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Tag der mündlichen Prüfung: 31. August 2009

Diese Dissertation ist auf den Internetseiten der Hochschulbibliothek online verfügbar.
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Abstract

The results of this dissertation are two-fold. On the one hand, inductive learning tech-
niques are extended and two new inference algorithms for inferring nondeterministic, and
universal, respectively, finite-state automata are presented. On the other hand, certain
learning techniques are employed and enhanced to semi-automatically infer communi-
cating automata (also called design models in the software development cycle). For both
topics, theoretical results on the feasibility of the approaches, as well as an implementation
are presented which, in both cases, support our theory.

Concerning the first objective to derive a so-called active online learning algorithm for
nondeterministic finite-state automata (NFA), we present, in analogy to Angluin’s famous
learning algorithm L∗ [Ang87a] for deterministic finite-state automata (DFA), a version for
inferring a certain subclass of NFA. The automata from this class are called residual finite-
state automata (RFSA). It was shown by Denis et al. [DLT02] that there is an exponential
gap between the size of minimal DFA and their corresponding minimal RFSA. Even if
there are also cases where the canonical (i.e., minimal) RFSA is exponentially larger than
a corresponding minimal NFA, we show that the new learning algorithm—called NL∗—
is a great improvement compared to L∗ as the inferred canonical RFSA has always at
most the size of the corresponding minimal DFA but is usually even considerably smaller
and more easy to learn. Unlike a learning procedure developed by Denis et al.—called
DeLeTe2 [DLT04]—our algorithm is capable of deriving canonical RFSA. Like L∗, the new
algorithm will be applicable in many fields including pattern recognition, computational
linguistics and biology, speech recognition, and verification. From our point of view, NL∗

might especially play a mayor role in the area of formal verification where the size of the
models that are processed is of enormous importance and nondeterminism not regarded
an unpleasant property.

The second objective of this thesis is to create a method for inferring distributed design
models (CFMs) from a given set of requirements specified as scenarios (message sequence
charts). The main idea is to extend the L∗ algorithm to cope with valid and invalid sets
of system runs and, after some iterations, come up with an intermediate design model (a
DFA) which exhibits features that make it distributable into communicating components
(or processes) interacting via FIFO channels. Theoretical results on which classes of CFMs
are learnable in which time-complexity bounds are presented. We also developed a tool
implementation called Smyle, realizing important theoretical results evolving from this
part of the thesis. Based on this learning formalism we also derive a software-engineering
lifecycle model called the Smyle Modeling Approach in which we embedded our learning
approach.

Additionally, we launched a project for a new learning library called libalf which
includes most of the learning algorithms (and their extensions) mentioned in this thesis.
We hope that, due to its continuously increasing functionality, libalf will find broad
acceptance among researchers, and that it will be the starting point for an extensive
project of different research groups which will employ libalf, or augment the library
with new algorithms.





Zusammenfassung

Die Ergebnisse dieser Arbeit sind zweigeteilt. Einerseits werden existierende induktive
Lernverfahren grundlegend erweitert, und zwei neue Lernalgorithmen zur Inferenz nichtde-
terministischer bzw. universeller Automaten vorgestellt. Andererseits werden bestimmte
Lerntechniken eingesetzt und verbessert, um kommunizierende Automaten (in der Soft-
wareentwicklung auch Designmodelle genannt) semi-automatisch zu inferieren. Es werden
sowohl theoretische Resultate bezüglich der Durchführbarkeit der Ansätze als auch zwei
Implementierungen vorgestellt, die jeweils unsere theoretische Arbeit untermaueren.

Für das erste Ziel, nämlich einen sogenannten aktiven online Lernalgorithms für nicht-
deterministische, endliche Automaten (NFA) zu entwerfen, wird in Analogie zu An-
gluins berühmtem Lernalgorithmus L∗ [Ang87a] für determinisitische, endliche Automaten
(DFA) eine Version eines Algorithmus entwickelt, der eine bestimmte Teilklasse nicht-
deterministischer, endlicher Automaten inferieren kann. Die Automaten dieser Klasse
werden residuelle, endliche Automaten (RFSA) genannt. Denis et al. haben in [DLT02]
gezeigt, dass es eine exponentielle Kluft zwischen der Größe minimaler DFA und äquiva-
lenter kanonischer RFSA gibt. Auch in Fällen in denen der kanonische RFSA exponentiell
größer ist als ein äquivalenter minimaler NFA, zeigen wir, dass unser neuer Lernalgorith-
mus NL∗ eine große Verbesserung im Vergleich zu dem schon existierenden Algorithmus
L∗ darstellt, da der kanonische RFSA im schlimmsten Fall die gleiche Größe wie der
äquivalente minimale DFA besitzt, im Regelfall jedoch wesentlich kleiner und leichter zu
lernen ist. Im Gegensatz zu dem von Denis et al. in [DLT04] vorgestellten Lernverfahren
ist unser Algorithmus in der Lage kanonische RFSA zu lernen. Wie L∗ so wird auch
unser Algorithmus NL∗ in vielen Bereichen Einsatz finden: z.B. in der Mustererkennung,
in der maschinellen Linguistik und Biologie sowie in der Spracherkennung und formalen
Verifikation. Unserer Meinung nach könnte NL∗ vor allem im Bereich der formalen Veri-
fikation eine Hauptrolle spielen, in der die Größe der zu prüfenden Modelle von essentieller
Bedeutung und Nichtdeterminismus nur von untergeordnetem Interesse ist.

Das zweite Ziel dieser Arbeit lautet, einen Ansatz zur Inferenz verteilter Designmodelle
(CFMs) basierend auf Anforderungen zu kreieren, die als Systemszenarios (Message Se-
quence Charts) spezifiziert sind. Die Hauptidee besteht darin, den Algorithmus von
Angluin dahingehend zu erweitern, dass er mit gültigen und ungültigen Systemläufen
umzugehen weiß und nach einigen Iterationen mit einem Zwischenmodell (einem DFA)
aufwartet, das Eigenschaften aufweist, die es in über FIFO Kanäle kommunizierende Kom-
ponenten (oder Prozesse) verteilen lassen. Es werden theoretische Ergebnisse hergeleitet,
die Aussagen darüber liefern, welche Klassen verteiler Automaten (CFMs) mit welchen
Komplexitätsschranken lernbar sind. In diesem Zusammenhang wird außerdem eine Im-
plementierung mit Namen Smyle vorgestellt, die die Durchführbarkeit des Lernens einiger
in dieser Arbeit vorgestellter Klassen aufzeigt. Aufbauend auf diesem theoretischen Lern-
formalismus wird ein softwaretechnisches Lebenszyklusmodell, genannt der Smyle Model-
ing Approach, entwickelt, in das unsere Lernanwendung Smyle integriert wird.

Zusätzlich wurde ein Projekt ins Leben gerufen, das aktuell die meisten der in dieser
Arbeit vorgestellten Lernverfahren und deren Erweiterungen implementiert. Die ent-
standene Lernbibliothek trägt den Namen libalf. Wir hoffen, dass diese Bibliothek auf-
grund ihres kontinuierlich ansteigenden Umfangs an Lernverfahren großen Anklang unter
Wissenschaftlern finden wird, und dass sie der Startpunkt eines weitläufigen Projektes
unterschiedlicher Universitäten wird, die diese Bibliothek nutzen und dazu beitragen, sie
mit neuen Algorithmen an zu reichern.
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1 Introduction

Nowadays, everyday life is almost totally dependent on software driven devices. Many
of them are extremely safety-critical (also called life-critical) applications. Life-critical
software is omnipresent. As such they can be found everywhere in daily life, e.g., within
intensive care devices, safety devices in the automotive- or avionics sector, e.g., cruise
controls, autonomous automobiles and autopilots, etc. Their malfunction could cause
deep impact on our life, e.g., severe injuries or even death, but might also result in fatal
damage to, or loss of, machinery, e.g., on extremely cost intensive space missions, or global
environmental harm in case of a defective nuclear power plant, or misdirected nuclear or
biochemical weapons. Therefore, strong attention must be payed to develop faultless
software.

In the need of means to approach automated, error-free software development, usually
two major approaches for tackling this problem are employed. Firstly, as code written by
human beings is in many cases defective, (semi-) automatic generation of implementations
seems preferable. Another technique to ensure software reliability is to check an abstract
model of the system to be with respect to certain properties. To this end typically so-
called formal methods are employed. Among the most important range: model checking
[CGP99, BK08] and theorem proving [RV01]. In the following, we deliver some insights
into the field of formal methods which allows for mathematical principles which in turn
make mechanical treatment of software analysis possible.

1.1 Formal Methods

Formal methods are mathematical means for specifying, designing, developing and verify-
ing software and hardware. Their major objective is to assure reliability and correctness of
system implementations. As real world systems are usually by far too large to be checked
for validity and correctness, abstract representations of these systems are needed. There
are two main possibilities to obtain such an abstract model. Either it is constructed by
hand which is an error-prone and tedious task, or mechanisms to (semi-) automatically
generate a system abstraction or even code fragments are employed. If the automatic
transformation from some kind of input (e.g., requirement specifications) is known or
proven to be correct, the derived abstract model is so, too.

In this context the principle of algorithmic synthesis plays an important role as, on basis
of formal methods, it allows for a mechanical transformation from some kind of formal
specification, e.g., by a logic like LTL [Pnu77] or high-level specification languages like
statecharts [Har87] or message sequence charts [ITU04] into a system implementation.

1.1.1 Algorithmic Synthesis

The problem of algorithmic synthesis ranges among the very important fields of computer
science. It traces back to Alonzo Church and is known under the name Church’s problem
[Chu57], which states that “Given a requirement . . . expressed in some suitable logistic
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system . . . find recursion equivalences representing . . . (it)”. In other words, synthesis
is the process of transforming some kind of specification into an implementation being
conform with it. This concept is highly desirable because a solution to it would feature
an automated or semi-automated process to derive programs from specifications without
having to manually develop them, and subsequently verify their correctness.

Although already more than half a century old, the field of algorithmic synthesis is
a wide and active area of research. It ranges from controller synthesis [KPP09], i.e.,
the problem of restricting the internal behavior of a program to robustly conform to
the specification no matter how the environment behaves, over approaches for automata
synthesis [TB73] where from a given set of classified example words specifying a regular
language, a finite-state automaton has to be synthesized that is consistent with the input,
and synthesizing open reactive systems on basis of games [BSL04], to approaches for real
code synthesis, e.g., from specification languages (like UML or Esterel) [WSK03, CDO97]
or (timed) automata [BCG+99, Amn03]. A recent, elaborate survey over the field of
game-based synthesis of controllers and reactive systems is given by Thomas in [Tho09].

In this thesis we will address the synthesis of finite-state automata from sets of classified
data, and, moreover, the synthesis of distributed systems in terms of communicating finite-
state automata from scenarios which are given as message sequence charts. Let us, in the
following, shortly introduce the formal models and methods of interest.

1.1.2 Modeling and Learning Finite-State Systems

Finite-state machines or automata are a common means for describing software (or hard-
ware) systems on an abstract level of detail. There exists a plethora of extensions to
finite-state automata, e.g., input/output-, timed-, or probabilistic variants. In their basic
version, such automata consist of a finite set of locations (called states) the system may
be in. At each point of time the system is located in exactly one such state. States are
connected via action-labeled, directed edges (called transitions) which describe how the
system evolves by changing from one state to another when reading an input action. Some
states have additional properties of being initial or final (or both). Usually an automaton
features only one initial state in which the modeled system starts its execution. Further-
more, being in a final state indicates that the system execution may terminate at this
point. A sequence w of actions (i.e., a word) is recognized or accepted by an automaton,
if there is a sequence of states (starting in an initial and ending in a final state) which are
connected by transitions that are labeled by the actions of w succeeding in the correct
order of occurrence in w.

We usually distinguish between deterministic and nondeterministic versions of finite-
state automata. In deterministic automata the next state is always uniquely determined
by the current state and the next input symbol. In nondeterministic automata, however,
given a current state and an input symbol, there is a choice of next states and there-
fore multiple possible continuations. Unlike deterministic automata, nondeterministic
automata may have several initial states. Depending on the underlying application, one
or the other model might be more suitable. Sometimes, for example, determinism of the
automata is desirable, in other cases the size (i.e., the number of states of the automaton)
might be tremendously relevant whereas determinism is of minor importance. As is well-
known, nondeterministic finite-state automata can be exponentially more succinct than
(minimal) deterministic automata that recognize the same set of words (also called a lan-
guage) and, therefore, play an important role in several application areas where compact
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representations are desired.

As usually every software (or hardware) system can be regarded as a finite-state machine
(because practically there are no infinite calculations possible), synthesis of such automata
is of great interest because, as already mentioned, such abstractions of real world systems
can be checked for correctness, or certain desired or undesired properties more easily.
The field of automata synthesis, we referred to previously, will be one of the main focuses
in this dissertation. More precisely, we will discuss so-called learning algorithms which
take as input (i.e., as system specification) a set of classified words, i.e., words which are
known to either be in the target language or not, and try to find a suitable finite-state
automaton (i.e., an abstract system implementation) which behaves in accordance with
these given words.

1.1.3 Modeling Communicating Systems

A second objective of this thesis is to investigate the learnability of communicating sys-
tems. In order to describe and analyze a distributed system’s behavior formally, we need
specification languages and models which are able to describe or express its essential
communication properties. To this end, we will introduce message sequence charts as
specification language and communicating automata as model for describing the output
of distributed model synthesis.

Message Sequence Charts It is common design practice to start specifying a system’s
behavior in terms of simple pictures which describe the interaction of components. A
widely accepted formal specification language for this purpose are message sequence charts
(MSCs, for short). They are standardized by the International Communication Union
ITU, and regularly revised and extended [ITU96, ITU98, ITU99, ITU04]. Moreover, they
were adopted to the UML standard under the name sequence diagrams [Ara98, SP99] and
are—thanks to their clear notation—famous among engineers, and, therefore, extensively
used in industry. Visually, MSCs contain vertical lines denoting the communication en-
tities (also called processes, instances, or agents) of the system on which time abstractly
evolves from top to bottom, and, moreover, horizontal or slanted arrows expressing infor-
mation flow or message exchange between processes. Formally, an MSC describes a partial
order, i.e., a set of partially ordered events (i.e., sending or receiving events), describing
which events happen before other events, and which ones are independent of others. E.g.,
all events along a process line are ordered such that events located higher on the pro-
cess line are ordered before the lower ones, and the send event of a message is always
ordered before its corresponding receive event. In Figure 1.1(a) an example of an MSC
with four processes (Host A, Host B, Master LM-A, and Slave LM-B) is given. E.g., the
sending event of message HCI Hold Mode is ordered before the receive event of message
HCI Command Status, and both are ordered before the receiving event HCI Mode Change

(hold) on process Host A. In contrast the receiving events HCI Command Status on pro-
cess Host A and HCI Mode Change (hold) on process Host B are unordered according to
the MSC semantics. Note that MSCs abstract from internal behavior of processes and
only concentrate on the message exchange between processes. As such, MSCs are to be
seen as partial specifications (also called scenarios) of real system runs. Due to their ap-
pealing structure, they are employed in many phases of the software development process,
e.g., for requirements specification, system validation and verification, and conformance
testing, etc.
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Host A
Master

LM-A

Slave

LM-B
Host B

HCI Hold Mode

HCI Command Status

LMP set AFH (AHS(79))

LMP hold req

LMP accepted

HCI Mode Change (hold) HCI Mode Change (hold)

Hold mode started

(a) Host requesting hold mode

Host A
Master

LM-A

Slave

LM-B
Host B

HCI Hold Mode

HCI Command Status

LMP set AFH (AHS(79))

LMP hold

HCI Mode Change (hold) HCI Mode Change (hold)

Hold mode started

(b) Host forcing hold mode

Figure 1.1: Two MSCs from the Bluetoothr (version 3.0) specification

The ITU Z.120 standard [ITU04] features a textual grammar description of MSCs
and a graphical grammar. Moreover, a clear formal denotational semantics is described
in [Ren98]. These standardized works are premises for easing mechanical treatment of
specifications, making MSCs interesting for tool development based on formal methods.
Indeed, there exists a variety of applications [AHP96, BAL98, BKSS06] for analyzing
MSCs or sets of MSCs for detecting implementation deficiencies like non-local choice
[BAL97] and race conditions [AHP96, EGP07], or for assuring their implementability
[AEY03, Loh03, AEY05].

To convince ourselves of the real-world applicability of MSCs, let us now consider an
industrial example for the use of MSCs within the current Bluetoothr specification [Blu09]
from April 2009. Bluetoothr is a standard for wireless communication initially introduced
by five companies (Ericsson, Nokia, IBM, Toshiba, Intel) forming the Bluetoothr Special
Interest Group (SIG). The Bluetoothr specification manual [Blu09] features a whole range
of requirements recorded as MSCs. In Figure 1.1 two such MSCs are depicted. They de-
scribe different possibilities—either after a negotiation phase or in a forced fashion—how a
host (Host A) can place a device into hold mode using the HCI Hold Mode command. The
purpose of this hold mode is to either make free capacity available, or to perform actions
like net scanning, paging, or attending another so-called piconet, which is a collection of
a bounded number of devices connected via Bluetoothr in an ad hoc fashion.

Being in state connected, the ACL logical transport (which carries control information
interchanged between the link managers of master and slave device(s)) to a slave can be
put to hold mode for a specific time via the message LMP hold req (cf. Figure 1.1(a)) or
LMP hold (cf. Figure 1.1(b))—both with parameter hold time or hold instant which are
omitted in the MSC representation. Therefore, initially the host control interface (HCI)
sends a HCI Hold Mode message telling the master that it wants to enter the hold mode.
The master returns an acknowledgment message (HCI Command Status) and, moreover,
informs the slave (via messages LMP set AFH and LMP hold req (cf. Figure 1.1(a)), or
messages LMP set AFH and LMP hold in case of forced hold (cf. Figure 1.1(b))) that the
hold mode should be entered. While in the second operation mode the slave is forced to
go into hold mode using message LMP hold, in the first case master and slave negotiate
about entering this mode and the final answer is returned to the master (cf. messages
LMP hold req and LMP accepted). The hold mode now has started. Thus, master and
slave, respectively notify their hosts via the HCI Mode Change message that the hold mode
was successively entered.
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Communicating systems If we want to describe communicating systems formally, we
have to choose a model which features local components, i.e., processes, that can interact
or communicate with one another via some communication medium. For our purposes in
this thesis, the model of communicating finite-state machines (CFMs) seems to be sensible,
as processes are described by finite-state automata, a well-known and well-understood for-
malism, and these components can communicate via a priori unbounded order-preserving
channels. This way, we are able to model asynchronous communication behavior.

The formal semantics of CFMs can be defined in terms of MSCs. Every local finite-state
automaton acts as one process sending and receiving messages to and from other processes.
In this way, the finite-state automata exchange messages over the CFM buffers. A CFM
may accept when all local machines are located in final states and all buffers are empty.
This implicitly ensures, that CFMs only accept MSCs and not some partial executions
thereof.

As the model of CFMs is very expressive, making certain considerations intractable, we
will restrict this model in a later chapter to achieve decidability.

A great advantage of communicating finite-state machines is that, though still an ab-
stract formal model, they are closely related to real implementations as they are already
distributed, and the local components are rather straightforward to realize. Thus, when
we have explained how to synthesize these automata, we will also discuss in which way
they are of avail within the software development cycle.

1.2 Contribution

The results of this dissertation are two-fold. On the one hand, inductive learning tech-
niques are extended and two new inference algorithms for inferring nondeterministic, and
universal, respectively, finite-state automata are presented. On the other hand, certain
learning techniques are employed and enhanced to semi-automatically infer communi-
cating automata (also called design models in the software development cycle). For both
topics, theoretical results on the feasibility of the approaches, as well as an implementation
are presented which, in both cases, support our theory.

Concerning the first objective to derive a so-called active online learning algorithm for
nondeterministic finite-state automata (NFA), we present, in analogy to Angluin’s famous
learning algorithm L∗ [Ang87a] for deterministic finite-state automata (DFA), a version for
inferring a certain subclass of NFA. The automata from this class are called residual finite-
state automata (RFSA). It was shown by Denis et al. [DLT02] that there is an exponential
gap between the size of minimal DFA and their corresponding minimal RFSA. Even if
there are also cases where the canonical (i.e., minimal) RFSA is exponentially larger than
a corresponding minimal NFA, we show that the new learning algorithm—called NL∗—
is a great improvement compared to L∗ as the inferred canonical RFSA has always at
most the size of the corresponding minimal DFA but is usually even considerably smaller
and more easy to learn. Unlike a learning procedure developed by Denis et al.—called
DeLeTe2 [DLT04]—our algorithm is capable of deriving canonical RFSA. Like L∗, the new
algorithm will be applicable in many fields including pattern recognition, computational
linguistics and biology, speech recognition, and verification. From our point of view,
NL∗ might especially play a mayor role in the area of verification where the size of the
models that are processed is of enormous importance and nondeterminism not regarded
an unpleasant property.

The second objective of this thesis is to create a method for inferring distributed design
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models (CFMs) from a given set of requirements specified as scenarios (message sequence
charts). The main idea is to extend the L∗ algorithm to cope with valid and invalid
sets of system runs and, after some iterations, come up with an intermediate design
model (a DFA) which exhibits features that make it distributable into communicating
components (or processes) interacting via FIFO channels. Theoretical results on which
classes of CFMs are learnable and corresponding time-complexity bounds are presented.
We also developed a tool implementation called Smyle, realizing important theoretical
results evolving from this part of the thesis, and applied it to several examples. Based
on this learning formalism we also derive a software-engineering lifecycle model called the
Smyle Modeling Approach in which we embedded our learning approach.

Additionally, we launched a project for a new learning library called libalf which
includes most of the learning algorithms (and their extensions) mentioned in this thesis.

Parts of this thesis were published in several technical reports, conference proceedings,
and a journal [BKSS06, BKKL06, BKKL07, BKKL08b, BKKL08a, BHKL08, BKKL09,
BHKL09, BKKL10]. An article on learning communicating automata from MSCs has
been accepted at IEEE Transactions on Software Engineering (TSE) [BKKL]. A detailed
overview is given in the following list of publications.

[BKSS06] Benedikt Bollig, Carsten Kern, Markus Schlütter, and Volker Stolz.
“MSCan: A tool for analyzing MSC specifications”. (TACAS 2006 ).
This paper describes the tool MSCan for analyzing MSC specifications
with regard to potential implementation deficiencies of distributed
systems. MSCan is embedded into the software engineering lifecycle
model introduced in Chapter 7.

[BKKL07] Benedikt Bollig, Joost-Pieter Katoen, Carsten Kern, and Martin
Leucker. “Replaying play in and play out: Synthesis of design models
from scenarios by learning”. (TACAS 2007 ). A completely revised ver-
sion including several extensions is included in this thesis as Chapters 6
and 9, and will be published as [BKKL].

[BKKL08a] Benedikt Bollig, Joost-Pieter Katoen, Carsten Kern, and Martin
Leucker. “Smyle: A Tool for Synthesizing Distributed Models from
Scenarios by Learning”. (CONCUR 2008 ). The paper describes the
learning application Smyle which is capable of inferring CFMs from
scenarios specified as MSCs. Some parts of this paper were integrated
into Chapter 9 of this work.

[BKKL09] Benedikt Bollig, Joost-Pieter Katoen, Carsten Kern, and Martin
Leucker. “SMA—The Smyle Modeling Approach”. (CEE-SET 2008
(IFIP), to appear). It describes the SMA lifecycle model embedding the
approach from [BKKL07] into a software development lifecycle.

[BHKL09] Benedikt Bollig, Peter Habermehl, Carsten Kern, and Martin Leucker.
“Angluin-Style Learning of NFA”. (IJCAI 2009, to appear). This paper
introduces a new inference algorithm for NFA along the lines of An-
gluin’s L∗ algorithm for learning DFA. A substantial extension featuring
a learning algorithm for universal automata and more sophisticated
statistical results are included in Chapter 4 of this thesis.
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[BKKL10] Benedikt Bollig, Joost-Pieter Katoen, Carsten Kern, and Martin
Leucker. “SMA—The Smyle Modeling Approach”. (Computing and
Informatics Journal, 2010, to appear). This article is an extension of
[BKKL08b] and [BKKL09], and is based on Chapter 7 of this thesis.

[BKKL] Benedikt Bollig, Joost-Pieter Katoen, Carsten Kern, and Martin Leucker.
Learning Communicating Automata from MSCs. IEEE Transactions on
Software Engineering. To appear.

1.3 Outline

The rest of this thesis is organized as follows: the next chapter introduces basic notions
and notations for regular languages and their acceptors which will be needed in subsequent
chapters. After this preliminary chapter, the thesis is divided into three main parts. Part I
describes inductive learning techniques and applications thereof, Part II shows how to
embed learning into software development yielding a new software development lifecycle
model, and the final part, Part III, introduces tools that implement our theoretical results.

To be more precise, Chapters 3 to 4 are concerned with fundamental learning algorithms.
These algorithms get certain classified input and aim at deriving a model (i.e., a finite-state
automaton) being conform with the input. To this end, in Chapter 3 we introduce several
inference algorithms which are regularly employed in all kinds of applications. As for
our purposes one of these algorithms—namely, Angluin’s active online learning algorithm
L∗—is of special interest for later practical and theoretical results, we give a more detailed
report on L∗. In analogy to L∗, we will develop a new active online learning algorithm,
called NL∗, for inferring nondeterministic automata in Chapter 4. It is important to
mention that this algorithm is the first of its kind. Moreover, we will see that it is efficient,
and, even though theoretical complexity results are slightly worse, in the experiments
described in Section 4.7 NL∗ outperforms L∗ by far. In Chapter 5 we will present an
optimization called congruence-closed language learning that may substantially reduce
memory consumption of learning algorithms like L∗ or NL∗. Chapter 6 puts learning
into the context of distributed system synthesis. There, we identify classes of regular
languages that are learnable using an extension of the L∗ algorithm which, afterwards,
will be improved applying the concept from Chapter 5.

Part II—represented by Chapter 7—starts with the introduction of a logic which sub-
sequently will be of help to reduce the number of questions a potential user will be asked
during a learning phase when using our inference approach. Afterwards, we introduce a
new software development lifecycle model, called the Smyle Modeling Approach (SMA, for
short). In this lifecycle model, we exploit the learning techniques introduced in the chap-
ters before to obtain a system implementation based on an interactive process in which
scenarios are presented to, and classified by, the user. Moreover, we show how to ease this
task by employing the logic introduced in the preliminaries of this chapter. Subsequently,
we compare the SMA to well-known lifecycle models like the waterfall model, the V-model,
or rapid prototyping, followed by a small example demonstrating how the learning-based
part of SMA works in practice.

Finally, Part III is dedicated to the tools libalf and Smyle developed as part of this
thesis. To this end, Chapter 8 introduces the learning library libalf which currently
implements most learning techniques presented in this thesis. It is meant to be an ongo-
ing project of several universities (currently: RWTH Aachen University, École Normale
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Supérieure de Cachan, and TU Munich) in which we provide classical and new learning
algorithms in an open source project to the public. We hope that libalf will find a broad
acceptance among researchers, and that it will be augmented with new algorithms from
different universities in near future. Thereafter, Chapter 9 presents the implementation
of the results obtained in Chapter 6. The tool Smyle synthesizes distributed automata
from given scenarios by employing an extension of Angluin’s learning approach. Having
described the tool in detail, we give some small- to mid-size case studies, followed by de-
tails concerning the implementation, and close this chapter by proposing some interesting
ideas for further applications on basis of Smyle.

Chapter 10 concludes this thesis by summarizing its main contributions and giving some
ideas and prospects for future work.

The appendix features, among other things, several examples that give insights into
the new inference algorithm NL∗. Inter alia, it comprises examples where NL∗ behaves
“worse” than L∗, cases in which the number of states remains equal or even decreases
(which cannot happen in Angluin’s L∗ algorithm), and exemplarily shows that a näıve
implementation of NL∗ leads to a non-terminating algorithm.



2 Preliminaries

In this chapter we present some basic terminology, definitions, and concepts of formal
language theory as basis for subsequent chapters. For a complete overview over the basics
of formal language theory we refer to [HMU06]. For a nice overview over the field of
complexity theory, which may be of use at some points in this thesis, the interested
reader might consult [Sip05].

2.1 Basic Definitions

As usual, let N = {0, 1, 2, . . .} be the set of natural numbers. If S is a set, we denote
|S| ∈ N ∪ {∞} the size of S, i.e., the number of elements contained in S.

Definition 2.1.1 (Power set). The power set 2S of a set S is the set of all subsets of S.
More formally: 2S = {P | P ⊆ S}.

Definition 2.1.2 (Relation). Let n ∈ N and S be a set. An n-ary relation R over S is
a set R ⊆ S × . . .× S︸ ︷︷ ︸

n

. R is called binary if n = 2.

Definition 2.1.3 (Equivalence relation). Let S be a set. A binary relation ∼ over S is
called an equivalence relation over S if it fulfills the following properties for all elements
a, b, c ∈ S:

• (a, a) ∈ ∼ (Reflexivity)

• (a, b) ∈ ∼ ⇒ (b, a) ∈ ∼ (Symmetry)

• (a, b) ∈ ∼ ∧ (b, c) ∈ ∼ ⇒ (a, c) ∈ ∼ (Transitivity)

For the sake of readability, we sometimes prefer to use the infix notation a ∼ b to denote
(a, b) ∈ ∼.

On basis of an equivalence relation ∼ over a set S, we can partition S into so-called
equivalence classes for which each such class contains all equivalent elements of one kind.

Definition 2.1.4 (Equivalence class). Let S be a set and ∼ be an equivalence relation
over S. The equivalence class of a ∈ S wrt. ∼ (written [a]∼) contains all elements of S
equivalent to a, i.e., [a]∼ = {b ∈ S | a ∼ b}. The set of all such equivalence classes is
denoted by S/∼ = {[a]∼ | a ∈ S}.

If an equivalence relation respects certain operations, it is called a congruence wrt. these
operations.
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Definition 2.1.5 (Congruence relation). Let S be a set and f : S × · · · × S → S be an
n-ary function over S. An equivalence relation ∼ over S is called a congruence relation
over S wrt. f if the following implication holds:

∀a1, . . . , an, b1, . . . , bn ∈ S : [(a1, b1), . . . , (an, bn) ∈ ∼ ⇒ f(a1, . . . , an) ∼ f(b1, . . . , bn)] .

If f is binary and ∀a, b, c ∈ S: a ∼ b ⇒ f(a, c) ∼ f(b, c), we call ∼ a right congruence
relation over S wrt. f .

2.2 Words and Regular Languages

In this subsection we define the notion of words and regular languages.
Let Σ be a finite, non-empty set, also called an alphabet . Elements of Σ are called

letters. A word is a linear sequence of letters and a set of such words is called a word
language or language, for short. We distinguish the empty letter sequence denoted by ε
and call it the empty word.

The length n ∈ N of a word w = a1 . . . an ∈ Σ∗ (ai ∈ Σ, i ∈ {1, . . . , n}) is denoted as |w|
and specifies the number of letters w consists of. Thus, the empty word, for example, has
length zero, i.e., |ε| = 0. The set of words of length n is denoted Σn := {w ∈ Σ∗ | |w| =
n} and the set of all words over alphabet Σ is abbreviated Σ∗ :=

⋃
i∈N

Σi. Moreover,
Σ+ = Σ∗ \ {ε} is the set of all words of positive length.

Having defined words over Σ as sequences of letters allows us to access the i-th letter
(i ∈ {1, . . . , n}) of a word w of length n via w[i]. Usually, we range over letters by
a, b, c, . . . , over words by u, v, w, . . . and over (word) languages by L,L′, etc.

Definition 2.2.1 (Concatenation). We set u · v to be the word w of length |u| + |v|.
The concatenation · : Σ∗ × Σ∗ → Σ∗ is the binary operation defined by u · v := w
such that for words u, v of length n and m, respectively, w[i] = u[i] for 1 ≤ i ≤ n and
w[i] = v[i] for n + 1 ≤ i ≤ n + m. For n ∈ N and L ⊆ Σ∗, we define Ln to be the set
{w ∈ Σ∗ | w = w1 · . . . · wn , wi ∈ L for 1 ≤ i ≤ n}. Note that instead of u · v we usually
only write uv.

On basis of the concatenation function, we can define the prefix- and suffix-set of a
given word w ∈ Σ∗: pref (w) = {u ∈ Σ∗ | w = uv for some v ∈ Σ∗} and suff (w) = {v ∈
Σ∗ | w = uv for some u ∈ Σ∗}, respectively. This definition can be lifted to sets of words
S ⊆ Σ∗: pref (S) =

⋃
w∈S pref (w) and suff (S) =

⋃
w∈S suff (w).

Definition 2.2.2 (Length-lexicographical order). Given a total order <lex over Σ, we
extend it to words and obtain a canonical total order <lex over Σ∗. For u, v ∈ Σ∗, u<lexv
iff |u| < |v| or (|u| = |v| = n and there exists k ∈ {1, . . . , n} such that, for all 1 ≤ i < k,
u[i] = v[i] and u[k]<lexv[k]). We call this order the length-lexicographical order (or
lexicographical order, for short) over Σ∗.

We now define a congruence relation which will be important in the next chapters
because it helps to classify languages as regular languages and is the basis of many learning
algorithms presented in Chapters 3 and 4.

Definition 2.2.3 (Nerode right congruence). Let L ⊆ Σ∗ be a language. Then we define
the following binary relation ∼L ⊆ Σ∗×Σ∗:

For all words u, v ∈ Σ∗ : u ∼L v iff ∀ w ∈ Σ∗ : uw ∈ L⇐⇒ vw ∈ L.
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The relation ∼L is a right congruence relation over Σ∗ wrt. concatenation and called
Nerode right congruence. In case (u, v) ∈ ∼L, we call u and v L-equivalent.

We denote the number of equivalence classes of a language L by index (L) = |Σ∗
/∼L
| =

|{[x]∼L
| x ∈ L}|, called the index of L. L is said to be of finite index if index(L) is finite.

In general, for arbitrary languages this index can be infinite. We now define the class
of regular languages to be the set of languages which are of finite index.

Definition 2.2.4. L ⊆ Σ∗ is a regular language iff ∼L has finite index.

We introduce regular expressions as an easy means for describing regular languages.

Definition 2.2.5 (Regular expressions). The set of regular expressions R over Σ is
inductively defined as follows:

• Λ ∈ R,

• a ∈ R for a ∈ Σ,

• if r, r′ ∈ R then r · r′, r|r′ and r∗ are elements of R.

The semantics J.K : R→ 2Σ∗
of regular expressions over Σ is defined as:

• JΛK = ∅,

• JaK = {a} for a ∈ Σ,

• if r, r′ ∈ R then:

– Jr · r′K = JrK · Jr′K = {w · w′ | w ∈ JrK and w′ ∈ Jr′K},
– Jr|r′K = JrK ∪ Jr′K, and

– Jr∗K =
⋃

i∈N
JrKi

are elements of R. Note that JΛ∗K = {ε}.

We define the language of a regular expression r ∈ R to be L(r) = JrK. As we will see
later in this chapter, the class of regular expressions defines the class of regular languages.

Let us introduce the notion of residual languages of a given language L which plays
an important role in the context of learning algorithms, as residual languages allow for a
elegant characterization of regular languages. More precisely, to infer a target language
L, learning algorithms try to identify words characterizing equal residual languages of L.

Definition 2.2.6 (Residual language). For a language L ⊆ Σ∗ and u ∈ Σ∗, we denote by
u−1L the set {v ∈ Σ∗ | uv ∈ L}. L′ ⊆ Σ∗ is a residual language of L if there is u ∈ Σ∗

with L′ = u−1L. We denote by Res(L) the set of residual languages of L.

For simplicity, we also talk of a residual rather than of a residual language. Note that
u ∼L v iff u−1L = v−1L.

2.3 Finite-State Acceptors

In this paragraph, we will introduce several classes of finite-state automata as acceptors
for regular languages.
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Figure 2.1: Finite-state acceptors for regular language L = L(((a∗|b∗)aΣ)∗) (Σ = {a, b})

2.3.1 Deterministic and Nondeterministic Finite-State Automata

A prominent concept for representing regular languages are finite-state automata. Typi-
cally, one distinguishes deterministic and nondeterministic versions thereof.

Definition 2.3.1 (Finite-state automaton). A (nondeterministic) finite-state automaton
(NFA) is a tuple A = (Q,Q0, δ, F ) over Σ where:

• Q is a finite set of states,

• Q0 is a set of initial states Q0 ⊆ Q,

• δ : Q× Σ→ 2Q is the transition function,

• F ⊆ Q is a set of final states.

We call A a deterministic finite-state automaton (DFA) if |Q0| = 1 and |δ(q, a)| = 1
for all q ∈ Q and a ∈ Σ. The transition function δ of an NFA is extended as usual to
δ̄ : Q × Σ∗ → 2Q by δ̄(q, ε) = {q} and δ̄(q, aw) =

⋃
q′∈δ(q,a) δ̄(q

′, w), and subsequently to

δ̂ : 2Q × Σ∗ → 2Q, i.e., to sets of states Q′ ⊆ Q, by δ̂(Q′, w) =
⋃

q∈Q′ δ̄(q, w). To simplify

notation, we use δ to denote both δ̄ and δ̂.
The size of a finite-state automaton A = (Q,Q0, δ, F ) is defined as the number of its

states: |A| := |Q|. The language of a state q ∈ Q, denoted by Lq, is the set of words
w ∈ Σ∗ such that δ(q, w) ∩ F 6= ∅. The language L(A) accepted by A is the union of
languages of its initial states: L(A) =

⋃
q∈Q0

Lq. We say that a word w = a1 . . . an ∈ Σ∗

(ai ∈ Σ, for 1 ≤ i ≤ n) is accepted by A if it is contained in its language L(A), or
equivalently, if there is a sequence q0a1q1a2 . . . qn−1anqn, where q0 ∈ Q0, qn ∈ F , and
qi ∈ δ(qi−1, ai), for 1 ≤ i ≤ n. Two automata A1 and A2 are called equivalent if they
accept the same language, i.e., if L(A1) = L(A2).

We are now introducing the notion of minimality of an automaton with respect to some
class of acceptors C.

Definition 2.3.2 (Minimal automaton). Let C be a class of NFA over Σ and A =
(Q,Q0, δ, F ) ∈ C. A is called minimal for C if there is no equivalent automaton A′ =
(Q′, Q′

0, δ
′, F ′) ∈ C with strictly fewer states than A, i.e., with |Q′| < |Q|.
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E.g., we call a DFA or NFA, respectively, minimal if there is no equivalent DFA or
NFA, respectively, with strictly fewer states. If the class we are referring to is clear from
the context, we usually omit it. Note, in contrast to NFA, a DFA has always a unique
minimal representative in its class:

Theorem 2.3.3 (Myhill-Nerode). For each regular language L, there exists a unique (up
to isomorphism) minimal DFA A with L(A) = L.

Example 2.3.4. Let us consider the finite-state automata A = (Q,Q0, δ, F ) and A′ =
(Q′, Q′

0, δ
′, F ′) over Σ = {a, b} from Figure 2.1 accepting the regular language L =

L(((a∗|b∗)aΣ)∗). I.e., language L recognizes all words that are multiples (∈ N) of: an
arbitrary number of a’s or b’s followed by an a followed by an a or b. As |Q0| = {p0} = 1
and for every state p ∈ Q and every letter l ∈ Σ it holds |δ(q, l)| = 1, automaton A is de-
terministic. Moreover, using techniques which are for example described in [HMU06], the
reader may verify that A is a minimal DFA of its class. At the same time, automaton A′

recognizes L, too. This automaton is obviously not deterministic, as it has several initial
states (in fact: Q′

0 = {q0, q1, q3}) and, e.g., |δ′(q0, a)| = 2. Moreover, we see that an NFA
can be smaller than the equivalent minimal DFA. In fact, an NFA for a regular language
L can be exponentially more succinct than the equivalent minimal DFA accepting L. An
example of such a language will be given in Chapter 4. 3

Let us summarize some important theorems about the connection between regular lan-
guages and classes of acceptors that recognize regular languages. The following results
are due to [Kle56] and [Ner58].

Theorem 2.3.5. Let L ⊆ Σ∗ be a language, then the following statements are equivalent:

(i) L is a regular language,

(ii) there exists a regular expression r ∈ R with L = L(r),

(iii) there exists a DFA A with L = L(A), and

(iv) there exists an NFA A′ with L = L(A′).

In the following, we define the minimal DFA AL of a regular language L. To this end,
we make use of Nerode’s right congruence ∼L.

Definition 2.3.6 (The automaton AL). Based on Nerode’s right congruence, for every
regular language L we can derive a unique (or canonical) DFA AL = (QL, {q

L
0 }, δL, FL)

with a minimal number of states, where:

• QL = {[x]∼L
| x ∈ Σ∗} is the set of states,

• qL
0 = [ε]∼L

is the initial state,

• δL([x]∼L
, a) = {[xa]∼L

} describes the transition function, and

• FL = {[x]∼L
∈ QL | x ∈ L} is the set of final states.

Moreover, on basis of residual languages of a regular language L defined in the previous
section, we can also define the canonical DFAA(L) recognizing L. As we will subsequently
see, the DFA AL and A(L) are isomorphic and thus recognize the same language.
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Definition 2.3.7 (The canonical DFA A(L)). Let L be a regular language. The canonical
DFA of L, denoted by A(L), is the tuple (Q,Q0, δ, F ) where:

• Q = Res(L), i.e., the residuals exactly correspond to the states of A,

• Q0 = {L},

• δ(L′, a) = {a−1L′} for L′ ∈ Q and a ∈ Σ,

• F = {L′ ∈ Q | ε ∈ L′}.

Let us now establish the connection between the automata AL and A(L).

Theorem 2.3.8. Let L be a regular language, then:

(i) L = L(AL) = L(A(L)),

(ii) the automata AL and A(L) are isomorphic, and

(iii) the automaton AL is minimal for the class of DFA.

Example 2.3.9. Let us derive the residual languages of regular language L = L(r)
recognized by automaton A from Figure 2.1(a). Performing some simple calculations
yields: ε−1L = L = Lp0

, a−1L = Lp1
, b−1L = Lp3

, (aa)−1L = Lp2
, (ab)−1L = Lp0

, and
(ba)−1L = Lp4

.
We see, that every state ofA corresponds to a residual language of L. A short derivation

of the above equations can be found in Appendix A.0.1. 3

As it will play an important role in some learning algorithms presented in Chapter 3,
we introduce the prefix automaton of a given finite set S.

Definition 2.3.10 (Prefix automaton). Given a finite set S of words over an alphabet
Σ, the prefix automaton (also called prefix tree acceptor) is the (tree-like) DFA A(S) =
(Q+, {q

+
0 }, δ+, F+) whose states correspond to the prefixes of S and that exactly recognizes

all words from S:

• Q+ = pref (S) ⊎ {qsink},

• q+
0 = ε,

• δ+(u, a) =

{
{ua} , if ua ∈ pref (S)
{qsink} , otherwise

, and

• F+ = S.

For the sake of clarity, we usually omit the sink state qsink as in Figure 2.2.

Example 2.3.11. Let S = {aaa, ab, bb}. The prefix tree acceptor for S is presented in
Figure 2.2. Formally, it consists of states Q+ = {ε, a, aa, aaa, ab, b, bb, qsink}, the initial
state q+

0 = ε, transition function δ as defined above augmented by transitions to the sink
state qsink, and the set of final states F+ = {aaa, ab, bb}. As the prefix automaton is a
deterministic finite-state automaton recognizing a finite regular language, the residuals
are easy to determine. The residual for state ε, for example, is ε−1L = {aaa, ab, bb} = L,
the residual for state a is a−1L = {aa, b} and the residual of state bb is (bb)−1L = {ε}. 3

As we will see in the following, there exists a class of automata called RFSA which are
a subclass of NFA but subsume the class of DFA and, like DFA, have a unique minimal
representative for each regular language.
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Figure 2.2: Prefix tree acceptor for S = {aaa, ab, bb} without sink state qsink

2.3.2 Residual Finite-State Automata

Here we recall the notion of residual finite-state automata (RFSA) introduced and studied
in the work of Denis et al. [DLT02]. RFSA are a subclass of NFA inheriting some desirable
features of DFA. Most important for the purpose of learning, which we will consider
in detail throughout the next chapters, every regular language is accepted by a unique
(canonical) RFSA with a minimal number of states (i.e., it is minimal in the class of
RFSA). As this property does not hold for arbitrary NFA, it seems difficult to come up
with learning algorithms for the whole class of NFA. At the same time, like for NFA,
RFSA can be exponentially more succinct than DFA, making it the preferable automaton
model to work with in practical learning applications.

Technically, RFSA and DFA have the property that the states of the automata corre-
spond to residual languages (cf. Definition 2.2.6). This is not true for all NFA.

r0

r1

r2

Σ

a

Σ

Σ
a

b

(a) Canonical RFSA RL

s0

s1

s2

Σ

a

Σ

a

b

(b) NFA R′

L with less transitions than RL

Figure 2.3: Nondeterministic acceptors for regular language L from Figure 2.1

Example 2.3.12. Consider the NFA R′
L in Figure 2.3(b). Let us first determine the

residuals of this automaton. Applying results from [Ard60, Ard61] concerning solutions
to regular equations, we get: Ls0

= ε−1L = L,Ls1
= b−1L, and Ls2

= (ba)−1L. See
Appendix A.0.2 for the derivation of the residuals. Similar calculations yield the same
results for the languages of the states of automaton RL from Figure 2.3(a). 3
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Note that, with Theorems 2.3.3 and 2.3.8, for a minimal DFA A, there is a natural
bijection between its states and the residual languages of L(A).

Definition 2.3.13 (Residual finite-state automaton). A residual finite-state automaton
(RFSA) over Σ is an NFA R = (Q,Q0, δ, F ) over Σ such that for each q ∈ Q, Lq ∈
Res(L(R)).

In other words, each state accepts a residual language of L(R), but not every residual
language must be accepted by a single state. Intuitively, the states of an RFSA are a
subset of the states of the corresponding minimal DFA. Yet, using nondeterminism, certain
states of a minimal DFA are not needed as they correspond to the union of languages
of other states. To this end, we distinguish prime and composed residuals: A residual is
called composed, if it is the non-trivial union of other residuals. Otherwise, it is called
prime residual language.

Definition 2.3.14 (Prime and composed residuals). Let L ⊆ Σ∗ be a language. A residual
L′ ∈ Res(L) is called composed if there are L1, . . . , Ln ∈ Res(L) \ {L′} such that L′ =
L1 ∪ . . .∪Ln. Otherwise, it is called prime. The set of prime residuals of L is denoted by
Primes(L).

Given a finite state automaton A = (Q,Q0, δ, F ) recognizing a regular language L,
we call a state q ∈ Q prime if it recognizes a prime residual language of L, i.e., if
Lq ∈ Primes(L).

We can now define the canonical RFSA of a regular language. The idea is that its set
of states corresponds exactly to its prime residuals. Moreover, the transition function
should be saturated in the sense that a transition to a state should always exist if it does
not change the accepted language. Formally, we define:

Definition 2.3.15 (The canonical RFSAR(L)). Let L be a regular language. The canon-
ical RFSA of L, denoted by R(L), is the tuple (Q,Q0, δ, F ) where:

• Q = Primes(L),

• Q0 = {L′ ∈ Q | L′ ⊆ L},

• δ(L1, a) = {L2 ∈ Q | L2 ⊆ a−1L1} for L1 ∈ Q and a ∈ Σ, and

• F = {L′ ∈ Q | ε ∈ L′}.

Note that the canonical RFSA of a regular language is well-defined as the set of prime
residuals for a regular language is finite and, for each a ∈ Σ and L′ ∈ Res(L), we have
a−1L′ ∈ Res(L). Moreover, as shown in [DLT02], we actually have L(R(L)) = L. By
definition, there is a single and thus unique canonical RFSA for every regular language.
We say that an RFSA R is canonical if it is the canonical RFSA of L(R).

Example 2.3.16. In Figure 2.3 two minimal NFA are depicted, recognizing the regular
language L = L(((a∗|b∗)aΣ)∗) from Example 2.3.4. Figure 2.3(a) shows an RFSA for L. In
Example 2.3.12, we already determined the residuals: ε−1L = Lr0

= L, b−1L = Lr1
= Lp3

,
and (ba)−1L = Lr2

= Lp4
. These three residuals are the prime residuals of L, as can be

shown easily: Lp0
= Lr0

∪ Lr1
, Lp1

= Lr1
∪ Lr2

, Lp2
= Lr0

∪ Lr1
∪ Lr2

, Lp3
= Lr1

, and
Lp4

= Lr2
.

As all its states correspond to prime residual languages, RFSA RL is canonical. How-
ever, NFA R′

l from Figure 2.3(b) is still an RFSA as all its states correspond to residual
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languages (even to prime residuals) but it is not canonical because its transition set is
not saturated. Obviously the NFA from Figure 2.1(b) on page 12 is not an RFSA. The
language of state q3, for example, only contains the empty word, but {ε} is not a residual
of L. 3

2.3.3 Residual Universal Finite-State Automata

In analogy to RFSA we define residual universal finite-state automata (RUFA) as au-
tomata which—in contrast to NFA which have nondeterministic or-transitions—have de-
terministic and -transitions, and whose states all recognize residual languages.

Definition 2.3.17 (Universal finite-state automaton). A universal finite-state automaton
(UFSA, for short) over Σ is a tuple U = (Q,Q0, δ, F ), where:

• Q is a non-empty finite set of states,

• Q0 ⊆ Q is a set of initial states,

• δ : Q× Σ→ 2Q \ {∅} is the transition function, and

• F ⊆ Q is a set of final states.

Syntactically, a UFSA is nothing else than a finite-state automaton. To define the
semantics of a UFSA U , we now introduce the finite-state automaton AU .

Definition 2.3.18 (Semantics of UFSA). Given a UFSA U = (Q,Q0, δ, F ), we define
the DFA AU = (Q′, Q′

0, δ
′, F ′) over Σ, such that:

• Q′ = 2Q,

• Q′
0 = {Q0},

• δ′(P, a) =
⋃

p∈P δ(p, a) for P ∈ Q′ and a ∈ Σ, and

• F ′ = 2F .

The language recognized by UFSA U can now be described on basis of AU : L(U) = L(AU).

As in the case of NFA and DFA, we extend the transitions function δ to words. Sim-
ilarly to the finite-state automata we became acquainted with so far, we define residual
languages of UFSA. For a state q ∈ Q of UFSA U = (Q,Q0, δ, F ), Lq = L(AU ,q), where
AU ,q = (Q, {q}, δ, F ), i.e., the language accepted by U if state {q} is regarded as initial
state.

On basis of this definition, we are now able to derive the notion of residual universal
finite-state automata.

Definition 2.3.19 (Residual universal finite-state automaton). A residual universal finite-
state automaton (RUFA, for short) is a UFSA U = (Q,Q0, δ, F ) for which all states
recognize residual languages, i.e., for each q ∈ Q, Lq ∈ Res(L(U)).

To derive a canonical version of RUFA, we need to define an analogon to prime and
composed states in the setting of RFSA. By abuse of nomenclature, we will call them
∩-prime and ∩-composed, as from the context it will always be clear, which definition is
being referred to.

As the property of residuals to be prime or composed is a language property, we first
define these notions for regular languages L and then use it to define canonical RUFA.
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(b) Canonical RUFA UL′

Figure 2.4: Minimal DFA for a regular language L′ and corresponding canonical RUFA

Definition 2.3.20 (∩-prime and ∩-composed residuals). Let L ⊆ Σ∗ be a language. A
residual L′ ∈ Res(L) is called ∩-composed if there are L1, . . . , Ln ∈ Res(L) \ {L′} such
that L′ = L1 ∩ . . . ∩ Ln. Otherwise, it is called ∩-prime. The set of ∩-prime residuals of
L is denoted by Primes∩(L).

In the spirit of RFSA we can now define the notion of canonical RUFA. A canonical
RUFA is a RUFA for which all states correspond to ∩-prime residual languages.

Definition 2.3.21 (Canonical RUFA). Let L be a regular language. Then, the canonical
RUFA of L, denoted by U(L), is the tuple (Q,Q0, δ, F ) where:

• Q = Primes∩(L),

• Q0 = {L′ ∈ Q | L ⊆ L′},

• δ(L1, a) = {L2 ∈ Q | a
−1L1 ⊆ L2} for L1 ∈ Q and a ∈ Σ, and

• F = 2{L
′ ∈ Q | ε ∈ L′}.

Like in Example 2.3.16, we could derive the residual languages of the regular language
L′ defined by the minimal DFA from Figure 2.4(a) and determine the ∩-prime residuals of
L. As ∩-primes only the languages (aa)−1L, (aab)−1L and (aaba)−1L remain, which just
represent the languages of the state of the canonical RUFA depicted in Figure 2.4(b). The
residuals ε−1L = (aa)−1L∩ (aab)−1L∩ (aaba)−1L and a−1L = (aa)−1L∩ (aaba)−1L are ∩-
composed. For the corresponding automata AL′ and UL′ thus holds: Lt0 = Lu0

∩Lu1
∩Lu2

,
Lt1 = Lu0

∩ Lu2
, Lt2 = Lu0

, Lt3 = Lu1
, and Lt4 = Lu2

.
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3 A Plethora of Learning Techniques

We are now going to introduce the field of automata inference which will be employed in
later chapters for automata and distributed system synthesis.

Let us first clarify the term synthesis. The word is of Latin origin and in its essence
means composition or creation of something complex from simpler components. We al-
ready saw in Chapter 1 that, depending on the context, the goals of synthesis in com-
puter science can be manifold. Synthesis algorithms are employed, e.g., to derive winning
strategies for games (cf. [Tho09] for a nicely elaborated survey) for example in the field of
controller synthesis [KPP09], to synthesize acceptors from structured data [TB73] (also
called automata synthesis), or to create abstract models of systems or even code from
given information like a requirements document [BKKL09, BCG+99].

In general, synthesis of automata is a broad field. In this thesis, we focus on the latter
two fields of application. This chapter is devoted to so-called inductive inference algo-
rithms (also called inference algorithms, learning algorithms, or learners). The field of
grammatical inference has many areas of application [NP94]. Among them are pattern
recognition [Fu81, GV90], approaches to automatic translation [CGV94], biological sys-
tems [CK06], etc. The learning algorithms presented here only get a finite set of classified
strings as input, which (to some extent) characterizes the target language. The main task
then consists of (semi-) automatically generating a model (also called hypothesis or target)
in terms of a finite-state automaton which treats the input strings exactly according to
their classification—this is usually called consistent with the input—and generalizes it to
obtain a model capable of dealing with all possible inputs.

More precisely, in this chapter we introduce fundamental learning techniques for in-
ferring deterministic and nondeterministic finite-state automata and discuss advantages
and disadvantages of the approaches wrt. the context in which we will employ learning in
later chapters. Note that with this chapter we do not intend to give a perfectly sophis-
ticated and complete description of all kinds of learning algorithms but to introduce the
main ideas behind some interesting representatives. A nicely elaborated overview over
the whole field of grammatical inference subsuming the field of inductive inference that
is tackled in this thesis is given by de la Higuera in [dlH05]. A more detailed survey of
several inference algorithms, their variations, and applications in the area of verification
can be found in [Leu07].

3.1 The Big Picture

The main aim of learning algorithms in the field of automata synthesis is to (uniquely)
detect a representative automaton that accepts a given set of words over an alphabet Σ.
Sometimes this set is enriched by a set of negative words, which must not be accepted.
Typically, learning algorithms are divided into four categories, namely passive and active
algorithms, and offline and online algorithms according to their capabilities and access to
information about the target language. Even if the terms active and online, and passive
and offline are often regarded as synonyms, there is a slight difference, which we will
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Figure 3.1: Overview over classes of learning algorithms

briefly address. According to this distinction, we will classify all forthcoming learning
algorithms of this chapter.

Active learning algorithms are allowed to autonomously ask queries to some kind of
information source—e.g., a human user—i.e., they may ask for the membership of certain
words wrt. the target language. Thus, this class of algorithms does not retrieve an arbi-
trary representation of the target language but has active impact on the set of examples
that may be used for deriving a target automaton. In contrast, passive learning algorithms
are only passively provided with examples and cannot or may not ask questions regarding
language membership. They totally depend on data presented by some kind of limited or
unlimited stream of classified words. Online learning algorithms work incrementally by
successively enhancing the hypothesis whereas offline learning algorithms only proceed
on one a priori given sample to derive one possible hypothesis which respects the input.

