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Preface

This volume contains the proceedings of the Doctoral Symposium on Systems Software
Verification (DS SSV’09), which was held during the 4th International Workshop on Systems
Software Verification (SSV’09) in Aachen, Germany, June 22–24, 2009.

The program of the doctoral symposium was interleaved with the program of the work-
shop to stimulate exchange between senior researchers and young researchers and to give
young researchers an opportunity to receive feedback about their research from senior re-
searchers.

The purpose of SSV is to bring together researchers and developers from both academia
and industry, who are facing real software and real problems to find real, applicable solu-
tions. By “real” we mean problems such as time-to-market or reliability that the industry
is facing and is trying to fix in software that is deployed in the market place. A real solu-
tion is one that is applicable to the problem in industry and not one that only applies to
an abstract, academic toy version of it. SSV discusses software analysis/development tech-
niques and tools, and serves as a platform to discuss open problems and future challenges
in dealing with existing and upcoming system code.

This volume comprises 9 extended abstracts that were selected by the program chairs.
The focus of the selection process was on originality of the research topics.

We would like to thank the authors and the workshop organizers for their contribution
to the success of this Doctoral Symposium on Systems Software Verification. Finally, we
are grateful for the generous support we received from the European Microsoft Innovation
Center (EMIC), Germany.

June 2009 Ralf Huuck, Gerwin Klein, and Bastian Schlich
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Hansen and Kim Guldstrand Larsen

Retargeting a Hardware-Dependent Model Checker by Using Architecture
Description Languages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
Dominique Gückel

Test Automation and Static Analysis – Memory Models and Abstraction
Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
Helge Löding
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Temporal Fairness of a Microkernel Scheduler

Matthias Daum

Computer Science Dept., Saarland University
Saarbrücken, Germany
md11@wjpserver.cs.uni-saarland.de

1 Introduction

We report on the formal verification of a microkernel’s temporal property, namely that
its multi-priority process scheduler guarantees progress, i. e., strong fairness. This paper
summarizes parts of a journal article [2].

Our microkernel Vamos provides an infrastructure for a dynamically changing number
of processes, for memory virtualization, for inter-process communication (IPC), and for
user-level device-driver support. The kernel establishes process switches according to IPCs
and timer events. The process scheduling, however, follows a hierarchy of priorities, favoring,
e. g., system processes over application processes over maintenance processes. Processes may
control the kernel tasks and access kernel services via so-called kernel calls. A minimal access
control is built into the kernel to restrict the kernel calls according to a user-defined policy.

For space restrictions, we cannot present the microkernel or our formal foundation at
large. We refer the interested reader to a previous publication [1]. In this paper, we confine
ourselves to a short summary on the scheduler functionality as well as the formal kernel
model that serves as basis for our verification efforts. In Section 4, we reveal insights into
our fairness theorem. Finally, we conclude in Section 5.

2 Scheduler

The basic policy underlying the scheduler in Vamos is round-robin process selection. This
basic policy, however, can be adjusted by two regulators: priorities and timeslices.

Our scheduler supports three different priority levels. Only processes in the highest, non-
empty priority class will be scheduled. Processes in a lower class wait until no processes are
ready to compute in any higher priority class. This policy is also known as static-priority
scheduling though technically, priorities might be adjusted through kernel calls at any time
during run-time.

Within one priority class, the timeslice determines how long a certain process may
compute until it is preempted in favor of another process of the same priority class. Thus,
timeslices determine the relative weight of process run-times while priorities lead to the
preemption of lower process classes.

Inside the kernel, time measurements are based on a timer device, which periodically
raises its interrupt line. In particular, we measure the run-time of processes and the waiting
time for IPC in clock ticks. Note that the kernel implementation maintains a solely relative
notion of time.

3 Underlying Kernel Model

We base our temporal proof on an operational kernel model, or more precisely, the formal
specification of the kernel, which is used for the verification of functional implementation
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correctness. This model is a state automaton. The state space contains the state of the
currently running processes as well as information about the scheduling internals, access
control rights, and pending device communication. A transition of the Vamos specification
depends on a device input and has up to three phases:

(a) At first, the current process is advanced. This operation is either process local or it
handles a kernel call. (b) If the device input indicates that the timer-interrupt line is raised,
the scheduler increases the consumed time of the current process and a global counter,
which measures the waiting time for IPC. Afterwards, the kernel wakes up all processes with
elapsed IPC timeouts. (c) Finally, Vamos delivers interrupts to waiting driver processes and
saves the remaining interrupts for later delivery.

4 Scheduler Fairness

According to the taxonomy of Francez [3], we formalize the temporal property of strong
fairness for our scheduler. In order to state this property in reasonable succinctness, we
establish several abstraction layers on top of the operational kernel model. At first, the
operational model only formalizes states and transitions. For temporal reasoning, however,
we need execution traces. We represent a trace by two functions states and inputs that map
the step number to the current state and to the device input for the next step, respectively.

Definition 1 (Trace). Two functions states and inputs describe a trace iff (a) The first
state is in the set of initial states and (b) for each step number, the transition relation holds
for the current state and input and the successor state.

Furthermore, we need an invariant invV over the state sequences for reasoning about the
behavior of a trace. This invariant is quite elaborate such that space restrictions prohibit
its presentation. We show that this predicate indeed is an invariant over the traces:

Lemma 1 (Invariant). Predicate invV is an invariant over traces.

Proof. We prove this statement by induction. At first, we establish invV for all initial states.
At second, we show that invV is maintained by the transition function. Finally, we derive
our claim by the definition of traces. Note that despite this short sketch, the formal proof
is quite elaborate because of the complexity of the kernel specification and the invariant.
Its verification took more than two person months. ut

With these prerequisites in place, we can formulate our scheduler’s fairness property.
Recall that the process scheduling follows a hierarchy of priorities. We describe this phe-
nomenon by the notion of prioritized fairness. In our system, the scheduler can only guar-
antee fairness under several assumptions:

1. Any temporal fairness statement certainly excludes terminating processes. Note that
processes might still terminate in our system, we can just not say that the scheduler
would treat terminating processes fairly.

2. Changing the priority class of a process contradicts the notion of static-priority schedul-
ing. The scheduler does not treat a process fair if its priority is changed infinitely often.

3. If a process chooses to wait infinitely long for an IPC operation, it might starve. This
problem is certainly not the fault of the scheduler but a programming or protocol error.
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4. Our scheduler relies on a live timer device. At this time, the next process is selected
from the highest, non-empty priority class. In other words, a process is only scheduled
at all if it has the maximal priority when the timer is on.

With the current state of affairs, however, a formal statement requires explicit quantifi-
cation on step numbers over the states and inputs functions. We have proven the theorem
on this layer for methodical reasons: The larger context of this work is pervasive systems
verification and the long-term goal is a coherent theory in a single theorem prover. Con-
sequently, a specialized theorem prover for temporal logic is insufficient in this context.
Hence, we combined the best of both worlds and embedded future-time linear temporal
logic (LTL) with action Kripke structures into Isabelle/HOL [4]. Thus, we can integrate
our main theorem into the overall context while presenting it in LTL:

Theorem 1 (Prioritized Fairness). The Vamos scheduler is fair with respect to priority
classes, i. e., if a process pid (1) finally never terminates, (2) finally remains forever at the
same priority class, (3) does infinitely often not pend in an IPC operation with an infinite
timeout, and (4) has infinitely often the currently maximal priority when the timer interrupt
is raised, it will always eventually progress. Formally:

〈S0
V, ΣV, δV〉A � ♦�(λ(i, s, n) : process exists(s, pid)) =⇒

♦�(λ(i, s, n) : n.priority(pid) = s.priority(pid)) =⇒
�♦(λ(i, s, n) : ¬pending infinite ipc(s, pid)) =⇒
�♦(λ(i, s, n) : has maxprio(s, pid) ∧ is timer on(i) =⇒
�♦(λ(i, s, n) : progress(s.procs(pid), n.procs(pid)))

For lack of space, we can neither present the detailed formalization of the above theorem
nor a proof sketch. The formal proof based on the quantification over the trace functions
took about eight person months and is available at the public Verisoft repository.1 Though
the LTL layer permits a considerably more succinct statement, its formalization and the
abstraction of the original statement could be accomplished in just about a person week.

