
Aachen
Department of Computer Science

Technical Report

Vertex Splitting and the Recognition of

Trapezoid Graphs

George B. Mertzios

Derek G. Corneil

ISSN 0935–3232 · Aachener Informatik Berichte · AIB-2009-16

RWTH Aachen · Department of Computer Science · September 2009

1



The publications of the Department of Computer Science of RWTH Aachen University are in
general accessible through the World Wide Web.

http://aib.informatik.rwth-aachen.de/

2



Vertex Splitting and the Recognition of Trapezoid Graphs

George B. Mertzios∗ and Derek G. Corneil† ‡

Abstract. Trapezoid graphs are the intersection family of trapezoids where every trapezoid
has a pair of opposite sides lying on two parallel lines. These graphs have received considerable
attention and lie strictly between permutation graphs (where the trapezoids are lines) and
cocomparability graphs (the complement has a transitive orientation). The operation of “vertex
splitting”, introduced in [3], first augments a given graph G and then transforms the augmented
graph by replacing each of the original graph’s vertices by a pair of new vertices. This “splitted
graph” is a permutation graph with special properties if and only if G is a trapezoid graph.
Recently vertex splitting has been used to show that the recognition problems for both tolerance
and bounded tolerance graphs is NP-complete [11]. Unfortunately, the vertex splitting trapezoid
graph recognition algorithm presented in [3] is not correct. In this paper, we present a new way of
augmenting the given graph and using vertex splitting such that the resulting algorithm is simpler
and faster than the one reported in [3].

Keywords: Trapezoid graphs, permutation graphs, recognition, vertex splitting, polynomial algo-
rithm.

1 Introduction

Consider two parallel horizontal lines, L1, the upper line and L2, the lower line. Various inter-
section graphs can be defined on objects formed with respect to these two lines. In particular,
for permutation graphs, the objects are line segments that have one endpoint on L1 and the
other on L2. Generalizing to objects that are trapezoids with one interval on L1 and the op-
posite interval on L2, we define the trapezoid graphs. Between these two classes of graphs lie
the PI (for Point-Interval) graphs where the objects are triangles with one point of the triangle
on L1 and the other two points of the triangle on L2 and PI∗ graphs where again the objects
are triangles, but now there is no restriction on which line contains one point of the triangle
and which line contains two [5]. In particular, permutation graphs are strictly contained in PI
graphs, which are strictly contained in PI∗ graphs, which are strictly contained in trapezoid
graphs; examples illustrating the strict containments are presented in [2]. Note that a similar
definition holds for parallelogram graphs.

The fastest algorithm for determining whether a given graph G is a trapezoid graph, and
finding an intersection representation if G is trapezoid, requires O(n2) time [8]; see [12] for an
overview. This algorithm appeared in 1994 and uses the fact that G is a trapezoid graph if and
only if the complement of G has interval dimension 2, and “takes a transitive orientation algo-
rithm for the complement of G and turns the trapezoid graph recognition problem into a chain
cover problem (by way of interval dimension 2)” [12]. In 1996, an (n3) algorithm appeared [3]
that was “conceptually simpler, easier to code and entirely graph theoretical”. Unfortunately,
there are nontrivial errors in [3] (as pointed out in [10]; see [11]), which seem to permeate the
algorithm presented in [3].

The key idea used in [3] is that of “vertex splitting”, which replaces every vertex v of G
with two vertices v1, v2. Intuitively, if G is a trapezoid graph with a representation R, this
splitting can be considered as a replacement of the trapezoid Tv representing v in R by two

∗Department of Computer Science, RWTH Aachen, Germany. Email: mertzios@cs.rwth-aachen.de
†Department of Computer Science, University of Toronto, Toronto, Canada. Email: dgc@cs.utoronto.ca
‡The second author wishes to thank the Natural Sciences and Engineering Research Council of Canada for

financial assistance.



trivial trapezoids, namely lines, that represent v1 and v2. Then the given graph G is a trapezoid
graph if and only if the graph G′ produced by vertex splitting is a permutation graph with a
specific property.

Although the algorithm reported in [3] is not correct, the concept of vertex splitting has
been successfully used in [11] where it is shown that the recognition of tolerance and bounded
tolerance graphs is NP-complete, thereby settling a long standing open question. Their proof
uses the fact that a graph is a bounded tolerance graph if and only if it is a parallelogram
graph [1, 7].

In the present paper, although we also use a vertex splitting approach as in [3], we do so in
a very different context. In particular, both before and after splitting we augment the current
graph by adding some new vertices and edges. By doing so, we establish structural properties
that are needed in the trapezoid recognition algorithm. Our algorithm develops a new way of
employing the linear time transitive orientation algorithm of McConnell and Spinrad [9] to show
that the graph constructed by these augmentations and splitting is a permutation graph with
specific properties. Our trapezoid recognition algorithm is simpler than the one reported in [3]
and runs in O(n(n+m)) time rather than O(n3).

The paper is organized as follows. Background definitions and facts about trapezoid graphs
are presented in Section 2, followed by the introduction of Augmentation in Section 3 that adds
four new vertices for each vertex of the given graph G. Once a graph has been augmented, it is
then split (in Section 4), whereby each vertex of the original graph G is replaced with two new
vertices. In Section 5, the notion of “T-orienting” is introduced which plays a key role in the
trapezoid recognition algorithm presented in Section 6. Section 6 also contains the analysis of
the running time of this algorithm, followed by concluding remarks in Section 7.

2 Trapezoid graphs and representations

In this section we investigate several properties of trapezoid graphs and their representations. In
particular, we define the notion of a standard trapezoid representation with respect to a specific
vertex. These properties of trapezoid graphs, as well as the notion of a standard trapezoid
representation will then be used for our trapezoid graph recognition algorithm.

Let R be a trapezoid representation of a trapezoid graph G = (V,E), where for any vertex
u ∈ V , the trapezoid corresponding to u in R is denoted by Tu. Since trapezoid graphs are
also cocomparability graphs (there is a transitive orientation of the complement) [6], we can
define the partial order (V,≪R), such that u ≪R v, or Tu ≪R Tv, if and only if uv /∈ E and
Tu lies completely to the left of Tv in R. In a given trapezoid representation R of a trapezoid
graph G, we denote by l(Tu) and r(Tu) the left and the right line of Tu in R, respectively.
Similarly, we use the relation ≪R for the lines l(Tu) and r(Tu), e.g. l(Tu) ≪R r(Tv) means that
the line l(Tu) lies to the left of the line r(Tv) in R. Moreover, if the trapezoids of all vertices
of a subset S ⊆ V lie completely to the left (resp. right) of the trapezoid Tu in R, we write
R(S) ≪R Tu (resp. Tu ≪R R(S)). Note that there are several trapezoid representations of a
particular trapezoid graph G. Given one such representation R, we can obtain another one R′ by
vertical axis flipping of R, i.e. R′ is the mirror image of R along an imaginary line perpendicular
to L1 and L2.

In an arbitrary graph G = (V,E), let u ∈ V and U ⊆ V . Then, N(u) = {v ∈ V : uv ∈ E}
is the set of adjacent vertices of u in G, N [u] = N(u) ∪ {u}, and N(U) =

⋃
u∈U N(u) \ U .

If N(U) ⊆ N(W ) for two vertex subsets U and W , then U is said to be neighborhood
dominated by W . The relationship of neighborhood domination is clearly transitive. Let
C1, C2, . . . , Cω be the connected components of G \N [u] and Vi = V (Ci), i = 1, 2, . . . , ω. For
simplicity of the presentation, we will identify in the sequel the component Ci and its vertex

4



set Vi, i = 1, 2, . . . , ω. For i = 1, 2, . . . , ω, the neighborhood domination closure of Vi with re-
spect to u is the set Du(Vi) = {Vp : N(V p) ⊆ N(V i), p = 1, 2, . . . , ω} of connected components
of G \N [u]. The closure complement of the neighborhood domination closure Du(Vi) is the
set D∗

u(Vi) = {V1, V2, . . . , Vω} \Du(Vi).
For a subset S ⊆ {V1, V2, . . . , Vω}, a component Vi of S is called maximal, if there is no

component Vj ∈ S, such that N(Vi) ⊂ N(Vj). Furthermore, we denote by V (S) the vertices
of G that belong to the components of S, i.e. V (S) = ∪Vi∈SVi. A connected component Vi

of G\N [u] is called a master component of u, if Vi is a maximal component of {V1, V2, . . . , Vω}.

Lemma 1. Let G be a simple graph, let u be a vertex of G, and let V1, V2, . . . , Vω, ω ≥ 1, be
the connected components of G \N [u]. If Vi is a master component of u, such that D∗

u(Vi) 6= ∅,
then D∗

u(Vj) 6= ∅ for every component Vj ∈ {V1, V2, . . . , Vω}.

Proof. Since D∗
u(Vi) 6= ∅, it follows that Du(Vi) ⊂{V1, V2, . . . , Vω}. Suppose that there

exists a component Vj ∈ {V1, V2, . . . , Vω} \ {Vi}, such that D∗
u(Vj) = ∅. Then,

Du(Vi) ⊂ Du(Vj) ={V1, V2, . . . , Vω}, which is a contradiction, since Vi is a master component
of u. Thus, D∗

u(Vj) 6= ∅ for every component Vj ∈ {V1, V2, . . . , Vω}.

The following two lemmas will be used in our analysis below.

Lemma 2. Let R be a trapezoid representation of the trapezoid graph G, and let Vi be a master
component of u, such that R(Vi)≪RTu. Then, Tu≪RR(Vj) for every Vj ∈ D∗

u(Vi).

Proof. Suppose otherwise that R(Vj)≪RTu, for some Vj ∈ D∗
u(Vi). We note that if Vj , Vk are

two arbitrary distinct connected components of G\N [u], then R(Vj) and R(Vk) do not overlap.
First consider the case where R(Vj)≪RR(Vi)≪RTu. Then, since Vi lies between Vj and Tu in R,
all trapezoids that intersect with Tu and Vj , must also intersect with Vi. Thus, N(Vj) ⊆ N(Vi)
in G, i.e. Vj ∈ Du(Vi), which is a contradiction, since Vj ∈ D∗

u(Vi). Consider now the case,
where R(Vi)≪RR(Vj)≪RTu. Then, we obtain similarly that N(Vi) ⊆ N(Vj) in G, and thus,
N(Vi) = N(Vj), since Vi is a master component of u. However, since Vj ∈ D∗

u(Vi), it follows that
N(Vj) * N(Vi), which is a contradiction. Thus, Tu≪RR(Vj) for any component Vj of D∗

u(Vi).

We caution the reader that D∗
u(Vi) = ∅ does not mean that there is a trapezoid representa-

tion R, such that all connected components of G \N [u] lie on the same side of Tu in R. To see
this, consider the trapezoid graph G of Figure 1. In this example, the connected components
of G \ N [u] are V1 = {v1}, V2 = {v2}, and V3 = {v3}. Then, V2 is a master component of u,
since N(V1) = {u1}, N(V2) = {u1, u2}, and N(V3) = {u2}. Now, Du(V2) = {V1, V2, V3} and
D∗

u(V2) = ∅, while V1 and V3 must lie on opposite sides of Tu in every trapezoid representation
of G.

u

u1

u2

v1 v2

v3

(a)

L1

L2

Tv1
Tv2 Tu2

Tu1

Tu

Tv3

(b)

Fig. 1. (a) A trapezoid graph G and (b) a trapezoid representation of G.

5



Lemma 3. Let R be a trapezoid representation of the trapezoid graph G. Let Vi be a master
component of u and let Vj be a maximal component of D∗

u(Vi). Then, N(Vj) = N(V (D∗
u(Vi))).

Proof. By possibly performing a vertical axis flipping of R, we may assume without loss of
generality that R(Vi)≪RTu. Then, Lemma 2 implies that Tu≪RR(D∗

u(Vi)), i.e. that the trape-
zoids of every component Vk ∈ D∗

u(Vi) lie to the right of Tu in R. Now let Vk be the leftmost
connected component of G \N [u] in R, which lies to the right of Tu in R. It is easy to see that
N(Vℓ) ⊆ N(Vk), for every other connected component Vℓ of G\N [u] to the right of Tu in R. Sup-
pose that Vk ∈ Du(Vi). Then, N(Vk) ⊆ N(Vi), and thus, N(Vℓ) ⊆ N(Vi) for every component
Vℓ of G \N [u] to the right of Tu in R. It follows that Vℓ ∈ Du(Vi) for all these components Vℓ,
which is a contradiction, since in particular Vj ∈ D∗

u(Vi) by the assumption. Thus, Vk ∈ D∗
u(Vi).

Since Tu≪RR(Vk)≪RR(Vℓ) for every connected component Vℓ 6= Vk of G \ N [u] to the right
of Tu in R, it is easy to see that N(Vℓ) ⊆ N(Vk), for all such components Vℓ. Thus, Vk is a
maximal component of D∗

u(Vi), i.e. N(Vk) = N(V (D∗
u(Vi))). Finally, since Vj is also a maximal

component of D∗
u(Vi), it follows that N(Vj) = N(Vk), and thus, N(Vj) = N(V (D∗

u(Vi))). This
proves the lemma.

Let N0(u) = {v ∈ N(u) : N(v) ⊆ N [u]} be the set of neighbors of u that are adjacent only to
neighbors of u and to u itself. If ω = 0, i.e. if V = N [u], then let N1(u) = N2(u) = N12(u) = ∅.
Suppose for the following two definitions that ω ≥ 1.

Definition 1. Let u be a vertex of a graph G. Let Vi be a master component of u, such that
D∗

u(Vi) 6= ∅. Then, the vertices of N(u) \N0(u) are partitioned into three possibly empty sets:

1. N1(u): vertices adjacent to Vi and not to D∗
u(Vi).

2. N2(u): vertices adjacent to D∗
u(Vi) and not to Vi.

3. N12(u): vertices adjacent to both Vi and D∗
u(Vi).

Note that every neighbor w ∈ N(u)\N0(u) is adjacent to Du(Vi) or to D∗
u(Vi). Furthermore,

every w ∈ N(u)\N0(u) that is adjacent toDu(Vi) is also adjacent to Vi, and thus, in Definition 1,
the sets N1(u), N2(u) and N12(u) indeed partition the set N(u) \N0(u).

Definition 2. Let u be a vertex of a graph G. Let Vi be a master component of u, such that
D∗

u(Vi) = ∅. Then, N2(u) = ∅, and the vertices of N(u)\N0(u) are partitioned into two possibly
empty sets:

1. N1(u) = {v ∈ N(Vi) : N0(u) * N(v)}.
2. N12(u) = {v ∈ N(Vi) : N0(u) ⊆ N(v)}.

Note that, if D∗
u(Vi) = ∅, i.e. if Du(Vi) = {V 1, V2, . . . , Vω}, then every neighbor

w ∈ N(u) \N0(u) is also a neighbor of the component Vi. Thus, in Definition 2, the sets
N1(u) and N12(u) indeed partition the set N(u) \N0(u). Henceforth, any reference to the sets
N1(u), N2(u), N12(u) is understood to be with respect to some master component Vi, cf. Defi-
nitions 1 and 2.