Combinations of the properties passive, active and offline, online are possible. In Subsec-
tion 3.2.1, e.g., we introduce a passive offline learning algorithm called RPNI. In [Dup96a]
this algorithm is extended to an incremental version called RPNI2, yielding a passive on-
line learning algorithm (where, e.g., examples can be provided via a stream of incoming
words on which the learning algorithm—as mentioned before—has no influence).

In the literature, learning algorithms based on fixed given data and continuously streamed
data, respectively, as sources of information, are sometimes called learning from given data
and learning from sequential data, respectively. Dupont showed in his thesis [Dup96b] that
these notions are equivalent.

More examples for and differences between these classes will be addressed in the subse-
quent sections. Note, however, that there is no class of active offline learning algorithms
because the definitions of active and offline are mutually exclusive. Offline algorithms
only work on an a priori fixed set of examples, i.e., it cannot be extended as it would have
to be the case for active algorithms.

Besides this distinction into passive/active and offline/online algorithms, we subdivide
the algorithms of these classes into the ones that infer DFA and the ones that learn
NFA. Figure 3.1 gives a clearly arranged overview over the prementioned classes and the
classification of the inference algorithms described or mentioned in this chapter. The
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crossed lines in the upper right quadrant signify that the class of active offline learning
algorithms does not exist (according to the definition of active and offline given before).

Additionally, we would like to differentiate between the following two problems:

(Q1) Given a set S of classified examples, propose some kind of explanation, i.e., some
(minimal) automaton which is capable of classifying the examples correctly (later
called consistently), i.e., in compliance with S.

(Q2) Having a target language L in mind, derive a minimal (in some sense that has to be
made precise in the particular setting) model which exactly recognizes the target L.

Before we go into details about the concrete instances of the classes mentioned above,
let us, as a short reminder, briefly mention the most important theoretical results from
the preliminaries in the context of learning. The formal basis for all algorithms intending
to learn regular languages is due to Myhill and Nerode stating that for each regular lan-
guage L there exists a unique minimal DFA recognizing L (cf. Theorem 2.3.3). Moreover,
Nerode’s right congruence ∼L is an important characterization of regular languages.

It is known from Definition 2.2.4 that a language L is regular if and only if the right-
congruence relation∼L has finite index, i.e., if L contains finitely many equivalence classes.
These equivalence classes correspond to the states in the canonical DFA AL recognizing
the regular language L.

As we will see in the next sections, these properties of regular languages are usually
exploited in learning algorithms for regular languages.

Let us, for the rest of this chapter, denote AL the minimal DFA for a regular language
L ⊆ Σ∗.

3.1.1 A Formal Classification of Learnability

The first known approach for formally defining the notion of learnability and attempt to
study the problem of automata inference was undertaken by Gold [Gol67, Gol78] under the
name identification in the limit . It can be seen as a theoretical framework for analyzing
and comparing different learning approaches.

Definition 3.1.1 (Identification in the limit). Formally, a learning algorithm A identifies
in the limit a class of languages L by means of hypotheses from the hypothesis space H iff
∀L ∈ L the infinite sequence h1, h2, . . . of hypotheses output by A converges to a hypothesis
h ∈ H such that L(h) = L.

Thus, the learning procedure is perceived as an infinite process of (1) being presented
an element of the language to infer and (2) deriving a hypothesis on basis of all data
received in the past. Thereby, after a finite number of wrong hypotheses, any (regular)
language can be identified in the limit by a correct hypothesis. Hence, there exists k′ ∈ N
and a sequence of hypotheses h1, h2, . . . such that for all k < k′: L(hk) 6= L but for all
k ≥ k′: L(hk) = L. Note however, that the procedure mentioned before is not necessarily
able to detect the correctness of a hypothesis h, i.e., whether L(h) = L.

Thus, the above notion can be seen as a kind of quality criterion for classes of languages
that tells us whether or not a class of languages can be learned at all. Another interesting
question arising in this context is if this class of languages is efficiently learnable. De la
Higuera extended the notion of “identifiability in the limit” in [dlH97] to also take into
account the complexity of learning algorithms and the classes of acceptors that are to
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be learned. A representation class is a class of acceptors that are capable of recognizing
certain language classes. In our case, these representation classes are classes of automata,
like DFA, NFA, RFSA, etc, accepting regular languages. In different settings also context-
free grammars or Turing machines could be representation classes. An element of a
representation class is sometimes called a representation.

Definition 3.1.2 (Identification in the limit from polynomial time and data [dlH97]). A
representation class R is identifiable in the limit from polynomial time and data iff there
exist two polynomials p and q and an inference algorithm A such that the following two
properties hold:

(i) A learns a representation R ∈ R from input data (a set S+ of positive words and a
set S− of negative words) of size m = |S+|+ |S−| in time O(p(m)).

(ii) For each representation R ∈ R of size n, there exists a set of input data (S ′
+, S

′
−) of

size at most q(n) (with S ′
+ ⊆ S+ and S ′

− ⊆ S−) such that A learns a representation
R′ equivalent to R.

Note: the size of the input (S+, S−) is defined to be the sum of the length of the elements
contained in S+ ∪ S−. An inference algorithm fulfilling the properties above, is called a
polynomial learner.

In [Gol78] Gold showed that the class of regular languages is identifiable in the limit
from polynomial time and data using DFA as representation, and in [dlH97] de la Higuera
proved a negative result for the class of NFA.

Theorem 3.1.3 (Identification in the limit of DFA and NFA [Gol78, dlH97]).

• The representation class of DFA is identifiable in the limit from polynomial time
and data (using the class of DFA as representation).

• The representation class of NFA is not identifiable in the limit from polynomial time
and data (using the class of NFA as representation).

Let MinDFA be the decision problem that given a natural number n decides whether
there is a DFA with less than n states being consistent with the input data.

Theorem 3.1.4 ([Gol78]). The decision problem MinDFA is NP-complete.

3.2 Offline Learning

The idea of offline learning algorithms is that, provided with an initial set of positive
and negative examples, one possible automaton (also called hypothesis automaton) has
to be derived which accepts all given positive and rejects all given negative strings. The
algorithm is neither presented any new examples extending the initial set, nor allowed to
ask any further questions. Therefore, it has to restrict to the given set of words as the only
source of information. The offline algorithms we regard in this section can be subdivided
into ones that infer DFA and ones that learn NFA. We first describe two algorithms
learning DFA in a passive offline fashion, followed by a subsequent subsection presenting
a passive offline NFA learning algorithm. Note that all offline learning algorithms are
passive. Nevertheless, as shortly mentioned before, there are approaches for turning
several of these passive offline learning algorithms into passive online learning algorithms.
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3.2.1 Learning Deterministic Automata

In this subsection, we will detail on two inference algorithms implementing the offline
learning paradigm for DFA, described above.

Biermann

One of the initial offline learning approaches was undertaken by Biermann and Feldman
[BF72] and will subsequently be called the Biermann algorithm. In its original version
it receives as input a fixed set of positively classified strings S+ and negatively classified
strings S− and has to output a DFA consistent with the sample.

To ease presentation, we extend the input collection of positive and negative strings
S = (S+, S−) (also called sample) to a set Ŝ = (S+, S−, S?), called extended sample,
where S? contains all prefixes of S+ ∪ S− that are not contained in the union S+ ∪ S−.
Note that the extended sample is only used internally. For a finite set of words, the prefix
tree acceptor is the DFA that exactly accepts all words from S+ (cf. Definition 2.3.10).
Therefore, its size is an upper bound for the size of the minimal DFA we want to infer.
Thus, intuitively, the extension of S to Ŝ helps to create the maximal state space possible
for inferring the hypothesis DFA. However, as we do not care for the classification of these
additional strings, we assign them the new classification “?” called unknown or don’t-care.
Let |Ŝ| = |S+|+ |S−|+ |S?|. Moreover, by abuse of notation, we define a partial function
S with finite, prefix-closed domain D(S) by: S : Σ∗ → {+,−, ?} which determines the

classification of each element of Ŝ. Hence,

S(u) =






+ , if u ∈ S+

− , if u ∈ S−

? , if u ∈ pref (S+ ∪ S−) \ (S+ ∪ S−).

Definition 3.2.1 (Consistency). A finite-state automaton A is called consistent with an

extended sample Ŝ = (S+, S−, S?) iff:

u ∈ D(S)⇒ [S(u) = +⇒ u ∈ L(A) ∧ S(u) = − ⇒ u 6∈ L(A)]

The objective now is to come up with a hypothesis DFA (of minimal size in its class)

being consistent with the set Ŝ. This corresponds to question (Q1) from Section 3.1 on
page 21.

For DFA A and word u ∈ Σ∗ let qu be the unique state that A is in after reading word
u. The crucial idea now is—because the hypothesis is not derived yet—to regard the qu
as variables (over states) and establish a set of constraints for the assignments of such
variables. These constraints intend to represent Nerode’s right congruence. Let the set of
equations for a constraint satisfaction problem (CSP, for short) over the extended sample

Ŝ be:

CSP(Ŝ) := {qu 6= qu′ | S(u) = + and S(u′) = −, or vice versa} (CSP1)

∪ {qu = qu′ ⇒ qua = qu′a | a ∈ Σ, ua, u′a ∈ D(S)} (CSP2)

In this definition, CSP1 assures that final and non-final states are distinguished (i.e.,
they feature different classifications on the empty suffix) and CSP2 guarantees that

the transition function is deterministic. An assignment of CSP(Ŝ) is a function β :

D(CSP(Ŝ))→ N. We call β a solution for the constraint satisfaction problem CSP(Ŝ) if it
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Biermann(Σ, S+, S−):

1 Ŝ = (S+, S−, S?);

2 for i = 1, . . . , N where N =| Ŝ | // test if there is a solution with i variables
3 do

4 Retrieve an assignment β : D(CSP (Ŝ))→ {1, . . . , i} for the variables in D(CSP(Ŝ));
5 Test whether β |= CSP1 ∧ CSP2;
6 if Test succeeds
7 then

8 Q = {1, . . . , i};
9 q0 = qε;

10 Calculate function δ s.t. δ(m, a) = {m′} if there are qu and qua ∈ D(CSP (Ŝ))
11 s.t. qu = m and qua = m′;

12 Calculate set F s.t. for qu ∈ D(CSP (Ŝ)) with qu = m :
13 u ∈ S+ ⇒ m ∈ F and
14 u ∈ S− ⇒ m 6∈ F ;
15 break;
16 return H = (Q, {q0}, δ, F );

Table 3.1: Biermann: (passive) offline learning algorithm for inferring minimal DFA

satisfies the equations from CSP1 and CSP2 over the natural numbers (β |= CSP1∧CSP2,
for short).

In Table 3.1 the pseudocode of the Biermann learning approach is presented. To resolve
the nondeterminism (in line 4), SAT solvers may be employed. Though the SAT problem
for Boolean formulas is NP complete, there have been tremendous improvements regarding
SAT solving in the last few years [BBH06]. A solution to our constraint satisfaction

problem CSP(Ŝ) can now be derived by transforming it to a satisfiability problem and
employing off-the-shelf SAT solvers (e.g., RSat, MiniSAT, SAT4J, Spear, etc.) to solve
the SAT instance, and finally retrieve a result for the CSP. A detailed description of this
transformation can be found in [GLP06].

As the following theorem states, if such a solution exists for CSP(Ŝ), we can derive a

hypothesis automaton H which is consistent with the extended sample Ŝ = (S+, S−, S?).

Theorem 3.2.2 (Biermann: Correctness [BF72]). For an input sample S = (S+, S−),

there exists a DFA H with n states which is consistent with Ŝ iff CSP(Ŝ) is solvable over
{1, . . . , n}. Moreover, the hypothesis is of the form H = (Q, {q0}, δ, F ), where:

• Q = {1, . . . , n},

• q0 = qε ∈ Q,

• δ : Q × Σ → 2Q is a function satisfying δ(m, a) = {m′} (m ∈ Q , a ∈ Σ), if there

are qu and qua ∈ D(CSP(Ŝ)) fulfilling qu = m and qua = m′.

• F ⊆ Q is a set satisfying: for qu ∈ D(CSP(Ŝ)) with u ∈ S+ implies qu ∈ F , and
u ∈ S− implies qu 6∈ F .

Unlike other learning algorithms—as for example Angluin’s L∗ algorithm, which gives an
answer to question (Q2) from Section 3.1 and will be presented in Section 3.3—Biermann’s
approach gives a solution to question (Q1) and, hence, does not necessarily yield a small-

est automaton being consistent with Ŝ. This shortcoming can however be resolved by
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performing the learning task described above in an iterated fashion. In Table 3.1 this
approach is presented in pseudocode. We now describe this iterative procedure in more
detail.

In order to obtain a DFA with a minimal number of states being consistent with Ŝ
using Biermann’s approach, we have to find the correct value n∗ ∈ N such that for n = n∗

there is a solution of CSP(Ŝ), but for any n′ < n∗ no solution exists. This goal can be
achieved by repeatedly increasing the value of n of Theorem 3.2.2 (starting from n = 1)

and checking whether or not there exists a solution to CSP(Ŝ) over {1, . . . , n}, i.e., if

there is a minimal DFA consistent with Ŝ which has n states. As there is an a priori given
upper bound N on the number of states of the hypothesis automaton H, this approach
will always terminate yielding a correct minimal DFA being consistent with Ŝ. A trivial
upper bound is given by N = |Ŝ| (or even N = |S+| + |S?|, i.e., the number of states of
the prefix tree acceptor).

As the upper bound on the number of states is known a priori, however, it could be an
improvement to employ binary search within the algorithm of Table 3.1 to speed up the
inference of H. If the upper bound was N , the algorithm started with the value N

2
. If

no solution could be calculated for this setting, we had to increase our bound to 3n
4

or in
case there was a solution, store it and try to achieve one with a new bound of N

4
.

Theorem 3.2.3 (Biermann: Complexity). Our iterative implementation of the Biermann

learning algorithm has an exponential worst-case time complexity (in the number of states
of the target automaton).

Proof: To find a smallest minimal DFA of size n consistent with the input, with this
version of the Biermann algorithm we have to solve log(n)-times (using binary search)
an NP complete problem of size O(n). This overall yields an algorithm which runs in
O(log(n) · 2n) time. Note that this result is in line with the theorem by Gold (cf. Theo-
rem 3.1.4). 2

We mentioned already that many passive offline approaches can also be realized in a
passive online manner. The Biermann algorithm is such an example. In Figure 3.1 we
called it Biermann2. In its new version, the learning algorithm is continuously confronted
with new classified strings from a stream and can converge to an a priori fixed regular
language L. Note, however, that with this ability the algorithm would need exponentially
(in the size of the minimal DFA AL for language L) many input words to infer AL. For
each additional word the algorithm would be invoked which had to solve a SAT instance
(for iteratively increasing size), yielding an exponential algorithm and thus making this
version of the algorithm infeasible for solving Question (Q2) from Section 3.1.

Regular Positive and Negative Inference (RPNI)

We are now introducing the regular positive and negative inference (RPNI, for short)
algorithm which is a passive offline learning algorithm for inferring DFA.

Again, we call a tuple S = (S+, S−) with a set S+ ⊆ Σ∗ of positive words and a set
S− ⊆ Σ∗ of negative words a sample. For S ′

+ ⊇ S+ and S ′
− ⊇ S−, S ′ = (S ′

+, S
′
−) is

called an extension of S. Being provided with a finite set of positive strings S+ ⊆ Σ∗ and
negative strings S− ⊆ Σ∗ such that S = (S+, S−), question (Q1) from Section 3.1 has to
be solved, i.e., a DFA A has to be learned such that L(A) is consistent with S which
means that for all w ∈ S+, w ∈ L(A) and for all w ∈ S−, w 6∈ L(A). The underlying idea
of the RPNI algorithm is to first build the prefix automaton A(S+) (cf. Definition 2.3.10)
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RPNI (S+, S−):

1 Generate prefix tree acceptor A(S+) = (Q+, {q+
0 }, δ+, F+);

2 Let Q+ = {u0, . . . , un} be in canonical order;
3 ∼0 := {(u, u) | u ∈ Q+};
4 for i = 1 to n // for all states
5 do

6 // check equivalence to all smaller (i.e., wrt. <lex) states
7 if ui 6∼i−1 uj for all 0 ≤ j ≤ i− 1 then

8 j := −1;
9 repeat

10 j := j + 1;
11 ∼ := smallest congruence with ∼i−1⊆ ∼ and ui ∼ uj;
12 B := A(S+)/∼

;
13 until L(B) ∩ S− = ∅; // current hypothesis consistent with S−

14 ∼i :=∼;
15 else ∼i :=∼i−1;
16 return H = A(S+)/∼n

Table 3.2: RPNI: (passive) offline learning algorithm for inferring (minimal) DFA

accepting exactly the words from S+ and then use S− to perform state-merging operations
on A(S+). As there are exponentially many possibilities for such operations, we have to
fix some order to obtain an efficient algorithm. Hence, we define a canonical order (length-
lexicographical order, cf. Definition 2.2.2) on the set of states of A(S+) to which merging
is performed. Subsequently, the algorithm executes a search through the current set of
states of automaton A(S+) according to the canonical order and merges states whenever
they cannot be distinguished by the algorithm on basis of the given sample. Whenever
this procedure terminates on input S, a DFA consistent with sample S is output.

Note, however, that RPNI does not necessarily yield minimal DFA. To derive a minimal
DFA, the sample S has to be complete. Intuitively, S is complete for a regular language L,
if S provides enough information to uniquely determine a DFA for the target language L.
I.e., it has to contain sufficient information to distinguish non-equivalent states, determine
the transition function, and detect final states. It can be shown that such a complete
sample exists for each regular language L. The set of all complete samples for a given
regular language L accepted by a DFA AS which is consistent with S has the following
properties:

• S is a complete sample for L =⇒ L(AS) = L,

• there is a complete sample for L that is of size polynomial in the size of AS,

• every extension S ′ of S is a complete sample for L.

We now introduce two auxiliary notions before we can formally define the concept of a
complete sample for a regular language L.

Definition 3.2.4 (Shortest prefixes and kernel). For regular language L ⊆ Σ∗, let:

SP(L) = {w ∈ pref (L) | ∀u ∈ [w]∼L
: w<lexu}

K (L) = {w ∈ pref (L) | ∃u ∈ SP(L), a ∈ Σ : w = ua}
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Here, ∼L represents the Nerode right congruence. The abbreviation SP stands for
shortest prefixes. The set SP(L) contains minimal representative words which, intuitively
speaking, correspond to the states in the minimal DFA for L. More precisely, the set
SP(L) contains the shortest strings (wrt. <lex) each reaching a different state of the
minimal DFA AL = (Q,Q0, δ, F ). Hence, |SP(L)| = |Q|. The set K (L) is called the
kernel of L and represents the transitions of AL. The kernel contains a word for every
transition in AL.

Definition 3.2.5 (Complete sample). A sample S = (S+, S−) is called complete for L,
if the following properties hold:

(i) ∀w ∈ L.∃u ∈ S+ : u ∼L w (final states are covered),

(ii) ∀w ∈ K (L).∃u ∈ Σ∗ : wu ∈ S+ (essential transitions are covered),

(iii) ∀u ∈ SP(L).∀v ∈ K (L) s.t. u 6∼L v : ∃w ∈ Σ∗ :

uw, vw ∈ S+ ∪ S− and uw ∈ S+ ⇐⇒ vw ∈ S− (∼L-classes are distinguished).

Condition (i) assures that the set of positive examples covers the set of final states, i.e.,
for each word in the language we have a representative word in S+ and the representatives
altogether characterize the set of final states. Condition (ii) guarantees that all transitions
are covered by sample S+, i.e., the information about the essential transitions in the sample
is sufficient to infer a minimal DFA, and condition (iii) ensures that using the sample we
are able to separate non-equivalent ∼L-classes.

Together with this definition, we obtain the following results:

Theorem 3.2.6 (RPNI: Identification in the limit [OG92]). The RPNI algorithm identifies
the class of regular languages in the limit (using DFA as representation).

Theorem 3.2.7 (RPNI: Correctness [OG92]). Provided with an input sample S = (S+, S−)
that is complete for regular language L, the RPNI(S+, S−) algorithm is capable of inferring
the minimal DFA A(S+)/∼n

accepting L.

Theorem 3.2.8 (RPNI: Complexity [OG92]). Provided with an input sample S = (S+, S−),
the RPNI algorithm runs in time O(l · |Σ| · k4), where l is the sum of the length of all el-
ements from S−, i.e., l =

∑
w∈S−

|w|, |Σ| is the size of the alphabet, and k = |Q+| is the
number of states of the prefix tree acceptor A(S+).

In Table 3.2 a pseudocode implementation of the RPNI algorithm is given.
Actually the RPNI algorithm can be regarded as an improvement of a very similar

approach by Trakhtenbrot and Barzdin [TB73]. Their approach also exhibits the following
major steps: first, build prefix tree acceptor, second, merge equivalent states, third, if the
given set was characteristic (i.e., complete) for a regular language L, the minimal DFA
for the target language is being deduced. RPNI, however, gets along with a much smaller
input sample. Trakhtenbrot et al. require the sample S to be n-complete, meaning that
it has to contain all words from Σ≤n =

⋃
i=0,...,n Σi. As the size of Σ≤n is exponential in

n, it thus needs an exponential number of classified examples in order to derive a DFA.
Another difference is that in RPNI the order in which states are merged is of importance
whereas in Trakhtenbrot et al. this is not the case.

The RPNI algorithm is a classical example for a passive offline learning algorithm.
Like all passive offline algorithms, RPNI suffers from the drawback that, if new learning



30 Chapter 3. A Plethora of Learning Techniques

data becomes available over time, the algorithm has to start all over again on basis
of the augmented sample in order to derive a new hypothesis. This inconvenience can
be circumvented, as mentioned in the introduction of this chapter, by extending it to
an incremental version in which the learning algorithm is connected to a continuous
(random) stream of classified examples—called sequential presentation—yielding a passive
online version of RPNI. This extension can be found in [Dup96a] under the name RPNI2,
which stands for regular positive and negative incremental inference. To obtain consistent
notation, in Figure 3.1 on page 22 the passive online version of the algorithm is called
RPNI2. It was shown by Dupont [Dup96b] that the class of regular languages is learnable
in the limit using his RPNI2 approach.

3.2.2 Learning Nondeterministic Automata

Now, we focus on inferring regular languages using NFA as representation in an offline
manner. As NFA can be exponentially smaller than equivalent minimal DFA, they are
often a better means to describe regular languages in a compact way.

DeLeTe2: Learning RFSA Using the RPNI Approach

One of the first attempts to infer regular languages in terms NFA by means of learn-
ing algorithms was accomplished by Denis et al. In their paper [DLT04] they extend
the RPNI approach, described in the previous subsection, towards learning of RFSA (cf.
Definition 2.3.13). Their passive offline learning algorithm DeLeTe2 aims at answering
question (Q1). Though similar in nature, the DeLeTe2 algorithm goes one step further
than its relative RPNI. Instead of checking for language equivalence, DeLeTe2 checks for
language inclusion of the states of the current hypothesis.

As in RPNI, the sample set has to meet certain criteria to derive the desired automata.
Though addressing similar aspects, these criteria differ from the RPNI approach. Let L
be a regular language, AL = (Q, {q0}, δ, F ), and, for every q ∈ Q, uq be the smallest word
(according to <lex) which reaches q starting from the initial state of AL, i.e., δ(q0, uq) =
{q}. Moreover, in DFA AL we call a state p smaller than a state q (written p ≤ q) iff
up ≤lex uq. In analogy to the RPNI notion, we define the shortest prefixes and kernel in
the setting of RFSA inference:

Definition 3.2.9 (Shortest prefixes and kernel[DLT04]). Let L ⊆ Σ∗ be a regular lan-
guage, p∗ ∈ Primes(L) be the greatest prime of L, i.e., for all p ∈ Primes(L) : p ≤ p∗,
AL = (Q,Q0, δ, F ), and define:

SP(L) = {uq ∈ Σ∗ | q ≤ p∗} to be the set of shortest prefixes of L, and
K (L) = {uqa ∈ Σ∗ | q ≤ p∗, a ∈ Σ, δ(q, a) 6= ∅} to be the kernel of L.

Intuitively, SP(L) contains at least all minimal words classifying the prime states of
L and, hence, enough information to determine the states of the target automaton AL.
Moreover, the set K (L) exhibits enough information for constructing transitions.

In addition, we define the partial order ≺⊆ Σ∗×Σ∗ over words such that u ≺ v if there
is no w ∈ Σ∗ such that uw ∈ S+ and vw ∈ S−. Additionally, u ≃ v if u ≺ v and v ≺ u.

We are now ready to define the notion of complete samples for RFSA.

Definition 3.2.10 (Complete sample for inclusion relations [DLT04]). Let L be a regular
language. A sample S = (S+, S−) is called complete for inclusion relations of L iff the
following properties are satisfied:
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DeLeTe2 (S+, S−,Σ):

1 Initialize H = (∅, ∅, ∅, ∅);
2 Let Pref = pref (S+) = {u0, . . . , un}; // ordered in length-lexicographic order
3 u = ε;
4 while (u is defined or H is not consistent with (S+, S−))
5 do

6 if there is u′ ∈ Q such that u ≃ u′

7 then // u is equivalent to an already existing state u′

8 remove uΣ∗ from Pref ;
9 else // add new state u to Q and add corresponding transitions

10 Q = Q ∪ {u};
11 if u ≺ ε
12 then // u is an initial state
13 Q0 = Q0 ∪ {u};
14 if u ∈ S+

15 then // u is a final state
16 F = F ∪ {u};

17 δ = δ ∪ {u′ x
→ u | u′ ∈ Q, u′x ∈ Pref , u ≺ u′x}

18 ∪{u
x
→ u′ | u′ ∈ Q, ux ∈ Pref , u′ ≺ ux};

19 H = (Q, Q0, δ, F )
20 Let u be the next word in Pref ; // if there is none, u is undefined
22 return H;

Table 3.3: DeLeTe2: (passive) offline learning algorithm for inferring (canonical) RFSA

(i) ∀u ∈ SP(L) ∪K (L).u ∈ pref (S+) (states and transitions are covered),

(ii) SP(L) ∩ L ⊆ S+ (final states are covered),

(iii) ∀u ∈ SP(L), ∀v ∈ SP(L) ∪K (L).u−1L * v−1L⇒ ∃w ∈ Σ∗.uw ∈ S+ and vw ∈ S−

(equivalence classes are distinguished).

Property (i) addresses coverage of states and transitions. Sample S must contain suf-
ficient information to completely describe the set of states and transitions of the target
automaton. As described above, SP(L) contains the information about prime states, i.e.,
states which have to be contained in the target automaton to yield an RFSA, and K (L)
features the corresponding information about transitions. Condition (ii) guarantees that
the set of positive strings S+ contains all minimal words that lead to final (prime) states,
i.e., the set of final states is covered by the sample. Finally, item (iii) ensures that residual
languages of L that are not in an inclusion relation can be separated, i.e., that equivalence
classes of the language L can be distinguished.

In [DLT04], Denis et al. show that there is always a complete sample which has size at
most O(n5), where n is the size of the minimal DFA AL.

Table 3.3 exhibits a pseudocode implementation of the DeLeTe2 algorithm which takes
as input a sample S = (S+, S−) and the alphabet Σ. In contrast to the RPNI algorithm
where we start from the prefix tree acceptor and successively merge states yielding smaller
and smaller intermediate results, the DeLeTe2 algorithm for inferring regular languages
with RFSA as representations works in a bottom-up, iterative fashion. It starts with
the empty automaton and gradually adds states (from pref (S+)) that are non-equivalent
to the previously added states. Transitions are derived from inclusion relations between
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the already existing states and the newly added one. The algorithm terminates if the
hypothesis is consistent with sample set S or, after all prefixes of S+ have been considered.

Thus, DeLeTe2 eventually returns a hypothesis automaton H which is an RFSA recog-
nizing L if the specified sample set S was complete for inclusion relations for a regular
language L. This is, unfortunately, not optimal in the sense that, in general, the canonical
RFSA cannot be derived by this algorithm. Regarding the size of the RFSA learned by
DeLeTe2, the automata are located between the canonical RFSA and the minimal DFA.
In Chapter 4, we will present a new active online learning approach which is capable to
infer the canonical RFSA for any regular language L.

A more serious drawback of DeLeTe2, however, is that, if the input sample is not
complete, the target automaton can, in general, not be guaranteed to be consistent with
the input S = (S+, S−) and, moreover, the hypothesis needs not be an RFSA. Note that
in contrast the RPNI algorithm guarantees the DFA to be consistent with the sample even
if the sample was not complete for regular language L (and thus the derived DFA not
minimal for L). Denis et al. propose two ways of tackling this limitation. The obvious but
inadequate fix would be to return the prefix tree acceptor in case the hypothesis is not
consistent with sample S. The other, more elaborate possibility is to proceed as follows:
as the relation ≺ is an approximation of the real inclusion relation of residual languages,
which indeed is transitive and right-invariant for concatenation (i.e., if u−1L ⊆ v−1L
then for all w ∈ Σ∗: (uw)−1L ⊆ (vw)−1L), in every step—when testing the relation p ≺ q
between two states p, q—the extended algorithm completes the relation by adding missing
elements to be transitive and right-invariant. New transitions are added according to the
augmented ≺-relation. If the resulting language is consistent with the input the algorithm
continues and in case consistency could not be achieved the original relation p ≺ q and
all elements added thereafter are considered invalid and removed from ≺. The extended
algorithm always returns an automaton that is consistent with the input sample.

Theorem 3.2.11 (DeLeTe2: Identification in the limit [DLT04]). The class of regular
languages over Σ:

• is not identifiable in the limit from polynomial time and data using NFA or RFSA
as representation (unless |Σ| = 1).

• is identifiable in the limit from polynomial time and data in terms of RFSA if DFA
are used as representation.

Theorem 3.2.12 (DeLeTe2: Correctness [DLT04]). Provided a complete sample S =
(S+, S−) and an alphabet Σ, the DeLeTe2 algorithm eventually outputs the saturated sub-
automaton Aup

of L (i.e., an RFSA whose size ranges between canonical RFSA R(L) (cf.
Definition 2.3.15) and minimal DFA AL).

Unfortunately, Denis et al. do not give any statement on the time complexity of their
DeLeTe2 algorithm. Hence, we now prove it to be polynomial in the size of the prefix tree
acceptor, the alphabet and the size of the sample.

Theorem 3.2.13 (DeLeTe2: Complexity). Provided with an input sample S = (S+, S−),
the DeLeTe2 algorithm runs in time O(s · k2 + |Σ| · k3), where s = |S| is the size of the
input sample and k = |Q+| is the number of states of the prefix tree acceptor A(S+).

Proof: Let us consider the algorithm from Table 3.3. As we have k = |A(S+)| words
in Pref (line 2), the algorithm stops after at most k iterations. In each iteration, first
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maximally k state-equivalence checks have to be performed (line 6). To be precise, in

total, at most Σ1≤i≤k−1i = k·(k−1)
2

such checks have to be done. For each such equivalence
check, the sets S+ and S− have to be searched in time O(|S|). Then either uΣ∗ is deleted
from Pref (line 8), or transitions are added from and to the newly created state u (lines
17, 18). The first problem can be solved in O(k) (by exhaustively searching set Pref )
and for the second case at most 2k · |Σ| transitions are added for which, every time, a
state-inclusion check (u ≺ v) has to be performed in time O(k). Altogether, this yields a
total time complexity of O(|S| · k2 + |Σ| · k3). 2

As RPNI, the DeLeTe2 algorithm is a passive offline algorithm, which, provided with an
a priori fixed set of examples, derives a possible hypothesis. Therefore, like the extension
of RPNI to RPNI2, DeLeTe2 is extendible to a passive online version (DeLeTe22) being
provided with a stream of words it has no bearing on. This yields an iterative algorithm
that can identify in the limit the class of regular languages using DFA as representation.
An active online version for deriving canonical RFSA will be presented in Chapter 4.

3.3 Online Learning

Now let us focus on online learning algorithms (cf. Figure 3.1 on page 22). As initially
stated, we subdivide this class into passive and active algorithms.

As already seen previously, a problem that often arises in the setting of (passive) offline
learning is that of not providing enough information about the target language in order
to derive a model with a minimal number of states. As, in this setting, the learner cannot
retrieve additional information, he might get stuck, yielding a suboptimal result for certain
types of applications. The RPNI and the DeLeTe2 algorithm are examples of such learning
algorithms. As long as the samples do not fulfill certain properties, the resulting DFA or
RFSA, respectively, can not be guaranteed to be minimal, or, in case of DeLeTe2, even to
be RFSA at all. Hence, having a regular language in mind (as defined in question (Q2)
on page 23) an identification of the unique (minimal) representative becomes impossible
in the presence of incomplete samples.

In some cases, e.g., for the extension RPNI2 of RPNI discussed previously, this problem
is tackled by allowing to incrementally augment the a priori given set of sample strings
by passively receiving words from a random input stream. These extensions lead to the
direction of a new class of learning algorithms called online learning algorithms. Online
inference algorithms can incrementally extend hypotheses by using classified data that
becomes available over time. A famous online learning model is that of the minimal
adequate teacher, MAT for short. It was first introduced by Angluin [Ang87a] and will
be described in more detail in the following. Roughly speaking, it exhibits a teacher
who is capable of answering certain kinds of questions, which are posed by the learning
algorithm. If a hypothesis is not satisfying, counterexamples, i.e., words that are not yet
correctly recognized by the hypothesis, can be used to extend and improve the hypothesis.

Let us, like before, distinguish algorithms that are able to infer DFA and NFA.

3.3.1 Learning Deterministic Automata

Online learning algorithms are characterized by the additional ability of asking queries to
some source of information to incrementally refine the hypotheses. Some, for example, are
being taught by a teacher which knows the target language L and is thus able to answer
so-called membership queries to guide the learner and increase the samples “on-the-fly”.
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This means that for a word w in question the teacher is able to tell whether or not w is
in L. Thus, in contrast to pure offline learning algorithms, online learning harness the
capability of augmenting their knowledge about the language in question by requesting
answers to missing information. In this way, the search space for possible candidates
of minimal DFA is reduced until obtaining a unique target. Or, in other words, the
search through the space of all possible automata is more directed and guided than in the
case of passive offline learning where the a priori fixed set of classified words is the only
available source of information. Therefore, having access to a teacher, an online algorithm
should always perform better (i.e., (i) being more accurate because it has access to an
additional information source and (ii) having a better time complexity) in finding the
correct solution to question (Q2) from Subsection 3.1 (i.e., detecting the minimal DFA
for a fixed regular language L) than offline algorithms like Biermann or RPNI. As shown
in [Gol78], the problem of identifying the correct hypothesis automaton consistent with a
given set of samples is NP-complete. Nevertheless, if the aim is not to identify a (minimal)
model for a fixed regular language but to find a (minimal) model consistent with a given
set of samples—which corresponds to solving question (Q1)—RPNI and Biermann will be
favored in many applications.

Subsequently, we will introduce one of the most influencing and most cited learning
algorithms, called Angluin’s learning approach L∗. As L∗ will form the base of our active
online learning approaches for learning NFA in Chapter 4 and for learning communicating
automata in Chapter 6, we will distinguish it from the other learning algorithms mentioned
before and describe it in greater detail.

Learning Deterministic Automata Using the MAT Model

After introducing several offline learning algorithms in the previous section, it remains to
introduce the key concept for the synthesis approaches we will discuss in Chapters 4 and
6. The algorithm we are referring to is called L∗ and is one of the most influential, most
cited, implemented and extended active online learning algorithms for regular languages.
It builds on the minimal adequate teacher (MAT) model. The MAT model originally only
featured a Learner which tries to infer a regular language L and a Teacher who knows
L and tries to guide the Learner answering questions. In this thesis, we additionally
distinguish between a Teacher and an Oracle. In the MAT framework two kinds of
questions can be asked by the Learner . A membership query asks whether a word w is
member of a target regular language L, and an equivalence query demands an answer
to the question if the current hypothesis recognizes the target regular language. As the
first kind of question in our context is easy to answer, we call the component responsible
for this task the Teacher and the component for equivalence queries the Oracle because
equivalence queries are harder to answer. Note, however, that conceptually, there is no
reason for differentiating between them. In [Ang87b], Angluin showed that these two kinds
of questions are necessary for polynomial identifiability. If either the possibility to pose
membership queries or the possibility to ask equivalence queries is omitted, polynomial
inference (in the sense of inferring the minimal DFA for a fixed target language L) is not
possible anymore.

Learning Regular Languages Using L∗

Angluin’s algorithm L∗ [Ang87a] learns DFA by querying for certain words whether they
should be accepted or rejected by the automaton in question. Later, we generalize it
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L∗ (Σ):

1 U := {ε}; V := {ε}; T is defined nowhere;
2 T-Update();
3 repeat

4 while (T, U, V ) is not (closed and consistent)
5 do

6 if (T, U, V ) is not consistent then

7 find u, u′ ∈ U, a ∈ Σ, and v ∈ V such that row(u) = row(u′) and
8 row(ua)(v) 6= row(u′a)(v);
9 V := V ∪ {av};

10 T-Update();
11 if (T, U, V ) is not closed then

12 find u ∈ U and a ∈ Σ such that row(ua) 6= row(u′) for all u′ ∈ U ;
13 U := U ∪ {ua};
14 T-Update();
15 /∗ (T, U, V ) is both closed and consistent, hence, H(T,U,V ) can be derived ∗/
16 perform equivalence test for H(T,U,V );
17 if equivalence test fails then

18 get counterexample w;
19 U := U ∪ pref (w);
20 T-Update();
21 until equivalence test succeeds;
22 return H(T,U,V );

Table 3.4: L∗: active online algorithm for inferring minimal DFA

T-Update():

1 for w ∈ (U ∪ UΣ)V such that T (w) is not defined
2 T (w) := getClassificationFromTeacher (w);

Table 3.5: Function for updating table function in L∗

towards learning objects that can be represented by DFA. This extension will enable us
in Chapter 6 to learn various classes of distributed automata.

L∗ learns or infers a minimal DFA for a given regular language L in an online manner.
In the algorithm, the Learner , who initially knows nothing about L, is trying to learn the
minimal DFA AL. To this end, it repeatedly asks queries to the Teacher (typically the
user or a blackbox system) and the Oracle, who both know L. Let us formally introduce
the two kinds of queries the MAT framework supports (cf. Figure 3.2):

Definition 3.3.1 (Membership- and equivalence queries).

• A membership query consists in asking the Teacher if a word w ∈ Σ∗ is in L.

• An equivalence query consists in asking the Oracle whether a hypothesized DFA
H is correct, i.e., whether L(H) = L. The Oracle answers yes if H is correct, or
supplies a counterexample w, drawn from the symmetric difference of L and L(H),
i.e., from the set (L \ L(H)) ∪ (L(H) \ L).

The Learner maintains a prefix-closed set U ⊆ Σ∗ of words that are candidates for
identifying states, and a suffix-closed set V ⊆ Σ∗ of words that are used to distinguish
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Learner

Teacher

Oracle

membership query:

w
?
∈ L

if closed and consistent:
equivalence query

L(H)
?
= L

yes/no answer

yes or
counterexample

w ∈ (L \ L(H)) ∪ (L(H) \ L)

Figure 3.2: Components of L∗ and their interaction

such states. The sets U and V are increased on demand. The Learner makes membership
queries for all words in (U ∪ UΣ)V , and organizes the results into a table T = (T, U, V )
where function T maps each w ∈ (U ∪ UΣ)V to an element from {+,−} where parity +
represents accepted and − not accepted . To a string u ∈ U ∪ UΣ, we assign a function
row(u) : V → {+,−} given by row(u)(v) = T (uv). Any such function is called a row
of T and the set of all rows of a table is denoted by Rows(T ). We let Rowsupp(T ) =
{row(u) | u ∈ U} denote the set of rows that represent the “upper” part of the table.
Likewise, the rows from Rows low(T ) = {row(u) | u ∈ UΣ} occur in its “lower” part.

The following properties of a table are relevant.

Definition 3.3.2 (Closedness and consistency). Table T is:

• closed if, for all u ∈ U and a ∈ Σ, there is u′ ∈ U such that row(ua) = row(u′) and

• consistent if, for all u,u′∈U and a∈Σ, row(u)=row(u′) implies row(ua)=row(u′a).

If T is not closed, we find u′ ∈ UΣ such that row(u) 6= row(u′) for all u ∈ U . We move
u′ to U and ask membership queries for every u′av where a ∈ Σ and v ∈ V . Likewise, if
T is not consistent, we find u, u′ ∈ U , a ∈ Σ, and v ∈ V such that row(u) = row(u′) and
row(ua)(v) 6= row(u′a)(v). Then we add av to V and ask membership queries for every
u′′av where u′′ ∈ U ∪ UΣ. If table T is closed and consistent, the Learner constructs a
hypothesized DFA HT = (Q,Q0, δ, F ), where:

• Q = {row(u) | u ∈ U} = Rowsupp(T ),

• Q0 = {row(ε)},

• δ is defined by δ(row(u), a) = row(ua) (row(u) ∈ Q and a ∈ Σ), and

• F = {r ∈ Q | r(ε) = +}.

The Learner subsequently submits HT as an equivalence query to the Oracle asking
whether L(HT ) = L. If the answer is affirmative, the learning procedure is completed.
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Otherwise, the returned counterexample u is processed by adding every prefix of u (includ-
ing u) to U , extending UΣ accordingly, and subsequent membership queries are performed
in order to make the table closed and consistent, whereupon a new hypothesized DFA is
constructed, etc. (cf. Figure 3.2).

The pseudocode of L∗ is given in Table 3.4, supplemented by Table 3.5, which contains
the table-update function which is invoked whenever the Teacher is supposed to classify
a word.

Theorem 3.3.3 (L∗: correctness and complexity [Ang87a]). Under the assumption that
the Teacher classifies/provides words in conformance with a regular language L over Σ,
invoking L∗ (Σ) eventually returns the minimal DFA AL. If n is the number of states of
this DFA and m is the size of the largest counterexample, then the number of membership
queries is in O(m · |Σ| · n2) and the maximal number of equivalence queries is n. The
overall running time is polynomial in m and n.

Example 3.3.4. Assume Σ = {a, b} and let L = {w ∈ Σ∗ | |w|a = |w|b and, w = uv
implies |u|b ≤ |u|a ≤ |u|b + 2}, i.e., for any word of L, every prefix has at least as
many a’s as b’s and at most two more a’s than b’s. Moreover, the number of a’s in w
is equal to the number of b’s. Clearly, L is a regular language over Σ. Let us illustrate
how AL is learned using L∗. Figure 3.3 shows several tables that are computed while
learning L. The first table is initialized for U = {ε} and V = {ε}. A table entry
T (uv) with u ∈ U ∪ UΣ and v ∈ V has parity + if uv ∈ L(A) and −, otherwise. For
example, consider Figure 3.3(i). According to the definition of L, the empty word ε is
contained in L and, thus, T (ε) = row(ε)(ε) = +. In contrast, a and b are not in L, so
T (a) = T (b) = row(a)(ε) = row(b)(ε) = −.

We deduce that table T1 is not closed as, e.g., row(a) 6∈ Rowsupp(T1). Hence, U is ex-
tended by adding a, which invokes additional membership queries. The resulting table, cf.
Figure 3.3(ii) is closed and consistent, and the Learner presents the hypothesis automaton
H1, which, however, does not conform to the target language L, as, e.g., bb ∈ L(H1) \ L.
Therefore, bb and its prefix b are added to U .

The obtained table T3 (Figure 3.3(iii)) is not consistent, as row(a)(ε) = row(b)(ε) = −
but row(ab)(ε) 6= row(bb)(ε). To resolve this conflict, a column is added to the table, i.e.,
the set of columns V is augmented with b where b was the conflicting suffix.

Some steps later, the algorithm comes up with H3 (cf. Figure 3.3(vi)), which indeed
recognizes L, i.e., L(H3) = L, so that the learning procedure finally halts. 3

A Similar Approach: L∗
col

In this section, we briefly describe another version of L∗ which behaves slightly different
and was first introduced by [MP95] in the context of learning a subclass of ω-regular
languages. We will call it L∗

col as the main difference wrt. L∗ is that, instead of adding
counterexamples and their prefixes to the set of rows U of Angluin’s table T , we will add
the counterexamples and their suffixes to the set of columns V of T . In this way, the
table T always remains consistent because there are never two identical rows in the upper
table. This is because adding a counterexample and all its suffixes to V always increases
the set of different rows by at least one. If this were not the case, the strings added to V
would not correspond to a counterexample for the current hypothesis.

Theorem 3.3.5 (L∗
col: Complexity and Correctness). Under the assumption that Teacher

classifies/provides words in conformance with a regular language L over Σ, invoking
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(i)

T1
︷︸︸︷
ε

ε +

a −
b −

closed: No

consistent: Yes

(ii)

T2
︷︸︸︷
ε

ε +
a −

b −
aa −
ab +

closed: Yes

consistent: Yes

(iii)

T3 ε

ε +
a −
b −
bb −

aa −
ab +
ba −
bba −
bbb −

closed: Yes

consistent: No
H1:

+ −

a, b

b

a

counterex.: bb
bb ∈ L(H1)
bb 6∈ L(A)

(iv)

T4 ε b

ε + −
a − +
b − −
bb − −

aa − −
ab + −
ba − −
bba − −
bbb − −

closed: Yes

consistent: Yes

(v)

T5 ε b

ε + −
a − +
b − −
bb − −
aa − −
aab − +
aabb + −

ab + −
ba − −
bba − −
bbb − −
aaa − −
aaba − −
aabba − +
aabbb − −

closed: Yes

consistent: No

(vi)

T6 ε b bb

ε + − −
a − + −
b − − −
bb − − −
aa − − +
aab − + −
aabb + − −

ab + − −
ba − − −
bba − − −
bbb − − −
aaa − − −
aaba − − +
aabba − + −
aabbb − − −
closed: Yes

consistent: Yes

H2:

+− −+

−−

a

b

b a

a, b

counterex.: aabb
aabb 6∈ L(H2)
aabb ∈ L(A)

+- - - + -

- - - - - +

a

b

ab

a

b

a, b

H3:

L(H3) = L(A)

U {

U · Σ

{

V

U

{

U · Σ

{

V

Figure 3.3: An example of an L∗ run
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(i)

T1
︷︸︸︷
ε

ε +

a −
b −

closed: No

consistent: Yes

(ii)

T2
︷︸︸︷
ε

ε +
a −

b −
aa −
ab +

closed: Yes

consistent: Yes

(iii)

T3 ε b bb

ε + − −
a − + −

b − − −
aa − − +
ab + − −

closed: No

consistent: Yes

H1:

+ −

a, b

b

a

counterex.: bb
bb ∈ L(H1)
bb 6∈ L(A)

(iv)

T4 ε b bb

ε + − −
a − + −
b − − −

aa − − +
ab + − −
ba − − −
bb − − −

closed: No

consistent: Yes

(v)

T5 ε b bb

ε + − −
a − + −
b − − −
aa − − +

ab + − −
ba − − −
bb − − −
aaa − − −
aab − + −

closed: Yes

consistent: Yes

+- - - + -

- - - - - +

a

b

ab

a

b

a, b

H2:

L(H2) = L(A)

U {

U · Σ

{

V

U

{

U · Σ

{

V

Figure 3.4: An example of an L∗
col run
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L∗
col (Σ):

1 U := {ε}; V := {ε}; T is defined nowhere;
2 T-Update();
3 repeat

4 while (T, U, V ) is not closed

5 do

6 find u ∈ U and a ∈ Σ such that row(ua) 6= row(u′) for all u′ ∈ U ;
7 U := U ∪ {ua};
8 T-Update();

9 /∗ (T,U,V) is closed, hence, H(T,U,V ) can be derived ∗/

10 perform equivalence test for H(T,U,V );
11 if equivalence test fails then

12 get counterexample w;

13 V := V ∪ suff (w) ;

14 T-Update();
15 until equivalence test succeeds;
16 return H(T,U,V );

Table 3.6: L∗
col: a variant of Angluin’s algorithm L∗

T-Update():

1 for w ∈ (U ∪ UΣ)V such that T (w) is not defined
2 T (w) := getClassificationFromTeacher (w);

Table 3.7: Function for updating table function in L∗
col

L∗
col (Σ) eventually returns the minimal DFA AL. If n is the number of states of this

DFA and m is the size of the largest counterexample, then the number of membership
queries is in O(m · |Σ| · n2) and the maximal number of equivalence queries is n. The
overall running time is polynomial in m and n.

Proof: As in L∗
col, rows are only added when the underlying table is not closed, U can have

at most n rows because there are n states in L. Thus, UΣ contains n · |Σ| elements. When
counterexamples are encountered, all their suffixes are added to V . This may happen at
most n times because every counterexample increases the hypothesis size by at least one.
Each counterexample has at most the length m of the longest counterexample. Hence,
at most n · m columns are added, yielding an overall number of membership queries of
O(m · |Σ| · n2). Moreover, learning AL may at most involve n equivalence queries, as,
along the lines of L∗, every equivalence query increases the number of states by at least
one. 2

A pseudocode implementation of L∗
col is given in Tables 3.6 and 3.7. The only differences

to the L∗ algorithm is that the consistency check (cf. Table 3.4 lines 6–10) becomes
superfluous and that instead of line 19 in Table 3.4 we now have line 13 in Table 3.6 where
all suffixes of w are added to the set of columns V . A sample run of L∗

col, corresponding to
the example presented for L∗ in Example 3.3.4 and Figure 3.3, is shown in Figure 3.4. As
we can see, the number of equivalence queries decreased compared to the equivalent run
of L∗. In this example, even the number of membership queries dropped in comparison
to Figure 3.3. This, however, is not generally the case. Usually, L∗

col will perform worse
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LA(Σ):

1 Initialize Q = {p0}, Q0 = {p0} (where p0 = ε), δ = ∅, and F = ∅;
2 repeat

3 perform equivalence test for H = (Q, Q0, δ, F );
4 if equivalence test fails
5 then get counterexample w;
6 if w is positive
7 then Q = Q ∪Q(w) where Q(w) = {x | w = xy ∈ L for y ∈ Σ∗};

8 δnew = {p
a
→ q | p, q ∈ Q ∪Q(w), a ∈ Σ, at least one of p, q in Q(w)};

9 δ = δ ∪ δnew;
10 F = F ∪ {w};
11 else simulate word w on conjectured hypothesis H
12 to obtain an incorrect transition tbad;
13 δ = δ \ {tbad};
14 until equivalence test succeeds;
15 return H = (Q, Q0, δ, F );

Table 3.8: LA: active online learning algorithm for inferring RFSA

than L∗ considering the number of membership queries but better regarding the number
of equivalence queries. This is due to the fact that in L∗

col much more columns are added
to the table, thus distinguishing more and more rows. Therefore, a rule of thumb is to
prefer L∗

col over L∗ whenever asking equivalence queries is expensive. For some statistical
results concerning these statements we refer to Section 4.7 on page 66.

The reason for introducing this altered version of L∗ is that it resembles our new learning
procedure for inferring NFA, which will be explained in the next chapter, to a larger extent
and hence, simplifies comparisons between the algorithms.

3.3.2 Learning Nondeterministic Automata

This section presents an active online algorithm for deriving NFA.

LA: Learning RFSA

A first attempt to study the inference of NFA using the MAT learning model was per-
formed by Yokomori [Yok95]. The basic idea behind his LA algorithm is described in two
steps. Positive counterexamples are used to introduce new states and transitions, and
negative counterexamples to delete incorrect transitions thereof. The pseudocode of the
LA algorithm is given in Table 3.8.

Though this procedure is capable of inferring NFA in terms of RFSA [DLT04], the severe
drawback is that given a counterexample c, the algorithm LA introduces for every prefix
of c a new state (line 7). Hence, for a counterexample with a large number of prefixes,
the resulting automaton can grow substantially. Therefore, this modus operandi does of
course in general not yield an NFA which is smaller than the corresponding minimal DFA,
let alone a unique representative.

Theorem 3.3.6 (LA: correctness and termination [Yok95]). Given a regular language L,
the LA algorithm derives after finitely many steps a hypothesis RFSA H with L(H) = L
when provided with the correct answers to membership and equivalence queries.
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Theorem 3.3.7 (LA: complexity [Yok95]). The time complexity of the LA algorithm is
in O(m6 · |Σ|2 · n4), where n is the number of states of the minimal DFA AL and m is
the maximal length of the counterexamples provided by LA. Note, however, that the size
of automaton H is (at best) polynomial in the length of the longest counterexample.

Thus, Yokomori derived the first polynomial time online learning algorithm for RFSA
but is, in general, neither able to infer the canonical RFSA of a regular language L, nor
to infer RFSA that are at most the size of AL.

Since Yokomori’s LA approach, we are not aware of any successful attempts to tackle
the problem of inferring NFA by active online learning. The problem seems thus to
be a challenge and worth to be tackled as it may lead to interesting applications in
different fields, like pattern recognition, computational linguistics and biology, or formal
verification. Chapter 4 introduces an approach to this problem.

3.4 Advantages and Disadvantages

Advantages and disadvantages of the prementioned learning approaches very much de-
pend on the field of application. Thus, we will restrict ourselves in this section to list the
pros and cons wrt. our settings. In Chapter 6 and Part III we will introduce synthesis
approaches that build on learning algorithms in the setting of computer-user-interaction,
where the user has a certain regular language in mind and plays the role of a Teacher
answering queries about this language which are asked by the learning algorithm. More-
over, as a second necessity, we want Learners that are able to derive minimal models. To
solve the first requirement, we search for inference algorithms that allow for interactively
classifying certain input. As passive offline algorithms do not provide such means, for
our setup we have to restrict to online learning algorithms. Therefore, in our approaches
offline algorithms like RPNI, Biermann or DeLeTe2 play a minor role, as they need an a
priori fixed set of classified words. As secondly, we are interested in minimal models, we
would have to ensure completeness or, using Biermann, solve the satisfiability problem
for Boolean formulas which is known to be NP complete. Thus we might—for certain
hard learning instances—run into trouble when trying to infer a smallest minimal target
model.

One might be tempted to think that the class of passive online algorithms tends to be
better suited for our needs because incremental extension of the input data is supported.
But this conclusion is unfortunately wrong. As the Teacher (i.e., the user) has a regu-
lar language in mind (cf. question (Q2) on page 23), even if implemented in an iterated
manner yielding a passive online algorithm, the learners from Section 3.2 would have an
exponential worst case time complexity. Intuitively, this is because passive algorithms
enumerate the hypothesis automata. With each additional query that is answered a new
hypothesis might arise. Several of these hypotheses might have the same size. In the
worst case, given a regular language L and a minimal DFA AL recognizing L, the offline
learning algorithm would have to output exponentially (in the size n of AL) many inter-
mediate hypotheses until reaching the final target automaton AL. Angluin’s algorithm
L∗ circumvents this problem by introducing two new kinds of queries called membership
and equivalence queries. With these types of queries, the algorithm obtains answers to
questions of the forms “Is a certain word in the language we want to infer” and “Does
the currently presented hypothesis recognize the target language”, and thereby assures a
maximal number of n − 1 intermediate hypotheses before arriving at the correct target
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automaton (assuming that the Teacher classifies the words according to L). As long as
the learning algorithm is not able to ask both kinds of questions, it will not be efficiently
usable in the context of learning discussed in Chapters 6, 7, and 9.

Hence, neither passive offline nor passive online algorithms are the final solution to our
synthesis problems. And neither is the NFA active online learning approach by Yokomori.
Though, the target automata induced by his algorithm LA are RFSA, they are in general
not canonical and might sometimes even be larger than the minimal DFA that is derivable
using Angluin’s L∗ approach. Thus, in the following, we are going to concentrate on
inference algorithms that are valuable for our synthesis approaches, namely active online
algorithms. Nevertheless, most offline and online algorithms regarded in this and the
following chapters are implemented in our learning framework libalf, which we will
report on in Chapter 8.

3.5 Summary

Combining the results from Theorem 3.1.3 from Subsection 3.1.1 and Theorem 3.2.11 from
Subsection 3.2.2, we obtain the following results concerning identification in the limit:

Corollary 3.5.1 ([Gol78, dlH97, DLT04]).

• The representation class of DFA over Σ is identifiable in the limit from polynomial
time and data using the class of DFA as representation.

• The representation class of NFA over Σ is not identifiable in the limit from polyno-
mial time and data using the class of NFA as representation.

• The representation class of NFA over Σ is not identifiable in the limit from polyno-
mial time and data using the class of RFSA as representation (unless |Σ| = 1).

• The representation class of RFSA over Σ is identifiable in the limit from polynomial
time and data using the class of DFA as representation.

