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Computing Maximum Reachability Probabilities in

Markovian Timed Automata

Taolue Chen1, Tingting Han2, Joost-Pieter Katoen1,2, and Alexandru Mereacre2

1 Formal Methods and Tools, University of Twente, The Netherlands
2 Software Modelling and Verification, RWTH Aachen University, Germany

Abstract. We propose a novel stochastic extension of timed automata, i.e. Marko-
vian Timed Automata (MTA). We study the problem of optimizing the reacha-
bility probabilities in this model. Two variants are considered, namely, the time-
bounded and unbounded reachability. In each case, we propose Bellman equations
to characterize the probability. For the former, we provide two approaches to solve
the Bellman equations, namely, the discretization and a reduction to Hamilton-
Jacobi-Bellman equations. For the latter, we show that in the single-clock case,
the problem can be reduced to solving a system of linear equations, whose coef-
ficients are the time-bounded reachability probabilities in CTMDPs.

1 Introduction

This paper introduces Markovian timed automata (MTA, for short), an extension of
timed automata [AD94] with exponential location residence times. An MTA has as
semantics a continuous-space Markov decision process (MDP). MTA are rather expres-
sive. Zero-clock MTA correspond to a subclass of continuous-time Markov decision pro-
cesses (CTMDP, [BHKH05,BFK+09]), whereas probabilistic timed automata (PTAs)
[KNSS02] are obtained by basically ignoring the exit rates in any location. In earlier
work [CHKM09a], we have used deterministic MTA as specification formalism for linear
real-time properties over stochastic processes.

This paper focuses on determining maximal reachability probabilities in MTA. Two
variants are considered: what is the maximal likelihood to hit a set of goal locations
within a given deadline, and how is this probability determined in absence of such dead-
line? To solve these issues, we adopt the standard region construction [AD94] to MTA,
and show that region graphs are in fact a decision variant of piecewise-deterministic
Markov processes (PDPs) [Dav84], a well-studied class of stochastic processes in e.g.,
stochastic control theory and financial mathematics. In this paper, this variant is termed
as piecewise-deterministic Markov decision processes (PDDPs, for short). We character-
ize maximal time-bounded reachability probabilities in PDDPs by a variant of the Bell-
man equation. This provides the basis for two approaches to compute such probabilities.
The first approach uses discretization, and shows that max-reachability probabilities in
a PDDP can be reduced to maximal reachability probabilities in an MDP, for which
various efficient algorithms, such as value iteration [Ber95] exist. We show that the ac-
curacy of our result is (1 − e−λh)·(1 − e−λT ) where h is the discretization step, T is the
deadline, and λ is the maximal rate of an exponential distribution in the MTA. The sec-
ond approach is based on partial differential equations (PDEs), in particular Hamilton-
Jacobi-Bellman equations. Finally, we provide a Bellman equation for time-unbounded
reachability probabilities in PDDPs, and show that for one-clock MTA solving a linear
equation whose coefficients are reachability probabilities in (locally uniform) CTMDPs
[NSK09,BFK+09]. In this paper, we focus on the maximum probabilities. However, all
the results can be adapted to the minimum ones in a straightforward way.

Some related works are in order: [BBB+07,BBB+08,BBBM08] provides a quantita-
tive interpretation to timed automata where delays and discrete choices are interpreted
probabilistically. In this approach, delays of unbounded clocks are governed by exponen-
tial distributions like in CTMCs. Decidability results have been obtained for almost-sure



properties [BBB+08] and quantitative verification [BBBM08] for (a subclass of) single-
clock timed automata. This probabilistic semantics roughly corresponds to determinis-
tic MTA, as considered in [CHKM09a]. Moreover, [BF09] considered stochastic timed
games. Time-unbounded reachability problems were addressed for these models. It was
shown that the problem is undecidable in general, and becomes decidable if restrict-
ing to single-clock 1 1

2 -player games and qualitative case. MTA are essentially 1 1
2 -player

stochastic timed games. However, we are mainly dealing with approximated quantitative
analysis of both time-bounded and unbounded cases.

2 Markov processes with decision

Given a set H , let Pr : F(H) → [0, 1] be a probability measure on the measurable
space (H,F(H)), where F(H) is a σ-algebra over H . Let Distr(H) denote the set of
probability measure on this measurable space.

Definition 1 (MDP). A Markov decision process is a tuple D = (Act, S, s0,P) where
Act is a finite set of actions; S is a set of states; s0 is the initial state; P : S × Act ×
F(S) → [0, 1] is the transition probability function, where P(·, ·, A) is measurable for
any A ∈ F(S).

P(s, α, A) is the one-step transition probability from state s ∈ S to the set of states
A ∈ F(S) by taking action α ∈ Act. We assume w.l.o.g. that there is no internal
nondeterminism, i.e., the actions enabled at each state are pairwise different.

Piecewise-deterministic Markov decision processes. The model piecewise-deterministic
Markov processes (PDPs) [Dav84] constitute a general model for virtually any stochastic
system without diffusions [Dav93] and has been applied to a variety of problems in
engineering, operations research, management science, and economics. Powerful analysis
and control techniques for PDPs have been developed [LL85,LY91,CD88].

A piecewise-deterministic (Markov) decision process (PDDP) is a PDP with de-
cisions where the exit rate function, the flow function and the transition probability
function might depend on a set of parameters (actions). Generally a PDDP does not
define any stochastic process, since it is inherently nondeterministic. By resolving the
nondeterminism (i.e., specifying all actions in PDDP) a PDP is derived. In this paper
we consider a simple versions of PDDPs where only the transition probability function
depends on a given action.

Let us first introduce some notions. Let X={x1, ..., xn} be a set of variables in R. An
X -valuation is a function η:X→R assigning to each variable x a value η(x). Let V(X )
denote the set of all valuations over X . A constraint over X , denoted by g, is a subset of
Rn. Let B(X ) denote the set of constraints over X . An X -valuation η satisfies constraint
g, denoted η |= g, if (η(x1), ..., η(xn)) ∈ g. For g∈B(X ), a constraint over X={x1, ..., xn},
let g be the closure of g, g̊ the interior of g, and ∂g = g \ g̊ the boundary of g, e.g., for
g=x2

1−2x261.5 ∧ x3>2, we have g̊=x2
1 − 2x2<1.5 ∧ x3>2, g=x2

1−2x261.5 ∧ x3>2, and
∂g equals x2

1−2x2=1.5 ∧ x3=2.
A PDDP is a hybrid stochastic decision process involving discrete control (i.e., lo-

cations) and continuous variables. To each control location z of a PDDP, an invariant
Inv(z) is associated, a constraint over X which constrains the variable values in z. The
state of a PDDP is a pair (z, η) with control location z and η a variable valuation. For
the set Z of locations, let S = { (z, η) | z ∈ Z, η |= Inv(z) } be the state space of the
PDDP. The notions of closure, interior and boundary can be lifted to S in a straightfor-
ward manner, e.g., ∂S =

⋃
z∈Z{z} × ∂Inv(z) is the boundary of S; S̊ and S are defined

in a similar way.

Definition 2 (PDDP [Dav93]). A PDDP is a tuple Z = (Act, Z,X , Inv , φ, Λ, µ)
where Act is a finite set of actions; Z is a finite set of locations; X is a finite set
of variables; Inv : Z → B(X ) is an invariant function; φ : Z × V(X ) × R → V(X )
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is a flow function1; Λ : S → R>0 is an exit rate function satisfying for any ξ ∈ S:
∃ǫ(ξ) > 0. function t 7→ Λ(ξ⊕ t) is integrable on [0, ǫ(ξ)), where (z, η)⊕ t =

(
z, φ(z, η, t)

)

and µ : (̊S ∪ ∂S) × Act×F(S) → [0, 1] is the transition probability function satisfying2:
µ(ξ, α, {ξ}) = 0, where F(S) is a σ-algebra generated by the union

⋃
z∈Z{z} × Az with

Az ⊆ F(Inv(z)).

Let us explain the behavior of a PDDP. A PDDP can reside in a location z as
long as Inv(z) holds. On entering state ξ = (z, η), the PDDP can either delay or take
a Markovian jump. By delaying, the next state ξ′ = ξ ⊕ t, i.e., the PDDP remains in
location z while all its continuous variables are updated according to φ(z, η, t). The flow
function φ defines the time-dependent behavior in a single location, in particular, how
the variable valuations change when time elapses. State ξ ⊕ t is the timed successor of
state ξ (on the same location) given that t time units have passed. In case of a Markovian
jump, the next state ξ′′ = (z′′, η′′) ∈ S is reached with probability µ(ξ, α, {ξ′′}) by taking
action α. The residence time of a state is exponentially distributed; this is defined by
the function Λ. A third possibility for a PDDP to evolve is by taking forced transitions.
When the variable valuation η satisfies the boundary, i.e., η |= ∂Inv(z), the PDDP

is forced to take a boundary jump, i.e., it has to leave location z. With probability
µ(ξ, α, {ξ′′}) it then moves to state ξ′′ for arbitrary action α ∈ Act.

The PDP is piecewise-deterministic because in each location (one piece) the behavior
is deterministically determined by φ. The decision process is Markovian as the current
state contains all the information to determine the future progress of the process.

3 Markovian timed automata

We use a special case of nonnegative variables, called clocks. We write ~0 for the valuation
that assigns 0 to all clocks. For a subset X⊆X , the reset of X , denoted η[X := 0], is the
valuation η′ such that ∀x∈X. η′(x)=0 and ∀x /∈ X. η′(x)=η(x). For δ ∈ R>0, η+δ is the
valuation η′′ such that ∀x ∈ X . η′′(x)=η(x)+δ, which implies that all clocks proceed at
the same speed, or equivalently, ∀xi ∈ X . ẋi = 1. A clock constraint on X is an expression
of the form x ⊲⊳ c, or the conjunction of clock constraints, where x∈X , ⊲⊳ ∈{<,6,>,>}
and c ∈ N.