Lemma 4. Let G = (V,E) be a graph, where |V | = n and |E| = m, and let u ∈ V . Then a
master component Vi of u, as well as the related sets N0(u), N1(u), N2(u) and N12(u) can be
computed in O(n+m) time.

Proof. Let V = {v1, v2, . . . , vn} be the set of vertices of G where u = v1 and {vj : 2 ≤ j ≤
deg(u) + 1} holds the vertices in N(u). The connected components V1, V2, . . . , Vω of G \ N [u]
can be computed in O(n +m) time by breadth or depth first search. We will use a linked list

6



to store N(Vj) for each j, and will record |N(Vj)| as vertices are added to N(Vj). Furthermore,
for each vertex v in N(u) we will maintain a linked list of the indices of connected components,
which are adjacent to v, i.e. which contain at least one neighbor of v. Also, each such list has
an end of list pointer as well as a variable len(v) indicating the current length of the list. After
appropriate initializations, we will examine each connected component in order V1, V2, . . . , Vω

and the adjacency list for each vertex in the given connected component. Suppose we are
examining edge vhvk where vh ∈ Vj, 1 ≤ j ≤ ω. If k > deg(u) + 1 (i.e. vk /∈ N(u)), then ignore
this edge; otherwise look at vk’s list. If the last element of this list is not j, then add vk to N(Vj),
increment |N(Vj)|, add j to vk’s list and increment len(vk). Note that all of these operations
can be charged to edges of G, and thus our computation is bounded by O(n+m).

To find a master component Vi it suffices to choose a Vi that maximizes |N(Vj)|, 1 ≤ j ≤ ω.
Furthermore, N0(u) = {v ∈ N(u) : len(v) = 0}. These sets can be computed in O(n) time.

We now compute D∗
u(Vi), the indices of connected components not in Du(Vi). First we

create a 0-1 vector of length |N(u)| to store the membership of N(Vi) and allow constant time
determination of membership. Now examine all connected components Vj other than Vi and
scan the N(Vj) list. If at any time an element is encountered that is not in N(Vi) then stop the
scan of the N(Vj) list and place such a j in D∗

u(Vi). Again, by charging edges, this can be done
in O(n+m) time.

The set N(D∗
u(Vi)) =

⋃
Vj∈D∗

u(Vi)
N(Vj) can now be computed in O(n+m) time by scanning

all components whose indices are in D∗
u(Vi) and forming a 0-1 vector of length |N(u)| to store

the membership of this set. In the case where D∗
u(Vi) 6= ∅, we can now compute the sets N1(u),

N2(u), and N12(u) in O(n) time, since

N1(u) = N(Vi) \N(D∗
u(Vi))

N2(u) = N(D∗
u(Vi)) \N(Vi)

N12(u) = N(Vi) ∩N(D∗
u(Vi))

by Definition 1. Now consider the case where D∗
u(Vi) = ∅. Look at all edges vjvk, where vj ∈

N0(u) and for each such edge (except vju), increment d(vk), initialized to 0 (note that d(vk)
stores |N(vk) ∩N0(u)|). According to Definition 2,

N12(u) = {vk ∈ N(u) : d(vk) = |N0(u)|}

N1(u) = N(Vi) \N12(u)

N2(u) = ∅.

This can all be done in O(n+m), thereby completing the lemma.

Now, we define the notion of a standard trapezoid representation with respect to a particular
vertex of a trapezoid graph, which is crucial for our recognition algorithm.

Definition 3. Let G be a trapezoid graph and let u be a vertex of G. A trapezoid representation
R of G is called standard with respect to u, if:

1. the line l(Tu) intersects exactly with the trapezoids of N1(u) ∪N12(u) in R, and

2. the line r(Tu) intersects exactly with the trapezoids of N2(u) ∪N12(u) in R.

Lemma 5. Let G be a trapezoid graph, and let u be a vertex of G. Then, there exists a standard
trapezoid representation of G with respect to u.

7



Proof. Let R be a trapezoid representation of G. Let V1, V2, . . . , Vω be the connected components
of G \ N [u]. If ω = 0, then V (G) = N [u] and N1(u) = N2(u) = N12(u) = ∅. In this case, we
can move in R the left line l(Tu) (resp. the right line r(Tu)) to the left (resp. right), such that
all endpoints of the trapezoids corresponding to vertices of G \ {u} lie between l(Tu) and r(Tu).
Then, the resulting trapezoid representation R′ satisfies both conditions of Definition 3, and
thus, R′ is a standard trapezoid representation of G with respect to u. Suppose now that ω ≥ 1,
and let Vi be a master component of u. Furthermore let NX(uk), X ∈ {1, 2, 12}, be the sets
defined in Definitions 1 and 2 corresponding to the master component Vi. By possibly performing
a vertical axis flipping of R, we may assume without loss of generality that R(Vi) ≪R Tu. Denote
by D1(u,R) (resp. D2(u,R)) the set of trapezoids that lie to the left (resp. right) of Tu in R.

Now consider any connected component Vk of G \N [u], such that R(Vi) ≪R R(Vk) ≪R Tu.
We will prove that N(Vi) = N(Vk). Indeed, since Vk lies between Vi and Tu in R, all trapezoids
that intersect with Tu and Vi, must also intersect with Vk, and thus, N(Vi) ⊆ N(Vk). Now,
N(Vi) = N(Vk), since Vi is a master component of u, i.e. we may assume without loss of
generality that Vi is the rightmost component of D1(u,R). Thus, N1(u) ∪N12(u) is exactly the
set of neighbors of u, that are adjacent to some trapezoids of D1(u,R).

Denote for the purposes of the proof by px and qx the endpoints on L1 and L2, respectively,
of the left line l(Tx) of an arbitrary trapezoid Tx in R. Suppose that N0(u)∪N2(u) 6= ∅. Let pv
and qw be the leftmost endpoints on L1 and L2, respectively, of the trapezoids of N0(u)∪N2(u),
and suppose that pv < pu and qw < qu. Let v and w be the vertices of N0(u)∪N2(u) that realize
the endpoints pv and qw, respectively. Note that, possibly, v = w. Then, all vertices x, for which
Tx has an endpoint between pv and pu on L1 (resp. between qw and qu on L2) are adjacent
to u. Indeed, suppose otherwise that Tx ∩ Tu = ∅, for such a vertex x. Then, since Tv ∩ Tu 6= ∅
(resp. Tw ∩Tu 6= ∅), it follows that Tx ∩Tv 6= ∅ (resp. Tx ∩ Tw 6= ∅). However, since Tx ∩ Tu = ∅,
and since Tx has an endpoint to the left of Tu in R, it follows that Tx ≪R Tu, i.e. Tx ∈ D1(u,R),
and thus, v ∈ N1(u) ∪N12(u) (resp. w ∈ N1(u) ∪N12(u)), which is a contradiction.

We now construct a trapezoid representation R′ of G from R, by moving both endpoints pu
and qu of l(Tu) directly before pv and qw on L1 and L2, respectively. Then, all trapezoids that
correspond to vertices of N0(u)∪N2(u) lie to the right of the line l(Tu) in R′. Since u is adjacent
to all vertices x, for which Tx has an endpoint between pv and pu on L1, or between qw and
qu on L2 in R, the resulting representation R′ is a trapezoid representation of G. Furthermore,
since the trapezoids of N1(u)∪N12(u) intersect with Tu and with some trapezoids of D1(u,R),
they must intersect with the line l(Tu), and thus, the first condition of Definition 3 is satisfied.
Note that, in the case where pv > pu (resp. qw > qu), we do not move the point pu (resp. qu)
in the above construction, while in the case where N0(u) ∪ N2(u) = ∅, we define R′ = R. An
example of the construction of R′ for the case where D∗

u(Vi) 6= ∅ is given in Figure 2 (for the case
where D∗

u(Vi) = ∅, the construction of R′ is the same). In this example, v ∈ N0(u), w ∈ N2(u),
z ∈ N1(u), and y ∈ N12(u).

Recall that R′ satisfies the first condition of Definition 3. In the following, we con-
struct another trapezoid representation R′′ (resp. R′′′) from R′ in the case where D∗

u(Vi) 6= ∅
(resp. D∗

u(Vi) = ∅), which also satisfies the second condition of Definition 3. Thus, R′′ (resp. R′′′)
is a standard trapezoid representation of G with respect to u.

Suppose first that D∗
u(Vi) 6= ∅, and let Vj be a maximal component of D∗

u(Vi). Due to
Lemma 3, N(Vj) = N(D∗

u(Vi)), i.e. N2(u)∪N12(u) is exactly the set of neighbors of u, that are
adjacent to some trapezoids of D2(u,R). If R′ is not a standard trapezoid representation with
respect to u, then we move (similarly to the construction of R′ from R) the right line r(Tu) of Tu

to the right, thus obtaining a trapezoid representation R′′ of G, in which the second condition
of Definition 3 is satisfied. Since, during the construction of R′′ by R′, only the line r(Tu) is pos-

8



pu

qu

Tu

pv

qw

L2

L1

pz

qz

Vi

D∗

u(Vi)R :

Ty

(a)

pu

qu

pv

qw

L2

L1

pz

qz

Vi

R′ :

Tu

D∗

u(Vi)
Ty

(b)

Fig. 2. The movement of the left line l(Tu) of the trapezoid Tu to the left, in the case where D∗
u(Vi) 6= ∅, in order

to construct the trapezoid representation R′ from R.

sibly moved to the right, the first condition of Definition 3 is satisfied for R′′ as well. Thus, R′′

is a standard representation of G with respect to u.

Suppose now thatD∗
u(Vi) = ∅. Then,N2(u) = ∅ by Definition 2. Similarly to the construction

of the trapezoid representation R′ from R, we move in R′ the right line r(Tu) possibly to the
right, directly after the endpoints of the trapezoids of N0(u) on L1 and L2. The resulting
trapezoid representation R′′ of G satisfies the first condition of Definition 3, while all trapezoids
that correspond to vertices of N0(u) lie to the left of the line r(Tu) in R′′. Since R′′(Vi) ≪R′′ Tu,
and due to Definition 2, for every vertex v ∈ N1(u) there exists at least one vertex w ∈ N0(u),
such that Tv ≪R′′ Tw. Thus, since R

′′(N0(u)) ≪R′′ r(Tu), it follows that Tv ≪R′′ r(Tu) for every
vertex v ∈ N1(u).

L2

L1

Vi

TzTv

Tw Tw′

Tx

R
′′

:

Tu

(a)

Tu

L2

L1

Vi

TzTv

Tw

Tw′

Tx

R
′′′

(b)

Fig. 3. The movement of the endpoints of the trapezoids of N12(u) to the right, in the case where D∗
u(Vi) = ∅,

in order to construct the trapezoid representation R′′′ from R′′.

9



Furthermore, due to Definition 2, N0(u) ⊆ N(v) for every vertex v ∈ N12(u). Now consider
a vertex v ∈ N12(u) and a vertex z ∈ N(Vi), such that Tv ≪R′′ Tz. Suppose, for the sake of
contradiction, that N0(u) * N(z). Then, since R′′(Vi) ≪R′′ Tu, there exists a vertex w ∈ N0(u),
such that Tz ≪R′′ Tw. Thus, since Tv ≪R′′ Tz, it follows that Tv ≪R′′ Tw. This is a contradiction,
since every vertex v ∈ N12(u) is adjacent to all vertices w ∈ N0(u). Thus, N0(u) ⊆ N(z),
i.e. z ∈ N12(u). Therefore, we can move the endpoints of the trapezoids of N12(u) appropriately
to the right, such that they all intersect the line r(Tu), and such that no new adjacency is
introduced and all old adjacencies are preserved. The resulting trapezoid representation R′′′

of G satisfies both conditions of Definition 3, and thus, R′′′ is a standard representation of G
with respect to u. An example of the construction of R′′′ from R′′ is given in Figure 3. In this
example, w,w′ ∈ N0(u), x ∈ N1(u), and v, z ∈ N12(u).

3 An augmenting algorithm

In this section we present Algorithm Augment-All, which takes as input an arbitrary undirected
graph G with n vertices and augments it to a graph G∗ with 5n vertices. The constructed
graph G∗ has the property (see Lemma 11) that for every vertex ui, i = 1, 2, . . . , n, of the
original graph G, there exists a master component Vj of ui in G∗ such that D∗

ui
(Vj) 6= ∅. The

graph G∗ will serve as the basis for the vertex splitting described in the next section. We now
define the augmented graph G∗(ui) for an arbitrary graph G and a vertex ui of G.

Definition 4. Let ui be a vertex of a graph G. The augmented graph G∗(ui) of G with respect
to ui is defined as follows:

1. V (G∗(ui)) = V (G) ∪ {ui,1, ui,2, ui,3, ui,4},

2. E(G∗(ui)) = E(G) ∪ {uiui,1, ui,1ui,2, uiui,3, ui,3ui,4} ∪ {ui,1x, ui,2x : x ∈ N1(ui) ∪N12(ui)} ∪
{ui,3x, ui,4x : x ∈ N2(ui) ∪N12(ui)}.

The vertices ui,1, ui,2, ui,3, ui,4 are the augmenting vertices of ui.

Note that, by Definition 4, {ui,2} and {ui,4} are two connected components of G∗(ui) \
NG∗(ui)[ui].

Lemma 6. Let G be an arbitrary graph and let ui be a vertex of G. The graph G∗(ui) is trapezoid
if and only if G is trapezoid.

Proof. Suppose thatG∗(ui) is a trapezoid graph. Then, sinceG is an induced subgraph ofG∗(ui),
and since the trapezoid property is hereditary, it follows that G is a trapezoid graph as well. Now
suppose that G is a trapezoid graph. Then, by Lemma 5 there exists a standard trapezoid repre-
sentation R of G with respect to ui. Thus, we can add to R four trivial trapezoids (lines) ℓ(ui,1),
ℓ(ui,2), ℓ(ui,3) and ℓ(ui,4), as follows: ℓ(ui,2) (resp. ℓ(ui,4)) is parallel to l(Tui

) (resp. r(Tui
)) to

its left (resp. right), and lies arbitrarily close to l(Tui
) (resp. r(Tui

)), while ℓ(ui,1) (resp. ℓ(ui,3))
intersects both l(Tui

) and ℓ(ui,2) (resp. r(Tui
) and ℓ(ui,4)), and lies arbitrarily close to them.

