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Abstract. Given a set P of natural numbers, we consider infinite games where
the winning condition is a regular ω-language parametrized by P . In this context,
an ω-word, representing a play, has letters consisting of three components: The
first is a bit indicating membership of the current position in P , and the other
two components are the letters contributed by the two players. Extending recent
work of Rabinovich we study here predicates P where the structure (N, +1, P )
belongs to the pushdown hierarchy (or “Caucal hierarchy”). For such a predicate
P where (N, +1, P ) occurs in the k-th level of the hierarchy, we provide an effective
determinacy result and show that winning strategies can be implemented by
deterministic level-k pushdown automata.

1 Introduction

The starting point of this work is the Theorem of Büchi and Landweber [1]. This
theorem gives a positive solution to “Church’s Problem” on “regular” infinite
games. In the simplest setting, we are dealing with a game where two players 1
and 2 choose bits in alternation, first player 1, then player 2, at each moment
i ∈ N. We call X(i) the i-th bit chosen by player 1 and Y (i) the i-th bit of player
2. A sequence X(0), Y (0),X(1), Y (1), . . . is a play of the game, and it defines (via
the concept of characteristic function) two sets X,Y ⊆ N. The winning condition
of the game is a regular ω-language, presented in this paper by a monadic second-
order formula ϕ(X,Y ) over the structure (N,+1). When a play (X,Y ) satisfies
this formula over the structure (N,+1) then player 2 wins the play, otherwise
player 1 wins. In a standard way one now introduces the notion of strategy and
winning strategy for the two players.

The Büchi-Landweber Theorem states that given a monadic second-order
formula ϕ(X,Y ) as winning condition, the game associated with ϕ is determined
(i.e., one of the two players has a winning strategy), one can decide who is
the winner, and one can construct from ϕ a corresponding finite-state winning
strategy (i.e., a strategy executable by a finite automaton with output).

In the present paper we study a generalized setting in which a fixed set P ⊆ N

is added as a “parameter”. So one works in monadic second-order logic over a
structure (N,+1, P ) rather than (N,+1).

There are (at least) two motivations for this model: First, the resulting game
can be viewed as an interaction between three agents. In addition to a stan-
dard scenario where a “controller” plays against a possibly hostile “environment”
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which is completely free in its choices, the predicate P represents now a “game
context” that has dynamic behavior over time but is fixed and predictable. So
one may call the games studied here two-person games with context. Secondly,
the adjunction of a predicate P to the setting of the Büchi-Landweber Theorem
gives a very natural step beyond the regular games, where new phenomena arise.

For instance, it is easy to see that even for a recursive set P , the exact ana-
logue of the Büchi-Landweber Theorem fails. This is clear from the following ex-
ample: Consider a non-recursive, recursively enumerable set S with enumeration
s0, s1, . . ., and let w be the ω-word 10s010s11 . . ., which defines (the characteris-
tic function χP of) a set P . Clearly P is recursive. We then have n ∈ S iff the
segment 10n1 occurs in χP , i.e., iff there is a P -element such that its (n + 1)-st
successor is the next P -element. Thus S is reducible to the monadic second-order
(even the first-order) theory of (N,+1, P ) which must hence be undecidable. Now
consider the winning condition ϕn(X,Y ) which does not depend on X and says:
“Produce output 1ω if the segment 10n1 occurs in χP , otherwise 0ω.” Clearly for
each ϕn there is a winning strategy for player 2, but it cannot be computed from
ϕn.

In [13, 14], Rabinovich showed that for recursive P , an analogue of the Büchi-
Landweber Theorem holds if the monadic second-order theory of (N,+1, P ) is
decidable. In this case, determinacy holds again, the winner can be computed,
and a recursive winning strategy (rather than a finite-state winning strategy)
can be constructed from the winning condition.

The first aim of this paper is to develop a new presentation of Rabinovich’s
result which rests more on automata theoretic concepts than [13, 14]. While in
that paper other sources are invoked for central details, we give a self-contained
outline, using only standard facts.

Then we refine the claim on recursiveness of strategies in parametrized games,
by providing – for a large class of sets P – a tight connection between the “com-
plexity” of P and the complexity of winning strategies. Here we refer to those
sets P such that the structure (N,+1, P ) belongs to the “Caucal hierarchy” (of
[6]). It is known that in this case the monadic second-order theory of (N,+1, P )
is indeed decidable. A large class of interesting sets P is covered by the hierarchy,
among them the powers kn of a fixed number k, the powers nk for fixed exponent
k, and the set of factorial numbers n!. We show, using recent work of Carayol
and Slaats [4], that for a set P such that (N,+1, P ) belongs to the k-level of the
hierarchy (short: “P is of level k”), a winning strategy (for the respective winner)
can be guaranteed that also belongs to the k-th level. More precisely, we use the
characterization of the levels of the Caucal hierarchy in terms of higher-order
pushdown automata and show that for sets P of level k, winning strategies exist
that are executable by deterministic level-k pushdown automata. This gives a
substantial improvement over the general property of a strategy to be recursive
(computable).

The last section offers a discussion and some open questions; e.g. on those
predicates P where (N,+1, P ) does not belong to the Caucal hierarchy but nev-
ertheless the monadic second-order theory of this structure is decidable (for the
latter class see e.g. [5, 15]).
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2 Parametrized Regular Games and Their Solution

We use standard terminology as introduced, e.g., in [9]. By a regular game we
mean an infinite two-player game in the sense of Gale and Stewart [8] where the
winning condition is given by a regular ω-language. Both players, called 1 and 2,
pick in each move an element from a finite alphabet; for notational simplicity we
assume here that the alphabet is {0, 1} for each of the players. (All definitions
and results of this paper extend in a straightforward way to the case of arbitrary
finite alphabets.) A play is a sequence

X(0), Y (0),X(1), Y (1), . . .

where X(i) is supplied by player 1 and Y (i) by player 2. As formalism to express
winning conditions we use formulas ϕ(X,Y ) of monadic second-order logic (MSO-
logic) over (N,+1); it is known that MSO-logic allows to define precisely the
regular ω-languages. So we speak of a regular game. (We use here freely the
correspondence between a set P of natural numbers and its characteristic bit
sequence χP .) When a set P (and a corresponding constant again denoted P )
is added, we refer to the structure (N,+1, P ), denote the winning condition
sometimes as ϕ(P,X, Y ), and speak of a regular P -game. A play of this game
may be viewed as an ω word over the alphabet {0, 1}3:

Predicate 0 1 1 0 1 . . . = P
Player 1 0 1 0 1 1 . . . = X
Player 2 1 0 1 0 1 . . . = Y

The aim of this section is a new shape of proof for the following result of
Rabinovich [13, 14].

Theorem 1. Regular P -games are determined, and if the MSO-theory of the
structure (N,+1, P ) is decidable then the winner can be computed and a recursive
winning strategy can be constructed from the winning condition.

For the proof we use three fundamental results summarized in the following
proposition (for details and definitions see [9]):

Proposition 1. (Known Facts)

(a) Each MSO-formula can be transformed into an equivalent (deterministic) par-
ity automaton.

(b) The MSO theory of (N,+1, P ) is decidable iff the following decision problem
AutP is decidable.