5 Conclusion

During verification, we found a bug in the temporal behavior of our implementation, which
cannot be found in a step-wise refinement proof. This finding demonstrates the immediate
practical usefulness of our proof. Furthermore, our proof can be integrated with a refinement
proof that links our underlying model to the C implementation. To our knowledge, this is
the first verification result that establishes a temporal property on a C implementation.
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WCET Analysis of ARM Processors using Real-Time Model
Checking

Andreas Engelbredt Dalsgaard, Mads Christian Olesen, Martin Toft, René Rydhof Hansen
and Kim Guldstrand Larsen

Department of Computer Science
Aalborg University, Denmark
{andrease,mchro,mt,rrh,kgl}@cs.aau.dk

Abstract. This paper presents a flexible method that utilises real-time model checking to determine safe
and sharp WCETs for processes running on hardware platforms featuring pipelining and caching.

1 Introduction

In order to produce a reliable and efficient execution schedule for a real-time system (RTS),
scheduling algorithms need safe and sharp worst-case execution times (WCETs) for the pro-
cesses in the system [6]. The developed method utilises real-time model checking performed
by the model checker UPPAAL [5] to determine these WCETs. The method is able to anal-
yse program code found in real systems, and an extensive evaluation has been conducted
using the benchmark programs published by Mälerdalen WCET Research Group [2].

The WCET for a process depends on the hardware platform that the process is executing
on, thus the method is designed to allow a high degree of flexibility. For example, support
for new processors only requires a model of the new processor.

Modern processors utilise techniques such as caching and pipelining, which increase the
average number of calculations that can be executed per time unit [11]. Since these tech-
niques are also found in many processors intended for embedded devices, such as members
of the widely deployed ARM7 and ARM9 families [1], a modern WCET analysis method
must take them into account to be useful. The presented method models these techniques
in a modular and independent fashion.

It is important to be aware that caching and pipelining in certain instances can lead to
timing anomalies [10], which complicate WCET analysis to a great extent. By introducing
more non-determinism in the applied models, the presented method can be extended to
handle the presence of timing anomalies.

2 Platform

Because the hardware platform must be taken into account when WCETs are determined,
we have selected the ARM9TDMI processor core as the basis for an implementation of the
method. This processor core is found in e.g. the ARM920T processor [8]. The execution
time on a hardware platform generally depends on main memory, caches and pipeline, thus
these elements must be modelled carefully.

Instructions and data are stored in main memory, which is very slow compared to the
internal registers of a processor. Fortunately, this bottleneck can be mitigated by using one
or more caches, which are small, fast memories for storing instructions or data temporarily.
Caches increase a systems’ overall execution speed by taking advantage of the principles of
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locality and by being faster than main memory. A cache is characterised on: speed, size,
replacement policy and write policy.

The data path in a processor is the circuitry that executes instructions. In non-pipelined
processors, an instruction must flow through the entire data path before the next instruction
can enter. Since this takes time, a long data path forces the processor to run at a relatively
low frequency. Conversely, a pipelined processor has its data path divided into a number of
almost independent stages. Since the stages run in parallel, the cycle time becomes shorter
and the processor may therefore run faster. For example, the ARM9TDMI processor core
has a five stage pipeline [4], where the stages’ names are fetch, decode, execute, memory
and writeback. Sometimes the stages have inter-dependencies, which give rise to stalls and
other situations, where the stages must interact. A stall occurs when an instruction uses
the result of the previous instruction, which is delayed due to e.g. memory access. Some
events, like branching, also require special handling.

3 WCET Analysis

The presented method is mainly inspired by [3,7,9]. In this work, WCET analysis is split into
four analyses: cache, pipeline, path and value analysis. The first three analyses are modelled
using model checking of a network of timed automata (NTA), whereas value analysis is
performed separately on the disassembled process after reconstructing its control flow.

Besides an automaton for each function in the process’ control flow graph (CFG), the
NTA contains automata for the hardware platform’s pipeline, caches and main memory.
Each transition in the function automata simulates an abstract execution of an instruction.
The simulation of an instruction is done by synchronising with the automata modeling
the pipeline, which in several places synchronise with the automata modeling the caches.
Finally, the caches synchronise with the automaton modeling the main memory.

To determine the WCET, we perform real-time model checking on the NTA using the
model checker UPPAAL. There are, however, other steps that must precede the UPPAAL
verification process. Figure 1 provides an overview of the method and the applied tools.

Fig. 1. Overview of the method and the applied tools.

5



The method is flexible, as it is easy to add support for new processors — the models
for pipelines and caches can be re-used with little or no work. The modularisation of the
platform model facilitates re-use and easy testing of components independently.

4 Toolchain

WCET analysis must be done at machine code level, as this is the only level with enough
information [7]. By taking as input a process written in its original, high-level language
and subsequently compiling and disassembling it, we are able to extract required memory
addresses and take compiler optimisation into account.

We utilise the existing tools GCC, objdump, Dissy, WALi and UPPAAL, which pro-
vide compilation, disassembly, disassembly front-end, value analysis and model checking,
respectively. In addition, a number of tools have been written partly or completely for the
presented method. This includes pyuppaal for importing, exporting and layouting UPPAAL
models, an ARM-to-UPPAAL compiler for parsing ARM assembly and generating CFG au-
tomata, “cache-gen” for generating cache automata, and “combine” for putting together all
automata in an NTA. UPPAAL identify the WCET by finding the highest value of a global
cycle counter clock during a full exploration of the final NTA’s state space.

5 Conclusion

This paper offers a highly flexible WCET analysis method based on real-time model check-
ing, taking caching and pipelining into account. Currently, the implementation is able to
analyse 14 of the 25 working, non-floating point WCET benchmarks from Mälerdalen,
which demonstrates the applicability of the method. The biggest challenge is recovering
enough control-flow information, as a lack thereof is handled as non-determinism, leading
to state-space explosion. Support for floating point is planned.
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Retargeting a Hardware-Dependent Model Checker by
Using Architecture Description Languages

Dominique Gückel

RWTH Aachen University
Embedded Software Laboratory
Aachen, Germany
gueckel@embedded.rwth-aachen.de ??

Abstract. Model checking is a promising technique for verifying software for embedded systems. An assem-
bly code model checker such as [mc]square can facilitate the often complicated construction of the system
model by using the program under test itself as the basis for an automated construction of the system
model. However, this approach is inherently hardware-dependent because it requires a simulator for each
embedded system platform to be supported. In the past, such simulators used to be hand-coded. This led
to considerable effort prior to any model-checking of software. In order to reduce this effort, we propose a
technique for synthesizing simulators from an architecture description language.

1 Introduction

Over the past few years, model checking [1] has evolved from being just a theoretical
approach into a feasible technique for detecting errors in software systems. This is especially
true for the embedded area. There are two major reasons for this: first, errors in embedded
system software can be very expensive or even safety-relevant. Unlike in general purpose
computing, a user in general cannot apply any patches provided by the software developer
after the system has been shipped. Hence, all important errors have to be detected while
the system is still in development. Second, system designs for embedded systems tend to be
far less complex than, for instance, an office application. For this reason, the state explosion
problem from which model checking suffers is not necessarily an obstacle that cannot be
overcome in the case of embedded systems.