It is easy to see that the resulting representation is a trapezoid representation of G∗(ui), and
thus, G∗(ui) is a trapezoid graph. An example of this construction is illustrated in Figure 4.

Lemma 7. Let ui be a vertex of a graph G. Then, {ui,2} and {ui,4} are master components
of ui in G∗(ui). Furthermore, D∗

ui
({ui,2}) 6= ∅ and D∗

ui
({ui,4}) 6= ∅ in G∗(ui).

10



ui,1ui,2 ui,3 ui,4

L1

L2

r(Tui
)l(Tui

)

Tui

Fig. 4. The augmentation of the vertex ui of G in the augmented graph G∗(ui).

Proof. For simplicity reasons, in the proof we will denote the neighborhood NG∗(ui)(U) of a
vertex set U in G∗(ui) by N(U). Let V1, V2, . . . , Vω be the connected components of G \NG[ui].
The connected components of G∗(ui)\N [ui] are {ui,2}, {ui,4}, V1, V2, . . . , Vω. Suppose that {ui,2}
(resp. {ui,4}) is not a master component of ui in G∗(ui). Then, there exists a connected
component V0 of G∗(ui) \ N [ui], such that N({ui,2}) ⊂ N(V0) (resp. N({ui,4}) ⊂ N(V0)),
and thus, ui,1 ∈ N(V0) (resp. ui,3 ∈ N(V0)). By the construction of G∗(ui), there exists
no connected component V0 ∈ {V1, V2, . . . , Vω, {ui,4}}, such that ui,1 ∈ N(V0). Similarly,
there exists no connected component V0 ∈ {V1, V2, . . . , Vω, {ui,2}}, such that ui,3 ∈ N(V0),
which is a contradiction. Thus, {ui,2} and {ui,4} are master components of ui in G∗(ui).
Finally, since ui,1 ∈ N({ui,2}) \ N({ui,4}) and ui,3 ∈ N({ui,4}) \ N({ui,2}), it follows that
{ui,4} ∈ D∗

ui
({ui,2}) 6= ∅ and that {ui,2} ∈ D∗

ui
({ui,4}) 6= ∅ in G∗(ui). This proves the lemma.

After augmenting a vertex ui of G, obtaining the graph G∗(ui), we can continue by augment-
ing an arbitrary vertex of V (G) \ {ui} in G∗(ui). This process can be repeated |V (G)| times,
until all vertices of V (G) have been augmented, as presented in Algorithm Augment-All. The
resulting graph G∗ has 5|V (G)| vertices, since at every iteration of Algorithm Augment-All we
add four new augmenting vertices.

Algorithm 1 Augment-All
Input: A graph G with vertex set V = {u1, u2, . . . , un}
Output: Augment every vertex of V to produce G∗

1: G0 ← G

2: for i = 1 to n do

3: Gi ← G∗
i−1(ui) {Gi is obtained by augmenting the vertex ui of Gi−1}

4: G∗ ← Gn

5: return G∗

At every step of Algorithm Augment-All, the graph Gi has, by Definition 4, four more
vertices ui,1, ui,2, ui,3, ui,4 than the previous graph Gi−1. Each of these four new vertices has at
most |NGi−1

(ui)|+2 neighbors in Gi, while ui has exactly |NGi−1
(ui)|+2 neighbors in Gi. Thus,

in the graph G∗ = Gn returned by Algorithm Augment-All, every vertex ui of the input graph G
has been replaced by an induced path (ui,2, ui,1, ui, ui,3, ui,4), while every edge uiuj of the input
graph G has been replaced by at most 5 · 5 = 25 edges, i.e. at most all possible edges with one
endpoint in {ui, ui,1, ui,2, ui,3, ui,4} and one endpoint in {uj , uj,1, uj,2, uj,3, uj,4}. Summarizing,
the graph G∗ = Gn returned by Algorithm Augment-All has O(n) vertices and O(m) edges,
and thus the same holds for every intermediate graph Gi, i = 1, 2, . . . , n. Therefore, since by

11



Lemma 4 the sets N0, N1, N2, and N12 for a graph with n vertices and m edges can be computed
in O(n+m) time, the next lemma follows.

Lemma 8. Algorithm 1 runs in O(n(n+m)) time.

The following corollary easily follows by repeatedly applying Lemma 6.

Corollary 1. The graph G∗ constructed by Algorithm Augment-All is trapezoid if and only if
the input graph G is trapezoid.

We now show that in any iteration of Algorithm Augment-All after the ith one, if a vertex is
made adjacent to ui,2 it is also made adjacent to ui,1; furthermore, if a vertex is made adjacent
to ui,1 it is also made adjacent to ui and to ui,2.

Lemma 9. Let ui be a vertex of a graph G, and let Gk be the graph constructed at the kth step
of Algorithm Augment-All, where k ≥ i, (i.e. after augmenting vertex ui). Then,

– NGk
[ui,2] = NGk

[ui,1] \{ui}
– NGk

[ui,1] \ {ui,2} ⊆ NGk
[ui].

Proof. The lemma will be proved by induction on k. For k = i the lemma clearly holds, due to the
construction of the augmented graphGi fromGi−1. Suppose thatNGk−1

[ui,2] = NGk−1
[ui,1]\{ui}

and that NGk−1
[ui,1] \ {ui,2} ⊆ NGk−1

[ui], for some k ≥ i+ 1. Consider the construction of the
augmented graph Gk from Gk−1 at the kth step of Algorithm Augment-All. Let Vj be a master
component of uk in Gk−1, and let NX(uk), X ∈ {1, 2, 12}, be the sets defined in Definitions 1
and 2 corresponding to the master component Vj.

Case 1. D∗
uk
(Vj) 6= ∅ in Gk−1 (cf. Definition 1). Suppose that ui,2 is adjacent in Gk to uk,1

and uk,2 (resp. uk,3 and uk,4), i.e. that ui,2 ∈ N1(uk)∪N12(uk) (resp. ui,2 ∈ N2(uk)∪N12(uk)) in
Gk−1. Then, ui,2 is adjacent in Gk−1 to uk and to at least one vertex v that belongs to a connected
component of Gk−1 \NGk−1

[uk], i.e. uk, v ∈ NGk−1
(ui,2). It follows by the induction hypothesis

that uk, v ∈ NGk−1
[ui,1], and thus, ui,1 ∈ N1(uk) ∪ N12(uk) (resp. ui,1 ∈ N2(uk) ∪ N12(uk))

in Gk−1. Therefore, ui,1 is adjacent in Gk to uk,1 and uk,2 (resp. uk,3 and uk,4) as well. Thus,
NGk

[ui,2] ⊆ NGk
[ui,1] \{ui}.

Now we show that NGk
[ui,1] \ {ui} ⊆ NGk

[ui,2]. Suppose that ui,1 is adjacent in Gk to uk,1
and uk,2 (resp. uk,3 and uk,4), i.e. that ui,1 ∈ N1(uk)∪N12(uk) (resp. ui,1 ∈ N2(uk)∪N12(uk)) in
Gk−1. Then, similarly to the previous paragraph, ui,1 is adjacent in Gk−1 to uk and to at least
one vertex v that belongs to a connected component of Gk−1\NGk−1

[uk], i.e. uk, v ∈ NGk−1
(ui,1).

Since NGk−1
[ui,1]\{ui,2} ⊆ NGk−1

[ui], and since ui,2 6= uk, it follows that uk ∈ NGk−1
(ui). Thus,

ui 6= v, i.e. uk, v ∈ NGk−1
[ui,1] \ {ui}. Therefore, it follows by the induction hypothesis that

uk, v ∈ NGk−1
[ui,2], and thus, ui,2 ∈ N1(uk) ∪N12(uk) (resp. ui,2 ∈ N2(uk) ∪N12(uk)) in Gk−1.

Therefore, ui,2 is adjacent in Gk to uk,1 and uk,2 (resp. uk,3 and uk,4) as well. Thus, NGk
[ui,1]

\{ui} ⊆ NGk
[ui,2]. Summarizing, we obtain that NGk

[ui,2] = NGk
[ui,1] \{ui} for the case where

D∗
uk
(Vj) 6= ∅.
Furthermore, since uk, v ∈ NGk−1

[ui,2], it follows that ui,2 /∈ {uk, v}. Thus, uk, v ∈ NGk
[ui,1]\

{ui,2} ⊆ NGk
[ui], and thus, ui ∈ N1(uk) ∪ N12(uk) (resp. ui ∈ N2(uk) ∪ N12(uk)) in Gk−1.

Therefore, ui is adjacent in Gk to uk,1 and uk,2 (resp. uk,3 and uk,4) as well, i.e.NGk
[ui,1]\{ui,2} ⊆

NGk
[ui]. This completes the induction step for the case where D∗

uk
(Vj) 6= ∅.

Case 2. D∗
uk
(Vj) = ∅ in Gk−1 (cf. Definition 2). Then, N2(uk) = ∅ in Gk−1. First suppose

that ui,2 is adjacent in Gk to uk,1 and uk,2, i.e. ui,2 ∈ N1(uk) ∪N12(uk) = NGk−1
(uk) \N0(uk)

in Gk−1. Then, ui,2 is adjacent in Gk−1 to uk and to at least one vertex v that belongs to
the master component Vj of uk. Thus, since uk, v ∈ NGk−1

(ui,2), it follows by the induction

12



hypothesis that uk, v ∈ NGk−1
[ui,1], and thus ui,1 ∈ NGk−1

(uk) \ N0(uk) = N1(uk) ∪ N12(uk)
in Gk−1. Hence, ui,1 is adjacent in Gk to uk,1 and uk,2 as well.

Now suppose that ui,2 is adjacent in Gk to uk,3 and uk,4, i.e. ui,2 ∈ N12(uk) ⊆ NGk−1
(uk) \

N0(uk) in Gk−1. Similarly to the previous paragraph, ui,1 ∈ NGk−1
(uk) \ N0(uk) = N1(uk) ∪

N12(uk) in Gk−1 as well. Furthermore, since ui,2 ∈ N12(uk), it follows by Definition 2 and
by the induction hypothesis that N0(uk) ⊆ NGk−1

(ui,2) ⊆ NGk−1
[ui,1]. Since ui,1 /∈ N0(uk),

N0(uk) ⊆ NGk−1
(ui,1), and therefore, ui,1 is adjacent in Gk to uk,3 and uk,4 as well. Summarizing,

we see that NGk
[ui,2] ⊆ NGk

[ui,1] \{ui}.
Suppose that ui,1 is adjacent in Gk to uk,1 and uk,2, i.e. that ui,1 ∈ N1(uk) ∪ N12(uk)

in Gk−1. Then, ui,1 is adjacent in Gk−1 to uk and to at least one vertex v that belongs to the
master component Vj of uk, i.e. uk, v ∈ NGk−1

(ui,1). Since NGk−1
[ui,1] \ {ui,2} ⊆ NGk−1

[ui], and
since ui,2 6= uk, it follows that uk ∈ NGk−1

(ui). Thus, ui 6= v, i.e. uk, v ∈ NGk−1
[ui,1] \ {ui} =

NGk−1
[ui,2]. It follows that ui,2 ∈ NGk−1

(uk) \N0(uk) = N1(uk) ∪N12(uk) in Gk−1. Hence, ui,2
is adjacent in Gk to uk,1 and uk,2 as well. Furthermore, since uk, v ∈ NGk−1

[ui,2], it follows that
ui,2 /∈ {uk, v}. Thus, uk, v ∈ NGk

[ui,1] \ {ui,2} ⊆ NGk
[ui], and thus, ui ∈ NGk−1

(uk) \N0(uk) =
N1(uk) ∪N12(uk) in Gk−1. Hence, ui is adjacent in Gk to uk,1 and uk,2 as well.

Now suppose that ui,1 is adjacent in Gk to uk,3 and uk,4, i.e. that ui,1 ∈ N12(uk) ⊆
NGk−1

(uk) \ N0(uk) in Gk−1. Similarly to the previous paragraph, ui,2, ui ∈ NGk−1
(uk) \

N0(uk) = N1(uk) ∪ N12(uk) in Gk−1 as well. Furthermore, it follows by Definition 2 that
N0(uk) ⊆ NGk−1

(ui,1). By the induction hypothesis, and since ui,2, ui /∈ N0(uk), we see that
N0(uk) ⊆ NGk−1

[ui,1] \ {ui} = NGk−1
[ui,2] and N0(uk) ⊆ NGk−1

[ui,1] \ {ui,2} ⊆ NGk−1
[ui].

That is, N0(uk) ⊆ NGk−1
(ui,2) and N0(uk) ⊆ NGk−1

(ui). Therefore, ui,2, ui ∈ N12(uk) in Gk−1,
i.e. ui,2 and ui are adjacent in Gk to uk,3 and uk,4 as well. Summarizing, we have shown that
NGk

[ui,2] = NGk
[ui,1] \{ui} and NGk

[ui,1] \ {ui,2} ⊆ NGk
[ui]. This proves the induction step in

the case where D∗
uk
(Vj) = ∅.

The following lemma is symmetric to Lemma 9.

Lemma 10. Let ui be a vertex of a graph G, and let Gk be the graph constructed at the kth
step of Algorithm Augment-All, where k ≥ i, i.e. after augmenting vertex ui. Then,

– NGk
[ui,4] = NGk

[ui,3] \{ui}
– NGk

[ui,3] \ {ui,4} ⊆ NGk
[ui].

We can now obtain the following lemma, which extends Lemma 7.

Lemma 11. Let ui be a vertex of a graph G. Then, {ui,2} and {ui,4} are master components
of ui in G∗. Furthermore, D∗

ui
({ui,2}) 6= ∅ and D∗

ui
({ui,4}) 6= ∅ in G∗.

Proof. Consider the graph G∗ = Gn computed by Algorithm Augment-All, and let ui be a
vertex of G. For simplicity reasons, in the proof we will denote the neighborhood NG∗(U)
of a vertex set U in G∗ by N(U). Suppose first that {ui,2} (resp. {ui,4}) is not a connected
component of G∗ \N [ui]. Then, since ui,2 (resp. ui,4) is not adjacent to ui in G∗, there must be
at least one vertex v of G∗, that is adjacent to ui,2 (resp. ui,4) and not to ui in G∗. However,
since v /∈ {ui, ui,2, ui,4}, and since v ∈ N [ui,2] (resp. v ∈ N [ui,4]), it follows by Lemma 9
(resp. Lemma 10) that v ∈ N [ui,1] \ {ui, ui,2} ⊆ N [ui] (resp. v ∈ N [ui,3] \ {ui, ui,4} ⊆ N [ui]),
i.e. that v is adjacent to ui in G∗, which is a contradiction. Thus, {ui,2} (resp. {ui,4}) is a
connected component of G∗ \N [ui].

