in grammars with less and smaller production rules. Furthermore our
normal form allows to adapt the well-known GNF transformation algorithm for
string to graph grammars. We present the adapted construction and its correct-
ness in Section 3. In Section 2, the above concepts are formalised, we consider a
notion of typing for HRGs, and provide all relevant theoretical results.

2 Preliminaries

Given a set S, S? is the set of all finite sequences (strings) over S including the
empty sequence ε. For s ∈ S?, the length of s is denoted by |s|, the set of all
elements of s is written as [s], and by s(i) we refer to the i-th element of s. Given
a tuple t = (A, B, C, ...) we write At, Bt etc. for the components if their names
are clear from the context. Function f ¹ S is the restriction of f to S. Function
f : A → B is lifted to sets f : 2A → 2B and to sequences f : A? → B? by
point-wise application. We denote the identity function on a set S by idS .

2.1 Heaps and Hypergraphs

The principal idea behind our Juggrnaut framework [8, 15] is to represent (ab-
stract) heaps as hypergraphs.

Definition 1 (Hypergraph). Let Σ be a finite ranked alphabet where rk : Σ →
N assigns to each symbol a ∈ Σ its rank rk(a). A (labelled) hypergraph over Σ
is a tuple H = (V, E, att , lab, ext) where V is a set of vertices and E a set of
hyperedges, att : E → V ? maps each hyperedge to a sequence of attached vertices,
lab : E → Σ is a hyperedge-labelling function, and ext ∈ V ? a (possibly empty)
sequence of distinct external vertices.

For e ∈ E, we require |att(e)| = rk(lab(e)) and let rk(e) = rk(lab(e)). The set of
all hypergraphs over Σ is denoted by HGΣ.

Hypergraphs are graphs with edges as proper objects which are not restricted
to connect exactly two vertices. Two hypergraphs are isomorphic if they are
identical modulo renaming of vertices and hyperedges. We will not distinguish
between isomorphic hypergraphs.

To set up an intuitive heap representation by hypergraphs we consider finite
ranked alphabets Σ = VarΣ ]SelΣ , where VarΣ is a set of variables, each of rank
one and SelΣ a set of selectors each of rank two. We model heaps as hypergraphs
over Σ. Objects are represented by vertices, and pointer variables and selec-
tors by edges connected to the corresponding object(s) where selector edges are
understood as pointers from the first attached object to the second one. To rep-
resent abstract parts of the heap, we use nonterminal edges i.e. with labels from
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an additional set of nonterminals N of arbitrary rank (and we let ΣN = Σ∪N).
The connections between hyperedges and vertices are called tentacles.

L

list

head tail

3

1 2

1

Fig. 1. Heap as hypergraph

Example 1. A typical implementation of a doubly-
linked list consists of a sequence of list elements
connected by next and previous pointers and an
additional list object containing pointers to the
head and tail of the list. We consider an extended
implementation where each list element features
an additional pointer to the corresponding list ob-
ject. Fig. 1 depicts a hypergraph representation of
a doubly-linked list. The three circles are vertices representing objects on the
heap. Tentacles are labeled with their ordinal number. For the sake of readabil-
ity, selectors (head and tail) are depicted as directed edges. A variable named
list referencing the list object is represented as an edge of rank one. The L-
labeled box represents a nonterminal edge of rank three indicating an abstracted
doubly-linked list between the first and second attached vertex, where each ab-
stracted list element has a pointer to the list object. In Section 2.2 we will see
how abstract structures are defined.

Note that not every hypergraph represents a feasible heap: it is necessary
that each variable and each a-selector (for every a ∈ SelΣ ) refers to at most one
object. Therefore we introduce heap configurations as restricted hypergraphs:

Definition 2 (Heap Configuration). H ∈ HGΣN
is a heap configuration if:

1. ∀a ∈ SelΣ , v ∈ VH : |{e ∈ EH | att(e)(1) = v, lab(e) = a}| ≤ 1, and

2. ∀a ∈ VarΣ : |{e ∈ EH | lab(e) = a}| ≤ 1

We denote the set of all heap configurations over ΣN by HCΣN
. If a heap con-

figuration contains nonterminals it is abstract, otherwise concrete.

2.2 Data Structures and Hyperedge Replacement Grammars

As pointed out earlier, both abstraction and concretisation are transformation
steps on the hypergraph representation of the heap. We use hyperedge replace-
ment grammars for this purpose, implementing abstraction and concretisation
as backward and forward application of replacement rules respectively.

Definition 3 (Hyperedge Replacement Grammar). A hyperedge replace-
ment grammar (HRG) over an alphabet ΣN is a set of production rules of the
form X → H, with X ∈ N and H ∈ HGΣN

where |extH | = rk(X). We denote
the set of hyperedge replacement grammars over ΣN by HRGΣN

.