The rest of this paper is structured as follows. Section 2 provides a brief introduction into
the [mc]square model checker [2]. After this, section 3 describes our ongoing work which aims
at reducing the hardware-dependency of [mc]square by means of an architecture description
language. The fourth and last section concludes this paper.

2 The [mc]square Model Checker

[mc]square is an assembly code model checker developed at RWTH Aachen University. It is
a discrete, on-the-fly CTL model checker with a mostly explicit state representation. The
term ”‘mostly”’ means that [mc]square supports hybrid states which are partially symbolic.
The symbolic parts represent unresolved nondeterminism, which has to be resolved when
the model checking algorithm needs to determine the value of that part of the state.

[mc]square aims at checking software for microcontrollers and Programmable Logic Con-
trollers (PLCs). Given a program as an ELF file, an optional C source file and a CTL
formula, it can automatically create a system model and conduct the model checking on it.
No model of the environment of the microcontroller is needed, though the user can provide

?? This work was supported by a PhD scholarship from the German Research Foundation (DFG).

7



one if it suits his purposes [3]. The process does not depend on an environment because
any input to the system is in general considered to be nondeterministic, unless the specific
state of the hardware in the simulator allows to rule out this nondeterminism.

The model checking process in [mc]square is supported by various abstraction tech-
niques. Apart from the already mentioned environment model, [mc]square features several
variants of a base technique called delayed nondeterminism as well as static analyses. The
goal of the delayed nondeterminism technique is to prevent early resolution of nondeter-
minism, thus preventing a split-up of the computation path based on different values in
memory locations of the simulated hardware. For more details on this technique, refer to
[4]. The other major technique present in [mc]square are static analyses. Static analyses
extract information about the examined program without actually executing it. This infor-
mation is then used by the simulator during model checking to reduce the number of states
that have to be created and, subsequently, stored and examined. For instance, dead variable
reduction can be used to collapse states which differ only in irrelevant memory locations,
and path reduction can reduce entire non-branching computation paths into single states.

The basis of state space creation in [mc]square is the interpreted execution of the input
program in the simulator component. While this is an advantage with regard to the con-
struction of the system model, and also allows the creation of very precise counterexamples,
it proves to be disadvantageous regarding portability. Experience values for hand-coding new
simulators for microcontrollers and PLCs indicate that this can be performed by a single
developer within a span of six months, though there are platforms which are too complex to
be modeled in all their finest details within that span [5,6]. In general, what can be achieved
in that time is the creation of a so-called instruction set simulator. More details on how to
distinguish different classes of simulators can be found in [7].

3 Architecture Description Languages and tool synthesis

3.1 General idea

The idea of automatically synthesizing software tools from hardware descriptions is by no
means new. A good survey of existing approaches can be found in [7] and in [8]. The general
approach is that a system developer uses a so-called Architecture Description Language
(ADL) to describe the properties of his platform. This description can then be used by
synthesis tools to automatically generate tools such as compilers, (dis)assemblers, profilers
and simulators. Such tools are called retargetable because they can be changed to support a
new platform with little or no effort. Using ADLs it is possible to start software development
for new devices before any silicon has been manufactured.

3.2 Retargeting the [mc]square Model Checker

The goal of our ongoing research is to make [mc]square retargetable. In order to achieve
this, the most important obstacle to overcome is the high effort in creating the platform
simulator. The aforementioned six months for hand-coding it are simply infeasible. The
next obstacle is to create appropriate static analyses for the new platform. Without these,
many realistic programs become unmanageable due to the state explosion problem.

A solution for both of these major problems is the use of an appropriate ADL. Not every
ADL is useful because many focus on compiler construction and do not provide means for
describing those properties of a platform that are needed for simulator synthesis. However,
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we cannot neglect the compiler synthesis part, as precisely the kind of information needed
by a compiler is also necessary for static analysis (resp. the according synthesis programs
generating those tools). In our opinion, this can only be achieved by a behavior-centric ADL
which provides a strict separation of semantics from behavior.

We are currently examining two promising candidate ADLs. The first one is the Isildur
language used in the AVRora simulator project [9]. The AVRora simulator design influ-
enced the design of the later [mc]square simulators, hence this approach is probably the
easiest with regard to a later integration of delayed nondeterminism and static analysis
techniques. However, Isildur apparently provides only very limited support for describing
resources accessed by instructions. The second ADL we consider is the LISA language,
originally developed at RWTH Aachen. LISA is a very flexible ADL which allows describ-
ing processors at variable levels of abstraction. However, integrating or accessing LISA is
extremely complicated due to legal constraints imposed by the current owner, CoWare.
For this reason, we also do consider a third option, which would be the development of a
new ADL providing all the necessary capabilities with regard to expressiveness. This new
language would incorporate many of the research results on other ADLs but be limited to
its specific goal, that is, synthesis of fast instruction set simulators.

4 Future Work

Currently, we are creating building blocks for synthesized simulators. Such blocks can be
composed to form new simulators. The principal blocks are binary file processors and a
generic disassembler, which need to be present in any synthetic simulator. A binary file
processor extracts the instruction stream from compiler output formats such as ELF, HEX
or S-file. The instruction stream then needs to be sent through a generic disassembler which
turns it into a stream of instruction objects for a generic and parameterizable machine
model.

After creating a suitable generic machine model, we will extend it by more sophisticated
techniques such as support for delayed nondeterminism and static analyses. A long-term
goal might be the synthesis of simulators that no longer aim at maintainability but speed.
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Test Automation and Static Analysis –
Memory Models and Abstraction Methods

Helge Löding
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Abstract. This paper introduces methods for static analysis and automated test data generation for
C/C++ programs using symbolic interpretation of an intermediate program representation. It lists cor-
responding challenges that are subject of the author’s current research.

1 Overview

In order to perform static analysis on and to generate test data for C/C++ programs we use
symbolic interpretation of semantically equivalent GIMPLE programs as a basis. Rather
than dealing with the syntactic complexities and semantic ambiguities of C/C++, we use
GIMPLE, an intermediate transformation result from source to assembler generated by the
gcc compiler family.

Section 2 outlines the structure of GIMPLE programs. Section 3 describes our approach
on symbolic interpretation. Sections 4 and 5 show its usage for test data generation, static
analysis and their synergies. Section 6 lists the challenges the author’s doctoral dissertation
has to meet in order to make these approaches viable. Section 7 gives a conclusion.

2 GIMPLE programs

We use the gcc compiler to transform a given C/C++ program into GIMPLE code. As
described in [4,5], this semantically equivalent representation of a program constitutes an
intermediate transformation result from source to assembler, where all expressions appear-
ing in statements contain at most one operator and (with the exception of function invo-
cations) at most two operands. Operands may only be variable names or nested structure
and array accesses (called selectors) as well as constant values.

By introducing auxiliary variables, all original statements will be transformed in or-
der to adhere to the above requirement. Statements may therefore only be assignments
from expressions to variables (or atomic selectors in the above sense). Casting and refer-
encing/dereferencing of variables (or selectors) form expressions themselves, and therefore
may not be used as operands, but have to be executed as separate assignments to auxiliary
variables. GIMPLE programs contain no loop constructs. Instead, all loops from the orig-
inal source are transformed into conditional jumps to preceding labelled statements. The
concrete semantics for GIMPLE programs is outlined in [7].