AutP : Given a parity (or Büchi) automaton A, does A accept χP ?
(c) Parity games (even over infinite game arenas) are determined, and the winner

has a positional winning strategy.

Proof. (of Theorem 1.) We present here a detailed sketch (a full account appears
in [11]).

Step 1. Given ϕ(P,X, Y ) with fixed interpretation of P , we start with a parity
automaton Aϕ, say with state set Q and n = |Q|, that is equivalent to ϕ(Z,X, Y )
(i.e. it has arbitrary ω-words over {0, 1}3 as inputs). First we transform Aϕ into a
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game arena. This just means to split a transition from state p via a triple (b, c, d)
of bits into a state q into two transitions: The first takes the “context bit” b and
the choice c of player 1 into account and leads from state p to an intermediate
state (p, b, c). In this state the bit d supplied by player 2 is processed, and state
q is reached. In the states p, Player 1 moves (first in the role of the “context
player”, then by his own bit) and in the states (p, b, c) player 2 moves. We obtain
a finite game arena Gϕ. The parity acceptance condition of the automaton is
turned into a winning condition over Gϕ; the coloring of vertices is inherited
from the coloring of the states of the automaton.

δ(q0, (0, 0, 0)) = q0

δ(q0, (0, 0, 1)) = q1

δ(q0, (0, 1, 0)) = q1

δ(q0, (0, 1, 1)) = q2

δ(q0, (1, 0, 0)) = q3

δ(q0, (1, 0, 1)) = q2

δ(q0, (1, 1, 0)) = q3

δ(q0, (1, 1, 1)) = q3

q0

(q0, 0, 0)

(q0, 0, 1)

(q0, 1, 0)

(q0, 1, 1)

q1

q2

q3

. . .

. . .

. . .

(0, 0)

(0, 1)

(1, 0)

(1, 1)

1
0

0

1

1

0

0, 1

Fig. 1. Example for step 1 in the proof of Theorem 1. For the given transitions of δ the corre-
sponding game graph Gϕ is depicted.

Step 2. In a second step we transformGϕ into an infinite game arena which takes
into account the fixed choice of the set P . For this we parametrize the vertices
p and (p, b, c) by natural numbers, calling the new vertices (p)i, respectively
(p, b, c)i. The initial vertex is now (q0)0. From (p)i we have an edge to (p, b, c)i iff
in Gϕ there is an edge from p to (p, b, c) and the bit b indicates correctly whether
i ∈ P or not (being 1 in the first and 0 in the second case). From (p, b, c)i we
have an edge to (q)i+1 iff in Gϕ there is an edge from (p, b, c) to q. The color of
(p)i is that of p, similarly for (p, b, c)i. Call the resulting game graph G′

ϕ. Now
we have:

Player 2 wins the regular P -game defined by ϕ iff Player 2 wins the parity
game over G′

ϕ from its initial vertex.

Note that the game graph G′
ϕ is acyclic and structured into slices S0, S1, . . ., each

of which contains only a bounded number of vertices. For k = 2i, the slice Sk

contains up to n (= |Q|) vertices (p)i, and for k = 2i+1, the slice Sk contains up
to 2n vertices (p, b, c)i (note that b is fixed for given i). In order to have the same
time scale in the characteristic sequence χP and the sequence of slices, we group
the slices into a sequence of pairs (S0, S1), (S2, S3), . . . and code this sequence –
and hence G′

ϕ – by an ω-word over an appropriate alphabet Σ. Let us denote by
αϕ the ω-word coding G′

ϕ.

Finally, we note that the transformation of this step can be implemented by
a finite automaton, uniformly in P :

6



Lemma 1. Given a finite game arena Gϕ, there is a finite-state transducer (in
the format of a Mealy automaton) which transforms the characteristic sequence
of a set P into the corresponding sequence αϕ.

(q0)0

(q0, 0, 0)0

(q0, 0, 1)0

(q1)1

(q2)1

(q0)1

. . .

. . .

. . .(0, 0)

(0, 1)

1

0

0

1

S0 S1 S2

Fig. 2. Example for step 2 in the proof of Theorem 1. We assume 0 /∈ P and show the unfolding
of the game graph Gϕ (of Figure 1) over time which results in the depicted game graph G′

ϕ.
Further more we have marked the slices S0, S1, S2.

Step 3. By the memoryless determinacy of parity games, one of the two players
has a memoryless winning strategy in G′

ϕ. From this we obtain the determinacy
claim of the Theorem. We now deal with the effectiveness claims and by sym-
metry focus on player 2 alone. A memoryless strategy for player 2 is a function
that maps each vertex (p, b, c)i to some state (q)i+1, i.e. for each i we apply a
map from a set with at most 2n elements to a set with at most n elements.
Let Γ be the finite set of these maps. A memoryless strategy of player 2 is thus
coded by an ω-word γ = γ(0)γ(1) . . . over Γ where γ(i) is the map applied at
moment i by player 2. It is a straightforward exercise to set up a deterministic
parity automaton Tϕ that runs on input words over Σ × Γ and checks for an
ω-word αϕ ◦γ := (αϕ(0), γ(0)), (αϕ(1), γ(1)), . . . whether γ represents a winning
strategy in the parity game coded by αϕ.

Step 4. Invoking the transducer of Lemma 1 of Step 2, we can transform Tϕ

into an automaton T ′
ϕ that runs over the input alphabet {0, 1} × Γ rather than

Σ × Γ . On an input χP ◦ γ, T ′
ϕ computes, using the transducer, the sequence

αϕ from χP and on αϕ ◦ γ simultaneously simulates Tϕ. We call T ′
ϕ a “winning

strategy tester” for ϕ. Now we have: T ′
ϕ accepts χP ◦ γ iff γ represents a winning

strategy of player 2 in the P -game with winning condition ϕ.

Step 5. The strategy tester of Step 4 will now be transformed into a nondeter-
ministic “winning strategy guesser” Sϕ that runs over the input alphabet {0, 1}
only. On the input word χP , this automaton guesses a sequence γ ∈ Γω and on
χP ◦γ works like T ′

ϕ. It is obtained in the format of a nondeterministic parity au-
tomaton. For convenience we assume it converted into a nondeterministic Büchi
automaton Bϕ.

Proposition 2. The Büchi automaton Bϕ accepts the characteristic sequence of
a set P iff player 2 has a winning strategy in the regular P -game with winning
condition ϕ.
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This shows the first effectiveness claim of the Theorem: If the MSO-theory of
(N,+1, P ) is decidable, one can decide whether player 2 wins the regular P -game
with winning condition ϕ. It just suffices to apply item (b) of Proposition 1 (of
known facts) above.

Step 6. Finally, given that player 2 wins the regular P -game with winning
condition ϕ, we have to construct a recursive strategy for him. In view of Step
5 it suffices to construct effectively an accepting run of Bϕ from the assumption
that such a run exists. (We use here the fact that the strategy can be extracted
from an accepting run of the Büchi automaton.) In terms of MSO-logic, this
amounts to the proof of a Selection Lemma:

Assume that the MSO-theory of (N,+1, P ) is decidable. If (N,+1) |=
∃Zψ(P,Z) then a satisfying recursive set Z can be constructed (i.e. a
procedure that decides for each i whether i ∈ Z).