Table 3.9 sums up the most interesting characteristics of the learning algorithms re-
garded in this (and the next) chapter. It provides information about (i) the algorithms’
complexities, (ii) whether the algorithms apply to (Q1) or (Q2) from page 23, and (iii)
lists their main drawbacks and advantages.

Variables in the complexity considerations of Table 3.9 have to be understood as follows:

• k: size of prefix tree acceptor A(S+) on input sample S = (S+, S−),

• l: sum of lengths of elements from S− for sample S = (S+, S−) (l = Σw∈S−|w|),

• s: size of the input sample S,

• n: size of minimal DFA AL,

• |Σ|: size of the alphabet of AL, and

• m: length of the longest counterexample.

The rest of Part I is organized as follows: in the next chapter will establish an online
learning algorithm for deriving canonical RFSA which builds on Angluin’s L∗ algorithm.
Chapter 5 introduces an improvement which can in general be applied to Angluin-style
(i.e., table-based) learning algorithms, and which will be important in the setting of
learning distributed systems discussed in Chapter 6 as it significantly reduces memory
consumption.
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Algorithm Complexity (Q1) (Q2) Drawbacks Advantages

Biermann O(log(k)2k) × • SAT solving approach may be slow
• though passive, the Biermann algo-

rithm may derive a smallest minimal
DFA consistent with the input

RPNI O(l|Σ|k4) ×

• if input is not complete:

– hypothesis will not be a minimal
DFA

• even if input is not complete:

– hypothesis will be consistent with
input

DeLeTe2 O(sk2 + |Σ|k3) ×

• if input not complete:

– no guarantee that hypothesis is
consistent with input,

– no guarantee that hypothesis is an
RFSA,

• if input is complete:

– no guarantee that hypothesis is a
canonical RFSA

• if input is complete:

– an RFSA can be inferred whose
size is between canonical RFSA
and minimal DFA

L∗ mq: O(m|Σ|n2)
eq: O(n)

×
• DFA may be exponentially larger than

RFSA or other models
• often used in applications

L∗
col

mq: O(m|Σ|n2)
eq: O(n)

×
• usually more membership queries than

needed with L∗

• usually less equivalence queries than
needed with L∗

LA
mq: O(m6|Σ|2n4)
eq: O(n)

×
• no guarantee that resulting automaton

is at most the size of minimal DFA
• RFSA can be inferred in an active, on-

line fashion

NL∗

(presented in
Chapter 4)

mq: O(m|Σ|n3)
eq: O(n2)

×
• slightly worse theoretical complexity

results than for L∗, L∗
col

• a learning algorithm capable of infer-
ring canonical RFSA,

• usually faster in practice than L∗, L∗
col,

• exponentially more succinct hypothe-
ses than L∗, L∗

col

Table 3.9: An overview over the characteristics of the presented learning algorithms



4 Learning Nondeterministic Automata

In this chapter we explain how to extend the previously introduced algorithm L∗ for infer-
ring DFA, towards the learning of NFA in terms of residual finite-state automata (RFSA)
as defined in Section 2.3.2 on page 16. As we will see, this task is not straightforward and
involves some thorough and profound considerations.

Beginning with a näıve approach for implementing an online learning algorithm for
RFSA, for which we show severe drawbacks, we subsequently provide a correct version
thereof, which—following Angluin’s L∗ algorithm—we will call NL∗. We describe how
to derive RFSA from given tables, prove the correctness of our approach, and give an
extended example showing NL∗ in use. Next, we consider two more reasonable ideas for
realizing an online learning algorithm for RFSA but show that they suffer from some
severe problems like inefficiency or, in certain cases, even non-termination. Afterwards,
we point out how our algorithm NL∗ can be adapted to cope with universal automata and
highlight situations in which the new algorithm could be of use. Experiments show the
practicability of the new active online learning algorithms and reveal the benefits over the
L∗ algorithm. After collecting some lessons learned about NL∗, we close this chapter by
giving a brief glimpse beyond the learning of nondeterministic- and universal automata.

As described in the previous chapter, learning techniques have become increasingly
prominent in a variety of areas in computer science. Especially in the domain of automatic
verification great efforts have been made to improve existing techniques employing learn-
ing methods. Examples are minimizing (partially) specified systems [OS01], model check-
ing black-box systems [PVY02], and regular model checking [BJNT00, AJNS04, HV05,
VSVA04, VSVA05]. Almost all algorithms available learn deterministic finite-state au-
tomata, as the class of DFA has pleasant properties in the setting of learning. One
important feature of DFA is that for every regular language L there is a unique mini-
mal DFA accepting L. Thanks to Nerode’s right congruence (see Definition 2.2.3), this
property can be characterized, and is exploited within most available learning algorithms.

Nevertheless, the class of DFA also exhibits serious drawbacks. In many application
areas, e.g., in formal verification, small automata are needed to efficiently verify certain
properties of the system at hand. As, in general, a minimal DFA may be exponentially
larger than an equivalent nondeterministic automaton, for many applications it would be
a tremendous improvement to work with an exponentially more succinct NFA rather than
with the corresponding minimal DFA. This motivates the need for learning algorithms
being capable of inferring some kind of minimal NFA instead of minimal DFA. As, how-
ever, the class of NFA lacks important properties that are essential for current learning
algorithms, e.g., there is no unique minimal NFA for a given regular language, it is not
clear which automaton to learn. Another property that is absent in the setting of NFA is
that there is no characterization of NFA in terms of right-congruence classes.

In one of their fundamental research papers, Denis et al. [DLT02] define the class of
residual finite-state automata (RFSA) as introduced in Definition 2.3.13. It is a proper
subset of the class of NFA but shares important properties with the class of DFA: for every
regular language there is a unique canonical RFSA accepting it. Moreover, the states of
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this canonical RFSA correspond to right-congruence classes or, equivalently, to residuals
(or residual languages) of the accepted language. Important to mention is the property
that at the same time an RFSA can be exponentially more succinct than its minimal
deterministic counterpart. This pleasant property turns RFSA into the preferable choice
for learning regular languages. In another paper [DLT04], Denis et al. provided the passive
offline learning algorithm DeLeTe2 presented in Paragraph 3.2.2, working in the spirit of
RPNI. Alternatives and extensions to this algorithm have afterwards been presented, most
recently in [GdPAR08], but are all based on the passive offline learning idea. So far, for
active online learning RFSA, there has only been one attempt presented in [Yok95] under
the name LA which infers RFSA (cf. Subsection 3.3.2), but unfortunately not the minimal
canonical version thereof. In this algorithm, the derived automaton might even be larger
than the corresponding minimal DFA.

Instead of being satisfied with this suboptimal online learning algorithm for NFA, we
now start to collect some ideas which could emerge when trying to implement a new
online algorithm for inferring NFA. As we will see, this näıve approach will not result in a
satisfactory solution either, yet yields important insights leading us to the right direction
for deriving a new online learning algorithm for canonical RFSA.

4.1 A Näıve Approach: Employing L∗

An initial idea for online-learning nondeterministic automata in terms of RFSA could be to
employ Angluin’s L∗ algorithm, presented in the previous chapter. At first, we let L∗ run
and learn the regular language L in mind in terms of its minimal DFA. If Angluin’s table
T is fully constructed, every row in the upper part of the table corresponds to a state in
the minimal DFA for L. As already seen in the preliminaries (cf. Subsection 2.3.2), states
in DFA may be composed of others and, thus, be omissible in a nondeterministic version
thereof. Hence, we could check, which states are composed in this way. I.e., we search
for states q0, q1, . . . , qn such that Lq0

= Lq1
∪ . . . ∪ Lqn

. As we will show in Section 4.2
this language inclusion (i.e., Lq0

⊇ Lqi
, 1 ≤ i ≤ n) can be efficiently checked by testing

a syntactic property of the table rows. Nevertheless, the severe drawback of this simple
approach is that it can be extremely inefficient. Assuming that the canonical RFSA in
question has n states and the minimal DFA m ≥ n states (and hence table T at least m
rows in the upper table), we would have to check O(m2) rows for inclusion and, to obtain
a consistent automaton, moreover test, if the successors of these composing states also
compose the successor of the composed state. As we will show, there are canonical RFSA
for which the corresponding minimal DFA is exponentially larger, yielding an exponential
complexity (O((2n)2)) in the number of states of the canonical RFSA.

The approach of employing L∗ for deriving canonical RFSA is unsatisfactory because
of two reasons: Firstly, this solution is not direct in that it uses an existing learning
technique and reuses its output for calculating the canonical RFSA. A second drawback
entailed by the first one is that the algorithm suffers from great inefficiency because it first
computes the complete table for the minimal DFA and afterwards starts a compression
yielding a canonical RFSA. As shown above, this compression is costly as a comparison
of every row (of the upper table) with every other has to be performed.

The obvious conclusion is that we have to exploit inclusion relations between states as
early as possible in the learning phase and, as far as possible, only create states or rows in
the table, respectively, that are needed to obtain the final hypothesis automaton. Thus,
we now opt for a solution employing “on-the-fly compression” during the learning phase.
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4.2 NL∗: From Tables to RFSA

Having discussed an initial idea, which unfortunately did not lead to a satisfactory so-
lution, we will now introduce the algorithm NL∗ as the first and only (active online)
learning algorithm capable of deriving canonical RFSA. Thus, using the MAT model fea-
turing membership and equivalence queries, our algorithm infers a canonical RFSA for
the desired language, which is always smaller than or equal to the corresponding minimal
DFA.

To unify our presentation, we will closely follow Angluin’s notions and notation. Like
in the previous chapter, we also use tables T = (T, U, V ) with a prefix-closed set of
words U ⊆ Σ∗ representing rows, a suffix-closed set V ⊆ Σ∗ representing columns, and
a mapping T : (U ∪ UΣ)V → {+,−} handling the classification of words in the table.
As beforehand, we associate with any word u ∈ U ∪ UΣ a mapping row(u) : V →
{+,−}. Again, members of U are used to reach states and members of V to distinguish
states. We moreover adopt notations introduced before such as Rows(T ), Rowsupp(T ),
and Rows low(T ).

The main difference in the new approach is that not all rows of the table will correspond
to states of the hypothesized RFSA, but only so-called prime rows. Essentially, we have
to define for rows what corresponds to union, composed, prime, and subset previously
introduced for languages (cf. Subsection 2.3.2).

Definition 4.2.1 (Join Operator). Let T = (T, U, V ) be a table. The join (r1 ⊔ r2) :
V → {+,−} of two rows r1, r2 ∈ Rows(T ) is defined component-wise for each v ∈ V :
(r1 ⊔ r2)(v) := r1(v) ⊔ r2(v) where − ⊔ − = − and + ⊔ + = + ⊔ − = − ⊔ + = +.

Note that the join operator is associative, commutative, and idempotent, yet that the
join of two rows is not necessarily a row of table T .

Definition 4.2.2 (Composed and Prime Rows). Let T = (T, U, V ) be a table. A row
r ∈ Rows(T ) is called composed if there are rows r1, . . . , rn ∈ Rows(T ) \ {r} such that
r = r1 ⊔ . . . ⊔ rn. Otherwise, r is called prime. The set of prime rows in T is denoted
by Primes(T ). Moreover, we let Primesupp(T ) = Primes(T ) ∩ Rowsupp(T ).

Definition 4.2.3 (Covering Relation). Let T = (T, U, V ) be a table. A row r ∈ Rows(T )
is covered by row r′ ∈ Rows(T ), denoted by r ⊑ r′, if for all v ∈ V , r(v) = + implies
r′(v) = +. If moreover r′ 6= r, then r is strictly covered by r′, denoted by r < r′.

Note that r may be strictly covered by r′ and both r and r′ are prime. A composed
row covers all the primes it is composed of.

Example 4.2.4. Consider, for example, the table T3 from Figure 4.1 which contains
seven rows divided into three upper rows and four lower rows, and three columns. All
rows in the upper table are primes as they cannot be subdivided into other rows of this
table. In contrast, row row(ab) is composed of at least two other rows. Thus, joining, e.g.,
row(a) and row(aa), we get row(ab) by abuse of notation (of rows and tuples): row(ab) =
row(a) ⊔ row(aa) = (−,+,−) ⊔ (+,−,+) = ((− ⊔ +), (+ ⊔ −), (− ⊔ +)) = (+,+,+).
The decomposition of a row into others, however, needs not be unique. Hence, another
possibility for composing row(ab) would also be to add row(ε) to the join operation. The
rows of the tables from Figure 4.1 containing a leading asterisk represent prime rows,
whereas the ones without “∗” are composed. In the following, we will always refer to lines
with asterisk as prime rows and without asterisk as composed rows.
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T1 ε a

∗ ε − −
∗ a − +

∗ b − −
∗ aa + −

ab + +

T2 ε a

∗ ε − −
∗ a − +
∗ aa + −

∗ b − −
ab + +

∗ aaa − +
∗ aab − −

T3 ε a aa

∗ ε − − +
∗ a − + −
∗ aa + − +

∗ b − − +
ab + + +
aaa − + +

∗ aab − − +

Figure 4.1: Three example tables

Table T3 contains several rows covering other rows. E.g., row(ε) ⊑ row(aa), as at
every position (i.e., in this example only position aa) where row(ε) exhibits a + (i.e.,
[row(ε)](aa) = +) also row(aa) features a + (i.e., [row(aa)](aa) = +). As row(ε) 6=
row(aa) this covering relation is strict for these two rows. But considering, e.g., row(ε)
and row(b), they are equal and hence, this covering relation is non-strict. In this case,
both directions hold: row(ε) ⊑ row(b) and row(b) ⊑ row(ε). Recall that a prime row
can strictly cover other prime rows as it is the case for, e.g., row(aa) and row(ε). The
rows considered so far were all comparable. This, of course, is not always the case. If
we juxtapose, e.g., rows row(ε) and row(a), we see that they are incomparable: neither
row(ε) ⊑ row(a) nor row(a) ⊑ row(ε) holds. The reason is that both contain at least one
position where one row has value + and the other value −. 3

Having exposed the key notions for this chapter, we now introduce concepts comparable
to closedness and consistency of Angluin’s L∗ algorithm and call them RFSA-closedness
and RFSA-consistency, respectively.

Summarizing the last chapter’s definitions: for DFA, closedness ensured that every row
in the lower part of the table also occurred in the upper part. Different rows from the
upper table helped building the set of states of the hypothetical automaton. For RFSA,
this translates to the idea that each row of the lower part of the table is composed of
prime rows from the upper part. Formally:

Definition 4.2.5 (RFSA-Closedness). A table T = (T, U, V ) is called RFSA-closed if,
for each r ∈ Rows low(T ), r =

⊔
{r′ ∈ Primesupp(T ) | r′ ⊑ r}.

Note that a table is RFSA-closed if any prime row of the lower part is a prime row of
the upper part of the table.

Example 4.2.6. Let us consider table T1 from Figure 4.1. It is not RFSA-closed because
there exists a prime row, namely row(aa), in the lower part of the table which is not
present in the upper part, yet. Hence, it has to be moved to the upper part of the table
yielding table T2. T2 is RFSA-closed.

Coming back to table T3 from Figure 4.1, we see that it is already RFSA-closed, as
the only two lines that do not belong to the upper table, yet, are the non-prime rows:
row(aa) and row(aba). In Angluin’s L∗ algorithm, however, we would have to move
them to the upper table to close T3, but in the case of RFSA, as these lines are not
prime, and hence, can be composed of rows already present in the upper table (i.e.,
row(aa) = row(a) ⊔ row(ab) and row(aba) = row(ε) ⊔ row(a)) there is no need for
changing T3. 3
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Now we turn towards the second important ingredient for Angluin’s L∗ algorithm: the
notion of consistency. The idea of consistency in case of DFA was as follows: Assume that
two words u and u′ of the table have the same row. This suggests that both words lead
to the same state of the DFA as they cannot be distinguished by words v ∈ V . Hence,
they induce the same residuals. Then, however, ua and u′a have to induce equal residuals
as well, for any a ∈ Σ, i.e., from equivalent states in the automaton we have to reach
equivalent states by taking an a-transition, no matter which a ∈ Σ is taken. In other
words, if there is some a ∈ Σ and v ∈ V such that T (uav) 6= T (u′av), then the residuals
induced by u and u′ cannot be the same and must be distinguishable by the suffix av to
be added to V .

For RFSA, if there are u and u′ with row(u) ⊑ row(u′), then this suggests that the
residual induced by u is a subset of the residual induced by u′. If indeed so, then the
same relation must hold for the successors ua and u′a. This is formally expressed as:

Definition 4.2.7 (RFSA-Consistency). A table T = (T, U, V ) is called RFSA-consistent
if, for all u, u′ ∈ U and a ∈ Σ, row(u′) ⊑ row(u) implies row(u′a) ⊑ row(ua).

Example 4.2.8. Now consider table T2 in Figure 4.1. In Angluin’s sense this table would
be consistent as the upper table only contains pairwise distinct rows. This is not the case
in our NL∗ setting. In table T2 two inclusion relations have to be checked: row(ε) ⊑ row(a)
and row(ε) ⊑ row(aa). The second inclusion does not raise a problem. However, the first
inclusion yields an inconsistency because row(ε) ⊑ row(a) but row(a) 6⊑ row(aa). As
depicted in Figure 4.1 this inconsistency can be resolved by adding a column aa to T2
generating table T3. T3 now is RFSA-closed and RFSA-consistent. 3

With a table that is RFSA-closed and RFSA-consistent, we can associate an NFA. Later
we will show that on termination of our learning algorithm, this NFA corresponds to a
canonical RFSA.

Definition 4.2.9 (NFA of a Table). For a table T = (T, U, V ) that is RFSA-closed and
RFSA-consistent, we define an NFA RT = (Q,Q0, δ, F ) over alphabet Σ by:

• Q = Primesupp(T ),

• Q0 = {r ∈ Q | r ⊑ row(ε)},

• δ(row(u), a) = {r ∈ Q | r ⊑ row(ua)} for u ∈ U with row(u) ∈ Q and a ∈ Σ, and

• F = {r ∈ Q | r(ε) = +}.

Note that Primesupp(T ) = Primes(T ), as T is closed. Furthermore, row(ε) is not in Q0

iff it is composed. Confer Figure 4.2(c) and (d) for an example with three initial states of
which none exclusively represents the residual language of ε. Moreover, δ is well-defined:
Take u, u′ with row(u) = row(u′). Then, row(u) ⊑ row(u′) and row(u′) ⊑ row(u).
Consistency implies that row(ua) ⊑ row(u′a) and row(u′a) ⊑ row(ua) so that both
resulting rows are equal.

Example 4.2.10. Consider table T1 from Figure 4.2(a) and described in Example 4.1. We
can easily convince ourselves that this table is RFSA-closed and RFSA-consistent. Hence,
according to Definition 4.2.9, we can derive the NFA RT = (Q,Q0, δ, F ) corresponding
to T1:
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T1 ε a aa

∗ ε − − +
∗ a − + +
∗ ab + − +

∗ b − − +
aa + + +
aba − + +

∗ abb − − +

−−+ −+ + +−+

a a, b

aa, b

a, b a

a, b

T2 ε a

ε + +
∗ a + −
∗ b − +
∗ aa − −

∗ ab − +
∗ ba + −
∗ bb − +
∗ aaa − −
∗ aab − +

+−

−+

−−

b
a

a, b

a, bb

b

a, b

(a) (b) (c) (d)

Figure 4.2: Two tables T1, T2 and their corresponding NFA RT1
and RT2

• Q = {row(ε), row(a), row(ab)} = {(−,−,+), (−,+,+), (+,−,+)},

• Q0 = {r ∈ Q | r ⊑ row(ε)} = {row(ε)},

• δ(row(ε), a) = {r ∈ Q | r ⊑ row(a)} = {row(ε), row(a)},
δ(row(ε), b) = {r ∈ Q | r ⊑ row(b)} = {row(ε)},
δ(row(a), a) = {r ∈ Q | r ⊑ row(aa)} = {row(ε), row(a), row(ab)},
δ(row(a), b) = {r ∈ Q | r ⊑ row(ab)} = {row(ε), row(ab)},
δ(row(ab), a) = {r ∈ Q | r ⊑ row(aba)} = {row(ε), row(a)},
δ(row(ab), b) = {r ∈ Q | r ⊑ row(abb)} = {row(ε)}, and

• F = {r ∈ Q | r(ε) = +} = {row(ab)}.

The automatonRT1
resulting from the application of Definition 4.2.9 to table T1 from Fig-

ure 4.2(a) is depicted in Figure 4.2(b). Similarly, the RFSA-closed and RFSA-consistent
table T2 yields the NFA RT2

from Figure 4.2(d). 3

For the rest of this section, we fix a table T = (T, U, V ) that is RFSA-closed and RFSA-
consistent. We prove some important properties of the automaton RT constructed from
the table. These properties are crucial for showing that the new learning algorithm indeed
infers canonical RFSA and will eventually terminate with the correct result if membership
queries are answered according to a given regular language L ⊆ Σ∗.

The following lemma states that for all words u ∈ U from the upper table the states
that are reachable from Q0 via u are covered by row(u). Intuitively, this lemma ensures
that we are always able to reach all states that represent prime residuals contained in the
residual language of state u−1L of DFA A(L) (cf. Definition 2.3.7).

Lemma 4.2.11. Let RT = (Q,Q0, δ, F ). For all u ∈ U and r ∈ δ(Q0, u), we have
r ⊑ row(u).

Proof: We prove this lemma by induction on the length of u. If u = ε, then we have
δ(Q0, ε) = Q0 and by definition of RT we have ∀r ∈ Q0.r ⊑ row(ε). If u = u′a, then
δ(Q0, u

′a) = δ(δ(Q0, u
′), a). Take an r ∈ δ(δ(Q0, u

′), a). Because of the definition of δ we
have that there exist u′′ ∈ U and r′ ∈ δ(Q0, u

′) with r′ = row(u′′) and r ⊑ row(u′′a).
By induction hypothesis we have r′ ⊑ row(u′). Therefore row(u′′) ⊑ row(u′) and, by
RFSA-consistency, row(u′′a) ⊑ row(u′a). This implies r ⊑ row(u′a). 2

The next lemma says that each state of RT correctly classifies strings of V .
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Lemma 4.2.12. Let RT = (Q,Q0, δ, F ). For each r ∈ Q and v ∈ V , the following hold:

(i) r(v) = − iff v 6∈ Lr and

(ii) row(ε)(v) = − iff v 6∈ L(RT ).

Proof:

(i) We prove for all v ∈ V.(r(v) = − iff v 6∈ Lr) by induction on the length of v.

Suppose v = ε. Then, r(ε) = − iff r 6∈ F by definition of RT and, therefore,
r(ε) = − iff ε 6∈ Lr. Suppose now v = av′. Let r = row(u) for some r ∈ Q and
u ∈ U .

“only if”: As V is suffix-closed, r(av′) = row(u)(av′) = − implies row(ua)(v′) = −.
Since the table is RFSA-closed, we have row(ua) =

⊔
{r′ ∈ Q | r′ ⊑ row(ua)}.

Thus, by the definition of ⊑, we have that for all r′ ∈ Q with r′ ⊑ row(ua),
r′(v′) = − as well. Due to the induction hypothesis, this implies v′ 6∈ Lr′ for all
r′ ∈ Q with r′ ⊑ row(ua). Thus, av′ 6∈ Lr, as the states reached from r by a are
exactly the r′ ∈ Q with r′ ⊑ row(ua) by definition.

“if”: Now let r(av′) = row(u)(av′) = +. This implies that row(ua)(v′) = + as V is
suffix-closed. Since the table is RFSA-closed there exists r′ ∈ Q with r′ ⊑ row(ua)
and r′(v′) = +. Then, by induction hypothesis, v′ ∈ Lr′ . Therefore, av′ ∈ Lr, since
by definition of the transition function, r′ can be reached from r by a.

(ii) Now, for all v ∈ V.(row(ε)(v) = − iff v 6∈ L(RT )) follows easily if row(ε) ∈ Q. If
not, then we have row(ε) =

⊔
{r′ ∈ Q | r′ ⊑ row(ε)} = Q0, and the “only if”-

direction follows from the first part of the lemma applied on r′. The “if”-direction
follows from the fact that v 6∈ L(RT ) implies that for all r′ ∈ Q with r′ ⊑ row(ε)
we have v 6∈ Lr′, and from applying the first part of the lemma.

2

This fact will now enable us to prove a lemma stating that the covering relation precisely
reflects language inclusion.

Lemma 4.2.13. Let RT = (Q,Q0, δ, F ). For every r1, r2 ∈ Q, r1 ⊑ r2 iff Lr1
⊆ Lr2

.

Proof: Let r1, r2 ∈ Q, and assume u1, u2 ∈ U with row(u1) = r1 and row(u2) = r2.
“only if”: Suppose that r1 ⊑ r2 and w ∈ Lr1

. We distinguish two cases:
Assume first w = ε. Then, row(u1)(ε) = + and, due to r1 ⊑ r2, row(u2)(ε) = +. Thus,

r2 ∈ F so that ε ∈ Lr2
. Now let w = aw′ with a ∈ Σ. We have δ(r1, aw

′) ∩ F 6= ∅.
Thus, there is r ∈ δ(r1, a) such that δ(r, w′) ∩ F 6= ∅. From r1 ⊑ r2, we obtain, by
RFSA-consistency, row(u1a) ⊑ row(u2a). By the definition of δ, r ⊑ row(u1a), which
implies r ⊑ row(u2a). Thus, r ∈ δ(r2, a), and we have aw′ ∈ Lr2

.
“if”: Assume r1 6⊑ r2. We will show that Lr1

6⊆ Lr2
. By definition of the ⊑-relation,

there has to be v ∈ V such that row(u1)(v) = + but row(u2)(v) = −. By Lemma 4.2.12,
v ∈ Lr1

and v 6∈ Lr2
. Therefore, Lr1

6⊆ Lr2
. 2

Example 4.2.14. Let L = Σ∗aΣ (Σ = {a, b}) be a regular language. It is recognized by
the NFA from Figure 4.2(b). Considering the table T1 from Figure 4.2(a) again, we have
that row r1 = row(a) strictly covers r2 = row(ε) and hence, their residual languages have
to be in this inclusion relation as well. Calculating Lr1

= a−1L yields Lr1
= Σ∗aΣ ∪ Σ



52 Chapter 4. Learning Nondeterministic Automata

T ε ab b

∗ ε − − +
b + − +

∗ a − − −
∗ ba + − −

bb + − +
∗ ab − − −
∗ aa − − −
∗ bab − − +
∗ baa − − −

−−+

+−−

−−−

b Σ

Σ

Σb

b

(a) (b)

Figure 4.3: A table T and the corresponding NFA RT which are not consistent according
to Definition 4.2.15

and Lr2
= ε−1L = Σ∗aΣ. Obviously Lr2

( Lr1
. The same applies to r2 and r3 = row(ab).

Row r2 is strictly covered by r3 and so are their corresponding residual languages as
Lr3

= Σ∗aΣ ∪ {ε}. In contrast, r1 and r3 are incomparable and so are their residual
languages. 3

An important property that will distinguish Angluin’s learning algorithm L∗ and the
new learning algorithm for NFA is the following: The automatonRT constructed from the
RFSA-closed and RFSA-consistent table T is not necessarily an RFSA (see Appendix B.3
on page 179 for an example). But we can show that RT is a canonical RFSA if it is
consistent wrt. the table T , i.e., the automaton correctly classifies all words of T .

This justifies the following definition of an automaton RT consistent with a table T .

Definition 4.2.15. We say that automaton RT is consistent with the table T if, for all
w ∈ (U ∪ UΣ)V , we have T (w) = + iff w ∈ L(RT ).

If there is an automaton RT that is not consistent with its table T , we can immedi-
ately retrieve a counterexample w (cf. Definition 4.2.15), which is passed to the learning
algorithm resurrecting the learning procedure.

The next lemma is a stronger version of Lemma 4.2.11, if we have additionally that RT

is consistent with T . Under this assumption, it states that by traversing automaton RT

starting in its set of initial locations with any word u ∈ U from the upper table, the state
row(u) ∈ Q is reachable.

Lemma 4.2.16. Suppose RT = (Q,Q0, δ, F ) is consistent with T . Then, for all u ∈ U
with row(u) ∈ Q, we have row(u) ∈ δ(Q0, u).

Proof: If row(u)(v) = − for all v ∈ V , this is easy to see by the definition of δ. If not,
we suppose that row(u) 6∈ δ(Q0, u) and get a contradiction. With Lemma 4.2.11, we have
∀r ∈ δ(Q0, u).r ⊑ row(u). Then, Lemma 4.2.13 implies ∀r ∈ δ(Q0, u).Lr ⊆ Lrow (u). As
row(u) ∈ Q and row(u) 6∈ δ(Q0, u), there exists v ∈ V such that row(u)(v) = + and
for all r ∈ δ(Q0, u), r(v) = −. This, together with Lemma 4.2.12, implies that for all
r ∈ δ(Q0, u).v 6∈ Lr. But then uv 6∈ L(RT ) which is a contradiction to the fact that RT

is consistent with T . 2

Example 4.2.17. In Figure 4.3(a) we see an RFSA-closed and RFSA-consistent table T .
Hence, according to Definition 4.2.9 an automaton RT can be derived (cf. Figure 4.3(b)).
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On closer inspection we realize that, following table T , word w = ba should be accepted
by automaton RT , but this is, indeed, not the case. Consequently, table T and NFA RT

are not consistent according to Definition 4.2.15. Moreover, as an intermediate result of
the learning procedure, table T does not yield an RFSA, as, e.g., state row(ba) accepts
the language Lrow (ba) = bbb∗ which is not a residual of L(RT ) = bb∗. 3

We are now prepared to infer the main result of this section, stating that RT is a
canonical RFSA if table T is RFSA-closed and RFSA-consistent, and table T and NFA
RT are consistent according to Definition 4.2.15.

Theorem 4.2.18. Let T be a table that is RFSA-closed and RFSA-consistent, and let
RT be consistent with T . Then, RT is a canonical RFSA.

Proof: Let T = (T, U, V ) and assume RT = (Q, {q0}, δ, F ). Let L denote L(RT ). We
first show that RT is an RFSA (i.e., all states accept residuals). Let u ∈ U with row(u) ∈
Q. We show that Lrow (u) = u−1L. Due to Lemma 4.2.16 we have row(u) ∈ δ(Q0, u).
This implies Lrow (u) ⊆ u−1L. Furthermore, together with Lemma 4.2.11 we have that
∀r ∈ δ(Q0, u).r ⊑ row(u). This implies with Lemma 4.2.13 ∀r ∈ δ(Q0, u).Lr ⊆ Lrow (u).
This gives u−1L ⊆ Lrow (u). Together with Lrow (u) ⊆ u−1L we have Lrow(u) = u−1L.

So far we have shown that automatonRT is an RFSA. It remains to show that it is even
a canonical RFSA and, hence, that Lrow (u) is prime. But this is due to Lemma 4.2.13,
which states that the relation ⊑ over rows corresponds exactly to the subset relation over
languages. This precise correspondence is also the reason why the transition function δ is
saturated, as required in the definition of a canonical RFSA (cf. Definition 2.3.15). 2

Example 4.2.19. Consider again the regular language L = Σ∗aΣ and the automatonRT1

from Figure 4.2(b). Now let us show that, indeed, the automaton RT1
derived from table

T1 in Figure 4.2 is a canonical RFSA. Firstly, it is easy to verify that T1 is RFSA-closed and
RFSA-consistent and that automaton RT1

is consistent with T1. Now it remains to check
that all states correspond to prime residuals. The residual languages of states row(ε),
row(a), and row(ab) have already been calculated in Example 4.2.14: ε−1L = Σ∗aΣ,
a−1L = Σ∗aΣ ∪ Σ and (ab)−1L = Σ∗aΣ ∪ {ε}. All three residuals are prime because
none of them is the union of the other two, and the remaining residual of the underlying
regular language is composed of the three mentioned before. This shows that RT1

really
is a canonical RFSA. 3

4.3 NL∗: The Algorithm

We now describe the new learning algorithm NL∗ for inferring canonical RFSA. In this
section we will describe the algorithm, give its pseudocode implementation, and prove
NL∗ to be correct and efficient.

Table 4.1 describes the pseudocode implementation of NL∗. The grayishly highlighted
boxes specify the changes compared to the L∗ algorithm from Table 3.4 on page 35. As
input, NL∗ receives the alphabet Σ it will be acting on and a target regular language
L ⊆ Σ∗. Like in Angluin’s algorithm L∗, the aim is to infer an automaton RT fulfilling
L(RT ) = L. In our current case the inferred automaton will be a canonical RFSA.
After initializing the table T like in Angluin’s L∗ algorithm (line 1), the current table
is repeatedly checked for RFSA-closedness (line 5) and RFSA-consistency (line 8). If
the algorithm, in lines 6 and 7, detects a violation of the RFSA-closedness condition
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NL∗(Σ, L):

1 initialize T := (T, U, V ) by U = V = {ε} and T (w) for all w ∈ (U ∪ UΣ)V
2 repeat

3 while T is not (RFSA-closed and RFSA-consistent)

4 do

5 if T is not RFSA-closed then

6 find u ∈ U and a ∈ Σ such that row(ua) ∈ Primes(T ) \ Primesupp(T ) ;

7 extend table to T := (T ′, U ∪ {ua}, V ) by membership queries;

8 if T is not RFSA-consistent then

9 find u ∈ U, a ∈ Σ, and v ∈ V such that the following holds:
10 T (uav) = − and

11 T (u′av) = + for some u′ ∈ U such that row(u′) ⊑ row(u),

12 extend table to T := (T ′, U, V ∪ {av});
13 /∗ T is both RFSA-closed and RFSA-consistent ∗/

14 from T , construct the hypothesized NFA RT (cf. Definition 4.2.9)

15 /∗ perform equivalence test ∗/
16 if (L = L(RT ))
17 then equivalence test succeeds;
18 else get counterexample w ∈ (L \ L(RT )) ∪ (L(RT ) \ L)

19 extend table to T := (T ′, U, V ∪ suff (w)) by membership queries;

20 until equivalence test succeeds;
21 return RT ;

Table 4.1: NL∗: the NFA version of Angluin’s algorithm L∗

(cf. Definition 4.2.5), i.e., some row(ua) with u ∈ U and a ∈ Σ is prime and is not
contained in Primesupp(T ), then ua is added to U . This involves additional membership
queries. On the other hand, whenever the algorithm, in lines 9–11, perceives an RFSA-
consistency violation (cf. Definition 4.2.7) a distinguishing suffix av can be determined
which makes two existing rows distinct or incomparable. In this case, column av is added
to V (line 12) invoking supplemental queries. This procedure is repeated until T is
RFSA-closed and RFSA-consistent. If both properties are fulfilled, a conjecture RT can
be derived (line 14) from T (cf. Definition 4.2.9) and be passed to the equivalence test (line
16). This test either returns a counterexample w (line 18) from the symmetric difference
of L(A) and L(RT ), and suff (w) is added to V reinvoking NL∗, or lets the learning
procedure successfully terminate returning the desired automaton RT (lines 17, 20f.).
Whenever table T and hypothesis RT are not consistent according to Definition 4.2.15
the equivalence test in line 16 will fail, yielding a counterexample w, which will revive the
learning procedure. Notice that the algorithm makes sure that V is always suffix-closed
and U prefix-closed, a crucial property needed throughout the proofs of this chapter.

Remark 4.3.1. We chose to treat the counterexamples as in the variant L∗
col of L∗ de-

scribed in Subsection 3.3.1. Indeed, as will be described in Subsection 4.5.2, treating
the counterexamples as in the original L∗ does not lead to a terminating algorithm (see
Appendix B.4 for an example). The treatment of counterexamples as in L∗

col ensures that
each row can appear at most once in the upper part of the table, because we only add
rows when the table is not RFSA-closed. Note moreover that we did not explicitly in-
clude a test for consistency of the hypothesis with the table because this check is implicitly
performed by the equivalence test in line 16 of Table 4.1. 3
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Proving the termination of Angluin’s learning algorithm L∗ is quite straightforward as a
simple observation can be used that directly assures termination. This key observation is
that each failing equivalence query increases the overall number of states by at least one.
Hence, if we would like to infer a regular language represented by a minimal DFA with
n states, we would have to ask at most n equivalence queries to ensure termination. In
our setting, however, this is not that easy anymore since, as we show in Appendices B.5
and B.6 on pages 183 and 185, respectively, after an equivalence query or a violation of
RFSA-consistency the number of states of the hypothesized automaton does not neces-
sarily increase and sometimes even decreases. Thus, we have to accomplish a much more
sophisticated analysis of the algorithm. To show termination of NL∗, we first need a
simple lemma.

Lemma 4.3.2. If the minimal DFA AL for a given regular language L has n states, then
the tables constructed in the runs of NL∗ with input L(AL) cannot have more than n
different rows.

Proof: Having more than n different rows in a table implies that L has more than n
different residuals, which is impossible, as the minimal DFA AL for L has n residuals and
hence, n states. 2

Now we are prepared to derive the main contribution of this section. For any given
regular language L, the algorithm NL∗ infers the canonical RFSA R accepting L.

Theorem 4.3.3. Let n be the number of states of the minimal DFA AL for a given
regular language L ⊆ Σ∗. Let m be the length of the longest counterexample returned
by the equivalence test (or 1 if the equivalence test always succeeds). Then, NL∗ returns
after at most O(n2) equivalence queries and O(m|Σ|n3) membership queries the canonical
RFSA R(L).

Proof: First of all, if the algorithm terminates, then it outputs the canonical RFSA for L
due to Theorem 4.2.18, because passing the equivalence test implies that the constructed
automaton must be consistent with the table.

We show in the following that the algorithm terminates after at most O(n2) equivalence
queries. We first define a measure M associating a tuple of positive natural numbers to
tables. For a given table T , let M(T ) = (lup, l, p, i), where lup = |Rowsupp(T )| is the
number of rows in the upper part of the table, l = |Rows(T )| the number of different
rows in the whole table, p = |Primes(T )| the number of prime rows in the table, and i
the number of strict coverings of pairs of different rows of the table, i.e., i = |{(r, r′) |
r, r′ ∈ Rows(T ) and r < r′}|. It is crucial to consider rows and not members of U .
Initially, lup = 1 and (l = 1 or l = 2) and (p = 1 or p = 2) and (i = 0 or i = 1).

Let us examine how the measure (lup, l, p, i) evolves during a run of NL∗. A detailed
example of this evolution is given after this proof in Example 4.3.4. It is clear that lup

and l can never decrease since two different rows stay different by extending the table.
Now let us consider the three possible cases during an NL∗ run which have an influence

on M(T ), namely: T is (i) not RFSA-closed, (ii) not RFSA-consistent, and (iii) RFSA-
closed and RFSA-consistent but there is a counterexample.

(i) If the table is not RFSA-closed, then, after extending the table, lup increases by one.
Simultaneously, l might increase by 0 ≤ k ≤ |Σ| (the number of new rows added).
At the same time, i might increase by at most k times the old value of l (the largest
possible number of strict covering relations between new rows and old rows) plus
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k(k − 1)/2 (the largest possible number of strict covering relations between new
rows).

(ii) If the table is not RFSA-consistent, then, after extending the table, lup stays un-
changed. However, l might increase by 0 < k′ ≤ n. At the same time, as before,
i might increase by at most k′ times the old value of l plus k′(k′ − 1)/2. If l
does not increase, then this means that, for any two strings u, u′ ∈ U ∪ UΣ with
row(u) = row(u′) in the table before the extension, we have again row(u) = row(u′)
after the extension. Therefore, no strict covering relation can be added in the ex-
tended table. But since we add a word to V making two rows r and r′ in the original
table with r < r′ incomparable, i is decreased by at least one.

(iii) If the table is RFSA-closed and RFSA-consistent, then an equivalence query is
performed. Let us fix an RFSA-closed and RFSA-consistent table T = (T, U, V )
before the equivalence test. If the test fails, we obtain a counterexample w and a
new table T ′ = (T ′, U, V ∪ suff (w)). Notice that T must be extended (otherwise,
we have w ∈ V , which implies with Lemma 4.2.12 that w is correctly classified by
RT ). Either l increases or not.

• If l increases by 0 < k′′ ≤ n, then, as before, i might increase by at most k′′

times the old value of l plus k′′(k′′ − 1)/2.

• If l does not increase, then i cannot increase (see explanation for the case that
the table is not RFSA-consistent). We will furthermore show that p increases or
i decreases. Suppose that this is not the case, i.e., p and i remain unchanged1.
Then, the automataRT andRT ′ constructed from T and, respectively, T ′ must
be the same: all primes of T must still be primes in T ′ (as p stays the same, no
primes are added), the initial and final states stay the same, and the transition
function is defined using the covering relation which does not change. This is
because l does not change and, therefore, no new strict covering relation can
be added like for the corresponding case above, where the table is not RFSA-
consistent. Furthermore, since i does not change, no strict covering relation is
removed. But the two automata being the same is a contradiction since RT ′

classifies w correctly according to Lemma 4.2.12 (w is in V ), whereas RT does
not. Therefore, p increases or i decreases (notice that p might be decreased by
other steps).

Putting the three different cases together, we notice that after each extension of the
table either:

(1) lup is increased by one, or (case (i))

(2) l is increased by some bounded value 0 < k ≤ n and simultaneously i is increased
by at most kl + k(k − 1)/2, or (cases (i)-(iii))

(3) l stays the same and we have that i decreases or p increases. (case (iii))

Moreover, due to Lemma 4.3.2, lup, l, and p cannot increase beyond n which means:

(A) lup can increase at most n times.

1Note that p cannot decrease if l stays constant since that would mean that now a row turns out to be
composable by other rows, which is a contradiction since no new row was added.
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(B) l can increase at most n times.

• Every time l increases by k > 0, i increases at most by kl + k(k − 1)/2, where
the sum of all k with which l increases can be at most n. This in turn means,
that i can at most increase by O(n2) in one complete NL∗ run.

(C) If l stays unchanged, then

1) p stays unchanged and i decreases, or

2) p increases and i stays unchanged.

Summarizing, there are four possibilities: (A), (B), (C.1), and (C.2). Intuitively the
algorithm performs sequences of the form (A), (B), (C.1), (C.2), (C.1), (B), etc., the
complete sequence can contain at most n (A) elements. If you abstract from the (A)s in
the sequence, there are at most n subsequences where only (C.1) and (C.2) occur (i.e.,
without interleaving (B)). This is because l can only be increased up to n and as l never
decreases there can in total only be n occurrences of (B). Considering the (C.1) and (C.2)
sequences (i.e., without interleaving (B)s) we see that they can at most be of length n+ i.
This is because p can be increased at most n times and i can be decreased at most to 0.

In total, we have at most n times (A), n times (B), O(n2) times (C.1) (because, in total,
i will be increased at most O(n2) times and is always greater or equal to 0, thus it cannot
be decreased more than O(n2) times), and n · n times (C.2). As after each equivalence
query we have (A), (B), or (C.1), or (C.2) we can have at most O(n2) equivalence queries.

Hence, the algorithm must (1) always reach an equivalence query and (2) terminate
after at most O(n2) equivalence queries.

Concerning the number of membership queries, we notice that their maximal number
corresponds to the size of the table which has at most n+n|Σ| (n rows in the upper part
+ their successors) rows and O(mn2) columns since at each extension at most m suffixes
are added to V , yielding an overall membership query complexity of O(m|Σ|n3). 2

The theoretical complexity we obtain for NL∗ in terms of equivalence queries is higher
compared to L∗ where at most n equivalence queries are needed. The complexity in terms
of membership queries is higher for NL∗ as well (L∗ needs roughly m|Σ|n2 queries). But,
as we will observe in Section 4.7, in our experiments far less equivalence and membership
queries are needed. An interesting case is presented in Appendix B.7. There, NL∗ needs
6 equivalence queries for a minimal DFA with only 5 states. As this cannot happen using
L∗ this example might be illuminating for finding hard instances for NL∗ in terms of
equivalence queries.

To gain a better intuition for the previous proof, we visualize the modifications to the
variables lup, l, p, i during the learning phase of the regular language represented by the
minimal DFA from Figure 4.4 in the following example.

Example 4.3.4. In this example, an exemplifying run of the NL∗ algorithm will illustrate
the evolution of the measure M(T ) that we associated with a table T in the proof of
Theorem 4.3.3. Table 4.2 depicts the intermediate tables that we construct during the
NL∗ run, as well as their associated measures in table M (bottom of Table 4.2). The
target automaton is taken from Figure 4.4.

Let us consider table T0 from Table 4.2. The first case that occurs while learning the
regular language in mind is the detection of a counterexample for table T0. Adding a
counterexample (here: suff (baa)) to the table results in the increase of variable l (by k =
2) as described in the proof above. After the table extension the number of different rows
in the whole table raises from 1 to 3 as the new columns make all lines of the table distinct.
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T0 ε

∗ ε −

∗ b −
∗ a −

⇒1.
ce

T1 ε baa aa a

∗ ε − + − −

∗ b − − + −
∗ a − − − −

⇒2.
ncl

T2 ε baa aa a

∗ ε − + − −
∗ b − − + −

∗ a − − − −
∗ bb − − − −
∗ ba − − + +

⇒3.
ncl

T3 ε baa aa a

∗ ε − + − −
∗ b − − + −
∗ a − − − −

∗ bb − − − −
∗ ba − − + +
∗ ab − − − −
∗ aa − − − −

⇒4.
ncl

T4 ε baa aa a

∗ ε − + − −
∗ b − − + −
∗ a − − − −
∗ ba − − + +

∗ bb − − − −
∗ ab − − − −
∗ aa − − − −
∗ bab − − − −
∗ baa + − − +

⇒5.
ncl

T5 ε baa aa a

∗ ε − + − −
∗ b − − + −
∗ a − − − −

ba − − + +
baa + − − +

∗ bb − − − −
∗ ab − − − −
∗ aa − − − −
∗ bab − − − −
∗ baab − − − +
∗ baaa + − − −

⇒6.
ncl

T6 ε baa aa a

∗ ε − + − −
∗ b − − + −
∗ a − − − −

ba − − + +
baa + − − +

∗ baab − − − +

∗ bb − − − −
∗ ab − − − −
∗ aa − − − −
∗ bab − − − −
∗ baaa + − − −
∗ baabb − − − −
∗ baaba + − − −

⇒7.
ncl

T7 ε baa aa a

∗ ε − + − −
∗ b − − + −
∗ a − − − −

ba − − + +
baa + − − +

∗ baab − − − +
∗ baaa + − − −

∗ bb − − − −
∗ ab − − − −
∗ aa − − − −
∗ bab − − − −
∗ baabb − − − −
∗ baaba + − − −
∗ baaab − − − −
∗ baaaa − − − −

⇒8.
ncs

T8 ε baa aa a aaa

∗ ε − + − − −
∗ b − − + − +
∗ a − − − − −
∗ ba − − + + −

baa + − − + −
∗ baab − − − + −
∗ baaa + − − − −

∗ bb − − − − −
∗ ab − − − − −
∗ aa − − − − −
∗ bab − − − − −
∗ baabb − − − − −
∗ baaba + − − − −
∗ baaab − − − − −
∗ baaaa − − − − −

⇒9.
ce

T9 ε baa aa a aaa baaba aaba aba ba

∗ ε − + − − − + − − −
∗ b − − + − + − + − −
∗ a − − − − − − − − −
∗ ba − − + + − − − + −
∗ baa + − − + − − − − +
∗ baab − − − + − − − − −
∗ baaa + − − − − − − − −

∗ bb − − − − − − − − −
∗ ab − − − − − − − − −
∗ aa − − − − − − − − −
∗ bab − − − − − − − − −
∗ baabb − − − − − − − − −
∗ baaba + − − − − − − − −
∗ baaab − − − − − − − − −
∗ baaaa − − − − − − − − −

M lup l p i Sum

T0 1 1 1 0 3

⇒ce T1 1 3 3 2 9

⇒ncl T2 2 4 4 4 14

⇒ncl T3 3 4 4 4 15

⇒ncl T4 4 5 5 5 19

⇒ncl T5 5 7 5 10 27

⇒ncl T6 6 7 5 10 28

⇒ncl T7 7 7 5 10 29

⇒ncs T8 7 7 6 9 29

⇒ce T9 7 7 7 9 30

Table 4.2: An NL∗ run and its corresponding measures
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b a a b a

a
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b b b

Σ

Σ

Figure 4.4: Minimal DFA for the (finite) regular language of Example 4.3.4

Simultaneously the number p of primes increases to 3 and the number of strict inclusion
relations from 0 to 2, accordingly. Regarding table T8, we have M(T8) = (7, 7, 6, 9) and
M(T9) = (7, 7, 7, 9). I.e., after adding the second counterexample, both variables, l and i,
remain unchanged. However, p is indeed increased as described in the proof.

The case of a non-RFSA-closed table occurs, e.g., in table T1. As row(b) has become a
prime row but is not yet situated in the upper table, it has to be moved to U resulting
in an increase of variable lup and variable l by one, each. The newly added row row(ba)
constitutes a new prime for table T2 and hence, variable p is augmented by one. Due to
this new row, we also get two more strict inclusions, yielding an increment of variable i
by two.

The last possible case occurs in table T7. It is not RFSA-consistent because rows row(b)
and row(ba) are in the covering relation (row(b) ⊑ row(ba)) but their a-successors are
incomparable. This conflict is resolved by adding the distinguishing string aaa to the set
of columns V . The measure from table T7 to table T8 leaves variable l unchanged. As
mentioned in the proof, in this case, variable i has to be decreased by at least one. A
close look at the tables T8 convinces us: variable i is indeed decreased by one. At the
same time, the number of primes p is increased. Row row(ba), which was composed in
table T7, now became prime.

The following schedule explicitly describes the whole run of NL∗ for the regular language
represented by the DFA from Figure 4.4. During the run two intermediate models and
the final canonical RFSA were calculated.

1) Found counterexample baa for current model AT0
(based on table T0).

2) RFSA-closedness violation: Trying to make T1 RFSA-closed with row: b

3) RFSA-closedness violation: Trying to make T2 RFSA-closed with row: a

4) RFSA-closedness violation: Trying to make T3 RFSA-closed with row: ba

5) RFSA-closedness violation: Trying to make T4 RFSA-closed with row: baa

6) RFSA-closedness violation: Trying to make T5 RFSA-closed with row: baab

7) RFSA-closedness violation: Trying to make T6 RFSA-closed with row: baaa

8) RFSA-consistency violation: Trying to obtain RFSA-consistency for table T7 by
adding the distinguishing suffix aaa

9) Found counterexample baaba for current model AT8
(based on table T8).

10) Table T9 is RFSA-closed and RFSA-consistent. Final model H can be calculated.

3
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1 2 3 n + 1 n+ 2

Σ

a Σ Σ. . .

Figure 4.5: An NFA over Σ = {a, b} accepting the regular language Ln with n + 2 states

T0 ε

ε −

a −
b −

1)
⇒

T1 ε

ε −
a −
aa −
aaa +

b −
ab −
aab +
aaaa +
aaab +

2)
⇒

T2 ε a

ε − −
a − −
aa − +
aaa + +

b − −
ab − +
aab + +
aaaa + +
aaab + +

3)
⇒

T3 ε a ba

ε − − −
a − − +
aa − + +
aaa + + +

b − − −
ab − + −
aab + + −
aaaa + + +
aaab + + −

4)
⇒

T4 ε a ba

ε − − −
a − − +
aa − + +
aaa + + +
ab − + −
aab + + −

b − − −
aaaa + + +
aaab + + −
aba + − +
abb + − −
aaba + − +
aabb + − −

5)
⇒

T5 ε a ba

ε − − −
a − − +
aa − + +
aaa + + +
ab − + −
aab + + −
aaba + − +
aabb + − −

b − − −
aaaa + + +
aaab + + −
aba + − +
abb + − −
aabaa − + +
aabab − + −
aabba − − +
aabbb − − −

Table 4.3: Learning regular language L2 employing L∗

4.4 NL∗ vs. L∗: an Example for an Exponential Gain

In this section we will present an extended example of the functioning of the NL∗ algo-
rithm and show that there is an infinite family of regular languages for which NL∗ learns
exponentially more succinct automata than its deterministic version L∗.

Suppose we were given a two-letter alphabet Σ = {a, b} and let Ln ⊆ Σ∗ be the
language of words over Σ containing the letter a at the (n+1)-last position according to
the regular expression Σ∗ aΣn. Then, Ln is accepted by a minimal DFA A∗

n with 2n+1

states. Nevertheless, there are NFA (cf. Figure 4.5) with only n + 2 states accepting Ln.
It is easy to see that there is even a canonical RFSA Rn of size n + 2 accepting Ln. In
other words, Rn is exponentially more succinct than A∗

n.
Now we exemplarily show how L2, whose minimal DFA A∗

2 is given in Figure 4.6, is
learned by Angluin’s L∗ algorithm and by our algorithm NL∗. We start with a run of L∗,
which is illustrated in Table 4.3. Table T0 is closed and consistent but does not represent
the intended automaton because, e.g., the word aaa is not accepted but contained in L2.
Hence, we add pref (aaa) to U and pref (aaa)Σ to UΣ. The result (after performing the
necessary membership queries) is T1. This table is closed but not consistent (row(a) =
row(aa) but not row(aa) = row(aaa)). Thus, we add the column a and obtain T2, which
is still not consistent leading to T3. After making the table closed, we obtain T5, which is
consistent as well, and whose corresponding automaton (Figure 4.6) accepts L2.

Now we present a run of NL∗ for inferring L2 = Σ∗aΣ2. It is depicted in Table 4.4. As
mentioned earlier, rows with a preceding ∗-symbol are prime rows. The table T0 is RFSA-
closed and RFSA-consistent but does not represent the intended automaton because the
word aaa is not accepted by the intermediate hypothesis though contained in language
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T0 ε

∗ ε −

∗ b −
∗ a −

⇒1.
ce

T1 ε aaa aa a

∗ ε − + − −

∗ b − + − −
∗ a − + + −

⇒2.
ncl

T2 ε aaa aa a

∗ ε − + − −
∗ a − + + −

∗ b − + − −
∗ ab − + − +

aa − + + +

⇒3.
ncl

T3 ε aaa aa a

∗ ε − + − −
∗ a − + + −
∗ ab − + − +

∗ b − + − −
aa − + + +

∗ abb + + − −
aba + + + −

⇒4.
ncl

T4 ε aaa aa a

∗ ε − + − −
∗ a − + + −
∗ ab − + − +
∗ abb + + − −

∗ b − + − −
aa − + + +
aba + + + −

∗ abbb − + − −
∗ abba − + + −

Table 4.4: Learning regular language L2 employing NL∗

L2. We add aaa and all its suffixes to V , perform membership queries, and then obtain
table T1, which is not RFSA-closed. We add a to U and continue. After solving two
more RFSA-closedness violations, we finally obtain table T4 which is RFSA-closed and
RFSA-consistent, and its corresponding automaton given in Figure 4.7 is the canonical
RFSA for L2. Notice that table T4 is not closed in the Angluin sense and hence, L∗ would
continue adding strings to the upper part of the table.

Corollary 4.4.1 ([DLT04]). There are infinite families of regular languages for which
NL∗ infers exponentially more succinct finite-state automata than L∗.

Proof: For example, the language classes L = {Ln | n ∈ N} and the set of complements
L = {Ln | n ∈ N}, where Ln := Σ∗ \ Ln, are infinite families of regular languages
for which the canonical RFSA are exponentially more succinct than the corresponding
minimal DFA. 2

Remark 4.4.2. One might be tempted to assume that there is a serious catch when
choosing NFA as underlying computation model for inference algorithms. For DFA there
exist efficient algorithms for minimization and verifying equivalence. An important state-
ment has to be given concerning the equivalence tests for NFA, however. Even if the target
regular language is given in terms of a deterministic finite-state automaton, the standard
method of subset construction, transforming the intermediate NFA into (minimal) de-
terministic automata, just annihilates the advantage of having compact representations
of regular languages. This method can however be circumvented by using the antichain
approach by De Wulf et al. [WDHR06], which yields a practically usable method for
checking the language-inclusion problem for NFA which, in most applications, turns out
to perform better than the näıve approach by several orders of magnitude. 3

The gain in terms of states when using NL∗ instead of L∗ seems to be highest when
a regular language on basis of a regular expression containing many “or” connectives is
learned. Intuitively this kind of connectives expresses nondeterministic behavior and can
thus be exploited optimally when learning an NFA. The L∗ algorithm, however, has to
resolve this nondeterminism which may result in an exponential state blowup.
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Figure 4.6: Minimal DFA A∗
2 accepting language L2 with 8 (= 22+1) states
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Figure 4.7: Canonical RFSA R2 accepting L2 with 4 (= 2 + 2) states

4.5 Other Approaches

We would like to mention two more approaches to define an active online learning algo-
rithm for canonical RFSA, which appear to be reasonable at first sight, but, on closer
inspection, turn out to be suboptimal in several respects.