3 Symbolic interpretation of GIMPLE programs

Symbolic interpretation of GIMPLE programs is used to capture the effects which assign-
ment statements may have on memory in terms of earlier memory states. Within the sym-
bolic interpretation of a given GIMPLE program, these effects are represented as a set of
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so-called memory items. Memory items reference (1) a range of program counter values for
which they are valid, (2) the affected memory segment, (3) a symbolic base address within
that segment, (4) expressions over program symbols to capture offsets from base address, (5)
the size of affected memory portions, (6) symbolic values written to that memory portion,
(7) typedata to specify the encoding within memory, and finally (8) validity constraints
that must hold during a concrete execution whenever the corresponding assignment has the
effects specified within the memory item.

Each assignment statement within a program will result in one or more memory items
being created, and possibly some existing memory items being modified. The state space
under consideration therefore consists of program locations specified as a sequence of GIM-
PLE statements remaining to be interpreted and sets of memory items corresponding to
each program location. The semantics of the symbolic interpretation can then be given as a
transition relation mapping a given symbolic interpretation state to its successor state [7].

4 Automatic test data generation

For a given trace through a GIMPLE program, symbolic interpretation may be used to
capture the symbolic memory state associated with each program location within that trace
simply by symbolically interpreting the corresponding sequence of assignment statements
within the trace and initially neglecting the applicable guard conditions arising from looping
and branching constructs.

In order to decide the feasibility of a trace, one must now consider the guard conditions
appearing within that trace. Since these are evaluated at locations with specific program
counter values, the memory items corresponding to those program counter values and mem-
ory locations referenced in the guard conditions can be identified as relevant. Since their
valuations reference earlier (in terms of program counter values) memory items themselves,
one can eventually collect a conjunction of constraints on input data that must hold in
order for the trace to be feasible.

By collecting these constraints on inputs, the task of finding suitable input values to
realise the selected trace is reduced to an SMT instance and passed on to a suitable solver.
See [9], [3].

5 Static analysis

We employ abstract interpretation in order to conduct static analysis, again using symbolic
interpretation as a basis for this. However, as opposed to automatic test data generation,
we now need to consider all possible traces within a given GIMPLE program. Within
the symbolic interpretation, this is achieved by unwinding looping constructs for a finite
maximum amount of times and calculating fixpoints, if possible. This implies that program
counter values must now also be represented as expressions over program symbols.

Depending on the analysis goals, we can now select suitable lattices as valuation domains
for different data types and evaluate the symbolic memory state using canonic operator
liftings. See [7] for an example.

False alarms may be detected by attempting to construct test data that forces their
occurrence. If it can be shown that such test data does not exist, a false alarm has been
detected [8]. However, it is generally not possible to detect all false alarms since proof of
the inexistence of such test data may be too complex.
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6 Challenges

In order for the methods mentioned above to be applicable, several properties must hold:
The symbolic interpretation of all traces of a GIMPLE program must be an overap-

proximation compared to all possible concrete executions. The lattice-based interpretation
of a symbolic memory state again must be an overapproximation. This ensures that static
analysis captures all possible defects detectable using an appropriate choice of abstraction
lattices.

The symbolic interpretation of a single trace of a GIMPLE program must not be an
overapproximation. This ensures that automatic test data generation for a given trace only
yields input data that realises that trace during a concrete execution. Also, the symbolic
interpretation of a single trace of a GIMPLE program must not be an underapproximation.
This ensures that for a given trace, unsatisfiability of the corresponding SMT instance
implies unreachability of that trace.

Within the author’s doctoral dissertation, it will hence be shown that

• symbolic interpretation of an entire GIMPLE program is a sound abstract interpreta-
tion,
• lattice-based interpretation of a symbolic memory state is a sound abstract interpreta-

tion, and
• symbolic interpretation of a single GIMPLE trace is a sound and complete abstract

interpretation.

This requires formal definitions for

• concrete semantics for GIMPLE programs,
• abstraction semantics for symbolic interpretation of GIMPLE programs, and
• abstraction semantics for lattice-based interpretation of symbolic memory states.

Techniques to produce these proofs are discussed in [6].

7 Conclusion

We use symbolic interpretation of GIMPLE programs as a basis for static analysis using
lattice-based abstract interpretation. False alarms may be detected by showing that con-
struction of test data which forces their occurrence is not possible. For generating test data
for a given trace (or proving its inexistence) symbolic interpretation is again used as ba-
sis. The soundness and, in the case of single traces being interpreted, completeness of the
involved abstract interpretations will be shown in the author’s doctoral dissertation.
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Abstract. In this report, we first outline on the feature of the tool FTOS, which is designed for model-based
development of fault-tolerant systems, and describe our approach to tackle the analysis problem. Regarding
formal verification, a two-phase approach is performed to avoid extreme complexity caused by verification.
The result is FTOS-Verify - a toolkit for applying formal verification during development with FTOS.

1 Introduction

In this paper, we report our adaptive scheme for the analysis of FTOS systems. FTOS [2] is a
research tool developed by Technical University of Munich, focusing on the ease of modeling
and code-generation of embedded control systems with a focus on the automatic generation
of fault-tolerance mechanism. In the system development cycle, the designer first constructs
models with four abstract views, namely the hardware model, the software model, the fault
model, and the fault-tolerance model. During code-generation process, predefined templates
(platform-dependent) related to fault-tolerance are selected, adopted, and combined into
platform specific code.

Although the idea to perform model construction and code-generation is simple, it ac-
tually relies on the assumption regarding the existence of a powerful analysis tool which
checks the validity of fault-tolerant mechanisms. Since mechanisms and corresponding tem-
plates are predefined, the set of selected mechanisms may not be sufficient to resist the
faults defined in the model. In fault-tolerant systems this claim of resistance is extremely
important, while it requires detailed analysis of system behavior. Note that in general the
system behavior might easily become too complicated because of time and infinite value
domain.

Since in FTOS, the underlying model-of-computation (MoC) is an extension of Giotto
[4] which utilizes the concept of logical execution time, the simplicity and the analyzability
of this MoC enable us to perform formal analysis to increase users’ confidence about the
correctness of the implementation related to fault-tolerance. This leads to the FTOS-Verify
project, which tries to formally prove that a system equipped with fault-tolerant mechanisms
can resist faults defined by the fault model.

2 FTOS: Execution Semantics and Determinacy

The execution semantics of FTOS follows similar concepts as that of Giotto - during one
major-tick, micro-ticks are defined. However, FTOS uses more micro-ticks for the introduc-
tion of fault-tolerance mechanisms. The conceptual execution semantics is listed in fig. 1(a).
During a major-tick, fault-tolerance mechanisms are executed between major functional
steps (input, task, output) if they are specified in the model.
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Input Read (read from sensors to ports)

Input Fault-Tolerance Mechanism

Task Execution

Task Fault-Tolerance Mechanism

Output Execution (read from ports to actuate)

Output Fault-Tolerance Mechanism
Due to OS scheduling policies, or manipulation

time

Communication Send

Communication Receive

M1

M2

M3

M4

Decide

of other functions, or so on

Communication Send

Communication Receive

Decide

(a) (b)

Fig. 1. Conceptual execution semantics of FTOS (a) and internal nondeterminism due to scheduling dif-
ferences (b).

2.1 Determinacy

In ordinary Giotto systems, internal determinism is guaranteed, meaning that two deploy-
ments having the same relative ordering in the action level will behave the same, irreverent
of the absolute timing. Unfortunately, internal determinism will not be maintained if no
constraints are added additionally on FTOS functions. Consider fig. 1(b), where M1, M2

and M3 are three deployments. The send action will broadcast messages to other machines
regarding its liveness. Ideally when no error happens, then for each machine, it should con-
ceive the fact that all machines are live. Nevertheless, when the scheduling of M3 changes to
that of M4, even with zero time transmission M1 and M2 will not conceive M4 live because
they have finished the process of receiving. This brings semantic incompatibility between
different deployments.