Definition 3 (MTA). An MTA is a tuple M = (Act,X ,Loc, ℓ0, E, ), where Act
is a finite set of actions; X is a finite set of clocks; Loc is a finite set of loca-
tions; ℓ0 ∈ Loc is the initial location; E : Loc → R>0 is the exit rate function; and
 ⊆ Loc × Act × B(X ) × Distr(2X × Loc) is the edge relation.

Let I(ℓ, η) ∈ Act be the set of actions enabled in location ℓ ∈ Loc under clock val-

uation η ∈ V(X ). For simplicity we abbreviate (ℓ, α, g, ζ) ∈ by ℓ
α,g
 ζ, where ζ is a

probability distribution over 2X × Loc. Compared to the DMTA in [CHKM09a], where
the edge relation is defined as ⊆ Loc×B (X )×2X×Distr(Loc), the MTA model allows
each set of transitions to reset their clocks differently. This has also been used in proba-
bilistic timed automata (PTA, [KNSS02]). In this sense, our model can be considered as
a continuous-time extension of PTAs. The locally uniform [BHKH05] continuous-time
MDPs (CTMDPs) [NSK09] with finite state space are zero-clock MTAs (i.e., X = ∅).

Example 1. An example MTA is shown in Fig. 1, where there are 4 locations with ℓ0

the initial location. Note that the sub-probability distribution can be fixed by adding a
trap location. The resets are over distributions. In ℓ0, there is a nondeterministic choice
between α1 and α2. It is similar for ℓ2 with γ1 and γ2. ℓ3 is the goal location, which will
be used later.denoted by a double cycle.

1 The flow function is the solution of a system of ODEs with a Lipschitz continuous vector
field.

2 µ(ξ, α, A) is a shorthand for (µ(ξ, α))(A).
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ℓ1 ℓ0 ℓ2 ℓ3

r1 r0

r2

r3

1, ∅ α1, x<1

0.5, ∅β, x < 1

α2, x > 0 0.2, ∅

γ2, 1 < x < 2 0.2, ∅

γ1, 1 < x < 20.5, {x}

Fig. 1. An example MTA

Definition 4. Finite paths in MTA M are of the form ℓ0
α0,t0−−−−→ ℓ1

α1,t1−−−−→ · · · ℓn, where

for each edge ℓi
αi,gi
 ζi of M with ζi(Xi, ℓi+1) > 0 (ℓi ∈ Loc, αi ∈ Act, ti ∈ R≥0, Xi ⊆ X

and 0 6 i < n), we have that ηi is a valid clock valuation on entering location ℓi satisfying
η0 = ~0, (ηi + ti) |= gi, and ηi+1 = (ηi + ti)[Xi := 0]. Let PathsM (resp. PathsM(ℓ))
denote the set of finite paths (resp. starting in ℓ) in M. For ρ∈PathsM, let ρ[n]:=ℓn be
the n-th location of ρ and ρ〈n〉:=tn be the time spent in ℓn.

Semantics. The semantics of an MTA is given as an MDP. A state of an MTA is of
the form (ℓ, η) where ℓ ∈ Loc and η ∈ V(X ) is a clock valuation.

Definition 5. Let M = (Act,X , Loc, ℓ0, E, ) be an MTA. The MDP associated with

M is D(M) = (Act, S, s0,P) where S = Loc×V(X ), s0=(ℓ0,~0), and for each edge ℓ
α,g
 ζ

in M with ζ(X, ℓ′) = p > 0 and any η |= g, we have:

P((ℓ, η), α, A) =

∫

R>0

E(ℓ)e−E(ℓ)τ · 1g(η + τ) · p dτ, (1)

where A = {(ℓ′, η′) | ∃τ∈R>0. η′ = (η + τ)[X :=0] and η + τ |= g} and 1g(·) is the
characteristic function, i.e., 1g(η + τ) = 1 if η + τ |= g; 0, otherwise.

Intuitively, an MTA behaves as follows. Given an edge ℓ
α,g
 ζ such that ζ(X, ℓ′) =

p > 0, i.e., there is a transition from ℓ to ℓ′ under action α, if more than one action
is enabled in state (ℓ, η) then one of them is chosen nondeterministically. Given that
action α is chosen, consider an interval I = [t1, t2] ⊆ R>0 such that for each t ∈ I,
η + t |= g. The probability of taking the α-transition from state (ℓ, η) to the set of states
A = {(ℓ′, (η + t)[X := 0]) | t ∈ I} is p · (e−E(ℓ)·t1 − e−E(ℓ)·t2).

We now consider the probability of a set of paths. Given an MTA M, C(ℓ0, α0,
I0, ..., αn−1, In−1, ℓn) (C for short) is the cylinder set where (ℓ0, ..., ℓn) ∈ Locn+1 and
Ii ⊆ R>0. The cylinder set denotes a set of infinite paths ρ in M such that ρ[i] = ℓi and
ρ〈i〉 ∈ Ii. Let PrMη0

(C) denote the probability of C such that the initial clock valuation

in location ℓ0 is η0. Let PrMη0
(C) := PM

0 (η0), where PM
i (η) is defined as follows:

PM
i (η)=





1 if i = n
∫

Ii

E(ℓi)·e
−E(ℓi)τ · 1gi

(η + τ) · pi︸ ︷︷ ︸
(⋆)

· PM
i+1(η

′)
︸ ︷︷ ︸

(⋆⋆)

dτ if 0 6 i < n, (2)

where η′ := (η + τ)[Xi := 0]. Intuitively, PM
i (ηi) is the probability of the cylinder set C

starting from ℓi and ηi to ℓn. It is recursively defined by the product of the probability
of taking a transition from ℓi to ℓi+1 within time interval Ii (cf. (⋆) and (1)) and the
probability of the suffix cylinder set from ℓi+1 and ηi+1 on (cf. (⋆⋆)).

Schedulers. MTA incorporate nondeterministic decisions, which are resolved by sched-
ulers (a.k.a, adversaries, policies, strategies, etc). For deciding which of the next action
to take, generally a scheduler may “have access” to the current state only (memory-
less/positional schedulers), or to the path from the initial to the current state (history
dependent schedulers). In this paper, we are mainly interested in maximizing reachability
probabilities. To this purpose, it is not difficult to see that, at each state, the scheduler
can prescribe the decision solely depending on the current state instead of the history.
Namely, only positional schedulers suffice. We stress that the decision is made at the
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level of states instead of locations, which implies that both the location and the clock
valuation are relevant. Moreover, for time-bounded reachability probabilities, the global
time affects the decision. (It can be considered as an extra clock which is never reset; cf.
Section 5.) Hence, we consider a subclass of schedulers, namely, the total time positional
(TTP) deterministic schedulers [NSK09], which guarantee the optimal solutions in the
current setting (cf. [Ver85] for details).

Definition 6. A TTP scheduler for an MTA M is a measurable function u:Loc×R
|X |
≥0 ×

R≥0→Act such that for any location ℓ, clock valuation η and time t, u(ℓ, η, t)∈I(ℓ, η).

We denote U as the set of all TTP schedulers. Given M and a scheduler u, one can
obtain a Markov process (with continuous state space) in the standard way.

Problem statement. In this paper, we are mainly interested in maximizing reachability
probabilities in an MTA M. There are two variants: time-bounded reachability and
unbounded reachability. The former asks, given M, a finite set of goal locations LocF ⊆
Loc and a time bound T ∈ R≥0, what is the maximal probability to reach LocF , under
any TTP scheduler U within T time units, i.e., supu∈U

{
Probu

(
(ℓ0,0),♦6TLocF

)}
. The

latter asks the same question except that there is no time constraint to reach LocF , i.e.,
supu∈U{Probu((ℓ0,0),♦LocF )}. Here, the measure Probu is the extension of PrM which
defines the probability of cylinder sets C under a given scheduler u.

Region construction for MTA. A main step in computing the maximum reachability
probability is to transform the MTA into a region graph by means of the region con-
struction [AD94], which allows us to obtain a PDDP from an MTA in a natural way.

As usual, a region is a constraint. For regions Θ, Θ′ ∈ B(X ), Θ′ is the successor
region of Θ if for all η |= Θ there exists δ ∈ R>0 such that η + δ |= Θ′ and for all δ′ < δ,
η + δ′ |= Θ ∨ Θ′. A region Θ satisfies a guard g (denoted Θ |= g) iff ∀η |= Θ. η |= g. A
reset operation on region Θ is defined as Θ[X := 0] := {η[X := 0] | η |= Θ}. For any
n-ary tuple J , let J⇂i denote the i-th entry in J , for 1 6 i 6 n.

Definition 7 (Region graph of MTA). Given an MTA M = (Act,X ,Loc, ℓ0, E, ),
the region graph is G(M) = (Act, V, v0, VF , Λ, →֒), where V := Loc×B(X ) is a finite set
of vertices, consisting of a location ℓ in M and a region Θ; v0 ∈ V is the initial
vertex if (ℓ0,~0) ∈ v0; Λ : V → R>0 is the exit rate function where Λ(v) := E(v⇂1);
and →֒ ⊆ V ×

((
Act×[0, 1]×2X

)
∪ {δ}

)
×V is the transition (edge) relation, such that: -

v
δ
→֒v′ is a delay transition if v⇂1=v′⇂1 and v′⇂2 is a successor region of v⇂2;

- v
α,p,X
→֒ v′ is a Markovian transition if there exists some transition v⇂1

α,g
 ζ,

ζ(X, v′⇂1) = p in M such that v⇂2 |= g and v⇂2[X := 0] |= v′⇂2.