4.5.1 A Straightforward but Inefficient Approach

Another possibility of on-the-fly exploiting inclusion relations between residual languages
will be discussed in the following. We adopt the idea of checking for inclusion relations
between rows in the table from the previous sections. To this end, we introduce a new
notion of consistency, which we will call strong RFSA-consistency.

Definition 4.5.1 (Strong RFSA-Consistency). A table T = (T, U, V ) is called strongly
RFSA-consistent (or strongly consistent, for short) if the following statements hold:

(i) for all u, u′ ∈ U and a ∈ Σ, row(u′) ⊑ row(u) implies row(u′a) ⊑ row(ua) and

(ii) for all u ∈ U and C ∈ 2U \ {∅}: if row(u) =
⊔

u′∈C row(u′) then

for all a ∈ Σ : row(ua) =
⊔

u′∈C row(u′a).
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Intuitively, for a given table T = (T, U, V ), strong RFSA-consistency checks (i) for all
inclusion relations whether their successors are in this relation as well and, additionally,
(ii) if for all possibilities C a row r could be composed of, the successor of r is composed
of the successors of C. Replacing the original consistency check of the NL∗ algorithm with
the new strong-consistency check yields an algorithm that will be usable to infer (canon-
ical) RFSA. Nevertheless, this algorithm is, as the one presented in Section 4.1, highly
inefficient. There may be exponentially many possibilities of sets of states composing a
given state. Thus, the strong-consistency check has an exponential time complexity in
the number of rows of U (i.e., in the number of states of the hypothesis) and can thus not
be employed for deriving an efficient online learning algorithm tailored to RFSA.

Another idea is to proceed similar as in Angluin’s algorithm and to add counterexamples
and their prefixes to the set of rows U . But more importantly, we have to relax the notion
of consistency such that, in contrast to our strong consistency defined above, the new
version can be checked efficiently. Using such a notion, we might be able to obtain
another efficient online algorithm for inferring canonical RFSA, which would be closely
related to L∗ (and not L∗

col).

4.5.2 A More Elaborate but Non-terminating Approach

As the previous definition of strong-consistency turned out not to be checkable efficiently,
in this subsection we define a new notion of consistency called weak RFSA-consistency.
As opposed to the previous algorithm, the new notion of consistency will be efficiently
testable, as we will not consider all possibilities of sets composing a state any more but
only maximal ones.

We will now define this new notion of consistency called weak RFSA-consistency.

Definition 4.5.2 (Weak RFSA-Consistency). A table T = (T, U, V ) is called weakly
RFSA-consistent (or weakly consistent, for short) if the following statements hold:

(i) for all u, u′ ∈ U and a ∈ Σ, row(u′) ⊑ row(u) implies row(u′a) ⊑ row(ua) and

(ii) for all u ∈ U and a ∈ Σ: row(ua) =
⊔

{u′|row(u′)⊑row (u)} row(u′a).

An implementation of this approach very much resembles the algorithm from Table 4.1.
Therefore, we refrain from listing the whole pseudocode as the only difference is the
notion of consistency in lines 3 and 8 which have to be replaced by the concept of weak
consistency and line 19, which has to be changed to T = (T ′, U ∪ pref (w), V ), as we now
want to add counterexamples and their prefixes to rows.

On the first sight, an implementation of an algorithm based upon the definition of
weak consistency appears to be reasonable. Unfortunately, we are in a situation where
we can no longer prove termination of the underlying algorithm and, as it turns out when
implementing this version, even if it constructs the correct canonical RFSA for most
regular languages, there are indeed examples for which it does not terminate. Such an
example—using the original definition of RFSA-consistency (cf. Definition 4.2.7 on page
49)—is given in Appendix B.4 on page 181.

The reason for non-termination is that certain states in the hypothesis automaton are
not reachable by their access string. In the learning instance from Appendix B.4, for
example, access string a represents state “+−”, hence, word a should be accepted by the
hypothesis. As shown in Figure B.6(b) on page 181, this is not the case. This entails
that a might again be presented as counterexample to the learning algorithm. But as
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this row is already contained in the table, no helpful information is added to continue the
learning procedure. The learning algorithm will again check the table for closedness and
consistency properties and—because the old and the new table are identical—return the
same hypothesis as before, yielding a non-terminating cycle in the algorithm.

4.6 UL∗: Remodeling NL∗ for Learning Universal

Automata

As adumbrated at the end of Section 4.4, NL∗ performs best if there are many “or”
connectives in the underlying regular expression equivalent to the target language and,
thus, much nondeterminism in the language to infer. Let us assume we were given such
a regular language L for which NL∗ performs very well, i.e., with a high degree of non-
determinism. If we complement this language, we are confronted with a regular language
L containing only a few “or” but many “and” connectives. Even if usually still better
than L∗ concerning the number of states of the resulting automata, NL∗ will not operate
well on such a language. A simple idea resolves this unpleasant observation. Instead of
employing NL∗ for language L, we complement the definition of the covering relation and
change the automaton model from nondeterministic to universal automata, i.e., automata
featuring “and”- instead of “or”-transitions, as defined in Definitions 2.3.19 and 2.3.21.

As before, we have to come up with a new notion of the former join operator (this will
be the intersection operator) and of prime and composed rows but now in the setting of
universal automata.

Definition 4.6.1 (Intersection Operator). Let T = (T, U, V ) be a table as usual. The
intersection (r1 ⊓ r2) : V → {+,−} of two rows r1, r2 ∈ Rows(T ) is defined component-
wise for each v ∈ V : (r1 ⊓ r2)(v) := r1(v)⊓ r2(v) where −⊓− = +⊓− = −⊓+ = − and
+ ⊓+ = +.

As for the case of RFSA, note that the intersection operator is associative, commutative,
and idempotent, yet that the intersection of two rows is not necessarily a row of table T
again.

Definition 4.6.2 (⊓-Composed and ⊓-Prime Rows). Let T = (T, U, V ) be a table. A
row r ∈ Rows(T ) is called ⊓-composed if there are rows r1, . . . , rn ∈ Rows(T ) \ {r} such
that r = r1 ⊓ . . . ⊓ rn. Otherwise, r is called ⊓-prime. The set of ⊓-prime rows in T is
denoted by Primes⊓(T ). Moreover, we let Primes⊓upp(T ) = Primes⊓(T ) ∩ Rowsupp(T ).

As before, we call a row r ∈ Rows(T ) of a table T ⊓-covered by row r′ ∈ Rows(T ),
denoted by r ⊑ r′, if for all v ∈ V , r(v) = − implies r′(v) = −. If moreover r′ 6= r, then
r is strictly covered by r′, denoted by r < r′.

Note that r may be ⊓-covered by r′ and, both, r and r′ are ⊓-prime. A ⊓-composed
row covers all the ⊓-primes it is ⊓-composed of.

The following definitions of RUFA-closedness and RUFA-consistency are similar to their
RFSA equivalent.

Definition 4.6.3 (RUFA-Closedness). A table T = (T, U, V ) is called RUFA-closed if,
for each r ∈ Rows low(T ), r =

d
{r′ ∈ Primes⊓upp(T ) | r ⊑ r′}.

Definition 4.6.4 (RUFA-Consistency). A table T = (T, U, V ) is called RUFA-consistent
if, for all u, u′ ∈ U and a ∈ Σ, row(u′) ⊑ row(u) implies row(u′a) ⊑ row(ua).
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T4 ε aaa aa a

∗ ε + − + +
∗ a + − − +
∗ ab + − + −
∗ abb − − + +

∗ b + − + +
aa + − − −
aba − − − +

∗ abbb + − + +
∗ abba + − − +

+−++ +−−+ +−+− −−++

b

a

a

b

a

b

a

b

(a) (b)

Figure 4.8: Final table T4 and corresponding canonical RUFA for language L2

We are now prepared to define the universal automaton of a RUFA-closed and RUFA-
consistent table T .

Definition 4.6.5 (UFSA of a Table). For a table T = (T, U, V ) that is RUFA-closed and
RUFA-consistent, we define an UFSA UT = (Q,Q0, δ, F ) over alphabet Σ by:

• Q = Primes⊓upp(T ),

• Q0 = {r ∈ Q | row(ε) ⊑ r},

• δ(row(u), a) = {r ∈ Q | row(ua) ⊑ r} for u ∈ U with row(u) ∈ Q and a ∈ Σ, and

• F = {r ∈ Q | r(ε) = +}.

All theoretical results from Sections 4.2, 4.3 and 4.4 also hold in the setting of RUFA
and their proofs are analog. Thus, we only mention the most important results being
transferred from the NL∗ learning sections.

Corollary 4.6.6. Let T be a table that is RUFA-closed and RUFA-consistent and let UT
be consistent with T (as defined in Definition 4.2.15). Then, UT is a canonical RUFA.

Corollary 4.6.7. Let n be the number of states of the minimal DFA A∗ for a given
regular language L ⊆ Σ∗. Let m be the length of the longest counterexample returned by
the equivalence test (or 1 if the equivalence test always succeeds). Then, UL∗ returns
after at most O(n2) equivalence queries and O(m|Σ|n3) membership queries the canonical
RUFA U(L).

Finally, we state that learning RUFA using the new UL∗ algorithm is sensible.

Corollary 4.6.8. There are infinite families of regular languages for which UL∗ infers
an exponentially more succinct automaton than L∗.
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Proof: The language class L = {Ln | n ∈ N} from Section 4.4 (and the set of com-
plements of L, L = {Ln | n ∈ N}) are infinite families of regular languages for which
the canonical RUFA (and RFSA) are exponentially more succinct than the corresponding
minimal DFA. 2

Example 4.6.9. In Figure 4.8 an example universal automaton for the regular language
L2 is presented. On the left-hand side, the final table T4 inferred by UL∗ is depicted,
whereas the right-hand side shows the RUFA derived from table T4. In fact, it is even the
canonical RUFA for L2. Like the canonical RFSA for language L2 (cf. Figure 4.7) this
canonical RUFA is also exponentially more succinct than its equivalent minimal DFA (cf.
minimal DFA from Figure 4.6 with inverted final states). 3

In general, if we were interested in the smallest possible model (i.e., canonical RFSA
or canonical RUFA) it would be reasonable to simultaneously run the two variants NL∗

and UL∗ in order to obtain the smaller representation of the target regular language. Of
course, in the worst case all three representations of the target, namely minimal DFA,
canonical RFSA, and canonical RUFA, are of equal size, but in the best case (one of) the
latter two might be exponentially more succinct than their deterministic counterpart.

4.7 Experiments

To evaluate the practical performance of NL∗ (and UL∗), we compare our learning al-
gorithms with Angluin’s L∗ algorithm, and its modification, called L∗

col, from Subsec-
tion 3.3.1. As NL∗ and UL∗ are arguably similar in spirit to L∗

col, a comparison with this
algorithm seems more fair.

To obtain maximally significant statistical data, we implemented all four learning algo-
rithms and let them execute the same set of samples. Following [DLT04], we randomly
generated large sets of regular expressions over different sizes of alphabets and let the
algorithms infer the languages induced by the input regular languages. The derivation of
the sample sets used in our experiments is described in the following paragraph.

4.7.1 Derivation of Sample Sets

As proposed in [DLT04], we randomly generated large sets of regular expressions over
different sizes of alphabets Σ. By means of a context-free grammar for inducing regu-
lar expressions, we iteratively constructed derivations of randomly drawn length l (i.e.,
number of production rule applications). To this end, we randomly drew a number rep-
resenting the number of rule applications for the regular grammar. Then l productions of
this grammar were randomly chosen according to fixed probabilities for the three operators
concatenation (·, 0.556), choice (+, 0.278) and Kleene star (∗, 0.166). As result, we got
an object consisting only of non-terminals and linked by l regular expression operators.
To obtain the final regular expression, all non-terminal symbols of the derivation were
replaced by a letter from the corresponding alphabet according to a uniform distribution
over Σ.

For the statistics enclosed in this thesis, we generated several sets of regular expressions
for different alphabet sizes (|Σ| ∈ {2, 3}). To assure that the minimal DFA equivalent
to the samples generated were all within a certain range R of state numbers, we created
regular expressions, transformed them to their minimal DFA equivalent, and tested the
number of states. We only added them to the final test set if their state number was within
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range R, and the sample size was not already present in the test set. This procedure
was iterated four times and terminated after we had four representatives of each state
size. For the statistics of this section, we only compiled regular expressions which had
equivalent minimal DFA between 1 and 200 states. These sets were fed to the three
learning algorithms L∗, L∗

col and NL∗ and the results stored. To evaluate the algorithms’
performances, we recorded the sizes of the hypotheses and the numbers of membership
and equivalence queries, respectively.

In the next paragraph, we summarize the results obtained from our experiments on
2- and 3-letter alphabets. The results are based on approximately 3200 sample regular
expressions, each.

4.7.2 Statistical Results

We now present the statistical results extracted from the test set mentioned previously. In
the first subsection, we compare L∗, L∗

col, and NL∗ to get an impression on the feasibility of
our new approach. A similar comparison is accomplished in the second paragraph where
all languages from the test set and, additionally, their complements are inferred using
L∗

col, NL∗, and UL∗.
The results obtained in this section are in line with the results of [DLT04], though our

results might be better, as NL∗ is able to infer canonical RFSA whereas DeLeTe2 infers
automata of size between canonical RFSA and equivalent minimal DFA. Furthermore,
Denis et al. performed their analyses on basis of two additional test sets containing ran-
domly drawn DFA and randomly drawn NFA, respectively. As randomly generated DFA
do not seem to contain many inclusion relations, the canonical RFSA of these languages
were not much smaller than—or even of equal size as—the equivalent minimal DFA. In
case of the NFA test set, however, results turned out to be similarly positive as in the
case of randomly drawn regular expressions.

Statistics: L∗, L∗
col, NL∗

For the diagrams in this section, we generated a set of 3180 regular expressions, resulting
in minimal DFA with sizes ranging between 1 and 200 states. These DFA were given to
the learning algorithms such that membership and equivalence queries could be answered
according to these automata. To evaluate the algorithms’ performances, we measured, for
each algorithm and input regular expression, the number of states of the final automaton
(canonical RFSA or minimal DFA) and the number of membership (resp. equivalence)
queries to infer it.

Figure 4.9 compares the number of states of the automata learned by L∗ (or equivalently,
L∗

col) (i.e., minimal DFA) and NL∗ (i.e., canonical RFSA) for 2- and 3-letter alphabets.
The number of states of the automata learned by NL∗ is considerably smaller than that
of L∗ and L∗

col, confirming the results of [DLT04]. More importantly, in practice, the
actual sizes of canonical RFSA compared to equivalent minimal DFA seem to follow an
exponential gap.

Figure 4.10 juxtaposes the number of membership queries of the three algorithms.
Note that for automata of size larger than 40 states, NL∗ seems to need increasingly less
membership queries than the other two algorithms for inferring deterministic automata.
Moreover, we see that in the case of membership queries the basic version of Angluin
performs much better than its extended version L∗

col. This, however, is not the case
if one considers the number of equivalence queries necessary to infer the automata (cf.
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Figure 4.9: Number of states of minimal DFA and canonical RFSA (|Σ| ∈ {2, 3})
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Figure 4.10: Number of membership queries (|Σ| ∈ {2, 3})
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Figure 4.11: Number of equivalence queries (|Σ| ∈ {2, 3})
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NL∗ and L∗ Won Lost Tie

States 95.78% 0.0% 4.22%
Membership queries 77.04% 22.01% 0.95%
Equivalence queries 89.64% 2.24% 8.12%

NL∗ and L∗
col Won Lost Tie

States 95.78% 0.0% 4.22%
Membership queries 88.85% 7.87% 3.28%
Equivalence queries 65.10% 13.32% 21.58%

Table 4.5: Comparing NL∗ to L∗ and L∗
col (2-letter alphabet)

Figure 4.11). Though NL∗ still performs far better than both, L∗ and L∗
col, the extended

version of Angluin now behaves nicer. In almost all cases it needs less equivalence queries
than L∗. In many application areas, equivalence queries are extremely costly. Hence, for
inferring deterministic automata, L∗

col will in many cases be of high interest and preferable
to the basic version L∗.

The above results are in contrast with the theoretical result we obtained in Theo-
rem 4.3.3 on page 55. This suggests that the upper bound derived in Section 4.3 is not
tight. The experiments we performed point out the clear predominance of NL∗ over L∗

and L∗
col as long as the user is not dependent on a deterministic target model. Hence, NL∗

might be of great interest, e.g., in the field of formal verification.
To get a numerical impression of “which algorithm is superior to which”, consider the

Tables 4.5 and 4.6. They emphasize the results mentioned above but also show that, in
all cases, there is a significant number of wins of NL∗ over the other two algorithms.

NL∗ and L∗ Won Lost Tie

States 95.91% 0.0% 4.09%
Membership queries 81.92% 16.95% 1.13%
Equivalence queries 90.16% 2.20% 7.64%

NL∗ and L∗
col Won Lost Tie

States 95.91% 0.0% 4.09%
Membership queries 89.71% 7.08% 3.21%
Equivalence queries 64.34% 14.06% 21.60%

Table 4.6: Comparing NL∗ to L∗ and L∗
col (3-letter alphabet)

The tables’ entries have to be understood as follows: the column “Won” describes the
number of times in our experiments where NL∗ was superior to L∗ or L∗

col, respectively,
i.e., whenever the difference between number of states (or membership- or equivalence
queries) of the automaton derived by L∗/L∗

col and by NL∗ was positive. Similarly, column
“Lost” describes when this number is negative. In case the difference is equal to 0 we have
a “Tie”. The same numbers were calculated for membership- and equivalence queries and
are depicted in lines 2 and 3 of the corresponding tables.

Note that we also performed experiments with larger size alphabets (|Σ| ∈ {10, 20}).
While currently we cannot make any general statement regarding membership and equiv-
alence queries, concerning the number of states, these experiments show that even in the
case of larger alphabets the exponential gap seems to hold though the curves get closer.

Learning Languages and Their Complements: L∗
col, NL∗, UL∗

In this section we want to demonstrate the problem that came up in Section 4.4 and was
the reason for considering RUFA. If given a regular language L for which NL∗ behaves very
nicely, i.e., the result is substantially smaller than the minimal DFA for L, it might be the
case that for the complement L of this language NL∗ behaves much worse. In contrast, UL∗

might work substantially better. Thus, in this paragraph we oppose the three algorithms
(L∗

col, NL∗ and UL∗) in order to learn the languages from another test set generated
along the lines of the previous subsection as well as their complements. As it turns out,
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Figure 4.12: Number of states (|Σ| = 2)

either of the algorithms NL∗ and UL∗ performs very well in one of the two learning tasks.
This observation is true for all three measures, i.e., number of states of the hypothesis,
number of membership queries, and equivalence queries to obtain the hypothesis. But note
moreover, that even in the case one of the two algorithms performs worse than the other,
the number of states is still considerably smaller than that of the equivalent minimal DFA.
In Figures 4.12, 4.13 and 4.14 the number of states, the number of membership queries
and the number of equivalence queries for the three learning algorithms are opposed to
one another. It can obviously be seen that for one of the inputs L and L always either NL∗

or UL∗ wins. Therefore—assuming that the hypothesis model (i.e., DFA, NFA, UFSA)
is of no concern—we proposed, if given a regular language L′, to let NL∗ and UL∗ run
in parallel and take the smallest hypothesis as result. This combined learning algorithm
still is a polynomial time learning algorithm, yielding the smallest of the three models.

4.8 Lessons Learned

Subsequently, we want to summarize the main properties characterizing our new active
online learning algorithm NL∗. We now give a brief discussion of its advantages and
disadvantages with respect to other learning algorithms. Note that most considerations
made in this section also apply to the UL∗ algorithm introduced in Section 4.6.
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Figure 4.13: Number of membership queries (|Σ| = 2)

4.8.1 Why Choosing NL∗?

Fist of all, we summarize the main characteristics of NL∗. NL∗ is an active online learn-
ing algorithm for deriving a subclass of NFA, namely canonical RFSA, in the style of
Angluin’s famous L∗ algorithm (or, more precisely, its variant L∗

col). We showed that it
is efficient regarding its theoretical complexity and, more importantly, performs well in
practice. Moreover, the notorious problem of checking the equivalence between two NFA
diminishes, as equivalence queries can be checked (more) efficiently using the antichain
approach for checking language inclusion for NFA introduced in [WDHR06]. As we do
not always get additional states after answering an equivalence query and submitting a
new counterexample, the proof for termination of NL∗ turned out to be much more in-
volved than the proof for the corresponding result for L∗ where it is known that each
counterexample implies a growth of the state set by at least one.

4.8.2 Disadvantages

In this paragraph we like to mention several drawbacks a user might perceive when using
NL∗. Firstly, as we are learning canonical RFSA, which are a proper subset of NFA, this
model might, due to the nondeterminism contained, not always be the desired synthesis
model. Sometimes NL∗ needs more membership queries or equivalence queries than L∗

and L∗
col. This peculiarity goes hand in hand with the theoretical results we obtained

for the time complexity for NL∗, which is marginally higher than for L∗. As shown
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Figure 4.14: Number of equivalence queries (|Σ| = 2)

in the previous section, however, in the vast majority of cases NL∗ outperformed its
deterministic versions L∗ and L∗

col by far if randomly drawn NFA or regular expressions
are used as representation for the target regular languages. As shown in [DLT04] the gain
drastically diminishes if minimal DFA are used as representations. Note that even if the
alphabet size increases the exponential gap between the number of states of the minimal
DFA and canonical RFSA seems to hold (if NFA or regular expressions are chosen as
representation). Nevertheless, results turn out to be best when using small alphabets and
if NFA are employed as representation.

Another property that is characteristic for NL∗ is that intermediate hypotheses need
neither be canonical RFSA nor RFSA at all. As, however, the final model is always a
canonical RFSA this fact might be of minor relevance to the user.

4.8.3 Advantages

After discussing some aspects of NL∗ which might be regarded problematic in some appli-
cation areas, we now turn our interest to the advantages which accompany NL∗. Assuming
that the user is satisfied with a nondeterministic target model, NL∗ features several ben-
efits. As we showed in Section 4.4, there are infinite families of regular languages which
are recognized by canonical RFSA, which can be inferred using NL∗, and these canonical
RFSA are exponentially more succinct than their corresponding minimal DFA. For many
applications areas, such as formal verification, small automata are desirable and, hence,
NL∗ becomes the algorithm of choice. Our observations and experiences so far tell us
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that the unpleasant characteristics mentioned above do not occur in most cases and that,
usually, even the inverse is true in the majority of cases. A further advantage, which
distinguishes NL∗ from other learning algorithms for inferring nondeterministic automata
is, the following: in NL∗ the final hypothesis for a regular language will always be a canon-
ical RFSA. This is neither the case for any existing (passive) offline (i.e., the DeLeTe2

algorithm, cf. Subsection 3.2.2) nor active online algorithm (i.e., the LA algorithm, cf.
Subsection 3.3.2) for inferring NFA. All in all, the advantages of NL∗ are manifold, and
we are hopeful that it will be usable in many research areas like verification, e.g., in the
setting of regular model checking [HV05], pattern matching [Yok95], or even in biological
settings and bioinformatics, e.g., because according to [CF03] NFA are better suited to
represent structure like “gaps” in genomic, or for characterizing protein families [CK06]
where the classical learning algorithms like RPNI perform very badly.

4.9 Beyond Nondeterministic- and Universal Automata

To conclude this chapter, we take a glimpse beyond the learning of RFSA and RUFA. A
model unifying the advantages of both worlds, i.e., having nondeterministic and universal
transitions at the same time, could be interesting to regard for learning purposes. Al-
ternating automata feature this property and are an alternative representation of regular
languages. It is known that for a given regular language a corresponding minimal alter-
nating automaton can be exponentially more succinct than an equivalent minimal NFA
or UFSA and even doubly exponentially more succinct than the corresponding minimal
DFA. Hence, it would be interesting to define the notion of canonical residual alternating
finite-state automata (canonical RAFA, for short) as follows: a canonical RAFA for a
regular language L is an alternating automaton such that every composed state of the
equivalent minimal DFA can be represented as unions and intersections of prime residual
languages of L. With this notion of canonical RAFA, we could try to learn the class
by means of an Angluin-style learning algorithm. So far, we were only able to define an
exponential time algorithm which, given a table T , tries to find the minimal solution (i.e.,
a solution with a minimal number of prime rows) by testing all possibilities of composing
a row out of other rows in order to find a minimal set of prime states from which resid-
ual languages are “constructible” (using union and intersection of prime residuals). This
algorithm is obviously not efficient.

It is left open, whether the class of RAFA is learnable in polynomial time from an online
learning algorithm in the spirit of L∗ or NL∗.





5 Learning Congruence-Closed
Languages

We now derive a schema improving the memory consumption of table-based learning
algorithms like L∗, NL∗ and UL∗. It groups words into equivalence classes so that they
can be stored efficiently without the need of memorizing all words from Angluin’s table,
explicitly. The intention is to reduce the amount of memory necessary for storing Angluin’s
table. Instead of storing all elements of a class of congruent words, only one representative
of each class, a normal form, will be recorded in the table. This approach amounts to
merging rows and columns for congruent prefixes and suffixes, respectively, and leads to
a substantial reduction of the table size as will be shown experimentally in Sections 6.3
and 9.2, where we apply this approach in the setting of message sequence charts.

Let Σ be an alphabet, D ⊆ Σ∗ be a domain, and ≈D be a congruence relation over D.
In order to represent congruence classes, we introduce a normal form for both prefixes
and suffixes of words over D. Consider a lexicographic (i.e., strict total) ordering on Σ,
which is extended to words over Σ. For the rest of this chapter we will employ the length-
lexicographical order <lex from Definition 2.2.2. Let pnf , snf : Σ∗ → Σ∗ ⊎ {⊥}. The
function pnf assigns to a word w ∈ pref (D) the minimal word wrt. <lex that is equivalent
to w (to be made precise below). To words that are not in pref (D), pnf assigns an
element that is not from pref (D) (the existence of such an element is guaranteed by the
auxiliary symbol ⊥). Analogously, the mapping snf assigns to a word w ∈ suff (D) its
normal form, i.e., the minimum (wrt. <lex) among all equivalent words, and it associates
with every other word an element that is not from suff (D) (its existence is again ensured
by the character ⊥). We define the concatenation with ⊥ to be annihilating, i.e., for all
w ∈ Σ∗ ⊎ {⊥}: ⊥ · w = w · ⊥ = ⊥. The precise definition of the normal forms now goes
as follows. Let w ∈ Σ∗:

• If w ∈ pref (D), then we set pnf (w) := min<lex
{w′ ∈ pref (D) | ∃v ∈ Σ∗: wv ≈D w′v}

where min<lex
returns the minimum of a given set wrt. <lex. Otherwise, let pnf (w)

be such that pnf (w) 6∈ pref (D). In this case, we can also always choose the ⊥
symbol.

• If w ∈ suff (D), then we set snf (w) := min<lex
{w′ ∈ suff (D) | ∃u ∈ Σ∗: uw ≈D

uw′}. Otherwise, snf (w) 6∈ suff (D). In this case, we can also always choose the ⊥
symbol.

Note that pnf (ε) = snf (ε) = ε. The mappings pnf and snf are canonically extended to
sets L ⊆ Σ∗, i.e., pnf (L) =

⋃
w∈L pnf (w) and snf (L) =

⋃
w∈L snf (w). We assume in the

following that both pnf and snf are computable.
It is crucial for the application of normal forms that a given domain D satisfies, for all

u, v, u′, v′ ∈ Σ∗, the following properties:

If uv 6∈ D, then u 6∈ pref (D) or v 6∈ suff (D). (*)
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If uv ∈ D and u′v′ ≈D uv′, then u′v ∈ D. (**)

If uv ∈ D and u′v′ ≈D u′v, then uv′ ∈ D. (***)

Assuming these properties as valid for a concrete domain D, it will suffice to use normal
forms when building a table in the extension of Angluin’s algorithm, which may result in
significantly smaller tables. We obtain an extension of L∗, which we call cclL∗ simply by
replacing every command of the form U := U ∪ L (where L is an arbitrary set of words)
by U := U ∪ pnf (L), and every command of the form V := V ∪ L by V := V ∪ snf (L).

The correctness of our improved algorithm is stated in the following theorem.

Theorem 5.0.1 (cclL∗: Correctness). Let D ⊆ Σ∗ be a domain and ≈D be a congruence
over D such that D satisfies (*) – (***). If the Teacher classifies/provides words in con-
formance with a regular language L, then invoking cclL∗ (D,≈D) returns, after finitely
many steps, an automaton A such that L(A) = L.

Proof: Consider an instance of (T, U, V ) during a run of cclL∗. For w ∈ (U ∪ UΣ)V , the
value of T (w) is − if w 6∈ D. If, on the other hand, w ∈ D, then T (w) only depends on the
classification of w by the Teacher . So let u, v ∈ Σ∗. We consider the two abovementioned
cases.

• Suppose uv 6∈ D. Then, by (*), u 6∈ pref (D) or v 6∈ suff (D). Thus, pnf (u) 6∈
pref (D) or snf (v) 6∈ suff (D) so that finally pnf (u) · snf (v) 6∈ D.

• Suppose uv ∈ D. Then, u ∈ pref (D) and v ∈ suff (D). By the definition of
the mappings pnf and snf , there are u′ and v′ such that pnf (u) · v′ ≈D uv′ and
u′ · snf (v) ≈D u′v. By (**) and (***), {pnf (u) · v, u · snf (v)} ⊆ D so that pnf (u) ·
v ≈D uv and u · snf (v) ≈D uv. Applying (**) (or (***)) a second time, we obtain
pnf (u) · snf (v) ∈ D. We deduce pnf (u) · snf (v) ≈D uv, which implies uv = pnf (u) ·
snf (v).

Thus, it does not matter if an entry T (w) in the table is made on the basis of w or on
pnf (u) · snf (v), regardless of the partitioning uv of w. In particular, if we replace, in
U and V , every word with its respective normal form, then the resulting table preserves
consistency and closure properties. Moreover, the automaton that we can construct, given
the new table is closed and consistent, is isomorphic to that of the original table.

As this replacement is precisely what is systematically done in cclL∗, the theorem
follows. 2

Table 5.1 highlights the changes that are necessary to integrate congruence-closed lan-
guage learning into L∗ (or any similar table-based learning algorithm, e.g., L∗

col, NL∗, or
UL∗). The update function ccl-T-Update depicted in Table 5.2 is not changed com-
pared to Table 3.5 on page 35 and only listed here for the sake of completeness.

Depending on the underlying automaton model, there are differences in how to obtain
the final automaton from the derived table. We will now define the DFA for a table
derived using the cclL∗ algorithm. Note that for RFSA and RUFA this definition is very
similar.

Definition 5.0.2 (Automaton of a table). Given a closed and consistent table TcclL∗ ,
the underlying hypothesis DFA is HcclL∗ = (Q,Q0, δ, F ) where:

• Q = {row(u) | u ∈ U},
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cclL∗(D,≈D):

1 U := {ε}; V := {ε}; T is defined nowhere;
2 ccl-T-Update();
3 repeat

4 while (T, U, V ) is not (closed and consistent)
5 do

6 if (T, U, V ) is not consistent then

7 find u, u′ ∈ U, a ∈ Σ, and v ∈ V such that row (u) = row (u′) and
8 row(ua)(v) 6= row (u′a)(v);

9 V := V ∪ snf ({av});

10 ccl-T-Update();
11 if (T, U, V ) is not closed then

12 find u ∈ U and a ∈ Σ such that row (ua) 6= row (u′) for all u′ ∈ U ;

13 U := U ∪ pnf ({ua});

14 ccl-T-Update();
15 /∗ (T, U, V ) is both closed and consistent, hence, H(T,U,V ) can be derived ∗/
16 perform equivalence test for H(T,U,V );
17 if equivalence test fails then

18 get counterexample w;

19 U := U ∪ pnf (pref (w));

20 ccl-T-Update();
21 until equivalence test succeeds;
22 return H(T,U,V );

Table 5.1: cclL∗: Extension of L∗ by congruence-closed language learning

ccl-T-Update ():

1 for w ∈ (U ∪ UΣ)V such that T (w) is not defined
2 T (w) := getClassificationFromTeacher (w);

Table 5.2: Function for updating table function in cclL∗

• Q0 = {row(ε)},

• δ(row(u), a) = {row(pnf (ua))} for row(u) ∈ Q , a ∈ Σ, and

• F = {r ∈ Q | r(ε) = +}.

We would like to emphasize again that this approach is not only applicable to L∗ but
to all learning algorithms (e.g., L∗

col, NL∗, and UL∗, with the slight difference that coun-
terexamples and their suffixes are added to the set of columns) that implement Angluin’s
table. Moreover, in Sections 6.3 and 9.2 we will see how the learning of congruence-closed
languages can be employed in the setting of message sequence charts to obtain significant
reductions in memory consumption concerning Angluin’s table.

In the following, we will give an example of how the normal forms are applied to tables
and emphasize, for a given regular language, the gain obtained by this approach.

Example 5.0.3. Let Σ = {a, b}, D = Σ∗, and consider the finite regular language
L = {w ∈ Σ∗ | |w|a = |w|b ≤ 2}. Suppose furthermore that ≈D = {(w1, w2) ∈ D

∗ × D∗ |
|w1|a = |w2|a and |w1|b = |w2|b}. The normal forms in this example are pnf (w) =
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snf (w) = a|w|ab|w|b for any w ∈ Σ∗. It can easily be verified that this choice satisfies the
requirements (*)–(***) that were imposed on the congruence relations and the normal
forms. The goal is to infer the minimal automaton from Figure 5.1—which recognizes the
regular language L—by means of L∗ and cclL∗, and to compare the resulting tables TL∗

and TcclL∗ with respect to their sizes.
To get an impression of how the normalization of words using pnf and snf works, let

us first and exemplarily consider a table containing the following two rows labeled by
p1 = aba and p2 = baa:

ε a b · · ·
...

...
...

... · · ·
p1 = aba
p2 = baa

−
−

−
−

+
+

· · ·
· · ·

}

...
...

...
...

. . .

pnf
=⇒

ε a b · · ·
...

...
...

... · · ·
pnf (p1)
= aab − − + · · ·

...
...

...
...

. . .

The normal forms for p1 and p2 are pnf (p1) = pnf (p2) = aab. Therefore, these two rows
are collapsed into one, as shown on the right hand side of the figure. Similarly, columns
representing ≈D-congruent words can be collapsed. The following table contains suffixes s1

and s2. The normal forms of s1 and s2 result in the same suffix: snf (s1) = snf (s2) = abb.

s1 = s2 =
· · · bab abb · · ·

ε · · · − − · · ·
a · · · + + · · ·
b · · · − − · · ·
...

...
...

...
. . .

snf
=⇒

snf (s1)
· · · = abb · · ·

ε · · · − · · ·
a · · · + · · ·
b · · · − · · ·
...

...
...

. . .

Given a partially compressed or even uncompressed table, it might be interesting to
fully collapse the rows of congruent words and use the resulting table for continuing the
learning procedure. As collapsing operations only concern equivalent rows or columns,
respectively, the order in which compression is deployed to a (partially) uncompressed
table is not of importance. Thus, an uncompressed table can be reduced at any time or,
as in the algorithm cclL∗ from Tables 5.1 and 5.2, on-the-fly, during learning. 3

Returning to the initial example, language L can now be inferred using the original
L∗ algorithm and the new improved version cclL∗. The final tables are presented in
Table 5.3. On the left hand, the resulting table TL∗ after applying L∗ is shown. For
this rather small example, it already contains 275 entries. On the right side, table TcclL∗

describes the same hypothesis automaton after applying the cclL∗ algorithm, but the
final table only contains 144 entries. This represents an improvement of approximately
47,7% regarding memory usage.

Of course, the usability of this modification substantially depends on the domain and
the congruence that are employed. Thus, it has to be regarded as a domain-specific opti-
mization which in some cases may cause fundamental improvements concerning memory
consumption.

Note that the idea of exploiting an independence relation for learning is already appears
in [EGPQ06] in the context of grey-box checking.
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TL∗ ε b a bb ab ba abb aabb aab aba aa

ε + − − − + + − + − − −
a − + − − − − + − − − −
aa − − − + − − − − − − −
ab + − − − + + − − − − −
ba + − − − + + − − − − −
b − − + − − − − − + + −
aaa − − − − − − − − − − −
aaaa − − − − − − − − − − −
aabb + − − − − − − − − − −
aab − + − − − − − − − − −
bbaa + − − − − − − − − − −
bba − − + − − − − − − − −
bb − − − − − − − − − − +

aba − + − − − − − − − − −
abb − − + − − − − − − − −
baa − + − − − − − − − − −
bab − − + − − − − − − − −
aaab − − − − − − − − − − −
aaaaa − − − − − − − − − − −
aaaab − − − − − − − − − − −
aabba − − − − − − − − − − −
aabbb − − − − − − − − − − −
aaba − − − − − − − − − − −
bbaaa − − − − − − − − − − −
bbaab − − − − − − − − − − −

TcclL∗ ε b a bb ab abb aabb aab aa

ε + − − − + − + − −
a − + − − − + − − −
aa − − − + − − − − −
ab + − − − + − − − −
b − − + − − − − + −
aaa − − − − − − − − −
aaaa − − − − − − − − −
aabb + − − − − − − − −
aab − + − − − − − − −
abb − − + − − − − − −
bb − − − − − − − − +

aaab − − − − − − − − −
aaaaa − − − − − − − − −
aaaab − − − − − − − − −
aaabb − − − − − − − − −
aabbb − − − − − − − − −

(a) uncompressed using L∗ (275 entries) (b) compressed using cclL∗ (144 entries)

Table 5.3: Uncompressed and compressed table for regular language L from Example 5.0.3
using L∗ and cclL∗, respectively

a

a b

bb a

b

b a

aa b
a, b

a

a

b

b

a, b

Figure 5.1: Minimal DFA for finite regular language L from Example 5.0.3





6 Learning and Synthesis of Distributed
Systems

In the following chapter we will describe an application of the L∗ learning algorithm. The
domain we are now dealing with is the domain of distributed systems, and the main goal
we want to achieve is to detect classes of regular languages that represent distributed
systems and that are learnable employing active online algorithms. The whole approach
described here can be regarded as part of the software engineering development cycle as
we will show in Chapter 7.

Software development usually starts with eliciting requirements. Requirement capturing
techniques of various nature exist. Popular requirement engineering methods, such as the
Inquiry Cycle and CREWS [NE00], exploit use cases and scenarios for specifying system’s
requirements. Scenarios given as sequence diagrams are also at the heart of the UML
(Unified Modeling Language). A scenario is a partial fragment of the system’s behavior
given as visual representation indicating the system components (vertically, denoting time
evolution) and their message exchange (horizontally). Their intuitive yet formal nature
has led to a broad acceptance by the software engineering community, both in academia
as well as in industry. Scenarios can be positive or negative, indicating either a possible
desired or an unwanted system behavior, respectively. Different scenarios together form
a more complete description of the system behavior.

Requirements capturing is typically followed by a first design step of the system at
hand. This step naturally ignores many implementation details and aims to obtain an
initial system structure at a high level of abstraction. In case of a distributed system
realization this, e.g., amounts to determine which processes are to be distinguished, what
their high-level behavior is, and which capacities of communication channels suffice to
warrant a deadlock-free process interaction. This design phase in software engineering
is highly challenging as it concerns a complex paradigm shift between the requirement
specification—a partial, overlapping and possibly inconsistent description of the system’s
behavior that is subject to rapid change—and a conforming design model, a first complete
behavioral description of the system.

The fact that target systems are often distributed complicates matters considerably
as combining several individual processes may easily yield realizations that handle more
than the specified scenarios, i.e., they may over-approximate the system requirements, or
suffer from deadlocks. During the synthesis of such distributed design models, conflicting
requirements are detected and resolved. As a consequence, the requirements specification
is adapted by adding or omitting scenarios. Besides, a thorough analysis of the design
model, e.g., by means of model checking or simulation, requires fixing errors in the re-
quirements. Obtaining a complete and consistent set of requirements together with a
conforming design model is thus a complex and highly iterative process.

In the rest of this chapter we consider requirements given as message sequence charts
(MSCs). MSCs are a standardized notation [ITU96, ITU99, ITU04] for modeling behavior
of distributed systems. The MSCs regarded in this thesis are basic; high-level constructs
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to combine MSCs by alternative, sequential or repetitive composition are not considered.
This yields a simple, yet still effective requirement specification formalism that is expres-
sive, and easy to grasp and to understand. For the design models we focus on distributed
systems where each process behavior is described as a finite-state machine and processes
exchange messages asynchronously via order-preserving communication channels. These
communicating finite-state machines (CFMs [BZ83]) are commonly adopted for realizing
MSCs [AEY01, BM07, Gen05, GKM06, GKM07, GMSZ06, HMK+05, Loh03, Mor02].

The goal now consists of exploiting Angluin’s learning algorithm (cf. Subsection 3.3.1) to
synthesize CFMs from requirements given as sets of (positive and negative) basic MSCs.
Learning fits well with the incremental generation of design models as it is feasible to
infer a design model on the basis of an initial set of scenarios, CFMs are adapted in an
automated manner on adding and deletion of MSCs, and diagnostic feedback is provided
that may guide an amendment of the requirements when establishing an inconsistency of a
set of scenarios. The use of learning for system synthesis from scenario-based requirements
specifications is not new and has been proposed by several authors, see, e.g., [MS01,
UBC07, UKM03, DLD05]. The main characteristics of our approach are the unique
combination of the following aspects:

(i) Positive and negative MSCs are naturally supported.

(ii) The realized processes interact fully asynchronously.

(iii) The synthesized CFMs precisely exhibit the behavior as specified by the input MSCs.

(iv) Some effective optimizations tailored to partial orders (e.g., MSCs) are developed.

Existing learning-based synthesis techniques typically consider just possible and no unde-
sired behaviors, yield synchronously (or partially asynchronously) interacting automata,
and, most importantly, suffer from the fact that synthesized realizations may exhibit more
behavior than specified so that the obtained realizations are in fact over-approximations.
For our approach, however, it is guaranteed that the final system will precisely exhibit
the behavior that was presented to the approach, which means that all scenarios specified
as positive will be included in the target language and all negatively specified behavior
excluded from the language.

6.1 Preliminaries

In this section, we introduce two fundamental concepts: message sequence charts (MSCs)
and communicating finite-state machines (CFMs) [BZ83]. The former constitute an ap-
pealing and easy to understand graphical specification formalism. The latter, also known
as message passing automata (MPA), serve as design models for the system to learn
and model the communication behavior of distributed systems composed of finite-state
components.

As in this chapter we are dealing with communicating entities, which are capable of
executing sending and receiving actions, elements of communication alphabets are called
actions .
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6.1.1 Message Sequence Charts

A common design practice when developing communicating systems is to start with spec-
ifying scenarios to exemplify the intended interaction of the system to be. Message se-
quence charts (MSCs) provide a prominent notion to further this approach. They are
widely used in industry, are standardized [ITU98, ITU04], and resemble UML’s sequence
diagrams [Ara98]. An MSC depicts a single partially ordered execution sequence of a
system. It consists of a collection of processes, which, in their visual representation, are
drawn as vertical lines and are interpreted as top-down time axes. Moreover, an arrow
from one line to a second corresponds to the communication events of sending and re-
ceiving a message. An example MSC is illustrated in Figure 6.1(a). The benefit of such a
diagram is that one grasps its meaning at a glance. In the example scenario, messages m1

and m2 are sent from process p to process q. A further message m originates at process r
and is finally received at q. However, one still has to reach an agreement on the system
architecture, which does not necessarily emerge from the picture. Namely, following the
MSC standard, we assume asynchronous communication: the send and receipt of a mes-
sage might happen time-delayed. More precisely, there is an unbounded FIFO channel
in between two processes that allows a sender process to proceed while the message is
waiting for being received. Moreover, we assume a single process to be sequential: the
events of one particular process are totally ordered in accordance with their appearance
on its time axis. For example, regarding Figure 6.1(a), we suppose that sending m2 occurs
after sending m1. However, as the relative speed of the processes is unknown, we do not
know if m1 is received before m2 is sent. Thus, the latter two events remain unordered.

We conclude that, in a natural manner, an MSC can be seen as a labeled partial order
(labeled poset) over its events. Figure 6.1(b) depicts the Hasse diagram of the labeled
poset that one would associate with the diagram from Figure 6.1(a). Its elements 1, . . . , 6
represent the endpoints of the message arrows and are called events. The edge relation
then reflects the two constraints on the order of execution of the events: (i) events that are
located on the same process line are totally ordered, and (ii) a send event has to precede
the corresponding receive event. Indeed, it is reasonable to require that the transitive
closure of constraints (i) and (ii) is a partial order. To keep track of the nature of an
event in the poset representation, any such event is labeled with an action. Thus, a
possible label is either:

• a send action, which is of the form !(p, q,m) meaning that p sends a message m to
q or

• a receive action, which is of the form ?(q, p,m) and is the complementary receive
action executed by process q.

The alphabet of actions is, therefore, parameterized by nonempty and finite sets Proc
of processes and Msg of messages, which we suppose to be fixed in the following. We
suppose |Proc| ≥ 2. Recall that we assume an exchange of messages through channels.
The set of channels is denoted Ch = {(p, q) ∈ Proc × Proc | p 6= q}. The set Actp of
actions that may be executed by process p is given by Actp = {!(p, q,m) | (p, q) ∈ Ch and
m ∈ Msg} ∪ {?(p, q,m) | (p, q) ∈ Ch and m ∈ Msg}. Moreover, let Act =

⋃
p∈Proc Actp

denote the set of all actions. Before we formally define what we understand by an MSC,
let us first consider general Act-labeled posets, i.e., structures (E,�, λ) where E is a
finite set of events, λ is a labeling function of the form E → Act , and � is a partial-
order relation (it is reflexive, transitive, and antisymmetric). For process p ∈ Proc, let
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p q r

m1

m2

m

2

3

4

5

6 1

!(p, q,m1)

!(p, q,m2)

?(q, p,m1)

?(q, p,m2)

?(q, r,m) !(r, q,m)

(a) (b)

Figure 6.1: An MSC as a diagram (a) and as a graph (b)

�p := � ∩ (Ep × Ep) be the restriction of � to Ep := λ−1(Actp) (which will later be
required to give rise to a total order) and the direct predecessor relation on process p:
⋖p := {(e, e′) ∈ �p | ∄e′′ ∈ Ep : e �p e

′′ �p e
′ and e 6= e′′ 6= e′}. Moreover, we define the

relation ≺msg ⊆ E ×E to detect corresponding send and receive events: i ≺msg j if there
are a channel (p, q) ∈ Ch and a message m ∈ Msg such that:

• λ(i) = !(p, q,m), λ(j) = ?(q, p,m) and

• |{i′ � i | λ(i′) = !(p, q,m′) for some m′ ∈ Msg}| =
|{j′ � j | λ(j′) = ?(q, p,m′) for some m′ ∈ Msg}|.

That is, events i and j correspond to a message exchange only if the number of messages
that have been sent through channel (p, q) before i equals the number of messages that
have been received before j. This ensures FIFO communication.

Definition 6.1.1 (Message Sequence Chart (MSC)). An MSC is an Act-labeled poset
(E,�, λ) such that:

• for all p ∈ Proc, �p is a total order on Ep,

• � = (≺msg ∪
⋃

p∈Proc �p)
∗, and

• every event is part of a message, i.e., for every i ∈ E, there is j ∈ E such that
either (i, j) ∈≺msg or (j, i) ∈≺msg.

See Figure 6.1(a) and Figure 6.2 for graphical representations of some example MSCs.
Stated in words, an MSC is an Act-labeled poset such that events occurring at a single

process are totally ordered, and that for each send event i there is a corresponding receive
event j with i ≺msg j. For these events the order is fixed. Independent events, though,
can occur in any order.

Sequential observations of labeled posets are called linearizations. A linearization of an
Act -labeled poset (E,�, λ) is any saturation of � to a total order �′, i.e., ei1 �

′ . . . �′ ein ,
where (i1, . . . , in) is a permutation of (1, . . . , n) such that, for all j, k ∈ {1, . . . , n}, eij � eik

implies j ≤ k. A linearization ei1 . . . ein corresponds to the word λ(ei1) . . . λ(ein) ∈ Act ∗

and, by abuse of nomenclature, we call λ(ei1) . . . λ(ein) a linearization as well. For example,

!(r, q,m) !(p, q,m1) !(p, q,m2) ?(q, p,m1) ?(q, p,m2) ?(q, r,m)
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p q
req

req
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(a) MSC Ma

p q
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req
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(b) MSC Mb

p q
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b

b

b
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(c) MSC Mc

p q

req

req

req

req
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req
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ack

ack
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1 : (1, 0) 2 : (0, 0)

3 : (1, 0)
4 : (1, 1)
5 : (0, 1)

6 : (1, 1)

7 : (2, 1)

8 : (2, 2)

9 : (2, 1)

10 : (1, 1)

11 : (2, 1)
12 : (2, 0)

13 : (2, 1)
14 : (1, 1)
15 : (1, 2)
16 : (0, 2)

17 : (1, 2)
18 : (1, 1)
19 : (2, 1)
20 : (2, 0)

21 : (1, 0)

22 : (0, 0)

23 : (1, 0) 24 : (0, 0)

(d) MSC Md

Figure 6.2: A collection of message sequence charts

is a linearization of the MSC in Figure 6.1(a). The set of linearizations of a labeled poset
M will be denoted by Lin(M ). This mapping is canonically extended towards sets L of
partial orders: Lin(L) =

⋃
M∈L Lin(M ).

6.1.2 Communicating Finite-State Machines

MSCs constitute a visual high-level specification formalism. They can be represented
graphically and offer an intuitive semantics (in terms of their linearizations). On the
computational side, we consider automata models that reflect the kind of communication
that is depicted in an MSC. We now turn towards an automata model that, in a natural
manner, generates collections of MSCs. More precisely, it generates action sequences that
follow an all-or-none law: either all linearizations of an MSC are generated, or none of
them.

A communicating finite-state machine (CFM) is a collection of finite-state machines,
one for each process. According to the assumptions that we made for MSCs, we assume
that communication between these machines takes place via (a priori) unbounded reliable
FIFO channels. The underlying system architecture is again parameterized by the set
Proc of processes and the set Msg of messages. Recall that this gives rise to the set Act of
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Aa:

!(p, q, req) ?(q, p, req)

Ap: Aq:

(a)

Ab:

!(p, q, req)

?(p, q, req)!(p, q, req) ?(p, q, ack)

?(q, p, req) !(q, p, ack)

Ap: Aq:

(b)

Ac: !(p, q, (req,L))

!(p, q, (req,R))

?(q, p, (req,L))

?(q, p, (req,R))

!(p, q, (req,L))

?(q, p, (req,L))

!(p, q, (req,R))

?(q, p, (req,R))

?(p, q, (ack,L))

!(q, p, (ack,L))

?(p, q, (ack,R))

!(q, p, (ack,R))

Ap:

Aq:

(c)

p q

req

p q

req

p q

ack

(d)

Ad:

!(p, q, (req,m1))

?(q, p, (req,m2))

?(p, q, (ack,m1))

!(q, p, (ack,m1))!(p, q, (req,m2)) ?(p, q, (ack,m1))

?(q, p, (req,m1)) !(q, p, (ack,m1))

Ap: Aq:

(e)

Figure 6.3: A collection of communicating finite-state machines
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actions, which will provide the transition labelings. In our automata model, the effect of
executing a send action of the form !(p, q,m) by process p is to put message m at the end
of the channel (p, q) from process p to process q. Receive actions, written as ?(q, p,m),
are only enabled when the requested message m is found at the head of the channel (p, q).
When enabled, its execution by process q removes the corresponding message m from the
channel from p to q.

It has been shown that the CFM model derived from concepts explained so far has a lim-
ited expressiveness. Certain protocols cannot be implemented without possible deadlocks
by CFMs, unless the model is enriched by so-called control- or synchronization messages
[BM03, BL05]. Intuitively, we cannot guarantee to get a deadlock-free CFM if we have
too few synchronization messages. If, e.g., one process has got n+1 states but we are only
allowed to use n synchronization messages a different process cannot definitely be sure
in which state the other process is currently in. Therefore, we extend our alphabet wrt.
a fixed infinite supply of control messages Λ. Let ActΛp contain the symbols of the form
!(p, q, (m,λ)) or ?(p, q, (m,λ)) where !(p, q,m) ∈ Actp (respectively ?(p, q,m) ∈ Actp)
and λ ∈ Λ. Intuitively, we tag messages with some control information λ to circumvent
deadlocks. Finally, let ActΛ =

⋃
p∈Proc ActΛ

p .

Definition 6.1.2 (Communicating Finite-State Machine (CFM)). A communicating finite-
state machine (CFM) is a structure A = ((Ap)p∈Proc , I). For any process p ∈ Proc,
Ap = (Sp,∆p, Fp) constitutes the behavior of p where:

• Sp is a finite set of (local) states,

• ∆p ⊆ Sp × ActΛ
p × Sp is the finite transition relation, and

• Fp ⊆ Sp is the set of final states.

Moreover, I ⊆
∏

p∈Proc Sp is the set of global initial states.

For an example CFM, consider Figure 6.3(c) where Proc = {p, q}, Msg = {req, ack}, and
{L,R} ⊂ Λ, or Figure 6.3(e) where Proc = {p, q}, Msg = {req, ack}, and {m1,m2} ⊂ Λ.

Let A = ((Ap)p∈Proc , I) with Ap = (Sp,∆p, Fp) be a CFM. The size of A, denoted by
|A|, is defined to be

∑
p∈Proc |Sp|. A configuration of A gives a snapshot of the current

state of each process and the current channel contents. Thus, the set of configurations
of A, denoted by ConfA, consists of pairs (s, χ) with s ∈

∏
p∈Proc Sp a global state and

χ : Ch → (Msg ×Λ)∗, determining the channel contents. The set of initial configurations
is defined as I × {χε} where χε maps each channel onto the empty word, representing an
empty channel. Analogously, the set of final configurations is

∏
p∈Proc Fp × {χε}, i.e., each

component is in a local final state and all messages are received at last. The projection
of a global state s ∈

∏
p∈Proc Sp to process p is denoted by sp. An execution of a send

or receive action transfers the CFM from one configuration to another, according to the
global transition relation of A. This transition relation =⇒A ⊆ ConfA × Act × ConfA
is given by the following two inference rules. The first rule considers the sending of a
message m from p to q and is given by:

(sp, !(p, q, (m,λ)), s′p) ∈ ∆p and for all r 6= p, sr = s′r
((s, χ), !(p, q,m), (s′, χ′)) ∈ =⇒A

where χ′ = χ[(p, q) := (m,λ) ·χ((p, q))], i.e., χ′ maps (p, q) to the concatenation of (m,λ)
and χ((p, q)); for all other channels, χ′ coincides with χ. This rule expresses that if the
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local automaton Ap has a transition labeled by !(p, q, (m,λ)) moving from state sp to s′p,
then the CFM A has a transition from s to s′ where only the p component of A changes
its state, and the new message (m,λ) is appended to the end of channel (p, q). Note that
the control message has been abstracted away from the action that has been encountered
when taking the transition. In other words, the transition is labeled by an element from
Act , which follows our intuition that elements of Λ are only used for synchronization but
do not contribute to observable behavior.

The second rule is complementary and considers the receipt of a message:

(sp, ?(p, q, (m,λ)), s′p) ∈ ∆p and for all r 6= p, sr = s′r
((s, χ), ?(p, q,m), (s′, χ′)) ∈ =⇒A

where χ((q, p)) = w · (m,λ) 6= ε and χ′ = χ[(q, p) := w]. This rule states that if the local
automaton Ap has a transition labeled by ?(p, q, (m,λ)) moving from state sp to s′p then
the CFM A has a transition from s to s′, which is labeled with ?(p, q,m), where only the
p component of A changes its state and the message (m,λ) is removed from the head of
channel (q, p).

A run of CFM A on a word w = a1 . . . an ∈ Act ∗ is a sequence c0 . . . cn ∈ Conf ∗A of con-
figurations where c0 is an initial configuration and, for every i ∈ {1, . . . , n}, (ci−1, ai, ci) ∈
=⇒A. The run is accepting if cn ∈ (

∏
p∈Proc Fp) × {χε}, i.e., each process is in an ac-

cepting state and all messages have been received yielding empty channels. Here, we first
define the word semantics of CFMs, but later we will also consider their MSC semantics.
Hence, for now, the language of a CFM A, denoted L(A), is the set of words w ∈ Act ∗

such that there is an accepting run of A on w.

