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A Dependency Pair Framework for Innermost

Complexity Analysis of Term Rewrite Systems*

Lars Noschinski!, Fabian Emmes?, and Jiirgen Giesl?

! Tnstitut fiir Informatik, TU Munich, Germany
2 LuFG Informatik 2, RWTH Aachen University, Germany

Abstract. We present a modular framework to analyze the innermost
runtime complexity of term rewrite systems automatically. Our method
is based on the dependency pair framework for termination analysis. In
contrast to previous work, we developed a direct adaptation of successful
termination techniques from the dependency pair framework in order to
use them for complexity analysis. By extensive experimental results, we
demonstrate the power of our method compared to existing techniques.

1 Introduction

In practice, termination is often not sufficient, but one also has to ensure that
algorithms terminate in reasonable (e.g., polynomial) time. While termination
of term rewrite systems (TRSs) is well studied, only recently first results were
obtained which adapt termination techniques in order to obtain polynomial com-
plexity bounds automatically, e.g., [2-5,7,9,15,16,19-21,23,26,27]. Here, [3,15,16]
consider the dependency pair (DP) method [1,10,11,14], which is one of the most
popular termination techniques for TRSs.> Moreover, [27] introduces a related
modular approach for complexity analysis based on relative rewriting.

Techniques for automated innermost termination analysis of term rewriting
are very powerful and have been successfully used to analyze termination of
programs in many different languages (e.g., Java [24], Haskell [12], Prolog [25]).
Hence, by adapting these termination techniques, the ultimate goal is to obtain
approaches which can also analyze the complexity of programs automatically.

In this paper, we present a fresh adaptation of the DP framework for inner-
most runtime complexity analysis [15]. In contrast to [3,15,16], we follow the
original DP framework closely. This allows us to directly adapt the several termi-
nation techniques (“processors”) of the DP framework for complexity analysis.
Like [27], our method is modular. But in contrast to [27], which allows to inves-
tigate derivational complexity [17], we focus on innermost runtime complexity.
Hence, we can inherit the modularity aspects of the DP framework and benefit
from its transformation techniques, which increases power significantly.

* Supported by the DFG grant GI 274/5-3.

3 There is also a related area of implicit computational complexity which aims at
characterizing complexity classes, e.g., using type systems [18], bottom-up logic pro-
grams [13], and also using termination techniques like dependency pairs (e.g., [20]).



After introducing preliminaries in Sect. 2, in Sect. 3 we adapt the concept
of dependency pairs from termination analysis to so-called dependency tuples
for complexity analysis. While the DP framework for termination works on DP
problems, we now work on DT problems (Sect. 4). Sect. 5 adapts the “processors”
of the DP framework in order to analyze the complexity of DT problems. We
implemented our contributions in the termination analyzer AProVE. Due to the
results of this paper, AProVE was the most powerful tool for innermost runtime
complexity analysis in the International Termination Competition 2010. This
is confirmed by our experiments in Sect. 6, where we compare our technique
empirically with previous approaches. All proofs can be found in the appendix.

2 Runtime Complexity of Term Rewriting

See e.g. [6] for the basics of term rewriting. Let T (X, V) be the set of all terms
over a signature X' and a set of variables V where we just write 7 if X and V are
clear from the context. The arity of a function symbol f € X' is denoted by ar(f)
and the size of a term is x| = 1 for x € V and | f(t1,...,tn)| = 1+ |t1]|+. ..+ [tn].
The derivation height of a term ¢ w.r.t. a relation — is the length of the longest
sequence of —-steps starting with ¢, i.e., dh(t,—) =sup{n | € T, t =" t'},
cf. [17]. Here, for any set M C NU{w}, “sup M” is the least upper bound of M.
Thus, dh(t,—) = w if ¢ starts an infinite sequence of —-steps.

As an example, consider R = {dbl(0) — 0, dbl(s(x)) — s(s(dbl(x)))}. Then
dh(dbl(s™(0)), > ) = n+ 1, but dh(dbl"(s(0)), =) = 2" +n — 1.

For a TRS R with defined symbols Xy = {root({) | £ — r € R}, a term
flty, ... ty) is basic if f € Xy and t4,...,t, do not contain symbols from Y.
So for R above, the basic terms are dbl(s™(0)) and dbl(s"(z)) for n € N, z € V.
The innermost runtime complexity function ircg maps any n € N to the length
of the longest sequence of -»z-steps starting with a basic term ¢ with [¢t| < n.
Here, “5%” is the innermost rewrite relation and 73 is the set of all basic terms.

Definition 1 (ircg [15]). For a TRS R, its innermost runtime complexity
function ircg :N—NU{w} is ircg(n) = sup{dh(t, Bgr) |t € Tp, [t| < n}.

If one only considers evaluations of basic terms, the (runtime) complexity of
the dbl-TRS is linear (ircg(n) =n — 1 for n > 2). But if one also permits evalu-
ations starting with dbl”(s(0)), the complexity of the dbl-TRS is exponential.

When analyzing the complexity of programs, one is typically interested in (in-
nermost) evaluations where a defined function like dbl is applied to data objects
(i.e., terms without defined symbols). Therefore, (innermost) runtime complexi-
ty corresponds to the usual notion of “complexity” for programs [4,5]. So for any
TRS R, we want to determine the asymptotic complezity of the function ircg.

Definition 2 (Asymptotic Complexities). Let € = {Poly, Poly, Pols, ..., 7}
with the order Poly T Poly = Poly C ... C 7. Let T be the reflexive closure of .
For any function f: N — NU{w} we define its complexity ¢(f) € € as follows:
t(f) = Poly if k is the smallest number with f(n) € O(n*) and (f) =7 if there
is no such k. For any TRS R, we define its complexity (g as t(ircg).



So the dbl-TRS R has linear complexity, i.e., tg = Pol1. As another example,
consider the following TRS R where “m” stands for “minus”.

Example 3. m(z,y) — if(gt(z, y), x,y) gt(0, k) — false p(0)—0
if(true, z,y) — s(m(p(x),y)) gt(s(n),0) — true p(s(n)) —n
if(false, z,y) =0 gt(s(n),s(k)) — gt(n, k)

Here, 1g = Poly (e.g., m(s"(0),s¥(0)) starts evaluations of quadratic length).

3 Dependency Tuples

In the DP method, for every f € ¥; one introduces a fresh symbol f* with ar(f)
= ar(f*). For a term t = f(t1,...,t,) with f € Xy we define t* = f#(t1,...,t,)
and let 7% = {#* | t € T,root(t) € Xy }. Let Pos(t) contain all positions of ¢ and
let Posq(t) = {7 | m € Pos(t),root(t|x) € Xq}. Then for every rule { — r with
Posa(r) = {m1,...,m,}, its dependency pairs are (¢ — r|% , ... 04 = [t .
While DPs are used for termination, for complexity we have to regard all
defined functions in a right-hand side at once. Thus, we extend the concept
of weak dependency pairs [15,16] and only build a single dependency tuple £ —
[r|§,l, . ,r\ﬁrn] for each £ — r. To avoid handling tuples, for every n > 0, we intro-

duce a fresh compound symbol CoM,, of arity n and use ¢# — CoM, (r[% ,...,7[% ).

Definition 4 (Dependency Tuple). A dependency tuple is a rule of the form
st — Comy, (5, ... 1) for st %, ... th € TH. Let £ — r be a rule with Posg(r) =
{m1,...,m}. Then DT({ — r) is defined* to be (* — CoM,(r|% ,...,r[% ). For
a TRSR, let DT(R) ={DT({ —r)|{—1reR}.

Ezample 5. For the TRS R from Ex. 3, DT(R) is the following set of rules.

m* (z,y) — Coma (if (gt(w, ), 7, y), gt* (z,)) (1) p*(0) — Comy (4)

if? (true, z, y) — CoMa(m* (p(z), y), p* (z)) 2)  p’(s(n))— Comp (5)
if* (false, z, ) — CoMy (3)  gt*(0,k)— Comy (6)
gt?(s(n), 0) — CoMy (7)

gt*(s(n), s(k)) = Com (gt (n, k)) (8)

For termination, one analyzes chains of DPs, which correspond to sequences
of function calls that can occur in reductions. Since DTs represent several DPs,
we now obtain chain trees. (This is analogous to the path detection in [16]).

Definition 6 (Chain Tree). Let D be a set of DTs and R be a TRS. Let T
be a (possibly infinite) tree whose nodes are labeled with both a DT from D and
a substitution. Let the root node be labeled with (s* — Com,(...) | o). Then T
is a (D, R)-chain tree for sto if the following holds for all nodes of T: If a node

is labeled with (uf — CoMpy, (vF, ... v2) | p), then ufp is in normal form w.r.t.
R. Moreover, if this node has the children (pti — CoMp, (-2) | T1)y- ety (pnk —
CoMy,, (-..) | T), then there are pairwise different iy, ... i, € {1,...,m} with

4 To make DT (¢ — r) unique, we use a total order < on positions where m1 < ... < my.



|

[ mé (2, y) = Cona(ifi(gt(r,y), 7,9) gt (+,9)) | o

[if (true, z,y) — Comz(m (p(x), 9), p'()) | o | |8t (s(n).0) — Cowo | 4]
|
[ mé(,y) = Coma(ifi(gt(r,y), 2,9) g8 (2.,9) | 7| |pF(s(m)) = Como | 4]
|
’if”(false,ac,y) — CoMmp | 7-‘ ’gt’i(o, k) — Comp | ,u‘

Fig. 1. Chain Tree for the TRS from Ex. 3

v?ju Ly pgTj for all j € {1,...,k}. A path in the chain tree is called a chain.’

Example 7. For the TRS R from Ex. 3 and its DTs from Ex. 5, the tree in Fig.
1is a (DT(R),R)-chain tree for m#(s(0),0). Here, we use substitutions with

o(x) =s(0) and o(y) =0, 7(x) = 7(y) = 0, and u(n) = pu(k) = 0.