We give a proof, following an argument of Siefkes [17], in automata theoretic
terminology. It involves the well-known merging relation that was already used
by McNaughton [12] in his proof of determinization of Büchi automata.

Let B be a Büchi automaton with state set S. We call two words B-equivalent
(short u ∼B v) if for each pair s, s′ of states, B can reach s′ from s via u iff this
is the case for v.

Denote by P [i, j] the segment χP (i) . . . χP (j) of the characteristic sequence
of P . Call two positions i, j mergable if there is a k > i, j such that P [i, k] ∼B

P [j, k]. This is an equivalence relation over N of finite index. We can com-
pute a representative for each merge-equivalence class. For this, one uses the
MSO-theory of (N,+1, P ) repeatedly as “oracle”, also in order to determine that
enough representatives, say n1, . . . , nm, have been computed. (Just observe that
i and j merge iff (N,+1, P ) satisfies the sentence expressing ∃zP [i, z] ∼B P [j, z].
We know that all representatives occur up to position k by checking truth of the
sentence expressing “∀x > k∃y ≤ k : x, y merge”.)

Again using the MSO-theory of (N,+1, P ) as oracle, we pick a representative
n from n1, . . . , nm with the following property: There is a B-run ρacc on χP that
visits a certain fixed final state qf at infinitely many times k that merge with n.
(It is clear how to express this property of n.) Note that such qf and n can be
found by a finite search process, due to the finite index of the merging relation
and the assumption that an accepting run exists.

Using qf and n, we construct effectively a run ρ of B on χP visiting qf
infinitely often, thus accepting χP . We start out by looking for a position p0

which merges with n and such that qf is reachable from the initial state q0 of B
via P [0, p0 −1] using a finite run ρ0. Such p0 exists by assumption on n. The run
ρ0 will be an initial segment of the desired accepting run ρ. For some k0 > n, p0

we know P [n, k0] ∼B P [p0, k0]. Hence ρ0 can be extended such that at position
k0 the same state as that of ρacc is reached. We can now pick p1 > k0 such that
p1 merges again with n and such that qf is reachable from q0 via P [0, p1 − 1],
by a finite run which is an extension of ρ0. Call this finite run ρ1. Continuing
in this way by successive finite extensions each of which is computable and ends
by a final state, we construct the accepting run ρ as desired. By the choice of
n1, . . . , nm, the number n ∈ {n1, . . . , nm}, and the state qf , we can check for the
merge equivalence between n and candidate numbers c by an effective procedure;
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note that for sufficiently high k we always find that P [c, k] ∼B P [ni, k] for some
i. So the sequence of numbers p0, p1, . . . is computable if P is recursive. For
arbitrary P the sequence is recursive in P .

On the other hand, it is to be noted that the construction of this strategy
(which is recursive in P ) involves an unbounded number of queries to the MSO-
theory of (N,+1, P ). These queries are needed for the computation of the above-
mentioned parameters n1, . . . , nm, n, qf . For the original specification ϕ let pϕ be
the corresponding tuple (n1, . . . , nm, n, qf ) of parameters. The function F : ϕ 7→
pϕ captures the complexity of the synthesis problem for the set P ; this function
(or rather its graph considered as a set S) is Turing-reducible to the MSO-
theory of (N,+1, P ). We do not know whether this reducibility relation can be
sharpened to tt-reducibility (truth-table reducibility; see [16]). It is known that
in general the MSO-theory of (N,+1, P ) is tt-reducible (but not btt-reducible)
to the second jump P ′′ of P ([18]). So for the set S coding the construction of
winning strategies we have

S ≤T MSO-theory of (N,+1, P ) ≤tt P
′′.

3 Background on Higher-order Pushdown Automata

In the next two sections we consider sets P such that the structure (N,+1, P )
belongs to the Caucal hierarchy. Caucal introduced in [6] a large class of infinite
graphs which can be generated starting from finite trees and graphs applying
MSO-interpretations and unfoldings in alternation. The resulting hierarchy is a
very rich collection of models each of them having a decidable MSO-theory. In [3]
Carayol and Wöhrle showed that the graphs of the Caucal hierarchy coincide with
the transition graphs of higher-order pushdown automata. We will develop here
a representation of the parameter sets P by higher-order pushdown automata.
For this we define a new type of deterministic higher-order pushdown automaton
that produces an infinite 0-1-sequence (and hence a set P ) as output.

We start with some background on higher-order pushdown stacks and sys-
tems. For this we first introduce the higher-order pushdown stacks and operations
to manipulate them. Afterwards we define higher-order pushdown systems and
introduce a concept of “regularity” for sets of higher-order stacks. Then we de-
fine deterministic higher-order pushdown sequence generators which produce sets
P ⊆ N as output. Finally we give the definition of higher-order pushdown parity
games and recall a result of [4] that we need.

A level-1 stack over a finite alphabet Γ can be seen as a word of Γ ∗; the
empty stack (written [ ]1) corresponds just to ε. A level-(k+1) stack for k ≥ 1
is a non-empty sequence of level-k stacks. The empty stack of level k + 1 is the
level-(k+1) stack containing only the empty stack of level k and is written [ ]k+1.
The set of all stacks of some level is written Stacks1(Γ ) := Γ ∗ for level 1 and
Stacksk+1(Γ ) := (Stacksk(Γ ))+ for level k ≥ 1.

Example 1. Consider for example the level-2 stack s2 = [[abb]1[abc]1[acc]1]2. It
consists of three level-1 stacks and we use the convention that s1 = [acc]1 is the
topmost level-1 stack of s2 and c is the topmost stack symbol of s1.
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We define the following partial functions on higher-order stacks called oper-
ations. On level 1 we have as operations for each symbol x ∈ Γ the operations
pushx and popx. They are respectively defined on level-1 stacks by:

pushx([s0, . . . , sn]1) = [s0, . . . , sn, x]1,

popx([s0, . . . , sn]1) =

{

[s0, . . . , sn−1]1 if sn = x
non defined otherwise.

For each level k+1 ≥ 2, we consider the level-(k+1) operation copyk which adds
a copy of the top-most level-k stack on top of the existing level-k-stacks. We also
allow the symmetric operation copyk which removes the top-most level-k stack if
it is equal to its predecessor level-k-stack. Formally, these operations are defined
on level-(k+1) stacks by:

copyk([s0, . . . , sn]k+1) = [s0, . . . , sn, sn]k+1,

copyk([s0, . . . , sn−1, sn]k+1) =

{

[s0, . . . , sn−1]k+1 if sn−1 = sn

non defined otherwise.

In addition, for each level k, we define a level-k operation written T[ ]k allowing
to test emptiness at level k. Formally T[ ]k(s) is equal to s if s = [ ]k and is
undefined otherwise.
An operation ψ of level k is extended to stacks of level ℓ > k using the defini-
tion ψ([s0, . . . , sn]ℓ) = [s0, . . . , ψ(sn)]ℓ. We now define inductively the set of all
operations of some level k + 1 over some stack alphabet Γ by:

Ops1 ={pushx, popx |x ∈ Γ} ∪ {T[ ]1},
Opsk+1 =Opsk ∪ {copyk, copyk, T[ ]k+1

}.