Example 2. Fig. 2 specifies an HRG for doubly-linked lists. n, p stand for next
and previous while l is the pointer to the corresponding list object shared by all
elements. head and tail (cf. Fig. 1) do not occur as they are not abstracted.

The HRG derivation steps are defined through hyperedge replacement.
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L → 3 1 2

n

p

l
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n

p

l

3

1 2

Fig. 2. A grammar for doubly-linked lists

Definition 4 (Hyperedge Replacement). Let H, K ∈ HGΣN
, e ∈ EH a non-

terminal edge with rk(e) = |extK |. W.l.o.g. we assume that VH∩VK = EH∩EK =
∅ (otherwise the components in K have to be renamed). The substitution of e by
K, H[K/e] = J ∈ HGΣN

, is defined by:

VJ = VH ∪ (VK \ [extK ]) EJ = (EH \ {e}) ∪ EK

labJ = (labH ¹ (EH \ {e})) ∪ labK extJ = extH

attJ = attH ¹ (EH \ {e}) ∪ mod ◦ attK

with mod = idVJ
∪ {[extK(1) 7→ attH(e)(1), ..., extK(rk(e)) 7→ attH(e)(rk(e))}.

L

list

head tail

n

p

l
3

21

1

Fig. 3. Hyperedge replacement

Example 3. Reconsider the hypergraph H
of Fig. 1 as well as the second rule in Fig. 2,
denoted by L → K. In H we replace the
nonterminal edge e labelled with L by K,
which yields H[K/e]. This is possible since
rk(L) = |extK | = 3. Replacing the L-edge
we merge external node ext(1) with the
node connected to the first tentacle, ext(2)
with the second and so on. The resulting
graph is shown in Fig. 3.

Definition 5 (HRG Derivation). Let G ∈ HRGΣN
, H, H ′ ∈ HGΣN

, p =
X → K ∈ G and e ∈ EH with lab(e) = X. H derives H ′ by p iff H ′ is isomorphic

to H[K/e]. H
e,p
==⇒ H ′ refers to this derivation. Let H

G
=⇒ H ′ if H

e,p
==⇒ H ′ for

some e ∈ EH , p ∈ G. If G is clear from the context ⇒? denotes the reflexive-
transitive closure.

The definition of HRGs does not include a particular starting graph. Instead,
it is introduced as a parameter in the definition of the generated language.

Definition 6 (Language of a HRG). Let G ∈ HRGΣN
and H ∈ HGΣN

.
LG(H) = {K ∈ HGΣ | H ⇒? K} is the language generated from H using G.

We write L(H) instead of LG(H) if G is clear from the context. To define
the language of a nonterminal we introduce the notion of a handle which is a
hypergraph consisting of a single hyperedge attached to external vertices only.

Definition 7 (Handle). Given X ∈ Σ with rk(X) = n, an X-handle is the
hypergraph X• = ({v1, ..., vn}, {e}, [e 7→ v1...vn], [e 7→ X], v1...vn) ∈ HGΣ.

Thus L(X•) is the language induced by nonterminal X. For H ∈ HCΣN
,

L(H) denotes the set of corresponding concrete heap configurations. Note that
it is not guaranteed that L(H) ⊆ HCΣ , i.e., L(H) can contain invalid heaps.
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Definition 8 (Data Structure Grammar). G ∈ HRGΣN
is called a data

structure grammar (DSG) over ΣN if ∀X ∈ N : L(X) ⊆ HCSelΣ
. We denote

the set of all data structure grammars over ΣN by DSGΣN
.

Theorem 1. It is decidable whether a given HRG is a DSG.

Later we will see that DSGs are still too permissive for describing heap ab-
straction and concretisation. In Section 2.4, we will therefore refine this definition
to so-called heap abstraction grammars.

2.3 Execution of Program Statements

The overall goal of our framework is to reduce the large or even infinite program
state spaces induced by dynamic data structures. To this aim, heap configurations
are partially abstracted by backward application of replacement rules. As long
as pointer manipulations are applied to concrete parts of the heap, they can be
realised one-to-one. In order to avoid the need of defining an abstract semantics
we avoid manipulations on abstract parts by applying local concretisation steps
before. As pointers are not dereferenced backwards, restricting the dereferencing
depth to one reduces the (potentially) affected parts of the heap to those nodes
that are directly reachable from variable nodes by outgoing edges.

Definition 9 (Outgoing Edges). Let H ∈ HCΣ , v ∈ VH . The set of outgoing
edges at vertex v in H is defined as: out(v) = {e ∈ EH | att(e)(1) = v}.

In abstract heap configurations, variable vertices can have abstracted outgo-
ing edges derivable at connected nonterminal tentacles.

Definition 10 (Tentacle). Let X ∈ NΣ, i ∈ [1, rk(X)] the pair (X, i) is a
tentacle. (X, i) is a reduction tentacle if, for all H ∈ L(X•), out(extH(i)) = ∅.