To solve this problem, we thus propose the concept called deterministic assumption.
Intuitively, the goal is to assume that when no error happens, the fault tolerance mechanisms
deployed always behave the same. In practice, this might place constraints regarding the
earliest and latest arrival time between messages sent.

3 A two-phase verification methodology

In FTOS-Verify we adapt a two-phase verification process.

• (Phase 1: Verification on the platform independent layer) We first assume that
the deterministic assumption holds in all deployments. Based on this assumption, we
construct a verification model. The model is an abstract machine (closed model) where
injection of faults is regulated based on the fault model. The model offers precision
by revealing detailed mechanisms of fault-tolerance. Our theoretical foundation enables
us to construct a concise model with huge benefits1. For this phase, the mathematical
formulation and the proof of theorems have been stated in [3].
• (Phase 2: Validity checking of the behavior-architectural mappings) In this

phase, our focus is on two parts. We first have to check whether the deterministic as-
sumption holds in the platform. Secondly, we have to check if a deadline violation is
possible, and if this violation exceeds the constraint specified (regulated) in the fault

1 Our theorem states that we can construct a synchronous verification model (exponentially smaller reach-
able state space) provided that (1) deterministic assumption holds and (2) properties are in-machine LTL
properties without using temporal operator X. This makes formal verification of large systems practicable.
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model. Note that since the correctness of the data/mechanisms is checked in the first
phase, only the protocol checking (timing) is required. The verification model is gener-
ated from timing information of the deployment, e.g., network delay, CPU processing
time, scheduling algorithms, and so on.

General remark Our process requires the extraction of existing templates related to
fault-tolerance to new templates described in formats acceptable by back-end verification
engines. This extraction process is done only once and can be continuously reused. Similar
approaches can be found for work in STL verification [1].

4 FTOS-Verify

We have implemented our first prototype tool FTOS-Verify2, and deploy it as an Eclipse
add-on for FTOS. Currently, it enables an automatic translation from FTOS models into
two separate verification models, namely the functional model and the timing model. Also
a set of predefined specifications are annotated accordingly. More interesting formal speci-
fications can be added manually.

Regarding execution time, preliminary experiments shows that our separation reduces
the total amount of time into reasonable amount in academic projects3. Note that this can
vary due to the differences of models, e.g., how many mechanisms are introduced, or what
is the scheduling policy used in the architecture.

5 Conclusion

We seek for an efficient methodology for designing fault-tolerant systems while correctness
can be proven formally. For verification, our principle relies on a two-phase methodology.
An experimental tool is constructed with extensibility.

We list some challenges for future investigations. The first is how we can scale our ap-
proach to real-embedded systems, where computation units and platforms are much compli-
cated than academic projects. The second issue is how timing parameters can be retrieved
to have a faithful verification result.
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Abstract. The research topic presented here is model based analysis of Java programs for embedded
applications. The aim is to combine model-checking and program analysis techniques, such that model
checking takes care of dynamic features e.g. caching and program analysis provide suitable abstractions of
program blocks and control flow. In this paper we present initial results, a case, study and future directions.

1 Introduction

In the area of embedded systems, Java can be considered a suitable replacement for tradi-
tional programming languages, such as C and assembler, since the complexity of such sys-
tem continiue to increase. Java provides abstractions, relieving the programmer from worries
about the low-level and error prone details, such as memory management e.g. (de)allocation,
pointers, etc., and hardware specific details.

The use of Java, however, complicates program analyses, such as the required schedula-
bility analysis and analysis of memory usage. This is partly due to the layered architecture:
Java Virtual Machine (JVM), operating system and underlying hardware, and partly the
use of garbage collection for memory management. Additionally, applying such analyses on
systems for multi-core architectures still is an open research area [6].

The use of Java for embedded systems thus calls for development in two interdependent
areas:

Programming Language Profiles: Since standard Java is unsuitable for dependable systems
development because of the dynamic nature and unpredictable execution times, caused by
e.g. garbage collection, dynamic class-loading, and unspecified scheduling scheme, a safe
subset of the language should be provided. Though much work has been done in this area,
room for improvement still exist. Part of this research is focused on developing a predictable
Java-profile, which smoothly interacts with analysis tools.

Platform Dependent Analyses: As with programming languages, much work has been done
in the development of program analysis techniques, some especially suited for real-time
applications. Standard schedulability techniques require the computation of Worst Case
Execution Time (WCET) for each task in the system, and provide pessimistic, but safe,
answers [2]. Abstract interpretation, static analysis and model-checking techniques provide
general approaches to program analyses for ensuring program correctness with regards to
certain properties, such as null-pointers, array index errors etc. The goal in this project is to
develop new techniques combining these approaches in developing a single tool aimed at the
aforementioned Java-profile, using model-checking, aided by suitable analysis techniques.

2 Initial Experiment

In an initial effort in this project [1], a tool named SARTS, Schedulability Analyzer for
Real-Time Systems, was developed.
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The SARTS tool analyzes Java programs and constructs control flow graphs decorated
with timing information in the form of timed automata for the model checker Uppaal.
Uppaal can then be used to perform schedulability analysis, by verifying the absence of
deadlocks in the timed automata model.

For Java programs to be analyzed using SARTS, these programs must be written in the
Java profile, SCJ [5], a profile providing a simple analyzable framework for safety-critical em-
bedded Java systems, intended to be executed on the time-predictable Java processor Java
Optimized Processor (JOP) [4]. In this framework, a real-time system is a three phase sys-
tem, initialization, mission, and shutdown, with appertaining sporadic and periodic tasks.
The initialization phase is a non-critical phase setting up the system before execution, a
phase not considered in the schedulability analysis. The mission phase is the safety-critical
execution phase where periodic and sporadic tasks are released. The shutdown phase per-
forms a controlled shutdown of a running system.

The two task classes, periodic and sporadic task, each contains task specific param-
eters used in the analysis: for periodic tasks, these are offset, period, deadline, and for
sporadic tasks: minimum inter-arrival time and deadline. A task implementation contains
implementation of a Java method, run, invoked when the task is released.

This framework structure is reflected in the generated Uppaal model, in which standard
templates are created for periodic and sporadic tasks, and a template for the scheduler; a
deadline monotonic scheduling strategy using a priority ceiling protocol.

For each method in the Java program, including the task run-methods, a template is
generated, representing control flow at the byte-code level, decorated with execution time for
each byte-code instruction, information about blocking, preemption and method invocation.
These templates act as building blocks in the final Uppaal model and linked together using
synchronization channels. The resulting model follows this predefined pattern:

• One scheduler instance
• Task controllers corresponding each task in the Java program, linked with their corre-

sponding run methods
• N method models for each Java method, where N is the total number of tasks in the

Java program; this is to allow concurrent execution of each method from different tasks

This results in a single model with 1 + T + (T ∗M) timed automata run in parallel,
where T is the number of tasks and M is the number of methods in the Java program.
Method invocation is performed through channel synchronization, blocking time is modeled
by preventing preemption in the scheduler, preemption is performed using stopwatches, and
the execution time for each task is tracked using clocks. In the case of a task deadline overrun,
the failing task will cause a deadlock in the model; hence, the schedulability property of
the Java program is verified in Uppaal by verifying the absence of deadlocks.

SARTS has been applied successfully on a case study, a sorting machine built in lego,
controlled by the JOP processor and a Java control program consisting of two periodic
and two sporadic tasks, amounting to an approximate 300 lines of code. Using convex hull
approximation, a safe over approximation, this system has been verified in approximately
37 seconds using Uppaal on standard hardware.