Moreover, we denote by Ops∗k the monoid for the compositions of partial functions
generated by Opsk.

Example 2. Take the stack s2 = [[abb]1[abc]1[acc]1]2 and the operation sequence
ρ = popcpopcpushbpushccopy1. If we apply σ to s2 we proceed as follows:

popcpopcpushbpushccopy1 ([[abb]1[abc]1[acc]1]2) =
popcpushbpushccopy1 ([[abb]1[abc]1[ac]1]2) =

pushbpushccopy1 ([[abb]1[abc]1[a]1]2) =
pushccopy1 ([[abb]1[abc]1[ab]1]2) =

copy1 ([[abb]1[abc]1[abc]1]2) =
[[abb]1[abc]1]2

Definition 1. A higher-order pushdown system A of level k (k-HOPDS for short)
is defined as a tuple (Q,Σ,Γ,∆) where Q is the finite set of states, Σ is the
input alphabet, Γ is the stack symbol alphabet and ∆ ⊆ Q×Σ ×Opsk ×Q is the
transition relation.

A configuration is a pair (p, s) ∈ Q × Stacksk(Γ ). We write (p, s)
α
→ (q, s′) if

there exists a transition (p, α, γ, q) ∈ ∆ such that s′ = γ(s).
Now we introduce a notion of regularity for sets of higher-order pushdown

stacks which relies on the construction of the stacks by operations. We need
“regular” sets of stacks for a new type of tests in deterministic higher-order

10



pushdown automata. This format will be appropriate for the generation of 0-1-
sequences (i.e., predicates P ⊆ N).
The notion of regularity for (symmetric) operations was introduced indepen-
dently in [2] and [7]. Observe that from a given level-k-stack a word from Ops∗k
yields a new stack, and a language O ⊆ Ops∗k a set of stacks. A set of level-k
stacks is regular if it can be obtained by applying a regular subset of Ops∗k to
the empty level-k stack [ ]k. We write ORegk(Γ ) for the regular sets of stacks of
level k.

Example 3. To illustrate the here defined term of regularity for sets of higher-
order pushdown stacks we will consider some example. So take as set of stacks
of level 2 the set:

{[[an][an−1] . . . [a][ ]]2 | n ≥ 1}.

It can be generated by the following regular operation sequence which is applied
to the empty level-2 stack:

push+
a (copy1popa)

+T[ ]1([ ]2).

The sequence push3
a(copy1popa)

3T[ ]1 applied to [ ]2 generates for example the
stack [[aaa][aa][a][ ]]2.

In the subsequent definition of a pushdown automaton that produces a 0-
1-sequence as output, we refer to a finite family R of regular sets of stacks.
The output alphabet is Σ = {0, 1, ε}; ε serves as a formal output token for the
transitions that do not produce either 0 or 1. By τ we shall denote the identity
function on Opsk, i.e. τ(s) = s for all s ∈ Stacksk(Γ ).

Definition 2. A higher-order pushdown sequence generator of level k (short:
k-HOPDSG) is a deterministic higher-order pushdown automaton A of level k
with tests in a finite set R of subsets of Stacksk(Γ ) which is given by the tuple
(Q,Σ,Γ, q0,∆) where Q is a finite set of states, Σ = {0, 1, ε} is the output
alphabet, Γ is the stack alphabet, q0 ∈ Q is the initial state, and ∆ ⊆ Q ×
Σ × Opsk ×R×Q is the transition relation. The set of tests is defined by R =
{T1, . . . , Tn} with Ti ∈ ORegk(Γ ) for all i ∈ [1, n].

A configuration of A is again a tuple in Q × Stacksk(Γ ) and the initial con-
figuration is (q0, [ ]k). We write (p, s)

α
−→ (q, s′) if there exists a transition

(p, α, γ, T, q) ∈ ∆, such that s′ = γ(s) and s ∈ T .
The automaton is deterministic if for every configuration (q, s) there is at most
one transition (q, α, γ, T, p) in ∆ which can be applied.
An ω-word α ∈ {0, 1}ω is defined by the automaton A if there exists an infinite

run (q0, [ ]k)
a0−→ (q1, s1)

α1−→ (q2, s2)
α2−→ (q3, s3)

α3−→ . . . such that α is obtained
from α0α1α2α3 . . . by deleting all occurrences of ε. (Of course, an automaton
may produce just a finite word. We focus on the infinite words generated by
HOPDSG’s.)

The “regular tests” in our level k-HOPDSG’s are introduced to obtain a model
of computation that is deterministic and generates precisely the sets P such
that (N,+1, P ) is in the Caucal hierarchy. Determinism is needed for our game-
theoretic context. The automata in the literature have less powerful tests but are
non-deterministic. In our model we can restrict to apply a “test” which checks

11



if the operations that follow the current transition can indeed be applied to the
current stack. We shall use the tests only in transitions with output ε and then
speak of restricted tests.

Definition 3. A set P ⊆ N is level-k-definable if there is a higher-order push-
down sequence generator A of level k with restriced tests that defines P .

Theorem 2. A structure (N,+1, P ) is in the k-th level of the Caucal hierarchy
iff P is level-k-definable.

Proof. ⇒: In particular we have to show that if (N,+1.P ) is in the k-th level of
the Caucal hierarchy then there exists a HOPDSG AP of level k such that for each
i ∈ N the i-th bit produced in the run of AP is the same as χP (i).

Let (N,+1, P ) be in the k-th level of the Caucal hierarchy and let GP be the
graph corresponding to (N,+1, P ). As P ⊆ N the graph GP = (V,E, P ) can be
considered as a “simple” infinite path with V = N and (i, j) ∈ E iff j = i + 1
∀i, j ∈ N. To conserve the parameter in the graph introduce the {0, 1}-labeling
of the edges where (i, j) ∈ E0 if i /∈ P and (i, j) ∈ E1 if i ∈ P for all (i, j) ∈ E.

Then by [3] we know that there exists a higher-order pushdown automaton A
of level k such that GP is the configuration graph of AP . Remark that they show
the proof for higher-order pushdown automata which use the unconditional pop
but in fact the proof works by first using the here used higher-order pushdown
automata with equality pop and then showing that the configurations graphs of
this two automata models are equivalent. So the proof can be used here directly.

Assume AP is the HOPDA constructed by [3]. Then in the configuration
graph of AP exists an infinite path labeled by χP . Usually the HOPDA are non-
deterministic, i.e. for a configuration (q, s) there could be different transitions
(q, b0, γ0, q0), . . . , (q, bn, γn, qn) with n ≥ 0 which are applicable. In the HOPDSG
we add the tests to guarantee that for each configuration there is only one tran-
sition applicable. For this define for each transition the regular set of stacks
at which they are used in the configuration graph of AP to follow the infinite
χP -path. Then we add those regular sets of stacks as tests to the respectively
transitions in the HOPDSG.

Those tests may now not fulfill the conditions we have proposed on restricted
tests. For the condition that no output of 0, 1 appears in the transitions with tests
we introduce two dummy transitions, i.e. replace (q, b, γ, T, q′) by (q, ε, γ, T, p)
and (p, b, τ, ∅, q′).