For any term s* € T*, we define its complexity as the maximal number of
nodes in any chain tree for sf. However, sometimes we do not want to count all
DTs in the chain tree, but only the DT's from some subset S. This will be crucial
to adapt termination techniques for complexity, cf. Sect. 5.2 and 5.4.

Definition 8 (Complexity of Terms, CPZx(D,S,R))- Let D be a set of depen-
dency tuples, S C D, R a TRS, and s* € T*. Then Cpla:w’s,m(sn) € NU{w} is
the mazimal number of nodes from S occurring in any (D, R)-chain tree for s*.
If there is no (D, R)-chain tree for st, then Cplx<D7S,R>(sﬁ) =0.

Ezample 9. For R from Ex. 3, we have Cple pr(r) pr(r) =) (M*(s(0),0)) = 7,
since the maximal tree for m(s(0),0) in Fig. 1 has 7 nodes. In contrast, if S is
DT(R) without the gt*-DTs (6) — (8), then Cplz pr(r).s.r)(m?(s(0),0)) = 5.

Thm. 10 shows how dependency tuples can be used to approximate the
derivation heights of terms. More precisely, Cplz pr(r), pr(R),R) () is an up-
per bound for t’s derivation height, provided that ¢ is in argument normal form.

Theorem 10 (Cplr bounds Derivation Height). Let R be a TRS. Let t =
flr,. . ty) € T bein argument normal form, i.e., all t; are normal forms
w.r.t. R. Then we have dh(t, »r) < Cplz pr(r), pr(R).R) (t). If R is confluent,

we ha'Ue dh(t, I_>R) - Cplx<DT(R),DT(R),R> (tﬁ) .

Note that DTs are much closer to the original DP method than the weak
DPs of [15,16]. While weak DPs also use compound symbols, they only consider
the topmost defined function symbols in right-hand sides of rules. Hence, [15,16]
does not use DP concepts when defined functions occur nested on right-hand

5 These chains correspond to the “innermost chains” in the DP framework [1,10,11].
To handle full (i.e., not necessarily innermost) runtime complexity, one would have
to adapt Def. 6 (e.g., then u*i would not have to be in normal form).



sides (as in the m- and the first if-rule) and thus, it cannot fully benefit from the
advantages of the DP technique. Instead, [15,16] has to impose several restric-
tions which are not needed in our approach, cf. Footnote 10. The close analogy
of our approach to the DP method allows us to adapt the termination tech-
niques of the DP framework in order to work on DTs (i.e., in order to analyze
Cplz pr(r),DT(R),R) (t*) for all basic terms t of a certain size). Using Thm. 10,
this yields an upper bound for the complexity 1z of the TRS R, cf. Thm. 14.
Note that there exist non-confluent TRSs® where Cplz pr () pr(r) R) (th) is ex-
ponentially larger than dh(¢,-»%) (in contrast to [15,16], where the step from
TRSs to weak DPs does not change the complexity). However, our main interest
is in TRSs corresponding to “typical” (confluent) programs. Here, the step from
TRSs to DTs does not “lose” anything (i.e., one has equality in Thm. 10).

4 DT Problems

Our goal is to find out automatically how large Cplz p s ) (t*) could be for basic
terms ¢ of size n. To this end, we will repeatedly replace the triple (D, S, R) by
“simpler” triples (D', S, R’) and examine Cplz p,, S/,R/)(tu) instead.

This is similar to the DP framework where termination problems are repre-
sented by so-called DP problems (consisting of a set of DPs and a set of rules)
and where DP problems are transformed into “simpler” DP problems repeatedly.
For complexity analysis, we consider “DT problems” instead of “DP problems”
(our “DT problems” are similar to the “complexity problems” of [27]).

Definition 11 (DT Problem). Let R be a TRS, D a set of DTs, S C D. Then
(D,S,R)is a DT problem and R’s canonical DT problem is (DT(R),DT(R),R).

Thm. 10 showed the connection between the derivation height of a term and
the maximal number of nodes in a chain tree. This leads to the definition of the
complezity of a DT problem (D,S,R). It is defined as the asymptotic complexity
of the function ircp sy which maps any number n to the maximal number of
S-nodes in any (D, R)-chain tree for t*, where t is a basic term of at most size n.

Definition 12 (Complexity of DT Problems). For a DT problem (D,S, R),
its complexity function is irc(p s ry(n) = sup{ Cplz p s ) () |t € Tp,|t| <n}.
We define the complexity t(p s ) of the DT problem as i(irc(p s r))-

Ezample 13. Consider R from Ex. 3 and let D = DT(R) = {(1),...,(8)}. For
t € Tp with |t| = n, the maximal chain tree for t* has approximately n? nodes,
ie., ircip pry(n) €O(n?). Thus, (D,D,R)’s complexity is vip p ry=Pols.

Thm. 14 shows that to analyze the complexity of a TRS R, it suffices to ana-
lyze the complexity of its canonical DT problem: By Def. 2, 1 is the complexity
of the runtime complexity function ircg which maps n to the length of the longest
innermost rewrite sequence starting with a basic term of at most size n. By Thm.
10, this length is less than or equal to the size Cplz (R, pr(R),R) (t*) of the max-

6 Consider the TRS f(s(z)) — f(g(z)), g(z) — =, g(z) — a(f(x)). Its runtime complex-
ity is linear, but for any n > 0, we have Cplzpr(r) pr(R),R) (fu (s"(0))) = 2"+ — 2.



imal chain tree for any basic term ¢ of at most size n, i.e., to irc(prw), pT(R),R) (n).

Theorem 14 (Upper bound for TRSs via Canonical DT Problems).
Let R be a TRS and let (D, D, R) be the corresponding canonical DT problem.
Then we have t1r C vippry and if R is confluent, we have tr = (p pR)-

Now we can introduce our notion of processors which is analogous to the “DP
processors” for termination [10,11] (and related to the “complexity problem
processors” in [27]). A DT processor transforms a DT problem P to a pair
(¢, P') of an asymptotic complexity ¢ € € and a DT problem P’, such that P’s
complexity is bounded by the maximum of ¢ and of the complexity of P’.

Definition 15 (Processor, &). A DT processor PROC is a function PROC(P)
= (¢, P") mapping any DT problem P to a complexity ¢ € € and a DT problem
P'. A processor is sound if tp C c® vpr. Here, “®” is the “mazimum” function
on €, i.e., for any c,d € €, we define cdd=d if cC d and c®d = c otherwise.

To analyze the complexity ¢z of a TRS R, we start with the canonical DT
problem Py = (DT(R),DT(R),R). Then we apply a sound processor to P
which yields a result (¢1, P1). Afterwards, we apply another (possibly different)
sound processor to Py which yields (cq, P»), etc. This is repeated until we obtain
a solved DT problem (whose complexity is obviously Poly).

Definition 16 (Proof Chain, Solved DT Problem). We call a DT problem
P =(D,S,R) solved, if S = @. A proof chain” is a finite sequence Py ~> Py <3
... % Py, ending with a solved DT problem Py, such that for all 0 < i < k there
exists a sound processor PROC; with PROC;(P;) = (¢iy1, Piy1).-

By Def. 15 and 16, for every P; in a proof chain, ¢;11 @ ... @ ¢ is an upper
bound for its complexity ¢p,. Here, the empty sum (for i = k) is defined as Poly.

Theorem 17 (Approximating Complexity by Proof Chain). Let Py <>
P35 P be a proof chain. Then tp, Cc1 @ ... D cy.

Thm. 14 and 17 now imply that our approach for complexity analysis is correct.

Corollary 18 (Correctness of Approach). If Py is the canonical DT problem
for a TRS R and Py~ .5 Pisa proof chain, then tg Cc1 & ... P c¢.

5 DT Processors

In this section, we present several processors to simplify DT problems automat-
ically. To this end, we adapt processors of the DP framework for termination.
The usable rules processor (Sect. 5.1) simplifies a problem (D, S, R) by delet-
ing rules from R. The reduction pair processor (Sect. 5.2) removes DTs from S,
based on term orders. In Sect. 5.3 we introduce the dependency graph, on which
the leaf removal and knowledge propagation processor (Sect. 5.4) are based. Fi-
nally, Sect. 5.5 adapts processors based on transformations like narrowing.

7 Of course, one could also define DT processors that transform a DT problem P into
a complexity ¢ and a set {P[,..., P} such that tp C c® tp; @ ... @ tpy. Then
instead of a proof chain one would obtain a proof tree.



5.1 Usable Rules Processor

As in termination analysis, we can restrict ourselves to those rewrite rules that
can be used to reduce right-hand sides of DTs (when instantiating their variables
with normal forms). This leads to the notion of usable rules.®

Definition 19 (Usable Rules Ur [1]). For a TRS R and any symbol f, let
Rlsr(f) = {€ — r | root(¢) = f}. For any term t, Ur(t) is the smallest set with

o Ur(z) =0 ifx €V and
o Ur(f(t1,. .- tn)) = Risp(f) U U, € Risr (f) Ur(r)U U1gign Ur(t;)

For any set D of DTs, we define Ur(D) = U,_,;c p Ur(L).

So for R and DT(R) in Ex. 3 and 5, Ur (DT(R)) contains just the gt- and the
p-rules. The following processor removes non-usable rules from DT problems.”

Theorem 20 (Usable Rules Processor). Let (D,S,R) be a DT problem.
Then the following processor is sound: PRoc({D, S, R})) = (Poly, (D,S,Ur(D))).

So when applying the usable rules processor on the canonical DT problem
(D,D,R) of R from Ex. 3, we obtain (D, D, R;) where R; are the gt- and p-rules.