The following result asserts that the region graph obtained from an MTA is in fact a
PDDP. Moreover, any given MTA and its associated PDDP have the same reachability
probabilities. Hence, the problem of computing reachability probabilities for MTA can
be reduced to analyzing its corresponding PDDP.

Theorem 1. Given any MTA M, the region graph G(M) of M induces a PDDP

Z(M). Moreover, M and Z(M) have the same maximal time-bounded/unbounded reacha-
bility probabilities.

Proof. Let MTA M = (Act,Loc,X , ℓ0, E, ) with region graph G(M) = (Act, V, v0, Λ,
→֒). Define Z(M) = (Act, V,X , Inv , φ, Λ, µ) where for any v ∈ V : Inv(v) := v⇂2 and
the state space S :=

{
(v, η) | v ∈ V, η |= Inv(v)

}
is defined in the standard way;

φ(v, η, t) := η + t; Λ(v, η) := Λ(v); for each delay transition v
δ
→֒ v′ in G(M) and

any α ∈ Act we have µ(ξ, α, {ξ′}) := 1, where ξ = (v, η), ξ′ = (v′, η) and η |= ∂Inv(v);

for each Markovian transition v
α,p,X
→֒ v′ in G(M) we have µ(ξ, α, {ξ′}) := p, where
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ξ = (v, η), η |= Inv(v) and ξ′ = (v′, η[X := 0]). It follows directly that Z(M) is a
PDDP.

The time-unbounded reachability probability Pr(ℓ, η) for an MTA M can be de-
scribed by the following system of integral equations (ℓ /∈ LocF )

Pr(ℓ, η) = max
α∈I(ℓ)

{∫ ∞

0

Λ(ℓ)e−Λ(ℓ)τ ·
∑

ℓ
�

α,g

p,X
// ℓ′

1g(η + τ) · p · Pr(ℓ′, η′) dτ

}
,

where I(ℓ) is the set of available actions in location ℓ, transition ℓ
�

α,g

p,X
// ℓ′ is defined

by the transition ℓ
α,g
 ζ, ζ(X, ℓ′) = p, the characteristic function 1g(η+τ) is as in Eq.(2)

and η′ = (η + τ)[X := 0]. For ℓ ∈ LocF we define Pr(ℓ, η) = 1.

From here on we will consider that the clock constraints are of the form x E c, where

c ∈ N>0 and E∈ {≤, <,≥, >}. For a transition ℓ
�

α,g

p,X
// ℓ′ with guard g and clock

valuation η we get that

Pr(ℓ, η) = max
α∈I(ℓ)

{∫ t2

t1

Λ(ℓ)e−Λ(ℓ)τ ·
∑

ℓ
�

α,g

p,X
// ℓ′

p · Pr(ℓ′, η′) dτ

}
,

where η + τ |= g and τ ∈]t1, t2[, t1, t2 ∈ Q>0 ∪ {∞}.

Given the region graph Z(M) of the MTA M, let Probv(η) be the maximum prob-
ability to reach the set of goal vertices VF starting from vertex v and clock valuation η.
Probv(η) can be defined as:

Probv(η) =

{
maxα∈I(v⇂1) {Probv,δ(η) + Probv,α(η)} , if v 6= VF

1, otherwise

Probv,α(η) =

∫ ♭(v,η)

0

Λ(v)·e−Λ(v)τ ·
∑

v
α,p,X
→֒ v′

p·Probv′

(
(η+τ)[X :=0]

)
dτ,

Probv,δ(η) = e−Λ(v)♭(v,η) · Probv′

(
η + ♭(v, η)

)
.

Here Probv,α(η) denotes the probability to reach VF by taking a Markovian jump and
Probv,δ(η) the probability to reach VF through vertex v′ by taking the boundary jump

v
δ
→֒ v′.

For ℓ /∈ LocF we have to prove that

Pr(ℓ, η) = Probv0(η), (3)

where v0 is the initial vertex in the region graph Ẑ(M) induced by location ℓ such that
v0⇂1 = ℓ. In order to show the validity of Eq.(3) we define Prn(ℓ, η) as the maximum
time-unbounded reachability probability to reach the set of goal states LocF in n-MTA

transition steps

Prn(ℓ, η) = max
α∈I(ℓ)

{∫ t2

t1

Λ(ℓ)e−Λ(ℓ)τ ·
∑

ℓ
�

α,g

p,X
// ℓ′

p · Prn−1(ℓ′, η′) dτ

}
.
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In the same way we define Probn
v (η) as the maximum reachability probability to reach

the set of goal states VF in n-MTA transition steps

Probn
v (η) =

{
maxα∈I(v⇂1)

{
Probn

v,δ(η) + Probn
v,α(η)

}
, if v 6= VF

1, otherwise

Probn
v,α(η) =

∫ ♭(v,η)

0

Λ(v)·e−Λ(v)τ ·
∑

v
α,p,X
→֒ v′

p·Probn−1
v′

(
(η+τ)[X :=0]

)
dτ,

Probn
v,δ(η) = e−Λ(v)♭(v,η) · Probn

v′

(
η + ♭(v, η)

)
.

Now the task is to show that for all n ∈ N>0,

Prn(ℓ, η) = Probn
v0

(η). (4)

Notice that limn→∞ Prn(ℓ, η) = Pr(ℓ, η) and limn→∞ Probn
v (η) = Probv(η).

· · · · · ·
v0=(ℓ,Θ0)

♭(v0,η̂0)61

vm−1=(ℓ,Θm−1)

♭(vm−1,η̂m−1)=1

δ δ vm=(ℓ,Θm)

♭(vm,η̂m)=1

vk=(ℓ,Θk)

♭(vk,η̂k)=1

δ δδ

v′

m=(ℓ′,Θm)

♭(v′

m,η̂′

m)61

α, p, X

v′

k=(ℓ′,Θk)

♭(v′

k,η̂′

k)61

α, p, X
· · · · · ·

Fig. 2. The sub-region graph Ẑ(M) for the transition from ℓ to ℓ′

We will show the validity of Eq.(4) by induction on n.

– For the base case n = 0, we have that Pr0(ℓ, η) = 0 and Prob0
v0

(η) = 0 as ℓ /∈ LocF .

– For the inductive case we have to show the validity of Eq.(4) for n+1. We consider the

MTA transition ℓ
α,g
 ζ and its corresponding region graph Ẑ(M) shown in Fig. 2. For

simplicity we consider that location ℓ induces the vertices {vi = (ℓ, Θi) | 0 6 i 6 k}.
Note that for Markovian transitions, the regions stay the same. We denote η̂i as the
entering clock valuation in vertex vi, for i the indices of the regions. Here η̂0 = η
and η̂i = η̂i−1 + ♭(vi−1, η̂i−1) for 1 ≤ i ≤ k. For any η̂ ∈

⋃m−1
i=0 Θi ∪

⋃
i>k Θi, η̂ 6|= g;

or more specifically,

t1 =

m−1∑

i=0

♭(vi, η̂i) and t2 =

k∑

i=0

♭(vi, η̂i).

For notation simplicity we define

Ξn
v (η) = max

α∈I(v⇂1)

{
Probn

v,δ(η) + Probn
v,α(η)

}
.

Given the fact that from v0 the process can only execute a delay transition before
time t1, it holds that

Ξn+1
v0

(η) = e−t1Λ(v0) · Ξn+1
vm

(η̂m),

Ξn+1
vm

(η̂m) = max
α∈I(vm⇂1)

{
Probn+1

vm,δ(η̂m) + Probn+1
vm,α(η̂m)

}
.
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Notice that Λ(v0) = Λ(vi) for all i ≤ k. Therefore, by substitution we obtain:

Ξn+1
v0

(η) = e−t1Λ(v0)·Probn+1
vm,δ(η̂m) + e−t1Λ(v0)· max

α∈I(vm⇂1)

{
Probn+1

vm,α(η̂m)
}

= e−t1Λ(v0)·Probn+1
vm,δ(η̂m)

+ e−t1Λ(v0)·

∫ ♭(vm,η̂m)

0

Λ(vm)·e−Λ(vm)τ · max
α∈I(vm⇂1)





∑

vm

α,p,X
→֒ v′

m

p·Probn
v′

m

(
(η̂m + τ)[X := 0]

)




dτ

= e−t1Λ(v0)·Probn+1
vm,δ(η̂m)

+

∫ t1+♭(vm,η̂m)

t1

Λ(vm)·e−Λ(vm)τ · max
α∈I(vm⇂1)





∑

vm

α,p,X
→֒ v′

m

p·Probn
v′

m

(
(η̂m + τ − t1)[X := 0]

)




dτ.

Evaluating each term Probn+1
vm,δ(η̂m) we get the following sum of integrals:

Ξn+1
v0

(η) =

k−m∑

i=0

∫ t1+
Pi

j=0 ♭(vm+j ,η̂m+j)

t1+
Pi−1

j=0 ♭(vm+j ,η̂m+j)

Λ(vm+i)·e
−Λ(vm+i)τ

· max
α∈I(vm⇂1)





∑

vm+i

α,p,X
→֒ v′

m+i

p·Probn
v′

m+i

(
(η̂m+i + τ − t1 −

i−1∑

j=0

♭(vm+j , η̂m+j))[X := 0]
)




dτ.