Closure Properties of CFM Languages

To classify a word as either being a linearization of an MSC or not, we define the notion
of proper and well-formed words.

Definition 6.1.3 (Proper and Well-formed Words). We call w = a1 . . . an ∈ Act∗ with
ai ∈ Act proper if

• every receive action in w is preceded by a corresponding send action, i.e., for each
channel (p, q) ∈ Ch, message m ∈ Msg, and prefix u of w, we have

∑
m∈Msg |u|!(p,q,m)

≥
∑

m∈Msg |u|?(q,p,m) where |u|a denotes the number of occurrences of action a in the
word u, and

• the FIFO policy is respected, i.e., for all 1 ≤ i < j ≤ n, (p, q) ∈ Ch, and m1, m2 ∈
Msg with ai = !(p, q,m1), aj = ?(q, p,m2), and |{i′ ≤ i | ai′ = !(p, q,m) for some
m ∈ Msg}| = |{j′ ≤ j | aj′ = ?(q, p,m) for some m ∈ Msg}|, we have m1 = m2.

A proper word w is called well-formed if it satisfies
∑

m∈Msg |w|!(p,q,m) =
∑

m∈Msg |w|?(q,p,m).

Obviously, a run of a CFM on a word w only exists if w is proper, as a receive action is
only enabled if the corresponding send message is at the head of the channel. Moreover,
every word accepted by a CFM is well-formed, as acceptance implies empty channels.

In addition, as different processes interact asynchronously and, in general, indepen-
dently, the language of a CFM is closed under a certain permutation rewriting. For
example, consider a run of a CFM on the well-formed word:

!(p, q,m1) !(p, q,m2) ?(q, p,m1) ?(q, p,m2) !(r, q,m) ?(q, r,m),
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i.e., process p sends a message m1 to process q, followed by a message m2, whereupon
process q receives these messages in the correct order. We observe that process q could
have received the message m1 before sending m2. Indeed, any CFM accepting the above
action sequence will also accept the word:

!(p, q,m1) ?(q, p,m1) !(p, q,m2) ?(q, p,m2) !(r, q,m) ?(q, r,m),

where any message is immediately received. Moreover, the action !(r, q,m) is completely
independent of all the actions that are engaged in sending/receiving the messages m1 or
m2. Thus, a CFM cannot distinguish between the above sequences and sequence:

!(r, q,m) !(p, q,m1) ?(q, p,m1) !(p, q,m2) ?(q, p,m2) ?(q, r,m).

Actually, !(r, q,m) can be placed at any arbitrary position with the restriction that it
has to occur before the complementary receipt of m. Note that the three well-formed
words mentioned above all correspond to linearizations of the MSC from Figure 6.1(a) on
page 84.

To capture the closure properties of a CFM formally, we identify labeled posets whose
linearizations satisfy the all-or-none law, stating that either every or no linearization is
accepted by a CFM. To this aim, we associate to any word w = a1 . . . an ∈ Act∗ an
Act-labeled poset M (w) = (E,�,λ) such that w is a linearization of M (w), and a CFM
cannot distinguish between w and all other linearizations of M (w). The set of events is
given by the set of positions in w, i.e., E = {1, . . . , n}. Naturally, any position i ∈ E is
labeled with ai, i.e., λ(i) = ai. It remains to fix the partial-order relation �, which reflects
the dependencies between events. Clearly, we consider those events to be dependent that
are executed by the same process or constitute the send and receipt of a message, since
each process acts sequentially, and a message has to be sent before it can be received.
Hence, let �p⊆ Ep × Ep with Ep as before be defined by i �p j iff i ≤ j. Moreover, let
i ≺msg j if there is a channel (p, q) ∈ Ch and a message m ∈ Msg such that:

• λ(i) = !(p, q,m), λ(j) = ?(q, p,m) and

• |{i′ ≤ i | λ(i′) = !(p, q,m′) for some m′ ∈ Msg}| =
|{j′ ≤ j | λ(j′) = ?(q, p,m′) for some m′ ∈ Msg}|.

This is similar to the definition of ≺msg in the previous paragraph. Let � = (≺msg ∪⋃
p∈Proc �p)

∗. To exemplify these notions, consider the well-formed word w defined as
!(r, q,m) !(p, q,m1) !(p, q,m2) ?(q, p,m1) ?(q, p,m2) ?(q, r,m). Figure 6.1(b) depicts the Hasse
diagram of the Act-labeled poset M (w) = (E,�, λ). Note that M (w) is an MSC. Indeed,
we have the following two lemmas, which are considered standard in the MSC literature
(see, for example, [HMK+05]).

Lemma 6.1.4. For any MSC M , w ∈ Lin(M ) is well-formed.

Lemma 6.1.5. For any well-formed w ∈ Act∗, M (w) is an MSC. Moreover, M (w) and
M (w′) are isomorphic for all w′ ∈ Lin(M (w)).

These results suggest to introduce an equivalence relation over well-formed words. The
well-formed words w and w′ are equivalent, written w ≈ w′, if M (w) and M (w′) are
isomorphic. Note that this holds iff w ∈ Lin(M (w′)).

Lemma 6.1.6 ([AEY01]). For any CFM A:
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(i) L(A) consists of well-formed words only, and

(ii) L(A) is closed under ≈.

The last claim asserts that for all well-formed words u and v with u ≈ v, we have
u ∈ L(A) iff v ∈ L(A). For a well-formed word w, let [w]≈ be the set of well-formed words
that are equivalent to w wrt. ≈. For a set L of well-formed words, let [L]≈ :=

⋃
w∈L[w]≈

be the closure of L wrt. ≈. The fact that L(A) is closed under ≈, allows us to assign to A
its set of MSCs L(A) := {M (w) | w ∈ L(A)}. (Here, we identify isomorphic structures,
i.e., we consider isomorphism classes of MSCs). This is an equivalent, visual, and more
compact description of the behavior of CFM A. Observe that Lin(L(A)) = L(A), i.e.,
the linearizations of the MSCs of CFM A correspond to its word language.

6.1.3 Deadlock-Free, Bounded, and Weak CFMs

In distributed computations, the notions of determinism, deadlock, and bounded channels
play an important role [GMSZ06, GKM07, BM03]. Roughly speaking, a CFM is deter-
ministic if every possible execution allows for at most one run; it is deadlock-free if any
run can be extended towards an accepting one.

Definition 6.1.7 (Deterministic CFM). A CFMA = ((Ap)p∈Proc , I) with Ap = (Sp,∆p, Fp)
is deterministic if, for all p ∈ Proc, ∆p satisfies the following two conditions: (i) If we
have both (s, !(p, q, (m,λ1)), s1) ∈ ∆p and (s, !(p, q, (m,λ2)), s2) ∈ ∆p, then λ1 = λ2 and
s1 = s2. (ii) If we have both (s, ?(p, q, (m,λ)), s1) ∈ ∆p and (s, ?(p, q, (m,λ)), s2) ∈ ∆p,
then s1 = s2.

The CFMs from Figure 6.3(a) and (b) are deterministic whereas the CFMs from Fig-
ure 6.3(c) and (e) are not.

Definition 6.1.8 (Deadlock-free CFM ([GMSZ06])). A CFM A is deadlock-free if, for
all w ∈ Act∗ and all runs γ of A on w, there exist w′ ∈ Act∗ and γ′ ∈ Conf ∗A such that
γγ′ is an accepting run of A on ww′.

The CFMs from Figure 6.3(a), (b), and (c) are deadlock-free. Note that, however,
the CFM in Figure 6.3(c) will contain a deadlock if the control messages L and R were
omitted. The CFM from Figure 6.3(e) contains a deadlock, even though synchronization
messages are used. Imagine a run σ =!(p, q, (req,m1)), ?(q, p, (req,m1)), !(q, p, (ack,m1)),
?(p, q, (ack,m1)), !(p, q, (req,m2)). The deadlock configuration resulting from σ is depicted
in Figure 6.4. The local machine Ap is in its lowest state p3 which is a final state. As
the input buffers of this process are empty, the acceptance condition for this process is
fulfilled. At the same time, machine Aq is in the non-accepting local state q1 and is
required to receive the action (req,m2) from buffer χ((p, q)). The only possible action
process q is able to perform, however, is action (req,m1). Hence, the CFM deadlocks.
Note that removing the synchronization messages from the CFM does not resolve this
problem, because then a different language will be recognized by the resulting CFM.

We obtain another essential restriction of CFMs if we require that any channel has
a bounded capacity, say, B ∈ N. Towards this notion, we first define when a word is
B-bounded.
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(req,m2)

← Buffer head (χ((p, q)))

← Buffer head (χ((q, p)))

p1

p2

p3

q1

q2

q3

!(p, q, (req,m1))

?(q, p, (req,m2))

?(p, q, (ack,m1))

!(q, p, (ack,m1))!(p, q, (req,m2)) ?(p, q, (ack,m1))

?(q, p, (req,m1)) !(q, p, (ack,m1))

Ap: Aq:

((p1, q1), χε) =⇒A . . . =⇒A ((p3, q1), χd) 6=⇒
∗
A (f, χε)

for any f ∈
∏

p∈Proc Fp

where χd((p, q)) = (req,m2) and χd((q, p)) = ε

Figure 6.4: A deadlock configuration of the CFM from Figure 6.3(e) (page 86)

Definition 6.1.9 (B-bounded word). Let B ∈ N. Word w ∈ Act∗ is B-bounded if, for
any prefix u of w and any (p, q) ∈ Ch, it holds:

0 ≤
∑

m∈Msg

|u|!(p,q,m) −
∑

m∈Msg

|u|?(q,p,m) ≤ B.

This notion is extended to MSCs in the following way. MSC M is called universally
B-bounded if all words in Lin(M) are B-bounded. MSC M is existentially B-bounded if
Lin(M) contains at least one B-bounded word.

Consider, e.g., Figure 6.2(d) on page 85. The numbers 1 to 24 in this picture have to
be regarded as the sequence in which actions are executed in one (possible) linearization
w of the depicted MSC. The numbers in brackets denote the channel contents, where the
first component describes number of messages currently stored in channel (p, q) and the
second the number of messages in the converse channel. If we take the action sequence
corresponding to the numbers 1 to 24, we get a 2-bounded word. This can be verified,
by looking at the channel contents: for all channel contents, the number of messages in
transit does not exceed the bound B′ = 2. This implies, that there is B ≥ B′ such that the
MSC M (w) is universally B-bounded and B′′ ≤ B′ such that M (w) is existentially B′′-
bounded. In fact, the MSC M (w) is universally 4-bounded and existentially 2-bounded.

Similar notions are adopted for CFMs, except that for existentially-boundedness, it is
required that for every word u of the language, an equivalent word v ≈ u exists that is
B-bounded. The intuition is that bounded channels suffice to accept representatives of
the language provided the actions in an CFM are scheduled appropriately, cf. [GKM06,
GKM07]. Formally, the notion of bounded CFMs is defined as follows:
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Definition 6.1.10 (Bounded CFM ([HMK+05, GKM06])).

a) CFM A is universally b-bounded, B ∈ N, if L(A) is a set of B-bounded words. It
is universally bounded if it is universally B-bounded for some B.

b) CFM A is existentially B-bounded, B ∈ N, if, for every w ∈ L(A), there is a
B-bounded word w′ ∈ L(A) such that w′ ≈ w.

A further variant of CFMs, as considered in [AEY01, Mor02, Loh03], does not allow
for sending control information with a message. Moreover, they only have a single global
initial state:

Definition 6.1.11 (Weak CFM). A CFM A = ((Ap)p∈Proc , I) is called weak if:

• |I| = 1 and

• for every two transitions (s1, !(p, q, (m1, λ1)), s
′
1) and (s2, !(p, q, (m2, λ2)), s

′
2), we

have λ1 = λ2.

Note that the second item requires that only one message from Λ is used in the CFM.
Intuitively, we could say that no synchronization message is used at all, as a weak CFM
cannot distinguish between several messages.

Example 6.1.12. Consider the weak CFMs Aa and Ab depicted in Figure 6.3(a) and
(b) (cf. page 86), respectively, which do not use control messages (recall that, formally,
there is no distinction between control messages). The CFM Aa represents a simple
producer-consumer protocol, whereas Ab specifies a part of the alternating-bit protocol.
Two scenarios that demonstrate a possible behavior of these systems are given by the
MSCs Ma and Mb from Figure 6.2(a) and (b), respectively. Indeed, Ma ∈ L(Aa) and
Mb ∈ L(Ab) (thus, Lin(Ma) ⊆ L(Aa) and Lin(Mb) ⊆ L(Ab)). Observe that Aa is
deterministic, existentially 1-bounded, and deadlock-free. It is not universally bounded
as process p can potentially send arbitrarily many messages to process q before any of
these messages is received. In contrast, Ab is universally bounded (witnessed by the
bound B = 3) and also existentially 1-bounded. As stated before, it is also deterministic
and deadlock-free.

The CFM Ac (cf. Figure 6.3(c)), which is existentially 1-bounded, deadlock-free, and
not deterministic, describes the system that is depicted informally in Figure 6.3(d) in
terms of a high-level MSC: MSCs from L(Ac) start with sending a request message from
p to q, followed by an arbitrary sequence of further requests, which are sent from p to q,
and acknowledgments, sent from q to p (cf. Figure 6.2(c)). Note that Ac employs control
messages to avoid deadlocks. The idea is that L and R inform the communication partner
about which of the nodes at the bottom (left or right) is envisaged next.

The last CFM Ad describes a protocol in which process p sends 2n (n > 0) messages to q
and q sends n messages to p. After an initial phase of sending n req messages from process
p, process q sends back an ack message after each receive of a req message. Meanwhile,
process p waits for the first ack message to arrive. As on process q, all these ack messages
are directly answered by a second req, yielding a total number of 2n messages sent from
process p and n messages sent from process q. To distinguish between these two phases
of sending n messages, waiting, and sending another n messages, the CFM makes use of
the control messages m1 and m2. CFM Ad (cf. Figure 6.3(e)) is existentially ⌈n

2
⌉-bounded

but not universally bounded. It is, moreover, not deterministic and, as we already saw
before, may easily deadlock. 3



6.1. Preliminaries 93

p q
m

M1:
r s
m

M2:
p q r s
m m

M3:

Figure 6.5: Some MSCs

For weak CFMs A, we can identify another closure property. Consider Figure 6.5. If
L(A) subsumes the linearizations of the MSCs M1 and M2, then those of M3 will be
contained in L(A) as well, as the bilateral interaction between the processes is completely
independent. Formally, we define the inference relation |= ⊆ 2Act∗×Act ∗ as follows: given
a set L of well-formed words and a well-formed word w, L |= w if, for every p ∈ Proc,
there is u ∈ L such that u ↾ p = w ↾ p. Here, w ↾ p ∈ Act∗p denotes the projection
of w onto actions of process p. Indeed, L(A) is closed under |=, i.e., L(A) |= w implies
w ∈ L(A).

A stronger notion, which is satisfied by any weak deadlock-free CFM is as follows. Let
L ⊆ Act∗ be a set of well-formed words and let u be a proper word (i.e., it is the prefix
of some well-formed word). We write L |=df u if, for every p ∈ Proc, there is w ∈ L such
that u ↾ p is a prefix of w ↾ p. Language L ⊆ Act∗ is closed under |=df if L |=df w implies
that w is a prefix of some word in L.

Lemma 6.1.13 ([AEY01, Loh03]). Let A be a weak CFM.

• L(A) is closed under |=.

• If A is deadlock-free, then L(A) is closed under |=df .

Implementability Issues

Next, we collect known results on the relationship between regular languages over Act
and CFM languages.

Theorem 6.1.14. Let L ⊆ Act∗ be a set of well-formed words that is closed under ≈,
and let B ∈ N. We have the following equivalences:

a) 1) L is regular.

2) There is a universally bounded CFM A with L = L(A).

3) There is a deterministic universally bounded CFM A with L = L(A).

4) There is a universally bounded deadlock-free CFM A with L = L(A).

b) 1) The set {w ∈ L | w is B-bounded} is regular, and for all w ∈ L, there is a B-bounded
word w′ with w ≈ w′.

2) There is an existentially B-bounded CFM A with L = L(A).

c) 1) L is regular and closed under |=.

2) There is a universally bounded weak CFM A with L = L(A).
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d) 1) L is regular, closed under |=, and closed under |=df .

2) There is a deterministic universally bounded deadlock-free weak CFM A with L =
L(A).

In all four cases, both directions are effective where L is assumed to be given as a finite
automaton.

The equivalences “1) ⇔ 2) ⇔ 3)” in Theorem 6.1.14a) go back to [HMK+05], the
equivalence “1) ⇔ 4)” to [BM07]. Theorem 6.1.14b) is due to [GKM06]. Finally, Theo-
rems 6.1.14c) and 6.1.14d) can be attributed to [AEY01, Loh03].

6.2 Learning Communicating Finite-State Machines

As we already saw in Subsection 3.3.1, the algorithm L∗ synthesizes a minimal DFA from
examples given as words. In this section, we intend to adapt this approach such that
CFMs are learned from example scenarios that are provided as MSCs. Let us first settle
on a user profile, i.e., on some reasonable assumptions about the teacher/oracle that an
inference algorithm should respect:

• The user can fix some system characteristics. For example, she might require her
system to be deadlock-free, deterministic, or universally bounded.

• She can decide if a given scenario in terms of an MSC is desired or unwanted, thus
classify it as positive or negative, respectively.

• She can accept or reject a given system and, in the latter case, come up with an
MSC counterexample.

Roughly speaking, the user activity should restrict to classifying and providing MSCs. In
contrast, we do not assume that the user can determine if a given system corresponds
to the desired system characteristics. Apart from the fact that this would be time too
consuming as a manual process, the user often lacks the necessary expertise. Moreover,
the whole learning process would get stuck if the user was confronted with a hypothesis
that does not match her requirements, but cannot come up with an MSC that is causal
for this violation (this is particularly difficult if the system is required to be deadlock-
free). So we would like to come up with some guided approach that “converges” against
a system satisfying the requirements.

The core ingredient of an inference algorithm that matches our user profile shall be the
algorithm L∗, which synthesizes a minimal DFA from examples given as words. To build
a bridge from regular word languages to CFMs, we make use of Theorem 6.1.14, which
reveals strong relationships between CFMs and regular word languages over the set Act
of actions. More specifically, it asserts that one can synthesize:

• a deterministic universally bounded CFM from a regular set of well-formed words
that is closed under ≈,

• a universally bounded deadlock-free CFM from a regular set of well-formed words
that is closed under ≈,
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• an existentially B-bounded CFM from a regular set of well-formed B-bounded words
that is closed under the restriction of ≈ to B-bounded words, and

• a universally bounded deadlock-free weak CFM from a regular set of well-formed

words that is closed under ≈, |=, and |=df .

Towards learning CFMs, a näıve idea would now be to infer, by means of L∗, a regular
word language that can be translated into a CFM according to Theorem 6.1.14. The
user then has to classify arbitrary words over the alphabet of actions and to deal with
hypotheses that have nothing in common with MSC languages. These activities, however,
do not match our user profile. Moreover, the user will be confronted with an overwhelming
number of membership and equivalence queries that could actually be answered automat-
ically. In fact, words that do not match an execution of a CFM and hypotheses that do
not correspond to a CFM could be systematically rejected, without bothering the user.
The main principle of our solution will, therefore, be an interface between the user and
the program (i.e., the learner) that is based on MSCs only. In other words, the only
objects that the user gets to see are MSCs that need to be classified, and CFMs that
might already correspond to a desired design model. On the one hand, this facilitates
the user activities. On the other hand, we obtain a substantial reduction of membership
and equivalence queries. The latter will be underpinned, in Section 9.2, by a practical
evaluation (cf. Table 9.1).

Now let us turn to our adapted inference algorithm. Its core will indeed be L∗. While
L∗ does not differentiate between words over a given alphabet, however, Theorem 6.1.14
indicates that we need to consider a suitable domainD ⊆ Act∗ containing only well-formed
words. Secondly, certain restrictions have to be imposed such that any synthesized CFM
recognizes a regular subset of D. For universally-bounded (deadlock-free) CFMs, this
might be the class of all well-formed words, whereas for existentially B-bounded CFMs
only regular languages of B-bounded words are suitable. In other words, we have to
ensure that regular word languages are learned that contain words from D only. As for
any CFM A, L(A) is closed under ≈, the regular subsets of D in addition have to be
closed under ≈; more precisely, the restriction of ≈ to words from D. Similarly, to infer
a weak or deadlock-free CFM, we need a regular word language that is closed under |=.
In our learning setup, this will be captured by a relation ⊢ ⊆ 2D × 2D where L1 ⊢ L2

intuitively means that L1 requires at least one word from L2. It is not difficult to see that
this relation suffices to cover the inference relation |=, and as will be shown later, it can
be used to capture |=df as well.

Let RminDFA(D,⊢) be the class of minimal DFA that recognize a language L ⊆ D
satisfying:

• L is closed under ≈D := ≈ ∩ (D ×D), and

• L is closed under ⊢, i.e., (L1 ⊢ L2 ∧ L1 ⊆ L) implies L ∩ L2 6= ∅.

A learning algorithm tailored to CFMs is now based on the notion of a learning setup for
a class of CFMs, which provides instantiations of D and ⊢.

Definition 6.2.1 (Learning Setup). Let C be a class of CFMs. A learning setup for C is
a triple (D,⊢, synth) where:

• D ⊆ Act∗, the domain, is a set of well-formed words,
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• ⊢ ⊆ 2D × 2D such that L1 ⊢ L2 implies (L1 is finite, L2 6= ∅, and L2 is decidable),

• synth : RminDFA(D,⊢)→ C is the computable synthesis function such that, for each
CFM A ∈ C, there is B ∈ RminDFA(D,⊢) with [L(B)]≈ = L(synth(B)) = L(A) (in
particular, synth is injective).

The final constraint asserts that for any CFM A in the considered class of CFMs, a
minimal DFA B exists (in the corresponding class of DFA) recognizing the same word
language as A modulo ≈.

Given the kind of learning setup that we will consider, we now discuss some necessary
changes to the algorithm L∗. As L∗ works within the class of arbitrary DFA over Act ,
conjectures may be proposed whose languages are not subsets of D, or violate the closure
properties for ≈ and ⊢ (or both). To avoid the generation of such incorrect hypothesized
automata, the language inclusion problem (is the language of a given DFA included in
D?) and the closure properties in question are required to be constructively decidable.
This means that each of these problems is decidable and that in case of a negative result,
a reason of its failure, i.e., a counterexample, can be computed. Accordingly, we require
that the following properties hold for DFA B over Act :

(D1) The problem whether L(B) ⊆ D is decidable and if L(B) 6⊆ D, one can compute
some w ∈ L(B) \ D. We then say that Inclusion(D) is constructively decidable.

(D2) If L(B) ⊆ D, it is decidable whether L(B) is closed under ≈D. If not, one can
compute w,w′ ∈ D such that w ≈D w′, w ∈ L(B), and w′ 6∈ L(B). We then say
that the problem EqClosure(D) is constructively decidable.

(D3) If L(B) ⊆ D is closed under ≈D, it is decidable whether L(B) is closed under ⊢.
If not, one can compute (L1, L2) ∈ ⊢ (hereby, L2 shall be given in terms of a
decision algorithm that checks a word for membership) such that L1 ⊆ L(B) and
L(B) ∩ L2 = ∅. We then say that InfClosure(D,⊢) is constructively decidable.

Let us now generalize Angluin’s algorithm to cope with the extended setting, and let
(D,⊢, synth) be a learning setup for some class C of CFMs. The main changes in An-
gluin’s algorithm concern the processing of membership queries as well as the treatment of
hypotheses. For the following description, we refer to Table 6.1, depicting the pseudocode
of Extended-L∗, our extension of L∗, Table 6.2 which contains a modified table-update
function that is invoked by this extension of L∗, and Figure 6.6, which schematically
describes the new learning algorithm.

The Teacher will provide/classify MSCs rather than words. Moreover, the equivalence
test will be performed, by the Oracle, on the basis of a CFM rather than on the basis of a
DFA. The Oracle will also provide counterexamples in terms of MSCs (cf. Figure 6.6(5, 6)).

To undertake an equivalence test, knowledge of the target model is required as in every
other learning based technique for inferring design models. Simulating and testing are
possibilities to converge to a correct system implementation. In the implementation of
our approach [BKKL08a] we provide such means to ease the user’s burden.

To realize these changes, we exploit a new table-update function Extended-T-Update (cf.
Table 6.2). Therein, membership queries are filtered: a query w 6∈ D is considered im-
mediately as negative, without presenting it to the Teacher (lines 2, 3 of Table 6.2 and
Figure 6.6(1, 8)). Note that in Figure 6.6 a new component (called the Assistant) takes
over the part of the filter. It also prevents equivalent membership queries from being
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Figure 6.6: Components of Extended-L∗ and their interactions

displayed several times. Faced with a query w ∈ D, the MSC M (w) is displayed to the
Teacher (we call this a user query , cf. also Figure 6.6(2, 3)) as long as there has not been
an equivalent word w′ ≈ w that already has been classified before. His verdict will then
determine the table entry for w (line 9 of Table 6.2 and Figure 6.6(4)). Once a user query
has been processed for a word w ∈ D, queries w′ ∈ [w]≈D

must be answered equivalently.
They are thus not forwarded to the Teacher (lines 6, 7 of Table 6.2 and Figure 6.6(2, 3))
anymore. Therefore, MSCs that have already been classified are memorized in a set Pool
(line 10 of Table 6.2 and Figure 6.6(7)).

Once table T is closed and consistent, a hypothesized DFA HT is determined as usual.
We then proceed as follows (cf. Table 6.1):

(i) If L(HT ) 6⊆ D, compute a word w ∈ L(HT ) \D and modify the table T accordingly
by invoking Extended-T-Update (lines 19–23).

(ii) If L(HT ) ⊆ D but L(HT ) is not closed under ≈D, then compute w,w′ ∈ D such
that w ≈D w′, w ∈ L(HT ), and w′ 6∈ L(HT ); perform the membership queries for
[w]≈. As these queries are performed in terms of an MSC by displaying M (w) to
the Teacher , it is guaranteed that they are answered uniformly (lines 25–29).

(iii) If L(HT ) is the union of≈D-equivalence classes but not closed under ⊢, then compute
(L1, L2) ∈ ⊢ such that L1 ⊆ L(HT ) and L(HT ) ∩ L2 = ∅; perform user queries for
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every word from L1 (displaying the corresponding MSCs to the Teacher); if all these
queries are answered positively, the Teacher is asked to specify an MSC that comes
with a linearization w from L2. The word w will be declared “positive”. Recall that
L2 is a decidable language (and we assume that the decision algorithm is available)
so that all MSCs M with Lin(M ) ∩ L2 6= ∅ can be enumerated until a suitable
MSC is selected (lines 31–42).

If, for a hypothesized DFA HT , we have L(HT ) ⊆ D and L(HT ) is closed under both ≈D

and ⊢, then an equivalence query is performed on synth(HT ), the CFM that is synthesized
from the hypothesized DFA. In case a counterexample MSC M is provided, the table
has to be complemented accordingly by a linearization of M (lines 44–51). Otherwise,
synth(HT ) is returned as the desired CFM (lines 52, 53).

Theorem 6.2.2. Let C be a class of CFMs, let (D,⊢, synth) be a learning setup for
C, and let A ∈ C. If the Teacher classifies/provides MSCs in conformance with L(A),
then invoking Extended-L∗(D,⊢, synth) eventually returns a CFM A′ ∈ C such that
L(A′) = L(A).

Proof: We fix a class C of CFMs and a learning setup (D,⊢, synth) for C. Moreover, let
A ∈ C. By the definition of a learning setup, there exists a DFA B ∈ RminDFA(D,⊢) with
[L(B)]≈ = L(synth(B)) = L(A). We suppose that the Teacher classifies/provides MSCs in
accordance with L(A) = L(synth(B)). On invoking Extended-L∗(D,⊢, synth), a word
w ∈ (U ∪ UAct)V is classified by the table function T depending on whether w ∈ D and
M (w) ∈ L(A) = L(synth(B)). More precisely, T (w) = + iff w ∈ L(B), i.e., we actually
perform L∗, and the Teacher acts in conformance with L(B). The differences to the basic
version of Angluin’s algorithm are that (i) not every hypothesis H(T,U,V ) is forwarded to
the Teacher (in that case, counterexamples can be generated automatically), and (ii) we
may add, in lines 28 and 34, several words (and their prefixes) to the table at one go.
This is, however, a modification that preserves the validity of Theorem 3.3.3 from page 37.
Consequently, when the equivalence test succeeds (line 52), then the algorithm outputs a
CFM A′ = synth(H(T,U,V )) with L(A′) = L(A). 2

Having introduced the notion of a learning setup and proved the correctness of our
extended learning algorithm for CFMs, it is sensible to define the learnability of CFM
classes.

Definition 6.2.3 (Learnability of classes of CFMs). A class C of CFMs is learnable if
there is a learning setup for C.

The sequel of this section is devoted to identify learnable classes of CFMs. To this
purpose, we have to determine a learning setup for each such class.

A note on the complexity. The total running time of the extended algorithm can
only be considered wrt. a concrete learning setup. In particular, it heavily depends on
the complexity of the synthesis of a CFM from a given minimal DFA, which tends to be
very high. When studying this issue below for several learning setups, we will therefore
assume that an equivalence check is performed on the basis of the minimal DFA itself
rather than on a synthesized CFM (cf. line 44 in Table 6.1). This lowers the running time
of the algorithm considerably and, at the same time, is a reasonable assumption, as in
all learning setups we provide below, the minimal DFA faithfully simulates all executions
of the synthesized CFM (up to a channel bound when considering the case of existential
bounds). So let us in the following assume the synthesis function to need constant time.
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Extended-L∗(D,⊢, synth):

1 U := {ε}; V := {ε}; T is defined nowhere;
2 Pool := ∅;
3 Extended-T-Update();
4 repeat

5 while (T, U, V ) is not (closed and consistent)
6 do

7 if (T, U, V ) is not consistent then

8 find u, u′ ∈ U, a ∈ Act , and v ∈ V such that row (u) = row(u′) and
9 row(ua)(v) 6= row(u′a)(v);

10 V := V ∪ {av};
11 Extended-T-Update();
12 if (T, U, V ) is not closed then

13 find u ∈ U and a ∈ Act such that row (ua) 6= row (u′) for all u′ ∈ U ;
14 U := U ∪ {ua};
15 Extended-T-Update();
16 /∗ (T, U, V ) is both closed and consistent ∗/
17 H := H(T,U,V );
18 /∗ check closedness properties for ≈D and ⊢ ∗/
19 if L(H) 6⊆ D
20 then

21 compute w ∈ L(H) \ D;
22 U := U ∪ pref (w);
23 Extended-T-Update();
24 else

25 if L(H) is not ≈D -closed
26 then

27 compute w, w′ ∈ D such that w ≈D w′, w ∈ L(H), and w′ 6∈ L(H);
28 U := U ∪ pref (w) ∪ pref (w′);
29 Extended-T-Update();
30 else

31 if L(H) is not ⊢ -closed
32 then

33 compute (L1, L2) ∈ ⊢ such that L1 ⊆ L(H) and L(H) ∩ L2 = ∅;
34 U := U ∪ pref (L1);
35 Extended-T-Update();
36 if T (w) = + for all w ∈ L1 then

37 M := getMSCFromTeacher (L2);
38 choose w ∈ Lin(M ) ∩ L2;
39 U := U ∪ pref (w);
40 T (w) := +;
41 Pool := Pool ∪ {M };
42 Extended-T-Update();
43 else

44 do equivalence test for synth(H(T,U,V ));
45 if equivalence test fails then

46 counterexample M is provided, classified as parity ∈ {+,−};
47 choose w ∈ Lin(M ) ∩ D;
48 U := U ∪ pref (w);
49 T (w) := parity ;
50 Pool := Pool ∪ {M };
51 Extended-T-Update();
52 until equivalence test succeeds;
53 return synth(H);

Table 6.1: Extended-L∗: The extension of Angluin’s algorithm for learning CFMs
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Extended-T-Update():

1 for w ∈ (U ∪ UAct)V such that T (w) is not defined
2 if w 6∈ D
3 then T (w) := −;
4 else if M (w) ∈ Pool

5 then

6 choose w′ ∈ [w]≈D
such that T (w′) is defined;

7 T (w) := T (w′);
8 else

9 T (w) := getClassificationFromTeacher (M (w));
10 Pool := Pool ∪ {M (w)};

Table 6.2: Function for updating the table in Extended-L∗

We can now state our first learnability result:

Theorem 6.2.4. Universally bounded CFMs are learnable.

Proof: Let C denote the class of deterministic universally bounded CFMs. To show
that C is learnable, we need to determine a learning setup (D,⊢, synth) for C. First
observe that |= needs not be instantiated for this class (cf. Theorem 6.1.14a)). Let D
be the set of well-formed words over Act . By Theorem 6.1.14a), there is a computable
mapping synth that transforms any regular set L of well-formed words that is closed
under ≈D = ≈ (say, given in terms of a finite automaton) into a CFM A such that
L(A) = L. To show that (D, ∅, synth) is indeed a learning setup, it remains to establish
that the problems Inclusion(D), EqClosure(D), and InfClosure(D, ∅) are construc-
tively decidable. Decidability of Inclusion(D) and EqClosure(D) has been shown in
[HMK+05]. For DFA, these problems are actually solvable in linear time. The decidability
of InfClosure(D, ∅) is trivial. 2

Together with Theorem 6.1.14a), we immediately obtain the learnability of two sub-
classes:

Theorem 6.2.5. Deterministic universally bounded CFMs and, moreover, universally
bounded deadlock-free CFMs are learnable.

Now let us have a closer look at the complexity of our algorithm, when it is instantiated
with the learning setup that we developed in the proof of Theorem 6.2.4. In the best case,
we start with a deterministic CFM. In the following, let m denote the maximal number
of events of an MSC that is either provided or to be classified by the user (Teacher or
Oracle).

Theorem 6.2.6. Let C be the class of deterministic universally bounded CFMs and let
A ∈ C be universally B-bounded. The number of equivalence queries needed to infer a
CFM A′ ∈ C with L(A) = L(A′) is at most (|A| · |Msg|+ 1)B·|Proc|2+|Proc|. Moreover, the
number of membership queries and the overall running time is polynomial in |A|, |Msg|,
and m, and it is exponential in B and |Proc|.

Proof: Suppose A ∈ C is the input CFM. Without loss of generality, we assume that the
synchronization messages from Λ that are used in A are precisely the local states of A.
Then, the number of states of the unique minimal DFA B satisfying L(synth(B)) = L(A)
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is bounded by C = |A||Proc| · (|Msg | · |A| + 1)B·|Proc|2. The first factor is the number of
global states of A, whereas the second factor contributes the number of possible channel
contents (|Msg|·|A| being the number of messages). Hence, C constitutes an upper bound
for the number of equivalence queries. We will now calculate the number of membership
queries, which is bounded by the size of the table that we obtain when the algorithm
terminates. Note first that the size of Act is bounded by 2|Proc|2 · |Msg |. During a run
of the algorithm, the size of V is bounded by C, as the execution of program line 10
always comes with creating a new state. The set U can increase at most C-times, too.
The number of words that are added to U in line 22 can be bounded by 2C. The length
of words w and w′, as added in line 28, can likewise be bounded by 2C. The number of
words added in line 48 depends on the size of a counterexample that is provided by the
Oracle. Note that lines 34 and 39 are of no importance here because, as mentioned before,
⊢ was not instantiated for this learning setup. Summarizing, the number of membership
queries is in O((C3 + mC2) · |Act |) with m the maximal number of events of an MSC
that is provided/classified by the user (Teacher or Oracle). As for a given minimal DFA
H, one can detect in polynomial time if L(H) ⊆ D and if L(H) is ≈D-closed, the overall
running time of the algorithm is polynomial in |Msg|, m, and |A|, and it is exponential
in |Proc| and B. 2

The following theorem states that the complexity is higher when we act on the assump-
tion that the CFM to learn is non-deterministic.

Theorem 6.2.7. Let C be the class of universally bounded (deadlock-free) CFMs and
let A ∈ C be universally B-bounded. The number of equivalence queries needed to infer a

CFM A′ ∈ C with L(A) = L(A′) is at most 2(|A|·|Msg|+1)B·|Proc|2+|Proc|
. Moreover, the number

of membership queries and the overall running time is polynomial in m, exponential in
|A| and |Msg|, and doubly exponential in B and |Proc|.

Proof: We follow the proof of Theorem 6.2.6. As A can be non-deterministic, however,
we have to start from the assumption that the number of states of the unique minimal

DFA B satisfying L(synth(B)) = L(A) is bounded by 2(|A|·|Msg|+1)B·|Proc|2+|Proc|
. 2

Theorem 6.2.8. For B ∈ N, existentially B-bounded CFMs are learnable.

Let C be the class of existentially B-bounded CFMs. We can provide a learning setup
such that, for all A ∈ C, the number of equivalence queries needed to infer an existentially

B-bounded CFM A′ ∈ C with L(A) = L(A′) is at most 2(|A|·|Msg|+1)B·|Proc|2+|Proc|
. Moreover,

the number of membership queries and the overall running time are polynomial in m,
exponential in |Msg| and |A|, and doubly exponential in B and |Proc|.

Proof: To obtain a learning setup (D,⊢, synth) for C, let D be the set of B-bounded
well-formed words over Act . As in the previous proof, ⊢ is not needed, i.e., we set ⊢ to
be ∅. By Theorem 6.1.14c), there is a computable mapping synth that transforms any
regular set L of B-bounded well-formed words that is closed under ≈D into a CFM A with
L(A) = [L]≈. In order to show that (D, ∅, synth) is a learning setup it remains to show
that the problems Inclusion(D) and EqClosure(D) are constructively decidable. This
is shown by a slight modification of the algorithm in [HMK+05] for universally bounded
languages. This goes as follows:

Let B = (Q, {q0}, δ, F ) be a minimal DFA over Act . A state s ∈ Q is called productive
if there is a path from s to some final state. We successively label any productive state
with a channel content, i.e., a function χs : Ch → Msg∗ will be associated to any state
s ∈ Q such that:
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(i) The initial state q0 and any final state q ∈ F are equipped with χε, mapping any
channel to the empty word.

(ii) If s, s′ ∈ Q are productive states and δ(s, !(p, q,m)) = s′, then χs′ = χs[(p, q) :=
m · χs((p, q))], i.e., m is appended to channel (p, q).

(iii) If s, s′ ∈ Q are productive states and δ(s, ?(q, p,m)) = s′, then χs = χs′[(p, q) :=
χs′((p, q)) ·m], i.e., m is removed from the channel (p, q).

L(B) is a set of well-formed words iff there exists a labeling of productive states with
channel functions satisfying (i)–(iii). If a state-labeling violates one of the conditions (i)–
(iii), then this is due to a word that is not well-formed. This word acts as a counterexample
for the Inclusion(D) problem. For example, a clash in terms of productive states s, s′ ∈
Q such that δ(s, !(p, q,m)) = s′ and χs′((p, q)) 6= m · χs((p, q)) gives rise to a path from
the initial state to a final state via the transition (s, !(p, q,m), s′) that is labeled with a
non-well-formed word. This word then acts as a counterexample. Thus, Inclusion(D)
is constructively decidable.

To show decidability of EqClosure(D), consider a further (decidable) property:

(iv) Suppose δ(s, a) = s1 and δ(s1, b) = s2 with a ∈ Actp and b ∈ Act q for some
p, q ∈ Proc satisfying p 6= q. If not (|χs((q, q

′))| = B and b = !(q, q′, m) for some
q′ ∈ Proc and m ∈ Msg) and, moreover, (a = !(p, q,m) and b = ?(q, p,m) for some
m ∈ Msg) implies 0 < |χs((p, q))|, then there exists a state s′1 ∈ Q such that
δ(s, b) = s′1 and δ(s′1, a) = s2.

This diamond property describes in which case two successive actions a and b may be per-
muted. It follows that the set L(B) of well-formed words is closed under ≈D iff condition
(iv) holds. This is thanks to the fact that we deal with a deterministic automaton. In case
item (iv) is violated, let w and w′ be words of the form uabv and ubav, respectively. These
words prove that L(B) is not closed under ≈D. Thus, EqClosure(D) is constructively
decidable. Note that both Inclusion(D) and EqClosure(D) are actually solvable in
linear time.

To establish the bounds on the overall running time and on the number of equivalence
and membership queries, we refer to the considerations in the proofs of Theorems 6.2.4
and 6.2.5. 2

Theorem 6.2.9. Deterministic universally bounded deadlock-free weak CFMs are learn-
able.

Let C be the class of deterministic universally bounded deadlock-free weak CFMs. We
can provide a learning setup such that, for all universally B-bounded CFMs A ∈ C, the
number of equivalence queries needed to infer an equivalent CFM A′ ∈ C is at most
(|A| · |Msg| + 1)B·|Proc|2. Moreover, the number of membership queries and the overall
running time are polynomial in |Msg | and m, exponential in |A|, and doubly exponential
in B and |Proc|.

Proof: Let D be the set of all well-formed words. Unlike the previous proofs, we need
an inference relation ⊢ 6= ∅ that respects both |= and |=df . Let ⊢ be the union of:

{(L, {w}) | L |= w and L ⊆ D is finite}
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Figure 6.7: Schematic view of error cases for proof of Theorem 6.2.9

(which reflects |=) and:

{(L1, L2) | L1 ⊆ D is finite and

L2 = {uv ∈ D | L1 |=
df u} 6= ∅}

(which reflects |=df ). Theorem 6.1.14e) provides the required synthesis function.
Decidability of InfClosure(D,⊢) has been shown in [AEY01, Theorem 3]. Alur et

al. provide an EXPSPACE-algorithm for bounded high-level MSCs, which reduces the
problem at hand to a decision problem for finite automata with an ≈-closed language.
The latter is actually in PSPACE. The first step is to construct from the given ≈-closed
DFA H a (component-wise) minimal and deterministic weak CFM A′, by simply taking
the projections H ↾

p
of H onto Actp for any p ∈ Proc, determinizing and minimizing

them. Then, L(H) is closed under both |= and |=df iff A′ is a deadlock-free CFM such
that L(A′) = L(H). From H, we can, moreover, compute a bound B such that any run
of A′ exceeding the buffer size B cannot correspond to a prefix of some word in L(H).

Thus, a partial run of A′ that either:

• exceeds the buffer size B (i.e., it is not B-bounded; cf. Fig. 6.7, node 1), or

• respects the buffer size B, but results in a deadlock configuration (cf. Fig. 6.7, node
2),

gives rise to a proper word u ∈ Act∗ that is implied by H wrt. |=df , i.e., L(H) must
actually contain a well-formed completion uv of u. Obviously, one can decide if a word is
such a completion of u. The completions of u form one possible L2. It remains to specify
a corresponding set L1 for u. By means of H, we can, for any p ∈ Proc, compute a word
wp ∈ L(H) such that u ↾ p is a prefix of wp ↾ p. We set L1 = {wp | p ∈ Proc}.

Finally, suppose that, in A′, we could neither find a prefix exceeding the buffer size B
nor a reachable deadlock configuration in the B-bounded fragment. Then, we still have
to check if A′ recognizes L(H). If this is not the case, one can compute a (B-bounded)
word w ∈ L(A′) \ L(H) such that L(A′) |= w. Setting L2 = {w}, a corresponding set L1

can be specified as {wp | p ∈ Proc}, as above.
Let us turn to the complexity of this particular learning setup. We can partly follow

the proof of Theorem 6.2.4. As lines 31–42 come into play, however, the complexity
estimation is more complicated. The number of equivalence queries is bounded by C =
(|A| · |Msg| + 1)B·|Proc|2+|Proc| where A is the CFM at hand. To compute the number of
membership queries, we have to take into account the number of words that are added
to U in lines 34 and 39 in the pseudocode of the algorithm. To this aim, note that the
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number of global states of the deterministic weak CFM A′ that we compute above is
bounded by 2C·|Proc|. Moreover, the number of possible channel contents is bounded by
(|Msg |+ 1)B′·|Proc|2 where B′ = C is the maximal number of states of H. Hence,

N := 2C·|Proc| · (|Msg |+ 1)C·|Proc|2

is an upper bound for the number of configurations of A′ that we have to consider.
Moreover, N constitutes a bound on the length of words from L1 as far as it concerns
|=df . In turn, L1 contains |Proc| many words. Now let us turn towards |=. To obtain
a word w from L(A′) \ L(H), we build the product of the complement automaton of
H, which is of the same size as H, and the configuration automaton of A′. Thus, the
length of w, which constitutes one possible L2, can be bounded by C ·N so that pref (L1)
contains at most |Proc| ·C ·N words. Therefore, the number of membership queries is in
O((|Proc| ·N ·C3+mC2) · |Act |). Furthermore, we deduce that the overall running time of
the algorithm is polynomial in |Msg| and m, exponential in |A|, and doubly exponential
in B and |Proc|. 2

Theorem 6.1.14d) provides a characterization of (deterministic) universally bounded
weak CFMs in terms of regular word languages. Let D be the set of all well-formed words
and let ⊢ be given by {(L, {w}) | L |= w and L ⊆ D is finite} reflecting |=. Unfortunately,
the problem InfClosure(D,⊢) is undecidable (cf. [AEY01]) so that the above approach
does not work for this particular class of CFMs. One might argue that universally bounded
weak CFMs are still learnable, as their regular word languages can be inferred with L∗.
But an approach that relies solely on L∗ requires additional expertise from a user. The
latter has to make sure by herself that the final hypothesis corresponds to a universally
bounded weak CFM. But if we assume that the user needs some guidance and, at the
beginning, has an incomplete idea of her system, then we have, for the moment, no means
to infer universally bounded weak CFMs.

Note that the complexity of our algorithms is, in most cases, not worse than that of
L∗ if we refer to the size of the underlying minimal DFA. The only instance where the
complexity is exponentially higher compared to L∗ (wrt. the size of the minimal DFA) is
reported in Theorem 6.2.9. This explosion, however, accounts for the automatic test of
hypotheses for deadlocks, which, otherwise, would have to be carried out manually by the
user.

6.3 Partial-Order Learning

We are now going to introduce partial-order learning as an application of the learning of
congruence-closed languages approach presented in Chapter 5. In our current setting, the
normal forms pnf and snf are defined over an action alphabet Act , a domain D ⊆ Act ∗

which only contains proper, well-formed words over Act , and the equivalence relation
≈D. Note that thereby, the existence of elements which are not in pref (D) or suff (D) is
guaranteed (so the additional auxiliary symbol ⊥ from Chapter 5 is not needed here).

Let, moreover, (D,≈,⊢) be a learning setup for class C of CFMs and let pnf , snf :
Act ∗ → Act∗. In the case of MSCs, function pnf assigns to a word w ∈ pref (D) the
minimal word wrt. <lex that is equivalent to w. To words that are not in pref (D), e.g., an
action sequence starting with some receive action, pnf assigns an arbitrary receive action
from Act . Analogously, mapping snf assigns to a word w ∈ suff (D) its normal form, i.e.,
the minimum (wrt. <lex) among all equivalent words, and it associates with every other
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word, e.g., an action sequence ending on a sending action, an arbitrary send action from
Act .

Along the lines of Chapter 5, we define the prefix and the suffix normal form as follows:

For w ∈ Act∗, we have:

• If w ∈ pref (D), then we set pnf (w) := min<lex
{w′ ∈ pref (D) | ∃v ∈ Act ∗: wv ≈D

w′v} where min<lex
returns the minimum of a given set wrt. <lex. Otherwise, let

pnf (w) be any arbitrary receive action a (hence, a 6∈ pref (D)).

• If w ∈ suff (D), then we set snf (w) := min<lex
{w′ ∈ suff (D) | ∃u ∈ Act∗: uw ≈D

uw′}. Otherwise, snf (w) is an arbitrary send action a (hence, a 6∈ suff (D)).

Instead of using the lexicographical order <lex from Chapter 5, we could use so-called
optimal linearizations introduced in [GKM07] as they provide a very natural normal form
in the case of MSCs.

Note that, again, pnf (ε) = snf (ε) = ε and, moreover, pnf (w) = snf (w) iff w is well-
formed. As before, the mappings pnf and snf are canonically extended to sets L ⊆ Act∗,
i.e., pnf (L) =

⋃
w∈L pnf (w) and snf (L) =

⋃
w∈L snf (w).

As mentioned in Chapter 5, it is crucial for the application of normal forms that a given
domain D satisfies, for all u, v, u′, v′ ∈ Act∗, properties (*), (**), and (***) (cf. page 75).

Under these assumptions, which are satisfied by all the concrete learning setups presented
so far, it will indeed be sufficient to look at normal forms when constructing a table in
the extension of Angluin’s algorithm, which may result in significantly smaller tables.
We obtain the extension of Extended-L∗, which we call PO-Extended-L∗ simply by
replacing every command of the form U := U ∪ L (where L is an arbitrary set of words)
by U := U ∪ pnf (L), and every command of the form V := V ∪ L by V := V ∪ snf (L).
In particular, Extended-T-Update remains unchanged and is taken from Table 6.2.

The correctness of our improved algorithm is stated in the following corollary.

Corollary 6.3.1. Let (D,⊢, synth) be a learning setup for class C of CFMs such that
D satisfies properties (*) – (***) from Chapter 5. Moreover, let A ∈ C. If the Teacher
classifies/provides MSCs in conformance with L(A), then invoking the new algorithm
PO-Extended-L∗(D,⊢, synth) returns, after finitely many steps, a CFM A′ ∈ C such
that L(A′) = L(A).

Proof: Consider an instance of (T, U, V ) during a run of Extended-L∗. For w ∈ (U ∪
UAct)V , the value of T (w) is − if w 6∈ D. If, on the other hand, w ∈ D, then T (w) only
depends on the classification of M (w) by the Teacher . So let u, v ∈ Act∗. We consider
the two abovementioned cases:

• Suppose uv 6∈ D. Then, by (*), u 6∈ pref (D) or v 6∈ suff (D). Thus, pnf (u) is a
receive action or snf (v) is a send action so that pnf (u) · snf (v) 6∈ D.

• Suppose uv ∈ D. Then, u ∈ pref (D) and v ∈ suff (D). By the definition of
the mappings pnf and snf , there are u′ and v′ such that pnf (u) · v′ ≈D uv′ and
u′ · snf (v) ≈D u′v. By (**) and (***), {pnf (u) · v, u · snf (v)} ⊆ D so that pnf (u) ·
v ≈D uv and u · snf (v) ≈D uv. Applying (**) (or (***)) a second time, we obtain
pnf (u) · snf (v) ∈ D. We deduce pnf (u) · snf (v) ≈D uv, which implies M (uv) =
M (pnf (u) · snf (v)).
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Thus, it does not matter if an entry T (w) in the table is made on the basis of w or on
pnf (u) · snf (v), regardless of the partitioning uv of w. In particular, if we replace, in
U and V , every word with its respective normal form, then the resulting table preserves
consistency and closure properties. Moreover, the DFA, that we can construct if the new
table is closed and consistent, is isomorphic to that of the original table.

As this replacement is precisely what is systematically done in PO-Extended-L∗, the
theorem follows. 2

Again, the complexity of the modified algorithm depends on the concrete learning setup.
Actually, the theoretical time complexity can in general not be improved compared to
Extended-L∗. However, as Section 9.2 will illustrate by means of several examples, the
space complexity can be considerably reduced in the domain of MSCs.

6.4 Related Work

Synthesizing design models or programs from scenarios has received a lot of attention.
The goal of this section is to point out and to structure related work.

For scenarios, we distinguish basic MSCs from high-level MSCs (HMSCs) and live se-
quence charts (LSCs).

Synthesis from Basic MSCs A basic MSC, as used throughout this dissertation, does
neither contain loops nor alternatives, and describes a finite set of behaviors. Thus,
a finite set of basic MSCs describes a finite set of behaviors. Typically, a system under
development has infinitely many behaviors, so that a finite set of scenarios in terms of basic
MSCs can only be an approximation of the overall behavior. In fact, the learning algorithm
generalizes the finite set of given MSCs to a typically infinite set represented by the design
model. In simple words, we synthesize design models from finitely many examples. Note
also that two different basic MSCs describe different behaviors. Thus, classifying one MSC
as desired and one (different) as undesired cannot lead to an inconsistent set behaviors.
This is in contrast to other approaches which, e.g., employ HMSCs.

One of the first attempts to exploit learning for interactively synthesizing models from
examples was proposed in [MS01], where for each process in the system an automaton
is inferred using Angluin’s learning technique. This procedure is only sensible in the
setting of weak CFMs, because the synchronization messages cannot be known before the
synthesis procedure. But when you infer product languages by learning local automata
and you get, e.g., a counterexample you cannot tell which of the processes does not
recognize his projection. It could be one process or several and therefore you cannot
relate this counterexample to any process. A severe problem of this approach is that
putting the resulting automata in parallel yields a system that may exhibit undesired
behavior and may easily deadlock.

Damas et al. use an interactive procedure of classifying positive and negative scenarios
for deriving an LTS for each process of the system to be. To this end, they first employ
passive learning algorithms RPNI and RPNI2 (cf. Chapter 3) to infer a global intermediate
model that exactly conforms to the given sample but which—as long as the sample does
not fulfill certain completeness properties—does not necessarily yield a minimal system
model. The global model is subsequently transformed into a distributed system. Then,
usually additional effort is required as this projection onto the system’s components will
normally entail implied behavior such that unwanted “[...] implied scenarios have to be
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detected and excluded” [DLD05] manually. This is a very complicated and error-prone
task, and should in fact not be left to a human being. A further difference to our approach
is the communication setting. While Damas et al. work in a synchronous communication
environment, which makes all considerations substantially simpler, our approach exhibits
the more elaborate setting of completely asynchronous communication, making the target
systems larger but, more importantly, more general and closer to real implementations.
A minor drawback of using passive learning algorithms might be seen in the extensibility
of the hypothesis. If new requirements arise after a model has been generated, the passive
learning approach has to be restarted from scratch, whereas applications building on
active learning algorithms may benefit from previous models and continue the learning
task on basis of the last table inferred.

Another interesting approach using passive learning is delineated in [CW98]. Amongst
others, the article describes how to use grammatical inference to derive a formal model of
a process from a given stream of system events. In contrast to the previously mentioned
approach and our technique, this method only works with positive data, as examples are
originating from an event stream obtained from real process executions. Though this
procedure may require less user effort than ours, it builds on the restrictive assumption
that the events of the process are monitorable by the Learner . The authors also shortly
comment on detecting concurrency by searching for unrelated events, but leave it for
future work to improve their approach.

Similar to [HNS03], [MPO05] propose to use filters, i.e., automated replies to queries, for
reducing the number of membership queries that—due to the high number of questions—is
usually infeasible for human teachers to answer. The general idea is to exploit additional
knowledge of an expert teacher, which, for each negatively answered membership query,
specifies prefixes or suffixes for which negative membership is known. In their approach
they employ filters for membership and equivalence queries, but conclude that for equiv-
alence queries no substantial improvements are obtained. This result is in contrast to our
learning approach which, fortunately, considerably decreases this number.

Synthesis from (High-level) MSCs In contrast to the previously mentioned work, sev-
eral works consider synthesis from scenarios given in terms of richer formalisms, e.g.,
MSCs with loops and alternatives, high-level MSCs, or live sequence charts. The un-
derlying assumption is that not only several examples of the expected behavior is given
but that the given behavior (mostly) corresponds to the behavior of the system to be.
Then, the technical question arising is how to translate from a scenario-based formalism
to a state-based formalism. One of the initial works along this line is [KGSB98], which
sketches the translation from (high-level) MSCs to statechart models. Similarly, [UKM03]
presents a rigorous approach for synthesizing transition systems from high-level MSCs.

The question whether the behavior given by a finite set of MSCs or high-level MSC can
in fact be realized by weak CFMs or CFMs is studied, respectively, in [AEY01], [AEY03],
and [GMSZ06]. It turns out that the set of scenarios has to meet certain restrictions to
be realizable and that the question, whether it is realizable or not, is often undecidable.

Note that describing desired and unwanted behavior in terms of high-level MSCs would
allow for inconsistent sets of scenarios as also different high-level MSC may describe a
common subset of behaviors.

The works [AEY01, BM07, Gen05, GKM06, GKM07, GMSZ06, HMK+05, Loh03, Mor02]
synthesize CFMs from particular classes of finite automata, which can be seen as general-
izations of high-level MSCs. Recall that results from [HMK+05, BM07, GKM06, AEY01,
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Loh03] together constitute Theorem 6.1.14, which, however, is only an ingredient of our
algorithms. Our objective is actually to synthesize these particular finite automata that,
in turn, allow for constructing a CFM.