Now suppose that {ui,2} (resp. {ui,4}) is not a master component of ui in G∗.
Then, there exists a connected component V0 6= {ui,2} (resp. V0 6= {ui,4}) of G∗ \
N [ui], such that N({ui,2}) ⊂ N(V0) (resp. N({ui,4}) ⊂ N(V0)). Therefore, ui,1 ∈ N(V0)

13



(resp. ui,3 ∈ N(V0)), i.e. there exists a vertex v ∈ V0, such that v ∈ N [ui,1] (resp. v ∈
N [ui,3]). Thus, since v 6= ui,2 (resp. v 6= ui,4), Lemma 9 (resp. Lemma 10) im-
plies that v ∈ N [ui], i.e. V0 is not a connected component of G∗ \ N [ui], which is
a contradiction. Thus, {ui,2} (resp. {ui,4}) is a master component of ui in G∗. Fur-
thermore, since ui,1 ∈ N({ui,2}) \N({ui,4}) and ui,3 ∈ N({ui,4}) \N({ui,2}), it follows that
{ui,4} ∈ D∗

ui
({ui,2}) 6= ∅ and that {ui,2} ∈ D∗

ui
({ui,4}) 6= ∅ in G∗. This completes the lemma.

4 The splitting of a trapezoid graph

In this section we present Algorithm Split-All, which takes as input the augmented graph G∗

with 5n vertices computed by the Algorithm Augment-All from the input graphG, and computes
the graph G# with 6n vertices. This algorithm replaces every vertex of the input graph G by a
pair of new vertices in G#. If the input graph G is trapezoid, then G# is a permutation graph
with a special structural property.

4.1 A splitting algorithm

In the following definition we state the notion of splitting a vertex in the augmented graph G∗

constructed by Algorithm Augment-All. The intuition behind this definition is the following. If
G is a trapezoid graph with n vertices, then G∗ is a trapezoid graph with 5n vertices. Given
a standard trapezoid representation R∗ of G∗ with respect to a vertex ui ∈ V (G) ⊂ V (G∗),
we replace the trapezoid Tui

by the two trivial trapezoids in R∗, i.e. lines, l(Tui
) and r(Tui

).
The two new vertices corresponding to the lines l(Tui

) and r(Tui
) are denoted by ui,5 and ui,6,

respectively.

Definition 5. Let: G be a graph; G∗ be the augmented graph constructed by Algorithm
Augment-All from G; ui ∈ V (G) ⊂ V (G∗); and the sets NX(ui) be defined by Definition 1
with respect to the master component {ui,2} of ui in G∗, where X ∈ {1, 2, 12}. The graph
G#(ui) obtained by the vertex splitting of ui in G∗ is defined as follows:

1. V (G#(ui)) = V (G∗) \ {ui} ∪ {ui,5, ui,6},
2. E(G#(ui)) = E[V (G∗)\{ui}]∪{ui,5x : x ∈ N1(ui)∪N12(ui)}∪{ui,6x : x ∈ N2(ui)∪N12(ui)}.

The vertices ui,5 and ui,6 are the derivatives of ui.

After performing the splitting of a vertex ui of G, obtaining the graph G#(ui), we can
continue by splitting an arbitrary vertex vj of V (G) \ {ui} in G#(ui). (Note that to do this
further splitting, {uj,2}must still be a master component inG#(ui); this is proved in Lemma 15.)
This process can be repeated |V (G)| times, such that finally all vertices of V (G) have been split,
as presented in Algorithm Split-All.

At every step of Algorithm Split-All, the vertex ui of the graph Hi−1 is replaced by its two
derivatives ui,5, ui,6 in Hi by Definition 5. Each of these two new vertices has at most |NHi−1

(ui)|
neighbors in Hi. Thus, in the graph G# = Hn returned by the algorithm, every edge uiuj of the
input graph H0 = G∗ has been replaced by at most 2 ·2 = 4 edges, i.e. at most all possible edges
with one endpoint in {ui,5, ui,6} and one endpoint in {uj,5, uj,6}. Therefore, the graph G# = Hn

returned by Algorithm Split-All has O(n) vertices and O(m) edges, and thus the same holds
for every intermediate graph Hi, i = 1, 2, . . . , n. Therefore, since by Lemma 4 the sets N0, N1,
N2, and N12 for a graph with n vertices and m edges can be computed in O(n +m) time, the
next lemma follows similarly to Lemma 8.

Lemma 12. Algorithm Split-All runs in O(n(n+m)) time.

14



Algorithm 2 Split-All
Input: The graph G∗ constructed by Algorithm Augment-All from G, where V (G) = {u1, u2, . . . , un}

Output: The graph G# obtained by splitting every vertex of V (G) in G∗; also, the initial values of the sets N̂i,
i = 1, 2, . . . , n, which will be used in Algorithm 3

1: H0 ← G∗

2: for i = 1 to n do

3: Hi ← H
#
i−1(ui) {Hi is obtained by the vertex splitting of ui of Hi−1}

4: N̂i ← N0(ui) in Hi−1 {these sets will be used in Algorithm 3}
5: G# ← Hn

6: return G#, {N̂i, 1 ≤ i ≤ n}

Similarly to Lemma 9, we obtain the following lemma.

Lemma 13. Let ui be a vertex of a graph G, and let Hk be the graph constructed at the kth
step of Algorithm Split-All, where 0 ≤ k ≤ i− 1, i.e. before the splitting of vertex ui. Then

– NHk
[ui,2] = NHk

[ui,1] \{ui}
– NHk

[ui,1] \ {ui,2} ⊆ NHk
[ui].

Proof. The lemma will be proved by induction on k. For k = 0 the lemma clearly holds due to
Lemma 9, and since H0 = G∗ = Gn. Suppose that NHk

[ui,2] = NHk
[ui,1] \{ui} and NHk−1

[ui,1]\
{ui,2} ⊆ NHk−1

[ui], for some 1 ≤ k ≤ i − 1, i.e. before the splitting of vertex ui. Consider the
construction of the splitted graph Hk from Hk−1 at the kth step of Algorithm Split-All; Hk has
the new vertices uk,5, uk,6 instead of the vertex uk in Hk−1. Similarly to the proof of Lemma 9,
let Vj be a master component of uk in Hk−1, and let NX(uk), X ∈ {1, 2, 12}, be the sets defined
in Definitions 1 and 2 corresponding to the master component Vj.

Case 1. D∗
uk
(Vj) 6= ∅ in Hk−1 (cf. Definition 1). Suppose that ui,2 is adjacent in Hk to

uk,5 (resp. uk,6), i.e. that ui,2 ∈ N1(uk) ∪ N12(uk) (resp. ui,2 ∈ N2(uk) ∪ N12(uk)) in Hk−1.
Then, ui,2 is adjacent in Hk−1 to uk and to at least one vertex v that belongs to a connected
component of Hk−1 \NHk−1

[uk], i.e. uk, v ∈ NHk−1
(ui,2). It follows by the induction hypothesis

that uk, v ∈ NHk−1
[ui,1], and thus, ui,1 ∈ N1(uk) ∪ N12(uk) (resp. ui,1 ∈ N2(uk) ∪ N12(uk)) in

Hk−1. Therefore, ui,1 is adjacent in Hk to uk,5 (resp. uk,6) as well. Thus, NHk
[ui,2] ⊆ NHk

[ui,1]
\{ui}.

To prove the other direction of this set inclusion, we first suppose that ui,1 is adjacent in Hk

to uk,5 (resp. uk,6), i.e. that ui,1 ∈ N1(uk) ∪ N12(uk) (resp. ui,1 ∈ N2(uk) ∪ N12(uk)) in Hk−1.
Then, similarly to the previous paragraph, ui,1 is adjacent in Hk−1 to uk and to at least one
vertex v that belongs to a connected component of Hk−1 \NHk−1

[uk], i.e. uk, v ∈ NHk−1
(ui,1).

Since NHk−1
[ui,1]\{ui,2} ⊆ NHk−1

[ui], and since ui,2 6= uk, it follows that uk ∈ NHk−1
(ui). Thus,

ui 6= v, i.e. uk, v ∈ NHk−1
[ui,1] \ {ui}. Therefore, it follows by the induction hypothesis that

uk, v ∈ NHk−1
[ui,2], and thus, ui,2 ∈ N1(uk) ∪N12(uk) (resp. ui,2 ∈ N2(uk) ∪N12(uk)) in Hk−1.

Therefore, ui,2 is adjacent in Hk to uk,5 (resp. uk,6) as well. Thus, NHk
[ui,1] \{ui} ⊆ NHk

[ui,2].
Summarizing, NHk

[ui,2] = NHk
[ui,1] \{ui} for the case where D∗

uk
(Vj) 6= ∅.

Furthermore, since uk, v ∈ NHk−1
[ui,2], it follows that ui,2 /∈ {uk, v}. Thus uk, v ∈ NHk

[ui,1]\
{ui,2} ⊆ NHk

[ui], and thus ui ∈ N1(uk) ∪ N12(uk) (resp. ui ∈ N2(uk) ∪ N12(uk)) in Hk−1.
Therefore ui is adjacent in Hk to uk,5 (resp. uk,6) as well, i.e. NHk

[ui,1] \ {ui,2} ⊆ NHk
[ui]. This

completes the induction step for the case where D∗
uk
(Vj) 6= ∅.

Case 2. D∗
uk
(Vj) = ∅ in Hk−1 (cf. Definition 2). Then, N2(uk) = ∅ in Hk−1. First suppose

that ui,2 is adjacent in Hk to uk,5, i.e. ui,2 ∈ N1(uk) ∪N12(uk) = NHk−1
(uk) \N0(uk) in Hk−1.

Then, ui,2 is adjacent in Hk−1 to uk and to at least one vertex v that belongs to the master
component Vj of uk. Thus, since uk, v ∈ NHk−1

[ui,2], it follows by the induction hypothesis that

15



uk, v ∈ NHk−1
[ui,1], and thus ui,1 ∈ NHk−1

(uk) \N0(uk) = N1(uk) ∪N12(uk) in Hk−1. Hence ui
is adjacent in Hk to uk,5 as well.

Now suppose that ui,2 is adjacent in Hk to uk,6, i.e. ui,2 ∈ N12(uk) ⊆ NHk−1
(uk) \ N0(uk)

in Hk−1. Similarly to the previous paragraph, ui,1 ∈ NHk−1
(uk) \ N0(uk) = N1(uk) ∪ N12(uk)

in Hk−1 as well. Furthermore, since ui,2 ∈ N12(uk), it follows by Definition 2 and by the
induction hypothesis that N0(uk) ⊆ NHk−1

(ui,2) ⊆ NHk−1
[ui,1]. Since ui,1 /∈ N0(uk), N0(uk) ⊆

NHk−1
(ui,1), and therefore, ui,1 is adjacent in Hk to uk,6 as well. Summarizing, NHk

[ui,2] ⊆
NHk

[ui,1] \{ui}.
Suppose that ui,1 is adjacent in Hk to uk,5, i.e. that ui,1 ∈ N1(uk) ∪N12(uk) in Hk−1. Then

ui,1 is adjacent in Hk−1 to uk and to at least one vertex v that belongs to the master component
Vj of uk, i.e. uk, v ∈ NHk−1

(ui,1). Since NHk−1
[ui,1] \ {ui,2} ⊆ NHk−1

[ui], and since ui,2 6= uk, it
follows that uk ∈ NHk−1

(ui). Thus ui 6= v, i.e. uk, v ∈ NHk−1
[ui,1] \ {ui} = NHk−1

[ui,2] by the
induction hypothesis. It follows that ui,2 ∈ NHk−1

(uk) \ N0(uk) = N1(uk) ∪ N12(uk) in Hk−1.
Hence ui,2 is adjacent in Hk to uk,5 as well. Furthermore, since uk, v ∈ NHk−1

[ui,2], it follows that
ui,2 /∈ {uk, v}. Thus uk, v ∈ NHk

[ui,1] \ {ui,2} ⊆ NHk
[ui], and thus, ui ∈ NHk−1

(uk) \N0(uk) =
N1(uk) ∪N12(uk) in Hk−1. Hence ui is adjacent in Hk to uk,5 as well.

Now suppose that ui,1 is adjacent inHk to uk,6, i.e. that ui,1 ∈ N12(uk) ⊆ NHk−1
(uk)\N0(uk)

inHk−1. Similarly to the previous paragraph, ui,2, ui ∈ NHk−1
(uk)\N0(uk) = N1(uk)∪N12(uk) in

Hk−1 as well. Furthermore it follows by Definition 2 thatN0(uk) ⊆ NHk−1
(ui,1). By the induction

hypothesis, and since ui,2, ui /∈ N0(uk), we see that N0(uk) ⊆ NHk−1
[ui,1] \ {ui} = NHk−1

[ui,2]
and N0(uk) ⊆ NHk−1

[ui,1] \ {ui,2} ⊆ NHk−1
[ui]. That is, N0(uk) ⊆ NHk−1

(ui,2) and N0(uk) ⊆
NHk−1

(ui), since ui,2, ui /∈ N0(uk). Therefore ui,2, ui ∈ N12(uk) in Hk−1, i.e. ui,2 and ui are
adjacent in Hk to uk,6 as well. Summarizing, NHk

[ui,2] = NHk
[ui,1] \{ui} and NHk

[ui,1]\{ui,2} ⊆
NHk

[ui]. This proves the induction step in the case where D∗
uk
(Vj) = ∅.

The following lemma is symmetric to Lemma 13.

Lemma 14. Let ui be a vertex of a graph G, and let Hk be the graph constructed at the kth
step of Algorithm Split-All, where 0 ≤ k ≤ i− 1, i.e. before the splitting of vertex ui. Then

– NHk
[ui,4] = NHk

[ui,3] \{ui}
– NHk

[ui,3] \ {ui,4} ⊆ NHk
[ui].

We can now obtain the following lemma, which extends Lemma 11 and shows that Algorithm
Split-All is well defined.

Lemma 15. Let ui be a vertex of a graph G, and let Hk be the graph constructed at the kth step
of Algorithm Split-All, where 0 ≤ k ≤ i−1, i.e. before the splitting of vertex ui. Then {ui,2} and
{ui,4} are master components of ui in Hk. Furthermore D∗

ui
({ui,2}) 6= ∅ and D∗

ui
({ui,4}) 6= ∅

in Hk.