Notice that I(vm⇂1) = I(vm+i⇂1) for all i ≤ k. Now we define the function Fn
α (t) :

[t1, t2] → [0, 1], such that when t ∈ [t1+
∑i−1

j=0 ♭(vm+j , η̂m+j), t1+
∑i

j=0 ♭(vm+j , η̂m+j)]
for i 6 k − m then

Fn
α (t) =

∑

vm+i

α,p,X
→֒ v′

m+i

p·Probn
v′

m+i

(
(η̂m+i + t − t1 −

i−1∑

j=0

♭(vm+j , η̂m+j))[X := 0]
)

Using Fn
α (t) we can rewrite Ξn+1

v0
(η) to an equivalent form as:

Ξn+1
v0

(η) =

∫ t2

t1

Λ(v0)·e
−Λ(v0)τ · max

α∈I(vm⇂1)
{Fn

α (τ)} dτ. (5)

Here notice that

η̂m+i = η +

m−1∑

j=0

♭(vj , η̂j) +

i−1∑

j=0

♭(vm+j , η̂m+j).

Therefore, for any t ∈ [t1 +
∑i−1

j=0 ♭(vm+j , η̂m+j), t1 +
∑i

j=0 ♭(vm+j , η̂m+j)], i 6 k−m
we obtain

η̂m+i + t − t1 −
i−1∑

j=0

♭(vm+j , η̂m+j) = η + t.

From the I.H. we know that Prn(ℓ, η) = Probn
v0

(η) such that v0⇂1 = ℓ. Therefore,

for any t ∈ [t1 +
∑i−1

j=0 ♭(vm+j , η̂m+j), t1 +
∑i

j=0 ♭(vm+j , η̂m+j)] and v′m+i⇂1 = ℓ′,
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i 6 k − m, we get

Fn
α (t) =

∑

vm+i

α,p,X
→֒ v′

m+i

p·Probn
v′

m+i

(
(η̂m+i + t − t1 −

i−1∑

j=0

♭(vm+j , η̂m+j))[X := 0]
)

=
∑

vm+i

α,p,X
→֒ v′

m+i

p·Probn
v′

m+i

(
(η + t))[X := 0]

)

=
∑

vm+i

α,p,X
→֒ v′

m+i

p·Prn(ℓ′, (η + t))[X := 0])

=
∑

ℓ
�

α,g

p,X
// ℓ′

p·Prn(ℓ′, (η + t))[X := 0]).

Eq.(5) results in

Ξn+1
v0

(η) =

∫ t2

t1

Λ(ℓ)·e−Λ(ℓ)τ · max
α∈I(ℓ)





∑

ℓ
�

α,g

p,X
// ℓ′

p·Prn(ℓ′, (η + τ))[X := 0])





dτ.

As Probn+1
v0

(η) = Ξn+1
v0

(η) (for v0⇂1 /∈ LocF ) we get that Probn+1
v0

(η) = Prn+1(ℓ, η).

⊓⊔

4 Time-bounded reachability

In this section, we concentrate on maximizing time-bounded reachability probabilities in
a PDDP Z(M) = (Act, V,X , Inv , φ, Λ, µ), namely, given a set VF of goal locations and
time bound T , we are interested in maximizing the probability to reach VF within T
time units. To this end, we first transform the PDDP by adding t 6 T to each of its
invariants. Namely, the global time t is read as an extra clock which is initialized to zero
in the beginning and never reset. Let ♭(v, η, t) be the minimal time for state (v, η) to hit
the boundary ∂Inv(v) at time t.

The following Bellman (dynamic programming) equations [CD88] for continuous
state spaces play an essential role in solving the time-bounded reachability problem.
Let P (v, η, t) be the maximal probability for state (v, η) to reach VF within time bound
T at time t. P (v, η, t) = 1 if v ∈ VF and t 6 T , 0 if t > T ; and otherwise

P (v, η, t) = max
α∈I(v)

{
∑

v
α,p,X
→֒ v′

∫ ♭(v,η,t)

0

Λ(v)e−Λ(v)τP (v′, η′, t+τ) · p dτ

}
(6)

+e−Λ(v)♭(v,η,t)P (v′′, η + ♭(v, η, t), t + ♭(v, η, t))

where I(v) is the set of actions enabled in v, η′ = (η + τ)[X := 0] and v
δ
→֒ v′′, where

v′′ is the time successor of v. The first summand represents the maximum reachability

probability (among all the enabled actions) by taking a Markovian jump v
α,p,X
→֒ v′ and

the other summand represents the probability of taking the boundary jump v
δ
→֒ v′′.

We will provide two ways to solve (6): one by the discretization of (6) and the other
based on the Hamilton-Jacobi-Bellman equation which is a partial differential equation.
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4.1 Discretization

Our first approach is to discretize the continuous variables in the Bellman equation.
Using a discretization step h = 1

N
(N ∈ N>0), the aim is to obtain a finite state MDP

D(M) from the PDDP Z(M). For this MDP, a similar Bellman equation can be derived
and solved efficiently e.g. by value iteration [Ber95]. Intuitively, h is the lengh of time in
which a single Markovian jump takes place from a given location.

Lemma 1. For any discretization step h, P (v, η, t) can be characterized as follows:

P (v, η, t) =





maxα∈I(v)

{∑
v

α,p,X
→֒ v′

∫ h

0

Λ(v)e−Λ(v)τP (v′, η′, t + τ) · p dτ
}

+e−Λ(v)hP (v, η + h, t + h), if h < ♭(v, η, t)

e−Λ(v)♭(v,η,t)P (v′′, η+♭(v, η, t), t+♭(v, η, t)), o.w.

(7)

Proof. We consider the following two cases:

Case h > ♭(v, η, t). We get that P (v, η, t) is determined by the probability to take the

delay transition v
δ
→֒ v′′. Notice that as soon as h > ♭(v, η, t) holds the boundary ∂Inv(v)

is hit and therefore a delay transition is taken. We obtain that

P (v, η, t) = e−Λ(v)♭(v,η,t)P (v′′, η+♭(v, η, t), t+♭(v, η, t));

Case h < ♭(v, η, t). We get

P (v, η, t) = max
α∈I(v)

{
∑

v
α,p,X
→֒ v′

∫ ♭(v,η,t)

0

pΛ(v)e−Λ(v)τP (v′, η′, t+τ)dτ +

e−Λ(v)♭(v,η,t)P (v′′, η + ♭(v, η, t), t + ♭(v, η, t))

}

= max
α∈I(v)

{
∑

v
α,p,X
→֒ v′

(∫ h

0

pΛ(v)e−Λ(v)τP (v′, η′, t+τ)dτ +

∫ ♭(v,η,t)

h

pΛ(v)e−Λ(v)τP (v′, η′, t+τ)dτ

)

+e−Λ(v)♭(v,η,t)P (v′′, η + ♭(v, η, t), t + ♭(v, η, t))

}

= max
α∈I(v)

{
∑

v
α,p,X
→֒ v′

(∫ h

0

pΛ(v)e−Λ(v)τP (v′, η′, t+τ)dτ+e−Λ(v)h

∫ ♭(v,η,t)−h

0

pΛ(v)e−Λ(v)τP (v′, η′ + h, t+h+τ)dτ

)

+e−Λ(v)♭(v,η,t)P (v′′, η + ♭(v, η, t), t + ♭(v, η, t))

}

= max
α∈I(v)

{
∑

v
α,p,X
→֒ v′

∫ h

0

pΛ(v)e−Λ(v)τP (v′, η′, t+τ)dτ +

e−Λ(v)h

∫ ♭(v,η+h,t+h)

0

pΛ(v)e−Λ(v)τP (v′, η′ + h, t+h+τ)dτ+

e−Λ(v)(♭(v,η,t)−h)e−Λ(v)hP (v′′, η + ♭(v, η, t), t + ♭(v, η, t))

}

= max
α∈I(v)

{
∑

v
α,p,X
→֒ v′

∫ h

0

pΛ(v)e−Λ(v)τP (v′, η′, t+τ)dτ +

e−Λ(v)h
(∫ ♭(v,η+h,t+h)

0

pΛ(v)e−Λ(v)τP (v′, η′ + h, t+h+τ)dτ+
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e−Λ(v)♭(v,η+h,t+h)P (v′′, η + ♭(v, η, t), t + ♭(v, η, t))
)}

= max
α∈I(v)

{
∑

v
α,p,X
→֒ v′

∫ h

0

pΛ(v)e−Λ(v)τP (v′, η′, t+τ)dτ

}
+ e−Λ(v)hP (v, η + h, t + h).

This lemma states that the two characterizations ((6) and (7)) of the Bellman equa-
tion coincide. Specifically, the case that a Markovian jump takes place from the interval
[h, ♭(v, η, t)) in (6) is captured by the term e−Λ(v)hP (v, η + h, t + h) given that no tran-
sition is taken to leave v in [0, h).

Using h, each Markovian jump in the PDDP can be approximated by a Markovian
jump which only takes place at time point {0, 1, . . . , Nh}. This gives rise to an MDP:

Definition 8. Given PDDP Z(M)= (Act, V,X , Inv , φ, Λ, µ), and a discretization step
h= 1

N (N∈N>1), the resulting MDP Dh(M)=(Act, S, s0,P) is as follows: S={(v, η, t) |

v∈V ∧ η|=Inv(v) ∧ t6T}; s0 = (v0,~0, 0); For each (v, η, t) we distinguish two cases: (i)

If h<♭(v,η,t) and v
α,p,X
→֒ v′ then P

`

(v, η, t), α, (v′, (η+h)[X:=0]), t+h)
´

= p·(1−e−Λ(v)h); (ii) If

h>♭(v,η,t) and v
δ
→֒v′, then P ((v, η, t), α, (v′, η+♭(v,η,t), t+♭(v,η,t)))=e−Λ(v)♭(v,η,t).