The second condition of the test says that by the tests just a look into the
future is allowed which means that the operations which follow the application
of the by the tests allowed transitions are applicable. For this condition it has
figured out that the automata can be transformed such that the test are only
needed for the case that in the future is a copyk operation for which the topmost
but one stack has to be rebuild. For this case the test which are needed follow
exactly the definition of restricted tests (as they are only defined for this case).

⇐: We have to show that if a k-HOPDSG defines parameter P , i.e. produces a
sequence χP then is the structure (N,+1, P ) is in the k-th level of the Caucal
hierarchy.

Let A be a higher-order pushdown sequence generator of level k with re-
stricted tests which generates a predicate P . We delete the tests from A and get
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so instead of only an infinite path a (slightly larger) configuration graph which
still includes P as one path. In particular by the definition of the restricted tests
all infinite paths in the resulting configuration graph of the system without tests
which are not the “original path” of χP are finally (i.e. from the moment they
leave the “original path” onwards) only labeled by ε. This holds as well for the
finite paths that abort from the path χP .

By deleting the tests we get an usual HOPDA B of level k with equality pop.
Wöhrle proved in [19](p.74) that for a HOPDA B of level k with equality pop there
exists a HOPDA C of level k with unconditional pop such that they generate the
same graph. From [3] we know if a graph is the configuration graph of a HOPDA
of level k then it is also in the k-th level of the Caucal hierarchy. Lets call the
graph we get by this GP . To receive really the structure (N,+1, P ) we have to
add in the MSO-interpretation of GP the following conditions:

– As vertices we take only these nodes which have an outgoing 0 or 1 edge.
– For the edge relation we take the ε-closure to connect these vertices.
– As parmeter P we take those vertices that have an outgoing 1 edge.

So we have that (N,+1, P ) is in the k-th level of the Caucal hierarchy.

Example 4. As an example for the application of sequence generators, let us
describe the idea for a level-2 higher-order pushdown sequence generator defining
the set P = {2i | i ∈ N} of the powers of 2. Note that after output 1 at position
2i, the next output 1 occurs 2i steps later at position 2i+1. The idea for the
automaton is to remember in its first level 1 stack the current i by the stack
content 0i. Above this bottom-line the automaton can build a tower of i stacks
with the contents 0i−1, 0i−2, . . . , 0. We can now allow the top symbols of these i
stacks to be 0 or 1; so the sequence of b1 . . . bi of top symbols is a binary number
(the leading bit corresponds to the bottom stack) which we use to “count” in
binary up to 1i, where of course many steps are needed to proceed from one
binary number to the next. When such a new binary number is reached the
automaton outputs a 0 (otherwise ε). More precisely, the automaton deletes the
stacks with top symbol 1 until it reaches a stack with top symbol 0; it turns it
into 1 and goes up again building towers of 0 of decreasing length as at the start:







0
0 1
0 0 1
0 0 0 0






⇒







1
0 1
0 0 1
0 0 0 0






⇒







0 0 0 1






⇒







0
0 0
0 0 0
0 0 0 1







A concrete higher-order pushdown sequence generator AP for the powers
of 2 can be defined as follows with AP = (Q, {0, 1, ε}, {0, 1, 2}, q0 ,∆), where
Q = {qi | i ∈ [0, 25]} and ∆ is given in Table 1. The set of resticted tests is also
given in Table 1.

Let us continue the example and discuss a regular P -game for P = {2i | i ∈
N}. The winning condition requires that player 2 copies the bits played by player
1 except for the moments i− 1 where i ∈ P ; in these moments the converse bit
is required. An example play won by player 2 could be:

Set P 0 1 1 0 1 0 0 0 1 0 . . .
Player 1 0 1 0 0 1 0 0 1 1 1 . . .
Player 2 1 0 0 1 1 0 0 0 1 1 . . .
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Start of computation:

(q0, 0, τ, ∅, q1) output for χP (0)
(q1, 1, τ, ∅, q2) output for χP (1)
(q2, 1, push0, ∅, q3) output for χP (2)
(q3, 0, τ, ∅, q4) output for χP (3)
(q4, 1, push0, ∅, q5) output of 1 for position 2i i ≥ 2
Marking of first level 1 stack by pushing 2:

(q5, ε, push2, ∅, q6)
(q6, ε, copy1, ∅, q7)
(q7, ε, pop2, ∅, q8)
Building tower of 0 in stack:

(q8, ε, copy1, ∅, q9)
(q9, ε, pop0, ∅, q8) case: if topmost stack is not empty
(q9, ε, T[ ]1 , ∅, q10) case: if topmost stack is empty
(q10, ε, copy1, ∅, q11) rebuilding the right stack
(q11, ε, push0, ∅, q12)
(q12, ε, copy1, ∅, q13)
Start search from top:

(q13, 0, pop0, ∅, q14) replace 0 by 1, output 0
(q14, ε, push1, ∅, q15)
Search for 0 downwards:

(q15, ε, pop1, ∅, q16) preparation for deletion of topmost stack
(q16, ε, push0, ∅, q17)
(q17, ε, push0, Tpush0copy1

, q18) case: in stack below is in front a 0
(q17, ε, push1, Tpush1copy1

, q19) case: in stack below is in front a 1
(q17, ε, push2, Tpush2copy1

, q24) case: in stack below is in front a 2
Case: 0 in front of stack below, 0 to 1:

(q18, ε, copy1, ∅, q20)
(q20, 0, pop0, ∅, q21) replace 0 by 1, output 0
(q21, ε, push1, ∅, q22)
(q22, ε, copy1, ∅, q23) rebuilding of tower of 0’s
(q23, ε, pop1, ∅, q8)
Case: 1 in front of stack below, down:

(q19, ε, copy1, ∅, q15)
Case: 2 in front of stack below, start:

(q24, ε, copy1, ∅, q25)
(q25, ε, pop2, ∅, q4)

where the tests are defined by the following regular expressions over Ops2(Γ ):

Tpush0copy1
:= Ops∗2 push0 copy1 copy1 pop0 ([ ]2)

Tpush1copy1
:= Ops∗2 push1 copy1 copy1 pop1 ([ ]2)

Tpush2copy1
:= Ops∗2 push2 copy1 copy1 pop2 ([ ]2)

Table 1. Definition of the transition relation ∆ and the set of restricted tests R =
{Tpush0copy1

, Tpush1copy1
, Tpush2copy1

} of the higher-order pushdown sequence generator AP

which produces the sequence of the powers of 2 for Example 4.
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Fig. 3. Deterministic parity automaton with coloring p0 = p1 = p2 = 0, p3 = 1 for the definition
of the winning condition of Example 4. The ∗ in the labeling of the transitions means either 0
or 1 possible.

The deterministic parity word automaton over {0, 1}3 which defines this win-
ning condition is given in Figure 3.

It is easy to see that a finite-state winning strategy does not suffice for player 2
to win this game; no finite memory suffices to determine the moments i− 1 with
i ∈ P . On the other hand, if player 2 has the computational means of a HOPDSG
that defines P , he can detect the critical moments without using a look-ahead.

We return to the preparations of the main result. In the following we introduce
parity games played on the configuration graph of a higher-order pushdown sys-
tem and a result we need for our main theorem.