5.2 Reduction Pair Processor

Using orders is one of the most important methods for termination or complexity
analysis. In the most basic approach, one tries to find a well-founded order > such
that every reduction step (strictly) decreases w.r.t. >. This proves termination
and most reduction orders also imply some complexity bound, cf. e.g. [7,17].
However, direct applications of orders have two main drawbacks: The obtained
bounds are often far too high to be useful and there are many TRSs that cannot
be oriented strictly with standard orders amenable to automation, cf. [27].
Therefore, the reduction pair processor of the DP framework only requires
a strict decrease (w.r.t. ») for at least one DP, while for all other DPs and
rules, a weak decrease (w.r.t. =) suffices. Then the strictly decreasing DPs can
be deleted. Afterwards one can use other orders (or termination techniques)
to solve the remaining DP problem. To adapt the reduction pair processor for
complexity analysis, we have to restrict ourselves to CoM-monotonic orders.'°

Definition 21 (Reduction Pair). A reduction pair (22, >) consists of a stable
monotonic quasi-order 7=, and a stable well-founded order = which are compatible

8 The idea of applying usable rules also for complexity analysis is due to [15], which
introduced a technique similar to Thm. 20.

9 While Def. 19 is the most basic definition of usable rules, the processor of Thm. 20 can
also be used with more sophisticated definitions of “usable rules” (e.g., as in [11]).

10 Tn [15] “Com-monotonic” is called “safe”. Note that our reduction pair processor is
much closer to the original processor of the DP framework than [15]. In the main
theorem of [15], all (weak) DPs have to be oriented strictly in one go. Moreover, one
even has to orient the (usable) rules strictly. Finally, one is either restricted to non-
duplicating TRSs or one has to use orderings > that are monotonic on all symbols.



(i.e., oo C =). An order = is CoM-monotonic iff Com,, (s%, ..., s%, ..., %) >~
COMn(sg,...,tﬁ,...,si) foralln € N, all 1 < i < n, and all sg, st othe Tt

»9On

with sf = t*. A reduction pair (5, =) is CoM-monotonic iff = is COM-monotonic.

For a DT problem (D,S,R), we orient DUR by - or >. But in contrast to
the processor for termination, if a DT is oriented strictly, we may not remove it
from D, but only from S. So the DT is not counted anymore for complexity, but
it may still be used in reductions.* We will improve this later in Sect. 5.4.

Example 22. This TRS R shows why DTs may not be removed from D.'?
f(0) =0 f(s(z)) — f(id(x)) id(0) — 0 id(s(z)) — s(id(x))

Let D=DT(R) = {f*(0) — CoMy, f*(s(z)) — CoMa(f(id(z)),id*(x)), id*(0) —
CoMy, id*(s(z)) — Comy(id*(x))}, where Ur (D) are just the id-rules. For the
DT problem (D,S,Ur (D)) with S = D, there is a linear polynomial interpre-
tation [-] that orients the first two DTs strictly and the remaining DTs and
usable rules weakly: [0] = 0, [s](z) = = + 1, [id](z) = =, [*](z) = = + 1, [id*](z) =
0,[Comp| = 0,[CoMy](z) = z,[CoMa](x,y) = x + y. If one would remove the
first two DTs from D, there is another linear polynomial interpretation that
orients the remaining DTs strictly (e.g., by [id*](z) = x + 1). Then, one would
falsely conclude that the whole TRS has linear runtime complexity.

Hence, the first two DTs should only be removed from S, not from D. This
results in (D, S',Ur (D)) where 8’ consists of the last two DTs. These DTs can
occur quadratically often in reductions with D UUg (D). Hence, when trying to
orient 8’ strictly and the remaining DTs and usable rules weakly, we have to
use a quadratic polynomial interpretation (e.g., [0] = 0,[s](z) = x + 2, [id](z) =
z, [ (z) = 22, [id"])(z) = = + 1,[CoMe] = 0,[Com;](z) = x,[CoMy](z,y) =
x +vy). Hence, now we (correctly) conclude that the TRS has quadratic runtime
complexity (indeed, dh(f(s"(0)), b ) = HLL42) )

So when applying the reduction pair processor to (D,S,R), we obtain (c,
(D,S\ D.,R)). Here, Dy are the strictly decreasing DTs from D and c is an
upper bound for the number of D, -steps in innermost reductions with D U R.

Theorem 23 (Reduction Pair Processor). Let P = (D,S,R) be a DT prob-
lem and (7, =) be a CoM-monotonic reduction pair. Let D C — U=, R C 7,
and ¢ Ju(ircy) for the function ircy (n) = sup{dh(t!, =) | t € Tp,|t| < n}.'
Then the following processor is sound: PROC((D,S,R)) = (¢, (D, S\ Dy, R)).

' This idea is also used in [27]. However, [27] treats derivational complexity instead
of (innermost) runtime complexity, and it operates directly on TRSs and not on
DPs or DTs. Therefore, [27] has to impose stronger restrictions (it requires > to be
monotonic on all symbols) and it does not use other DP- resp. DT-based processors.

12 An alternative such example is shown in [8, Ex. 11].

13 As noted by [22], this can be weakened by replacing dh(tf,>-) with dh(t% =N EHD/R),
where —p,r = =% 0 =p 0 =% and p /g is the restriction of —p /% where in each
rewrite step with —x or —p, the arguments of the redex must be in (DUR)-normal
form, cf. [3]. Such a weakening is required to use reduction pairs based on path orders
where a term ¢ may start =-decreasing sequences of arbitrary (finite) length.



To automate Thm. 23, we need reduction pairs (77, =) where an upper bound
¢ for 1(ircy ) is easy to compute. This holds for reduction pairs based on polyno-
mial interpretations with coefficients from N (which are well suited for automa-
tion). For CoM-monotonicity, we restrict ourselves to complexity polynomial in-
terpretations (CPIs) [] where [CoM,|(z1,...,2n) = 21 + ... + @, for all n € N.
This is the “smallest” polynomial which is monotonic in 1, ..., ,. As COM,, only
occurs on right-hand sides of inequalities, [COM,] should be as small as possible.

Moreover, a CPI interprets constructors f € X'\ ¥y by polynomials [f](x1, ...,
Zp) = a121 + ...+ anx, + b where b € N and a; € {0,1}. This ensures that the
mapping from constructor ground terms ¢ € T (X\ Xy, &) to their interpretations
is in O(|t]), cf. [7,17]. Note that the interpretations in Ex. 22 were CPIs.

Thm. 24 shows how such interpretations can be used'* for the processor of
Thm. 23. Here, as an upper bound ¢ for ¢(ircy. ), one can simply take Pol,,, where
m is the maximal degree of the polynomials in the interpretation.

Theorem 24 (Reduction Pair Processor with Polynomial Interpreta-
tions). Let P = (D,S,R) be a DT problem and let 7, and = be induced by a
CPI [-]. Let m € N be the maximal degree of all polynomials [f*], for all f* with
f€ Xy Let D C —U» and R C =. Then the following processor is sound:
Proc((D,S,R)) = (Poly,, (D, S\ Dy, R)).

Ezample 25. This TRS [1] illustrates Thm. 24, where q(z,y,y) computes |7 |.

q(0,s(y),s(2)) =0 q(s(z),s(y),z) >a(z,y,2) alz,0,s(2)) = s(a(z,s(2),s(2)))
The dependency tuples D of this TRS are

qu(oas(y)as(z)) — CoMp (9) qn(s(x),s(y)7z) - COMl(qu(x7yaZ)) (10)
q*(2,0,5(2)) = Comi(q(z,5(2),5(2)))  (11)

As the usable rules are empty, Thm. 20 transforms the canonical DT problem to
(D, D, ). Consider the CPI[0] = 0, [s](z) = z+1, [q*](x,y, 2) = z+1, [CoMg] =
0, [Comy|(z) = x. With the corresponding reduction pair, the DTs (9) and
(10) are strictly decreasing and (11) is weakly decreasing. Moreover, the degree
of [q*] is 1. Hence, the reduction pair processor returns (Poly, (D, {(11)},@)).
Unfortunately, no reduction pair based on CPIs orients (11) strictly and both
(9) and (10) weakly. So for the moment we cannot simplify this problem further.

5.3 Dependency Graph Processors

As in the DP framework for termination, it is useful to have a finite representa-
tion of (a superset of) all possible chain trees.

4 Alternatively, our reduction pair processor can also use matrix interpretations 8,19,
21,23,26], polynomial path orders (POP* [3]), etc. For POP*, we would extend € by
a complexity Pol. for polytime computability, where Pol,, C Pol. C 7 for all n € N.



Definition 26 (Dependency Graph). Let D be a set of DTs and R a TRS.
The (D, R)-dependency graph is the directed graph whose nodes are the DTs in
D and there is an edge from s — t to u — v in the dependency graph iff there is
a chain tree with an edge from a node (s — t | 1) to a node (u — v | 02).

Every (D, R)-chain corresponds to a path in the (D, R)-dependency graph.
While dependency graphs are not computable in general, there are several tech-
niques to compute over-approximations of dependency graphs for termination,
cf. e.g. [1]. These techniques can also be applied for (D, R)-dependency graphs.

Ezample 27. For the TRS R from Ex. 3, we obtain the following (D,R1)-
dependency graph, where D = DT(R) and R, are the gt- and p-rules.

Q)
|gtt(0,k) — Contg (6) — at*(s(n). s(k)) — Com (gt (n. ) (8)
\ N\
m?(z,y) — CoMa(iff(gt(z, y), x,y), gt (x,y)) (1) H gt¥(s(n),0) — Comg (7)
)
if* (true, 2, ) — CoMa(m?(p(z), ), p'(2)) (2) iff (false, -, ) — CoMg (3)
/ ~.

p*(0) — Cowmp (4) p*(s(n)) = Comg (5)

For termination analysis, one can regard strongly connected components of
the graph separately and ignore nodes that are not on cycles. This is not possible
for complexity analysis: If one regards the DTs D' = {(1), (2)} and D" = {(8)}
on the two cycles of the graph separately, then both resulting DT problems
(D', D', Ry) and (D",D",Ry) have linear complexity. However, this allows no
conclusions on the complexity of (D,D,Ry) (which is quadratic). Nevertheless,
it is possible to remove DTs s — t that are leaves (i.e., s — t has no successors
in the dependency graph). This yields (D1, D1, R1), where D1 = {(1),(2), (8)}.