For each state in Dh(M) there is an outgoing transition of type either (i) or (ii). Let
G(v, η, t) be the maximal reachability probability in the MDP Dh(M). G(v, η, t) can be
characterized as:

G(v, η, t)=





maxα∈I(v)

{∑
v

α,p,X
→֒ v′

p(1 − e−Λ(v)h)G(v′, η̂′, t + h)
}

+e−Λ(v)hG(v, η + h, t + h), if h < ♭(v, η, t)

e−Λ(v)♭(v,η,t)G(v′′, η+♭(v, η, t), t+♭(v, η, t)), o.w.

(8)

where η̂′ = (η + h)[X := 0].

Lemma 2. Given PDDP Z(M) and its approximated MDP Dh(M) with h = 1
N

(N ∈ N>0), the state space of Dh(M) is finite and is of O(|V | · N (|X |+1)).

Proof. On can easily see that in (8) the value of the global time t as well as of the clock
valuation η is a multiple of 1

N , i.e., k
N , k ∈ N and k ≤ N . Notice when t or η is k

N then

the time to hit the boundary ♭(v, η, t) is also a multiple of 1
N , i.e., N−k

N . Given a vertix
v ∈ V and its corresponding region Inv(v) the number of discretization points induced

by h is N(|X|+1)

2 , where |X |+ 1 represents the number of clocks |X | plus the global time
and the denominator 2 is due to the fact that Inv(v) represent a tetrahedron. ⊓⊔

Based on (7) we define two integral operators

F : (V × B(X ) × R>0 → [0, 1]) → (V × B(X ) × R>0 → [0, 1]),

F̃ : (V × B(X ) × R>0 → [0, 1]) → (V × B(X ) × R>0 → [0, 1]),

where

(FH)(v, η, t) =





maxα∈I(v)

{∑
v

α,p,X
→֒ v′

∫ h

0

pΛ(v)e−Λ(v)τH(v′, η′, t + τ)dτ
}
+

e−Λ(v)hH(v, η + h, t + h), if h < ♭(v, η, t)

e−Λ(v)♭(v,η,t)H(v′′, η + ♭(v, η, t), t + ♭(v, η, t)), if h ≥ ♭(v, η, t)

and

(F̃H)(v, η, t) =





maxα∈I(v)

{∑
v

α,p,X
→֒ v′

∫ h

0

pΛ(v)e−Λ(v)τH(v′, η̃′, t)dτ
}
+

e−Λ(v)hH(v, η + h, t + h), if h < ♭(v, η, t)
e−Λ(v)♭(v,η,t)H(v′′, η + ♭(v, η, t), t + ♭(v, η, t)), if h ≥ ♭(v, η, t)
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such that η′ = (η + τ)[X := 0] and η̃′ = η[X := 0]. The integral operators act on
measurable functions H : V × B(X ) × R>0 → [0, 1] such that (FH)(v, η, t) = 1 and

(F̃H)(v, η, t) = 1 if v ∈ VF and t ≤ T .

Lemma 3. For any measurable function H : V × B(X ) × R>0 → [0, 1] and the least

fixpoint G(v, η, t) for the equation H(v, η, t) = (F̃H)(v, η, t) we have (F̃H)(v, η, t) ≥
G(v, η, t), where v ∈ V , η ∈ v⇂2 and t ≤ T .

Proof. Let H(v, η, t) be a fixpoint for the equation H(v, η, t) = (F̃H)(v, η, t) in or-
der to show that (F̃H)(v, η, t) ≥ G(v, η, t) we will show by induction on n ∈ N that
(F̃H)(v, η, t) ≥ Gn(v, η, t), where limn→∞ Gn(v, η, t) = G(v, η, t).

– Base case: G0(v, η, t) = 1 = (F̃H)(v, η, t) if v ∈ VF and t ≤ T and G0(v, η, t) = 0 ≤
(F̃H)(v, η, t), otherwise.

– Induction hypothesis: Gn(v, η, t) ≤ (F̃H)(v, η, t).
– Induction step: for h < ♭(v, η, t) we get

Gn+1(v, η, t) = (F̃Gn)(v, η, t)

= max
α∈I(v)

{ ∑

v
α,p,X
→֒ v′

∫ h

0

pΛ(v)e−Λ(v)τGn(v′, η̃′, t)dτ
}

+ e−Λ(v)hGn(v, η + h, t + h)

(I.H.) ≤ max
α∈I(v)

{ ∑

v
α,p,X
→֒ v′

∫ h

0

pΛ(v)e−Λ(v)τH(v′, η̃′, t)dτ
}

+ e−Λ(v)hH(v, η + h, t + h)

= (F̃H)(v, η, t).

We obtain that (F̃H)(v, η, t) ≥ Gn+1(v, η, t) and (F̃H)(v, η, t) ≥ limn→∞ Gn(v, η, t) =
G(v, η, t). ⊓⊔

Lemma 4. For the least fixpoints P (v, η, t) and G(v, η, t) given by the equations P (v, η, t) =
(FP )(v, η, t) and G(v, η, t) = (F̃G)(v, η, t) we get that G(v, η, t) ≥ P (v, η, t), where
v ∈ V , η ∈ v⇂2 and t ≤ T .

Proof. We will prove that Pn(v, η, t)−Gn(v, η, t) ≤ 0, by induction on n, where limn→∞ Pn(v, η, t) =
P (v, η, t) and limn→∞ Gn(v, η, t) = G(v, η, t).

– Base case: P 0(v, η, t) = 1 = G0(v, η, t) if v ∈ VF , and t ≤ T and P 0(v, η, t) = 0 =
G0(v, η, t), otherwise.

– Induction hypothesis: Pn(v, η, t) − Gn(v, η, t) ≤ 0.
– Induction step: for h < ♭(v, η, t) we get

Pn+1(v, η, t) − Gn+1(v, η, t) =

max
α∈I(v)

{ ∑

v
α,p,X
→֒ v′

∫ h

0

pΛ(v)e−Λ(v)τPn(v′, η′, t + τ)dτ
}

+ e−Λ(v)hPn(v, η + h, t + h) −

max
α∈I(v)

{ ∑

v
α,p,X
→֒ v′

∫ h

0

pΛ(v)e−Λ(v)τGn(v′, η̃′, t)dτ
}
− e−Λ(v)hGn(v, η + h, t + h) ≤

max
α∈I(v)

{ ∑

v
α,p,X
→֒ v′

∫ h

0

pΛ(v)e−Λ(v)τ (Pn(v′, η′, t + τ) − Gn(v′, η̃′, t))dτ
}

+

e−Λ(v)h(Pn(v, η + h, t + h) − Gn(v, η + h, t + h)).

From the definition of the maximum time-bounded reachability we know that P (v, η, t)
is the maximum probability to reach a set of goal states in T −t units of time. There-
fore, the function P (v, η, t) is monotonously decreasing in its third argument, i.e.,
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by increasing t the value of P (v, η, t) decreases. As a result we get that P (v′, η̃′, t) ≥
P (v′, η′, t + τ) for all τ ∈ [0, h]. We obtain that Pn(v′, η̃′, t) ≥ Pn(v′, η′, t + τ) for all
τ ∈ [0, h] and:

Pn+1(v, η, t) − Gn+1(v, η, t) ≤

max
α∈I(v)

{ ∑

v
α,p,X
→֒ v′

∫ h

0

pΛ(v)e−Λ(v)τ (Pn(v′, η̃′, t) − Gn(v′, η̃′, t))dτ
}

+

e−Λ(v)h(Pn(v, η + h, t + h) − Gn(v, η + h, t + h)).

From induction hypothesis we know that Pn(v′, η̃′, t)−Gn(v′, η̃′, t) ≤ 0 and Pn(v, η+
h, t+h)−Gn(v, η+h, t+h) ≤ 0 as result we obtain Pn+1(v, η, t)−Gn+1(v, η, t) ≤ 0,
which proves the lemma.

⊓⊔

Notice, by using the integral operator F̃ on function G(v, η, t) we obtain Eq. 8 for
h < ♭(v, η, t) as follows:

G(v, η, t) = max
α∈I(v)

{ ∑

v
α,p,X
→֒ v′

∫ h

0

pΛ(v)e−Λ(v)τG(v′, η̃′, t)dτ
}

+ e−Λ(v)hG(v, η + h, t + h)

= max
α∈I(v)

{ ∑

v
α,p,X
→֒ v′

∫ h

0

pΛ(v)e−Λ(v)τdτ · G(v′, η̃′, t)
}

+ e−Λ(v)hG(v, η + h, t + h)

= max
α∈I(v)

{ ∑

v
α,p,X
→֒ v′

p(1 − e−Λ(v)h)G(v′, η̃′, t)
}

+ e−Λ(v)hG(v, η + h, t + h)

Theorem 2 (Error bound). For any state (v, η), time bound T , discretization step
h = 1

N
and λ = maxv∈V {Λ(v)}: supt∈[0,T ] |P (v,η,t)−G(v,η,t)| ≤ (1−e−λh)(1−e−λT ).

Proof. By using the lemmas 3,4 we get that:

sup
t∈[0,T ]

|P (v,η,t)−G(v,η,t)| ≤ sup
t∈[0,T ]

|P (v,η,t)−(F̃P )(v,η,t)|

≤ sup
t∈[0,T ]

|(FP )(v,η,t)−(F̃P )(v,η,t)|,

where P (v,η,t) is the least fixpoint of the equation P (v, η, t) = (FP )(v, η, t). Therefore,
we have to show that

sup
t∈[0,T ]

∣∣∣(FP )(v, η, t) − (F̃P )(v, η, t)
∣∣∣ ≤ (1 − e−λh)(1 − e−λT )

for every vertex v and clock valuation η.