Definition 4. A higher-order pushdown parity game G of level k(k-HOPDPG) is
given by a k-HOPDS P = (Q,Σ,Γ,∆), a partition of the states Q = Q0 ⊎ Q1

and a coloring mapping ΩP : Q → N. The induced game arena is (V0, V1, E,Ω)
where: V0 = Q0×Stacksk(Γ ), V1 = Q1×Stacksk(Γ ), E is the Σ-labeled transition
relation of P and Ω is defined for (p, s) ∈ Q× Stacksk(Γ ) by Ω(p, s) := ΩP (p).

Theorem 3 ([4]). Given a pushdown parity game of level k, we can construct in
k-Exptime reduced level-k automata1 describing the winning region, respectively
a global positional winning strategy for each of the two players.

1 The reduced level-k automata are finite automata running over Opsk and accepting regular
sets of stacks, i.e. sets in ORegk(Γ ). See [4] for more details.
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4 Regular P -Games with P in the Pushdown Hierarchy

We now want to show that a regular P -game where P is defined by a higher-
order pushdown sequence generator of level k with restricted tests can be solved
in k-Exptime, and that the winner has a winning strategy which is executable
by a level-k pushdown automaton.

Theorem 4. Let P ⊆ N be defined by a higher-order pushdown sequence gen-
erator P of level k with restricted tests. The regular P -game where the winning
condition is given by a deterministic parity word automaton C over {0, 1}3 is (de-
termined and) solvable: It can be decided who wins the game and for the winner
one can construct a level-k HOPDA that computes a winning strategy.

In the proof, we first treat solvability and the format of the winning strategy;
the statement on complexity is shown afterwards.

Proof. Let P = (QP , ΣP , ΓP , q
P
0 ,∆P ) be a k-HOPDSG with restricted tests defin-

ing P , and let C = (QC , ΣC , q
C
0 , δC , ΩC) be a parity word automaton over the

alphabet ΣC = {0, 1}3 defining the winning condition.

We construct a higher-order pushdown parity game (HOPDPG) GP , defined by
the HOPDS PG = (Q,ΣP , ΓP , q0,∆), the state partitionQ1, Q2 and the coloring Ω,
simulating the game between player 1 and player 2 with the external parameter
P . The idea is that in GP we compute with the help of P, i.e. the level-k stack,
the next bit of the sequence χP , then let first player 1 choose a bit then player
2. These three bits we store in the state of the current vertex and then compute
by C the color of its vertex. (For this we give C those three bits as input.) The
parity game GP is then won by player 2 iff the given regular P -game is won by
player 2. Using this allows us to invoke Theorem 3 to solve the game GP and
compute a winning strategy.

The HOPDS PG works repeatedly in four phases, indicated by the symbols of the
alphabet Φ := {ΦP , Φ1, Φ2, ΦC}. The symbol ΦP indicates that the next bit of
χP is computed by P, the symbol Φi that player i chooses a bit, and the symbol
ΦC that the next state of C is computed by evaluating the chosen bits.

The HOPDS PG has the state set Q = QP × QC × Φ × {0, 1}3 where for a state
(qP , qC , x, (b0, b1, b2)) ∈ Q we have that qP resp. qC is the current state in P
resp. C. Furthermore by the third component we know in which phase of a move
we are, and by (b0, b1, b2) we memorize the current bits of χP and the last bits
chosen by player 1 and player 2. The initial state is q0 = (qP0 , q

C
0 , ΦP , (0, 0, 0)).

The transitions ∆ are the following. (Note that the bits b′0, b
′
1, b

′
2 are the current

choices for χP , player 1, respectively player 2.)

– for (qP , ε, γ, T, q
′
P )∈∆P :

((qP , qC , ΦP , (b0, b1, b2)), ε, γ, (q
′
P , qC , ΦP , (b0, b1, b2)))

– for b′0 ∈ {0, 1}, (qP , b
′
0, γ, T, q

′
P )∈∆P :

((qP , qC , ΦP , (b0, b1, b2)), b
′
0, γ, (q

′
P , qC , Φ1, (b

′
0, b1, b2)))

– for b′1 ∈ {0, 1}:
((qP , qC , Φ1, (b0, b1, b2)), b

′
1, τ, (qP , qC , Φ2, (b0, b

′
1, b2)))

– for b′2 ∈ {0, 1}:
((qP , qC , Φ2, (b0, b1, b2)), b

′
2, τ, (qP , qC , ΦC , (b0, b1, b

′
2)))
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– for δC(qC , (b0, b1, b2)) = q′C:
((qP , qC , ΦC , (b0, b1, b2)), ε, τ, (qP , q

′
C , ΦP , (b0, b1, b2))).

The coloring is defined by:

Ω((qP , qC , x, (b0, b1, b2))) = ΩC(qC) for x ∈ {ΦC , Φ1, Φ2}
Ω((qP , qC , ΦP , (b0, b1, b2))) = (2·n) where n is the maximal color in ΩC .

The state partitioning is defined by:

Q1 = QP ×QC × {Φ1, ΦP , ΦC} × {0, 1}3

Q2 = QP ×QC × {Φ2} × {0, 1}3.

The restricted tests which are used in the computation of χP , i.e. in the
transitions of P to make the HOPDSG deterministic, are omitted in the game.
This can be done because of their special form. Note that in the game GP the
computation of P is not completely deterministic because we attribute to player
1 the choice of bits for the sequence χP . If player 1 chooses such a bit incorrectly,
however, then either the current stack operation or one of the subsequent ones
will be undefined or he would get stuck in the computation of a later χP -bit
(here we use the resticted tests). In the case that in a Φ1-state some operation is
not defined on the current stack, player 1 loses immediately; in the second case
he will lose because the only color which is seen infinitely often in the game will
be even; note that we colored the ΦP -vertices by an even number that cannot be
surpassed; so player 2 wins in this case.

Now we will proof in detail that this construction is correct. For this it remains
to show that:

Player 2 wins the regular P -game with winning condition defined by C if
and only if the higher-order pushdown parity game GP is won by player 2
from the initial configuration.

⇒: Assume player 2 wins the regular P -game.
For the parameter P with χP = p0p1p2 . . . let ρP be the run of P, i.e. ρP(0) =

(qP0 , [ ]k) and ρP(i)
a

j
i−→
P

ρP(i + 1) for all i ≥ 0 where j ∈ N ∪ {•} and j = ℓ if

aj
i = pℓ for all ℓ ∈ N and j = • if aj

i /∈ {0, 1}.
If player 2 solves the regular P -game player 2 can choose for every possible

input of player 1 a correct output such that the winning condition is fulfilled. In
particular for allX = x0x1 . . . ∈ {0, 1}ω chosen by player 1, player 2 can construct
Y = y0y1 . . . ∈ {0, 1}ω such that (P,X, Y ) ∈ ({0, 1}3)ω is accepted by C. For some
X and Y chosen by player 1 respectively player 2, let ρC be the accepting run of
C on (P,X, Y ) with ρC(0) = qC0 and δC(ρ

C(i), (pi, xi, yi)) = ρC(i+ 1) for all i ≥ 0.
We have to show that in the HOPDPG GP which is constructed as described

above and where player 1 and player 2 choose the bits according to player 1 and
player 2 of the regular P -game, player 2 wins this play starting from the initial
configuration ((qP0 , q

C
0 , ΦP , (0, 0, 0)), [ ]k).