Theorem 28 (Leaf Removal Processor). Let (D,S,R) be a DT problem
and let s — t € D be a leaf in the (D, R)-dependency graph. Then the following
processor is sound: PROC((D,S,R)) = (Polp, (D\ {s = t},S\ {s = t}, R)).

5.4 Knowledge Propagation

In the DP framework for termination, the reduction pair processor removes
“strictly decreasing” DPs. While this is unsound for complexity analysis (cf.
Ex. 22), we now show that by an appropriate extension of DT problems, one
can obtain a similar processor also for complexity analysis.

Lemma 29 shows that we can estimate the complexity of a DT if we know
the complexity of all its predecessors in the dependency graph.

Lemma 29 (Complexity Bounded by Predecessors). Let (D,S,R) be a
DT problem and s — t € D. Let Pre(s — t) C D be the predecessors of s — t,
i.e., Pre(s — t) contains all DTs u — v where there is an edge from u — v to
s = t in the (D, R)-dependency graph. Then tp (s} R) E LD, Pre(s—t),R) -
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Example 30. Consider the TRS Q

from Ex. 25. By usable rules ’qﬁ(s(x),s(y),z) — Comy (g (z,y, 2)) (10)‘
and reduction pairs, we ob- [

(0 10) 00}, The Tt 1 | F20.5) = Comeite,s(e).s(2)) (1)
moval processor yields (D', {(11)}, @) with D’ = {(10),(11)}. Consider the
the (D', @)-dependency graph above. We have v(pr (1)}, 2) T t(pr, {(10)}, &) by
Lemma 29, since (10) is the only predecessor of (11). Thus, the complexity of
(D', {(11)}, @) does not matter for the overall complexity, if we can guarantee
that we have already taken the complexity of (D', {(10)}, &) into account.

Therefore, we now extend the definition of DT problems by a set I of DTs
with “known” complexity, i.e., the complexity of the DTs in K has already been
taken into account. So a processor only needs to estimate the complexity of a
set of DT's correctly if their complexity is higher than the complexity of the DTs
in . Otherwise, the processor may return an arbitrary result. To this end, we
introduce a “subtraction” operation © on complexities from €.

Definition 31 (Extended DT Problems, ©). For ¢,d,€ €, let cOd = c if
dC candcod="Poly ifcCd. Let R be a TRS, D a set of DTs, and S, C D.
Then (D, S, K, R) is an extended DT problem and (DT (R), DT(R), <, R) is the
canonical extended DT problem for R. We define the complexity of an extended
DT problem to be vipsxr) = tp,sRr) O Lpx,R) and also use v instead of
L in the soundness condition for processors. So on extended DT problems, a
processor with PROC(P) = (¢, P') is sound if vp T ¢ @ ypr. An extended DT
problem (D,S,K,R) is solved if S = @.

So for K = @, the definition of “complexity” for extended DT problems is
equivalent to complexity for ordinary DT problems, i.e., v(p s,0,R) = ¢(D,s,R)-
Cor. 32 shows that our approach is still correct for extended DT problems.

Corollary 32 (Correctness). If Py is the canonical extended DT problem for
a TRS R and Py~ ... "5 Py is a proof chain, then tg =vp, Cc1 @ ... D ck.

Now we introduce a processor which makes use of . It moves a DT s — ¢
from S to K whenever the complexity of all predecessors of s — t in the depen-
dency graph has already been taken into account.'®

Theorem 33 (Knowledge Propagation Processor). Let (D,S,KC,R) be an
extended DT problem, s —t € S, and Pre(s — t) C K. Then the following pro-
cessor is sound: Proc( (D,S,K,R)) = (Poly, (D, S\{s = t}, KU{s — t}, R)).

Before we can illustrate this processor, we need to adapt the previous proces-
sors to extended DT problems. The adaption of the usable rules and leaf removal
processors is straightforward. But now the reduction pair processor does not only
delete DTs from S, but moves them to K. The reason is that the complexity of
these DTs is bounded by the complexity value ¢ € € returned by the proces-
sor. (Of course, the special case of the reduction pair processor with polynomial

15 In particular, this means that nodes without predecessors (i.e., “roots” of the de-
pendency graph that are not in any cycle) can always be moved from S to K.
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interpretations of Thm. 24 can be adapted analogously.)

Theorem 34 (Processors for Extended DT Problems). Let P = (D, S,
K, R) be an extended DT problem. Then the following processors are sound.

e The usable rules processor: PROC(P) = (Poly, (D, S, K, Ur(D))).

e The leaf removal processor PROC(P) = (Poly, (D \ {s — t},S\ {s — t},
K\ {s—=t},R)), if s >t is a leaf in the (D, R)-dependency graph.

e The reduction pair processor: PROC(P) = (¢, (D, S\ Do, KUD., R)),
if (z,>) is a CoMm-monotonic reduction pair, D C U=, R C 7, and

~7

¢ Ju(ire,) for the function ircy (n) = sup{ dh(tf, =) | t € Tg, |t| < n}.

Ezxample 35. Reconsider the TRS R for division from Ex. 25. Starting with its
canonical extended DT problem, we now obtain the following proof chain.

- ({(9), (10), (11)}, {(9), (10), (11)}, &, R)

230 ({(10), (11)}, {(10), (11)}, a, R) (leaf removal)

Poto ({(10), (11)}, {(10), (11)}, @, @) (usable rules)

Poh ({(10), (11)}, {(11)}, {(10)}, &) (reduction pair)
oo ({(10), (11)}, a, {(10), (11)}, @)  (knowledge propag.)

For the last step we use Pre((11)) = {(10)}, cf. Ex. 30. The last DT problem is
solved. Thus, t1r C Poly®Poly®Poli GPoly = Poly, i.e., R has linear complexity.

5.5 Transformation Processors

To increase power, the DP framework for termination analysis has several pro-
cessors which transform a DP into new ones (by “narrowing”, “rewriting”, “in-
stantiation”, or “forward instantiation”) [11]. We now show how to adapt such
processors for complexity analysis. For reasons of space, we only present the
narrowing processor (the other processors can be adapted in a similar way).

For an extended DT problem (D, S,K,R), let s — ¢t € D with t = CoM,, (1,
ey tiy oy ty). If there exists a (variable-renamed) u — v € D where ¢; and u have
an mgu p and both sy and up are in R-normal form, then we call @ a narrowing
substitution of t; and define the corresponding narrowing result to be t;pu.

Moreover, if s — ¢ has a successor © — v in the (D, R)-dependency graph
where ¢; and u have no such mgu, then we obtain additional narrowing substitu-
tions and narrowing results for ¢;. The reason is that in any possible reduction
tio #;‘2 u7 in a chain, the term ¢;0 must be rewritten at least one step before it
reaches ur. The idea of the narrowing processor is to already perform this first
reduction step directly on the DT s — ¢. Whenever a subterm t;|, ¢ V of ¢,
unifies with the left-hand side of a (variable-renamed) rule £ — r € R using an
mgu p where sp is in R-normal form, then p is a narrowing substitution of t;
and the corresponding narrowing result is w = t;[r], .

If py, ..., pg are all narrowing substitutions of ¢; with the corresponding nar-
rowing results wi, . .., wq, then s — ¢ can be replaced by sp; — COMy, (t1445, - -,
ticiphy, Wy, tigipy, .., topy) for all 1 <5 <d.
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However, there could be a t; (with k& # i) which was involved in a chain
(i.e., txo i—>;‘a ut for some u — v € D and some o, 7), but this chain is no longer
possible when instantiating ¢y to txp1, . . ., tg g We say that ¢y is captured by pq,

.., fiq if for each narrowing substitution p of t, there is a p; that is more general
(i.e., p = p;p’ for some substitution p’). The narrowing processor has to add
another DT s — COM,, (t,,...,tx, ) where tx,,...,t, are all terms from ¢y,
..., t, which are not captured by the narrowing substitutions puq, ..., g of ;.

This leads to the following processor. For any sets D, M of DTs, D[s —t / M]|
denotes the result of replacing s — t by the DTs in M. So if s -t € D, then
D[s—t /| M] = (DT \ {s—t}) UM and otherwise, D[s—t / M| =D.