Proof. For k = 0 the lemma holds clearly due to Lemma 11, and since H0 = G∗. Now consider
the graph Hk constructed at the kth step of Algorithm Split-All, where 1 ≤ k ≤ i−1, i.e. before
the splitting of vertex ui. For simplicity reasons, in the proof we will denote the neighborhood
NHk

(U) of a vertex set U in Hk by N(U). First suppose that {ui,2} (resp. {ui,4}) is not a
connected component of Hk \ N [ui]. Then, since ui,2 (resp. ui,4) is not adjacent to ui in Hk,
there must be at least one vertex v of Hk, which is adjacent to ui,2 (resp. ui,4) and not to ui
in Hk. However, since v /∈ {ui, ui,2, ui,4}, and since v ∈ N [ui,2] (resp. v ∈ N [ui,4]), it follows by
Lemma 13 (resp. Lemma 14) that v ∈ N [ui,1] \{ui, ui,2} ⊆ N [ui] (resp. v ∈ N [ui,3] \{ui, ui,4} ⊆
N [ui]), i.e. that v is adjacent to ui in Hk, which is a contradiction. Thus {ui,2} (resp. {ui,4}) is
a connected component of Hk \N [ui].

16



Now suppose that {ui,2} (resp. {ui,4}) is not a master component of ui in Hk. Then
there exists a connected component V0 6= {ui,2} (resp. V0 6= {ui,4}) of Hk \N [ui], such that
N({ui,2}) ⊂ N(V0) (resp. N({ui,4}) ⊂ N(V0)). Therefore ui,1 ∈ N(V0) (resp. ui,3 ∈ N(V0)),
i.e. there exists a vertex v ∈ V0, such that v ∈ N [ui,1] (resp. v ∈ N [ui,3]). Thus, since
v 6= ui,2 (resp. v 6= ui,4), Lemma 13 (resp. Lemma 14) implies that v ∈ N [ui], i.e. V0 is not a
connected component of Hk \N [ui], which is a contradiction. Thus {ui,2} (resp. {ui,4})
is a master component of ui in Hk. Furthermore, since ui,1 ∈ N({ui,2}) \N({ui,4})
and ui,3 ∈ N({ui,4}) \N({ui,2}), it follows that {ui,4} ∈ D∗

ui
({ui,2}) 6= ∅ and that

{ui,2} ∈ D∗
ui
({ui,4}) 6= ∅ in Hk. This completes the lemma.

Since we split every vertex of G exactly once in G∗, and since G∗ has 5n vertices, where
|V (G)| = n, the graph G# computed by Algorithm Split-All has 6n vertices. Furthermore, if
the input graph G is trapezoid, then G# is a permutation graph. Indeed, in this case G∗ is
also a trapezoid graph, where the trapezoids corresponding to the augmenting vertices, i.e. the
vertices of V (G∗) \ V (G), are trivial (lines), and at every iteration a trapezoid Tui

is replaced
by the two trivial trapezoids (lines) l(Tui

) and r(Tui
). Denote by R# the resulting permutation

representation of G#. In the following, we will specify which of the 6n lines in R# lie between
the lines corresponding to the vertex derivatives ui,5, ui,6 of a vertex ui of G.

4.2 The computation of the intermediate lines

In this section, we present Algorithm Intermediate-Lines that updates the sets {N̂i} initialized
in Algorithm Split-All (Algorithm 2). If G is a trapezoid graph (and thus G# is a permutation
graph), then as shown in Lemma 17, for each i = 1, . . . , n, N̂i contains the vertices of G

# whose
corresponding lines lie between ui,5 and ui,6 in R#. For simplicity reasons, we may identify in
the sequel the vertices of G# with the corresponding lines in R#.

Algorithm 3 Intermediate-Lines

Input: The splitted graph G#, and for each i = 1, . . . , n the set N̂i computed in Algorithm Split-All.
Output: The updated set N̂i, for each i = 1, . . . , n. If G is trapezoid, then {N̂i} satisfies Lemma 17.

1: for i = 1 to n− 1 do

2: for j = i+ 1 to n do

3: if uj,2 ∈ N̂i then

4: N̂i ← (N̂i \ {uj}) ∪ {uj,5}

5: if uj,4 ∈ N̂i then

6: N̂i ← (N̂i \ {uj}) ∪ {uj,6}

7: return N̂i, for every i = 1, 2, . . . n

Since Algorithm Intermediate-Lines iterates for every pair (i, j), 1 ≤ i < j ≤ n, and since
(by using the 0-1 membership vectors used in the proof of Lemma 4) every iteration can be
computed in constant time, the next lemma follows easily.

Lemma 16. Algorithm Intermediate-Lines runs in O(n2) time.

Lemma 17. Let G be a trapezoid graph on n vertices. For every i = 1, 2, . . . , n, the lines that
lie between the derivatives ui,5 and ui,6 in R# correspond to the vertices of the set N̂i computed
by Algorithm Intermediate-Lines.

17



Proof. Let G be a trapezoid graph and let G∗ be the trapezoid graph constructed by Algorithm
Augment-All (Algorithm 1). Let Hi, i = 1, 2, . . . , n be the trapezoid graph constructed at the
ith iteration of Algorithm Split-All (Algorithm 2), (i.e. vertex ui has just been split) where
H0 = G∗. For the purposes of the proof, denote by Ri−1, i = 1, 2, . . . , n, a standard trapezoid
representation of Hi−1 with respect to ui (before the splitting of vertex ui). Furthermore, denote
by Ri, i = 1, 2, . . . , n, the trapezoid representation of Hi, which is obtained from Ri−1, when we
replace the trapezoid Tui

by the lines l(Tui
) and r(Tui

) (during the splitting of vertex ui). Recall
that these lines correspond to the derivatives ui,5 and ui,6 of ui of Hi. Algorithm Intermediate-

Lines iterates for every i = 1, 2, . . . , n−1 and for every j = i+1, i+2, . . . , n. We let N̂i,j denote

the value of N̂i at the end of the jth iteration. We will prove by induction on j that, after
the iteration that corresponds to a pair (i, j), N̂i,j is exactly the set of vertices of Hj , whose
trapezoids lie between ui,5 and ui,6 in Rj . Due to Lemma 5, it is easy to see that initially, i.e. for

j = i, N̂i,i = N0(ui) is the set of vertices of Hi, whose trapezoids lie between the derivatives

ui,5 and ui,6 of ui in Ri (in particular, N̂n−1,n is the set of lines that lie between un,5 and un,6
in Rn = R#). This proves the induction basis.

Now suppose that N̂i,j−1 is exactly the set of vertices of Hj−1, whose trapezoids lie between
the derivatives ui,5 and ui,6 in Rj−1, for some index j, where i+1 ≤ j ≤ n. Consider the standard
trapezoid representation Rj−1 of Hj−1 with respect to uj , which is constructed by the proof of
Lemma 5 from Rj−1. By Definition 5, let N1(uj), N2(uj), and N12(uj) be the sets defined by
Definition 1 with respect to the master component {uj,2} of uj inHj−1. Namely N1(uj)∪N12(uj)
are those neighbors of uj in Hj−1 which are also adjacent to uj,2, while N2(uj) ∪ N12(uj) are
those neighbors of uj in Hj−1, which are also adjacent to D∗

uj
({uj,2}). Due to Lemma 15, {uj,4}

is also a master component of uj in Hj−1, while {uj,4} ∈ D∗
ui
({uj,2}). Thus, Lemma 3 implies

that N2(uj) ∪N12(uj) includes those neighbors of uj in Hj−1 which are also adjacent to uj,4.
Since Rj−1 is a standard trapezoid representation of Hj−1 with respect to uj, it follows by

Definition 3 that the line l(Tuj
), which corresponds to the vertex uj,5 (resp. the line r(Tuj

),
which corresponds to the vertex uj,6) intersects exactly with the trapezoids of N1(uj)∪N12(uj)
(resp. N2(uj) ∪ N12(uj)) in Rj−1. Thus, after replacing in Rj−1 the trapezoid Tuj

by its lines
l(Tuj

) and r(Tuj
), the lines uj,5 and uj,2 (resp. uj,6 and uj,4) of Hj intersect with the same

trapezoids in Rj , namely with the trapezoids of N1(uj) ∪ N12(uj) (resp. N2(uj) ∪ N12(uj)).
Furthermore, since uj,5 intersects uj,1 (resp. uj,6 intersects uj,3), and since uj,1 intersects uj,2
(resp. uj,3 intersects uj,4) in Hj , it is easy to see that uj,5 (resp. uj,6) lies between ui,5 and
ui,6 in Rj if and only if uj,2 (resp. uj,4) lies between ui,5 and ui,6 in Rj as well. Thus, after

the iteration that corresponds to a pair (i, j), N̂i,j is exactly the set of vertices of Hj , whose
trapezoids lie between ui,5 and ui,6 in Rj. This completes the induction step, and thus, the
lemma follows.

Theorem 1. A graph G on n vertices is a trapezoid graph if and only if the graph G# with
6n vertices constructed by Algorithm Split-All is a permutation graph, with a permutation rep-
resentation R#, such that N̂i is exactly the set of vertices of G#, whose lines lie between the
vertex derivatives ui,5 and ui,6 in R#, for every i = 1, 2, . . . , n.

Proof. The necessity part of the proof follows by Lemma 17. For the sufficiency part, consider
a permutation representation R# of G#, such that N̂i is exactly the set of vertices of G#,
whose lines lie between the vertex derivatives ui,5 and ui,6 in R#, for every i = 1, 2, . . . , n. Let
Rn = R#. We construct a trapezoid representation R0 as follows. For every i = n, n− 1, . . . , 1,
we replace in Ri the lines of the vertices ui,5 and ui,6 by a trapezoid Tui

defined by these
lines, obtaining the trapezoid representation Ri−1. We will prove by induction on i that Ri is a
trapezoid representation of Hi (the graph constructed at the ith step of Algorithm Split-All),
for every i = n, n− 1, . . . , 1, 0, from which it then follows that R0 is a trapezoid representation

18



of H0. For i = n, Rn = R# is clearly a trapezoid representation of G# = Hn, since R# is by
assumption a permutation representation of G#. This proves the induction basis.

For the induction step, suppose that Ri is a trapezoid representation of Hi, for some i, where
1 ≤ i ≤ n. All vertices of Hi other than ui,5 and ui,6 are either uj,k for some j ∈ {1, 2, . . . , n}
and k ∈ {1, 2, 3, 4} (i.e. augmenting vertices), or uj,k for some j ∈ {1, 2, . . . , i−1} and k ∈ {5, 6}
(i.e. other vertex derivatives), or uj for some j ∈ {i + 1, . . . , n} (i.e. vertices of G, which are
unsplitted inHi, and thus are represented by trapezoids in Ri). Consider now an arbitrary vertex
v /∈ {ui,5, ui,6} of Hi. We will distinguish in the following three cases regarding the vertex v.

Case 1. Suppose that v ∈ N1(ui) ∪N2(ui) ∪N12(ui) inHi−1, i.e. Tv intersects by Definition 5
at least one of the derivatives ui,5 and ui,6 in Ri. Then, in particular v ∈ NHi−1

(ui), and thus
Tv correctly intersects the new trapezoid Tui

of the trapezoid representation Ri−1.

Case 2. Suppose that v /∈ N1(ui) ∪N2(ui) ∪N12(ui) inHi−1, where v is either an augmenting
vertex or a derivative of a vertex uj for some j ≤ i− 1. Then, by the initialization of the set N̂i in

line 4 of Algorithm Split-All, v ∈ N̂i if and only if v ∈ N0(ui) in Hi−1, since v is neither added to
nor removed from N̂i by Algorithm Intermediate-Lines. Thus, by our assumption on the initial
permutation representation R#, the line Tv lies between the derivatives ui,5 and ui,6 in Ri if and
only if v ∈ N0(ui) in Hi−1, or equivalently, if and only if v ∈ NHi−1

(ui) (since by assumption
v /∈ N1(ui) ∪N2(ui) ∪N12(ui) in Hi−1). Thus, for every such vertex v of Hi−1, Tv intersects the
new trapezoid Tui

of the trapezoid representation Ri−1 if and only if v ∈ NHi−1
(ui).

Case 3. Suppose that v /∈ N1(ui) ∪N2(ui) ∪N12(ui) inHi−1, where v = uj for some j ≥ i+1,
i.e. v is an unsplitted vertex of Hi. In this case, Tuj

does not intersect the derivatives ui,5 and ui,6
in Ri, and thus Tuj

either lies to the right or to the left of both ui,5 and ui,6 in Ri, or lies
between ui,5 and ui,6 in Ri.

Case 3a. First suppose that Tuj
lies to the right or to the left of both ui,5 and ui,6 in Ri.

Then, in particular, it is easy to see that at least one of the lines of the augmenting vertices
uj,1 and uj,3 lies to the right or to the left of both ui,5 and ui,6 in Ri. We will prove that in
this case uj /∈ NHi−1

(ui). Suppose otherwise that uj ∈ NHi−1
(ui). Then, since by assumption

uj /∈ N1(ui) ∪N2(ui) ∪N12(ui) in Hi−1, it follows that uj ∈ N0(ui) in Hi−1, i.e. every neighbor
of uj in Hi−1 is also a neighbor of ui in Hi−1. Therefore, in particular, both uj,1 and uj,3 are
neighbors of ui in Hi−1. Thus, each w ∈ {uj,1, uj,3} either lies between the derivatives ui,5 and

ui,6 in Ri (in the case where w ∈ N0(ui) in Hi−1, or equivalently w ∈ N̂i), or intersects at
least one of the derivatives ui,5 and ui,6 in Ri (in the case where w ∈ N1(ui)∪N2(ui)∪N12(ui)
in Hi−1). This is a contradiction, since at least one of the lines of the augmenting vertices uj,1
and uj,3 lies to the right or to the left of both ui,5 and ui,6 in Ri, as we proved above. Therefore,
uj /∈ NHi−1

(ui) in the case where Tuj
lies to the right or to the left of both ui,5 and ui,6 in Ri, and

thus Tuj
correctly does not intersect the new trapezoid Tui

of the trapezoid representation Ri−1.

Case 3b. Now suppose that Tuj
lies between ui,5 and ui,6 in Ri. Then, both uj,5 and uj,6 lie

between ui,5 and ui,6 in the initial permutation representation R#, and thus uj,5, uj,6 ∈ N̂i by

our assumption on R#. Therefore, in particular, uj,2 ∈ N̂i by Algorithm Intermediate-Lines, and

thus also uj,2 ∈ N0(ui) in Hi−1 by the initialization of the set N̂i in line 4 of Algorithm Split-All.
That is, uj,2 ∈ NHi−1

(ui), or equivalently ui ∈ NHi−1
(uj,2). Therefore, since 0 ≤ i− 1 < j − 1,

it follows by Lemma 13 that ui ∈ NHi−1
(uj,1) and ui ∈ NHi−1

(uj). Thus Tuj
correctly intersects

the new trapezoid Tui
of the trapezoid representation Ri−1.

Summarizing, in the trapezoid representation Ri−1, the new trapezoid Tui
intersects exactly

with the trapezoids Tv, such that v ∈ NHi−1
(ui), and thus Ri−1 is a trapezoid representa-

tion of Hi−1. This completes the induction step. Therefore R0 is a trapezoid representation
of H0 = G∗, i.e. G∗ is a trapezoid graph, and thus G is a trapezoid graph as well by Corollary 1.