For the case h ≥ ♭(v, η, t) the theorem trivially holds as (FP )(v, η, t)−(F̃P )(v, η, t) =
0. On the other hand for h < ♭(v, η, t) we have the following

sup
t∈[0,T ]

∣∣∣(FP )(v, η, t) − (F̃P )(v, η, t)
∣∣∣ ≤

sup
t∈[0,T ]

∣∣∣∣∣∣∣
max

α∈I(v)

{ ∑

v
α,p,X
→֒ v′

∫ h

0

pΛ(v)e−Λ(v)τ (P (v′, η′, t + τ) − P (v′, η̃′, t))dτ
}
∣∣∣∣∣∣∣
≤
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max
α∈I(v)

{ ∑

v
α,p,X
→֒ v′

∫ h

0

pΛ(v)e−Λ(v)τ sup
t∈[0,T ]

|P (v′, η′, t + τ) − P (v′, η̃′, t)| dτ
}
≤

max
α∈I(v)

{ ∑

v
α,p,X
→֒ v′

∫ h

0

pΛ(v)e−Λ(v)τ sup
t∈[0,T ]

|P (v′, η̃′, t)| dτ
}
≤

max
α∈I(v)

{ ∑

v
α,p,X
→֒ v′

∫ h

0

pΛ(v)e−Λ(v)τdτ sup
t∈[0,T ]

|P (v′, η̃′, t)|
}
≤

max
α∈I(v)

{ ∑

v
α,p,X
→֒ v′

p(1 − e−Λ(v)h) sup
t∈[0,T ]

|P (v′, η̃′, t)|
}
≤

max
α∈I(v)

{ ∑

v
α,p,X
→֒ v′

p(1 − e−Λ(v)h)P (v′, η̃′, 0)
}
≤

max
α∈I(v)

{ ∑

v
α,p,X
→֒ v′

p(1 − e−Λ(v)h)(1 − e−Λ(v′)T )
}
≤ (1 − e−λh)(1 − e−λT ),

where λ = maxv∈V {Λ(v)}. Notice that in the above derivations we have used an upper
bound for the maximum time-bounded rechability, i.e., P (v′, η̃′, 0) ≤ (1−e−Λ(v′)T ). The
upper bound represents the probability to reach a set of goal states in T units of time
that are also all succesor states of v′. ⊓⊔

4.2 Hamilton-Jacobi-Bellman equations

As in traditional control theory [Ber95], the dynamic programming principles lead to
a first-order integro-differential equation, which is the Hamilton-Jacobi-Bellman (HJB)
partial differential equation (PDE).

For a PDDP Z(M) with the state space S, we denote Pu(v, η, t) as the maximal
reachability probability from (v, η) and time t under scheduler u. Actually, Pu(v, η, t) can
be characterized by the expectation: Pu(v,η,t) = E [1VF

(Y u(T )) | Y u(t)=(v,η)], where
Y u(t) ∈ S is the underlying stochastic process of Z(M) under scheduler u at time t and
1VF

(v, η) = 1 if v ∈ VF and 0 otherwise. To obtain the maximum time-bounded reach-
ability probability, i.e., maxu∈U{P

u(v, η, t)}, we consider the following HJB equation
with f(v,η,t):= maxu∈U{P

u(v, η, t)}, for every (v,η)∈S and t6T :

∂f(v,η,t)

∂t
+

|X |∑

i=1

∂f(v,η,t)

∂η(i)
= max

α∈I(v)

{
Λ(v)

∑

v
α,X,p
→֒ v′

p (f(v,η,t)−f (v′,η[X := 0],t))

}
(9)

where η(i) is the i’th clock variable. The initial conditions of the above PDE are f(v, η, t)
= 1VF

(v, η) for any v∈V and η∈Inv(v). Moreover, for every η∈∂Inv(v) and transition

v
δ
→֒v′, the boundary conditions take the form f(v, η, t)=f(v′, η, t).

Several methods can be used to solve the above HJB equation, e.g., the finite volume
method [WJT03] or the time and state space discretization technique [Cam97].

Zero-clock. Following the same reasoning, for the CTMDPs, i.e., zero-clock MTAs, we
can obtain similar results, except that instead of a system of PDEs we get a system
of ODEs. As CTMDPs have zero clocks the resulting state space is finite. In (9) we
have defined f(v, η, t) as the maximum reachability probability. Given a finite state
space, f(v, η, t) can be simplified to Pi,j(t), which is the probability to reach state ℓj

at time T starting from state ℓi at time t. For any two states ℓi and ℓj we obtain the

ODE:
dPi,j(t)

dt
= maxα∈I(ℓi) {Ei

∑
k pi,k(α) (Pi,j(t) − Pk,j(t))}, where Ei := E(ℓi) and
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pi,k(α) := p such that ℓi
α,p
 ζi and ζi(∅, ℓi) = ℓk. The system of ODEs can be also

rewritten in the following matrix form:

dΠ̂(t)

dt
= − max

α∈Act

{
Q(α)Π̂(t)

}
, t 6 T, (10)

where Π̂(t) is the transition probability matrix at time t (the element (i, j) of Π̂(t) is

Pi,j(t)), Π̂(T ) = I, Q(α) = R(α) − E is the infinitesimal generator where R(α) is the
rate matrix (its element (i, j) is Eipi,j(α)) and E is the exit rate matrix (all diagonal
elements are the exit rates whereas the off-diagonal elements are zero).

A recent work [BS10] reveals that the above system of ODEs can be solved more
efficiently than the general system of PDEs by adopting the adaptive uniformization
technique.

5 Time-unbounded rechability

In this section, we focus on maximizing unbounded reachability probabilities. Namely,
we are interested in maximizing the probability to eventually reach a given set of goal
states. In contrast to the time-bounded case, there is no constraint on the time to reach
the goal states. We also fix a PDDP Z(M) = (Act, V,X , Inv , φ, Λ, µ) first, and provide
a Bellman (dynamic programming) equations, as follows. Let P (v, η) be the maximal
probability to reach VF starting from vertex v and clock valuation η.

P (v, η) = max
α∈I(v)

{
∑

v
α,p,X
→֒ v′

∫ ♭(v,η)

0

pΛ(v)e−Λ(v)τP (v′, η′)dτ

}
+ e−Λ(v)♭(v,η)P (v′′, η + ♭(v, η))

(11)

where η′ = (η + τ)[X := 0], v
δ
→֒ v′′ and P (v, η) = 1 for v ∈ VF .

Note that here, compared to (6), time does not play a role, i.e., the decision com-
pletely depends on the (continuous) state space. It might be difficult to solve (11), since
the domain of the integration might be infinite. We proceed by considering some special
cases, depending on the number of clocks in the model. The simplest case is CTMDP

namely, the zero-clock MTA. This case is trivial since one can use the embedded MDP

of the CTMDP and solve the reachability probability optimization problem. (Note that
this is in contrast with the time-bounded case where the embedded MDP does not suf-
fice.) We now move to the single-clock case.

For one-clock MTA, we can simplify the (general) Bellman equation (11) obtained
before to a system of linear equations where the coefficients are either maximal time-
bounded reachability probabilities for CTMDPs, which serve as a special case and have
been solved in Section 4; or maximal time-unbounded reachability probabilities of CT-

MDPs, which by using the embedded MDP can be calculated quite efficiently.
Given an MTA M, we denote the set of constants appearing in the clock constraints

of M as {c0, . . . , cm} with c0 = 0. We assume the following order: 0 = c0 < c1 <
· · · < cm. Let ∆ci = ci+1 − ci for 0 6 i < m. Note that for one clock MTA, regions
in the region graph G(M) (cf. Section 3) can be represented by the following intervals:
[c0, c1), . . . , [cm,∞). We partition the region graph G(M) = (V, v0, VF , Λ, →֒), or G for
short, into a set of subgraphs

Gi = (Vi, VFi, Λi, {M
α
i , Bα

i , Fi}α∈Act) ,

where 0 6 i 6 m and Λi(v) = Λ(v), if v ∈ Vi, 0 otherwise. These subgraphs are obtained
by partitioning V , VF and →֒ as follows:

– V =
⋃

06i6m{Vi}, where Vi = {(ℓ, Θ) ∈ V | Θ ⊆ [ci, ci+1)};
– VF =

⋃
06i6m{VFi}, where v ∈ VFi iff v ∈ Vi ∩ VF ;
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– →֒=
⋃

06i6m

(⋃
α∈Act{M

α
i ∪ Bα

i }
)
∪ Fi, where for each α ∈ Act, Mα

i is the set of
Markovian transitions (without reset) between vertices inside Gi labeled by α; Bα

i

is the set of Markovian transitions (with reset) from Gi to G0 (Backward) labeled
by α; and Fi is the set of delay transitions from the vertices in Gi to that in Gi+1

(Forward). It is easy to see that Mα
i , Fi, and Bα

i are pairwise disjoint.

Given a subgraph Gi (0 6 i 6 m) with ki states, define the probability vector
~Ui(x) = [u1

i (x), · · · , uki

i (x)]T ∈ R(x)ki×1, where uj
i (x) is the maximal probability to go

from vertex vj
i ∈ Vi to some vertex in VF (in G) at time point x. We now distinguish

two cases:

Case 0 6 i < m. We first introduce some definitions as follows:

– Pα,M
i ∈ [0, 1]ki×ki and Pα,B

i ∈ [0, 1]ki×k0 are probability transition matrices for
Markovian and backward transitions respectively, parameterized by action α. Namely,

for each vertex v and action α ∈ I(v), Pα,M
i [v, v′] = p, if v

α,p,∅
→֒ v′; 0 otherwise. Sim-

ilarly Pα,B
i [v, v′] = p if v

α,p,{x}
→֒ v′; 0 otherwise. Note that clearly we have that

∑

v′

Pα,M
i (v, v′) +

∑

v′′

Pα,B
i (v, v′′) = 1.

Moreover, we write

Pα
i =

(
Pα,M

i Pα,B
i

)
,

and note Pα
i ∈ [0, 1]ki×(ki+k0); and each row of Pα

i sums up to 1.