Example 4. Reconsider the grammar of Fig. 2. (L, 3) is a reduction tentacle, as
no outgoing terminal edges are derivable at external vertex 3.

A heap configuration is inadmissible if variable nodes are connected to non-
reduction tentacles.

Definition 11 (Admissibility). For H ∈ HCΣN
, e ∈ EH , and i ∈ N, the

pair (e, i) is called a violation point if (lab(e), i) is not a reduction tentacle and
∃e′ ∈ EH : lab(e′) ∈ VarΣ ∧ att(e′)(1) = att(e)(1). H is called admissible if it
contains no violation point, and inadmissible otherwise.

Heap manipulations may introduce violation points. This inadmissibility can
be resolved by concretisation, that is, by considering all possible replacements
of the corresponding edge. Notice that concretisation generally entails nondeter-
minism, viz. one successor state for each applicable replacement rule.

Example 5. On the left side of Fig. 4, an inadmissible heap configuration is de-
picted. While its list object is only connected to concrete edges and reduction
tentacle (L, 3), there is a violation point at the shaded (L, 1)-tentacle. Concreti-
sation by applying both production rules of the grammar given in Fig. 2 results
in the two admissible configurations on the right.
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Fig. 4. Concretisation of inadmissible heap configurations

Theorem 2. For G ∈ HRGΣN
, H ∈ HCΣN

, e ∈ EH , X ∈ N with X = lab(e):

L(H) =
⋃

∀X→K∈G

L(H[K/e])

This theorem follows directly from the confluence property of HRGs [17].

While concretisation is realised by standard, forward application of produc-
tion rules, abstraction is handled by backward rule application. Thus we call
H ∈ HCΣN

an abstraction of H ′ ∈ HCΣN
if H ⇒? H ′. Obviously L(H ′) ⊆ L(H)

and therefore abstraction leads to an over-approximation of the state space. The
latter fact together with Theorem 2 yields the soundness of our heap abstraction
approach. We apply the principle “Abstract if possible – Concretise when nec-
essary” to obtain the best possible results in terms of the size of the resulting
state space.

2.4 Heap Abstraction Grammars

As mentioned before, DSGs are not sufficient in our setting. Additional restric-
tions that ensure termination and correctness of the abstraction technique are
listed and discussed in detail below.

Definition 12 (Heap Abstraction Grammar). G ∈ DSGΣN
is a heap ab-

straction grammar (HAG) over ΣN if:

(1) G is productive ∀X ∈ N : L(X•) 6= ∅
(2) G is increasing ∀X → H ∈ G : |EH | ≤ 1 ⇒ H ∈ HGΣ

(3) G is typed see below
(4) G is locally concretisable see below

We denote the set of all heap abstraction grammars over ΣN by HAGΣN
.

Productivity (1) is a well-known notion from string grammars, ensuring that
each abstract configuration represents at least one concrete configuration. A rule
is increasing if its right-hand side is “bigger” than the corresponding handle.
Increasing grammars (2) guarantee termination of abstraction, as applying rules
backwards reduces the size of the heap representation. We call a grammar typed
(3) if every concrete vertex has a well-defined type as induced by the set of
outgoing edges.

Definition 13 (Typedness). G ∈ DSGΣN
is typed if ∀X ∈ N, i ∈ [1, rk(X)].

∀H1, H2 ∈ L(X•) : type(X, i) := outH1
(extH1

(i)) = outH2
(extH2

(i)).
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As DSGs restrict the number of outgoing edges to a finite set of selectors,
every untyped nonterminal can be replaced by a typed one for each derivable
type.

Theorem 3. It is decidable whether a HRG is typed. For any untyped DSG an
equivalent typed DSG can be constructed.

Local concretisability (4) ensures that admissibility of a heap configuration
can be established within one concretisation step.

Example 6. Fig. 5(left) reconsiders the original heap configuration given in Fig. 4
with variable pos set to the tail of the list. This leads to an inadmissible config-
uration and two corresponding concretisations, cf. Fig. 5(right). While the first
concretisation is an admissible configuration, the second one remains inadmissi-
ble. Successive concretisations would lead to further inadmissible configurations.
Ignoring the second rule yields termination but is unsound as Theorem 2 requires
concretisations by every corresponding rule.

L

list

pos

head tail

3

1 2

1

1

L

list

pos

head tail

n

p

l
3

21

1

1

list

pos

head
tail

n

p

l

1

1

Fig. 5. Inadmissible concretisation

Let G ∈ HRGΣN
with p = X → H ∈ G. (X, i) →p (Y, j) denotes that (X, i)

can be replaced by (Y, j), i.e. extH(i) is connected to an (Y, j)-tentacle.