In [UBC07], a synthesis technique is proposed that constructs behavior models in the
form of Modal Transition Systems (MTS) and is based on a combination of safety prop-
erties and scenarios. MTSs distinguish required, possible, and proscribed behavior, and
can thus be seen as design models that are more abstract compared to the CFMs that
are synthesized using our approach.

Damm and Harel pointed out that the expressiveness of (high-level) MSCs is often
inappropriate to specify complete system behavior and introduced the richer notion of
live sequence charts (LSCs) [DH01]. Harel’s play-in, play-out approach for LSCs [HM03]
allows us to execute the possible behavior defined in terms of LSCs, which essentially
results in a programming methodology based on LSCs. A similar, executable variant of
LSCs, called triggered MSCs, is presented in [SC06].

All the previously mentioned approaches are based on a rather complete, well-elaborated
specification of the system to be, such as MSCs with loops or conditions, high-level MSCs,
triggered MSCs, or LSCs, whereas for our synthesis approach only basic MSCs have to
be provided as examples, simplifying the requirements specification task considerably.

6.5 Summary

To conclude, we summarize the results of learning CFMs in Table 6.3:

• |A| is the size of the CFM,

• |Msg | is the size of the message alphabet,

• B is the buffer bound (specified in the learning setup), and

• |Proc| is the number of participating processes.

By poly(.), exp(.), and d -exp(.), respectivcely, we denote polynomial, exponential, and
doubly exponential complexity, respectively, in the parameters given.

CFM class #equivalence queries #membership queries

deterministic ∀B-bounded (|A| · |Msg |+ 1)B·|Proc|2+|Proc| poly(|A| , |Msg |)
exp(B, |Proc|)

∀B-bounded deadlock-free 2(|A| · |Msg |+ 1)B·|Proc|2+|Proc| exp(|A| , |Msg |)
d -exp(B, |Proc|)

∃B-bounded 2(|A| · |Msg |+ 1)B·|Proc|2+|Proc| exp(|A| , |Msg |)
d -exp(B, |Proc|)

deterministic ∀B-bounded
deadlock-free weak

(|A| · |Msg |+ 1)B·|Proc|2
poly(|A|)
exp(|A|)
d -exp(B, |Proc|)

Table 6.3: An overview over the query complexity of learning CFMs
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7 The Smyle Modeling Approach

The following chapter deals with a new software engineering lifecycle model, called the
Smyle Modeling Approach, or SMA for short, which is based on the learning approach for
distributed systems described in the previous chapter.

Within the SMA, we want to employ the idea of Model Driven Development (MDD, for
short) [TBD07, MCF03] and thereby opt for short development cycles and cost reduction.
Other advantages of the MDD are:

(i) “timeless” models, which are reusable at any time because the abstract model, i.e.,
the formal description of the system to be (e.g., in terms of MSCs, DFA, or CFMs),
stays available and can be adapted when necessary and

(ii) platform independence of the derived model (e.g., the CFM in our case) as a con-
sistent description of the final system. This makes later changes of the underlying
architecture of the final model possible.

The general idea of MDD is that an abstract model of the system to be might be a better
documentation of the whole project than the code itself. Moreover, in MDD the abstract
model is refined or transformed in several stages from an initial set of requirements spec-
ified in natural language over several abstract models to a final implementation. This fits
very well in our incremental learning setting.

The rest of this chapter is organized as follows: after a preliminary section in which
we become acquainted with a specification formalism for easing the software engineers
task within the SMA, we go into details about the SMA by presenting a global view first,
and then highlight the internal processes of our approach. Subsequently, we compare our
lifecycle model with well-known and well-established lifecycle models. Finally, we close
this chapter by giving an example for deriving a small design model.

7.1 Preliminaries

In this section, we want to introduce a formalism which will subsequently be employed
within the SMA to ease a designer’s task of classifying scenarios as either wanted or un-
desired. The goal is to provide means for specifying template-like patterns subsuming
collections of MSCs using a logic called PDL [BKM07]. In the following, we will first de-
tail on the motivation for choosing PDL, subsequently describe its syntax and semantics,
and, finally, present several formula instances to exemplify its use.

MSC Patterns We choose the logic PDL for three reasons:

(i) It is expressive, subsuming, e.g., Peled’s temporal logic TLC− [Pel00].

(ii) It combines easy to understand and engineer-friendly concepts such as regular ex-
pressions and boolean operators.
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(iii) Its membership problem, i.e., to decide if a given MSC satisfies a given formula, can
be solved in polynomial time, as we will show at the end of this section.

Note that PDL is a quite expressive logic and that satisfiability for PDL is undecidable
[BKM07]. Fortunately, the SMA only builds on deciding membership problems, as they
allow us to determine if a given scenario belongs to a property that represents good or
undesired behavior. This is the principal reason why PDL is better suited for our purposes
than, say, high-level MSCs, whose membership problem is NP-complete [AEY01].

The building blocks of formulae in our logic PDL are regular expressions and boolean
connectives, which can be nested arbitrarily. Let us first describe the syntax of PDL.

Definition 7.1.1 (PDL Syntax). The actual syntax of PDL is described by the follow-
ing rules where ϕ describes local formulae, α defines regular expressions, called path
expressions, and Φ specifies PDL formulae:

ϕ ::= true | σ | ¬ϕ | ϕ ∨ ϕ | <α>ϕ | <α>−1ϕ (local formulae)

α ::= {ϕ} | proc | msg | α; α | α+ α | α∗ (path expressions)

Φ ::= Eϕ | ¬Φ | Φ ∨ Φ (PDL formulae)

In this definition σ ∈ Act represents a communication action (e.g., !(1, 2, a)). Besides
these basic modalities, we use common shorthands such as ϕ1 ∧ ϕ2 for ¬(¬ϕ1 ∨ ¬ϕ2),
ϕ1 → ϕ2 for ¬ϕ1 ∨ ϕ2, false for ¬true, <α=ϕ for ¬<α>¬ϕ, <α=

−1ϕ for ¬<α>−1¬ϕ,
and AΦ for ¬E¬Φ.

In the following we will describe the formal semantics of PDL and, subsequently, exem-
plify its use within the learning setting.

Definition 7.1.2 (PDL Semantics). Let M = (E,�, λ) be an MSC (cf. Definition 6.1.1),
and e ∈ E a communication event:

Local formulae:

M, e |= true for all e ∈ E
M, e |= σ ⇐⇒ λ(e) = σ for σ ∈ Act
M, e |= ¬ϕ ⇐⇒ M, e 6|= ϕ
M, e |= ϕ1 ∨ ϕ2 ⇐⇒ M, e |= ϕ1 or M, e |= ϕ2

Local formulae with path expressions:

forward:
M, e |= <{ψ}>ϕ ⇐⇒ M, e |= ψ and M, e |= ϕ
M, e |= <proc>ϕ ⇐⇒ ∃ p ∈ Proc , e′ ∈ E : (e, e′) ∈ ⋖p and M, e′ |= ϕ
M, e |= <msg>ϕ ⇐⇒ ∃ e′ ∈ E : (e, e′) ∈ ≺msg and M, e′ |= ϕ
M, e |= <α1; α2>ϕ ⇐⇒ M, e |= <α1><α2>ϕ
M, e |= <α1 + α2>ϕ ⇐⇒ M, e |= <α1>ϕ ∨<α2>ϕ
M, e |= <α∗>ϕ ⇐⇒ ∃ n ∈ N : M, e |= (<α>)nϕ

backward:
M, e |= <{ψ}>−1ϕ ⇐⇒ M, e |= ψ and M, e |= ϕ
M, e |= <proc>−1ϕ ⇐⇒ ∃ p ∈ Proc , e′ ∈ E : (e′, e) ∈ ⋖p and M, e′ |= ϕ
M, e |= <msg>−1ϕ ⇐⇒ ∃ e′ ∈ E : (e′, e) ∈ ≺msg and M, e′ |= ϕ
M, e |= <α1; α2>

−1ϕ ⇐⇒ M, e |= <α1>
−1<α2>

−1ϕ
M, e |= <α1 + α2>

−1ϕ ⇐⇒ M, e |= <α1>
−1ϕ ∨<α2>

−1ϕ
M, e |= <α∗>−1ϕ ⇐⇒ ∃ n ∈ N : M, e |= (<α>−1)nϕ
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Figure 7.1: An MSC

PDL formulae:

M |= Eϕ ⇐⇒ ∃ e ∈ E : M, e |= ϕ
M |= ¬Φ ⇐⇒ M 6|= Φ
M |= Φ1 ∨ Φ2 ⇐⇒ M |= Φ1 or M |= Φ2

Let us describe the semantics more intuitively: First, we let M, e |= ϕ iff e is labeled
with ϕ. The boolean connectives are as usual. Moreover, M, e |= <α>ϕ iff there is
an event e′ such that M, (e, e′) |= α and M, e′ |= ϕ. The interpretation of the inverse
operator <α>−1 is, in a sense, dual; we just replace the condition M, (e, e′) |= α with
M, (e′, e) |= α. The intuition is that a path expression α defines a binary relation of
events: For an MSC M and two of its events u and v, we write M, (e, e′) |= proc iff e
and e′ are connected in M by a process edge (where e needs to be the successor of e′),
i.e., there exists a process p ∈ Proc such that (e, e′) ∈ ⋖p. Accordingly, the relation
M, (e, e′) |= msg holds iff e and e′ are connected by a message arrow, i.e., (e, e′) ∈ ≺msg.
The composition α1; α2 defines the set of pairs (e, e′), for which there exists an event
e′′ such that (e, e′′) is in the semantics of α1 and (e′′, e′) is in the semantics of α2. The
formula α∗ describes the reflexive, transitive closure of the relation defined by α, and
α1 + α2 defines the union of the relations induced by α1 and α2. Finally, the semantics
of {ϕ} is the set of pairs (e, e) such that M, e |= ϕ. Hereby, ϕ is a local formula, which is
interpreted as described above. The PDL formulae are interpreted over MSCs. The only
formula that requires explanation is Eϕ. It is satisfied by MSC M iff there is an event
e of M such that M, e |= ϕ. Universal quantification (e.g., M |= Aϕ) and conjunctions
can, as usually, be formalized using negation and existential quantification or disjunction,
respectively. The subformula ϕ in Eϕ or Aϕ is thus interpreted at events of an MSC.
It might be of the form <ψ>ϕ′ meaning that, starting in the event under consideration,
there is a ψ-labeled path to another event that satisfies ϕ′. The dual construct <ψ=ϕ′

expresses that the property ϕ′ has to hold at any event that can be reached following a
ψ-labeled path. In the following, let us write ϕ for the path expression {ϕ} to simplify
presentation.

Having formally and intuitively introduced the syntax and semantics of PDL, we now
will provide some example formulae demonstrating the expressive power of PDL, as well
as its usage within the SMA.

Example 7.1.3 (PDL Formulae). To be able to grasp the expressive power of PDL
and to obtain a better feeling of how to use this logic for specifying patterns in the
setting of the SMA, we now consider several PDL formulae and describe their intuitive
meaning. A typical local formula is !(1, 2, a). It is valid in all nodes whose labeling
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is !(1, 2, a), e.g., in event u of Figure 7.1. The path expression (!(1, 2, a); proc)∗ pairs
events e and e′ such that e and e′ are located on the same process line and, on the very
process line, any event in between e and e′ is labeled with send action !(1, 2, a). Given
local formulae ϕ and ψ, the local formula <({ϕ} ; (proc + msg))∗>ψ corresponds to
the “until” construct ϕUψ in Peled’s TLC−. I.e., for MSC M and an event u of M ,
M,u |= <({ϕ} ; (proc + msg))∗>ψ iff there is, roughly speaking, a (forward) path from
e to some e′ with M, e′ |= ψ along which ϕ is permanently valid (however, we do not
require M, e′ |= ϕ). Note that, in TLC−, one cannot express that an MSC contains an
even number of messages, which is, however, definable in PDL . To ease the presenta-
tion, let us assume that we have an action alphabet where we abstract from message
contents, i.e., Act = {!p, ?p, !q, ?q} over two processes p, q, and let us, moreover, suppose
that we only want to count the sending events along process p. The PDL formula stating
that an MSC must have an even number of messages being sent from process p then is:
A (procmin→<((?q; proc)∗; !p; proc; (?q; proc)∗; !p; proc; (?q; proc)∗)∗> procmax).
Note that we used a short notation and wrote !p and ?q instead of {!p} and {?q}. The
local formulae procmin := <proc=−1false and procmax := <proc= false express that
an event is the first or the last on its process line, respectively. Now consider M to be the
MSC from Figure 7.1 with designated nodes u and v. We have:

1) M,u |= procmin

2) M,u |= <(proc + msg)∗>v (or equivalently: M, (u, v) |= <(proc + msg)∗>)

The first item examines a local formula saying that “event u is minimal on its process”.
Considering Figure 7.1 this statement is valid, however u is not the smallest event in M
because there is another minimal event !(3, 2, c) on process 3. The local formula in item
2) states a simple property, namely “event u happens before event v” which is the case
for the MSC from Figure 7.1 as well.

We now turn to global formulae, i.e., we give some examples for PDL formulae (again
using the shorter version omitting the curly braces around local formulae):

ϕ1 = A
(
<(proc + msg)∗>(procmax ∧?(2, 1, a))

)
,

ϕ2 = E
(
procmax ∧?(2, 1, a)

)
,

ϕ3 = A
(
< ?(2, 3, c); proc; ?(2, 3, c)= false

)
, and

ϕ4 = A (procmin→<((?q;proc)∗; !p;proc; (?q;proc)∗; !p;proc; (?q;proc)∗)∗>procmax) .

The universal formula ϕ1 describes that, from any event, there is an arbitrarily labeled
path through the MSC (expressed by the first part of the local formula: <(proc + msg)∗>)
to another event that is maximal on its process (expressed by the local formula procmax)
and labeled with the receive event ?(2, 1, a). In other words, there must be a greatest event
in the MSC at hand and this greatest event shall be labeled with ?(2, 1, a). Indeed, ϕ1

is satisfied by the MSC M1 from Figure 7.2(a) because the greatest and maximal event
is e0. The MSC M2 from Figure 7.2(b), however, does not satisfy ϕ1 as there are two
maximal events e′0 and e′4 and, hence, no greatest. Note that the existential formula ϕ2

is not equivalent to ϕ1, as ϕ2 only requires the existence of an event that is maximal
on process 2; but this event needs not be the greatest in the MSC. As a matter of fact,
both MSCs satisfy ϕ2 because both contain at least one maximal event labeled by receive
action ?(2, 1, a). The universal formula ϕ3 forbids two consecutive events both labeled
with ?(2, 3, c). It thus is refuted by MSC M1 because (e1, e2) ∈ �2 but accepted by MSC
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Figure 7.2: Sample MSCs

M2 because there exists an event e′3 =!(2, 3, b) in between the events e1 and e2 labeled with
?(2, 3, c). Formula ϕ4 was already introduced before. It characterizes all MSCs (over two
processes p, q) that have an even number of messages being sent from p. If one wanted
to extend this formula to a larger process set Proc′ and action alphabet Act ′, one had to
replace the simplified actions !p, ?q by disjunctions over Proc′ and Act ′. 3

The examples above exemplarily show the power of PDL. It becomes clear, that em-
ploying PDL, MSCs can be automatically classified according to the patterns specified,
yielding a substantial decrease of user queries and, hence, an enormous relief for the de-
signer acting as a teacher of the learning algorithm embedded in the SMA. It remains to
show that this method can be used efficiently.

Essential for our setting using Smyle within the SMA is the result that we can efficiently
check whether a given MSC adheres to a given PDL formula, which can be proven as
follows:

Theorem 7.1.4. The membership problem for PDL is in PTIME, even if the number of
processes is part of the input. More precisely, given a PDL formula ϕ and an MSC M ,
we can decide in time O(|M | · |ϕ|2) if M |= ϕ, where |M | denotes the number of events
in M and |ϕ| denotes the length of ϕ.

Proof: [sketch] Let Φ be the given PDL formula. In subformulae <α>ϕ and <α>−1ϕ of
Φ, we consider α as regular expression over some finite alphabet {proc,msg, {ϕ1}, . . . , {ϕn}}
with local formulae ϕ1, . . . , ϕn. Any such expression can be transformed into a correspond-
ing finite automaton of linear size. We proceed by inductively labeling events of the given
MSC with states of the finite automata. This state information is then used to discover
whether or not an event of M satisfies a subformula <α>ϕ or <α>−1ϕ, which yields
labelings in {0, 1}. Boolean combinations and Eϕ are then handled in a straightforward
manner.

An algorithm solving the PDL membership problem is given in Tables C.1, C.2 and C.3
in Appendix C. 2

Within the SMA, the logic will be employed as follows: positive and negative sets of
formulae Φ+ and Φ− are input by the user, via an integrated formula editor. An example
for a negative statement would be, say, “there are two receives of the same message in
a row”, which corresponds to the negation of the PDL formula ϕ3 above. An annotated
MSC for this example formula is given in Figure 7.9 (c) on page 128. Then, the learning
algorithm can autonomously and efficiently check for all formulae ϕ+ ∈ Φ+, ϕ− ∈ Φ−

and unclassified MSCs M whether M 6|= ϕ+ or M |= ϕ−. If one of the two cases occurs,
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then the set of negative samples is updated to {M}∪M−, where MSC contains all MSCs
classified as negative so far. In all other cases the question is passed to the user.

7.2 The SMA in Detail

Let us now concentrate on the SMA in detail. It is common knowledge [Eas04] that tra-
ditional engineering lifecycle models like the well-known Waterfall model [Roy87, Som06,
Pre04, GJM02] or the V-model [Pre04, Som06] suffer from some severe deficiencies, de-
spite their wide use in today’s software development. One of the problems is that both
models assume implicitly that a complete set of requirements can indeed be formulated
at the beginning of the software engineering lifecycle. Although in both approaches it is
possible to revisit a previously passed phase, this is considered a backwards step involving
time-consuming reformulation of documents, models, or code produced in the previous
and current phases, which, in turn, cause high additional costs for redesign.

The nature of a typical software engineering project is, however, that requirements are
usually incomplete, often contradicting, and frequently changing during the project evolu-
tion. A high-level design, on the other hand, is typically a complete, and consistent model
that is expected to conform to the requirements. Thus, especially the step from require-
ments to a high-level design is a major challenge within a software engineering lifecycle:
The incomplete set of requirements has to be made complete and inconsistencies have to
be eliminated. An impressive example for inconsistencies in industrial-size applications is
given by Holzmann [Hol94] where for the design and implementation of a part of Signaling
System 7 in the 5ESS R©switching system (the ISDN User-Part protocol defined by the
CCITT) “almost 55% of all requirements from the original design requirements [...] were
proven to be logically inconsistent [...]”.

Moreover, also later stages of the development process often require additional modifi-
cations of requirements and the corresponding high-level design, either due to changing
user requirements or due to unforeseen technical difficulties. Thus, besides the step of
generating a complete and consistent set of requirements and a conforming design model
in the initial stages of a development process, a lifecycle model should support an easy
adaptation of requirements and its conforming design model also at later stages. The SMA
is a new software engineering lifecycle model that addresses these goals.

However, as we discuss later, it may also be employed to enrich existing lifecycle models.

7.2.1 A Bird’s-eye View on SMA

The Smyle Modeling Approach is a software engineering lifecycle model tailored to dis-
tributed systems. A prerequisite is that the participating processes and their communi-
cation actions can be fixed in the first steps of the development process, before actually
deriving a design model. Requirements for the behavior of the involved processes, how-
ever, may be given vaguely and incomplete first but are made precise within the process.
While clearly not every development project fits these needs, a considerable amount of
systems especially in the automotive domain do, which motivated to develop the SMA.

Within SMA, our goal is to round-off requirements, remove inconsistencies and to provide
methods catering for modifications of requirements in later stages of the software engi-
neering lifecycle. One of the main challenges to achieve these goals is to come up with
simple means for concretizing and completing requirements as well as resolving conflicts
in requirements. We attack this intrinsically hard problem using the following rationale:
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While it is hard to come up with a complete and consistent formal specification
of the requirements, it is feasible to classify exemplifying behavior as desired
or illegal. (SMA rationale)

This rationale builds on the well-known experience that human beings prefer to explain,
discuss, and argue in terms of example scenarios, but are often over-strained when having
to give precise and universally valid definitions. Thus, while the general idea to formalize
requirements, for example using temporal logic, is in general desirable, this formalization
is often too cumbersome and, therefore, not cost-effective—and the result is, unfortu-
nately, often too error-prone. This is because it is hard to have a clear (i.e., complete
and consistent) picture of the system to develop right at the beginning of the software
engineering lifecycle.

This also justifies our restriction to MSCs without branching, if-then-else, and loops,
when learning design models: It may be too error-prone to classify complex MSCs (or
equally or even more expressive notions like HMSCs or LSCs) as either wanted or un-
wanted behavior.

Our experience with requirements documents shows that especially requirements for-
mulated in natural language are often explained in terms of scenarios, showing wanted or
unwanted behavior of the system to develop. Additionally, it is evident that it is easier for
the customer to judge whether a given simple scenario is intended or not, in comparison
to answering whether a formal specification matches the customer’s needs.

The key idea of the SMA is therefore to incorporate the novel learning algorithm called
Extended-L∗ (cf. Chapter 6) with supporting tool Smyle (cf. Chapter 9) for synthesizing
design models based on scenarios explaining requirements. Thus, requirements- and high-
level design phase are interweaved. Smyle’s nature is to extend initially given scenarios
to consider, for example, corner cases: It generates new scenarios whose classification as
desired or undesired is indispensable to complete the design model and asks the engineer
exactly these scenarios. Thus, the learning algorithm actually causes a natural iteration
of the requirements elicitation and design model construction phase. Note that Smyle

synthesizes a design model that is indeed consistent with the given scenarios and thus
does precisely exhibit the scenario behavior, and nothing more. That is in contrast to
the existing learning algorithms like [MS01, UKM03, DLD05], mentioned in the previous
chapter.

SMA is tailored to component-based systems communicating with each other to achieve
a common goal. A natural design model for such systems are CFMs (cf. Definition 6.1.2
on page 87). Exemplifying behavior (scenarios) of such systems is best given in terms
of MSCs (cf. Definition 6.1.1 on page 84). Thus, SMA, similar as its learning algorithm
Smyle, is designed to derive CFMs based on either positively or negatively classified MSCs,
representing wanted or, respectively, unwanted behavior of the software system to build.

While SMA’s initial objective is to elaborate on the inherent correspondence of require-
ments and design models by asking for further exemplifying scenarios, it also provides
simple means for modifications of requirements later in the design process. Whenever,
for example in the testing phase, a mismatch of the implementation’s behavior and the
design model is witnessed, which can be traced back to an invalid design model, it can be
formulated as a negative scenario and can be given to the learning algorithm to update
the current design model. This will, possibly after considering further scenarios, modify
the design model to disallow the unwanted behavior. Thus, necessary modifications of
the current software system in later phases of the software engineering lifecycle can easily
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be fed back to update the design model. This high level of automation is aiming at an
important reduction of development costs.

7.2.2 The SMA Lifecycle Model

The Smyle Modeling Approach, cf. Figure 7.3, consists of a requirements phase, a high-
level design phase, a low-level design phase, and a testing and integration phase. Following
modern model-based design lifecycle models, the implementation model is transformed au-
tomatically into executable code, as it is increasingly done in the automotive and avionics
domain.

In the following, the main steps of the SMA lifecycle model are described in more detail,
with a focus on the phases depicted in Figure 7.3 and a brief discussion on testing and
integration phases.

Derivation of a Design Model

According to Figure 7.3, the derivation of design models is divided into three steps:

The first phase is called scenario extraction phase. Based on the usually incomplete
system specification the designer has to infer a set of scenarios which will be used as
input to Smyle. It is worthwhile to study the results from [Kof07, Kof08] in this context,
which allow us to infer MSCs from requirements documents by means of natural language
processing tools, potentially yielding (premature) initial behavior. After collecting this
initial set of MSCs representing desired and undesired system behavior, the second phase
initiates the learning algorithm to learn a system model based on these scenarios.

In the learning and simulation phase, the designer and client (referred to as stakeholders
in the following) will work hand in hand according to the designing-in-pairs paradigm.
The advantage is that both specific knowledge about requirements (contributed by the
customer) and solutions to abstract design questions (contributed by the designer) coa-
lesce into one model. With its progressive nature, Smyle attempts to derive a model by
interactively presenting new scenarios to the stakeholders which in turn have to classify
them as either positive or negative system behavior. Due to the evolution of require-
ments implied by this categorization, the requirements document should automatically
be updated incorporating the new MSCs. Additionally, the most important scenarios are
to be user-annotated with the reason for the particular classification to complement the
documentation. When the internal model is complete and consistent with regard to the
scenarios classified by the stakeholders, the learning procedure halts, and Smyle presents
a frame for simulating and analyzing the current system. In this dedicated simulation
component—depicted in Figure 7.8(a) and (c) on page 128—the designer and customer
pursue their designing-in-pairs task and try to obtain a first impression on the system to be
by executing events and monitoring the resulting system behavior depicted as an MSC. In
case missing requirements are detected, the simulator can extract a set of counterexample
MSCs, which should again be augmented by the stakeholders to complete documentation.
These MSCs are then introduced to Smyle, whereupon the learning procedure continues
until reaching the next consistent automaton.

The designer then advances to the synthesis and analysis phase where a distributed
model (a CFM) is synthesized in an automated way. To get diagnostic feedback as soon
as possible in the software engineering lifecycle, a subsequent analysis phase asks for an
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Figure 7.3: SMA: The Smyle Modeling Approach
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intensive analysis of the current design model. Consulting model-checking-like tools1 as
MSCan [BKSS06], which are designed for checking dedicated properties of communicating
systems, might lead to additional knowledge about the current model and its imple-
mentability. With MSCan the designer is able to check for potential deficiencies of the
forthcoming implementation, like non-local choice [BAL97] or non-regularity [HMK+05],
i.e., process divergence, etc. The counterexamples generated by MSCan are again MSCs
and as such can be smoothly fed back to the learning phase. Instead of employing tools,
the engineer could of course also try to alter the distributed model herself. Nevertheless,
this is not encouraged as it obviously violates and breaks the learning-based lifecycle, and
conceals the danger of accidentally adding or deleting system behavior because distributed
systems are easily misunderstood by humans. If the customer and designer are satisfied
with the result the client’s presence is not required anymore and their direct collaboration
terminates. Note that the design model obtained at this stage may also serve for a legal
contract describing the system to be built.

Enhancing the Learning Process

While it is hard to come up with a universally valid specification right in the beginning
of the design phase, typical patterns of clearly allowed or disallowed MSCs usually are
observed during the learning phase. Hence, when applying the SMA, it is useful to provide
expressive though concise means to describe MSC languages, e.g., to specify mandatory
or unwanted system behavior. Over words, temporal logics such as LTL have emerged as
an important ingredient in the verification and synthesis of reactive systems. For MSCs,
only few attempts to define a suitable temporal logic exist. The lack of temporal logics
probably traces back to the complexity of MSCs: even simple temporal logics over MSCs
have an undecidable satisfiability problem. For SMA, we adopt the logic PDL proposed in
[BKM07] and introduced in the previous section, which is inspired by the propositional
dynamic logic by Fischer and Ladner [FL79], but adapted to MSCs.

The purpose of employing PDL within the SMA is to decrease the number of MSCs to
classify, for considerably reducing the designer’s efforts. If the desirable or undesirable
properties obey a certain structure these so-called patterns, representing temporal-logic
properties, should be expressed in PDL directly or, ideally, marked—as in Figure 7.9—
within an MSC featuring this behavior. In case patterns were marked in the MSCs they
should (semi-)automatically be transformed into PDL formulae. Afterwards, they have
to be categorized as either positive or negative, as in the case of classifying MSCs. An
unclassified MSC has to fulfill all positive patterns and must not fulfill any negative
pattern in order to be passed to the designer. In case any positive pattern is not fulfilled
or any negative pattern is fulfilled the scenario can be classified as negative without user
interaction. Roughly speaking: employing a set of formulae in the learning procedure will
further ease the designers task because she has to classify less scenarios as many of them
can be answered by the specified patterns.

Transformation to an Implementation Model

The engineer’s task now is to semi-automatically transform the design model into an
implementation model. Of course, as no software lifecycle can claim to be a universal
remedy also SMA requires manual effort and human ingenuity. For this purpose the SMA

1Note that currently there are no general purpose model checkers for CFMs available.
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proposes to employ tools like Matlab Simulink which takes as input for example a so-called
Stateflow diagram [HR04] and transforms it into an implementation model. Hence, the
manual effort the designer has to perform in the current phase reduces to transforming the
CFM (as artifact of the design phase) into the input language (e.g., Stateflow) of the tool
used for deriving the implementation model. Another possibility is to employ the approach
described in Balarin et al. [BCG+99] where C code is synthesized from cooperating finite-
state machines (CFSMs), a communicating automaton model related to the CFM model
used in this dissertation. The manual effort in this case consisted in transforming the
CFM as artifact of our learning process into a CFSM as input for the synthesis process by
Balarin et al. As the authors state, this method is only applicable to a restricted class of
embedded systems for which features like loop bounds, which are determined at runtime,
recursion, etc., must not be used. As these limitations are rather severe, this method
can, in general, not be applied to all kinds of embedded software. Note that Balarin et
al. use CFSMs as high-level representation and input to their synthesis method. The
authors, however, do not state how to obtain these communicating automata. Thus, the
SMA approach could be of interest for their setting, too, because it would allow for correct
CFM derivation.

To sum up: depending on the complexity and requirements of the system to be either
of the above procedures should be performed in order to evolve to the next phase of the
software development cycle.

Conformance Testing

As early as possible the implementation model should pass a testing phase before being
transformed into real code to lower the risk of severe design errors and supplementary
costs. SMA employs model-based testing [BJK+05] as it allows a much more systematic
treatment by mechanizing the generation of tests as well as the test execution phase.

Within the SMA, we now have reached a point at which it becomes necessary to employ
such techniques. Let us briefly explain the main goal of conformance testing.

In general, this testing technique is employed to check the conformance of given stan-
dards (here represented by the requirements document or the abstract model, respectively)
with regard to the implementation model or implementation. Conformance testing (or
model-based testing) contains the following steps: first an abstract model of the system
has to be derived. In our context this model is inferred using learning techniques pre-
sented in Chapter 6 yielding an abstract model of the specification. From this abstract
model we can then, in a second step, generate (abstract) test cases and finally in the third
step test the (partially) manually coded implementation parts.

As mentioned previously, the output of the design model derivation phase is an abstract
model of the communication behavior. It completely and correctly describes the commu-
nication structure but compared to a real implementation lacks, e.g., code for memory
management, file handling, network communication, etc.

Let us, for example, consider a web server. The model of the communication behavior
of this application is learned using our tool Smyle (cf. Chapter 9). The model abstractly
describes all interactions of the webserver with a client (e.g., the login to a password-
protected website, or the exchange of documents). On this level of abstraction we want to
perform our tests wrt. the implementation model. To this end, we can almost directly use
the MSCs drawn or derived (using the approaches like [Kof07]) from the requirements doc-
ument and apply them to the implementation. Because the communication behavior can
be expected to be correct by construction it does not have to be tested. This is, because
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usually we assume that the user classifies MSCs correctly, and code generators generate
correct output. Thus, as long as the system under development is not safety-critical or has
to fulfill high security standards, one can refrain from testing the automatically generated
code fragments. The semi-automatically derived implementation model and the manually
coded rest of the implementation (referred to in the following paragraph), however, can
contain errors. A thorough testing phase is therefore indispensable and mandatory.

The conformance testing phase can be summarized as follows. We want to detect the
bugs employing conformance testing using as a natural test suite (i.e., a set of tests)
the MSCs from the requirements document, i.e., the MSCs originally contained in this
document, augmented by the MSCs that were classified during the learning phase. Ad-
ditionally, we can extend this test suite by employing our test case generation approach
Style which will be described at the end of Chapter 9. If the designer detects a failure
during the testing phase, counterexamples in form of abstract system runs and, thus,
MSCs are automatically generated, and again the requirements document is updated ac-
cordingly, enclosing the new scenarios and their corresponding requirements derived by
the designer. At last, the generated scenarios are introduced into Smyle to derive the
next model.

In practice, model-based testing has been implemented in several software tools and has
demonstrated its power in various case studies [CSH03, BJK+05]. For the testing phase,
the SMA recommends tools like TorX or TGV [BFS04].

Synthesis of Code, Testing, and Maintenance

Having converged to a final, consistent implementation model, a code generator is em-
ployed for generating code skeletons or even entire code fragments for the distributed
system. These fragments then have to be completed by programmers such that, after-
wards, the software can finally be installed at the client’s site.

As stated in the previous paragraph, as soon, as human beings contribute real code to
the implementation, conformance testing should be stipulated. As in the current phase the
automatically derived code skeletons were augmented by hand-written code, we schedule
a second phase of testing. Similar to the last phase, we can now use MSCs from the
requirements document, or automatically generated ones (using, e.g., Style), to perform
parts of the tests on an abstract level in order to receive diagnostic feedback. Of course,
in this phase of the software development also concrete test cases have to be created. To
this end, however, the abstract tests can serve as templates to implement real test cases.

Concerning the extensibility of the system, we obtain the following result: if new re-
quirements arise after some operating time of the system, the old design model can be
upgraded by resurrecting the SMA on basis of the already classified, or even partially reclas-
sified set of scenarios, learning the new model, synthesizing the new system as explained
and, thus, closing the SMA lifecycle.

7.3 SMA vs. Other Lifecycle Models

This section compares the SMA to other well-known traditional and modern lifecycle mod-
els. Similarities, advantages, but also deficiencies of these models in comparison to the
SMA are discussed, and we argue in which aspects the SMA is superior to the presented
models and, to which application areas it is tailored.
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Figure 7.4: The Waterfall lifecycle model

7.3.1 The Waterfall- and V-model

Figure 7.4 gives a rough overview over the main phases that belong to the famous Waterfall
model [Som06]. As mentioned before, major drawbacks of several traditional models like
the Waterfall or V-model are:

(i) All requirements have to be fixed in advance.

(ii) As testing phases are scheduled at the end of the software development process,
expensive and time-consuming backward steps are to be expected.

(iii) Typically, in industrial practice, during the development phase but especially during
the maintenance phase, only the code is improved but the underlying documents and
models are not extended or updated, to avoid overwhelming work. Then, however,
significant problems arise if on basis of the current software a new version needs to
be developed.

The SMA, however, overcomes the first problem by interactively deriving new scenarios
while models evolve towards a final conforming and validated model. The second short-
coming is addressed by the intensive simulation and analysis phase on the design model
level as well as due to application of model-based testing techniques to check conformance
of the design model and the implementation model. The important fact is that any defi-
ciency encountered can usually be formulated in terms of a (mis-)behavior, expressed as
an MSC. In case the misbehavior is due to an invalid design model, it can be documented
in the requirements documents as well as fed back to the learning phase to improve the
design model. This on the one hand reduces the probability of having design or im-
plementation flaws substantially, yet allows us to keep requirements and design models
up-to-date. Similarly, during the maintenance phase, the modified behavior of the soft-
ware system can be expressed by adding new MSCs or reclassifying previously classified
MSCs to update the design model and corresponding design documents.

Note that SMA coincides with the Waterfall model and the V-model on major milestones
of these lifecycle models, namely requirements elicitation, design-model elaboration, im-
plementation, testing and maintenance.

As the next paragraphs will show, it also includes aspects of modern software engineer-
ing lifecycle models.
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Figure 7.5: An evolutionary rapid prototyping lifecycle model

7.3.2 The Spiral Model

One of the first models which overcame the severe problems mentioned above was Boehm’s
spiral model [Boe88, Eas04, Som06]. For large software systems it is usually impossible
to fix all requirements in advance. The spiral model therefore supports an iterative de-
velopment of requirements and system prototypes, employing the following main phases:
starting with the detection of goals, alternatives, and constraints, an evaluation of the
alternatives and risks is performed until reaching a development and testing phase. Each
cycle is concluded by the planning of the next iteration. It also allows for development of
incremental versions of software resolving the third drawback of the Waterfall model.

The SMA adapted the progressive character of the spiral model but, to our opinion, has
the extra benefit of easing the requirements elicitation and derivation of a design model:
only a classification has to be provided. This significantly lowers the engineer’s burden
to define requirements. Nevertheless, the spiral model aims at developing large-scale
projects while the main application area for the SMA is to be seen in developing software
for embedded systems where the number of communicating entities is fixed a priori.

To benefit from both models one could also imagine to integrate the SMA partially into
the spiral model. Parts of the system are then learned employing the SMA and the resulting
components can afterwards be integrated in the overall system using the spiral model. In
other words, the SMA would correspond to one iteration within the spiral model.

7.3.3 Rapid Prototyping

Rapid prototyping (RP) [Eas04, Som06] also resolves the traditional models’ deficits of
defining all requirements of a system in advance. This kind of software engineering lifecycle
is employed for getting deeper insight on the requirements. In several iterations prototypes
are generated (cf. Figure 7.5). The knowledge about requirements and design that is
gained throughout these iterations is used as input for improving the prototypes of the
next iteration. If a satisfactory prototype was created, it may serve as system specification,
and the software development is continued by an iterative lifecycle model (e.g., using the
Waterfall model) to build the final system. Note that analysis and testing phases can early
be integrated into the process. This results in early feedback and, hence, less problems in
later phases that would cause expensive redesign.

In software engineering several kinds of prototyping such as throw-away-prototyping
and evolutionary prototyping are distinguished. In throw-away-prototyping a prototype
is created, discussed with the client and, after an agreement about the correctness of the
prototype, discarded again. The knowledge that was gained throughout the creation of
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Figure 7.6: Extreme programming lifecycle model

the prototype and the discussion with the client are exploited to start the development
of the final system with a different software engineering lifecycle.

Our lifecycle model very much resembles the evolutionary prototyping approach where
a prototype is refined in several iterations, and in each iteration the knowledge acquired
during the previous iterations is used to enhance the current prototype. This can also be
regarded as a kind of risk-reduction technique where the probability of finding errors is
increased by continuously learning about the system’s requirements. However, as learning
is based on exemplifying behavior that is expected to be documented within the learning
process, the SMA does not suffer from the disadvantage of not having a formal requirements
document as, due to time and financial constraints, it is usually the case in RP.

Moreover, bridging the gap from requirements to a design model—that apparently ex-
ists in rapid prototyping as well as in most software engineering lifecycle models—is a
highly creative task that involves requirements as well as design engineers with expensive
expertise. The SMA, however, is not necessarily dependent on highly experienced design
personnel but rather on requirements engineers with domain knowledge because, as men-
tioned before, design questions are to a great extent solved automated by the learning
algorithm, once architectural decisions have been fixed.

7.3.4 Agile Models

Agile models [AJ02] are a popular approach to iterative software development. They are
mainly characterized by two properties: firstly, while the main focus in most traditional
software development models is on creating documents at the end of each phase, in agile
modeling this focus is changed towards immediate interaction of human beings. It is
assumed that relying on formal documents only, is inappropriate and their production
costly. Thus, a major goal of agile modeling is to replace documents by direct interaction of
designer and client. Of course the one-sided point-of-view that generating documentation
is expensive is not fully correct as formal documentation conserves knowledge gained in
the current phase and thus eases the software development in later phases.

The SMA exhibits both, direct communication with the customer while inferring the
design model, and automatic creation of formal documentation, i.e., the iterative update
and completion of the requirements document.

The second fundamental characteristic of agile models is that, due to short development
cycles, the model stays highly adaptive to changes in requirements.
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These properties stress the flexibility of agile models compared to traditional software
development models.

An example agile model that resembles the SMA to a certain extent is the so-called
extreme programming model [AJ02]. As Figure 7.6 depicts, extreme programming uses
collections of so-called user stories (i.e., scenarios). In each iteration some of these user
stories are planned for implementation and, as in the SMA, an early integration of testing
is provided, to obtain an early defect detection. After the test case creation phase a loop
of implementing, integrating and testing is performed until converging to a release. This,
in turn, can be analyzed again to gather new user stories closing the cycle to the next
iteration. Similar to the SMA, regular and early testing phases are stipulated. Design and
implementation flaws are usually detected early, allowing for substantial cost reduction
and considerably shorter time-to-market phases. The designing and programming-in-pairs
paradigm supported by both approaches is less error-prone and, thus, serves as a further
risk-reduction technique, which lowers costs of possible redesign or reimplementation.

7.4 Exemplifying the SMA

In this section, we apply the SMA on a concrete yet simple example. More specifically,
our goal is to derive a model for the well-known alternating bit protocol (ABP). Along
the lines of [Lyn97, Tan02], we start with a short requirements description in natural
language. Examining this description, we will identify the participating processes and
formulate some initial MSCs exemplifying the behavior of the protocol. These MSCs will
be used as input for Smyle which in turn will ask us to classify further MSCs, before
deriving a first model of the protocol. After a second iteration, a further hypothesis is
derived, and extensively simulated and tested. Finally, we come up with a design model
for the ABP matching the model from [Tan02].

Problem Description

The main aim of the ABP is to assure the reliability of data transmission initiated by
a producer through an unreliable FIFO (first-in-first-out) channel to a consumer. Here,
unreliable means that data can be corrupted during transmission. We suppose, however,
that the consumer is capable of detecting such corrupted messages. Additionally, there is
a channel from the consumer to the producer, which, however, is assumed to be reliable.
The protocol now works as follows: initially a bit b is set to 0. The producer keeps sending
the value of b until it receives an acknowledgment message a from the consumer. This
affirmation message is sent some time after a message of the producer containing the mes-
sage content b is obtained. After receiving such an acknowledgment, the producer locally
inverts the value of b and starts sending the new value until the next affirmation message
is received at the producer. The communication can terminate after any acknowledgment
a that was received at the producer side.

Applying the SMA

According to the SMA, we first start with identifying the participating processes in this
protocol: the producer p and the consumer c.

Next, we turn towards the scenario extraction phase and have to come up with a set
of initial scenarios. Following the problem description, we first derive the MSC shown in
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Figure 7.7: Four positive initial input scenarios for Smyle

Figure 7.7(a). It describes that indeed p sends first 0, gets an acknowledgment from c,
then sends 1, and finally gets a further acknowledgment. Let us now consider the behavior
caused by the non-reliability of the channel. We could imagine that p sends a message 0
but, due to channel latency, does not receive a confirmation within a certain time bound
and thus sends a second 0 while the first one is already being acknowledged by c. This
yields the MSC in Figure 7.7(b).

The problem description tells us: after each acknowledgment the bit b is inverted. Thus,
the previous scenario is extended by a second phase where b = 1 is sent and directly
acknowledged, shown in Figure 7.7(c). To exemplify that, on the producer’s side, more
than one message can be corrupted, we derive a scenario that amplifies the previous one:
We add one more message with content b = 0 to the first phase of scenario (c) yielding
the scenario from Figure 7.7(d).

We start the learning phase and feed the charts to Smyle, proceeding to the second
step in the design phase. Within this learning phase, Smyle asks us to classify further 44
scenarios—most of which we are easily able to negate—before providing a first hypothesis
of the design model.

Now the simulation phase is activated (cf. Figure 7.8(a)), where we can test the current
model. We execute several events as shown in the right part of Figure 7.8(a) and review
the model’s behavior. We come across an execution where, after an initial phase of sending
a 0 and receiving the corresponding affirmation, we expect to observe a similar behavior
as in Figure 7.7(b) (but now containing the message content b = 1). According to the
problem description this is a feasible protocol execution but is not contained in our system,
yet. Thus, we encountered a missing scenario. Therefore, instead of proceeding to the
synthesis and analysis phase, we enter the scenario extraction phase again, formulate the
missing scenario (cf. Figure 7.8(b)), and input it into Smyle as a counterexample to the
current model.

As before, Smyle presents further MSCs that we have to classify: Among others, we are
confronted with MSCs that (1) do not end with an acknowledgment (cf. Figure 7.9(a)) and
with MSCs that (2) have two subsequent acknowledgment events (cf. Figure 7.9(c)). Both
kinds of behavior are not allowed according to the problem description. We identify a
pattern in each of these MSCs, by marking the parts of the MSCs as shown in Figure 7.9(a)
and (c), yielding internally PDL formulae representing these patterns:
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(1) E
(
procmax ∧?(p, c, a)

)
,

(2) A
(
< ?(p, c, a); proc; ?(p, c, a) + !(c, p, a); proc; !(c, p, a) = false

)
.

Note that in formula (2) the curly braces around actions have been omitted, again.
Instead of visually annotating MSCs, the formulae can also be directly entered via a

dedicated formula editor. To tell Smyle to abolish all MSCs fulfilling the patterns we mark
them as unwanted behavior. Thus, the MSCs from Figure 7.9(b) and (d) are automatically
classified as negative later on. In addition, we reflect these patterns in the requirements
documents by adding, for example, the explanation that every message exchange has to
end with an acknowledgment and its formal specification (1). With the help of these two
patterns, we continue our learning effort and end with the next hypothesis after a total
of 55 user queries. Note that without adding these patterns, we would have needed 70
user queries. Moreover, identifying three more obvious patterns at the beginning of the
learning process, we could have managed to infer the correct design model with only 12
user queries in total. Of course, one can argue that this is a high number of scenarios
to classify, but this is the price one has to pay for getting an exact system and not an
approximation (that indeed can be arbitrarily inaccurate) as in related approaches, e.g.,
[DLD05].

At the end of the second iteration through the learning phase, we are presented the sim-
ulation frame (Figure 7.8(c)) again. An intensive simulation does not give any evidence
of wrong behavior. Thus, we enter the analysis phase to check the model with respect
to further properties. For example, we check whether the resulting system can be imple-
mented fixing a maximum channel capacity in advance. MSCan tells us that the system
does not fulfill this property. Therefore, we need to add a (fair) scheduler to make the
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Figure 7.10: CFM for the alternating bit protocol

protocol work in practice. According to the results from Chapter 6, a CFM is constructed
which exactly is the one from Figure 7.10.





Part III

Tools and Applications





8 Learning Libraries

As indicated in Chapters 3 and 4, there is an uncountable number of learning algorithms
available on the Internet. Of course the prementioned chapters do not give a complete
overview over the field of off- and online learning algorithms, and there are many other
important inference algorithms that had to be omitted. Usually, the most important
and influential ones are implemented again and again by different researchers. Many
of these learning algorithm implementations are quick-and-dirty applications and only
meant to be a proof-of-concept for the authors’ theoretical work. Moreover, most of these
implementations are not available as source code to the general public. Thus, there is
no possibility of extending or improving existing versions, or building new algorithms on
basis of them, or to compare different versions thereof. The only available library heading
for such aims was the LearnLib C++ library [RS06, MRSL07] developed at the University
of Dortmund. It implements Angluin’s L∗ algorithm, and some extensions thereof, and
is capable of inferring DFA and Mealy machines, which are, roughly speaking, finite-
state machines with output dependent on the current state. So-called filters, provided by
LearnLib allow for exploiting domain-specific knowledge and, thereby, reduce the number
of membership queries necessary to infer the target model. The LearnLib library contains
some hard-coded filters, namely prefix-closure, action-independence, and symmetry, and
allows for statistical methods to evaluate concrete learning instances in terms of number of
states (of the minimal DFA), time-, and memory consumption. The LearnLib is available
via an Internet connection to a server located at the University of Dortmund. In order to
learn a model, a client has to connect to the password protected server, receives queries
via the Internet, has to answer them locally, and sends them back to the server which
subsequently evaluates them. This Internet-based information exchange persists until a
hypothesis is returned by the server.

Initially, we integrated this library into our synthesis tool Smyle, which will be pre-
sented in Chapter 9. We were able to infer some small-size models using the LearnLib.
Unfortunately, the service was unavailable several times due to a variety of reasons: some
of them were: server problems at the LearnLib site, missing or unreliable Internet con-
nections at conferences or universities, etc., or blocked ports which, because of the large
number of security risks, is not unusual nowadays. Due to these reasons and the fact that
the library is not available as source code or offline binary, for our purposes the LearnLib
library could not be the ultimate choice. In search of alternatives we did not succeed and
decided to launch a new project for an open-source learning library in the beginning of
2008: the libalf library [libalf]. In fact, at the beginning of 2009, we became aware
of another learning library in the PhD thesis [Sha08]. It is called RALT which stands for
Rich Automata Learning and Testing. In contrast to LearnLib and libalf, RALT was
developed in Java. From the learning point of view it implements four learning algo-
rithms, namely L∗ and three slight variants [Nei03, BGJ+05, Sha08] thereof for inferring
Mealy machines. It employs minimal DFA and Mealy machines as hypotheses automata.
Nevertheless, it neither includes extensions for domain specific requirements or to exploit
domain specific features, nor is any information about external applications or statistics
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using RALT available in the literature.
Though our library and the RALT library partially overlap, the approaches are aiming

at different goals. In contrast to RALT, the libalf library is meant to provide a learning
suite with inference algorithms of all kinds (passive, active, offline, and online) such that
end users can try to embed different algorithms provided by libalf into their application,
compare the results, and finally employ the learning approach that is most suitable for
their purposes.

In the following, we will describe libalf’s current development state, and give ideas
how to extend it in the future.

8.1 libalf: The Automata Learning Framework

Our intention for launching the libalf project is to start a unifying learning framework
with a clear and clean architecture and design for collecting learning algorithms of all
kinds, providing the library’s users with the C++ source code allowing for an easy integra-
tion into their own projects, to extend existing algorithms, or to augment it by adding
new algorithms. Moreover, we implemented the possibility of learning models via a dedi-
cated server, and provide several interfaces to this client/server approach. In contrast to
the LearnLib, we offer the possibility to install the libalf server on local machines, but
of course also grant the possibility to connect to a central libalf server in analogy to
the LearnLib idea. Initially, this project was initiated by the Lehrstuhl für Informatik 2
(RWTH Aachen University), the Laboratoire Spécification et Vérification (ENS Cachan)
and the Institut für Informatik, Lehrstuhl IV (TU Munich). As this project is meant
to be open source, meanwhile other chairs and universities—like the Oxford University
Computing Laboratory under supervision of Professor M. Kwiatkowska and the Lehrstuhl
für Informatik 7, RWTH Aachen University under direction of Professor W. Thomas—
evinced interest in participating in our learning framework and contributing new classes
of learning algorithms. Moreover, there are already concrete plans for employing libalf

for searching through source code for similar code fragments (so-called clones) by means
of examples (E. Jürgens, TU Munich), or learning from log files of an existing system to
derive a model for the underlying system (i.e., learning blackbox systems). The former
idea has already been realized using the RPNI learning algorithm but, as results turned
out to be unsatisfactory employing RPNI, the authors were looking for alternative learn-
ing approaches. Our library might be of help because it implements a variety of learning
algorithms which may be more suitable.

8.2 Implementation Details

The libalf library is written in C++ and currently contains approximately 12,500 SLoC1.
It is available as source code from http://libalf.informatik.rwth-aachen.de/. Its
extremely modular structure allows for easy extension in various ways. Our main ob-
jective is to provide means and pave the way for extending existing learning algorithms
included in libalf, adding new algorithms on basis of already existing data structures
and algorithms (new data structures can be integrated as well), and include user-defined
filters and normalizers for exploiting domain-specific knowledge for reducing the number
of queries in order to ease the learning task. An overview over the architecture of our

1SLoC (source lines of code) calcultaed using sloccount
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Figure 8.1: Architecture of the libalf learning library

library is presented in Figure 8.1. It contains nine components (five internal, two external,
and two additional components), which will subsequently be described in greater detail.
Moreover, we implemented a Java interface for communicating with the dispatcher which
is the server component of libalf providing means of remotely using libalf via a local
network or the Internet, and a Java Native Interface (JNI)—by courtesy of Lehrstuhl
für Informatik 7 (RWTH Aachen University)—for directly accessing the C++ library from
Java applications without using network communication via the dispatcher component.
These interfaces, enriched by some small example applications, are also retrievable from
the library’s web page.

Learning algorithms Currently, the libalf library contains offline as well as active on-
line learning algorithms. We implemented most learning algorithms presented in Chap-
ters 3 and 4. Among them are the passive offline algorithms for deriving DFA, namely
Biermann and RPNI and the active online algorithms L∗ and L∗

col for inferring DFA, and
NL∗ for deriving canonical RFSA, respectively. The learning algorithms module collects
the classes in which the learning algorithms are implemented. They have access to all
other modules which are described below.

In the near future, we also plan to integrate the DeLeTe2 algorithm for offline learn-
ing (non-canonical) RFSA (cf. Subsection 3.2.1 on page 30) and a new online learning
algorithm for inferring nondeterministic weak Büchi automata that is currently being
developed. Moreover, as mentioned in the previous section, other parties agreed on con-
tributing further learning techniques.
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Knowledgebase The knowledgebase contains all information regarding the classification
of examples asked and categorized so far, or initially provided by the user in case of pas-
sive offline algorithms. Moreover, the active online algorithms extend this container with
questions that have to be answered by a teacher (e.g., a human user or the learning ap-
plication itself). To this end, it maintains a list of unclassified words, which the teacher
may iterate over, categorize them, and notify the learning algorithm about the successful
classification. To prevent from redundantly storing data, the underlying data structure
for already classified words is realized in an optimized tree-like fashion. Furthermore, we
provide means for undo operations annihilating previous classifications. In some applica-
tion domains (e.g., in the domain of our learning application Smyle, cf. Chapter 9) this
feature might be a great advantage and substantially enhance usability.

Assistant The assistant module contains classes (namely filters and normalizers) that
implement methods which can substantially reduce the number of queries posed by online
algorithms by exploiting certain domain-specific knowledge. An example for such filters
and normalizers is discussed below.

To clarify terminology: filters are methods that, given a word w and a set of classifica-
tions P , can determine whether there is a parity p ∈ P such that the correct classification
of word w is p. If the filter cannot decide that property for a word w, it is marked within
the knowledgebase as “?” meaning that the answer cannot be derived autonomously, but
has to be given by some teacher (e.g., a human user or a teacher implemented within
the learning application). A classical example for a filter in the setting of MSCs would
look as follows: being asked an MSC word w which is answered with parity p, the filter
would store the corresponding MSC object M (w) and its classification p and, from that
moment on, answer all equivalent MSC words w′ ∈ Lin(M (w)) according to answer p.

Another filter in this setting would directly reject all words that are not MSC words,
and hence, for example, all words starting with a receive action, or ending with a send
action.

In contrast to filters, normalizers are not only capable of autonomously answering cer-
tain queries but also of transforming the given word w into some normalized form η(w)
which is stored in the table. This way, the table only exhibits normalized words, thereby
compressing the online algorithm’s underlying table/data structure considerably. For a
more detailed description of normalizers we refer to Chapter 5 and Section 6.3 where we
introduced learning of congruence-closed languages and partial-order learning. As we will
see later, the reductions concerning the memory consumption may be tremendous.

As stated in the beginning of this chapter, the LearnLib library also implements some
filters. With this module we want to provide the means for writing user-defined assistants
and share them with the learning community if the domain is of interest for a larger group
of people. Currently, we have integrated a normalizer which is used for creating normal
forms for MSC linearizations as described in Section 6.3. Statistical results for employing
these normalizers can be found in Chapter 9.2.

Statistics The statistics module is meant to provide the libalf user with a wide variety
of information about the learning task she has just performed. Currently, information
about model size, number of (membership and equivalence) queries, memory consumption,
time consumption, etc., are retrievable.
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Logger The logger class provides means for obtaining additional (mostly debug) infor-
mation about the current learning job. Given an a priori specified level of detail, the
logger stores information about warnings and errors that occurred during the learning
procedure. For the iterative Biermann learning approach (cf. Subsection 3.2.1 on page
25), for example, it logs which state sizes were already tested. Moreover, for all kinds of
learning algorithms it detects if the user performs unexpected or illegal actions, whether
or not an algorithm supports undo operations, in case of normal forms if a counterexam-
ple is evaluated to bottom, meaning that it is not part of the domain, or, for debugging
purposes, a human readable version of the learning information an inference algorithm
stores (e.g., the tables used in L∗, L∗

col, or NL∗).

Dispatcher The dispatcher is a server that provides the possibility of using the libalf

facilities via a dedicated network protocol. This way, a user can connect to a (local or
remote) machine on which the libalf server is installed and being executed, and per-
form the learning task in a client/server fashion. This is similar to the way the LearnLib

library CORBA interface works. As, however, there is a known bug in the CORBA imple-
mentation of Java, it turned out that using the LearnLib CORBA interface is currently
not suitable for learning larger size models. In contrast to the LearnLib, users can install
the dispatcher on every computer they have access to, and are thus not dependent on a
service being run on a remote server they cannot restart in case of hardware problems,
etc.