An outline of future work includes further development of the approach using static
analysis to improve analysis result and performance, the development of further analyses
such as memory consumption, cache behavior, multi-core scheduling and finally the inte-
gration of these techniques in a single tool and possibly integration in an IDE, e.g. Eclipse,
in order to make the techniques available to developers.
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Using static analysis techniques to reduce the non-determinism in the model applies not
only to the schedulability analysis technique, but could also further improve analyses such
as memory consumption. More precise modeling of the platform should include e.g. caching
behavior, such that the analysis result become more accurate.

The approach taken in SARTS, i.e. the translation of Java programs to Uppaal models
is believed to be applicable to memory consumption analysis, by modeling the memory
allocation scheme of the Java profile. Tracking object creation in the model is deemed a
promising approach in being able to answer questions about worst case memory consump-
tion. This technique applied to the analysis of schedulability in a multi-core setting is also
considered an interesting future development.

Further development of Java profiles includes defining annotations to aid the analyses.
As of now, loop bounds must be specified by the developer in the form of simple comments
containing a constant iteration count for a each loop. Since supplying correct loop bounds
is the responsibility of the developer, this is a potential source of errors. Improvements in
this area includes automatic loop bound verification inspired by the techniques presented
in [3]. Additionally, more expressive loop bound notations could be introduced, since cases
exists where an upper bound cannot be determined accurately local to the loop e.g. a list
sort function contain loop bounds which cannot be determined locally, since they depend
on the size of the list in question.

Finally, in integrating these techniques in an IDE, it may be possible to visualize the
analysis results. In the case schedulability, code locations with heavy execution times may
be highlighted, or in the case of loop bound detection, complicated loop expressions may
be identified.

3 Acknowledgements

We would like to thank Henrik Kragh-Hansen, Kim Guldstrand Larsen and Petur Olsen for
their efforts during the initial work of this research project [1].

References

1. Thomas Bøgholm, Henrik Kragh-Hansen, Petur Olsen, Bent Thomsen, and Kim G. Larsen. Model-based
schedulability analysis of safety critical hard real-time java programs. In JTRES ’08: Proceedings of the
6th international workshop on Java technologies for real-time and embedded systems, pages 106–114, New
York, NY, USA, 2008. ACM.

2. Alan Burns and Andy Wellings. Real-Time Systems and Programming Languages. Addison Wesley
Longmain, 2001.

3. James J. Hunt, Fridtjof B. Siebert, Peter H. Schmitt, and Isabel Tonin. Provably correct loops bounds for
realtime java programs. In JTRES ’06: Proceedings of the 4th international workshop on Java technologies
for real-time and embedded systems, pages 162–169, New York, NY, USA, 2006. ACM.

4. Martin Schoeberl. JOP: A Java Optimized Processor for Embedded Real-Time Systems. PhD thesis,
Vienna University of Technology, 2005.

5. Martin Schoeberl, Hans Søndergaard, Bent Thomsen, and Anders P. Ravn. A profile for safety critical
java. In ISORC ’07: Proceedings of the 10th IEEE International Symposium on Object and Component-
Oriented Real-Time Distributed Computing, pages 94–101, Washington, DC, USA, 2007. IEEE Computer
Society.

6. Fridtjof Siebert. Jeopard: Java environment for parallel real-time development. In JTRES ’08: Proceedings
of the 6th international workshop on Java technologies for real-time and embedded systems, pages 87–93,
New York, NY, USA, 2008. ACM.

19



Verifying the PikeOS Microkernel:
First Results in the Verisoft XT Avionics Project

Christoph Baumann1 and Thorsten Bormer2

1 Saarland University, Dept. of Computer Science, Saarbrücken, Germany
baumann@wjpserver.cs.uni-sb.de

2 University of Koblenz, Dept. of Computer Science, Koblenz, Germany
tbormer@uni-koblenz.de

Abstract. In this paper, we are giving an overview of the ongoing Verisoft XT Avionics project reporting
on the progress of the project, and presenting first results in the verification of the system calls of the
microkernel.

The goal of Verisoft XT Avionics is to formally verify an existing operating system which has not been
designed for deductive code verification. The system under consideration is PikeOS, a state-of-the-art micro-
kernel developed by SYSGO AG, which is used in a variety of embedded applications. For automated formal
verification we deploy Microsoft’s Verifying C Compiler (VCC).

Introduction Functional correctness of the built-in operating system is a crucial require-
ment for the reliability of safety- and security-critical systems. Hence, operating system
kernels are a worthwhile target for formal verification. The goal of the Verisoft XT Avionics
sub-project is to prove functional correctness of the microkernel in PikeOS, a commercial
operating system for embedded systems [1].

Unlike the predecessor project Verisoft I, we do not target pervasive verification of
the whole system stack consisting of – amongst others – the hardware, compilers and the
microkernel. We rather pick one layer, the PikeOS microkernel, to show that verification of
a real world implementation of a considerable size is a feasible task, taking advantage of
the high degree of automation when using verification tools like VCC.

The PikeOS System PikeOS (see http://www.pikeos.com/) consists of a microkernel
acting as paravirtualizing hypervisor and a system software component. The verification
target we have chosen for our project is the PikeOS version for the PowerPC processor
family, the OEA architecture, and the MPC5200 platform [6,7].

The roots of PikeOS can be seen in the L4 family of microkernels, although the PikeOS
kernel is particularly tailored to the context of embedded systems, featuring real-time func-
tionality and resource partitioning.

Along with another component on top of the microkernel layers, the so-called system
software, the PikeOS kernel provides partitioning features. This allows to virtualize sev-
eral applications on one CPU, where each application runs in a secure environment with
configurable access to other partitions, if desired.

In order to provide real-time functionality, there are many regions within the kernel
code where execution may be preempted – we thus have a concurrent kernel. Moreover, the
kernel is multi-threaded.

To allow for easy adaptation to other platforms and CPU families, the kernel is struc-
tured into three layers. There are two layers close to the hardware providing processor
abstraction as well as platform-dependent functions. These layers are partly written in
PowerPC assembly, which makes about a quarter of the overall code. On top of these
abstraction layers, the generic microkernel provides features like tasks and threads with
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real-time scheduling and memory management and is written entirely in C. This layer is
approx. the size of both lower layers combined. In total, the code size of PikeOS is smaller
than that of, e.g. Linux by several orders of magnitude.

Verification Methodology and Toolchain To show correctness of the implementation
of PikeOS, we use the Verifying C Compiler (VCC) developed by Microsoft Research. The
VCC toolchain allows for modular verification of C programs using method contracts and
invariants over data structures. These contracts and invariants are stored as annotations
within the source code, similar to the approach and syntax used in, e.g. Caduceus [5] or
SPEC# (see http://research.microsoft.com/specsharp).

As most verifying compilers today, VCC works using an internal two-stage process.
Firstly, the annotated C code is translated into first-order logic via an intermediate language
called BoogiePL [4]. BoogiePL is a simple imperative language with embedded assertions.
This representation is further transformed into a set of first-order logic formulas (called
verification conditions), which state that the program satisfies the embedded assertions. In
the second stage, the resulting formulas are given to an automatic theorem prover (TP) resp.
SMT solver (in our case Z3 [3]) together with a background theory capturing the semantics
of C’s built-in operators, etc. The prover checks whether the verification conditions are
entailed by the background theory. Entailment implies that the original program is correct
w.r.t. its specification.

One distinguishing feature of this verification tool, especially important in our setup, is
the support for concurrency (see [2] for details).