Theorem 36 (Narrowing Processor). Let P = (D,S,K,R) be an extended
DT problem and let s — t € D with t = COMy,(t1,...,t;y ..., ty). Let p1,. .., pa
be the narrowing substitutions of t; with the corresponding narrowing results
wi,...,wq, where d > 0. Let ty,,...,ty,, be the terms from tq,...,t, that are
not captured by p1, - .., g, where ki, ..., ky, are pairwise different. We define

M= {spj — CoMy(tipsj, - ooy timafhy, Wy, tigify, -y tapy) |1 <5 < d}
U{s — CoMp(try,- -tk )}

Then the following processor is sound: PROC(P) = (Poly, (D', S',K', R)), where
D' =Dls—t/ M]and S’ = S[s—t /| M]. K’ results from K by removing s — ¢
and all DTs that are reachable from s — t in the (D, R)-dependency graph.'®

Ezxample 37. To illustrate the narrowing processor, consider the following TRS.
f(c(n,z)) — c(f(g(c(n,x))), f(h(c(n,z)))) g(c(0,2)) = = h(c(l,2)) —

So f operates on “lists” of Os and 1s, where g removes a leading 0 and h removes a
leading 1. Since g’s and h’s applicability “exclude” each other, the TRS has linear
(and not exponential) complexity. The leaf removal and usable rules processors
yield the problem ({(12)}, {(12)}, @, {g(c(0,2)) — =, h(c(1,2)) — x} ) with

f(c(n, ) = Comu(f(g(c(n, 2))), &*(c(n,z)), F(h(c(n,2))), h¥(c(n,2))). (12)

The only narrowing substitution of t; = f*(g(c(n, x))) is [n/0] and the correspon-
ding narrowing result is f*(x). However, t3 = f*(h(c(n,))) is not captured by
the substitution [n/0], since [n/0] is not more general than ts’s narrowing sub-
stitution [n/1]. Hence, the DT (12) is replaced by the following two new DTs:

(c(0,2)) = Comy( F(x), g*(c(0,2)), F(h(c(0,))), h*(c(0,)))  (13)
(c(n,z)) = Comy( f(h(c(n,z)))) (14)
Another application of the narrowing processor replaces (14) by f(c(1,z)) —

16 We cannot define K' = K[s —t / M], because the narrowing step performed on
s — t does not necessarily correspond to an innermost reduction. Hence, there can
be (D', R)-chains that correspond to non-innermost reductions with DUR. So there
may exist terms whose maximal (D', R)-chain tree is larger than their maximal
(D, R)-chain tree and thus, LD Kls—t/M],R) 2 L(D,K,R)- But we need v(pr k7 gy C
L(p,k,Rry in order to guarantee the soundness of the processor, i.e., to ensure that
V(D,s.K,R) = UD,S,R) O Up,K,R) E D/, 8" Ry © LD K/ R) = V(D',S",K!,R)-
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CoM; (f(2)).17 Now tr T Poly is easy to show by the reduction pair processor.

Ezxample 38. Reconsider the TRS of Ex. 3. The canonical extended DT problem
is transformed to (Dy,Di1,d,R1), where Dy = {(1),(2),(8)} and R,y are the
gt- and p-rules, cf. Ex. 27. In mf(z,y) — CoMy(if*(gt(z,y), z,y), gt* (z,y)) (1),
one can narrow t = if* (gt(z,y), z,y). Its narrowing substitutions are [x/0,y/k],
[z/s(n),y/0], [x/s(n),y/s(k)]. Note that ty = gt*(x,y) is captured, as its only
narrowing substitution is [x/s(n),y/s(k)]. So (1) can be replaced by
— CoMy(iff (false, 0, k), gt* (0, k))

— CoMy(iff (true, s(n), 0), gt (s(n), 0))

m*(0, k (15)
(16)
— Comy(iff (gt(n, k),s(n), s(k)), gt*(s(n),s(k)) ~ (17)
(18)

mé(s(n), 0
mé(s(n), s(k)
m(z,y
The leaf removal processor deletes (15), (18) and yields (D, Do, @, R4) with Dy =
{(16), (17), (2), (8)}. We replace if* (true, z;, y) — CoMy(m¥(p(z), y), p*(x)) (2) by
if? (true, 0, y) — CoMy(mF(0,7), p*(0)) (19)
if? (true, s(n), y) — CoMy(m¥(n,y), p*(s(n))) (20)

— CoMj

\_/\_/\_/\_/

by the narrowing processor. The leaf removal processor deletes (19) and the
usable rules processor removes the p-rules from Ry. This yields (D3, D3, &, Ra),
where D3 = {(16), (17), (20), (8)} and Ro are the gt-rules. By the polynomial in-
terpretation [0] = [true] = [false] P*(z) = 0, [s](z) = 2+2, [gt](z,y) = [gt*](x,
y) =z, [mf](z,y) = (x+1)2, [if*](z,y, z) = y2, all DTs in Dy are strictly decrea-
sing and all rules in Ry are weakly decreasing. So the reduction pair processor
yields (D3, D3, &, Ra) ~> ol (D3, 2, D3, Ra). As this DT problem is solved, we
obtain g © Polg @ ... D Poly P Poly = Pols, ie., R has quadratic complexity.

6 Evaluation and Conclusion

We presented a new technique for innermost runtime complexity analysis by
adapting the termination techniques of the DP framework. To this end, we in-
troduced several processors to simplify “DT problems”, which gives rise to a
flexible and modular framework for automated complexity proofs. Thus, recent
advances in termination analysis can now also be used for complexity analysis.

To evaluate our contributions, we implemented them in the termination pro-
ver AProVE and compared it with the complexity tools CaT 1.5 [27] and TCT
1.6 [2]. We ran the tools on 1323 TRSs from the Termination Problem Data Base
used in the International Termination Competition 2010.'® As in the competi-
tion, each tool had a timeout of 60 seconds for each example. The left half of the

7 One can also simplify (13) further by narrowing. Its subterm g*(c(0,x)) has no
narrowing substitutions. This (empty) set of narrowing substitutions captures
¥ (h(c(0,2))) and h*(c(0,z)) which have no narrowing substitutions either. Since
f*(z) is not captured, (13) can be transformed into f*(c(0,z)) — Com: (f*(x)).

'8 See http://www.termination-portal.org/wiki/Termination_Competition.
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table compares CaT and AProVE. For instance, the first row means that AProVE
showed constant complexity for 209 examples. On those examples, CaT proved
linear complexity in 182 cases and failed in 27 cases. So in the light gray part of
the table, AProVE gave more precise results than CaT. In the ‘medium gray part,
both tools obtained equal results. In the [dafkigtay part, CaT was more precise
than AProVE. Similarly, the right half of the table compares TCT and AProVE.

CaT TCT

Polo | Poli|Polz|Polsno result| > ||[Polo|Pol1|Polz|Pols|no result| >

Polo | - |182] - | - 27 | 20910 [157| - | - 42 | 209

w| Poly 187 7 | - 76 [270 152 117 [ 270
3 - 83 [117 82 [117
a . 16 22 17 22
Lo result 674705 680 [ 705
876 |1323 038 |1323

So AProVE showed polynomial innermost runtime for 618 of the 1323 ex-
amples (47 %). (Note that the collection also contains many examples whose
complexity is not polynomial.) In contrast, CaT resp. TCT proved polynomial
innermost runtime for 447 (33 %) resp. 385 (29 %) examples. Even a “combined
tool” of CaT and TCT (which always returns the better result of these two tools)
would only show polynomial runtime for 464 examples (35 %). Hence, our contri-
butions represent a significant advance. This also confirms the results of the Ter-
mination Competition 2010, where AProVE won the category of innermost run-
time complexity analysis.'® AProVE also succeeds on Ex. 3, 25, and 37, whereas
CaT and TCT fail. (Ex. 22 can be analyzed by all three tools.) For details on
our experiments (including information on the exact DT processors used in each
example) and to run our implementation in AProVE via a web interface, we refer
to http://aprove.informatik.rwth-aachen.de/eval/RuntimeComplexity/.

Acknowledgments. We are grateful to the CaT and the TCT team for their support
with the experiments and to G. Moser and H. Zankl for many helpful comments.
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A  Proofs

We first state a lemma with useful observations on &, ©, and ¢(p s ), which
will be used throughout the proofs. Lemma 39 (a) and (b) shows that @ and ©
correspond to the addition and subtraction of functions (where for two functions
f,9 N = N, we have (f +g)(n) = f(n) + g(n) and (f — g)(n) = max(f(n) -
9(n),0).

Moreover, the lemma shows the connection between ¢(p s z) and the opera-
tions @ and ©. For instance, for the m-TRS R from Ex. 3 and D = DT (R), we
have ¢(p pr) = Polz. In Ex. 9 we also regarded the set S which contains all DTs
except (6) — (8). We have ircip s zy(n) € O(n) and thus, ¢(p s ) = Poli. On
the other hand, if one counts just the gt‘-DTs (6) — (8), then one again obtains
irc(p p\s,ry () € O(n?) and thus, ¢(p p\s,r) = Polz. So in particular, we have
up,s,Ry E t(ppry and tipp Ry = t(D,s,R) P L(D,D\S,R)- These observations are
generalized in Lemma 39 (g) and (h).

Lemma 39 (Properties of ®, O, and t(p sr)). Let [ and g be functions
from N to NU{w} and let ¢,d,e € €.

(a) o(f)®u(g) =u(f+9)

(b) «(f)©ulg) Eulf —9)

(¢) @ is associative and commutative

(d) codCeiffcCdde

(e) cOd e does not imply c Jdd®e

(f) c 3 d®e does not imply coOdJe

(9) If 1 C Ss then vp.s, Ry C D5, R)

(h) For any S1,S2 € D, we have uip.s, R) D L(D,S3,R) = L(D,51US2,R)
(i) For any S1,S2 € D, we have tip s, Ry O LD,S5R) T L(D,81\S2,R)

Proof. For (a), «(g) T «(f) implies «(f + g) = «(f) and «(f) C «(g) implies
Uf +9)=g)

For (b), first let ¢(f) E ¢(g). Then ¢(f)Ou(g) = Polo T o(f —g). If t(g) T o(f)
then () © e(g) = (f) = o(f — g).

The claim in (c) is obvious, since the “maximum” function on € is associative
and commutative.

For (d), if ¢ E d, we have both ¢©d = Polg C e and ¢ C d C d@e. Otherwise,
letdCcIfdCe, wehavecOd=cCeiffcCd®e=c. IfeCd,thendC ¢
implies that ¢ © d = ¢ C e is false. Similarly, then ¢ C d @ e = d is also false.

For (e), let ¢ = e = Poly and d = Poly. Then we have ¢ © d = Poly © Poly =
Poly I Poly = e, but ¢ = Poly A Poly = Poly & Poly = d D e.

For (f), let ¢ = d = e = Poly. Then we have ¢ = Pol; I Poly @ Poly =d D e,
but ¢ © d = Poly © Poly = Poly 4 Poly = e.