Example 7. For p the second rule of Fig. 2 it holds that (L, 3) →p (L, 3) and
(L, 3) →p (l, 2) denoting an incoming l-selector edge.

For simplicity we use GX as the set of all rules X → H ∈ G and GX = G\GX .

Definition 14 (Local Concretisability). G ∈ HRGΣN
is locally concretisable

if for all X ∈ N there exist grammars GX
1 , · · · , GX

rk(X) ⊆ GX such that:

1. ∀i ∈ [1, rk(X)], L
GX

i ∪GX (X•) = LG(X•)

2. ∀i ∈ [1, rk(X)], a ∈ type(X, i), p ∈ GX
i : (X, i) →p (a, 1)

Theorem 4. For each DSG an equivalent HAG can be constructed.

Property (1) can be achieved easily by removing non-productive rules, typed-
ness (3) by introducing new, typed nonterminals. The Local Greibach Normal
Form presented in the next section ensures properties (2) and (4), cf. Theorem 6.



10

3 Local Greibach Normal Form

The Greibach Normal Form (GNF) for string grammars restricts production rules
to the form X → aN1 . . . Nk such that using left derivation only a word w ∈
ΣnN? is derived after n derivation steps. Thus terminal words are constructed
from left to right extending a terminal prefix by one symbol each step.

Up to now there exists no uniform notion of a GNF for graph grammars. In
contrast to [6], where graph derivation is from outside to inside, we consider a
generalisation of GNF for strings where one-sided derivation is of interest.

Definition 15 (Local Greibach Normal Form). G ∈ DSGΣN
is in local

Greibach Normal Form (LGNF) if for every non-reduction tentacle (X, i) there
exists GX

i ⊆ GX with:

1. L
GX

i ∪GX (X•) = LG(X•)

2. ∀ p ∈ GX
i : (X, i) →p (Y, j) implies Y ∈ Σ or (Y, i) is a reduction tentacle.

Example 8. Strings can be uniquely represented by HGs containing chains of
terminal edges only, production rules can be translated to HRGs analogously
[7]. In Fig. 6, graph representations for word w = aab and string grammar
N → aN | b are given. As nonterminals are of rank two and (X, 2) is a reduction
tentacle for each nonterminal X exactly one GX

i remains namely GX
1 containing

the string GNF rules.

a a b

(a) String Representation
N → 1 N 2

a 1 2
1 2

b

(b) String Grammar Representation

Fig. 6. String Graphs

The LGNF for DSG G is established by merging corresponding sets GX
i ,

constructed in four steps along the lines of the GNF construction for string
grammars: Assume a total order on the non-reduction tentacles T1, . . . , Tn over
N . Starting at the lowest tentacle, (1) every rule p implicating Ti →p Tj with
j < i is eliminated, then (2) local recursion is removed. In a next step (3) all
rules are brought into LGNF using simple hyperedge replacements. Finally (4)
rules for nonterminals introduced during the construction are transformed. In
the following we guide through the four construction steps and define them in
detail.

For each non-reduction (X, i)-tentacle we initialise the set GX
i = GX and define

an ordinal inducing an ordering T1, . . . , Tn on non-reduction tentacles Ti.

Step 1: Elimination of rules. We first eliminate the rules p = X → H ∈ GX
i

with (X, i) = Tk →p Tl, l < k. Let Tl = (Y, j), e ∈ EH with lab(e) = Y and
att(e)(j) = ext(i). Then p is replaced by the set {X → H[K/e] | Y → K ∈ GY

j }.
Theorem 2 states that this procedure does not change the language.

Lemma 1. Let G ∈ HRGΣN
. For a grammar G′ originating from G by elimi-

nating a production rule, it holds that LG(H) = LG′(H), ∀H ∈ HGΣN
.

Note that GY
j does not contain any rule p with Tl →p Tm, m < l, as they

are removed before. Thus after finitely many steps all corresponding rules are
eliminated.
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Step 2: Elimination of local recursion. After step 1, rules p with Ti →p Ti remain.

Definition 16 (Local Recursion). Let G ∈ HRGΣN
, X ∈ N , i ∈ [1, rk(X)].

G is locally recursive at (X, i) if there exists an rule p with (X, i) →p (X, i).

Let GX
r ⊆ GX

i be the set of all rules locally recursive at (X, i). To remove local
recursion in p = X → H ∈ GX

i we introduce a new nonterminal B′
j , a recursive

rule B′
j → Jn and an exit rule B′

j → Jt. Jt corresponds to graph H, where edge
e causing local recursion is removed. We also remove all external nodes singly
connected to e (VR = {v ∈ [extH ] | ∀e′ ∈ EH : v ∈ [attH(e′)] ⇒ e = e′}).
By removing border-edge e, its previously connected internal nodes move to the
border and get external. Thus Vext = ([attHj

(e)] ∪ [extHj
]) ∩ VJt

is the set of
arbitrary ordered external nodes.