– Di(x) ∈ Rki×ki is the delay probability matrix, i.e. for any 1 6 j 6 ki, Di(x)[j, j] =

e−E(vj

i
)x. (The off diagonal elements are zero);

– Ei ∈ Rki×ki is the exit rate matrix, i.e. for any 1 6 j 6 ki, Ei[j, j] = E(vj
i ). (The

off diagonal elements are zero);

– Mα
i (x) = Ei·Di(x)·Pα,M

i ∈ Rki×ki is the probability density matrix for the Marko-
vian transitions inside Gi (i.e. for Markovian edges Mα

i ); Namely, Mα
i (x)[j, j′] in-

dicates the probability density function to take the Markovian jump without reset
from the j-th vertex to the j′-th vertex in Gi;

– Bα
i (x) = Ei·Di(x)·Pα,B

i ∈ Rki×k0 is the probability density matrix for the reset
edges Ba

i . Namely, Bα
i (x)[j, j′] indicates the probability density function to take the

Markovian jump with reset from the j-th vertex in Gi to the j′-th vertex in G0; and

– Fi ∈ Rki×ki+1 is the incidence matrix for delay edges Fi. More specifically, Fi[j, j
′] =

1 indicates that there is a delay transition from the j-th vertex in Gi to the j′-th
vertex in Gi+1; 0 otherwise. Recall that for each action the delay edge is the same.

By instantiating the general Bellman equations, we obtain the following vector form

~Ui(x) = max
α∈Act

{∫ ∆ci−x

0

Mα
i (τ)~Ui(x + τ)dτ

︸ ︷︷ ︸
(∗)

+

∫ ∆ci−x

0

Bα
i (τ)dτ · ~U0(0)

︸ ︷︷ ︸
(∗∗)

+

Di(∆ci − x) · Fi
~Ui+1(0)

}
, x ∈ [0, ∆ci]. (12)

Let us explain the above equation. First of all, ♭(v, x) = ∆ci − x for each state
1 6 v 6 ki in Gi. The matrix Di(∆ci − x) indicates the probability to delay until the

“end” of region i, and Fi
~Ui+1(0) denotes the probability to continue in Gi+1 (at relative

time 0). In a similar way, the term (∗) reflects the case where clock x is not reset and
the term (∗∗) considers the reset of x (and returning to G0).
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Case i = m. ~Um(x) is simplified as follows:

~Um(x) = max
α∈Act

{∫ ∞

0

M̂α
m(τ)~Um(x + τ)dτ + 1̃F +

∫ ∞

0

Bα
m(τ)dτ · ~U0(0)

}
(13)

where M̂α
m(τ)[v, ·] = Mα

m(τ)[v, ·] for v /∈ VF , 0 otherwise. 1̃F is a vector such that
1̃F [v] = 1 if v ∈ VF , 0 otherwise. Note that as the last subgraph Gm involves infinite
regions, it has no delay transitions.

Before solving the system of integral equations (12)-(13), we first make the following
observations:

(i) Due to the fact that inside Gi there are only Markovian jumps with neither resets
nor delay transitions, Gi with (Vi, Λi, Mi) forms a CTMDP Ci, say. For each Gi we
define an augmented CTMDP C⋆

i with state space Vi ∪ V0, such that all V0-vertices
are made absorbing in C⋆

i . The edges connecting Vi to V0 are kept and all the edges
inside C0 are removed. The augmented CTMDP is used to calculate the probability
to start from a vertex in Gi and take a reset edge in a certain time.

(ii) Given any (finite state) CTMDP, for time-bounded reachability, we have the follow-
ing equation (in matrix form).

Π(x) = max
α∈Act

{∫ x

0

M̃α(τ)Π(x − τ)dτ + D(x)

}
. (14)

where M̃α(τ)[v, v′] = e−E(v)τ · p if there is a transition v
α,∅
 ζ and p = ζ(∅, v′);

0 otherwise. Note that (14) is an instantiation of (6) and Π(T ) = Π̂(0) (from Eq.
(10)). Moreover, for augmented CTMDP C⋆

i ,

M̃α(τ) =

(
Mα

i (τ) Bα
i (τ)

0 I

)
.

Prior to exposing how to solve the system of integral equations by solving a system of
linear equations by the next theorem, we define Π̄⋆

i ∈ Rki×k0 for an augmented CTMDP
C⋆

i to be part of Π⋆
i , where Π̄⋆

i only keeps the probabilities starting from Vi and ending
in V0. As a matter of fact,

Π⋆
i (x) =

(
Πi(x) Π̄⋆

i (x)
0 I

)
,

where 0 ∈ Rk0×ki is the matrix with all elements zero and I ∈ Rk0×k0 is the identity
matrix.

Theorem 3. For subgraph Gi of G with ki states, it holds that:

– For 0 6 i < m, ~Ui(0) = Πi(∆ci) · Fi
~Ui+1(0) + Π̄⋆

i (∆ci) · ~U0(0), where Πi(∆ci) and
Π̄⋆

i (∆ci) are for CTMDP Ci and the augmented CTMDP C⋆
i , respectively.

– For i = m, ~Um(0) = maxα∈Act

{
P̂α

m · ~Um(0) + 1̃F + B̂α
m · ~U0(0)

}
, where

P̂α
m(v, v′) = Pα

m(v, v′) if v /∈ VF ; 0 otherwise and B̂α
m =

∫∞

0 Bα
m(τ)dτ .

Proof. We first deal with the case i < m. If in Gi, for some action α there exists some
backward edge, namely, for some j, j′, Bα

i (x)[j, j′] 6= 0, then we shall consider the aug-
mented CTMDP C⋆

i with k⋆
i = ki + k0 states. In view of this, the augmented integral

equation ~Vi(x) is defined as:

~V ⋆
i (x) = max

α∈Act

{∫ ∆ci−x

0

Mα,⋆
i (τ)~V ⋆

i (x + τ)dτ + D⋆
i (∆ci − x) ·F⋆

i ·
~̂
Vi(0)

}
,

where
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– ~V ⋆
i (x) =

(
~Vi(x)
~V ′

i (x)

)
∈ Rk⋆

i ×1, where ~V ′
i (x) ∈ Rk0×1 is the vector representing reach-

ability probability for the augmented states in Gi;

– Mα,⋆
i (τ) =

(
Mα

i (τ) Bα
i (τ)

0 0

)
∈ Rk⋆

i ×k⋆
i . For the augmented states, we assume that

their exit rates are 0.

– D⋆
i (τ) =

(
Di(τ) 0

0 I

)
∈ Rk⋆

i ×k⋆
i .

– F⋆
i =

(
F′

i B′
i

)
∈ Rk⋆

i ×(ki+1+k0) such that F′
i =

(
Fi

0

)
∈ Rk⋆

i ×ki+1 is the inci-

dence matrix for delay edges and B
′

i =

(
0
I

)
∈ Rk⋆

i ×k0 ,
~̂
Vi(0) =

(
~Ui+1(0)
~U0(0)

)
∈

R(ki+1+k0)×1.

In the sequel, we shall prove two claims:

Claim 1. For each 0 6 j 6 ki,
~Ui[j] = ~V ⋆

i [j] .

Proof of Claim 1. According to the definition, we have that

~V ⋆
i (x) = max

α∈Act

{∫ ∆ci−x

0

(
Mα

i (τ) Bα
i (τ)

0 0

)
· ~V ⋆

i (x + τ)dτ +

(
Di(∆ci − x) 0

0 I

)
·

(
Fi 0
0 I

)
·

(
~Ui+1(0)
~U0(0)

)}

It follows immediately that ~V ′
i (x) = ~U0(0). For ~Vi(x), we have that

~Vi(x)

= max
α∈Act

{∫ ∆ci−x

0

Mα
i (τ)~Vi(x + τ)dτ +

∫ ∆ci−x

0

Bα
i (τ)~V ′

i (x + τ)dτ

+Di(∆ci − x) · Fi · ~Ui+1(0)
}

= max
α∈Act

{∫ ∆ci−x

0

Mα
i (τ)~Vi(x + τ)dτ +

∫ ∆ci−x

0

Bα
i (τ)dτ · ~U0(0)

+Di(∆ci − x) · Fi · ~Ui+1(0)
}

= ~Ui(x)

Claim 2.

~V ⋆
i (x) = Π⋆

i (∆ci − x) · F⋆
i
~̂
Vi(0) ,

where

Π⋆
i (x) = max

α∈Act

{∫ x

0

Mα,⋆
i (τ)Π⋆

i (x − τ)dτ + D⋆
i (x)

}
.

Standard arguments yield that the optimal probability corresponds to the least fixpoint
of a functional and can be computed iteratively from set ci,x = ∆ci − x.

~V
⋆,(0)
i (x) =~0

~V
⋆,(j+1)
i (x) = max

α∈Act

{∫ ci,x

0

Mα
i (τ)~V

⋆,(j)
i (x+τ)dτ + D⋆

i (ci,x) · F⋆
i
~̂
Vi(0)

}
.
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and

Π
⋆,(0)
i (ci,x) =0

Π
⋆,(j+1)
i (ci,x) = max

α∈Act

{∫ ci,x

0

M⋆
i (τ)Π

⋆,(j)
i (ci,x−τ)dτ + D⋆

i (ci,x)

}
.

By induction on j, we prove the following relation:

~V
⋆,(j)
i (x) = Π

⋆,(j)
i (ci,x) ·Fi

~̂
Vi(0) .

– Base case: ~V
⋆,(0)
i (x) = ~0 and Π

⋆,(0)
i (ci,x) = 0.

– Induction hypothesis:

~V
⋆,(j)
i (x) = Π

⋆,(j)
i (ci,x) ·F⋆

i
~̂
Ui(0) .