For (g), S1 C S; implies that Cplz p s, ®) (th) < Cplz(p s, R) (t*) for any
th € T* This implies ircip.s,,®y(n) < ircips, ry(n) for all n € N and thus,
up.s,.R) = tlireip.s, ry) E tlire(p.s, ) = t(D.5,R)-

For (h), consider an arbitrary ¢* € T#. Let m be the maximal number of nodes
from S; US, occurring in any (D, R)-chain tree for ¥, i.e., Oplz p 5,08, R) (th) =
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m. Similarly, let m; and msy be the maximal numbers of nodes from S; resp.
from Sy occurring in any (D, R)-chain trees for tf, i.e., Oplz p s, R) (th) = my
and Cplz p s, R) (t*) = my. When extending “<” and “+” to NU{w}, we clearly
have sup{m1,ma} < m < my + mo, ie., sup{Cplz p s, r) (tﬁ),Cplx@’SQ,R) (tH)}
< Cplz(p s,us,,R) (t*) < Cplz p s, ) (t) + Ol p s, ) (t*). So on the one hand,
sup{irc(p s, »)(1n),irc(p,s, =) ()} < ircip s,us,,r)(n) for all n € N which means
Up.s Ry ® Ups, Ry = ilireps, ry) @ tlireips, ry) E ulireps,us,r)) =
UD,8US,,Ry- On the other hand, we have ircp s ,us, ) (1) < ircips, =y(n) +
iI‘C<D,527R>(n) for all n € N which means U(D,51USs,R) = L(iI‘C<D751U527R>) C
t(ircip s, ®y +ircip s, ry) = tlircips, ry) @ elireip.s, r)) = Lp,5,,R) D LD,Ss,R)
by (a).

For (1), we have L<D>81,R> C) L(D,Sg'R) E L(D731\52’R> iff L(D,Sl,R) ; L('D,Sg,'R) D
LD,s\Ss,r) DY (d). But by (b), this is equivalent to ¢(p s, =) E t(D,5,0(5,\8),R)-
As So U (81 \ S2) = 81 U Sy, this is true by (g). m]

For any term t € T, let t{ denote a mazimal argument normal form of t,
i.e., t{l is an argument normal form such that?° ¢ "—>€>’7*z t|} and such that for all
argument normal forms v with ¢ 9% v, we have dh(tl}, ) > dh(v, 55).

So for a TRS with the rules a — b,a — ¢,f(c) — a, the term f(a) has two
argument normal forms f(b) and f(c). As the derivation height of f(b) is 0 and
the derivation height of f(c) is 1, we obtain f(a){} = f(c).

To prove Thm. 10, we first show that the derivation height of a term is
bounded by the sum of the derivation heights of the maximal argument normal
forms of its subterms. So to find an upper bound for the (innermost) derivation
height of a term f(¢y,...,t,), one can find bounds for its arguments ¢y, ...,t,
first, add them up, and finally also add the derivation height of the reduced term
t| in argument normal form.

Lemma 40 (Derivation Heights of Subterms). Let t € T and let R be a
TRS where t has no infinite innermost R-reduction. Then

dh(t, r) < > dh(t|ed, Br).
TEPosq(t)

If R is confluent, we even have dh(t, »z) = Z‘n’EPosd(t) dh(t|l}, Br).

Proof. We use induction on [t|. For |t| = 1, the lemma is obvious as t| = t. Now
let || > 1 and let the root symbol of ¢ have arity n. Because of the innermost
strategy, a rewrite step at the root is only possible after its arguments have been
rewritten to normal forms. Thus, we have

dh(t, 5r) < dh(t), Br) + X <<y dB(t]s, R).

For confluent rewrite systems, ¢ has a unique argument normal form and hence
we have equality here (and in the next equation). The subterms ¢|; have a smaller

I, >€ . . s
20 Here, “255%” denotes innermost reductions below the root position.
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size than ¢ and hence the induction hypothesis can be applied:

dh(t, ) < dh(tl, BR) + X1 cicn Doreposa(r)) Wtlixld, Hr)
= Zﬂeposd(t) dh(t‘ﬂ"Uﬁ L>’R)

For the last step above, note that if ¢ ¢ Pos4(t), then ¢l is a normal form and
thus, dh(t{, %) = 0. O

Using Lemma 40, we can now prove Thm. 10 which shows how dependency
tuples can be used to approximate the derivation heights of terms.

Theorem 10 (Cplr bounds Derivation Height). Let R be a TRS. Let t =
f(t1,...,tn) € T be in argument normal form, i.e., all t; are normal forms
w.r.t. R. Then we have dh(t, =) < Cplz pr(r), pT(R),R) (t%). If R is confluent,

we have dh(t, ) = Cplz (pr(r), DT(R),R) (th).

Proof. Tf t starts an infinite innermost R-reduction (i.e., dh(¢, 5z) = w), then
there exists an infinite chain starting with ¢¥. The reason is that as t is in argu-
ment normal form, the infinite R-reduction of ¢ must begin on the root position.
Hence, there is a rule ¢; — r; € R such that t = /101 and such that ry0q also
starts an infinite innermost R-reduction. Thus, there exists a minimal subterm
of r1oy with an infinite innermost R-reduction, but where all proper subterms of
rioq are innermost terminating. Since o7 instantiates all variables with normal
forms, this minimal subterm is at a position m; € Posy(r1), i.e., the minimal
subterm is 71|, 1. In the infinite innermost reduction of ry |, o1, again all argu-
ments are normalized first, leading to a term ¢; in argument normal form that
starts an infinite innermost R-reduction. So the infinite reduction of ¢; must
again begin on the root position with some rule ¢5 — r5 € R. Continuing in this
way, one obtains an infinite chain

(6 — Comp(e.ymilh o) | a1), (65— Comp(...,mlf ,...) | 02),

So there is an infinite chain tree for /o = t# and hence, Cplz (pr(r),DT(R),R) (t%)
= w.

Now we regard the case where ¢ does not start an infinite innermost R-
reduction. Here, we prove the theorem by induction on dh(t, ). If dh(t, g)
= 0, then ¢ is in R-normal form. Thus, #* is in normal form w.r.t. DT(R)UR
and Cplz pr (). pr(R)R) () = 0.

Otherwise, as the arguments of ¢ are in normal form, there exists a rule
{ — r € R and a substitution o such that t = lo 3 ro = u and

dh(t, %) = 1+ dh(u, Bx). (21)

By Lemma 40 we have
dh(u, HR) < Y reposy(u) d(ulxl, Hr) (22)
(with equality if R is confluent). As o instantiates all variables by normal forms,

u|x = roly is in normal form for all 7 € Posg(u) \ Posq(r). For such 7, this
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implies u|, = u|, and dh(u|,{, »r) = dh(u|,, »») = 0. Hence, from (22) we
obtain _ _
dh(u, I—>R) S ZwePosd(r) dh(u|7'r‘U7 I_>R) (23)

Note that dh(u|.l}, »z) < dh(t, ) and u|.| is in argument normal form. So
the induction hypothesis implies

dh(ul, Br) < Cle prr) pr(R).R) (ul )

for all m. Together with (21) and (23) we obtain

dh(t, 5r) =1+dh(u, 5r) <1+ Y Opleprr) prwr)r) (U, (24)
wEPosq(r)

Let Posq(r) = {m,...,m,}. Then there exists a chain tree for t¥ where
(t# — CoMy(r|% ,...,7|% ) | o) is the root node and where the children of the
root node are chain trees for u|r, I}*, ..., ulx, |*. The reason is that T|r,0 = tlx;
and hence, r|§r7,a L ulr, ¥ for all j € {1,...,n}. For confluent R, this chain

tree is also a maximal one. Hence, together with (24) we have

dh(t, Br) 14X, cpoes ) P (D1 (R, DT(R),R) (Ul IF)
< Cple pr (), pT(R) R (E)

with “=” instead of “<” for confluent R. O

Theorem 14 (Upper bound for TRS via Canonical DT Problem). Let
R be a TRS and let (D, D, R) be the corresponding canonical DT problem. Then
we have tr £ vippr)y and if R is confluent, we have tr = t(p pR)-

Proof. For any n € N, we have ircg (n) = sup{dh(t, »g) | t € Tp,|t| <n} <
sup{ Cplz (p p ®) (t") | t € T, |t| < n} = irc(p,pr)(n) by Thm. 10, with equality
if R is confluent. Thus, 1 = w(ircr) C w(ircip,p,r)) = t(p,p,ry and if R is
confluent, we even have 1 = t(p,p R)- a

Theorem 17 (Approximating Complexity by Proof Chain). Let Py ~>
PR3 B P be a proof chain. Then tp, Cc1 @ ... cy.

Proof. We prove the theorem by induction on the length k of the proof chain. If
k =0, then Py = P, is a solved DT problem and hence we have tp, = Polo.
Otherwise by the definition of a proof chain, there exists a sound processor
PRroC such that PROC(Py) = (c1, P1). Moreover, P, <3 ... % P, is also a proof
chain and the induction hypothesis implies tp, C co®...@Hc. As PROC is sound,
we have tp, C c; @ ¢p,. Hence, we obtain tp, T c1 @ ... ck. O

Corollary 18 (Correctness of Approach). If Py is the canonical DT problem
for a TRS R and Py~ .5 P isa proof chain, then tg Cc1 & ...P ¢.

Proof. We have tg C vp, by Thm. 14 and tp, C ¢; @ ... ® ¢, by Thm. 17. O
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Theorem 20 (Usable Rules Processor). Let (D,S,R) be a DT problem.
Then the following processor is sound: PROC((D, S, R)) = (Poly, (D, S,Ur(D))).