In addition to an example which shows how to employ libalf in your own application
using C++ or a Java native interface, an example of how to use the dispatcher for a given
learning task is given in the end of this section, too.

Automata and Regular Expression Factory The automata and regular expression fac-
tory, called liblangen (an abbreviation for language generator), is a stand-alone li-
brary for randomly generating automata and regular expression. It comprises a powerful
library—developed in parallel to libalf—that is capable of automatically deriving large
sets of automata in terms of DFA according to [CP05], NFA, and regular expressions
as explained in [DLT04, BHKL08]. The user may specify certain criteria like number of
models to infer, number of states of the equivalent minimal DFA, alphabet size, or distri-
butions, e.g., over the connectives used in regular expressions, and eventually obtains a
set of models according to these properties.

Additionally, we plan to maintain a database which is connected to this module, to store
the derived sets of automata or regular expressions and the size in terms of the equivalent
minimal DFA. The content of this database will be made accessible to public, and—once
containing a reasonable number of examples—shall provide interested users with a great
variety of automata sets tailored to their custom needs. Another advantage of such sets
would be the ease of comparisons of existing learning algorithm implementations with
new ones by executing them on the same input sample.

Automata Library Currently, some libalf test cases make use of the AMoRE and AMoRE++

automata libraries. The former can be found at http://amore.sourceforge.net/ whereas
the latter is an extension of AMoRE which emerged in connection with the libalf project.
AMoRE is an extensive library containing all standard automata operations (creating, ex-
tending, determinizing, minimizing, simulating automata (cf. AMoRE++), etc.). This library
can be exchanged, augmented, or additional automata libraries can be easily integrated
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Biermann testcase:

1 Logger log;
2 Knowledgebase knowledgeBase;
3 int alphabetSize = 2;
4
5 // add sample sets to knowledgebase
6 knowledgeBase.addPositiveSamples(”.0.1.”, ”.0.0.0.”, ”.1.1.1.”, ”.1.1.1.0.1.”);
7 knowledgeBase.addNegativeSamples(”.0.”, ”.0.0.”, ”.1.”, ”.1.1.”);
8
9 MiniSat biermann learner(knowledgeBase, log, alphabetSize);

10
11 DFA hypothesis;
12
13 if (!learner.advance(hypothesis))
14 then

15 print (”advance returned false”);
16 else

17 learner.print(cout);

Table 8.1: A pseudocode testcase for Biermann’s algorithm

if new user requirements arise, e.g., for dealing with Büchi-, timed-, or probabilistic au-
tomata.

However, as the dashed line in Figure 8.1 signifies, there is currently no coupling between
libalf and AMoRE/AMoRE++ and only a loose coupling between the libalf test cases and
AMoRE/AMoRE++. For the core functionality of libalf, however, no automata library is
currently required.

Satisfiability Solver As described in paragraph 3.2.1, the Biermann offline learning al-
gorithm can be implemented by transforming a constraint solving problem into a CNF
formula which then can be checked for satisfiability using SAT solvers. As MiniSAT is an
open-source award-winning satisfiability solver, we chose to integrate it into our tool for
realizing the Biermann offline learning algorithm. In Table 8.1 a pseudocode implementa-
tion for using the Biermann algorithm (based on SAT solving) is depicted.

MiniSAT is freely available as source code or binary package from http://minisat.se/.

8.3 Learning Using the libalf Library

There are several possibilities how to use the libalf library in a user application. At
the moment, we offer three alternatives: either the C++ library is directly integrated into
a C++ application or the Java native interface is employed for embedding libalf into a
Java application or a network connection to a server, on which libalf is installed, and
the libalf server (i.e., the dispatcher) is running, is established, and an Internet-based
learning session performed. In the following subsections we briefly describe the three
alternatives. As our learning application Smyle currently makes use of the dispatcher,
we will first elaborate on this component and afterwards briefly describe the other two
approaches.
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8.3.1 Learning Using the libalf Library’s Dispatcher

The dispatcher is a service that provides the libalf functionality via a network connec-
tion. To this end, the libalf library and the dispatcher have to be installed on some local
or remote machine. The dispatcher can be used in C++ directly or via an additional Java
interface which encapsules the network communication with the dispatcher. An example
utilizing the additional Java interface is given in Table 8.2. We will briefly describe the
main tasks that have to be performed to obtain a user-guided version of L∗. First of all,
the connection to the server has to be established by specifying a server address and a port
(lines 5–9), and creating a LearningTool object. After instantiating an observation table
(obsTable, line 12), which is an object gathering the functionality to communicate with
the dispatcher, this observation table requests a session specifying the alphabet size, the
learning algorithm (Algorithm.ANGLUIN), and a knowledgebase object (knowledgebase)
(lines 13–17). Depending on the desired learning algorithm, either a set of input data
is provided by the application and the server returns a hypothesis, which can be further
processed by the application as in Table 8.1, or a continuous interaction of client and
server is initiated, in which the application answers membership and equivalence queries
posed by the instantiated learning algorithm running on the server as in Table 8.2. In the
example of Table 8.2, we create an L∗ learning instance (Algorithm.ANGLUIN) and start
the learning loop (line 19). To obtain a set of new queries, which must be user-classified,
or to retrieve a hypothesis automaton, we call method advance on our observation table
object (line 22). If this function does not return any conjecture (lines 25–36), we receive
a set of queries (line 28) which have to be classified by the user (line 30) and uploaded
to the dispatcher (line 31). In case method advance returned a conjecture, the user may
either terminate the learning loop (lines 44, 45), or specify a counterexample (line 41)
which then is sent to the dispatcher (lines 46, 47).

After at some point the user was satisfied with a hypothesis automaton, the learning
loop is exited, and the learning session finally closed (line 52).

8.3.2 Learning Using the libalf Library Directly

In a C++ application As the libalf library is developed in C++, integrating it into a C++

application is the easiest of the three possibilities mentioned above. The only task that has
to be performed is to link libalf against your own code. An example is given in Table 8.3.

Using JNI A further comfortable alternative, when developing a Java application that
shall employ libalf, is to utilize the Java native interface (JNI). JNI is a standardized
program interface to call platform specific methods. As such, Java applications using
this interface are not platform independent anymore as long as the library they use is not
available cross platform. Nevertheless, the communication with the native C++ library is
extremely fast yielding a convenient alternative to directly using C++ code. We employ JNI
to embed our learning library into Java applications. An example is given in Table 8.4.

To the best of our knowledge there are no comparable learning libraries comprising
the learning algorithms our libalf library contains. Hence, it seems hard to come up
with detailed empirical data. Note, however, that most of the statistics from Chapter 4
and the protocols from Chapter 9 were obtained employing the libalf library using the
dispatcher component.

We hope that libalf will find broad acceptance among researchers, and that it will be
the starting point for an extensive project in which different universities employ libalf

or augment the library with new algorithms.
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libalf Dispatcher example:

1 public static void main (String[] args)
2 {
3 System.out.println(”Specify alphabet size: ”);
4 int alphabetSize = readInt();

5 String serverAddress = ”localhost” ;

6 int serverPort = 23005 ;
7
8 // Connect to the server

9 LearningTool learningInstance = new LearningTool(serverAddress, serverPort) ;

10
11 // Construct containers for observationTable, knowledgebase and hypotheses
12 DFAObservationTable obsTable = learningInstance.createDFAObservationTable();
13 Knowledgebase knowledgebase = new Knowledgebase();
14 BasicAutomaton conjecture = null;
15
16 // Initialize observationTable
17 obsTable.init(alphabetSize, Algorithm.ANGLUIN, knowledgebase);
18
19 while (true) // Start learning loop
20 {
21 // Next step in the learning algorithm
22 conjecture = obsTable.advance();
23
24 // Process membership queries if there was no conjecture, yet
25 if (conjecture == null)
26 {
27 // Process unclassified elements in the knowledgebase
28 for (int[] query : knowledgebase.getQueries())
29 {
30 boolean classification = getClassificationFromUser(query);
31 knowledgebase.add knowledge(query, classification);
32 }
33
34 // Return knowledgebase to dispatcher

35 obsTable.processKnowledgebase(knowledgebase) ;

36 }
37 else // Process equivalence query in case of a conjecture
38 {
39 System.out.println(”Hypothesis automaton: ” + conjecture);
40
41 int[] counterexample = getCounterexampleFromUser();
42
43 // Is the conjecture is equivalent to the target regular language?
44 if (counterexample == null)
45 break; // Learning terminated successfully
46 else // Return counterexample to dispatcher
47 obsTable.addCounterexample(counterexample);
48 }
50 }
51 // Destroy the observationTable and close the session

52 obsTable.destroy() ;

53 }

Table 8.2: Java code for simulating L∗ with human Teacher using the dispatcher (locally)
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libalf C++ example:

3 int main(int argc, char∗∗ argv)
4 {
5
6 ostream logger log(&cout, LOGGER DEBUG);
7
8 knowledgebase<bool> knowledge;
9

10 int alphabet size = 2;
11
12 // create angluin simple table and let the user teach
13 angluin simple table<bool> angluin(&knowledge, &log, alphabet size);
14 finite automaton ∗ conjecture = NULL;
15
16 while (true)
17 {
18 // Next step in the learning algorithm
19 conjecture = angluin.advance(f is dfa, f alphabet size, f state count,
20 f initial, f final, f transitions);
21
22 // Process membership queries if there was no conjecture, yet
23 if (conjecture == null)
24 {
25 // let user answer the queries from knowledgebase
26 answer knowledgebase(knowledgebase);
27 }
28
29 // Process equivalence query in case of a conjecture
30 else
31 {
32 cout ≪ ”Hypothesis automaton: ” ≪ conjecture.generate dotfile();
33
34 list<int>∗ counterexample = getCounterexampleFromUser();
35
36 // Is the conjecture equivalent to the target regular language?
37 if (counterexample == NULL)
38 break;
39 else // return counterexample to the learning algorithm
40 angluin.add counterexample(counterexample);
41 }
42 }
43 }

Table 8.3: C++ code for simulating L∗ with human Teacher using libalf directly
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libalf JNI example:

1 public static void main (String[] args)
2 {
3 System.out.println(”Specify alphabet size: ”);
4 int alphabetSize = readInt();
5
6 // Construct a new knowledgebase and logger
7 Knowledgebase knowledgebase = new Knowledgebase();
8 BufferedLogger logger = new BufferedLogger();
9

10 // Initialize learning algorithm
11 LearningAlgorithm angluin = new AlgorithmAngluin(knowledgebase, alphabetSize, logger);
12
13 // Initialize a hypothesis automaton
14 BasicAutomaton conjecture = null;
15
16 while(true) // Start learning loop
17 {
18 // Next step in the learning algorithm
19 conjecture = angluin.advance();
20
21 // Process membership query if there was no conjecture, yet
22 if (conjecture == null)
23 {
24 // Process unclassified elements in the knowledgebase
25 for (int[] query : knowledgebase.getQueries())
26 {
27 boolean classification = getClassificationFromUser(query);
28 knowledgebase.add knowledge(query, classification);
29 }
30 }
31
32 // Process equivalence query in case of a conjecture
33 else
34 {
35 System.out.println(”Hypothesis automaton: ” + conjecture);
36
37 int[] counterexample = getCounterexampleFromUser();
38
39 // Is the conjecture equivalent to the target regular language?
40 if (counterexample == null)
41 break; // Learning terminated successfully
42 else // Return counterexample to learning algorithm
43 algorithm.add counterexample(counterexample);
44 }
45
46 }
47
48 }

Table 8.4: Java code for simulating L∗ with human Teacher using JNI



9 Synthesizing Models by Learning
from Examples

In this chapter, we describe Smyle [Smyle], an application implementing major parts
concerned with learning distributed systems, documented in Chapters 5 and 6 of this
dissertation. We will describe Smyle’s usage from a user’s perspective, and present some
small to mid-size sample protocols we inferred using this application. Subsequently, we
provide the reader with some information on the implementation, and close with further
areas of application in which employing Smyle might be advantageous.

9.1 Smyle from a User Perspective

We have implemented the learning approach presented in Chapters 5, 6, Section 7.1, and
Subsection 7.2.2 within our application Smyle which is freely available from our website
located at http://www.smyle-tool.org/.
Smyle is an acronym for Synthesizing Models bY Learning from Examples. Its major

objective is to ease the development of concurrent systems. More specifically, the overall
goal is to derive communication models of concurrent systems in terms of CFMs (cf.
Definition 6.1.2 on page 87).

Roughly speaking, the synthesis process starts by providing the tool with a set of sample
MSCs for which each MSC has to be classified as either positive or negative. Positive MSCs
describe system behavior that is possible whereas negative MSCs characterize unwanted
or forbidden behavior. Smyle focuses on basic-MSC features like asynchronous message
exchange, and forbids to deploy the complete MSC standard [ITU04]—which allows for
alternation, loops, etc.—on purpose: the more expressive a specification language gets,
the less intuitive and manageable it becomes. Simple pictures, however, are easy to
understand and easy to supply. As mentioned in the rationale from Chapter 7, human
beings prefer to describe system runs by means of simple examples and pictures. Basic
MSCs just constitute such a device.

To sum up, we will have several types of queries within the Smyle learning approach
that can either automatedly be answered by the tool or have to be resolved by the Smyle

user.

(i) Membership queries are questions posed by the Learner . They are mostly answered
automatically by our procedure.

(ii) Moreover, we have user queries. User queries (i.e., MSC pictures) have to be an-
swered manually by the user (as long as we do not use PDL formulae to ease this
task). To this end, the user has to classify the automatically presented MSCs as
either positive or negative scenarios.

(iii) At last, the approach exhibits equivalence queries. Equivalence queries are rather
rare and have to be answered by testing and simulating the hypothesis. For this pur-

http://www.smyle-tool.org/
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Figure 9.1: Activity diagram for the learning chain Smyle is based upon

pose, Smyle features a dedicated simulation component. If the user is not satisfied
with the hypothesis she has to provide at least one counterexample MSC.

In the following we will describe in detail how Smyle can be used to derive protocol
implementations.

9.1.1 The Learning Chain:

In this paragraph the approach for learning protocols, called the learning chain, with
Smyle is described in-depth. Moreover, in Figure 9.1 a UML activity diagram depicts this
learning chain in detail.

Let us now focus on explicating this learning chain. In order to initiate the synthe-
sis process, at first, the user is asked to specify the learning setup (cf. Definition 6.2.1
on page 95). Having selected a language/CFM type (universally bounded, existentially
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Figure 9.2: Smyle’s architecture: learning overview

B-bounded, or deterministic universally bounded deadlock-free weak), we can choose
whether or not to apply partial-order learning (cf. Chapter 5 and Section 6.3), and have
to provide a channel bound B ∈ N in case of an existentially-bounded learning setup.
Thereafter, the user has to provide an initial set of MSCs. These MSC specifications
must then be divided into positive (i.e., MSCs contained in the language to learn) and
negative (i.e., MSCs not contained in the language to learn) samples. After submitting
these examples, all MSCs are checked for consistency with respect to the properties of
the learning setup and the Learner , Assistant , and University are created. The Learner
executes the main learning loop in which the questions from the learning algorithm are
being answered. The Assistant stores answers to already classified MSCs and verifies
MSC properties like FIFO, B-boundedness etc. Thereby it acts as a filter for membership
queries. Moreover, the University represents the interface between graphical user interface
and learning components, and additionally stores information about the learning setup.
MSCs violating the properties of the learning setup are stored as negative examples. Now
the learning algorithm starts. As presented in the learning overview in Figure 9.2, the
Learner continuously communicates with the Assistant and the University in order to
gain answers to membership queries. This procedure halts as soon as a query cannot be
answered by the Assistant . In this case, the Assistant forwards the inquiry to the user,
displaying the MSC in question on the screen (cf. Figure 9.3 (4)). The user must then
classify the MSC as either positive (Accept) or negative (Reject). The Assistant checks
the classification for validity wrt. the learning setup. Depending on the outcome of this
check, the current MSC is assigned to the positive or negative set of possible future queries
(called Pool in Figure 6.6 on page 96 and Tables 6.1 and 6.2 on pages 98f.). Note that, as
an MSC can have many linearizations that all might be asked during the learning proce-
dure, we have to store the classified MSC in order to automatically categorize equivalent
linearizations later on. Moreover, the user’s answer is passed to the Learner which then
continues its question-and-answer procedure with the Assistant . If the learning library
libalf proposes a hypothesis automaton (cf. Figure 9.3 (2) and its corresponding Dot rep-
resentation in component (3)), the Assistant tests whether the learned model is conform
with all queries that have been categorized but not yet been asked. If a counterexam-
ple is encountered, it presents it to the learning algorithm which, in turn, continues the
learning procedure until the next possible solution is found. Moreover, hypotheses are
always checked for the closure properties, like domain closure, equivalence relation (≈D)
and the diamond property presented in the proof of Theorem 6.2.8 on page 101. As soon
as any indication of a violating run occurs, the corresponding trace is returned to the
learning procedure as counterexample. Contemporaneously, component (1) of Figure 9.3)
logs these counterexamples. In case there is no further evidence for contradicting samples,
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Figure 9.3: Smyle’s graphical user interface

a new frame appears (cf. Figure 9.3 (5)). Among others, it visualizes the currently learned
automaton (2), as well as a panel for displaying MSCs of runs of the system described
by the automaton. Panel (5) can be employed to simulate the behavior of the learned
protocol. While executing actions and, thus, traversing the hypothesis automaton, com-
ponent (5) constructs the underlying message sequence chart of the current run of the
hypothesis automaton. This procedure can be repeated until the protocol designer (i.e.,
the Smyle user) comes to a conclusion about the correctness of the system. After getting
enough impression on the protocol’s behavior, the user closes the simulation window, and
is then asked if she agrees with the solution. She may either stop, or introduce a new set
of counterexamples proceeding with the learning procedure.

We will now elaborate on the main phases just introduced.

Specifying a Learning Setup

Specifying a learning setup mainly comprises three tasks. Firstly, the user has to specify
which language type she intends to infer (cf. Figure 9.4 (1)). Within Smyle we have
implemented three of the language types described in Chapter 6. The Smyle user may
choose between universally bounded, existentially B-bounded or deterministic universally
bounded deadlock-free weak output automata. For the second case a bound B ∈ N has to
be user-specified (cf. Figure 9.4 (2)). In case the user opts for a universally B-bounded
system, she will obtain an automaton that is realizable using finite channel capacity B
resulting in a finite-state system. Selecting an existentially B-bounded learning setup
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Figure 9.4: Choosing a learning setup in Smyle

is useful for inferring possibly infinite-state systems because only existential bounds are
required for the system’s channels. An existentially B-bounded learning setup allows the
system developer to include system behavior that may exceed the system’s channel sizes
but, at the same time, guarantees that there is at least one execution (i.e., a total ordering
of events viz. a linearization) of each classified MSC that adheres to this limit. Therefore,
an appropriate scheduler will always be able to execute the good linearizations (i.e., runs
not exceeding bound B) and disregard the ones going beyond this bound. The third
category of automata derivable by Smyle are deterministic universally bounded deadlock-
free weak CFMs. Choosing this type of learning setup will infer a CFM that recognizes
a product MSC language as described in Chapter 6. A further adjustable parameter is
to enable or disable the partial-order learning approach (cf. Figure 9.4 (3)). As described
in Chapter 5 and Section 6.3, turning on partial-order learning may substantially reduce
the amount of memory in use, as well as positively influence the number of membership
queries posed. Therefore, this option is always enabled by default, but can be turned off on
user demand. In Figure 9.4 Smyle’s learning setup frame is shown for a concrete learning
setup. In this example we chose an existentially 1-bounded learning setup employing
partial-order learning.

Having selected a learning setup, Smyle should be supplied with an initial set of MSCs.
In the example (cf. Figure 9.5) we choose the three left-most MSCs (1)-(3) to be positive
and the right-most scenario (4) to be negative. Subsequently, Smyle will ask the user
to classify these MSCs and start the learning procedure thereafter (cf. Figure 9.2). This
specification phase is supported by a dedicated MSC editor, which will now briefly be
described.

The MSC editor: In connection with our learning application Smyle, we are also devel-
oping an MSC editor—as integrated Smyle component, and as stand-alone application—
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Figure 9.5: Choosing and classifying a set of input MSCs for Smyle

for graphically creating and modifying MSCs. Currently, the MSC editor is in a proto-
typical development state. Nevertheless, among others, it already features all means to
comfortably specify basic MSCs, which serve as input for Smyle.

Whenever new MSCs have to be specified in order to start or continue the learning
phase, Smyle can either load MSC documents containing basic MSCs from the file system,
or offer to use the optionally integrated MSC editor (cf. Figure 9.6) for easy specification
of basic MSCs. Let us briefly describe the main functionality of this editor component.
It contains a menu panel for loading and saving MSCs from and to the file system (cf.
Figure 9.6 (1)), buttons for creating new processes within an MSC (cf. item (2)), speci-
fying messages (cf. item (3)), and other helpful features (e.g., undo and redo operations,
zooming, etc.). Moreover, in the main panel (cf. item (4)) the desired MSC can be drawn
and altered on demand. The user has the possibility to specify various scenarios using
the tabbed pane (cf. item (5)). After finishing the specification task, the MSCs can be
classified using the buttons at the bottom of this component (cf. item (6)) where the green
button denotes positive behavior and the red button negative behavior. After classifying
all MSCs, they can directly be fed back to Smyle in order to start or continue the learning
chain. The editor also provides functionality for storing MSCs in many different formats
(e.g., LATEX, fig, etc.). An extended, stand-alone prototype version of the editor covering
the ITU Z.120 standard to a large extend will also be available in near future at the Smyle
homepage [Smyle].
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Figure 9.6: MSC editor integrated into Smyle

Performing Classifications

Successively, new MSCs as depicted in Figure 9.3 (4) or 9.5 (1)-(4) are presented to the
user (in this phase acting as Teacher) who in turn has to classify these scenarios as
either wanted (Accept) or illegal (Reject). As described in Subsection 7.2.2 in this phase
patterns are usually detected and can be added to Smyle via the integrated formula
editor (cf. Figure 9.7). This eases the user’s categorization task considerably, as many
classifications can then be performed autonomously by the tool.

Easing the learning process: In order to simplify the user’s task of classifying scenarios,
Smyle contains means for specifying PDL formulae over MSCs (cf. Section 7.1), a simple
logic that—as we proved in Theorem 7.1.4 on page 115—comes with an efficiently solvable
membership problem. Like MSCs, PDL formulae are used to express desired or illegal
behavior, but in a broader sense. They are to be seen as general rules which apply for
all runs of the system (and not only all executions of one scenario). Hence, if a user
detects generally wanted or unwanted properties of the presented MSCs, she may specify
formulae which express these generics. Smyle is supplied with these formulae and can,
from that moment on, accept or reject all MSCs that fulfill or, respectively, violate one
of these formulae. This technique reduces the number of user queries substantially. An
example formula is ϕ = A

(
< {?(p, c, a)}; proc; {?(p, c, a)}= false

)
which states that

there must not be two subsequent occurrences of the same receive action (i.e., ?(p, c, a))
on the same process p. Hence, if formula ϕ is fed to Smyle as negative generic, all MSCs
featuring this behavior, e.g., the one in Figure 9.7 (1), would be regarded as negative
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Figure 9.7: Specifying some sample PDL formulae in Smyle

samples without questioning the user anymore.
Formulae can be input into Smyle via the formula editor presented in Figure 9.7. When

the user is asked to classify an MSC (1), he may add such formulae to the current formulae
list (2). PDL formulae which fulfill the current MSC (1) are marked green, the others red
(cf. left side of component (2)). Whenever the user chooses to “Add” a PDL formula,
the editor appears (3) in which the formula can be specified. A menu (4) assists the
user in correctly writing down the formula. Moreover, the editor supports syntax-error
highlighting (cf. lower left corner of (4)) and counting (cf. (5)).

As we already explained in Section 7.4 this may lead to a considerable reduction in the
number of user queries. Note, however, that the final system is not guaranteed to fulfill
all specified patterns on all runs. Patters are currently only used to ease the specification
task by reducing the number of user queries and not to ensure desired properties of the
underlying system. This is because, at present, there are no model checkers for CFMs
available.

Note that for arbitrary CFMs the model checking problem is undecidable. In theory,
it is, however, possible—though involved—to check the classes of CFMs regarded in this
thesis with respect to the patterns specified by the user [BKM07].

Simulating a Hypothesis

Whenever Smyle has a complete and consistent view of the current internal model, it
presents a window (cf. Figure 9.8) for testing and simulating the derived system. Within
this component, the user (now acting as Oracle) may execute action sequences to see how
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Figure 9.8: Simulating an intermediate model in Smyle

the system behaves. To this end, in the upper left corner (cf. Figure 9.8 (1)) the simulation
component lists all communication actions that are available in the current state of the
hypothesis (in Figure 9.8 this is only receive action ?(p, c, a)). If the user chose an action
hitting the “Go!” button (5), the system evolves (2) from one state to another. Moreover,
these actions are monitored, and the related (partial) scenario, depicted as MSC (prefix)
in the middle of the frame (cf. Figure 9.8 (3)), is updated accordingly. Using button (6)
resets the automaton and the current MSC prefix to their initial states. Of course, it may
also be helpful to automatically derive sets of accepted or rejected MSCs, or to complete
a user-specified MSC prefix to full MSCs. This might be valuable for the user to further
understand the system under simulation. This feature is about to be integrated into
the simulation component. The simulation component furthermore exhibits a panel that
collects all MSCs classified (either by the user, by the learning setup or by PDL formulae)
so far in the right panel (4). Each of the MSCs is represented by a button which, when
pushed, presents the corresponding MSC in a new frame. Green buttons typify positively
classified MSCs and red buttons negatively classified MSCs (either because of a user
classification, or because a PDL formula matched). Moreover, filters at the bottom of
panel (4) can be employed to restrict to certain properties (e.g., “show only the positively
classified scenarios”).

If, after an intensive simulation, there is no evidence for wrong or missing behavior (cf.
Figure 9.9), the user will terminate the simulation session, and the concurrent system will
be deduced. If, however, some illegal or missing behavior is detected, then the user can use
the corresponding MSC as negative counterexample, or, respectively, extend a partial run
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Figure 9.9: Simulating a final model (no evidence for wrong behavior is found)

to a missing scenario to obtain a counterexample which has to be classified as positive. An
example is given in Figure 9.8 (3). As mentioned before, the partial scenario can—in this
situation—only be extended by a receive action ?(p, c, a). But our protocol should be able
to send another message with content 1 from p to c (assuming that we are about to infer
the ABP). As this, however, is not possible, our hypothesis has to be extended. To this
end, we may amplify the MSC prefix to a scenario that is not contained in the language
of the hypothesis resulting in a positive counterexample. This single counterexample,
possibly enriched by additional MSCs yielding a counterexample suite, is supplied to the
learning chain, and the learning procedure continues as explained before until reaching
the next consistent model. A short exemplifying video of this learning process can be
downloaded from the tool’s webpage [Smyle].

9.2 Case Studies

We applied Smyle to several small and mid-size case studies. Among them were a pro-
tocol being part of USB 1.1 mentioned in [Gen05], the continuous update protocol from
[EMST03], the negotiation protocol from [EMST04], the well-known alternating bit pro-
tocol (cf. [Tan02] and Section 7.4), and two variants of the leader election protocol from
[CR79]. Protocols, such as the ABP or leader election, are known to be error-prone
whereas the automata generated by Smyle are guaranteed to be correct by construction
(provided, of course, that the MSCs are specified correctly by the user).

In the following, we describe four of the protocols Smyle was applied to in more de-
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Figure 9.10: (i) Input MSCs and (ii) correct and complete hypothesis DFA

tail. The related learning statistics (i.e., number of membership-, user-, and equivalence
queries), results without and with our partial-order learning approach, the size of the hy-
pothesis, the table size and memory consumption, and information on the learning setup
used to infer the protocols can be found in Table 9.1 on page 159.

To clarify the notations used in this table, let us briefly summarize the main terms:

(i) Membership queries are all queries asked by the implementation of Angluin’s learner
(i.e., the libalf library). They are mostly answered automatically by our procedure
presented in Chapter 6.

(ii) Contained in the number of membership queries are the user queries. User queries
are the inquiries (i.e., MSC pictures) that are displayed to the Smyle user and have
to be answered manually (as long as we do not use PDL formulae to ease this task).
To this end, the user must classify the presented MSCs as either positive or negative
scenarios by pressing the Accept or Reject button, respectively.

(iii) Not included in the above numbers are equivalence queries. As Table 9.1 shows,
equivalence queries are rather rare and have to be answered by testing and simulating
the hypothesis. To this end, Smyle features an integrated simulation component.
If the user is not satisfied with the hypothesis, she has to provide at least one
counterexample MSC to the tool to revive the learning chain.
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Part of the USB 1.1 protocol

The first protocol we regard, which is also mentioned in [Gen05], is part of the USB
1.1 specification [usb]. It describes two processes host and function (fct.) and their
communication being initiated by the host. The first message sent from the host informs
process fct. that the isochronous mode (USB distinguishes between three kinds of modes:
isochronous, bulk, and setup) will be used and, moreover, whether the fct. has to play
the role of the receiver or the transmitter of data.

To learn this protocol, we provided Smyle with the four positive scenarios depicted in
Figure 9.10 (i). After answering another 14 user queries Smyle presented the correct and
complete existentially 2-bounded (∃2) hypothesis automaton from Figure 9.10 (ii) which,
indeed, describes the protocol we wanted to obtain. Applying our partial-order learning
approach from Section 6.3, the number of membership queries could be lowered from 488
to 200, resulting in membership-query savings of 59.0% and memory savings of 46.5%.

Note that in Figure 9.10 (ii) we used shorthands for the communication actions because
sending and receiving processes are clear from the context (e.g., !ack is an abbreviation
for !(fct., host, ack)).

Note that the inferred minimal DFA of Figure 9.10(ii) has a local-choice problem as after
the first send event either a phase of only sending and receiving snd messages from p to q
or ack messages from q to p occurs. In such cases, an implementation might suffer from
deadlocks. These local-choice problems can be detected using analysis tools such as MSCan
[BKSS06]. In general, however, our approach cannot resolve such problems automatically.
We can only guarantee to avoid deadlocks in the learning setups for deterministic ∀B-
bounded deadlock-free and deterministic ∀B-bounded deadlock-free weak CFMs. In the
example, the local-choice problem can be resolved by using synchronization messages.

Negotiation protocol

The negotiation protocol [EMST04] is a small protocol describing a negotiation dialog
between two processes p and q where p is acting as a customer requesting some infor-
mation, and server q owns this information. The server tries to discover whether or not
it may provide this information to p. Client p sends a request (req) to server q. The
server may either directly accept (acc) or refuse (ref) the client’s request, or enter a
challenge-justify (chal and just, respectively) phase in which it inquires additional
data about the client. As long as the server is not satisfied with the information provided
by the client he stays in this phase. Once the server collected enough information it de-
cides whether to accept or refuse the client’s initial request.

For this protocol, Smyle was fed with the six positive MSCs from Figure 9.11 (i) as input
and learned the automaton after 31 user queries. The learning library libalf asked the
Assistant 1,179 membership queries and provided the user with the final result depicted in
Figure 9.11 (ii). This protocol is indeed the desired existentially 1-bounded (∃1) version
of the functionality we had in mind. Concerning the partial-order learning optimization,
we were able to reduce the number of membership queries from 1,179 to 432 yielding a
decrease of 63.4% and achieved memory savings of 54.0%.

As in the previous example, we use shorthands for the communication primitives.
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Figure 9.11: (i) Input MSCs and (ii) correct and complete hypothesis DFA

Alternating bit protocol (ABP)

For the sake of completeness, we briefly describe the ABP introduced in Section 7.4. Its
main goal [Tan02] is to ensure the reliability of data transmission through an unreliable
FIFO channel, i.e., data loss as well as data duplication are possible. There are two pro-
cesses participating in the communication, namely the producer p and the consumer c.
Moreover, the channel between producer and consumer is lossy whereas the other direc-
tion is known to be reliable.

The protocol works as follows: initially a bit b is set to 0. Process p keeps sending the
value of b until it receives an acknowledgment message a from process c. After receiving
such an acknowledgment, process p locally inverts the value of b and starts sending the
new value until the next a message is received from c. The communication can terminate
after any a (but at least one) that was received at p. Note that there is no reason to
distinguish between the acknowledgment messages because the channel (c, p) is assumed
to be faultless.

The automaton we tried to learn was specified as existentially 1-bounded (∃1). Feeding
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Smyle with the 5 positive MSCs from Figure 9.12 (i) our tool provided us with the correct
hypothesis depicted in Figure 9.12 (iii) (the corresponding CFM can be found in Fig-
ure 7.10 on page 129) after 64 user queries. Some negative examples that occurred during
the protocol inference are given in Figure 9.12 (ii). Note that the Assistant was asked
2,286 membership queries. This number could be lowered by 69.5% to 697 membership
queries, employing partial-order learning. The memory consumption could be reduced by
60.9%, accordingly.

Additionally, Smyle learned the ABP for existentially 2-bounded (∃2) and existentially
3-bounded (∃3) learning setups. The statistical results are similar and can be found in
Table 9.1 on page 159.

Leader election protocol

Consider a leader election protocol in a unidirectional ring from [CR79]. Leader election
plays an important role in many distributed applications. In a network of identical (up to
their unique process id) communicating units one often uses a leading entity, here called
leader, (owning a unique leader token) to control the behavior of the others. However,
a problem arises if due to communication failures or other possible problems, the leader
token gets lost. The goal of leader election protocols is then to select a unique leader out
of the network of computers or processes, etc.

In general, the protocol works as follows: one process starts sending its pid to its clockwise
neighbor who compares the value of the received pid with its own. If its own pid has
got a higher value, it sends its pid to the next process. However, if its pid exceeds the
received one, the current process just forwards the received pid to its clockwise neighbor.

In case both values are equal, a leader has been found and the current process declares
itself the new leader by broadcasting message m leader.

Due to the high amount of concurrency, the protocol version we learn in this example is
restricted to three processes (cf. Figure 9.13 (i)) and to sending only one message at each
point in time.
Smyle learned two versions of the protocol. The first one (v1) (cf. Table 9.1) is only

capable of performing one round of electing a leader whereas the second version (v2) (cf.
Figure 9.13 and Table 9.1) can execute arbitrary many elections consecutively.
Smyle learned version v1 of the leader election protocol obtaining three input MSCs.

It displayed the correct hypothesis after 43 user queries and 3,612 membership queries.
Applying the partial-order learning approach, we were able to lower this number by 75.1%
to 900 membership queries and achieve memory savings of 70.8%. For the more elaborate
version (v2), Smyle received six input MSCs (e.g., the first one of Figure 9.13 (ii)) and
returned the correct hypothesis depicted in Figure 9.13 (iii) after 196 user queries (cf.
Figure 9.13 (ii) for a negative scenario) and 14,704 membership queries. Among the neg-
ative user queries was, for example, the right MSC from Figure 9.13 (ii). Here, too, the
number of membership queries could be substantially decreased by 53.3% yielding a total
number of 6,864 membership queries when using partial-order learning, and, moreover,
memory savings of 47.3%.

A note on using PDL formulae: As stated before, the use of PDL to ease the user’s
task of classifying scenarios can substantially reduce the number of user queries. As, how-
ever, different formulae yield totally different results, it is difficult to generate statistics
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(iii) The inferred hypothesis DFAH after 196 user queries (and 6,864 membership queries)

Figure 9.13: Automaton for the leader election protocol (v2) in a unidirectional ring.
(i) Ring for 3 processes, (ii) Some input MSCs, (iii) hypothesis DFA
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#membership queries #user #equiv. #rows in table learning

Protocol w.o. POL w.POL savings queries queries |H| w.o. POL w. POL reduction setup

part of USB 1.1 488 200 59.0% 14 1 9 61 26 57.4% ∃2
continuous update 712 264 62.9% 21 1 8 89 34 61.8% ∃1
negotiation 1,179 432 63.4% 31 1 9 131 49 62.6% ∃1
alternating bit 2,286 697 69.5% 64 2 15 127 42 66.9% ∃1
alternating bit 14,432 4,557 68.4% 158 2 25 451 131 71.0% ∃2
alternating bit 55,131 19,252 65.1% 407 2 37 799 222 72.2% ∃3
leader elec. (v1) (1 rnd) 3,612 900 75.1% 43 1 13 301 76 74.8% ∀
leader elec. (v2) (≥ 1 rnds) 14,704 6,864 53.3% 196 2 17 919 430 53.2% ∀

Table 9.1: Statistical results of the case studies

concerning this reduction. Moreover, depending on the application domain and the ex-
pertise of the Smyle user, the number of autonomously classified scenarios may also vary
drastically. Note, though, that we gave a small example for this reduction in Section 7.4.

9.3 Implementation Details

To provide a platform-independent application, Smyle is written in Java (Version 1.6)
and, originally, used the LearnLib library [RSB05, RS06] developed at the university of
Dortmund, which implements Angluin’s learning algorithm L∗. As we previously men-
tioned, while employing the LearnLib library we faced several shortcomings. The first
problem was the unavailability of source code. As we invented several optimizations con-
cerning the storage of data in Angluin’s table, we were in great need of extending the
library. A second and more severe drawback was the mandatory Internet connection to
the university of Dortmund where the LearnLib server is located. To use the LearnLib

it is required to connect to the password protected server. After logging in, it will send
membership- and equivalence queries via the Internet to the current Smyle instance which
in turn answers and returns them to the LearnLib server. As soon as there was no In-
ternet connection, Smyle was, unfortunately, not applicable anymore. Being confronted
with such inconveniences, we decided to initiate a new project called libalf implement-
ing prominent learning algorithms (e.g., Angluin’s L∗, our nondeterministic learning ap-
proach NL∗, Biermann, etc.) and optimizations thereof (e.g., learning congruence-closed
languages). We already reported about this library in Chapter 8 of this dissertation. It is
now integrated into Smyle and performs very well. All examples presented in this chapter
have been derived using the dispatcher component of libalf. We are currently extending
Smyle to support communication with libalf via the JNI. This will slightly speed up
the learning task.

In the rest of this section, we will report on implementation details like important
algorithms and architecture, and give a small overview over Smyle’s history and future.

9.3.1 Visualization

For visualization purposes Smyle makes use of two freely available libraries called JGraph1

[JGr] and Grappa2 [AT&T]. JGraph is a powerful open source graph library which is easily
integrable into Java Swing components. Within Smyle, we use it for visualizing MSCs
and MSC components, as well for displaying user queries in terms of MSCs (cf., e.g.,

1JGraph: http://www.jgraph.com/
2Grappa: http://www.research.att.com/~john/Grappa/

http://www.jgraph.com/
http://www.research.att.com/~john/Grappa/
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Figures 9.3 (4) and 9.5), as for the MSC editor (cf. Figure 9.6). The second library is
developed by AT&T Labs - Research. The name Grappa is an acronym for GRAPh
PAckage. This library provides means for visualizing graphs in a Dot-style manner and
uses the Graphviz program Dot for layouting the graphs. Inside Smyle, it visualizes
the intermediate hypothesis automata, as well as the component for simulating the final
implementation model. Therefore, it is recommended to either have a version of Dot

installed on the system where Smyle is executed, or to have an Internet connection such
that the Grappa library can connect to a dedicated server from which it is able to retrieve
the necessary layout information.

9.3.2 Algorithms

We implemented several algorithms indispensable for the correct functioning of our ap-
plication. At first, as the learning library will always query words and not partial orders
(MSCs) directly, an algorithm for checking words for well-formedness (cf. Definition 6.1.3
on page 88) was essential. Being able to detect whether a word was well-formed, a method
was required to transform the linearization into an MSC which, in turn, could be con-
verted into a picture that subsequently would be displayed to the user. As an MSC
usually represents a whole set of linearizations, we moreover needed an algorithm that is
capable of deriving all linearizations of an MSC iteratively, and for efficiently checking
the membership of a linearization with respect to the partial order that the MSC rep-
resents. For computing these linearizations we used the algorithm described in [VR81]
which takes as input a partial order (e.g., an MSC), and calculates all its linear extensions
(i.e., linearizations). The algorithm runs in O(n · e(M )) time, where n is the number of
elements of the partial order M and e(M ) = |E(M )| is the number of linear extensions
of M . We slightly changed the structure of the algorithm to get an iterator over the set of
linearizations of an MSC. Given an input partial order, the tool creates an iterator which
stepwise returns linearizations whenever the user requests one.

An important improvement regarding the reduction of the number of user queries was
to employ PDL patterns. To this end, we needed to implement a PDL parser and a small
model checker which takes an MSC and a PDL formula as input and tries to verify or
falsify the formula with respect to the MSC in question. The actual algorithm for checking
local formulae (with and without path expressions) is given in Appendix C.

For creating test suites or simulation sets, i.e., set of words or MSCs accepted or rejected
by the hypothesis automata, we employed different search methods, such as the well-
known depth-first and breadth-first search methods but also random search, yielding a
greater variety of “diverse” MSCs. These methods are integrated into the simulation
component and the test case generation application Style, which will be discussed at the
end of this chapter.

The complete and efficient implementation of Angluin’s L∗ algorithm was realized within
our learning library libalf, which was described previously in Chapter 8. In this library,
we also integrated our partial-order approach for reducing memory consumption and the
number of membership queries.

9.3.3 Parsers

Smyle employs two parsers for different purposes. The external MSC2000 parser [Neu]
is used for parsing the input MSC documents. Though Smyle only uses basic MSCs,
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MSC2000 is capable of parsing a much larger part of the MSC ITU standard [ITU99]. The
second parser was developed within the Smyle project. It is a PDL parser which can
process all kinds of PDL formulae. Together with the small integrated model checker, it
provides means to reduce the number of queries that are presented to the user during the
learning phase.

9.3.4 Learning Architecture

The Smyle tool is capable of learning CFMs from following classes of CFMs: universally
bounded, existentially B-bounded, and deterministic universally bounded deadlock-free
weak CFMs.

The learning framework contains the following three main components as depicted in
Figure 9.2 on page 145: the Learner , the Assistant and the University .

(i) The Learner executes the main learning loop in which it answers the questions from
the learning algorithm (implemented in libalf). Most of these queries are answered
autonomously. Only in case the Assistant is unable to answer these queries, they
are forwarded to the user as user queries. To this end, it first has to establish a
connection to the learning library libalf and to create a learning instance of L∗.
Communication with the learning library is then performed via a clear network
interface or JNI.

(ii) The Assistant keeps track of membership queries that have not yet been asked.
I.e., for unasked linearizations of already classified MSCs, it checks words for well-
formedness, B-boundedness, and the FIFO property, as well as the corresponding
MSCs for their language type and with regard to user-specified patterns. As such,
the Assistant acts as a kind of filter restricting the questions of L∗ to the domain
specified by the learning setup. To be able to answer equivalent membership queries
equally, it stores the set of already (user- and autonomously-) classified MSCs.
Moreover, it can provide counterexamples if the current local hypothesis, i.e., a
hypothesis not yet presented to the user, is not in conformance with the learning
setup. This way, the user is only bothered with interesting user- and equivalence
queries.

(iii) The University , representing the interface between the graphical user interface and
the learning components Learner and Assistant . It stores the properties of the
learning setup, initiates the learning loop executed by the Learner , and handles the
communication between Learner , Assistant , and the actual Smyle user who provides
feedback via the GUI component.

9.3.5 Package Architecture

As depicted in Figure 9.14, Smyle consists of seven main components or packages: the
graphical user interface (GUI), one package for learning components, one for graph com-
ponents, one package for MSC components, a package for employing the PDL logic, one
comprising the MSC editor functionality, and an interface to the learning library libalf.
The functionality of these components is briefly sketched in the following.
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Figure 9.14: Smyle’s architecture: component overview

Graphical User Interface: The graphical user interface provides graphical means for
improving and simplifying the user-computer interaction. It is based on Java Swing. An
exemplifying screen shot was given in Figure 9.3 on page 146. The GUI is divided into
three main components (1)-(3). Component (1) contains information about the current
learning job (e.g., the specification of the learning setup, the input MSCs loaded from the
file system, and autonomously derived counterexamples). The current local hypothesis
is depicted on the right side of the window (component (2)). An output of the current
hypothesis is given in Dot syntax in component (3), which is located at the bottom of
components (1) and (2).

Learning Components: The tasks of the learning components are manifold. They con-
tain important functionality for efficient partial-order treatment, harbor the simulator
and the test case generator, which can be applied to the learned model, and comprise the
Learner , the Assistant , and the University which acts as mediator between the compo-
nents of this package and the other packages as shown in Figure 9.2.

Graph Components: The graph components package includes functionality for check-
ing MSC behavior (e.g., the FIFO property) and the consistency of the implementation
models. Moreover, it contains data structures for internal use (e.g., representing partial
orders, etc.).

MSC Components: This package contains the MSC2000 parser [Neu] for handling MSC
documents according to the ITU Z.120 standard [ITU99]. It provides the classes for
representing the internal MSC objects.

PDL Components: The PDL components contain methods to parse PDL formulae and
to model check these patterns with respect to a given MSC.

MSC-Editor Components: The MSC editor components feature the implementation of
an integrated MSC editor, which is able to load, store, and alter basic MSCs. More-
over, the created MSCs can be exported to LATEX and the fig format and, thus, can be
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converted to all other prevalent graphical formats (e.g., eps, pdf, jpeg) using available
tools.

Interface to libalf: This package includes an interface to our learning library libalf,
which implements Angluin’s algorithm L∗ [Ang87a] and many others described in Chap-
ter 3. A preliminary version of Smyle made use of an interface by courtesy of the Fach-
bereich Informatik, Lehrstuhl 5 of the University of Dortmund.

9.3.6 Smyle: Past, Present and Future

Smyle is continuously being developed since autumn 2006. It is currently available in the
stable version 0.3, and contains approximately 24,000 SLoC3 (not counting the parser
component MSC2000, the learning library libalf and the other external libraries), and
involves six people for software design and programming. Its main integrated features are
summarized below:

• The following three language types are learnable in terms of CFMs: universally
bounded, existentially B-bounded, deterministic universally bounded deadlock-free
weak CFMs (cf. Chapter 6).

• The optimization of partial-order learning is included to conserve memory and lower
the number of membership queries (cf. Chapter 5 and Section 6.3).

• A full PDL parser, (textual) editor, and model checker are integrated into Smyle (cf.
Subsection 7.1).

• An embedded simulation component gives additional information and interesting
insights about the correctness of the derived hypotheses.

• An integrated test case generation component (called Style, cf. Subsection 9.4.3)
can derive large-size test suites either in terms of MSCs or system traces.

• Optionally, we developed an MSC editor, which is still in a prototypical state. Nev-
ertheless, it can be used to graphically specify basic MSCs which can serve as input
to Smyle.

For future work, it remains to extend the formula editor, the simulation component, and
the MSC editor. The realization of the following ideas would be of great value as they
will further ease the user’s classification tasks:

Formula editor: A great achievement would be to have means for graphically specifying
PDL formulae in some way. A first step into this direction would be to guide the user
via a graphical formula editor where she clicks her formulae step by step. This helper
is currently being integrated. Selecting parts of the formula might entail the tool to
highlight the satisfying events or event sequences in the MSC. Most comfortable would
be an extension where the user is able to annotate events, paths of events and so on
in the currently displayed MSC, and Smyle (semi-) automatically infers a PDL formula
satisfying the user specification. This may then be adjusted by the user and finally be
submitted to Smyle.

3SLoC (source lines of code) calcultaed using sloccount



164 Chapter 9. Synthesizing Models by Learning from Examples

Simulation component: Some helpful extensions might turn the simulation component
into an even more powerful support. As mentioned earlier, there are no dedicated model
checkers for CFMs. But one could employ, or even integrate analysis applications like
MSCan [BKSS06], for checking the resulting system for potential deficiencies like race
conditions [EGP07], non-local choice, process divergence [BAL97], etc. Moreover, inter-
mediate hypothesis automata (DFA) could be model checked by existing model checkers.
Additionally, support of automatically deriving simulation sets (i.e., sets of MSCs which
are accepted/rejected by the current hypothesis) will soon be integrated. This way, the
user will get a more elaborate overview and gain more intuition about the underlying
implementation model.

MSC editor: At present, the MSC editor is in a prototypical state. It will have to be
upgraded to become a stable application, which can permanently be integrated into Smyle.
Currently, it supports all basic MSC components used in Smyle but is not completely
integrated, yet. Furthermore, several components from the MSC standard are still missing
and need to be added. Afterwards, the MSC editor will be available within Smyle and,
moreover, as a stand-alone version on the Smyle website.

9.4 Further Areas of Application

In addition to the application areas mentioned so far, i.e., learning regular CFM languages
(cf. Chapter 6) and embedding Smyle into a software development lifecycle model (cf.
Chapter 7), in the following, we propose some supplementary ideas and situations in
which Smyle could be of help.

9.4.1 Analysis of Implementability

As Smyle is capable of learning regular CFM languages, and thus distributed system
models, it could be used as analysis tool for distributed systems. Given a regular system
description in terms of an automaton A (a DFA of minimal size) acting as teacher and
oracle, and a concrete learning setup S, Smyle could try to learn A with regard to S and
thereby check whether A is implementable given the bound restrictions specified in the
learning setup. Concrete questions that could arise are:

(i) Given a system with bound B ∈ N, how does a realization with bound k ∈ N and
k < B look like (if it exists)?

(ii) Is there a possibility to realize a given system description with buffer size B ∈ N?

9.4.2 Hierarchical Learning

An interesting idea arises when a distributed system can be divided into several subcom-
ponents. Usually, for large systems this is the case. So, given a system S that consists
of n subcomponents C1, . . . , Cn, the underlying communicating systems could be inferred
using Smyle, yielding CFMs AC1

, . . . ,ACn
. Now, on a higher level of abstraction, the

interaction between these components could also be learned using Smyle. The learning
algorithm operates over the alphabet Σ = {1, . . . , n}, where letter i ∈ {1, . . . , n} rep-
resents the execution of subcomponent Ci. The word “1 3 1 2”, for example, would
correspond to the sequential execution of CFMs AC1

, AC3
, AC1

, and AC2
. Thus, we learn
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an automaton Aglobal (in fact a DFA), whose edges are labeled with CFMs. The CFMs
can then be connected according to the transition relation of Aglobal, yielding the com-
plete design model for system S. Depending on the application, we could use weak or
strong sequencing, respectively, between any two nodes of the global system, meaning that
either each process may independently enter the next CFM after successfully executing
his current CFM obligations (weak sequencing), or—using some kind of synchronization
barrier—all processes together move to the next CFM after completely executing the
current CFM (strong sequencing).

Login

Service1

Service2

Logout

(a) Platform description with two services

Login

Logout

Login

Service1,

Service2

(b) Inferred automaton Aglobal

Figure 9.15: Hierarchical learning example featuring two services

Imagine, for example, a community platform where people can login, are allowed to
perform different actions or utilize different services while they are online, and finally logoff
again. Such a system can, on a high level of abstraction, be divided into the components
Login, Service1, . . . , Servicen, and Logout. For each of these components, we infer a CFM
employing Smyle. In a second step, the communication structure between these derived
components is being inferred, again using Smyle. After a Login, for example, we can
always initiate a Logout and return to the Login screen again, or perform some services in
arbitrary order and then eventually Logout. In Figure 9.15(a) such a system description
is given in terms of a transition system for two services Service1 and Service2. On the
right side (cf. Figure 9.15(b)), the learned global automaton Aglobal is presented. Note
that its edges are now labeled with CFMs called Login, Logout, Service1, and Service2

that were inferred in the first step of the hierarchical learning approach.
If applicable, employing high-level learning will facilitate learning to a great extend.

The learning tasks are much clearer than when performing one global inference task for
the whole system at once.

9.4.3 Style: The Smyle Test Case Generator

Another area of application arises from the field of model-based testing [BJK+05]. Usually
test cases are directly tailored to the system under test (SUT, for short). In model-based
testing, a system model at a certain degree of abstraction is generated on basis of so-called
test requirements, and test cases are derived from it. As these test cases now also are at
a different level of abstraction than the concrete SUT, these abstract test cases have to
be transformed into executable test cases (cf. Figure 9.16).

There are many different ways of test case generation for model-based testing. To name
only two, e.g., constraint programming and model checking are employed.
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Figure 9.16: The model-based testing approach in general

In the constraint programming approach, the SUT is described by a set of constraints
over certain variables. This set can be seen as a constraint satisfaction problem which—as
described in the Biermann learning algorithm (cf. Subsection 3.2.1)—can be transformed
into a satisfiability problem over Boolean variables, and be solved using existing SAT
solvers yielding an abstract test case for the SUT.

A second strategy is to use model checking [CGP99, BK08]. Model checking in its
essence tries to verify or falsify logical formulas on basis of a given labeled transition
system. In the setting of model-based testing—being provided with an abstract model
and a property to test—the model checking approach can derive paths to states which
satisfy or disprove the property at hand. These witnesses or counterexamples then serve
as abstract positive and negative test cases, respectively.

Often, the abstract model is seen as a finite-state automaton or transition system over
states representing the underlying SUT. Then, test cases can be derived by applying
different search methods (e.g., depth-, or breadth-first search, or random search) to the
model searching for accepting, non-accepting, or non-present paths. These test cases are
gathered in an abstract test suite.

We now want to describe a third approach in the direction of [HNS03] which employs
the learning techniques described in the previous chapters. The so-called Style (i.e., the
Smyle test case generator, where Style is an acronym for Synthesizing Test cases bY
Learning from Examples) approach is an economical way to create or rebuild an abstract
model of a system—even if the former model was not preserved for later use, or got
lost between two development phases—and to produce large-size test suites, afterwards.
As the first part of this approach makes use of our Smyle tool described previously, an
evolution of the abstract model following the SMA lifecycle model (cf. Chapter 7) is also
possible as soon as the underlying system is extended, or enters a new iteration of the
software development cycle.

Usually, for testing a system, we are not directly given an abstract model of the SUT
for performing model-based testing. Thus, we will learn this model given a set of test
requirements. As depicted in Figure 9.17, we transform the abstract requirements into an
abstract model using Smyle. If the model was created, the integrated test case generator
Style can derive large test suites consisting of MSCs or system traces.

The test case generator’s graphical user interface is depicted in Figure 9.18. Currently
it supports breadth-first and depth-first search methods and some random search imple-
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Figure 9.17: The model-based testing approach using Smyle and Style

Figure 9.18: Test case generation using Style

mentations, and can generate test cases of a priori fixed length specified by an interval
[minimalLength,maximalLength]. In Figure 9.18, for example, we are deriving a test
suite of 100,000 test cases of length between 10 and 30 events (cf. Figure 9.18 (1)) using a
random search method (cf. Figure 9.18 (2)). Other features of the test case generator GUI
are: component (3) for initializing the test case generation, component (4) for depicting
single test cases, component (5) for stepwise generation of test cases, and the buttons
from item (6) to generate the test suite specified in components (1) and (2), and saving
this test suite to disk. Figure 9.19 shows four sample test cases that were generated using
Style in the previously described setting. More involved algorithms employed for test
case generation still have to be implemented (e.g., [Vas73, Cho78, FvBK+91]).

For now, Style is only capable of deriving non-parameterized test cases, but we are plan-
ning to extend it to parameterized test case generation, where parameterized traces and
MSCs are generated from the abstract model, yielding a symbolic approach to automated
test case generation. Instead of instantiating the test cases with concrete values, we let
the tests execute on a symbolic level and check on-the-fly whether the execution satisfies
the test. Another possibility when given a parameterized set of tests is to generate new
sets of concrete test cases by instantiating the abstract test cases on basis of the infor-
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Figure 9.19: Four positive test cases for the ABP (cf. Sections 7.4 and 9.2) generated by
Style using the test case setup specified in Figure 9.18 (1), (2)

mation about data types stored or provided by the user for the parameters. The future
version of Style will thus provide a powerful means to generate large size, parameterized
test suites for model-based testing.



10 Conclusions and Outlook

This thesis generalized Angluin’s learning algorithm L∗ in several ways. On the one
hand, a new active online algorithm—called NL∗—for learning NFA in the spirit of the
L∗ algorithm was introduced. To the best of our knowledge it is the first and only of its
kind. Though its theoretical time complexity is slightly worse than that obtained for L∗,
practical experiments show substantially better outcomes than for L∗. This suggests that
a better worst-case complexity than that of L∗ might be derivable.