– Induction step j → j + 1. We obtain

~V
⋆,(j+1)
i (x) = max

α∈Act

{∫ ci,x

0

M⋆,α
i (τ)~V

⋆,(j)
i (x + τ)dτ + D⋆

i (ci,x) · F⋆
i
~̂
Ui(0)

}
.

By induction hypothesis it follows that

~V
⋆,(j+1)
i (x)

= max
α∈Act

{∫ ci,x

0

M⋆,α
i (τ)~V

⋆,(j)
i (x + τ)dτ + D⋆

i (ci,x) · F⋆
i
~̂
Vi(0)

}

= max
α∈Act

{∫ ci,x

0

M⋆,α
i (τ) · Π

⋆,(j)
i (ci,x−τ) ·F⋆

i
~̂
Vi(0)dτ + D⋆

i (ci,x) · F⋆
i
~̂
Vi(0)

}

= max
α∈Act

{(∫ ci,x

0

M⋆,α
i (τ)Π

⋆,(j)
i (ci,x − τ)dτ + D⋆

i (ci,x)

)
·F⋆

i
~̂
Vi(0)

}

= max
α∈Act

{∫ ci,x

0

M⋆,α
i (τ)Π

⋆,(j)
i (ci,x − τ)dτ + D⋆

i (ci,x)

}
· F⋆

i
~̂
Vi(0)

= max
α∈Act

{
Π

α,(j+1)
i (ci,x) ·F⋆

i
~̂
Vi(0)

}
.

Clearly,

Π⋆
i (ci,x) = lim

j→∞
Π

⋆,(j)
i (ci,x)

and
~V ⋆

i (x) = lim
j→∞

~V
⋆,(j)
i (x).

Let x = 0 and we obtain

~V ⋆
i (0) = Π⋆

i (ci,0) ·Fi
~̂
Vi(0).

We can also write the above relation for x = 0 as:
(

~Vi(0)
~V ′

i (0)

)
= Π⋆

i (∆ci)
(
F′

i B′
i

)
(

~Ui+1(0)
~U0(0)

)

=

(
Πi(∆ci) Π̄⋆

i (∆ci)
0 I

)(
Fi 0
0 I

)(
~Ui+1(0)
~U0(0)

)

=

(
Πi(∆ci)Fi Π̄⋆

i (∆ci)
0 I

)(
~Ui+1(0)
~U0(0)

)

=

(
Πi(∆ci)Fi

~Ui+1(0) + Π̄⋆
i (∆ci)~U0(0)

~U0(0)

)
.
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As a result we can represent ~Vi(0) in the following matrix form

~Vi(0) = Πi(∆ci)Fi
~Ui+1(0) + Π̄a

i (∆ci)~U0(0)

by noting that Πi is formed by the first ki rows and columns of matrix Π⋆
i and Π̄⋆

i is
formed by the first ki rows and the last k⋆

i − ki = k0 columns of Π⋆
i . The conclusion

follows form Claim 1.

For i = m, i.e., the last graph Gm, the region size is infinite, therefore delay transitions
do not exist. Recall that

~Um(x) =

max
α∈Act

{∫ ∞

0

M̂α
m(τ)~Um(x + τ)dτ +~1F +

∫ ∞

0

Bα
m(τ)dτ · ~U0(0)

}

We first prove the following claim:

Claim. For any x ∈ R>0, ~Um(x) is a constant vector function.

Proof of the claim. We define

~U (0)
m (x) =~0

~U (j+1)
m (x) = max

α∈Act

{∫ ∞

0

M̂α
m(τ)~Um(x + τ)dτ +~1F +

∫ ∞

0

Bα
m(τ)dτ · ~U0(0)

}

It is not difficult to see that ~Um(x) = limj→∞
~U

(j)
m (x). We shall show, by induction on

j, that ~U
(j)
m (x) is a constant vector function.

– Base case: ~U
(0)
m (x) = ~0, which is clearly constant.

– I.H.: ~U
(j)
m (x) is a constant vector function.

– Induction step: (j → j + 1)

~U (j+1)
m (x)

= max
α∈Act

{∫ ∞

0

M̂a
m(τ)~U (j)

m (x + τ)dτ +~1F +

∫ ∞

0

Ba
m(τ)dτ · ~U0(0)

}

I.H.
= max

α∈Act

{∫ ∞

0

M̂a
m(τ) · ~U (j)

m (x)dτ +~1F +

∫ ∞

0

Ba
m(τ)dτ · ~U0(0)

}

= max
α∈Act

{∫ ∞

0

M̂a
m(τ)dτ · ~U (j)

m (x) +~1F +

∫ ∞

0

Ba
m(τ)dτ · ~U0(0)

}

The conclusion follows trivially.

Since ~Um(x) is constant vector function, we have that

~Um(x) =

max
α∈Act

{∫ ∞

0

M̂α
m(τ)dτ · ~Um(x) +~1F +

∫ ∞

0

Bα
m(τ)dτ · ~U0(0)

}

More than that
∫∞

0
M̂α

m(τ)dτ boils down to P̂α
m and

∫∞

0
Ba

m(τ)dτ to B̂α
m. Also we add

the vector ~1F to ensure that the probability to start from a state in VF is one. ⊓⊔
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6 Concluding Remarks

This paper considered an extension of timed automata with exponential durations. It was
shown that the region graph of such automata is a decision variant of PDPs. Two ap-
proaches were presented to determine maximal time-bounded reachability probabilities
in MTA. For one-clock MTA, unbounded reachability probabilities were characterized
as the solution of a linear equation whose coefficients are reachability probabilities in
CTMDPs, i.e., zero-clock MTA. The paper only deals with the locally uniform case, i.e.
the exit rate of each location in an MTA doesn’t depend on the chosen action. However,
all the techniques presented here can be extended to the general (non-locally uniform)
case without any difficulty. Future work could be to lift our results to continuous timed
games [BF09,BFK+09].
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1990-17 ∗ Marita Möller: Ein Ebenenmodell wissensbasierter Konsultationen - Un-

terstützung für Wissensakquisition und Erklärungsfähigkeit
1990-18 ∗ Eric Kowalewski: Entwurf und Interpretation einer Sprache zur Beschrei-

bung von Konsultationsphasen in Expertensystemen
1990-20 Y. Ortega Mallen, D. de Frutos Escrig: A Complete Proof System for

Timed Observations
1990-21 ∗ Manfred Nagl: Modelling of Software Architectures: Importance, No-

tions, Experiences
1990-22 H. Fassbender, H. Vogler: A Call-by-need Implementation of Syntax Di-

rected Functional Programming
1991-01 Guenther Geiler (ed.), Fachgruppe Informatik: Jahresbericht 1990
1991-03 B. Steffen, A. Ingolfsdottir: Characteristic Formulae for Processes with

Divergence
1991-04 M. Portz: A new class of cryptosystems based on interconnection net-

works
1991-05 H. Kuchen, G. Geiler: Distributed Applicative Arrays
1991-06 ∗ Ludwig Staiger: Kolmogorov Complexity and Hausdorff Dimension
1991-07 ∗ Ludwig Staiger: Syntactic Congruences for w-languages
1991-09 ∗ Eila Kuikka: A Proposal for a Syntax-Directed Text Processing System
1991-10 K. Gladitz, H. Fassbender, H. Vogler: Compiler-based Implementation

of Syntax-Directed Functional Programming
1991-11 R. Loogen, St. Winkler: Dynamic Detection of Determinism in Func-

tional Logic Languages
1991-12 ∗ K. Indermark, M. Rodriguez Artalejo (Eds.): Granada Workshop on the

Integration of Functional and Logic Programming
1991-13 ∗ Rolf Hager, Wolfgang Kremer: The Adaptive Priority Scheduler: A More

Fair Priority Service Discipline
1991-14 ∗ Andreas Fasbender, Wolfgang Kremer: A New Approximation Algorithm

for Tandem Networks with Priority Nodes
1991-15 J. Börstler, A. Zündorf: Revisiting extensions to Modula-2 to support

reusability
1991-16 J. Börstler, Th. Janning: Bridging the gap between Requirements Anal-

ysis and Design
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1996-09-3 Vı́ctor M. Guĺıas, José L. Freire: Concurrent Programming in Haskell
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Schürr

1998-04 ∗ O. Kubitz: Mobile Robots in Dynamic Environments
1998-05 Martin Leucker, Stephan Tobies: Truth - A Verification Platform for

Distributed Systems
1998-06 ∗ Matthias Oliver Berger: DECT in the Factory of the Future
1998-07 M. Arnold, M. Erdmann, M. Glinz, P. Haumer, R. Knoll, B. Paech, K.

Pohl, J. Ryser, R. Studer, K. Weidenhaupt: Survey on the Scenario Use
in Twelve Selected Industrial Projects

1998-09 ∗ Th. Lehmann: Geometrische Ausrichtung medizinischer Bilder am
Beispiel intraoraler Radiographien

1998-10 ∗ M. Nicola, M. Jarke: Performance Modeling of Distributed and Repli-
cated Databases

1998-11 ∗ Ansgar Schleicher, Bernhard Westfechtel, Dirk Jäger: Modeling Dynamic
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2005-03 Jürgen Giesl, René Thiemann, Peter Schneider-Kamp: Proving and Dis-
proving Termination of Higher-Order Functions

2005-04 Daniel Mölle, Stefan Richter, Peter Rossmanith: A Faster Algorithm for
the Steiner Tree Problem

2005-05 Fabien Pouget, Thorsten Holz: A Pointillist Approach for Comparing
Honeypots
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mann: Adaptive Channel Assignment to Support QoS and Load Balanc-
ing for Wireless Mesh Networks
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