Verification of the PikeOS Microkernel As already mentioned, we are verifying a
real-world implementation of a microkernel that is deployed and used in industry and has
not been written with verification in mind. For now, we only consider functional properties
of the microkernel – the specifications for this are in parts derived from the informal de-
scriptions of the PikeOS kernel (including the reference manual). In addition, code analysis
and inspection provides further insight into implementation details.

One of the first steps to verify PikeOS have been helper functions with limited depen-
dencies on other parts of the system. The next verification target are system calls, both
to demonstrate pervasive verification through the different layers of the microkernel and to
introduce externally visible contracts of the kernel.

Verification of System Calls As a first target for verification, we have chosen a simple
system call which changes the priority of a thread (named p4syscall_fast_set_prio).
This call has a rather simple functionality, but it serves very well as an example because
its execution spans all levels of the PikeOS microkernel, from high-level kernel functionality
to hardware-related levels and the user-level interface (system calls are invoked via user
interrupts).

Handling Assembly Code On the hardware-related level of the system call to be verified,
(inline) assembly code is used to directly access the underlying hardware. We model the
relevant parts of the hardware as a C struct in the ghost-state of the program, to be able
to verify code including PowerPC assembly. The effects of assembly instructions can then
be expressed using this ghost model.

Henceforth, each assembly instruction is modeled by a corresponding specification func-
tion that operates on the machine model C struct – this allows us to replace assembly
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code by a sequence of specification functions being able to be annotated and verified using
VCC like normal C code. The specifications of these assembly code parts are then used as
contracts on the upper layers of the system call implementation.

The Abstract Layer On the upper layers of the kernel, the functional verification of PikeOS
has to establish the contracts that enable users of the microkernel to depend on the speci-
fications made for the outer boundaries of the kernel as given in its documentation.

Because system calls are at the user’s interface to the kernel and the PikeOS system is
multi-platform, the kernel’s specification has to hide any PowerPC implementation details
to ensure proper encapsulation. Further, the specification has to reflect the effects of the
system calls as given in the documentation of PikeOS and thus the entities defined in this
documentation have to be available on the VCC specification level.

Therefore, an abstract model of the kernel’s state is introduced that captures the essen-
tial properties of the kernels state, including the current hardware configuration. As with
the model of the PowerPC hardware, this abstract model is kept in the ghost state of the
program.

Some of the fields of the abstract kernel model are related to the underlying machine
state and thus to the hardware model mentioned above. These relations are explicitly spec-
ified with object invariants depending on both the abstract model and the hardware model.
The VCC methodology then ensures that the relation between the abstract model and
concrete machine model is obeyed by the implementation.

First Results Based on the model of the underlying PowerPC hardware, we were able to
verify low-level functions of the PikeOS kernel. This then enabled us to verify first system
calls of the kernel – for the time being under the restriction that no preemption takes place
during the call. In the verification of a system call that crossed the boundary between C
and assembly, a first version of an abstract model of the kernel’s state was defined. The
elements of this abstract state that are visible to other components directly correspond to
the entities described in the PikeOS documentation.

In the next steps, we will extend the verification effort to further, more complex, system
calls. In addition, annotations dealing with concurrency and ownership are ongoing work.
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Abstract. Model-based timed testing is a suitable method for the test of embedded systems which allows
the specification of timing behavior in the model as well as in the test cases. As such, it is well suited for
the testing of embedded systems, which usually puts a much higher demand on the amount of test cases
and quality of the test process than other software systems do. While a thoroughly developed theory of
model-based timed testing exists, there are only few examples of industrial applications.

In this presentation, we describe our experiences from an ongoing industrial case study employing model-
based timed testing. The goal of this cooperation is to define an industrial strength process for model-based
timed testing based on practical experience gained within the cooperation. We will present the adaptions
necessary to apply model-based timed testing within an industrial environment. Using a very simplified sub
system of the tested product, we were able to successfully apply timed testing to the real system of the
industrial partner. We will describe typical problems arising during the adaptations and present suitable
solutions. Based on this, we will present a set of lessons learned, that should be of interest for practitioners
as well as for people working on the theory of model-based methods.

1 Motivation

Due to the high manual effort needed for testing, testing costs can be up to 70% of the
overall system development costs. Automated techniques for test case generation, execution
and evaluation can be used to reduce these costs.

A model-based approach forms a good foundation for test automation. In a model-based
approach, the development process starts with the definition of a model that unambiguously
describes an abstract view of the system’s behavior, derived from the system requirements
specification. Algorithms exist which can derive test cases from such a model, which then
can be executed and evaluated.

One method of model-based testing is specification-based testing: the behavior models,
test-generation, -execution and -evaluation are described using a formal semantics in order
to be able to prove the correctness of the approach. [1] presents one of the first specification-
based test theories (a similar approach is described in [2]).

For safety-critical systems and many embedded systems the proper timing has to be
taken into account. Timed testing is an approach to incorporate timing into model-based
testing. In the last years, several specification based approaches for timed testing have been
developed ([3] - [5]). At least two academic tools support timed testing. One is based on
TorX [6] and the other, called UPPAAL Tron [7], on the model checker UPPAAL.

Complexity, configurability as well as the demand on quality of embedded systems are
increasing and inducing higher demands on testing embedded applications. Thus, industrial
companies are looking for cost-efficient solutions that can cope with these changes.

2 Test process

A simplified industrial test process typical includes the following steps: test planning and
control, test analysis and design, test implementation and execution, evaluating exit criteria
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and reporting as well as test closure activities and the corresponding responsible roles (cf.
[8]). Within the test planning step, the requirements engineer identifies and structures
the requirements of the customer. He defines the objectives of testing and specifies test
activities. The control part of this step focuses on ensuring success of the test project.

There are numerous methods to analyze and specify the customers requirements. In a
MBT approach, requirements are documented in a formal language. The industrial process
of our industrial partner is only lightly based on formal methods, so most of the requirements
documentation is in natural language.

Test analysis and design consists of the creation of test specifications describing test
purposes and test goals. An MBT approach formalizes these test specifications as a model
of the system.

In the next step, the test harness is defined by the domain engineer. Additionally, test
cases are written based on the test spec resp. the system’s model. Ideally, these test cases
can be automatically derived from the model.

In the following step, implementation and execution of the previously specified test cases
is done. Within the limited scope of our current case study, we did not implement test cases,
but instead used on-line testing as provided by UPPAAL Tron.

After test execution, test logs are checked against the exit criteria of the test planning,
and decisions for continuation of test activities are taken. For each concluded test, a test
report is written.

During the test project closure activities, it is checked if all deliverables have been
delivered, and a final report including a list of open points is written. The test environment
is shut down and archived for later re-use. In a last step, lessons learned are analysed and
presented.

Our first case study was meant as a proof-of-concept, and therefore aimed more at
timeliness than at completeness. Therefore we did not run a full blown industrial strength
test project, but in fact just joined ongoing test activities at our industrial partner. We
focused on a sub-system of the complete system, namely the signal controller, and ran
some representative test cases there.

3 Case Study

In practice, activities within the test project are not done by the book, but deviate from
the defined processes for various reasons.

In our test project, there was no single point of reference for the system specification.
Instead, information is found in different places: in the domain engineers’s experience, in
the documented system specification and in the implementation of the system itself. All
this information is neither complete nor consistent – in the end the domain engineers are
needed to clarify all open questions.