19



Then a trapezoid representation R of G can be obtained by removing from R0 the lines of the
vertices ui,1, ui,2, ui,3, ui,4 for every i = 1, 2, . . . , n. This completes the lemma.

5 T -orientations of graphs

Our trapezoid recognition algorithm interprets the property of permutation graphs stated in
Theorem 1 in terms of transitive orientations. In this section we extend the notion of a transitive
orientation of a graph to the notion of a T -orientation, and in Section 6, we provide an algorithm
for computing a T -orientation, if one exists. Recall that a graph is transitively orientable if and
only if it is a comparability graph [6]. For simplicity of the presentation, in this section G
denotes an arbitrary graph, and not the input graph discussed in Sections 2, 3, and 4. We first
give some definitions on arbitrary graphs that will be used in the sequel.

Definition 6. Given an edge e = xy of a graph G = (V,E), Ñ(xy) = {v ∈ V : vx, vy ∈ E}
is the set of vertices adjacent to both x and y in E, and Ẽ(xy) = {uv ∈ E : u ∈ Ñ(xy), v ∈
{x, y}} ∪ {xy} is the set of edges with one endpoint in Ñ(xy) and the other in {x, y}, as well
as the edge xy.

Definition 7. Let G = (V,E) be a graph. An edge neighborhood set N = {e,N ′} consists of
an edge e = xy ∈ E of G, together with a vertex subset N ′ ⊆ Ñ(xy).

Definition 8. Let F be a transitive orientation of G = (V,E), and let e = xy ∈ E be an edge
of G. The T -interval IF (e) of e is the vertex set defined as follows:

1. if 〈xy〉 ∈ F , then IF (e) = {z ∈ V : 〈xz〉 , 〈zy〉 ∈ F},
2. if 〈yx〉 ∈ F , then IF (e) = {z ∈ V : 〈yz〉 , 〈zx〉 ∈ F}.

The T -interval IF (e) of an edge e = xy includes exactly the vertices z of G, whose incident
arcs to x and y in F imply the arc 〈xy〉 (or 〈yx〉) in F by direct transitivity. Note that, by
Definition 6, for the T -interval IF (e) of an edge e = xy, IF (e) ⊆ Ñ(xy).

Definition 9. Let F be a transitive orientation of graph G, and let Ni = {ei, N
′
i}, i =

1, 2, . . . , k, be a set of edge neighborhood sets in G. If IF (e) = N ′
i for every i = 1, 2, . . . , k,

then F is called a T -orientation on N1, N2, . . . , Nk, and G is called T -orientable on these edge
neighborhood sets.

In the following we define the notion of deactivating an edge ek of G, where Nk = {ek, N
′
k}

is an edge neighborhood set in G. The constructed graph G̃(ek) has four new vertices and will
be used for our trapezoid recognition algorithm.

Definition 10. Let G be a graph and let Ni = {ei, N
′
i} be an edge neighborhood set in G, where

ei = xiyi. The graph G̃(ei) obtained by deactivating the edge ei is defined as follows:

1. V (G̃(ei)) = V (G) ∪ {ai, bi, ci, di},
2. E(G̃(ei)) = E(G) ∪ {xiai, aibi, bici, cidi, diyi} ∪ {aiz, biz, ciz, diz : z ∈ Ñ(xiyi) \N

′
i}.

An example of the deactivation operation can be seen in Figure 5. In this example, z1 ∈ N ′
i ,

z2 ∈ Ñ(xiyi) \N
′
i , w1 ∈ N(xi) \N(yi), and w2 ∈ N(yi) \N(xi). For better visibility, the edges

of G̃(ei) \ E(G) are drawn with dashed lines.

Lemma 18. Let G be a graph and let Ni = {ei, N
′
i}, i = 1, 2, . . . , k, be a set of edge neighborhood

sets in G. Then, G is T -orientable on N1, N2, . . . , Nk if and only if G̃(ek) is T -orientable on
N1, N2, . . . , Nk−1.

20



z1 z2w1 w2

xi

ai bi ci di

yi

(a)

z1 z2w1 w2

xi

ai bi ci di

yi

(b)

Fig. 5. (a) A graph G and (b) the graph G̃(ei) obtained after the deactivation of ei = xiyi with respect to
Ni = {ei, {z1}}.

Proof. (⇒) Let ek = xkyk, and suppose that the graph G = (V,E) is T -orientable on
N1, N2, . . . , Nk and let F be a T -orientation of G on these neighborhood sets. Without loss
of generality we may assume that 〈xkyk〉 ∈ F . We will extend F to an orientation F ′ of G̃(ek),
as follows. First, orient the arcs 〈xkak〉, 〈bkak〉, 〈bkck〉, 〈dkck〉 and 〈dkyk〉 in F ′. For every
z ∈ Ñ(xkyk) \N

′
k, either 〈zxk〉 , 〈zyk〉 ∈ F or 〈xkz〉 , 〈ykz〉 ∈ F . If 〈zxk〉 , 〈zyk〉 ∈ F , then orient

the arcs 〈zak〉, 〈zbk〉, 〈zck〉, and 〈zdk〉 in F ′; otherwise, orient the arcs 〈akz〉, 〈bkz〉, 〈ckz〉, and
〈dkz〉 in F ′. Note that, for every z ∈ Ñ(xkyk) \N

′
k, the incident arcs of z in F ′ \F are either all

incoming or all outgoing arcs in F ′. In Figure 6 the orientation F ′ is illustrated on two small
examples.

z1 z2w1 w2

xk yk

ak bk ck dk

(a)

z1 z2w1 w2

xk yk

ak bk ck dk

(b)

Fig. 6. Two examples for the orientation F ′ of the graph G̃(ei), i = k, of Figure 5, where ek = xkyk.

We will prove that the resulting orientation F ′ of G̃(ek) is transitive. To this end, consider
two arbitrary arcs 〈uv〉 , 〈vw〉 ∈ F ′. We will also prove that 〈uw〉 ∈ F ′. We distinguish in the
following four cases about the arcs 〈uv〉 and 〈vw〉.

Case 1. Let 〈uv〉 , 〈vw〉 ∈ F . Then clearly 〈uw〉 ∈ F ⊆ F ′, since F is transitive.
Case 2. Let 〈uv〉 , 〈vw〉 ∈ F ′\F . Then, v 6= xk (resp. v 6= yk), since xk (resp. yk) has only one

incident arc in F ′\F . Furthermore, v /∈ Ñ(xkyk)\N
′
k, since by the construction of F ′, the incident

arcs to every vertex of Ñ(xkyk) \ N ′
k in F ′ \ F are either all incoming or all outgoing. Thus,

v ∈ {ak, bk, ck, dk}. Now, if u ∈ {xk, bk, dk}, then w must belong to Ñ(xkyk)\N
′
k. However, by the

construction of F ′, and since 〈vw〉 ∈ F ′, it follows that 〈xkw〉 , 〈bkw〉 , 〈dkw〉 ∈ F ′, i.e. 〈uw〉 ∈ F ′.
Similarly, if w ∈ {ak, ck, yk}, then u must belong to Ñ(xkyk) \N

′
k. By the construction of F ′,

and since 〈uv〉 ∈ F ′, it follows that 〈uak〉 , 〈uck〉 , 〈uyk〉 ∈ F ′, i.e. 〈uw〉 ∈ F ′. Finally, if both
u,w ∈ Ñ(xkyk) \ N

′
k, then by the construction of F ′ we see that 〈uxk〉 , 〈xkw〉 ∈ F , and thus,

〈uw〉 ∈ F ⊆ F ′, since F is transitive.
Case 3. Let 〈uv〉 ∈ F and 〈vw〉 ∈ F ′ \ F . Then, v /∈ {ak, bk, ck, dk}, since ak, bk, ck, dk ∈

V (G̃) \ V (G), and thus, they have no incident arcs in F . Furthermore v 6= yk, since yk has no
outgoing arcs in F ′ \ F . Thus, v ∈ {xk} ∪ Ñ(xkyk) \ N ′

k. In the case where v = xk, we see

21



that w = ak, since 〈xkak〉 is the only outgoing arc from xk in F ′ \ F . Since 〈uv〉 = 〈uxk〉 ∈ F ,
it follows that u /∈ N ′

k. Furthermore, since 〈uxk〉 , 〈xkyk〉 ∈ F , it follows that 〈uyk〉 ∈ F ,

since F is transitive, and thus, in particular, uyk ∈ E(G̃(ek)), i.e. u ∈ Ñ(xkyk). Therefore,
u ∈ Ñ(xkyk) \ N ′

k. Thus, it follows by the construction of F ′ that 〈uw〉 = 〈uak〉 ∈ F ′. In the

case where v ∈ Ñ(xkyk) \N
′
k, it follows that w ∈ {ak, bk, ck, dk}, since 〈vak〉 , 〈vbk〉 , 〈vck〉 , 〈vdk〉

are the only possible outgoing arcs from w in F ′\F . Then, 〈vxk〉 , 〈vyk〉 ∈ F by the construction
of F ′, and thus, 〈uxk〉 , 〈uyk〉 ∈ F as well, since F is transitive. It follows that u ∈ Ñ(xkyk)\N

′
k,

and thus, 〈uw〉 ∈ F ′.
Case 4. Let 〈uv〉 ∈ F ′ \F and 〈vw〉 ∈ F . Then, similarly to Case 3, v /∈ {ak, bk, ck, dk}, since

ak, bk, ck, dk ∈ V (G̃)\V (G), and thus, they have no incident arcs in F . Furthermore v 6= xk, since
xk has no incoming arcs in F ′ \F . Thus, v ∈ {yk}∪ Ñ(xkyk) \N

′
k. In the case where v = yk, we

see that u = dk, since 〈dkyk〉 is the only incoming arc to yk in F ′ \ F . Since 〈vw〉 = 〈ykw〉 ∈ F ,
it follows that w /∈ N ′

k. Furthermore, since 〈xkyk〉 , 〈ykw〉 ∈ F , it follows that 〈xkw〉 ∈ F ,

since F is transitive, and thus, in particular, xkw ∈ E(G̃(ek)), i.e. w ∈ Ñ(xkyk). Therefore,
w ∈ Ñ(xkyk) \ N

′
k. Thus, it follows by the construction of F ′ that 〈uw〉 = 〈dkw〉 ∈ F ′. In the

case where v ∈ Ñ(xkyk) \N
′
k, it follows that u ∈ {ak, bk, ck, dk}, since 〈akv〉 , 〈bkv〉 , 〈ckv〉 , 〈dkv〉

are the only possible incoming arcs to v in F ′ \ F . Then 〈xkv〉 , 〈ykv〉 ∈ F by the construction
of F ′, and thus 〈xkw〉 , 〈ykw〉 ∈ F as well, since F is transitive. It follows that w ∈ Ñ(xkyk)\N

′
k,

and thus, 〈uw〉 ∈ F ′.
Thus the constructed orientation F ′ of G̃(ek) is transitive. Since F ⊆ F ′ is a T -orientation

of G on N1, N2, . . . , Nk, it follows that F ′ is a T -orientation of G̃(ek) on N1, N2, . . . , Nk, and
thus also a T -orientation of G̃(ek) on N1, N2, . . . , Nk−1.

(⇐) Let ek = xkyk, and suppose that F ′ is a T -orientation of G̃(ek) on N1, N2, . . . , Nk−1.
We will show that F ′ is also a T -orientation of G̃(ek) on Nk. Without loss of generality we may
assume that 〈xkyk〉 ∈ F ′. Then, since F ′ is transitive, and since ykak, xkbk, akck, bkdk, ckyk /∈
E(G̃(ek)), it follows that 〈xkak〉 , 〈bkak〉 , 〈bkck〉 , 〈dkck〉 , 〈dkyk〉 ∈ F ′. First consider a vertex
z ∈ N ′

k. Then, since akz /∈ E(G̃(ek)), since 〈xkak〉 ∈ F ′, and since F ′ is transitive, it follows

that 〈xkz〉 ∈ F ′. Similarly 〈zyk〉 ∈ F ′, since dkz /∈ E(G̃(ek)), and since 〈dkyk〉 ∈ F ′. Thus
〈xkz〉 , 〈zyk〉 ∈ F ′ for every z ∈ N ′

k. Now consider a vertex z ∈ Ñ(xkyk) \N
′
k, and suppose that

〈xkz〉 ∈ F ′ (resp. 〈zxk〉 ∈ F ′). Then, since xkck, ckyk /∈ E(G̃(ek)), and since F ′ is transitive, it
follows that 〈ckz〉 , 〈ykz〉 ∈ F ′ (resp. 〈zck〉 , 〈zyk〉 ∈ F ′). Thus for every z ∈ Ñ(xkyk) \N

′
k, either

〈xkz〉 , 〈ykz〉 ∈ F ′, or 〈zxk〉 , 〈zyk〉 ∈ F ′. Therefore F ′ is also a T -orientation of G̃(ek) on Nk.
Thus the restriction of F ′ on G is a T -orientation of G on N1, N2, . . . , Nk. This completes the
lemma.

After deactivating the edge ek of G, obtaining the graph G̃(ek), we can continue by deac-
tivating sequentially all edges ek−1, ek−2, . . . , e1 that correspond to the edge neighborhood sets
Nk−1, Nk−2, . . . , N1, as presented in Algorithm Deactivate-All. Now the next theorem easily
follows by repeatedly applying Lemma 18.

Theorem 2. Let G be a graph, let Ni = {ei, N
′
i}, i = 1, 2, . . . , k, be a set of edge neighborhood

sets in G, and let G̃ be the graph computed from G by Algorithm Deactivate-All. Then, G is
T -orientable on N1, N2, . . . , Nk if and only if G̃ is transitively orientable.

Since at every step of Algorithm 4, the graph Pi has, by Definition 10, four more vertices
than the previous graph Pi−1, and since each of them can have at most n neighbors in Pi,
the computation of Pi can be computed in O(n) time. Thus, since we iterate for every edge
neighborhood set Ni, i = 1, 2, . . . , k, the next lemma follows.

Lemma 19. Algorithm 4 runs in O(nk) time, where n is the number of vertices in G.

22



Algorithm 4 Deactivate-All

Input: An undirected graph G with edge neighborhood sets Ni = {ei, N
′
i}, i = 1, 2, . . . , k

Output: Deactivate all edges ei, i = 1, 2, . . . , k to produce G̃

1: Pk+1 ← G

2: for i = k downto 1 do

3: Pi ← P̃i+1(ei) {Pi is obtained by deactivating the edge ei in Pi+1}

4: G̃← P1

5: return G̃

6 A trapezoid graph recognition algorithm

In this section we complete the interpretation of the property of permutation graphs stated
in Theorem 1 in terms of transitive orientations. This will enable us to recognize efficiently
whether the splitted graph constructed by Algorithm Split-All (Algorithm 2) is a permutation
graph with this specific property, or equivalently, due to Theorem 1, whether the original graph
is trapezoid. Recall that the class of permutation graphs is the intersection of the classes of
comparability and cocomparability graphs, and thus, a graph is permutation if and only if its
complement is a permutation graph as well. Furthermore, for every transitive orientation F of
the complement G of a permutation graph G, we can construct a permutation representation R
of G, such that the line of x lies to the left of the line of y in R if and only if 〈xy〉 ∈ F (see [6].