Jn extends Jt by an additional edge e′ labelled by B′
j . As this edge models

the structure from the other side, it is connected to the remaining external nodes
of H that will not be external any longer. Note that the rank of B′

j is already
given by Jt and therefore introduced gaps in the external sequence are filled by
new external nodes that are connected to edge e′ (fill(i) = extJt

(i) if extJt
(i) ∈

VH , a new node otherwise). To build up the same structure as (X, i) “from the
other side” edge e′ has to be plugged in correctly:

plug(g) =

{
extHj

(y) if extJn
(g) ∈ VJt

extJt
(g) otherwise

, with attHj
(e)(y) = extJt

(g).

B′
j → Jt with:

VJt
= VHj

\ VR(e)
EJt

= EHj
\ {e}

labJt
= labHj

¹ EJt

attJt
= attHj

¹ EJt

extJt
∈ V ∗

ext

B′
j → Jn with:

VJn
= VJt

∪ [extJn
]

EJn
= EJt

∪ {e′}
labJn

= labJt
∪ {e′ → B′

j}

attJn
= attJt

∪ {e′ → plug}
extJn

= fill

Newly introduced nonterminals are collected in a set N ′, Σ′ = Σ ∪ N ′. For
mirrored derivations, each terminal rule in GX

i can be the initial one thus we
add a copy, extended by an additional B′

j-edge, the GX
i .

Lemma 2. Let G ∈ DSGΣN
. For the grammar GX

i over Σ′ = Σ ∪ {B′ |
B′ newly introduced nonterminal} originating from G by eliminating the (X, i)-
local recursion as described above, it holds that LG(H) = LGX

i
(H),∀H ∈ HGΣN

.

Example 9. The doubly-linked list HRG with production rules L → H | J given
in Fig. 2 is locally recursive at (L, 2). We introduce nonterminal B′ and the rules
B′ → Jt | Jn, cf. Fig. 7. The terminal Jt corresponds to J with removed L-edge
and attached external node ext(2). Jn is a copy of Jt with an additional B′-edge
and replaced external node ext(1). Intuitively, local recursion is eliminated by
introducing new production rules which allow “mirrored” derivations.

Step 3: Generation of Greibach rules. Starting at the highest order tentacle, for
each GX

i LGNF can be established by elimination of every non-reduction (Y,j)-
tentacle connected to external node i. That is because (Y,j) is of higher order
and thus already in LGNF.



12

B
′ → 3 1 2

n

p

l

3 1 B′ 2

n

p

l

3

1 2

Fig. 7. Doubly-Linked Lists: G
B′

2

Step 4: Transforming new nonterminals to GNF . In the final step we apply
steps one to three to the newly added nonterminals from step two. Obviously
further nonterminals could be introduced. To avoid nontermination we merge
nonterminals if the right-hand sides of the corresponding production rules are
equal.

Theorem 5. After finite many steps a nonterminal can be merged, thus the
construction of LGNF terminates.

Note that step 2 is nondeterministic as the order on external nodes can be cho-
sen arbitrary. Unnecessary steps introduced by unsuitable orders can be avoided
by considering permutations of external nodes isomorphic. If we reach an iso-
morphic nonterminal after arbitrary many steps all nonterminals in between
represent the same language and thus can be merged as long as the rank of the
nonterminals permit this.

Example 10. Applying steps 1 to 3 to GB′

1 results in a new nonterminal B′′

isomorphic to L. Thus we can merge L with B′′ and even B′ as the latter occurred
between the formers.

Theorem 6. Any DSG can be transformed into an equivalent DSG in LGNF.

Note that LGNF directly implies the local concretisable property of HAGs.
It additionally ensures the increasingness property, as every production rules
belongs to at least one GX

i composed by rules with terminal edges at external
node ext(i).

Lemma 3. Each DSG in LGNF is increasing.

While we restrict the normalisable grammars to DSGs here the procedure
can easily be lifted to arbitrary bounded HRGs.

4 Related Work

The idea of using HRGs for verifying heap manipulating programs was proposed
in [8, 15]. No technique for transforming a given HRG into a suitable grammar was
provided though, instead using the GNF construction from [6] was proposed, al-
lowing hypergraphs to be concretised from outer to inner. This generally resultsg
in more and larger rules compared to our LGNF approach, as LGNF generalises
GNF, i.e. every resulting grammar from [6] is in LGNF. Considering the example
grammar for binary trees with linked frontier [6], its GNF consists of 135 produc-
tion rules whereas our local Greibach construction results in 36 rules. In number
of nodes and edges our largest rule is half the size of the normalised example
rule given in [6]. Note that [6] restricts the input grammars to bounded ones,
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i.e. those allowing only boundedly many references to each object, excluding for
instance rooted grammars like the one given in Fig. 2. Adapting the construc-
tion to HAGs without additional restrictions lead to a complex construction with
poor results.