Due to the definition of the game from ((qP0 , q
C
0 , ΦP , (0, 0, 0)), [ ]k) player 1 has

to compute the first bit of the parameter P . We have to distinguish here several
cases. Let in ρP 2 for i ∈ N a0

i be the first time when a bit is produced in the

2 We note for all i ∈ N, ρP(i) = (qi, si).
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run ρP , i.e. for ρP(0)
a

j0
0−→
P

ρP(1)
a

j1
1−→
P

. . .
a

ji
i−→
P

ρP(i + 1) we have for all 0 ≤ ℓ < i

ajℓ

ℓ /∈ {0, 1} (jℓ = •) and aji

i ∈ {0, 1} (ji = 0).

1. In the transitions applied in ρP to get from ρP(0) to ρP(i+1) we do not need
a test. In this case player 1 has no choice and follows in the play just ρP until
p0 is delivered. In the play we end in ((qPi+1, q

C
0 , Φ1, (p0, 0, 0)), si+1).

2. In the transitions applied in ρP to get from ρP(0) to ρP(i + 1) there is at
least one restricted test used. In this case we have deleted the tests in the
construction of the game. So player 1 can choose between some edges for
every step where such a test is deleted. Again we have two cases:

(a) Player 1 chooses the correct edges and follows ρP , then see case 1.

(b) Player 1 chooses somewhere a wrong edge. Then by definition of P player
1 either ends up after a few steps in a deadlock and so player 2 wins, or
he will never reach a point where he can apply an edge which is labeled
by 0 or 1 and gets stuck in the “P choice phase” in the play. Due to the
coloring which assigns to all those configurations in the “P choice phase”
an even number, player 2 will win, too.

Now we consider the case that we have reached ((qPi+1, q
C
0 , Φ1, (p0, 0, 0)), si+1).

There are only two possibilities for player 1 to go on, i.e. either to choose
0 or 1 as first bit. By assumption player 1 chooses the bit x0 and we get to
the configuration ((qPi+1, q

C
0 , Φ2, (p0, x0, 0)), si+1). From there player 2 chooses

according to player 2 (of the regular P -game) the bit y0 and we get to con-
figuration ((qPi+1, q

C
0 , ΦC , (p0, x0, y0)), si+1). In this configuration again player 1

decides how to go on but he has by definition of the game, respectively be-
cause C is a deterministic parity automaton, only one choice namely to go to
((qPi+1, ρ

C(1), ΦP , (p0, x0, y0)), si+1), as δC(q
C
0 , (p0, x0, y0)) = ρC(1).

If we now assume that further in the play player 1 chooses in the Φ1-vertices
the bits according to X and in the ΦP -vertices the “correct” edges and player 2
chooses in the Φ2-vertices the bits according to Y we get the following play with
the start like described above and:

((qPj , ρ
C(i), ΦP , (pi−1, xi−1, yi−1)), sj)

a•
j+1
−→ · · ·

a•

j+(k−2)
−→

ai
j+(k−1)
−→

((qPj+k, ρ
C(i), Φ1, (pi, xi−1, yi−1)), sj+k)

xi−→

((qPj+k, ρ
C(i), Φ2, (pi, xi, yi−1)), sj+k)

yi−→

((qPj+k, ρ
C(i), ΦC , (pi, xi, yi)), sj+k)

ε
−→

((qPj+k, ρ
C(i+ 1), ΦP , (pi, xi, yi)), sj+k)

for all i > 0, j, k, l ≥ 0 holds ai
j+(k−1) = pi and a•l = ε.

It remains to show that player 2 wins this play. This follows as except for the
ΦP -vertices all vertices are colored according to the states of C. As by assumption
ρC is accepting and the ΦP-vertices have a color that is larger than every color
in ΩC , player 2 wins.

⇐: Assume player 2 wins the game GP from the initial configuration. In this case
player 2 has a winning strategy ϕ, where whatever player 1 does, the play fulfills
the winning condition.

We have to differ between two cases:
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1. Player 1 loses because he made a mistake in the computation of P and chooses
an edge which refers to a wrong transition in the run of P. In this case either
the play aborts in a vertex of player 1 or the play stays forever in the ΦP

component in the vertices of the game and so the only color which is seen
infinitely often is even.
This case we want to exclude because here player 2 does not necessarily have a
winning strategy and we can immediately determine if this case has appeared
because it is the only way the play can abort or the color 2 · n appears as
smallest color which is seen infinitely often.

2. Player 1 loses because the smallest color which appears infinitely often in the
play is even and not 2 · n, i.e. player 1 chose the correct way to compute P .

We will concentrate on the second case.
As player 2 wins the game from the initial configuration for every possible

choice of player 1 we can assume some particular play starting from the initial
configuration ((qP0 , q

C
0 , ΦP , (0, 0, 0)), [ ]k). Due to the definition of the game GP

and the assumption that player 1 chooses the correct edges in the P component,
the play has to have the following form:

i = 0 : ((qP0 , q
C
0 , ΦP , (0, 0, 0)), [ ]k)

ε
−→ · · ·

ε
−→

p0
−→

((qPℓ1, q
C
0 , Φ1, (p0, 0, 0)), sℓ1)

x0−→

((qPℓ1, q
C
0 , Φ2, (p0, x0, 0)), sℓ1)

y0
−→

((qPℓ1, q
C
0 , ΦC , (p0, x0, y0)), sℓ1)

ε
−→

((qPℓ1, q
C
1 , ΦP , (p0, x0, y0)), sℓ1)

i > 0 : ((qPℓi
, qCi , ΦP , (pi−1, xi−1, yi−1)), sℓi

)
ε

−→ · · ·
ε

−→
pi
−→

((qPℓi+1
, qCi , Φ1, (pi, xi−1, yi−1)), sℓi+1

)
xi−→

((qPℓi+1
, qCi , Φ2, (pi, xi, yi−1)), sℓi+1

)
yi−→

((qPℓi+1
, qCi , ΦC , (pi, xi, yi)), sℓi+1

)
ε

−→

((qPℓi+1
, qCi+1, ΦP , (pi, xi, yi)), sℓi+1

).

That the correct P = p0p1p2 . . . is computed follows by the construction of the
game and the assumption on player 1. That the winning condition for the regular
P -game is fulfilled for (P,X, Y ) where X = x0x1x2 . . . and Y = y0y1y2 . . . follows
from the C component of the game.

In the next part of the proof we want to construct a strategy automaton
for the player who wins the regular P-game. This automaton is again a HOPDA
of level k with tests in ORegk. The idea for the construction of the strategy
automaton for the player winning the game is similar as above and uses the
strategy which is delivered by the algorithm of Theorem 3.
We will now show in detail:

From a positional strategy for the player i ∈ {1, 2} winning the game GP

starting from the initial configuration we can construct a winning strategy
for player i in the regular P -game.