Before presenting the trapezoid recognition algorithm, we establish the relationship between
T -orientations and permutation graph representations.

Theorem 3. Let G be a permutation graph, let ei = xiyi, i = 1, 2, . . . , k, be a set of edges of the
complement graph G of G, and let Ni = {ei, N

′
i}, i = 1, 2, . . . , k, be a set of edge neighborhood

sets in G. Then there exists a permutation representation R of G, such that for every i =
1, 2, . . . , k, exactly the lines that correspond to vertices of N ′

i lie between the lines of xi and yi
in R, if and only if the complement G is T -orientable on Ni = {ei, N

′
i}, i = 1, 2, . . . , k.

Proof. Since ei = xiyi is an edge of G for every i = 1, 2, . . . , k, xi is not adjacent to yi in the
complement G of G. Furthermore, since G is a cocomparability graph (as a permutation graph),
we can define for every permutation representation R of G a transitive orientation FR of the
complement G of G, such that 〈xy〉 ∈ FR if and only if the line of x lies to the left of the line of y
in R. Then, clearly, the line of a vertex z of G lies in R between the lines of two non-adjacent
vertices x and y in G if and only if either 〈xy〉 , 〈xz〉 , 〈zy〉 ∈ FR, or 〈yx〉 , 〈yz〉 , 〈zx〉 ∈ FR. This is
equivalent to the fact that z ∈ IFR

(xy). Therefore IFR
(xiyi) = N ′

i for every i = 1, 2, . . . , k if and
only if for every i = 1, 2, . . . , k, exactly the lines that correspond to vertices of N ′

i lie between
the lines of xi and yi in R. Thus, if there exists such a permutation representation R of G, then
FR is a T -orientation of G on N1, N2, . . . , Nk, i.e. G is T -orientable on N1, N2, . . . , Nk.

Conversely, suppose that G is T -orientable on N1, N2, . . . , Nk, and let F be a T -orientation of
G on these neighborhood sets. By the definition of a T -orientation, F is in particular a transitive
orientation of G. Thus, we can construct a permutation representation R of the complement
graph G of G, such that for any two non-adjacent vertices x and y in G, the line of x lies to
the left of the line of y in R if and only if 〈xy〉 ∈ F [6]. Then, clearly, the line of a vertex z lies
between the lines of x and y in R if and only if z ∈ IF (xy). Therefore, since G is T -orientable
on N1, N2, . . . , Nk (i.e. IF (xiyi) = N ′

i for every i = 1, 2, . . . , k), it follows that exactly the lines
that correspond to vertices of N ′

i lie between the lines of xi and yi in R, for every i = 1, 2, . . . , k.

Now, we are ready to present our recognition algorithm of trapezoid graphs. Our algorithm
uses an existing algorithm that we now review. McConnell and Spinrad [9] (see also [12]) de-

23



veloped a linear time algorithm for finding an ordering of the vertices of a given graph G with
the property that this ordering is a transitive orientation, if G is a comparability graph. If the
given graph G is not a comparability graph, then the ordering produced by their algorithm
is an orientation, but it is not transitive. The fastest known algorithm to determine whether
a given ordering is a transitive orientation requires matrix multiplication, currently achieved
in O(n2.376) [4]. However, similarly to [9], we do not need to confirm that our orderings are
transitive orientations. In particular, as pointed out in [12], given an orientation of a graph G
and an orientation of its complement G, we can check in linear O(n+m) time whether these two
orientations produce a permutation representation of G, where n and m denote the number of
vertices and edges of G, respectively. We now present our trapezoid graph recognition algorithm
(Algorithm 5). The correctness of this algorithm is presented in Theorem 4; the timing analysis
is established in Theorem 5.

Algorithm 5 Recognition of Trapezoid Graphs
Input: An undirected graph G = (V,E) with vertex set V = {u1, u2, . . . , un}
Output: A trapezoid representation of G, or the announcement that G is not a trapezoid graph

1: Construct the augmented graph G∗ from G by Algorithm Augment-All (Alg. 1) {G∗ has 5n vertices}
2: Construct the splitted graph G# from G∗ by Algorithm Split-All (Alg. 2) {G# has 6n vertices}
3: Let ui,5, ui,6, i = 1, 2, . . . , n, be the vertex derivatives in G#

4: Compute the sets N̂i, i = 1, 2, . . . , n, by Algorithm Intermediate-Lines (Alg. 3)
5: Compute an ordering F1 of G# by [9]
6: Compute the complement G# of G#

7: Compute the edge neighborhood sets Ni = {ui,5ui,6, N̂i}, i = 1, 2, . . . , n, in G#

8: Compute the graph G̃ from G# and Ni, i = 1, 2, . . . , n, by Algorithm Deactivate-All (Alg. 4)

9: Compute an ordering F2 of G̃ by [9]
10: F ′

2 ← F2|G# {Compute the restriction of F2 on G#}

11: if the orderings F1 and F ′
2 do not represent G# as a permutation graph (see [12]) then

12: return “G is not a trapezoid graph”
13: else

14: Compute a permutation representation R# of G# from the orderings F1 and F ′
2 by [6]

15: Replace in R# the lines of the derivatives ui,5, ui,6, i = 1, 2, . . . , n, by a trapezoid Tui
defined by these

lines
16: Remove the lines of the vertices {ui,1, ui,2, ui,3, ui,4}, i = 1, 2, . . . , n
17: Let R be the resulting trapezoid representation
18: if R is a trapezoid representation of G then

19: return R

20: else

21: return “G is not a trapezoid graph”

Theorem 4. If G is a trapezoid graph, then the Recognition of Trapezoid Graphs Algorithm
(Algorithm 5) returns a trapezoid representation of G. Otherwise, it announces that G is not a
trapezoid graph.

Proof. Let G = (V,E) be an undirected graph with vertex set V = {u1, u2, . . . , un}, let G
∗ be

the graph constructed by Algorithm Augment-All (Algorithm 1) from G, and G# be the graph
constructed by Algorithm Split-All (Algorithm 2). Let ui,5, ui,6 be the vertex derivatives in G#

that correspond to vertex ui, i = 1, 2, . . . , n, in G. Furthermore, let N̂i, i = 1, 2, . . . , n, be the set
of intermediate vertices of ui,5, ui,6 computed by Algorithm Intermediate-Lines (Algorithm 3).

First suppose that G is a trapezoid graph. Then, due to Theorem 1, G# is a permutation
graph with a permutation representation R#, such that N̂i is exactly the set of vertices of G#,
whose lines lie between the vertex derivatives ui,5 and ui,6 in R#, for every i = 1, 2, . . . , n.

24



Since G# is a comparability graph (as a permutation graph), the orientation F1 of G# com-
puted in line 5 of the algorithm is a transitive orientation of G# [9]. Furthermore, in par-

ticular, the complement G# of G# is T -orientable on N1, N2, . . . , Nn by Theorem 3, where
Ni = {ui,5ui,6, N̂i}, i = 1, 2, . . . , n, are the edge neighborhood sets of G# computed in line 7.

Therefore, G̃ is transitively orientable by Theorem 2, and thus the orientation F2 of G̃ computed
in line 9 is transitive [9].

Moreover, due to the sufficiency part of the proof of Lemma 18, F2 is also a T -orientation of G̃
on N1, N2, . . . , Nn. Thus, since G# is an induced subgraph of G̃, the restriction F ′

2 = F2|G# of F2

to G# is also a T -orientation of G# on N1, N2, . . . , Nn, and in particular F ′
2 is also a transitive

orientation of G#. Therefore, since both F1 and F ′
2 are transitive orientations of G# and G#,

respectively, they represent G# as a permutation graph (see [12]). Thus, we can compute by [6]
a permutation representation R# of G# from the orderings F1 and F ′

2, such that for every

i = 1, 2, . . . , n, exactly the lines that correspond to vertices of N̂i lie between the lines of ui,5
and ui,6 in R#. Then, similarly to the proof of Theorem 1, we can replace in R# the lines of the
derivatives ui,5 and ui,6, i = 1, 2, . . . , n, by a trapezoid Tui

defined by these lines, and remove the
lines of the vertices ui,1, ui,2, ui,3, ui,4, obtaining a trapezoid representation R of G, as returned
in line 19.

Now suppose that G is not a trapezoid graph. If either or both of F1 and F ′
2 are not transitive

orientations of G# and G#, respectively, then the algorithm correctly concludes in line 12 that G
is not a trapezoid graph. Suppose that F1 and F ′

2 are both transitive orientations of G# and G#,

respectively (and thus G# is a permutation graph), but F2 is not a transitive orientation of G̃.
Then by Theorems 1, 2, and 3, G is not a trapezoid graph, as confirmed in line 21 of the
algorithm. This completes the proof of the theorem.

Theorem 5. Let G = (V,E) be an undirected graph, where |V | = n and |E| = m. Then the
Recognition of Trapezoid Graphs Algorithm (Algorithm 5) runs in O(n(n+m)) time.

Proof. The first two lines of the algorithm each require O(n(n + m)) time by Lemmas 8
and 12, respectively. Furthermore, the computation of all the sets N̂i, i = 1, 2, . . . , n, can
be done in O(n2) time by Lemma 16. The complement G# of G# in line 6 can clearly be

computed in O(n2) time. Then the graph G̃, which is a supergraph of G#, can be com-
puted in O(n2) time by Lemma 19, since there are in total k = n edge neighborhood sets
Ni = {ui,5ui,6, N̂i}, i = 1, 2, . . . , n. As pointed out in the preamble to the algorithm, we can

compute the ordering F1 of G# in line 5 (resp. the ordering F2 of G̃ in line 9) in linear time
in the size of G# (resp. of G̃) [9], i.e. in O(n + m) time (resp. in O(n2) time). Moreover, the

restriction F2|G# of F2 on G# can be clearly done in O(n) time, just by removing from F2 all

vertices of G̃ \ G#. Then the permutation representation R# can be computed in O(n2) time
by [6]. The replacement of the lines of the derivatives ui,5 and ui,6 by a trapezoid Tui

in R#,
i = 1, 2, . . . , n, as well as the removal of all vertices {ui,1, ui,2, ui,3, ui,4}, i = 1, 2, . . . , n, can be
now performed in O(n) time. Finally, the determination of whether R is a trapezoid represen-
tation of the given graph G can be simply done in O(n2) time, thereby yielding an overall time
complexity of O(n(n+m)).

7 Concluding Remarks

In this paper we have shown that the concept of vertex splitting can be used to recognize trape-
zoid graphs in O(n(n +m)) time. The algorithm transforms a given graph G into a graph G#

that is a permutation graph with a special property if and only if G is a trapezoid graph. In [11]

25



it was shown that vertex splitting can be used to show that the recognition problems of tol-
erance and bounded tolerance graphs are NP-complete. It would be interesting to see whether
vertex splitting can be used to settle the longstanding questions of the recognition status of
both PI and PI∗ graphs. As mentioned in the introduction, both families lie strictly between
permutation and trapezoid graphs.

Acknowledgment: The authors thank Faithful Cheah for his helpful comments in the preparation
of this paper.

References

1. K. P. Bogart, P. C. Fishburn, G. Isaak, and L. Langley. Proper and unit tolerance graphs. Discrete Applied
Mathematics, 60(1-3):99–117, 1995.

2. F. Cheah. A recognition algorithm for II-graphs. PhD thesis, Department of Computer Science, University
of Toronto, 1990.

3. F. Cheah and D. G. Corneil. On the structure of trapezoid graphs. Discrete Applied Mathematics, 66(2):109–
133, 1996.

4. D. Coppersmith and S. Winograd. Matrix multiplication via arithmetic progressions. Journal of Symbolic
Computation, 9(3):251–280, 1990.

5. D. G. Corneil and P. A. Kamula. Extensions of permutation and interval graphs. In Proceedings of the
18th Southeastern Conference on Combinatorics, Graph Theory and Computing, Congressus Numerantium
58, pages 267–275, 1987.

6. M. C. Golumbic. Algorithmic graph theory and perfect graphs (Annals of Discrete Mathematics), Vol. 57).
North-Holland Publishing Co., 2nd edition, 2004.

7. L. Langley. Interval tolerance orders and dimension. PhD thesis, Dartmouth College, 1993.
8. T.-H. Ma and J. P. Spinrad. On the 2-chain subgraph cover and related problems. Journal of Algorithms,

17(2):251–268, 1994.
9. R. M. McConnell and J. P. Spinrad. Modular decomposition and transitive orientation. Discrete Mathematics,

201(1-3):189–241, 1999.
10. G. B. Mertzios, 2009. Private communications.
11. G. B. Mertzios, I. Sau, and S. Zaks. The recognition of tolerance and bounded tolerance graphs is NP-

complete. Technical Report AIB-2009-06, Department of Computer Science, RWTH Aachen University,
April 2009.

12. J. P. Spinrad. Efficient graph representations, volume 19 of Fields Institute Monographs. American Mathe-
matical Society, 2003.

26



Aachener Informatik-Berichte

This list contains all technical reports published during the past five years. A complete

list of reports dating back to 1987 is available from http://aib.informatik.rwth-aachen.de/.