A further GNF approach for HRGs can be found in [5]. The basic idea is to
use the string GNF construction on a linearisation of the considered HRG. It
is however not clear how to re-obtain the HRG from the resulting linearisation.
Further normal form constructions addressing node replacement can be found in
[16] and [9].

5 Conclusion

This paper presented the theoretical underpinnings of heap abstraction using
hyperedge replacement grammars (HRGs). We showed that concretisation and
abstraction are naturally obtained by forward and backward rule application
respectively. The main contribution is a Greibach normal form (GNF) together
with a procedure to transform an HRG into (local) GNF.

Future work will concentrate on advancing our prototypical tool [8], incre-
mental LGNF construction, and on the automated synthesis of heap abstraction
grammars from program executions.
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A Decidability of DSG

Theorem 1 in section 2 states that it is decidable whether a grammar G ∈
HRGΣN

is a DSG. We will proof the decidability for productive grammars. For
completeness we start with a procedure to transform an arbitrary HRG into an
equivalent productive one.

A nonterminal X ∈ N is non-productive iff L(N•) = ∅. For a grammar G
we collect productive nonterminals in the set productive. We initialise the set
with all nonterminals X ∈ N , where at least one X-rules has a terminal graph
as right-hand side, i.e. X → H, with H ∈ HGΣ . Nonterminals X are added
iteratively if there is a rule X → H such that all nonterminals occuring in H are
productive, i.e. if {lab(e) |∀e ∈ EH : lab(e) ∈ N} ⊆ productive holds. Since the set
of nonterminals is finite this procedure will terminate eventually. We then remove
the non-productive nonterminals from the alphabet and any rule containing at
least one of them from the grammar. This will not change the language of G
as each of these removed rules yields hypergraphs containing the non-productive
nonterminal Y and therefore cannot be applied to derive a terminal graph. The
resulting Grammar is productive.

To check if a productive grammar G ∈ HRGΣN
is a DSGΣN

we check for
each rule X → H ∈ G and node v ∈ VH if v is connected to a variable, i.e.:

∃e ∈ EH , lab(e) ∈ VarΣ , att(e)(1) = v, (1)

or if an outgoing selector can be derived more then once at v, i.e.:

∃e1, e2 ∈ EH : lab(e1) = X ∧ lab(e2) = Y ∧ att(e1)(i) = att(e2)(j) = v

∧term((X, i)) ∩ term((Y,j)) 6= ∅. (2)

where term(Ti) recursively determines the set of derivable selectors for each
tentacle Ti = (X, i):

term((X, i)) =







{X} if X ∈ Σ ∧ i = 1
∅ if X ∈ Σ ∧ i = 2

⋃

∀Tj :(X,i)→pTj

term(Tj) otherwise

As the sets term(Ti) ⊆ Σ are bounded the sets can be calculated incremen-
tally. If none of the properties (1) and (2) holds G is a DSG, otherwise it is
not.

B Typedness for DSGs

We split Theorem 3 into two lemma (Lemma 5, 6) and proof them seperately.
For simplicity we introduce the notion of typedness on hypergraphs and relate
them to the notion of typedness of HRGs introduced in Definition 13.
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Definition 17 (Type of a Hypergraph). Let H ∈ HGΣN
, i ∈ [1, |extH |]

the type-sequence of H, type(H) = type(H)(1) . . . type(H)(|extH |) is defined by:
type(H)(i) = outH(extH(i)).

The set of types of a nonterminal is defined as types(N) = {type(H) | H ∈
L(N)}.

Lemma 4. A grammar G ∈ DSGΣN
is typed iff for any nonterminal X ∈ N it

holds that |types(N)| = 1.

Lemma 4 directly holds by definition of typedness.

Lemma 5. It is decidable whether a HRG is typed.

Proof. We can check if a DSG G is typed by checking if for each X ∈ N , i ∈
[1, rk(X)] and any pair of rules X → H1 | H2 the set of concretisable outgoing
edges is equal:

⋃

∀Ti∈TentH1
(extH1

(i))

term(Ti) =
⋃

∀Ti∈TentH2
(extH1

(i))

term(Ti), (3)

where TentH(v) = {(Y, i) | ∀Y ∈ N, i ∈ [1, rk(Y )],∃e ∈ EH : labH(e) =
Y ∧ attH(e)(j) = v} is the set of tentacles connected to node v. If property (3)
holds for each X ∈ N , i ∈ [1, rk(X)] and any pair of rules X → H1 | H2, G is
typed, otherwise it is not.

Lemma 6. For any untyped DSG G a typed DSG G′ can be constructed, where

the languages of G and G′ are equivalent, i.e.
⋃

X∈N

LG(X•) =
⋃

X∈N ′

L′
G(X•).