A further improvement of table-based learning algorithms in general was introduced
under the name learning of congruence-closed languages and employed in the setting
of distributed system synthesis as partial order learning. Several case studies showed
the advantage of this approach where memory savings of up to 70% and membership
query reductions of more than 75% could be achieved. The successful application of our
congruence-closed language learning approach depends on domain-specific properties. As
such congruence-closed language learning always has to be tailored to the target domain,
and will be applicable to many (but not necessary all) domains.

Moreover, we extended Angluin’s learning approach for synthesizing DFA from regular
languages to a procedure that infers CFMs from sets of positive and negative scenar-
ios given as basic MSCs. Note that this technique, in contrast to many other existing
approaches, is performed in an asynchronous setting and yields an exact approach—the
resulting CFM precisely accepts the positive MSCs and rejects the negative ones—and is
applicable to various classes of CFMs such as different types of universally bounded CFMs
and to the class of existentially bounded CFMs. Our learning setting is also applicable to
other classes like, e.g., the causal closure as defined by Adsul et al. [AMKN05]. However,
it remains open whether the class of weak CFMs is learnable.

We have shown the feasibility of our approach by reporting on some experiments that we
carried out employing our tool Smyle1. By exploiting the properties of partial orders (like
MSCs) a significant reduction of the memory consumption could be achieved. Alternative
improvements covered in this thesis were, e.g., the reduction of the number of user queries
(i.e., of the queries that are presented in our tool Smyle) by using the logic PDL [BKM07]
to specify a priori undesired partial behavior in terms of so-called patterns, e.g., in case
of the ABP “no bit change without prior acknowledgment”. First results towards using
PDL to this purpose have been presented in Chapter 7 and recently reported in [BKKL09,
BKKL10]. Chapter 7 also described how to embed Smyle into an incremental software
engineering process called SMA.

Furthermore, we developed a learning library called libalf that implements most of
the learning algorithms mentioned in this thesis as well as their extensions (L∗

col, partial-
order learning, etc.). We also integrated this library into Smyle and used it to infer the
protocols mentioned in Section 9.2. Initial results obtained with this learning framework
are promising, and several research groups, e.g., from University of Oxford, TU Munich,
and RWTH Aachen University, already evinced interest in participating or using libalf.

1Smyle is freely available for exploration at http://www.smyle-tool.org/.

http://www.smyle-tool.org/
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Future Work

Though the results of this thesis significantly extend the current state of the art of gram-
matical inference, there is still space for further improvement. A feature which is currently
not implemented in our tool Smyle but could be of great help for designing protocols is
to support co-regions in basic MSCs (because, yet representing basic MSCs, they can
assemble several basic MSCs in one picture). A possible direction for future work is to in-
vestigate further classes of learnable CFMs, like causal closure MSC languages [AMKN05],
which could enrich our learning tool Smyle.

Concerning the learning of compact representations of (ω-)regular languages, we already
spotted two directions in which learning of nondeterministic automata could be extended.

The first enhancement would be to consider the class (or a subclass) of (residual) al-
ternating finite-state automata (RAFA) and to develop an active online algorithm to
derive such target automata. As, for a given regular language, alternating automata
can be doubly-exponentially more succinct than their corresponding minimal DFA, this
class could provide another, even more compact representation of regular languages than
minimal DFA or canonical RFSA.

A further field of interest are ω-regular languages because they can describe behavior of
reactive (i.e., possibly infinitely-long running) systems. There are already algorithms for
learning (subclasses) of ω-regular languages. One approach is able to infer weak determin-
istic Büchi automata [MP95]. It might be worth considering the notion of residual weak
Büchi automata (RWBA) in order to derive nondeterministic Büchi automata which—as
in the finite case—might be exponentially more succinct than the equivalent determin-
istic automata. Another recent approach [FCC+08] in this field is capable of deriving
nondeterministic Büchi automata by learning projections of ω-regular languages to regu-
lar languages. They use a slight extension of the L∗ algorithm and transform the inferred
DFA into nondeterministic Büchi automata recognizing the correct ω-regular languages.
Thereby, they are able to cover the whole class of ω-regular languages. But even in this
setting, the use of residual languages and the application of NL∗ might be sensible in
order to infer exponentially more succinct intermediate automata (instead of DFA using
L∗). This way, it might be possible to infer residual (weak) Büchi automata, and again
obtain an exponential gain compared to their deterministic counterpart.

Moreover, it would be interesting to employ our algorithm NL∗ for formal verification
tasks. As the finite-state automata derived by NL∗ may be exponentially more succinct
than the corresponding minimal DFA, NL∗ might be a better choice for verification appli-
cations. A concrete idea is to check whether our new learning algorithm performs well in
the area of regular model checking [BJNT00, AJNS04, HV05]. The latter paper presents a
technique that employs a passive offline learning algorithm by Trakhtenbrot and Barzdin
[TB73] to perform regular model checking.



A Auxiliary Calculations for Chapter 2

Example A.0.1. We now give some auxiliary calculations for Example 2.3.9 from page
14 given the regular language L = L(((a∗|b∗)aΣ)∗)): to simplify the presentation, we write
rL or Lr instead of L(r) · L or L · L(r), respectively (for a regular expression r and a
regular language L). Moreover, for a regular expression r ∈ R, r+ := r · r∗. With this
definition we get:

• ε−1L = L = Lp0
(by definition of residual languages and deterministic automata),

• (aa)−1L = (a∗aΣ|Σ|ε)L = (a∗|a+b|b)L = (a∗|(a+|ε)b)L = (a∗|a∗b)L = Lp2
,

• a−1L = (a∗aΣ|aΣ|Σ)L = (a∗Σ)L = (a+|a∗b)L = a+L|a+bL|bL =
(a+|a+b)L|a+bL|bL = a+((a∗|a∗b)L)|a+bL|bL = a+Lp2

|aa∗bL|bL = Lp1
,

• b−1L = (b∗aΣ|aΣ)L = (b∗aΣ)L = Lp3
, and

• (ba)−1L = ΣL = Lp4
.

3

Example A.0.2. In the following we will calculate the languages of the states for Exam-
ple 2.3.12 on page 15. First, we compile the following equation system for the NFA from
Figure 2.3(b) on page 15:

• Ls0
= ΣLs1

|aLs2
|ε,

• Ls1
= b∗aLs2

, and

• Ls2
= ΣLs0

.

Using backward propagation yields:

• Ls0
= ΣLs1

|aLs2
|ε = Σb∗aΣLs0

|aΣLs0
|ε,

• Ls1
= b∗aLs2

= b∗aΣLs0
, and

• Ls2
= ΣLs0

.

Applying the result from [Ard60] and[Ard61] for solving regular equations, which says
that every regular equation of the form X = r1 | r2X (where, r1, r2 ∈ R and ε 6∈ L(r2))
admits a minimal solution: X = r∗2 · r1, we finally obtain:

• Ls0
= L(((Σb∗ | ε) aΣ)∗) = L (((ab∗ | b∗) aΣ)∗) = L (((a∗ | b∗) aΣ)∗) = Lp0

= L
(where p0 is the initial state of the minimal DFA A from Figure 2.1(a) on page 12),
and hence:

• Ls1
= b∗aΣL = Lp3

, and

• Ls2
= ΣL = Lp4

,

where Lp0
, Lp3

and Lp4
are residual languages from L and describe the languages accepted

by states p0, p3 and p4 from Figure 2.1(a). 3





B Insights on RFSA Learning
(Interesting Examples)

In the following, we will describe interesting examples showing certain characteristics of
the NL∗ algorithm presented in Chapter 4.

B.1 An example where NL∗ needs more membership

queries than L∗

In this section, we see an example where NL∗ needs more membership queries than its
deterministic version L∗. Moreover, the resulting automata have got the same number of
states.

Let a parameterized minimal DFA over Σ = {a, b} be A∗
n = (Q, {q0}, δ, F ) (for n > 1),

let Rn be the corresponding canonical RFSA, and let Ln = L(A∗
n) = L(Rn). Hereby, A∗

n

is given by:

• Q = {qi | 0 ≤ i ≤ n},

• δ(qi, a) = δ(qi, b) = qi+1 for 0 ≤ i ≤ n − 2, δ(qn−1, a) = qn, δ(qn−1, b) = q0,
δ(qn, a) = δ(qn, b) = qn, and

• F = Q \ {qn}.

Figure B.1 shows the minimal DFA A∗
4 and Figure B.2 the corresponding canonical RFSA

R4.

Lemma B.1.1 (Learning RFSA might need more membership queries than learning
DFA). In comparison to learning the minimal DFA A∗

n using L∗, learning the canoni-
cal RFSA Rn requires n − 1 additional resolutions of inconsistencies (but no additional
equivalence queries).

Proof: The proof can be done via induction on the number of states and is easily
traceable following the example below. Note that NL∗ needs indeed (2n+1) · (n−2) more
membership queries than L∗. 2

Learning the DFA from Figure B.1 and its canonical RFSA (Figure B.2) is depicted in
Tables B.1 and B.2, respectively.
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+ + ++ + + +− + +−− +−−− −−−−Σ Σ Σ a

b

Σ

Figure B.1: The minimal DFA A∗
4 over Σ = {a, b} for which NL∗ needs more membership

queries than L∗

T0 ε

ε +

a +
b +

1)
⇒

T1 ε

ε +
a +
aa +
aaa +
aaaa −
b +
ab +
aab +
aaab +
aaaaa −
aaaab −

2)
⇒

T2 ε a

ε + +
a + +
aa + +
aaa + −
aaaa − −
b + +
ab + +
aab + −
aaab + +
aaaaa − −
aaaab − −

3)
⇒

T3 ε a aa

ε + + +
a + + +
aa + + −
aaa + − −
aaaa − − −
b + + +
ab + + −
aab + − −
aaab + + +
aaaaa − − −
aaaab − − −

4)
⇒

T4 ε a aa aaa

ε + + + +
a + + + −
aa + + − −
aaa + − − −
aaaa − − − −
b + + + −
ab + + − −
aab + − − −
aaab + + + +
aaaaa − − − −
aaaab − − − −

1) T0 is closed and consistent, but a counterexample can be obtained because aaaa ∈
L(AT1

) and aaaa 6∈ L. Hence, add pref (aaaa) to U .

2) T1 is not consistent as T (aa) = T (aaa) but T (aaa) 6= T (aaaa). Hence, add a to V .

3) T2 is not consistent as T (a) = T (aa) but T (aa) 6= T (aaa). Hence, add aa to V .

4) T3 is not consistent as T (ε) = T (a) but T (a) 6= T (aa). Hence, add aaa to V .

5) T4 is then closed and consistent, and the minimal DFA A∗
4 from Figure B.1 can be

derived.

Table B.1: Learning A∗
5 with L∗

+−+ + +−−− +−−+ +−−+ +−−−+−+− +−−−−+−− −−−−−−−
Σ Σ Σ Σ

b

ΣΣ
Σ

Σ

Figure B.2: RFSA R4 recognizing the language of the minimal DFA A∗
4 from Figure B.1
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T0 ε

∗ ε +

∗ b +
∗ a +

⇒1.
ce

T1 ε aaaa aaa aa a

∗ ε + − + + +

∗ b + − − + +
∗ a + − − + +

⇒2.
ncl

T2 ε aaaa aaa aa a

∗ ε + − + + +
∗ b + − − + +

∗ a + − − + +
∗ bb + − − − +
∗ ba + − − − +

⇒3.
ncl

T3 ε aaaa aaa aa a

∗ ε + − + + +
∗ b + − − + +
∗ bb + − − − +

∗ a + − − + +
∗ ba + − − − +
∗ bbb + − − − −
∗ bba + − − − −

⇒4.
ncl

T4 ε aaaa aaa aa a

∗ ε + − + + +
∗ b + − − + +
∗ bb + − − − +
∗ bbb + − − − −

∗ a + − − + +
∗ ba + − − − +
∗ bba + − − − −
∗ bbbb + − + + +
∗ bbba − − − − −

⇒5.
ncl

T5 ε aaaa aaa aa a

∗ ε + − + + +
∗ b + − − + +
∗ bb + − − − +
∗ bbb + − − − −
∗ bbba − − − − −

∗ a + − − + +
∗ ba + − − − +
∗ bba + − − − −
∗ bbbb + − + + +
∗ bbbab − − − − −
∗ bbbaa − − − − −

⇒6.
ncs

T6 ε aaaa aaa aa a baaa

∗ ε + − + + + −
∗ b + − − + + −
∗ bb + − − − + −
∗ bbb + − − − − +
∗ bbba − − − − − −

∗ a + − − + + −
∗ ba + − − − + −
∗ bba + − − − − +
∗ bbbb + − + + + −
∗ bbbab − − − − − −
∗ bbbaa − − − − − −

⇒7.
ncs

T7 ε aaaa aaa aa a baaa bbaaa

∗ ε + − + + + − −
∗ b + − − + + − −
∗ bb + − − − + − +
∗ bbb + − − − − + −
∗ bbba − − − − − − −

∗ a + − − + + − −
∗ ba + − − − + − +
∗ bba + − − − − + −
∗ bbbb + − + + + − −
∗ bbbab − − − − − − −
∗ bbbaa − − − − − − −

⇒8.
ncs

T8 ε aaaa aaa aa a baaa bbaaa bbbaaa

∗ ε + − + + + − − −
∗ b + − − + + − − +
∗ bb + − − − + − + −
∗ bbb + − − − − + − −
∗ bbba − − − − − − − −

∗ a + − − + + − − +
∗ ba + − − − + − + −
∗ bba + − − − − + − −
∗ bbbb + − + + + − − −
∗ bbbab − − − − − − − −
∗ bbbaa − − − − − − − −

1) Table T0 is RFSA-closed and RFSA-consistent, but a counterexample can be found: aaaa
is accepted by the hypothesis but is not in the language we want to infer.

2) Table T1 violates the RFSA-closedness property. Hence, we try to make T1 RFSA-closed
by moving row b to U .

3)−5) We get three more RFSA-closedness violations and resolve them by moving rows bb, bbb
and bbba to the upper part of the table.

6) Table T5 violates the RFSA-consistency property because bbb ⊑ bb but bbbb 6⊑ bbb. We try
to obtain RFSA-consistency by adding suffixes baaa to V .

7)−8) But still, two more inconsistencies occur. Hence we add suffix bbaaa and bbbaaa to V .

9) Table T8 is RFSA-closed and RFSA-consistent, and the final model R4 can be calculated
(cf. Figure B.2).

Table B.2: Learning R4 with NL∗
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B.2 An example where NL∗ needs more equivalence

queries than L∗

After describing an example where NL∗ needed more membership queries than L∗, we
now turn to an example that shows that in some cases even the number of equivalence
queries can be slightly larger than for L∗.

Let L be the regular language accepted by the minimal DFA AT6
from Figure B.3(a).

Even though the equivalent canonical RFSA RT8
has less states than AT6

, to infer RT8

needs more equivalence queries (using NL∗) than to infer AT6
(using L∗).

b

a

a

b

a

Σ

b

a b

Σ

(a) Minimal DFA AT6

b

Σ

Σ

Σ

Σ

Σ

b

Σ

Σ

b

a

b

Σ

(b) Canonical RFSA RT8

Figure B.3: Acceptors for regular language L

T0 ε

ε +

b +
a +

⇒1.
ce

T1 ε

ε +
a +
aba −
ab +

b +
aa +
abab −
abaa −
abb +

⇒2.
ncs

T2 ε a

ε + +
a + +
aba − −
ab + −

b + +
aa + +
abab − −
abaa − −
abb + −

⇒3.
ncs

T3 ε a ba

ε + + +
a + + −
aba − − −
ab + − −

b + + +
aa + + −
abab − − −
abaa − − −
abb + − −

⇒4.
ce

T4 ε a ba

ε + + +
b + + +
a + + −
aba − − −
ab + − −
baa − − −
ba + − −

aa + + −
abab − − −
abaa − − −
abb + − −
bb + + +
baab − − −
baaa − − −
bab − − −

⇒5.
ncs

T5 ε a ba aa

ε + + + +
b + + + −
a + + − +
aba − − − −
ab + − − −
baa − − − −
ba + − − −

aa + + − +
abab − − − −
abaa − − − −
abb + − − −
bb + + + −
baab − − − −
baaa − − − −
bab − − − −

⇒6.
ncs

T6 ε a ba aa b

ε + + + + +
b + + + − +
a + + − + +
aba − − − − −
ab + − − − +
baa − − − − −
ba + − − − −

aa + + − + +
abab − − − − −
abaa − − − − −
abb + − − − +
bb + + + − +
baab − − − − −
baaa − − − − −
bab − − − − −

1) Found counterexample aba for current model AT0
.

2) T1 is not consistent. Trying to obtain consistency by adding suffix a to V .

3) T2 is not consistent. Trying to obtain consistency by adding suffix ba to V .

4) Found counterexample baa for current model AT3
.

5) T4 is not consistent. Trying to obtain consistency by adding suffix aa to V .

6) T5 is not consistent. Trying to obtain consistency by adding suffix b to V .

7) Table T6 is closed and consistent, and the final model AT6
is calculated (cf. Figure B.3(a)).

Table B.3: An example of an L∗ run that needs less equivalence queries than NL∗
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T0 ε

∗ ε +

∗ b +
∗ a +

⇒1.
ce

T1 ε aba ba a

∗ ε + − + +

∗ b + − + +
∗ a + − − +

⇒2.
ncl

T2 ε aba ba a

∗ ε + − + +
∗ a + − − +

∗ b + − + +
∗ ab + − − −
∗ aa + − − +

⇒3.
ncl

T3 ε aba ba a

∗ ε + − + +
∗ a + − − +
∗ ab + − − −

∗ b + − + +
∗ aa + − − +
∗ abb + − − −
∗ aba − − − −

⇒4.
ncl

T4 ε aba ba a

∗ ε + − + +
∗ a + − − +
∗ ab + − − −
∗ aba − − − −

∗ b + − + +
∗ aa + − − +
∗ abb + − − −
∗ abab − − − −
∗ abaa − − − −

⇒5.
ce

T5 ε aba ba a baa aa

ε + − + + − +
∗ a + − − + − +
∗ ab + − − − − −
∗ aba − − − − − −

∗ b + − + + − −
∗ aa + − − + − +
∗ abb + − − − − −
∗ abab − − − − − −
∗ abaa − − − − − −

⇒6.
ncl

T6 ε aba ba a baa aa

ε + − + + − +
∗ b + − + + − −
∗ a + − − + − +
∗ ab + − − − − −
∗ aba − − − − − −

∗ aa + − − + − +
∗ abb + − − − − −
∗ abab − − − − − −
∗ abaa − − − − − −
∗ bb + − + + − −
∗ ba + − − − − −

⇒7.
ce

T7 ε aba ba a baa aa bab ab b

ε + − + + − + − + +
∗ b + − + + − − − − +
∗ a + − − + − + − + +
∗ ab + − − − − − − − +
∗ aba − − − − − − − − −

∗ aa + − − + − + − + +
∗ abb + − − − − − − − +
∗ abab − − − − − − − − −
∗ abaa − − − − − − − − −
∗ bb + − + + − − − − +
∗ ba + − − − − − − − −

⇒8.
ncl

T8 ε aba ba a baa aa bab ab b

ε + − + + − + − + +
∗ b + − + + − − − − +
∗ a + − − + − + − + +
∗ ab + − − − − − − − +
∗ aba − − − − − − − − −
∗ ba + − − − − − − − −

∗ aa + − − + − + − + +
∗ abb + − − − − − − − +
∗ abab − − − − − − − − −
∗ abaa − − − − − − − − −
∗ bb + − + + − − − − +
∗ bab − − − − − − − − −
∗ baa − − − − − − − − −

1) Found counterexample aba for current model RT0
.

2) T1 is not RFSA-closed. Trying to obtain RFSA-closedness by moving row a to U .

3) T2 is not RFSA-closed. Trying to obtain RFSA-closedness by moving row ab to U .

4) T3 is not RFSA-closed. Trying to obtain RFSA-closedness by moving row aba to U .

5) Found counterexample baa for current model RT4
.

6) T5 is not RFSA-closed. Trying to obtain RFSA-closedness by moving row b to U .

7) Found counterexample bab for current model RT6
.

8) T7 is not RFSA-closed. Trying to obtain RFSA-closedness by moving row ba to U .

9) Table T8 is RFSA-closed and RFSA-consistent, and the final model RT8
is calculated (cf.

Figure B.3(b)).

Table B.4: An example of an NL∗ run that needs more equivalence queries than L∗
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B.3 An example where the intermediate hypothesis is

not an RFSA

As mentioned in Chapter 4, the NL∗ algorithm for inferring canonical RFSA does not
necessarily infer (canonical) RFSA as intermediate hypotheses. A nice example is given
in Figure B.5. Depicted are the intermediate hypotheses automata RT1

and RT4
(for

tables T1 and T4, respectively), and the final hypothesis RT6
(cf. Figure B.5(c)). Note

that RT4
(cf. Figure B.5(b)) is not an RFSA, because the state at the bottom accepts

bbb∗, which is not a residual of L(RT4
) = bb∗. The final hypothesis RT6

, however, is a
canonical RFSA.

b a
b

Σ

b

a a

Σ

Figure B.4: Minimal DFA recognizing the language to infer

− +

Σ Σ

b

Σ

(a) Hypothesis RT1

−−+

+−−

−−−

b Σ

Σ

Σb

b

(b) Hypothesis RT4

−−+ +− +−−+− −−+−+

−−−−−

b
Σ

b

bb

Σ

Σ
Σ Σ

(c) canonical RFSA RT6

Figure B.5: All hypotheses for inferring the canonical RFSA for minimal DFA from Fig-
ure B.4
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T0 ε

∗ ε −

∗ b +
∗ a −

⇒1.
ncl

T1 ε

∗ ε −
∗ b +

∗ a −
∗ bb +
∗ ba +

⇒2.
ce

T2 ε ab b

∗ ε − − +
b + − +

∗ a − − −
bb + − +

∗ ba + − −

⇒3.
ncl

T3 ε ab b

∗ ε − − +
b + − +

∗ a − − −

bb + − +
∗ ba + − −
∗ ab − − −
∗ aa − − −

⇒4.
ncl

T4 ε ab b

∗ ε − − +
b + − +

∗ a − − −
∗ ba + − −

bb + − +
∗ ab − − −
∗ aa − − −
∗ bab − − +
∗ baa − − −

⇒5.
ce

T5 ε ab b ba a

∗ ε − − + + −
b + − + + +

∗ a − − − − −
∗ ba + − − + −

bb + − + + +
∗ ab − − − − −
∗ aa − − − − −
∗ bab − − + − +
∗ baa − − − − −

⇒6.
ncl

T6 ε ab b ba a

∗ ε − − + + −
b + − + + +

∗ a − − − − −
∗ ba + − − + −
∗ bab − − + − +

bb + − + + +
∗ ab − − − − −
∗ aa − − − − −
∗ baa − − − − −
∗ babb + − − + −
∗ baba + − − + −

1) T0 is not RFSA-closed. Trying to obtain RFSA-closedness by moving row b to U .

2) Found counterexample ab for current model RT1
(cf. Figure B.5(a)).

3) T2 is not RFSA-closed. Trying to obtain RFSA-closedness by moving row a to U .

4) T3 is not RFSA-closed. Trying to obtain RFSA-closedness by moving row ba to U .

5) Found counterexample ba for current model RT4
(cf. Figure B.5(b)).

6) T5 is not RFSA-closed. Trying to obtain RFSA-closedness by moving row bab to U .

7) Table T6 is RFSA-closed and RFSA-consistent, and the final model RT6
is calculated (cf.

Figure B.5(c)).

Table B.5: An example of an NL∗ run where an intermediate hypothesis is not an RFSA
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B.4 An example for non-termination of a row-based

algorithm

In this section, we present an example demonstrating that the RFSA algorithm would
not terminate if we added counterexamples and their prefixes to the set of rows U instead
of adding counterexamples and their suffixes to the set of columns V . The problem we
face with this version of the RFSA learning algorithm is that there are (rare) cases where
a word u ∈ U does not lead to the state row(u). Therefore, the algorithm detects u
as a counterexample, though it is already contained and classified in the table. The
RFSA-closed and RFSA-consistent table T3, for example, classifies word a as positive,
but the NFA of T3 does not accept word a, resulting in a non-terminating cycle within
the inference algorithm.

a

b

a

b

a

a

b b

b

b bb

(a) Minimal DFA for the regular language to infer

+− −+

−− Σ

b

b

b
Σ Σ

(b) NFA RT3

Figure B.6: DFA, NFA: An example for non-termination of algorithm from Section 4.5

T0 ε

∗ ε +

∗ b +
∗ a +

=⇒1.
ce

T1 ε

∗ ε +
∗ a +
∗ aa −

∗ b +
∗ ab −
∗ aab −
∗ aaa −

=⇒2.
ncs

T2 ε b

ε + +
∗ a + −
∗ aa − −

b + +
∗ ab − +
∗ aab − −
∗ aaa − −

=⇒3.
ncl

T3 ε b

ε + +
∗ a + −
∗ aa − −
∗ ab − +

b + +
∗ aab − −
∗ aaa − −

abb + +
∗ aba − −

1) Found counterexample aa for the current model RT0
based on T0.

2) T1 is not RFSA-consistent (cf. Definition 4.5.2). Trying to obtain weak RFSA-
consistency by adding suffix b to V .

3) T2 is not RFSA-closed. Trying to obtain RFSA-closedness by adding row ab to U .

4) Trying to add counterexample a ∈ L(A) \L(RT3
) fails, because a is already present

in T3 but not accepted by hypothesis RT3
(cf. Figures B.6(a) and B.6(b)).

Table B.6: Non-termination problem with the algorithm that adds counterexamples to U
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B.5 An example for a non-increasing number of states

Let us consider an example where the number of states does not increase after inserting
a counterexample.

In contrast to Angluin’s learning algorithm L∗, in NL∗ it might be the case that adding
a new counterexample to the table does not introduce a new state. As shown in Theo-
rem 4.3.3, the termination of the algorithm can still be assured though it is substantially
more involved than in the case of L∗.

Let Σ = {a, b, c}. We want to infer the regular language of the minimal DFA from
Figure B.7. The corresponding canonical RFSA RT8

and an intermediate hypothesis RT6

are depicted in Figure B.8.

a b

c

a
b

c a

b, c

a, c

b

a

b, c

a

b

c
a

b, c

Figure B.7: The minimal DFA corresponding to RFSA RT8
from Figure B.8

ε

b

a

c

a, b, c

b

a

b, c
a

b, c

b

b, c

b, cb, c

b, c
a, b

a, c

a, b

RT6

(a) RFSA RT6
derived from table T6

ε

baa

ba

c

b
a, b

a

b, ca

b, c

b

c

a, ba
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(b) RFSA RT8
derived from table T8

Figure B.8: An example for a non-increasing number of states
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T0 ε

∗ ε +

∗ b −
∗ c −
∗ a +

⇒1.
ncl

T1 ε

∗ ε +
∗ b −

∗ c −
∗ a +
∗ bb +
∗ bc +
∗ ba +

⇒2.
ncs

T2 ε b

∗ ε + −
∗ b − +

∗ c − −
a + +
bb + +
bc + +

∗ ba + −

⇒3.
ncl

T3 ε b

∗ ε + −
∗ b − +
∗ c − −

a + +
bb + +
bc + +

∗ ba + −
∗ cb − −
∗ cc + −
∗ ca + −

⇒4.
ncs

T4 ε b c

∗ ε + − −
∗ b − + +
∗ c − − +

∗ a + + −
bb + + +
bc + + +

∗ ba + − −
∗ cb − − +
∗ cc + − −
∗ ca + − −

⇒5.
ncl

T5 ε b c

∗ ε + − −
∗ b − + +
∗ c − − +
∗ a + + −

bb + + +
bc + + +

∗ ba + − −
∗ cb − − +
∗ cc + − −
∗ ca + − −

ab + + +
∗ ac − + +
∗ aa + + −

⇒6.
ce

T6 ε b c baa aa a

∗ ε + − − − + +
∗ b − + + + − +
∗ c − − + − − +
∗ a + + − + + +

bb + + + + + +
bc + + + + + +

∗ ba + − − − + −
∗ cb − − + − − +
∗ cc + − − − + −
∗ ca + − − − + −

ab + + + + + +
∗ ac − + + + − +
∗ aa + + − + + +

⇒7.
ncl

T7 ε b c baa aa a

∗ ε + − − − + +
b − + + + − +

∗ c − − + − − +
a + + − + + +

∗ ba + − − − + −

bb + + + + + +
bc + + + + + +

∗ cb − − + − − +
∗ cc + − − − + −
∗ ca + − − − + −

ab + + + + + +
ac − + + + − +
aa + + − + + +

∗ bab − − + − − +
∗ bac − − + − − +
∗ baa − + − + − +

⇒8.
ncl

T8 ε b c baa aa a

∗ ε + − − − + +
b − + + + − +

∗ c − − + − − +
a + + − + + +

∗ ba + − − − + −
∗ baa − + − + − +

bb + + + + + +
bc + + + + + +

∗ cb − − + − − +
∗ cc + − − − + −
∗ ca + − − − + −

ab + + + + + +
ac − + + + − +
aa + + − + + +

∗ bab − − + − − +
∗ bac − − + − − +

baab + + − + + +
baac − + + + − +

∗ baaa + − − − + −

1) T0 is not RFSA-closed. Hence, we try to make it RFSA-closed by moving row b to the
upper table.

2) T1 violates the RFSA-consistency property, as b ⊑ ε but bb 6⊑ b. We try to obtain RFSA-
consistency by adding suffix b to V .

3) After resolving the inconsistency the table is not RFSA-closed. Thus, we add row c to U .

4) Table T3 is inconsistent again (c ⊑ ε but cc 6⊑ c) and we insert suffix c to V .

5) An RFSA-closedness violation forces us to move row a to U .

6) As table T5 is RFSA-closed and RFSA-consistent, a hypothesis can be derived (cf. Fig-
ure B.8(a)) and a counterexample is found. The word baa is accepted by our hypothesis
but not contained in the language to learn. Hence, we add suff (baa) to V .

7)−9) Resolving two more RFSA-closedness violations by moving rows ba and baa to the upper
table, table T8 is RFSA-closed and RFSA-consistent, again. The final model RT8

is
calculated and depicted in Figure B.8(b).

Table B.7: An example of an NL∗ run where the number of states does not increase
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B.6 An example for a decreasing number of states

In the previous chapter we already saw an example showing that hypotheses do not
necessarily have to increase. In this section, we furthermore provide an example where
the number of states from one hypothesis to the next hypothesis even decreases. Let
us consider the regular language L recognized by the minimal DFA from Figure B.9.
While learning L, the intermediate NFA RT7

is derived from table T7 (cf. Table B.8).
It contains six states whereas the next hypothesis (derived from table T10) has only five
states. The reason for this is that—due to an RFSA-closedness violation—from table T7
to T10 row(aab) is added to the upper table which helps to compose the previous prime
states row(a) and row(b).

b b a

a

b

a

b

a

a

a

a

b

Figure B.9: Minimal DFA for the regular language to learn
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Σ
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for table T7
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Figure B.10: Two successive hypotheses with decreasing state number
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T0 ε

∗ ε −

∗ b −
∗ a +

=⇒1.
ncl

T1 ε

∗ ε −
∗ a +

∗ b −
∗ ab −
∗ aa −

=⇒2.
ncs

T2 ε a

∗ ε − +
∗ a + −

∗ b − +
∗ ab − −
∗ aa − +

=⇒3.
ncl

T3 ε a

∗ ε − +
∗ a + −
∗ ab − −

∗ b − +
∗ aa − +
∗ abb − −
∗ aba − −

=⇒4.
ce

T4 ε a baa aa

∗ ε − + + −
∗ a + − − +
∗ ab − − − −

∗ b − + − +
∗ aa − + + −
∗ abb − − − −
∗ aba − − − −

=⇒5.
ncl

T5 ε a baa aa

∗ ε − + + −
∗ b − + − +
∗ a + − − +
∗ ab − − − −

∗ aa − + + −
∗ abb − − − −
∗ aba − − − −
∗ bb − + − −
∗ ba + + + −

=⇒6.
ncl

T6 ε a baa aa

∗ ε − + + −
∗ b − + − +
∗ a + − − +
∗ ab − − − −
∗ bb − + − −

∗ aa − + + −
∗ abb − − − −
∗ aba − − − −

ba + + + −
∗ bbb − + − −
∗ bba + − − −

=⇒7.
ncl

T7 ε a baa aa

∗ ε − + + −
∗ b − + − +
∗ a + − − +
∗ ab − − − −
∗ bb − + − −
∗ bba + − − −

∗ aa − + + −
∗ abb − − − −
∗ aba − − − −

ba + + + −
∗ bbb − + − −
∗ bbab − − − −
∗ bbaa − − − −

=⇒8.
ce

T8 ε a baa aa baba aba ba

ε − + + − − − +
∗ b − + − + − − +
∗ a + − − + − − −
∗ ab − − − − − − −
∗ bb − + − − − − +
∗ bba + − − − − − −

∗ aa − + + − − − −
∗ abb − − − − − − −
∗ aba − − − − − − −

ba + + + − − − −
∗ bbb − + − − − − +
∗ bbab − − − − − − −
∗ bbaa − − − − − − −

=⇒9.
ncl

T9 ε a baa aa baba aba ba

ε − + + − − − +
b − + − + − − +
a + − − + − − −

∗ ab − − − − − − −
∗ aa − + + − − − −
∗ bb − + − − − − +
∗ bba + − − − − − −

∗ abb − − − − − − −
∗ aba − − − − − − −

ba + + + − − − −
∗ bbb − + − − − − +
∗ bbab − − − − − − −
∗ bbaa − − − − − − −
∗ aab − − − + − − −

aaa + − − + − − −

=⇒10.
ncl

T10 ε a baa aa baba aba ba

ε − + + − − − +
b − + − + − − +
a + − − + − − −

∗ ab − − − − − − −
∗ aa − + + − − − −
∗ bb − + − − − − +
∗ bba + − − − − − −
∗ aab − − − + − − −

∗ abb − − − − − − −
∗ aba − − − − − − −

ba + + + − − − −
∗ bbb − + − − − − +
∗ bbab − − − − − − −
∗ bbaa − − − − − − −

aaa + − − + − − −
∗ aabb − − − − − − −
∗ aaba − + + − − − −

1) T0 is not RFSA-closed. Hence, we try to make it RFSA-closed by moving row a to the
upper table.

2) T1 violates the RFSA-consistency property, as ε ⊑ a but a 6⊑ aa. We try to obtain
RFSA-consistency by adding suffix a to V .

3) After resolving the inconsistency the table is not RFSA-closed. Thus, we add row ab to
U .

4) The table is RFSA-closed and RFSA-consistent but a counterexample is found. The word
baa is not accepted by our hypothesis but contained in the language to learn. Hence, we
add suff (baa) to V .

5) − 7) RFSA-closedness violations force us to move rows b, bb, and bba to U .

8) Again the table (T7) is RFSA-closed and RFSA-consistent yielding the intermediate hy-
pothesis RT7

for which a counterexample can be derived. The word baba is accepted by
our hypothesis (cf. Figure B.10(a)) but not contained in the language to learn. Hence, we
add suff (baba) to V .

9)− 11) Two more RFSA-closedness violations force us to move rows aa and aab to U yielding
an RFSA-closed and RFSA-consistent table T10. The final model RT10

is calculated and
depicted in Figure B.10(b).

Table B.8: An example of an NL∗ run where the number of states even decreases
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B.7 An example where NL∗ needs more equivalence

queries than states in minimal DFA

A very interesting case is presented in this section where NL∗ learns a regular language
for which it needs more equivalence queries than the corresponding minimal DFA has got
states. Note that this can never happen in the L∗ algorithm, as it is guaranteed that L∗

needs at most n equivalence queries. In the example the minimal DFA (cf. Figure B.11)
contains 5 states and NL∗ needs in total 6 equivalence queries.
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b

Figure B.11: Minimal DFA recognizing the language to infer
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Figure B.12: All hypotheses for inferring the canonical RFSA for minimal DFA from Fig-
ure B.11
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T0 ε

∗ ε +

∗ b +
∗ a +

=⇒1.
ce

T1 ε bb b

∗ ε + − +

∗ b + + −
∗ a + − +

=⇒2.
ncl

T2 ε bb b

∗ ε + − +
∗ b + + −

∗ a + − +
∗ bb − + +
∗ ba + − +

=⇒3.
ncl

T3 ε bb b

∗ ε + − +
∗ b + + −
∗ bb − + +

∗ a + − +
∗ ba + − +

bbb + + +
bba + + +

=⇒4.
ce

T4 ε bb b bbaabb baabb aabb abb

∗ ε + − + − − − −
∗ b + + − − − − −
∗ bb − + + − − − +

∗ a + − + − − − −
∗ ba + − + − − − −

bbb + + + − − − −
bba + + + − − − −

=⇒5.
ce

T5 ε bb b bbaabb baabb aabb abb bbbbbb bbbbb bbbb bbb

∗ ε + − + − − − − − + + +
∗ b + + − − − − − + − + +
∗ bb − + + − − − + + + − +

∗ a + − + − − − − − + + +
∗ ba + − + − − − − − + + +
∗ bbb + + + − − − − + + + −

bba + + + − − − − + + + +

=⇒6.
ncl

T6 ε bb b bbaabb baabb aabb abb bbbbbb bbbbb bbbb bbb

∗ ε + − + − − − − − + + +
∗ b + + − − − − − + − + +
∗ bb − + + − − − + + + − +
∗ bbb + + + − − − − + + + −

∗ a + − + − − − − − + + +
∗ ba + − + − − − − − + + +

bba + + + − − − − + + + +
∗ bbbb + − + − − − − − + + +
∗ bbba + − + − − − − − + + +

=⇒7.
ce

T7 ε bb b bbaabb baabb aabb abb bbbbbb bbbbb bbbb bbb bbababb bababb ababb babb

∗ ε + − + − − − − − + + + − − − −
∗ b + + − − − − − + − + + − − − +
∗ bb − + + − − − + + + − + − − − −
∗ bbb + + + − − − − + + + − − − − −

∗ a + − + − − − − − + + + − − − −
∗ ba + − + − − − − − + + + − − − −

bba + + + − − − − + + + + − − − −
∗ bbbb + − + − − − − − + + + − − − −
∗ bbba + − + − − − − − + + + − − − −

=⇒8.
ce

T8 ε bb b bbaabb baabb aabb abb bbbbbb bbbbb bbbb bbb bbababb bababb ababb babb bbabbabb babbabb abbabb bbabb

∗ ε + − + − − − − − + + + − − − − − + + +
∗ b + + − − − − − + − + + − − − + + − + −
∗ bb − + + − − − + + + − + − − − − + + − −
∗ bbb + + + − − − − + + + − − − − − + + + −

∗ a + − + − − − − − + + + − − − − − + + +
∗ ba + − + − − − − − + + + − − − − − + + +
∗ bba + + + − − − − + + + + − − − − + + + −
∗ bbbb + − + − − − − − + + + − − − − − + + +
∗ bbba + − + − − − − − + + + − − − − − + + +

=⇒9.
ncl
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T9 ε bb b bbaabb baabb aabb abb bbbbbb bbbbb bbbb bbb bbababb bababb ababb babb bbabbabb babbabb abbabb bbabb

∗ ε + − + − − − − − + + + − − − − − + + +
∗ b + + − − − − − + − + + − − − + + − + −
∗ bb − + + − − − + + + − + − − − − + + − −
∗ bbb + + + − − − − + + + − − − − − + + + −
∗ bba + + + − − − − + + + + − − − − + + + −

∗ a + − + − − − − − + + + − − − − − + + +
∗ ba + − + − − − − − + + + − − − − − + + +
∗ bbbb + − + − − − − − + + + − − − − − + + +
∗ bbba + − + − − − − − + + + − − − − − + + +
∗ bbab + + + − − − − + + + + − − − − + + + −
∗ bbaa + − + − − − − − + + + − − − − − + + +

=⇒10.
ncs1

T10 ε bb b bbaabb baabb aabb abb bbbbbb bbbbb bbbb bbb bbababb bababb ababb babb bbabbabb babbabb abbabb bbabb bbbabb

∗ ε + − + − − − − − + + + − − − − − + + + −
∗ b + + − − − − − + − + + − − − + + − + − −
∗ bb − + + − − − + + + − + − − − − + + − − −
∗ bbb + + + − − − − + + + − − − − − + + + − +
∗ bba + + + − − − − + + + + − − − − + + + − −

∗ a + − + − − − − − + + + − − − − − + + + −
∗ ba + − + − − − − − + + + − − − − − + + + −
∗ bbbb + − + − − − − − + + + − − − − − + + + −
∗ bbba + − + − − − − − + + + − − − − − + + + −
∗ bbab + + + − − − − + + + + − − − − + + + − −
∗ bbaa + − + − − − − − + + + − − − − − + + + −

1) Found counterexample bb for current model RT0
(cf. Figure B.12(a)).

2) T1 is not RFSA-closed. Trying to obtain RFSA-closedness by moving row b to U .

3) T2 is not RFSA-closed. Trying to obtain RFSA-closedness by moving row bb to U .

4) Found counterexample bbaabb for current model RT3
(cf. Figure B.12(b)).

5) Found counterexample bbbbbb for current model RT4
(cf. Figure B.12(c)).

6) T5 is not RFSA-closed. Trying to obtain RFSA-closedness by moving row bbb to U .

7) Found counterexample bbababb for current model RT6
(cf. Figure B.12(d)).

8) Found counterexample bbabbabb for current model RT7
(cf. Figure B.12(e)).

9) T8 is not RFSA-closed. Trying to obtain RFSA-closedness by moving row bba to U .

10) T9 violates the RFSA-consistency property. We try to obtain RFSA-consistency by
adding suffix bbbabb to V .

11) Table T10 is RFSA-closed and RFSA-consistent. The final model RT10
is calculated

and depicted in Figure B.12(f)).

Table B.9: An example where NL∗ needs more equivalence queries than the corresponding
minimal DFA contains states





C An Algorithm for Solving the PDL
Membership Problem

Local formula check:

1 V = {0, .. , n-1}
2
3 boolean[ ] Sat(LocalFormula f) {
4 boolean[ ] sat = new boolean[n];
5 switch(f) {
6 case Not(f1):
7 boolean[ ] sat1 = Sat(f1);
8 for (int i = 0; i < n; i++)
9 sat[i] = !sat1[i];

10 break;
11 case Or(f1, f2):
12 boolean[ ] sat1 = Sat(f1);
13 boolean[ ] sat2 = Sat(f2);
14 for (int i = 0; i < n; i++)
15 sat[i] = sat1[i] ‖ sat2[i];
16 break;
17 case Event(..):
18 for (int i = 0; i < n; i++)
19 sat[i] = (V[i].event.equals(f));
20 break;
21 case <p1> f2:
22 boolean[ ][ ] trans1 = Trans(p1);
23 boolean[ ] sat2 = Sat(f2);
24 for (int i = 0; i < n; i++) {
25 sat[i] = false;
26 for (int j = 0; j < n; j++)
27 if(trans[i][j])
28 sat[i] = sat2[j];
29 }
30 break;
31 case <p1>−1 f2:
32 boolean[ ][ ] trans1 = TransBack(p1);
33 boolean[ ] sat2 = Sat(f2);
34 for (int i = 0; i < n; i++) {
35 sat[i] = false;
36 for (int j = 0; j < n; j++)
37 if(trans[i][j])
38 sat[i] = sat2[j];
39 }
40 break;
41 }
42 }

Table C.1: Algorithm for checking local formulas
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Forward path expression check:

1 boolean[ ][ ] Trans(PathFormula p) {
2 boolean[ ][ ] trans = new boolean[n][n];
3 switch(p) {
4 case (p1; p2):
5 boolean[ ][ ] trans1 = Trans(p1);
6 boolean[ ][ ] trans2 = Trans(p2);
7 for (int i = 0; i < n; i++)
8 for (int k = 0; k < n; k++) {
9 trans[i][k] = false;

10 for (int j = 0; j < n; j++)
11 if(trans1[i][j] && trans1[j][k])
12 trans[i][k] = true;
13 }
14 break;
15 case p1 + p2:
16 boolean[ ][ ] trans1 = Trans(p1);
17 boolean[ ][ ] trans2 = Trans(p2);
18 for (int i = 0; i < n; i++)
19 for (int j = 0; j < n; j++)
20 trans[i][j] = trans1[i][j] ‖ trans2[i][j];
21 break;
22 case p1∗:
23 boolean[ ][ ] trans1 = Trans(p1);
24 for (int i = 0; i < n; i++)
25 for (int j = 0; j < n; j++)
26 star[i][j] = (i==j);
27 while (true) {
28 for (int i = 0; i < n; i++)
29 for (int j = 0; j < n; j++)
30 if (trans1[i][j])
31 for (int k = 0; k < n; k++)
32 if (!trans[i][k] && trans1[j][k]) {
33 trans[i][k] = true;
34 continue;
35 }
36 break;
37 }
38 break;
39 }
40 }

Table C.2: Algorithm for checking forward path expressions
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Backward path expression check:

1 boolean[ ][ ] TransBack(PathFormula p) {
2 boolean[ ][ ] transBack = new boolean[n][n];
3 switch(p) {
4 case (p1; p2):
5 boolean[ ][ ] transBack1 = TransBack(p1);
6 boolean[ ][ ] transBack2 = TransBack(p2);
7 for (int i = 0; i < n; i++)
8 for (int k = 0; k < n; k++) {
9 transBack[i][k] = false;

10 for (int j = 0; j < n; j++)
11 if(transBack1[i][j] && transBack1[j][k])
12 transBack[i][k] = true;
13 }
14 break;
15 case p1 + p2:
16 boolean[ ][ ] transBack1 = TransBack(p1);
17 boolean[ ][ ] transBack2 = TransBack(p2);
18 for (int i = 0; i < n; i++)
19 for (int j = 0; j < n; j++)
20 transBack[i][j] = transBack1[i][j] ‖ transBack2[i][j];
21 break;
22 case p1∗:
23 boolean[ ][ ] transBack1 = TransBack(p1);
24 for (int i = 0; i < n; i++)
25 for (int j = 0; j < n; j++)
26 star[i][j] = (i==j);
27 while (true) {
28 for (int i = 0; i < n; i++)
29 for (int j = 0; j < n; j++)
30 if (transBack1[i][j])
31 for (int k = 0; k < n; k++)
32 if (!transBack[i][k] && transBack1[j][k]) {
33 transBack[i][k] = true;
34 continue;
35 }
36 break;
37 }
38 break;
39 }
40 }

Table C.3: Algorithm for checking backward path expressions
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[Ara98] J. Araújo. Formalizing Sequence Diagrams. In L. Andrade, A. Moreira,
A. Deshpande, and S. Kent, editors, Proceedings of the OOPSLA’98 Work-
shop on Formalizing UML. Why? How?, volume 33(10) of ACM SIGPLAN
Notices. ACM, 1998.



196 Bibliography

[Ard60] D. N. Arden. Delayed-Logic and Finite-State Machines. In Theory of Com-
puting Machine Design, pages 1–35. University of Michigan Press, 1960.

[Ard61] D. N. Arden. Delayed-Logic and Finite-State Machines. In Proceedings of
the Second Annual Symposium and Papers from the First Annual Sympo-
sium on Switching Circuit Theory and Logical Design (FOCS 1961), Detroit,
Michigan, USA, pages 133–151. American Institute of Electrical Engineers,
1961.

[AT&T] AT&T. Grappa - A Java Graph Package. Library available at:
http://www.research.att.com/~john/Grappa/.

[BAL97] H. Ben-Abdallah and S. Leue. Syntactic Detection of Process Divergence
and Non-local Choice in Message Sequence Charts. In E. Brinksma, edi-
tor, Proceedings of the 3rd International Workshop on Tools and Algorithms
for Construction and Analysis of Systems (TACAS 1997), Enschede, The
Netherlands, volume 1217 of Lecture Notes in Computer Science, pages 259–
274. Springer, 1997.

[BAL98] H. Ben-Abdallah and S. Leue. MESA: Support for Scenario-Based Design
of Concurrent Systems. In B. Steffen, editor, Proceedings of the 4th Interna-
tional Conference on Tools and Algorithms for Construction and Analysis of
Systems (TACAS 1998), Lisbon, Portugal, volume 1384 of Lecture Notes in
Computer Science, pages 118–135. Springer, 1998.

[BBH06] D. Babic, J. D. Bingham, and A. J. Hu. B-Cubing: New Possibilities for
Efficient SAT-Solving. IEEE Transactions on Computers, 55(11):1315–1324,
2006.

[BCG+99] F. Balarin, M. Chiodo, P. Giusto, H. Hsieh, A. Jurecska, L. Lavagno, A. L.
Sangiovanni-Vincentelli, E. Sentovich, and K. Suzuki. Synthesis of Soft-
ware Programs for Embedded Control Applications. IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems, 18(6):834–849,
1999.

[BF72] A. W. Biermann and J. Feldman. On the Synthesis of Finite-State Machines
from Samples of Their Behavior. IEEE Transactions on Software Engineer-
ing, 21(6):592–597, 1972.

[BFS04] A. Belinfante, L. Frantzen, and C. Schallhart. Tools for Test Case Genera-
tion. In Manfred Broy, Bengt Jonsson, Joost-Pieter Katoen, Martin Leucker,
and Alexander Pretschner, editors, Model-Based Testing of Reactive Systems,
volume 3472 of Lecture Notes in Computer Science, pages 391–438. Springer,
2004.

[BGJ+05] T. Berg, O. Grinchtein, B. Jonsson, M. Leucker, H. Raffelt, and B. Steffen. On
the Correspondence Between Conformance Testing and Regular Inference. In
M. Cerioli, editor, Proceedings of the 8th International Conference on Fun-
damental Approaches to Software Engineering (FASE 2005), Edinburgh, UK,
volume 3442 of Lecture Notes in Computer Science, pages 175–189. Springer,
2005.

http://www.research.att.com/~john/Grappa/


Bibliography 197

[BHKL08] B. Bollig, P. Habermehl, C. Kern, and M. Leucker. Angluin-Style Learn-
ing of NFA. Research Report LSV-08-28, Laboratoire Spécification et
Vérification, ENS Cachan, France, October 2008. 30 pages.

[BHKL09] B. Bollig, P. Habermehl, C. Kern, and M. Leucker. Angluin-Style Learning
of NFA. In C. Boutilier, editor, Proceedings of the 21th International Joint
Conference on Artificial Intelligence (IJCAI 2009), Pasadena, California,
USA, pages 1004–1009. AAAI Press, 2009.

[BJK+05] M. Broy, B. Jonsson, J. P. Katoen, M. Leucker, and A. Pretschner, editors.
Model-based Testing of Reactive Systems, volume 3472 of Lecture Notes in
Computer Science. Springer, 2005.

[BJNT00] A. Bouajjani, B. Jonsson, M. Nilsson, and T. Touili. Regular Model Check-
ing. In E. A. Emerson and A. P. Sistla, editors, Proceedings of the 12th Inter-
national Conference on Computer Aided Verification (CAV 2000), Chicago,
Illinois, USA, volume 1855 of Lecture Notes in Computer Science, pages
403–418. Springer, 2000.

[BK08] C. Baier and J. P. Katoen. Principles of Model Checking. The MIT Press,
May 2008.

[BKKL] B. Bollig, J. P. Katoen, C. Kern, and M. Leucker. Learning Communicating
Automata from MSCs. IEEE Transactions on Software Engineering. To
appear.

[BKKL06] B. Bollig, J. P. Katoen, C. Kern, and M. Leucker. Replaying Play In and
Play Out: Synthesis of Design Models from Scenarios by Learning. Research
Report AIB-2006-12, RWTH Aachen University, Germany, 2006. 28 pages.

[BKKL07] B. Bollig, J. P. Katoen, C. Kern, and M. Leucker. Replaying Play In and Play
Out: Synthesis of Design Models from Scenarios by Learning. In O. Grum-
berg and M. Huth, editors, Proceedings of the 13th International Confer-
ence on Tools and Algorithms for the Construction and Analysis of Systems
(TACAS 2007), Braga, Portugal, volume 4424 of Lecture Notes in Computer
Science, pages 435–450. Springer, 2007.

[BKKL08a] B. Bollig, J. P. Katoen, C. Kern, and M. Leucker. Smyle: A Tool for Syn-
thesizing Distributed Models from Scenarios by Learning. In F. van Breugel
and M. Chechik, editors, Proceedings of the 19th International Conference
on Concurrency Theory (CONCUR 2008), Toronto, Canada, volume 5201 of
Lecture Notes in Computer Science, pages 162–166. Springer, 2008.

[BKKL08b] B. Bollig, J. P. Katoen, C. Kern, and M. Leucker. SMA—The Smyle Modeling
Approach. Technical Report TUM-I0820, TU München, Germany, 2008.
26 pages.

[BKKL09] B. Bollig, J. P. Katoen, C. Kern, and M. Leucker. SMA—The Smyle Model-
ing Approach. In Z. Huzar and B. Meyer, editors, Proceedings of the 3rd IFIP
TC2 Central and East European Conference on Software Engineering Tech-
niques (CEE-SET 2008), Brno, Czech Republic, Lecture Notes in Computer
Science. Springer, 2009. To appear.



198 Bibliography

[BKKL10] B. Bollig, J. P. Katoen, C. Kern, and M. Leucker. SMA—The Smyle Modeling
Approach. Computing and Informatics, (1), 2010. To appear.

[BKM07] B. Bollig, D. Kuske, and I. Meinecke. Propositional Dynamic Logic for
Message-Passing Systems. In V. Arvind and S. Prasad, editors, Proceedings
of the 27th Conference on Foundations of Software Technology and Theoret-
ical Computer Science (FSTTCS 2007), New Delhi, India, volume 4855 of
Lecture Notes in Computer Science, pages 303–315. Springer, 2007.

[BKSS06] B. Bollig, C. Kern, M. Schlütter, and V. Stolz. MSCan: A Tool for Analyzing
MSC Specifications. In H. Hermanns and J. Palsberg, editors, Proceedings
of the 12th International Conference on Tools and Algorithms for the Con-
struction and Analysis of Systems (TACAS 2006), Vienna, Austria, volume
3920 of Lecture Notes in Computer Science, pages 455–458. Springer, 2006.

[BL05] B. Bollig and M. Leucker. A Hierarchy of Implementable MSC Languages. In
F. Wang, editor, Proceedings of the 25th IFIP WG 6.1 International Confer-
ence on Formal Techniques for Networked and Distributed Systems (FORTE
2005), Taipei, Taiwan, volume 3731 of Lecture Notes in Computer Science,
pages 53–67. Springer, 2005.

[Blu09] Specification of the Bluetooth System (version 3.0), April 2009.
http://bluetooth.com/Bluetooth/Technology/Building/Specifications/.

[BM03] N. Baudru and R. Morin. Safe Implementability of Regular Message Sequence
Chart Specifications. In W. Dosch and R. Y. Lee, editors, Proceedings of the
ACIS Fourth International Conference on Software Engineering, Artificial
Intelligence, Networking and Parallel/Distributed Computing (SNPD 2003),
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des Télécommunications, Paris, 1996.

[Eas04] S. M. Easterbrook. Requirements Engineering. Unpublished manuscript at:
http://www.cs.toronto.edu/~sme/papers/2004/FoRE-chapter03-v8.pdf,
2004.

[EGP07] E. Elkind, B. Genest, and D. Peled. Detecting Races in Ensembles of Message
Sequence Charts. In O. Grumberg and M. Huth, editors, Proceedings of 13th
International Conference on Tools and Algorithms for the Construction and
Analysis of Systems (TACAS 2007), Braga, Portugal, volume 4424 of Lecture
Notes in Computer Science, pages 420–434. Springer, 2007.

[EGPQ06] E. Elkind, B. Genest, D. Peled, and H. Qu. Grey-box checking. In Elie
Najm, Jean-François Pradat-Peyre, and Véronique Donzeau-Gouge, editors,
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proving Context-Sensitive Dependency Pairs

2008-14 Bastian Schlich: Model Checking of Software for Microcontrollers



Aachener Informatik-Berichte 219

2008-15 Joachim Kneis, Alexander Langer, Peter Rossmanith: A New Algorithm

for Finding Trees with Many Leaves

2008-16 Hendrik vom Lehn, Elias Weingärtner and Klaus Wehrle: Comparing
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2009-12 Martin Neuhäußer, Lijun Zhang: Time-Bounded Reachability in

Continuous-Time Markov Decision Processes

2009-13 Martin Zimmermann: Time-optimal Winning Strategies for Poset

Games

2009-14 Ralf Huuck, Gerwin Klein, Bastian Schlich (eds.): Doctoral Symposium

on Systems Software Verification (DS SSV’09)

2009-15 Joost-Pieter Katoen, Daniel Klink, Martin Neuhäußer: Compositional
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