Proof. Let (D,S,R) be a DT problem. For the soundness of this processor
we have to prove that vpsr)y E Polo © t(p suz(p))- This is equivalent to
t(ireip.s,ry) T tlirc(p,sug(py))- This holds, since for every S C D, we have
irc(p,s;ry = ir¢(p,sug(p))- Lhe reason is that in a chain tree, variables are
always instantiated with normal forms. So (as in the corresponding proofs for
usable rules in termination analysis), the only rules applicable to the right-hand
side of an instantiated DT are its usable rules. O

Theorem 23 (Reduction Pair Processor). Let P = (D,S,R) be a DT prob-
lem and (7, =) be a CoM-monotonic reduction pair. Let D C — U=, R C 7,
and ¢ Ju(irc,) for the function ircy (n) = sup{ dh(tf, =) | t € Tg, |t| < n}. Then
the following processor is sound: PRoc((D,S,R)) = (¢, (D, S\ D., R)).

Proof. To prove soundness, we need to show that v(p sy C ¢ & t(p.s\p, R)
holds. This follows from Lemma 39, if we can show ¢p p, ry C ¢

{D,SUD, R) by Lemma 39(g)
LD, R) D LD,s\Dy.,R)y Dy Lemma 39(h)
¢@ yp,s\p, R)

YD,S,R)

111

As we have u(irc, ) C ¢, it suffices to show t(p p,_ »y C t(irc, ). Let s € Tp be a
basic term and consider an arbitrary innermost (DUR)-reduction sequence start-
ing with s*. All terms in such a reduction sequence are of the form C [t'{, o th]
for a context C consisting only of compound symbols and where t‘i, .., th are
sharped terms from 7¢. As > is CoM-monotonic, all D-steps in such a reduction
sequence take place on monotonic positions.

So if u i—>p> v is a rewrite step in an innermost (D U R)-reduction of s,
then u > v. On the other hand, - is monotonic, too. Hence, u —p,_ g v implies

u 7~ v, where D» are those DTs from D which are weakly decreasing. Now let
Sﬁ = S0 i_>u0 to '_>i’;2 S1 i—>yl t1 I—ﬂ,{z So ...
be a (finite or infinite) innermost (DUR)-reduction, where v; € D for all i. Then

5u280->-0 to 7= s1 =1 t1 = So ...

~ ~

holds. Here “-»;” is “>" if v; € Dy and “Z=” else. Let n; < nmy < ... be the se-
quence of indexes where “=n; = =. For each n; we have s,,; = 1y, As mo=o0r C
>, we obtain s* = t,, = t,, = ... and therefore dh(s*,>) > dh(t} ,>) >
dh(tf,, =) > ... or dh(s?, ) = w.

Hence irc. (|s|) is an upper bound for the number of Dy -steps in any inner-
most (DU R)-reduction of s*. Moreover, Cplz (D, 5,R>(sﬁ) is the maximal number
of S-steps in any innermost (D U R)-reduction of s*. Hence, Cplzp p_ Ry (s%) <
irc, (|s]) for all s € Tp. This implies irc(p p, r)(n) < irc, (n) for all n and hence,
L(D,’D>_,R> = L(iI‘C(’D,D>_772>) C L(iTC>). O
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Theorem 24 (Reduction Pair Processor with Polynomial Interpreta-
tions). Let P = (D,S,R) be a DT problem and let 7o and > be induced by a
CPI [-]. Let m € N be the mazimal degree of all polynomials [f*], for all f* with
f€ Xy Let DC —U» and R C =. Then the following processor is sound:
Proc((D,S,R)) = (Poly, (D, S\ Dy, R)).

Proof. CPIs are obviously CoM-monotonic. Hence, it remains to prove that
Pol,, 2 t(irc, ) holds. Recall that irc, (n) = sup{dh(t*, =) | t € Tp and |t| < n}.
Let [-], be a variant of the polynomial interpretation which maps every variable
to 0. Then we have dh(t,>) < [t], for all terms t. Thus,

irc, (n) < sup{[t*], | t € T5 and [t| < n}. (25)

Let binae be the maximum of all [f](0, .. .,0), for all constructors f € X'\ Xy.
Then for every term s containing only constructors and variables, we obtain
[sly < bmag - |s], where |s| is again the size of s. Hence, there exists a number
k € N such that for all t € Tg we have

[tﬁ]o <k- [fﬁ](\t|, .., |t]), where ff = root(t¥).

To see this, note that for ¢t = f(t1,...,t,) € Tp we have

[0 = [f*)([talo, -- - [tao)
< [f*)(bmax |t1|, s bmag + ta])
< [ ]( max |t‘ bmax : ‘t|)
<O [fﬁ](|t\ |t]),  where m is the degree of [f¥]
<k-[ff(t,. |t\)7 where k = bﬁmx and d is the maximum de- (26)

gree of all [¢gf], for all sharped symbols g*

Hence,
irc, (n) < sup{[t!], | t € Tp and [t| < n} by (25)
<k-[ff(n,...,n) by (26).

Since the polynomials [f#] have at most degree m, we have «(irc,. ) C Pol,,. 0O

Theorem 28 (Leaf Removal Processor). Let (D,S,R) be a DT problem
and let s =t € D be a leaf in the (D, R)-dependency graph. Then the following
processor is sound: PROC((D,S,R)) = (Poly, (D\ {s = t},S\ {s = t},R)).

Proof. Let k be the maximal index of compound symbols COMy, occurring in D.
Hence, a chain tree with m inner (i.e., non-leaf) nodes can have at most 1+k-m
leaves. So for any term ¢, Cplz p s R) (t <1+k- CPIZ D\ {s-51},8\ [s—t},R) )
and thus irc(D,S,R) n) <1+k- irC(D\{s—nt},S\{s—nf},R)- This implies that the
complexity does not change when removing the leaves from chain trees, i.e.,
UD,SR) = L(D\{s—t},S\{s—t},R) = Polo D LD\ [s—t},8\{s—t},R), Which implies the
soundness of the leaf removal processor. O

In the following, for any set of DTs M, let |T|s be the number of nodes in
a chain tree T" which are marked with DTs from M.
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Lemma 29 (Complexity Bounded by Predecessors). Let (D,S,R) be a
DT problem and s — t € D. Let Pre(s — t) C D be the predecessors of s — t,
i.e., Pre(s — t) contains all DTs u — v where there is an edge from u — v to
s =t in the (D, R)-dependency graph. Then vp (s} R) E LD, Pre(s—t),R) -

Proof. Let k be the maximal index of the compound symbols CoMy, occurring
in Pre(s — t) and let T be a (D,R)-chain tree. We show that [T <
1+ k- |T|Pre(s~>t)~

Any node of T labeled with s — t is either the root node or a child of a
node labeled with a DT from Pre(s — t). As every node labeled with a DT from
Pre(s — t) has at most k children (since every chain corresponds to a path in
the dependency graph), we obtain [T < 1+ k- |T|pre(s—t)-

Note that this holds for any (D, R)-chain tree T. This implies

Cpl p sy my (1) S 14 k- Ol pre(s sy ry ()

for any term t¥ € T%. Thus, irc(p (s—t3,)(n) < 1+ Kk -ircip, pre(s—t),r)(n) for
all n and hence LD, {s—t},R) C LD, Pre(s—t),R) - O

Corollary 32 (Correctness). If Py is the canonical extended DT problem for
a TRS R and Py~ ... 5 Py is a proof chain, then tg =vp, Cc1 ® ... P ck.

Proof. We have vgr = v(pr(Rr),pT(R),R) by Thm. 14. Moreover, t(pr(r),pT(R),R)
= Y(DT(R),DT(R),2,R) = VP,- Lhe proof for yp, T ¢; @ ... & ¢ is completely
analogous to the proof of Thm. 17. O

Theorem 33 (Knowledge Propagation Processor). Let (D,S,KC,R) be an
extended DT problem, s =t € S, and Pre(s — t) C K. Then the following pro-
cessor is sound: PROC((D,S,KC,R)) = (Poly, (D, S\{s — t}, KU{s = t}, R)).

Proof. We have to show that vip s =y E Polo © V(D,S\{s—t},KU{s—t},R)» 1-€:
YD,5,K,R) E VD,5\{s—t},KU{s—t},R)- By the definition of v, this is equivalent to

~J
~—

UD,SR) O LD KR E UD,S\{s—t},R) O LD, KU{s—t},R)- (2

From Lemma 29 and Lemma 39(g), we have t(p (st} 7) E 4D, Pre({s—t}),R)

UD,K,R)- Hence, Lemma 39(1’1) implies YD KU{s—t},R) = UD.K,R)DUD {s—t},R)
Lp,r)- Thus for (27), it suffices to show

I 1M

UD,8,R) O LD KU{s—t},R) T LD\ [s—t},R) O L(D,KU{s—t},R)- (28)

To this end, we consider two cases: If ¢(p (s—},7) T tp,s,r) holds, we have
UD,SR) = UD,5,R) O UD,{s—t},R) & LD,5\{s—t},R) Py Lemma 39(i). Otherwise,
we obtain v(p s r) E t(p{s—t},R) C LD xcu{s—t},R) by Lemma 39(g) and thus
UD,SRy O LD Kus—t},R) = Polo. In both cases, the required inequality (28)
follows. a

Theorem 34 (Processors for Extended DT Problems). Let P = (D, S,
K, R) be an extended DT problem. Then the following processors are sound.
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e The usable rules processor: PROC(P) = (Poly, (D, S, K, Ur(D))).

e The leaf removal processor PROC(P) = (Poly, (D \ {s — t},S\ {s — t},
K\ {s—=t},R)), if s >t is a leaf in the (D, R)-dependency graph.

e The reduction pair processor: PROC(P) = (¢, (D, S\ Do, KUD., R)),
if (7Z,>) is a CoM-monotonic reduction pair, D C = Uz, R C 7, and
¢ Ju(irey) for the function ircy (n) = sup{dh(t¥, =) | t € Tg, |t| < n}.