Proof. We transform a given grammar G ∈ DSGΣN
into an equivalent typed

grammar G′ ∈ DSGΣN′
with N ′ = {(X, T ) ∈ N × P(Σ) | T ∈ types(X)} with

rk((X, T )) = rk(X), by replacing every nonterminal with a set of corresponding
typed ones. We first generate a set of right-hand side graphs with replaced non-
terminals for each nonterminal X ∈ N : RX = {t(H)| X → H ∈ G}, with t(H)
the set of graphs derived from H by replacing old nonterminals from N by new
ones from N ′:

t(h) = {H[e1/X1
•] . . . [ek/Xk

•] | {e1 . . . ek} = EN ,∀Xi = (lab(ei), T ) ∈ N ′},

T ∈ types(lab(ei)),

where EN = {e ∈ EH | lab(e) ∈ N} is the set of edges labelled with nonter-
minals. The grammar G′ is defined as follows:

G′ = {(X, T ) → H | X ∈ N ′ ∧ H ∈ RX : type(H) = T}

The definition of G′ obviously implies typedness.

It remains to show, that the languages of G and G′ are equivalent, i.e

∀H ∈ HGΣ : ∃X ∈ N : X• ⇒∗ H ⇐⇒ ∃X ∈ N ′ : (•X) ⇒∗ H
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“⇐=”: Let (X, T )•[e1/K1] . . . [en/Kn] = H a derivation for a given HG H ∈
HGΣ in G′. We obtain the derivation X[e′1/K ′

1] . . . [e
′
n/K ′

n] = H in G by sim-
ply replacing any occurring edge labelled by a nonterminal (X, T ) /∈ N by the
corresponding untyped nonterminal, i.e. K ′

i = (VKi
, EKi

, labK′

i
, attKi

, extKi
),

where labK′

i
(e) = labKi

(e) if labKi
(e) ∈ N and labK′

i
(e) = X if labKi

(e) =
(X, T ). The resulting replacement sequence is valid, since typed edges and
hypergraphs are of the same rank as the corresponding untyped ones. Fur-
thermore the replacement sequence is a valid derivation in G, as each rule
(X, T ) → t(H) ∈ G′ is a copy from a rule X → H ∈ G except from nonter-
minal relabelling.

“=⇒”: Starting from an arbitrary derivation X•[e1/K1] . . . [en/Kn] = H in G
we construct a corresponding derivation (X, T )•[e′1/K ′

1] . . . [e
′
n/K ′

n] = H in
G′. Analogous to above we use graphs K ′

i = (VKi
, EKi

, labK′

i
, attKi

, extKi
)

but here we have to determine a suitable type for each nonterminal edge.
Note that within the derivation each introduced nonterminal edge e′j ∈ EN

K′

i

will be replaced lateron as the resulting hypergraph H is a terminal graph,
i.e. H ∈ HGΣ . We will give e′j an appropriate label (labKi

(ej), type(K ′
j))

such that the j-th replacement can be realised properly, i.e. labK′

i
(e′j) =

(labKi
(e), type(K ′

j)), thus all nonterminal edges e ∈ K ′
i are labelled with

corresponding typed nonterminals. The types of all K ′
i are determined from

right to left, starting with the terminal graph K ′
n. As each rule in G has

a copy in G′ for any combination of edge labels extended by types and as
lab(ei) → Ki ∈ G there is also a rule lab(ei) → Ki for each i ∈ [1 . . . n].

C Local Greibach Normal Form

The most demanding part of the Greibach Normal Form construction is the elim-
ination of local recursion. New nonterminals and production rules are generated
during this process, while the language must not change.

We show the following statement implying Lemma 2.

Lemma 7. Let G ∈ DSGΣN
. For the grammar GX

i over Σ′ = Σ ∪ {B′ |
B′ newly introduced nonterminal} originating from G by eliminating the (X, i)-

local recursion, it holds that ∀H ∈ HGΣN
, K ∈ HGΣ : (H

G
⇒ K) ⇔ (H

GX
i⇒ K).

Proof. Note that, as HRGs are context free, for any H ∈ HGΣN
, and e1, e2 ∈

EH H[e1/K1][e2/K2] = H[e2/K2][e1/K1]. Therefore we can reorder replacement
sequences as long as we ensure, that edges are not replaced before they are
introduced, i.e. ej ∈ EKi

=⇒ j > i. For any replacement [e/K] of a sequence we
define the set of successors of [e/K] recursively by

successors([e/K]) =
⋃

e′∈EN
K

successors([e′/K ′]) ∪ EN
K .