We assume here that player 2 wins the game GP and so also the regular P -
game. If player 1 wins the construction is slightly more complicated as we let
player 1 in GP also choose the edges for the computation of P and C but it works
similarly.
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We will now show how to compute a winning strategy for player 2 in form of
a strategy automaton which uses higher-order pushdown stacks with tests. Let
ϕ be the positional winning strategy for player 2 in the game GP starting from
the initial configuration. In particular, the strategy for player 2 computed by the
algorithm of Theorem 3 is defined in this kind of game by two regular sets of
stacks respectively configurations3 S0 ⊆ V2 and S1 ⊆ V2 where for all vertices in
S0 player 2 takes the 0 edge and for all vertices in S1 player 2 takes the 1 edge.
Player 2 just has to to follow the game GP and mimic the choices of player 2 in
GP .

The idea is to use a HOPDA similar to PG to compute the strategy for player 2.
We just add for the P component again the tests of the HOPDSG to guarantee the
correct choices and additional tests for the winning strategy S0, S1 to compute
the output of the correct strategy for player 2. As in S0 and S1 also the state of
the configuration is stored we have to split the sets such that we have for each
state q ∈ Q sets Sq

0 and Sq
1 with:

s ∈ Sq
i iff pushq(s) ∈ Si for i ∈ {0, 1}, q ∈ Q.

The input for the strategy automaton corresponds to the choices of player 1
in the game GP . We define the strategy automaton for player 2 by the HOPDA4

AS = (Q,ΓP , ΓP , q0, σ, µ) with test in the set TP ∪ {Sq
i | i ∈ {0, 1}, q ∈ Q

where TP is the set of restricted test of the HOPDSG P. The set of states is
again defined by Q = QP × QC × {ΦP , Φ1, Φ2, ΦC} × {0, 1}3 and the start state
is q0 = (qP0 , q

C
0 , ΦP , (0, 0, 0)).

The transition function σ is defined as follows:
Computation of the bit of parameter P :

σ((qP , qC , ΦP , (b0, b1, b2)), ε, γ, T ) = (q′P , qC , ΦP , (b0, b1, b2))
if (qP , ε, γ, T, q

′
P )∈∆P

σ((qP , qC , ΦP , (b0, b1, b2)), 0, γ, T ) = (q′P , qC , Φ1, (0, b1, b2))
if (qP , 0, γ, T, q

′
P )∈∆P

σ((qP , qC , ΦP , (b0, b1, b2)), 1, γ, T ) = (q′P , qC , Φ1, (1, b1, b2))
if (qP , 1, γ, T, q

′
P )∈∆P .

Player 1 moves, i.e. chooses bit b′1 ∈ {0, 1}:

σ((qP , qC , Φ1, (b0, b1, b2)), b
′
1, τ, ∅) = (qP , qC , Φ2, (b0, b

′
1, b2)).

Player 2 moves:

σ((qP , qC , Φ2, (b0, b1, b2)), 0, τ, S
(qP ,qC ,Φ2,(b0,b1,b2))
0 )

= (qP , qC , ΦC , (b0, b1, 0))

σ((qP , qC , Φ2, (b0, b1, b2)), 1, τ, S
(qP ,qC ,Φ2,(b0,b1,b2))
1 )

= (qP , qC , ΦC , (b0, b1, 1)).

3 The state of the configuration (p, s) is stored in the stack by pushing it onto the topmost
stack, i.e. we have pushp(s) ∈ S0.

4 In this HOPDA we have instead of a transition relation ∆ the transition function δ which
gets as input the choices of player 1 and the output function µ which delivers the choices for
player 2. Besides of this their definition is similar and according to the usual definition of
strategy automata.
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Evaluation of the winning condition:

σ((qP , qC , ΦC , (b0, b1, b2)), ε, τ, ∅) = (qP , q
′
C , ΦP , (b0, b1, b2))

if δC(qC , (b0, b1, b2)) = q′C .

The output function µ is defined by:

µ((qP , qC , Φ2, (b0, b1, b2)), S
(qP ,qC ,Φ2,(b0,b1,b2))
0 ) = 0

µ((qP , qC , Φ2, (b0, b1, b2)), S
(qP ,qC,Φ2,(b0,b1,b2))
1 ) = 1.

According to the proof for the solution of the game we can conclude that the
defined automaton computes a winning strategy for player 2 in the P -regular
game, if player 2 wins the higher-order pushdown parity game GP with the strat-
egy given by S0, S1.

Proposition 3. The computation of the winner and the winning strategy in The-
orem 4 is done in k-exponential time.

Proof. By Theorem 3 we have a k-Exptime procedure to compute the winner
of the game GP and the positional winning strategy for the player winning GP .
As the construction of GP is polynomial in the size of the automata P and C we
have altogether again an algorithm running in k-exponential time to compute the
winner of the regular P -game as well as the desired winning strategy automaton.

5 Conclusion

The purpose of the present paper was twofold: First we developed a streamlined
proof of a result of Rabinovich [13, 14] on regular P -games, using automata the-
oretic concepts and ideas that go back to Siefkes [17]. The result says that for
recursive P , regular P -games can be solved effectively when the MSO-theory of
(N,+1, P ) is decidable, and that in this case also a recursive winning strategy
for the winner can be constructed.

In the second part of the paper, we considered predicates that can be gen-
erated by higher-order pushdown automata (covering a large class of interesting
examples) and showed that for such predicates P , regular P -games can be solved
with strategies that are again computable by such automata. In this context, we
mention some questions.

In natural examples, mentioned e.g. at the end of Section 3, the reference
to P in the winning condition involves just a bounded look-ahead on P . In
our approach a look-ahead is made superfluous by a corresponding computation
from the past, which involves a big overhead. Strategies (maybe even finite-state
strategies) with bounded look-ahead on P seem to be a natural class, and the
range of their applicability should be investigated.

A related question is to decide when a regular P -game where (N,+1, P ) is
in the Caucal hierarchy can be solved with finite-state winning strategies. This
could be the case if winning conditions are considered that does not take into
account the hole complexity of the parameter.

Finally, one can aim at finding more general frameworks than the Caucal
hierarchy as considered here, and develop corresponding more general types of
winning strategies (that are more restricted than the recursive strategies). In this
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setting for example the collapsible pushdown systems [10] come into account as
they are strictly more expressive then the higher-order pushdown systems. They
have also higher-order pushdown stacks as storeage but they additionally attach
to every symbol in a stack some link to a stack situated somewhere below it. The
link is used when the new operation “collapse” is executed to return back to the
linked stack.
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2007-03 Jürgen Giesl, René Thiemann, Stephan Swiderski, and Peter Schneider-

Kamp: Proving Termination by Bounded Increase

2007-04 Jan Buchholz, Eric Lee, Jonathan Klein, and Jan Borchers: coJIVE: A

System to Support Collaborative Jazz Improvisation

2007-05 Uwe Naumann: On Optimal DAG Reversal

2007-06 Joost-Pieter Katoen, Thomas Noll, and Stefan Rieger: Verifying Con-

current List-Manipulating Programs by LTL Model Checking

2007-07 Alexander Nyßen, Horst Lichter: MeDUSA - MethoD for UML2-based

Design of Embedded Software Applications

2007-08 Falk Salewski and Stefan Kowalewski: Achieving Highly Reliable Em-

bedded Software: An empirical evaluation of different approaches

2007-09 Tina Kraußer, Heiko Mantel, and Henning Sudbrock: A Probabilistic

Justification of the Combining Calculus under the Uniform Scheduler

Assumption
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