Proof. The soundness of the usable rules processor follows since ((psr) =
L(D,S,L{R('D)) and L(D,IC,’R) = L(D,)C,Z/{R(D))v as in Thm. 20. ThUS7 7(@737;{773) =
Y(D,S,KUr(D))-

Similarly, the soundness of the leaf removal processor holds since t(p s ry =
LD\ {s—t},8\[s—},R) a0d L(D i R) = L(D\{s—t},K\{s—¢},R)> aS in Thm. 28. Hence,
DS KR) = VD\{s—t},S\{s—t},K\{s—t},R)-

For the soundness of the reduction pair processor, we have to show yp C
c®V(p,s\p,. ,kup, ,R)- If we have vp C ¢, then this is obviously true. Hence, we
consider ¢ C yp. Now we have to show vp E v(p s\p, ,kup, ,r)- By the definition
of ~, this means

Lp,s, Ry © D x,R) E LD sS\D.,R) O LD .KUD, R)- (29)

To show (29), we prove (i) ¢ipsr)y T tp,s\p.,r) and (ii) tpxup. )y T
tp,s,Rry- Then (29) follows by the definition of ©.

We first show (i). As ¢ C yp implies yp # Poly, we have vp = 1(p s ) and
therefore ¢ C ¢(p s, ). Moreover, from the proof of Thm. 23 we have ¢(p p_ r) C
t(ire,) C c. Hence (i) holds, using Lemma 39(i) for the last inequality:

up,sRy = Up,sRrR)y©CcL uypsr)Oupp,. R E LD S\D. R

Now we show (ii). From Lemma 39(h) and ¢(p p,_ ry C ¢ we have

UD,KUD. Ry = UD,K,R) D LD, D, R) E LD KR D C (30)

Note that vp # Polg implies t(p x,®) C t(p,s,r)- Together with ¢ T ¢(p s ) this
implies ¢p ) @ ¢ C tp,s,r) and hence (ii) follows with (30). O

Theorem 36 (Narrowing Processor). Let P = (D,S,K,R) be an extended
DT problem and let s — t € D witht = COMy,(t1,...,tiy...,ty). Let p,..., pa
be the narrowing substitutions of t; with the corresponding narrowing results
wy,...,wq, where d > 0. Let ty,,...,t,,, be the terms from tq,...,t, that are
not captured by p1, ..., g, where ki, ..., ky, are pairwise different. We define

M= {spj = CoMp(tipj, ...\ timaphy, Wy, Ligifhys -y tapy) | 1 < < d}
U{s — CoMp(try,- -tk )}

Then the following processor is sound: PROC(P) = (Poly, (D', S',K', R)), where

D' =Dls—t/ M| and S’ = S[s—t /| M]. K’ results from K by removing s — ¢
and all DTs that are reachable from s — t in the (D, R)-dependency graph.
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Proof. W.l.o.g.let M and D be disjoint (otherwise, we apply a variable renaming
on one of them). Given a (D, R)-chain tree T', we construct a (D', R)-chain tree
T’ by repeatedly replacing every node of the form (s — ¢ | o) by a new node of
the form (sp — t' | 0') with sy — t' € M. This implies |75 = [T'|p and
for any DT u — v ¢ {s — t} UM, we have |T'|(,_,v} = |T"|{u—v}. However, we
have to show the following two statements in order to ensure that we still obtain
a chain tree:

(A) Relation to predecessor: If (s — t | o) was the root node of the chain tree

for so, then the new node should also be the root note of a chain tree for
so, i.e., we need so = suc’.
Otherwise, if (s — ¢ | o) had a predecessor (p — CoMg(q1,...,qk) | p)
with ¢;p i—>;‘3 so, then the same relation should also hold for the new node
(sp— t' | '), i.e., we need qjp -+ spo’. Note that this is obviously fulfilled
if so = suo’.

(B) Relation to successors: Let (s — t | o) have the children labeled with
(up — v1|11),. .., (Ue = ve|Te) for e > 0. Hence, there exist pairwise dis-
joint iy,...,i. € {1,...,n} such that ;o i—>f,‘2 u;7; for all 1 < j <e. When
replacing (s — t | o) by a new node (su — ¢’ | 0’) with sy — t' € M, we
have to show that there exist pairwise different indexes i}, ..., such that
t |zj o' % wr; for all 1 < j < e. Note that this is obviously fulfilled if for
all j we have t’|i3_cr’ =t;,0.

We now distinguish three cases. For each of them, we show how to choose
the new node (s — ¢’ | o’) such that the relations to the predecessor and to
the successors in (A) and (B) still hold.

e Case 1: none of the terms ¢;,,...,1;, is captured by p1,..., tqa.

e

Hence, {i1,...,ic} C {k1,...,km}. We choose sy — t' to be s — COM,y, (¢, ,
...y tg,) (i.e., p is the identity) and we choose ¢’ = o. This implies so =
spo’ and thus, (A) holds. Moreover for every i;, there exists an ¢, with
CoMy, (tky s - - - ,tkm)h; Lij, since i; € {k1,...,kmn}. Thus, t/|i3.0'/ =
CoMp (thys - - -y th,, )i 0 = ti, 0, which proves (B).

J
o Case 2: 7 € {i1,..., 0.}

Thus, there is a 1 < jo < e with i = i;,. Hence, t;oc =¢;, o ok T -

First regard the case where this reduction works in zero steps, i.e., t;0 =
Ujy Tj,- W.Lo.g., we can assume that u;, is variable-disjoint from ¢;. Then t;
unifies with u;, using some mgu p where o0 = po’ and 7, = ,uT]f0 for some
substitutions o’ and 7} . Since (s —t | o) and (uj, — vj, | 7j,) are nodes in
a chain tree, both so and u;,7;, are in R-normal form. This implies that su
and uj, p are also in R-normal form. Hence, ¢; has the narrowing substitution
w1 with corresponding result ¢; 4. Thus, su — tu € M and we can replace the
node (s =t | o) by (s — tu | o’). For (A), we have suo’ = so. For (B), we
let i} = i; for all 1 < j < e. Then we obtain t'|; 0" = t'[;,;0" = t|;; uo’ = t|;;0,

which implies (B).
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Otherwise, the reduction t;0 5% uj, 75, takes at least one step. Let m be the
position of t;o where the first reduction step takes place. We have m € Pos(t;)
and t;|r ¢ V, since the reduction cannot be “in ¢”. The reason is that
otherwise, so would not be an R-normal form, due to V(t;) € V(s). Thus,
there exists a rule £ — r € R which matches ¢;|,0. W.l.o.g., we can assume
that ¢ is variable-disjoint to ¢;. Then we can extend o to the variables of ¢
such that ¢;|,0 = o and

tiCT = ti[g]ﬂ-O' L)R ti[ﬂﬂd L);‘a ujoTjo' (31)

Since o is a unifier of ¢;|, and ¢, they also have an mgu p with o = uo’
for some substitution ¢’. Moreover, since so is in R-normal form, sy is in
R-normal form as well. Hence, p is a narrowing substitution of ¢; and the
corresponding narrowing result is ¢;[r]. .
Let t' = COMn(tl, ceey i, ti[’l“]ﬂ—, titty - tn),u. Then sy — t' € M and
we replace the node (s — t | o) by (su — t' | ¢’). It remains to show that
(A) and (B) hold.
(A) is satisfied since o = po’ and hence, so = suo’. For (B), we let i, = i;
for all 1 < 5 < e. For jp, we now obtain

t'|i_/joo’ = t|i;, 0" = tilrlapo’ = tirlzo SR wjiT,
by (31). For j # jo, we have t'|;.0" = t'|;;0" = t|;, po” = t|;;0, which implies
(B).

e Case 3: 7 ¢ {i1,...,i.} and a term from ¢, ,...,t;_ is captured by p1, ..., fiq.

Let 1 < jo < e such that ¢;; is captured by pi,...,uq. Hence, ¢;; o i—>;‘z
UjyTj,- As in Case 2, this implies that there exists a narrowing substitu-
tion p of ¢;; with o = po for some substitution . Since ¢;; is captured
by p1,...,pq, there is a 1 < j; < d where pj, is more general than g,
ie., p = p;,7 for some substitution . We define ¢/ = 76 which implies
o = pj,0’. Now we replace (s — t | o) by (su;;, — t' | o') where t =
CoMp (tiftjyy -y timiflyy s Wiy L1y s - - -5 tnpty, ). Then (A) holds, since so
= suj,0’. For (B), we let i/, =i, for all 1 < j <e. Since i ¢ {i1,...,i.}, we
obtain t'|¢;_ o' =t|;,0" =t|;,uj,0" = t|;;0, which implies (B).

Thus, for any (D, R)-chain tree T for a sharped term w* there exists a (D, R)-
chain tree T” for the same term w* where |T|(s_y = |T'|p and for any DT
u— v ¢ {s =t} UM, we have T[4} = |T"|{u—v}- Hence, for any sharped
term wf and any S C D with &’ = S[s =t / M|, we have Cplz (p s R) (w?) <
Cplz pr s/ Ry (w*). This implies ¢(p s 7) C t(pr .5/ R)-

Moreover, if L C D and K’ results from K by removing s — ¢ and all DTs
that are reachable from s — ¢ in the (D, R)-dependency graph, then K’ also
contains no DT that is contained in M or reachable from M in the (D', R)-
dependency graph. Hence, for Cplz p i/ gy (w*) or Cplz (pr o ) (w#) it suffices to
consider chain trees not containing s — t or DTs from M. Such chain trees
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are both (D, R)- and (D', R)-chain trees. Hence, we obtain Cplz (p xo %) (wh) =
Cplz pr o1 Ry (w*) for all w* and thus, uDK Ry = LD Ry As KN C K, we have
UD,K"R) C UD,K,R) by Lemma Sg(g) and hence LD K R) C UD,K,R)-

From UD,S,R) C WD, 8" R) and WD K\ R) C UD,K,R), WE obtain that yp C
Yp',s' K, R)y> 1-€., the narrowing processor is sound. a
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