To obtain copies consult the above URL or send your request to: Informatik-Bibliothek,

RWTH Aachen, Ahornstr. 55, 52056 Aachen, Email: biblio@informatik.rwth-aachen.de

2004-01 ∗ Fachgruppe Informatik: Jahresbericht 2003

2004-02 Benedikt Bollig, Martin Leucker: Message-Passing Automata are expres-

sively equivalent to EMSO logic

2004-03 Delia Kesner, Femke van Raamsdonk, Joe Wells (eds.): HOR 2004 – 2nd

International Workshop on Higher-Order Rewriting

2004-04 Slim Abdennadher, Christophe Ringeissen (eds.): RULE 04 – Fifth In-

ternational Workshop on Rule-Based Programming

2004-05 Herbert Kuchen (ed.): WFLP 04 – 13th International Workshop on Func-

tional and (Constraint) Logic Programming

2004-06 Sergio Antoy, Yoshihito Toyama (eds.): WRS 04 – 4th International

Workshop on Reduction Strategies in Rewriting and Programming

2004-07 Michael Codish, Aart Middeldorp (eds.): WST 04 – 7th International

Workshop on Termination

2004-08 Klaus Indermark, Thomas Noll: Algebraic Correctness Proofs for Com-

piling Recursive Function Definitions with Strictness Information

2004-09 Joachim Kneis, Daniel Mölle, Stefan Richter, Peter Rossmanith: Param-

eterized Power Domination Complexity

2004-10 Zinaida Benenson, Felix C. Gärtner, Dogan Kesdogan: Secure Multi-

Party Computation with Security Modules

2005-01 ∗ Fachgruppe Informatik: Jahresbericht 2004

2005-02 Maximillian Dornseif, Felix C. Gärtner, Thorsten Holz, Martin Mink: An

Offensive Approach to Teaching Information Security: “Aachen Summer

School Applied IT Security”

2005-03 Jürgen Giesl, René Thiemann, Peter Schneider-Kamp: Proving and Dis-

proving Termination of Higher-Order Functions

2005-04 Daniel Mölle, Stefan Richter, Peter Rossmanith: A Faster Algorithm for

the Steiner Tree Problem

2005-05 Fabien Pouget, Thorsten Holz: A Pointillist Approach for Comparing

Honeypots

2005-06 Simon Fischer, Berthold Vöcking: Adaptive Routing with Stale Informa-

tion

2005-07 Felix C. Freiling, Thorsten Holz, Georg Wicherski: Botnet Tracking: Ex-

ploring a Root-Cause Methodology to Prevent Distributed Denial-of-

Service Attacks

2005-08 Joachim Kneis, Peter Rossmanith: A New Satisfiability Algorithm With

Applications To Max-Cut

2005-09 Klaus Kursawe, Felix C. Freiling: Byzantine Fault Tolerance on General

Hybrid Adversary Structures

2005-10 Benedikt Bollig: Automata and Logics for Message Sequence Charts

2005-11 Simon Fischer, Berthold Vöcking: A Counterexample to the Fully Mixed

Nash Equilibrium Conjecture

27



2005-12 Neeraj Mittal, Felix Freiling, S. Venkatesan, Lucia Draque Penso: Ef-

ficient Reductions for Wait-Free Termination Detection in Faulty Dis-

tributed Systems

2005-13 Carole Delporte-Gallet, Hugues Fauconnier, Felix C. Freiling: Revisiting

Failure Detection and Consensus in Omission Failure Environments

2005-14 Felix C. Freiling, Sukumar Ghosh: Code Stabilization

2005-15 Uwe Naumann: The Complexity of Derivative Computation

2005-16 Uwe Naumann: Syntax-Directed Derivative Code (Part I: Tangent-

Linear Code)

2005-17 Uwe Naumann: Syntax-directed Derivative Code (Part II: Intraprocedu-

ral Adjoint Code)

2005-18 Thomas von der Maßen, Klaus Müller, John MacGregor, Eva Geis-

berger, Jörg Dörr, Frank Houdek, Harbhajan Singh, Holger Wußmann,

Hans-Veit Bacher, Barbara Paech: Einsatz von Features im Software-

Entwicklungsprozess - Abschlußbericht des GI-Arbeitskreises “Features”

2005-19 Uwe Naumann, Andre Vehreschild: Tangent-Linear Code by Augmented

LL-Parsers

2005-20 Felix C. Freiling, Martin Mink: Bericht über den Workshop zur Ausbil-

dung im Bereich IT-Sicherheit Hochschulausbildung, berufliche Weiter-

bildung, Zertifizierung von Ausbildungsangeboten am 11. und 12. Au-

gust 2005 in Köln organisiert von RWTH Aachen in Kooperation mit

BITKOM, BSI, DLR und Gesellschaft fuer Informatik (GI) e.V.

2005-21 Thomas Noll, Stefan Rieger: Optimization of Straight-Line Code Revis-

ited

2005-22 Felix Freiling, Maurice Herlihy, Lucia Draque Penso: Optimal Random-

ized Fair Exchange with Secret Shared Coins

2005-23 Heiner Ackermann, Alantha Newman, Heiko Röglin, Berthold Vöcking:

Decision Making Based on Approximate and Smoothed Pareto Curves

2005-24 Alexander Becher, Zinaida Benenson, Maximillian Dornseif: Tampering

with Motes: Real-World Physical Attacks on Wireless Sensor Networks

2006-01 ∗ Fachgruppe Informatik: Jahresbericht 2005

2006-02 Michael Weber: Parallel Algorithms for Verification of Large Systems

2006-03 Michael Maier, Uwe Naumann: Intraprocedural Adjoint Code Generated

by the Differentiation-Enabled NAGWare Fortran Compiler

2006-04 Ebadollah Varnik, Uwe Naumann, Andrew Lyons: Toward Low Static

Memory Jacobian Accumulation

2006-05 Uwe Naumann, Jean Utke, Patrick Heimbach, Chris Hill, Derya Ozyurt,

Carl Wunsch, Mike Fagan, Nathan Tallent, Michelle Strout: Adjoint

Code by Source Transformation with OpenAD/F

2006-06 Joachim Kneis, Daniel Mölle, Stefan Richter, Peter Rossmanith: Divide-

and-Color

2006-07 Thomas Colcombet, Christof Löding: Transforming structures by set in-

terpretations

2006-08 Uwe Naumann, Yuxiao Hu: Optimal Vertex Elimination in Single-

Expression-Use Graphs

2006-09 Tingting Han, Joost-Pieter Katoen: Counterexamples in Probabilistic

Model Checking

28



2006-10 Mesut Günes, Alexander Zimmermann, Martin Wenig, Jan Ritzerfeld,

Ulrich Meis: From Simulations to Testbeds - Architecture of the Hybrid

MCG-Mesh Testbed

2006-11 Bastian Schlich, Michael Rohrbach, Michael Weber, Stefan Kowalewski:

Model Checking Software for Microcontrollers

2006-12 Benedikt Bollig, Joost-Pieter Katoen, Carsten Kern, Martin Leucker:

Replaying Play in and Play out: Synthesis of Design Models from Sce-

narios by Learning

2006-13 Wong Karianto, Christof Löding: Unranked Tree Automata with Sibling

Equalities and Disequalities

2006-14 Danilo Beuche, Andreas Birk, Heinrich Dreier, Andreas Fleischmann,

Heidi Galle, Gerald Heller, Dirk Janzen, Isabel John, Ramin Tavakoli

Kolagari, Thomas von der Maßen, Andreas Wolfram: Report of the GI

Work Group “Requirements Management Tools for Product Line Engi-

neering”

2006-15 Sebastian Ullrich, Jakob T. Valvoda, Torsten Kuhlen: Utilizing optical

sensors from mice for new input devices

2006-16 Rafael Ballagas, Jan Borchers: Selexels: a Conceptual Framework for

Pointing Devices with Low Expressiveness

2006-17 Eric Lee, Henning Kiel, Jan Borchers: Scrolling Through Time: Improv-

ing Interfaces for Searching and Navigating Continuous Audio Timelines

2007-01 ∗ Fachgruppe Informatik: Jahresbericht 2006

2007-02 Carsten Fuhs, Jürgen Giesl, Aart Middeldorp, Peter Schneider-Kamp,

René Thiemann, and Harald Zankl: SAT Solving for Termination Anal-

ysis with Polynomial Interpretations

2007-03 Jürgen Giesl, René Thiemann, Stephan Swiderski, and Peter Schneider-

Kamp: Proving Termination by Bounded Increase

2007-04 Jan Buchholz, Eric Lee, Jonathan Klein, and Jan Borchers: coJIVE: A

System to Support Collaborative Jazz Improvisation

2007-05 Uwe Naumann: On Optimal DAG Reversal

2007-06 Joost-Pieter Katoen, Thomas Noll, and Stefan Rieger: Verifying Con-

current List-Manipulating Programs by LTL Model Checking

2007-07 Alexander Nyßen, Horst Lichter: MeDUSA - MethoD for UML2-based

Design of Embedded Software Applications

2007-08 Falk Salewski and Stefan Kowalewski: Achieving Highly Reliable Em-

bedded Software: An empirical evaluation of different approaches

2007-09 Tina Kraußer, Heiko Mantel, and Henning Sudbrock: A Probabilistic

Justification of the Combining Calculus under the Uniform Scheduler

Assumption

2007-10 Martin Neuhäußer, Joost-Pieter Katoen: Bisimulation and Logical

Preservation for Continuous-Time Markov Decision Processes

2007-11 Klaus Wehrle (editor): 6. Fachgespräch Sensornetzwerke

2007-12 Uwe Naumann: An L-Attributed Grammar for Adjoint Code

2007-13 Uwe Naumann, Michael Maier, Jan Riehme, and Bruce Christianson:

Second-Order Adjoints by Source Code Manipulation of Numerical Pro-

grams

2007-14 Jean Utke, Uwe Naumann, Mike Fagan, Nathan Tallent, Michelle Strout,

Patrick Heimbach, Chris Hill, and Carl Wunsch: OpenAD/F: A Modular,

Open-Source Tool for Automatic Differentiation of Fortran Codes

29



2007-15 Volker Stolz: Temporal assertions for sequential and concurrent programs

2007-16 Sadeq Ali Makram, Mesut Güneç, Martin Wenig, Alexander Zimmer-

mann: Adaptive Channel Assignment to Support QoS and Load Balanc-

ing for Wireless Mesh Networks

2007-17 René Thiemann: The DP Framework for Proving Termination of Term

Rewriting

2007-18 Uwe Naumann: Call Tree Reversal is NP-Complete

2007-19 Jan Riehme, Andrea Walther, Jörg Stiller, Uwe Naumann: Adjoints for

Time-Dependent Optimal Control

2007-20 Joost-Pieter Katoen, Daniel Klink, Martin Leucker, and Verena Wolf:

Three-Valued Abstraction for Probabilistic Systems

2007-21 Tingting Han, Joost-Pieter Katoen, and Alexandru Mereacre: Compo-

sitional Modeling and Minimization of Time-Inhomogeneous Markov

Chains

2007-22 Heiner Ackermann, Paul W. Goldberg, Vahab S. Mirrokni, Heiko Röglin,

and Berthold Vöcking: Uncoordinated Two-Sided Markets

2008-01 ∗ Fachgruppe Informatik: Jahresbericht 2007

2008-02 Henrik Bohnenkamp, Marielle Stoelinga: Quantitative Testing

2008-03 Carsten Fuhs, Jürgen Giesl, Aart Middeldorp, Peter Schneider-Kamp,

René Thiemann, Harald Zankl: Maximal Termination

2008-04 Uwe Naumann, Jan Riehme: Sensitivity Analysis in Sisyphe with the

AD-Enabled NAGWare Fortran Compiler

2008-05 Frank G. Radmacher: An Automata Theoretic Approach to the Theory

of Rational Tree Relations

2008-06 Uwe Naumann, Laurent Hascoet, Chris Hill, Paul Hovland, Jan Riehme,

Jean Utke: A Framework for Proving Correctness of Adjoint Message

Passing Programs

2008-07 Alexander Nyßen, Horst Lichter: The MeDUSA Reference Manual, Sec-

ond Edition

2008-08 George B. Mertzios, Stavros D. Nikolopoulos: The λ-cluster Problem on

Parameterized Interval Graphs

2008-09 George B. Mertzios, Walter Unger: An optimal algorithm for the k-fixed-

endpoint path cover on proper interval graphs

2008-10 George B. Mertzios, Walter Unger: Preemptive Scheduling of Equal-

Length Jobs in Polynomial Time

2008-11 George B. Mertzios: Fast Convergence of Routing Games with Splittable

Flows

2008-12 Joost-Pieter Katoen, Daniel Klink, Martin Leucker, Verena Wolf: Ab-

straction for stochastic systems by Erlang’s method of stages

2008-13 Beatriz Alarcón, Fabian Emmes, Carsten Fuhs, Jürgen Giesl, Raúl

Gutiérrez, Salvador Lucas, Peter Schneider-Kamp, René Thiemann: Im-

proving Context-Sensitive Dependency Pairs

2008-14 Bastian Schlich: Model Checking of Software for Microcontrollers

2008-15 Joachim Kneis, Alexander Langer, Peter Rossmanith: A New Algorithm

for Finding Trees with Many Leaves

2008-16 Hendrik vom Lehn, Elias Weingärtner and Klaus Wehrle: Comparing

recent network simulators: A performance evaluation study

2008-17 Peter Schneider-Kamp: Static Termination Analysis for Prolog using

Term Rewriting and SAT Solving

30



2008-18 Falk Salewski: Empirical Evaluations of Safety-Critical Embedded Sys-

tems

2008-19 Dirk Wilking: Empirical Studies for the Application of Agile Methods to

Embedded Systems

2009-02 Taolue Chen, Tingting Han, Joost-Pieter Katoen, Alexandru Mereacre:

Quantitative Model Checking of Continuous-Time Markov Chains

Against Timed Automata Specifications

2009-03 Alexander Nyßen: Model-Based Construction of Embedded

Real-Time Software - A Methodology for Small Devices

2009-04 Daniel Klünder: Entwurf eingebetteter Software mit abstrakten Zus-

tandsmaschinen und Business Object Notation

2009-05 George B. Mertzios, Ignasi Sau, Shmuel Zaks: A New Intersection Model

and Improved Algorithms for Tolerance Graphs

2009-06 George B. Mertzios, Ignasi Sau, Shmuel Zaks: The Recognition of Tol-

erance and Bounded Tolerance Graphs is NP-complete

2009-07 Joachim Kneis, Alexander Langer, Peter Rossmanith: Derandomizing

Non-uniform Color-Coding I

2009-08 Joachim Kneis, Alexander Langer: Satellites and Mirrors for Solving In-

dependent Set on Sparse Graphs

2009-09 Michael Nett: Implementation of an Automated Proof for an Algorithm

Solving the Maximum Independent Set Problem

2009-10 Felix Reidl, Fernando Sánchez Villaamil: Automatic Verification of the

Correctness of the Upper Bound of a Maximum Independent Set Algo-

rithm

2009-11 Kyriaki Ioannidou, George B. Mertzios, Stavros D. Nikolopoulos: The

Longest Path Problem is Polynomial on Interval Graphs

2009-12 Martin Neuhäußer, Lijun Zhang: Time-Bounded Reachability in

Continuous-Time Markov Decision Processes

2009-13 Martin Zimmermann: Time-optimal Winning Strategies for Poset Games

2009-14 Ralf Huuck, Gerwin Klein, Bastian Schlich (eds.): Doctoral Symposium

on Systems Software Verification (DS SSV’09)

2009-15 Joost-Pieter Katoen, Daniel Klink, Martin Neuhäußer: Compositional

Abstraction for Stochastic Systems

2009-17 Carsten Kern: Learning Communicating and Nondeterministic Au-

tomata

∗ These reports are only available as a printed version.

Please contact biblio@informatik.rwth-aachen.de to obtain copies.

31