We split GX
i into the set of old production rules Pold, i.e. productions which

are adopted from G without changings, and the set of new production rules Pnew,
i.e. productions generated during elimination of local (X, i)-recursion. We know
that all rules from Pnew are of the form X → HB or B → Jn | Jt, where EXn

contains an edge labelled with B.
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“⇐=” : We reorder a given derivation H ⇒∗ K : H[e1/K1] . . . [en/Km] = K
such that each [ei/Ki], with lab(ei) → Ki ∈ Pnew is directly succeeded by
the elements of {[e/K] ∈ successors([ei/Ki]) | lab(e) → K ∈ Pnew}, i.e. the
successors contained in Pnew. This yields the following derivation:

H [e1/K1] . . . [ei−1, Ki−1]
︸ ︷︷ ︸

∈Pold

[ei/Ki] . . . [ej/Kj ]
︸ ︷︷ ︸

∈Pnew

[ej/Kj+1] · · · = K

Note that there can be more then one or none subderivations [ei/Ki] . . . [ej/Kj ]
from Pnew. (*) The replacements before the first of such subderivations do not
contain any rules from Pnew and thus no edge labelled with B is introduced.
Therefore H[e1/K1] . . . [ei−1, Ki−1] ∈ HGΣN

can be derived in G accordingly.

X → i

Xt1 X

i

Xt2

i

X

i

Xt3

i

Fig. 8.

Consider the grammar G given in Figure 8. By construction we know that
Pnew is of the form given in Figure 9 and the subderivation has the following
form:

H[ei/K][ei+1/Jn1
] . . . [ej−1/JNj−2

][ej/Jt] = K ′ ∈ HGΣN
.

X → i

BXt1

B →
BXt2 BXt3

Xt2 Xt3

Fig. 9.

We show by induction over the amount n of B → Jn rules, that for any such
sequence a corresponding derivation H ⇒∗ K ′ in G exists.
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(IB) n = 0: We consider the derivation H1
X→HB⇒ H2

B→Jt⇒ K ′ of GX
i , see

Figure 9 for rules. The corresponding derivation in G is given by H1
X→Xn⇒

H ′
2

X→Xt⇒ K ′, where X → Xn generates the nodes and edges from B → Jt

while the remaining graph is generated by X → Xt.

(IH) A corresponding derivation can be found for an arbitrary but fixed
number n of rule applications B → Jn, n ∈ N.

(IS) n → n + 1: Consider the derivation

H
X→HB⇒ H1

B→Jn1⇒ · · ·
B→Jnn+1

⇒ Hn+1
B→Jt⇒ K ′

By (IH) we know that

H
X→HB⇒ H1

B→Jn1⇒ · · ·
B→Jnn⇒ Hn

B→Jt⇒ = K ′

can be simulated in G via

H
X→Xn⇒ H ′

1

X→Xn1⇒ · · ·
X→Xnn⇒ H ′

n
X→Xt⇒ K ′.

We extend this derivation by inserting the rule X → Xnn+1
corresponding to

B → Jnn+1
at the beginning of the derivation. See Figure 10 for the corre-

spondence of the GX
i - and the G-derivation. Note that graph parts derived

during the i-th derivation step of GX
i , are derived in G by derivation step

(n + 1)− (i− 1) = n + 2− i, where n + 1 is the overall number of derivation
steps.

H
X→Xn⇒ H ′

1

X→Xnn+1

⇒ H ′
2

X→Xn1⇒ · · ·
X→Xnn⇒ H ′

n+1
X→Xt⇒ K ′.

Xt3 Xt2H1 Xt1 Xt2 Xt3 Xt2 H2B

Xt1 Xt2H1 Xt3 Xt2 Xt3 Xt2 H2X

Fig. 10.
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“=⇒” : Analogous, by considering subderivations of local (X, i)-recursive rules.

The remaining derivation H[ej/Kj+1] · · · = K is handled exactly the same
way, starting from (*). Thus every K ∈ HGΣ derivable in GX

i is derivable in G.

During the LGNF construction further nonterminals are introduced when
removing local recursion. As for this newly introduced nonterminals LFNG has
to established, we have to make sure, that only finitely many new nonterminals
are generated. We achieve this by merging nonterminals with equal right-hand
sides.

Theorem 7. After finitely many steps a nonterminal can be merged, thus the
construction of LGNF terminates.

Proof (Cyclic nonterminal reappearance). By construction we know that for ev-
ery locally recursive rule exactly two production rules for the new nonterminal B
are generated. The first is obtained from the respective original rule, where the
locally recursive edge and corresponding external nodes are removed. The second
is a copy of the first rule with an additional nonterminal edge labelled with B
on the right-hand side. This means that the subgraph used as basis for the con-
struction of production rules for new nonterminals remains the same. In addition
exactly one edge (labelled with B) is used for construction. As there exist only
finally many possibilities to combine subgraph and edge eventually a nontermi-
nal will be produced whose associated rules coincide with those of an already
existing nonterminal (up to renaming). Thus we can merge these nonterminals
as any further constructed production rules would be redundant.
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