Thus we used an incremental approach in the modeling process: the model was en-
hanced in small steps, and then tested against the real implementations or using the model
checking capabilities of UPPAAL TRON. Running the model against the implementation is
tedious, as the target hardware of the embedded application is often not readily accessible.
In our case, the target hardware can only be accessed in the company’s own test channel.
Availability of the test channel is low, access is costly, and domain engineers are needed for
operating the test channel. Note that this problem is typical of embedded system applica-
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tion, while for pure software solutions one can package the whole test harness in a virtual
machine.

Instead of using the real target system, we have been able to use simulators of the
target system. Some were pure software solutions, where others needed extra hardware
(e.g. specific bus adapters). In both cases access to these simulators was effortless. We have
been able to run the simulators within our own academic development environment instead
of relying on the company’s facilities. This increased the availability and also allows for test
scenarios which are too difficult or even impossible in target environment, e.g disturbance
tests.

In the end, we have been able to run a simple model against the target hardware. The
model used for testing was restricted to a small part of functionality, which was basically
sending commands to set certain signal patterns and receiving the appropriate responses.
The timing aspects in the model were delays and upper bounds on message responses. No
bugs were found. This is not surprising, since the signal controller and the signals have
already reached a high level of maturity due to extensive use in the field. So, in order to
check our test set, we injected some timimg and behavior errors into the SUT. All injected
errors were found.

4 Future Work

Our current study was a proof-of-concept only. In further studies, we want to model larger
parts of the system. The final goal would be a complete model of a railway station, but
currently it is hard to say if this will be feasible within the given time frame. The next step
is to take in more complex timing behavior of the system.

The goal is to be able to define a realistic process for model-based timed testing. A
focus in our activities is the investigation of methods for defining re-usable models. This
could lead to general, configurable test models similar to those found in software product
line approaches. In the ideal case, it would be possible to provide domain specific model
libraries.
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Abstract. This paper presents an abstraction of reactive systems interacting with relational databases.
This abstraction is used as a modeling technique, enabling model-based testing of systems utilizing relational
databases. The abstraction is developed to work on timed-automata models, in conjunction with Uppaal
TRON. The abstraction substitutes each table in the database with two sets: present and absent. The
present set provides an under-approximation of the set of relations which are present in the database, and
the absent set is an under-approximation of the set of relations being absent from the database. It is expected
that the approach makes data-intensive models more manageable in model checking and testing.

1 Introduction

Safety critical systems are becoming more and more complex. Often using databases to
store huge amounts of data influencing the systems. It is therefore important to be able
to model these databases in an efficient way. In this paper we propose a novel approach
to modeling reactive systems interacting with databases with the purpose of doing model
checking and model-based testing.

We consider systems interacting with a database in a shallow manner, meaning the
system does not perform complex manipulation of the data. Rather, the system can only
insert or remove relations from the database, and the control flow of the system can depend
on the presence or absence of relations.

We propose an abstraction of the database using two sets: present and absent. These
sets provide under-approximations of present and absent data respectively. This way we
can abstract away from the actual content of the database and only be concerned with a
relatively small subset of data.

2 Model-Based Testing

Model-based testing has it’s roots in the formal approaches developed by Tretmans [4,5],
and implemented in the tool TorX [6]. These approaches have been extended to include
real-time by Hessel et al. [2], and implemented in Uppaal TRON [3].

Although the method in this paper does not concern real-time systems directly, we
assume the same black-box conformance testing setup, harvest the inspiration from our
previous experience in this area and aim at extending this framework to handle real-time
systems that are also data intensive.

Uppaal TRON is an online conformance testing tool for real-time systems which as-
sumes timed automata model as a test specification. The specifications unavoidably tend to
be non-deterministic in timing and behavior. Non-deterministic specifications lead to lack
of control over IUT during testing, where IUT is free to choose more than one option of how
to respond and proceed. This poses a challenge to tester, which has to check the behavior
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against multiple response options, foresee and choose from multiple options for input ac-
tions. The problem of multiple choices is even more extreme in real-time cases where the
number of timing choices is uncountably large.

The solution to non-deterministic requirements is adaptive testing, where the test is
shaped like a tree with condition checks in nodes and input stimuli actions on edges. Such
trees can be stored and executed offline or executed at the same time while being derived
online (focusing only on relevant part of specification at a time.) In both online and offline
model-based testing cases, the model state space is being explored and tests are generated
based on current estimate of possible states that IUT can be in.

Uppaal TRON uses difference bound matrix (DBM [1]) structures and Uppaal algo-
rithms to encode and operate on timed automata state estimates. In a similar spirit, we
propose simple bit-vectors to abstract and encode the state estimate of relational database-
like data in Uppaal timed automata models.

3 Abstracting Data Intensive Systems

We define the following sets:

D is a set of elements (e.g. records, relations, tuples etc.) The complete set of values that
can be entered into the database.

Dn ⊂ D is the concrete state of a database. The database used by the real system and can
contain huge amounts of data.

C ⊆ D is a set of representative elements. These can be chosen intuitively or by some
heuristic, e.g. a few from each table.

Pn ⊆ C is the present set, containing the elements known to be present in database Dn.
An ⊆ C is the absent set, containing the elements know to be absent from database Dn.
d ∈ D is an element in the actual system.
c ∈ C is an element in the abstract system.

Given these sets some interesting observations follow:

Pn = ∅ ∧An = ∅ means no knowledge about the contents of database Dn.
Pn ∪An = C means everything is known about database Dn, given the current C.
Pn ∩An = ∅ must always hold. The same element can never be present in and absent from

the same database at the same time.

The system can perform three operations: Insert, remove, and query for presence. Below
we explain how operations are performed.

Insert: Dn = Dn ∪ {c} ⇒ Pn = Pn ∪ {c} ∧ An = An \{c}
Remove: Dn = Dn \ {c} ⇒ Pn = Pn \ {c} ∧ An = An∪{c}
Query with positive outcome: c ∈ Dn ⇒ Pn = Pn ∪ {c} ∧ assert c /∈ An

Query with negative outcome: c /∈ Dn ⇒ An = An ∪ {c} ∧ assert c /∈ Pn

Theorem 1 Operations on Pn and An are consistent and sound with respect to an actual
Dn in the following sense:

1. The Pn and An captured info does not contradict.
(a) ∀c ∈ Dn ⇒ c /∈ An

(b) ∀c /∈ Dn ⇒ c /∈ Pn
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2. Pn and An capture part of the Dn state.
(a) ∀c ∈ Pn ⇒ c ∈ Dn

(b) ∀c ∈ An ⇒ c /∈ Dn

Sketch of a proof by induction: 1) take Pn = An = ∅ as the initial state – the properties
hold trivially, 2) start with arbitrary sets Pn∩An = ∅, 3) apply the operations with arbitrary
element and show that the properties are preserved.

Example: Figure 1 illustrates a simple example of the usage of present/absent sets. The
user performs a login action. The IUT has to respond with OK or Error depending on user
status. The environment has cases for all combinations of present/absent. When the IUT
sends an OK or Error the environment checks it’s guards and performs updates. The Add
and Remove methods in the model are used in case no prior knowledge is available. These
will be used in a similar way if the system has to insert values into the database. A trace
from the example can be used to populate the database to ensure a certain part of the
model is reached, e.g. by setting a user to absent and not present will ensure the left-most
edge will be taken.

A) B)

Err[cid]!
OK[cid]!

OK[cid]!

Err[cid]?

login[id]?

Present(cid) && 
Absent(cid)

!Present(cid) && 
!Absent(cid)

id:UserID

Error

cid = id

Remove(cid)
Present(cid) && 
!Absent(cid)

Add(cid)

Absent(cid) && 
!Present(cid) login[id]!

Err[id]?

OK[id]?

Fig. 1. Example. IUT is the database with present/absent lists (A), and the tester plays the role of
environment/user (B).

4 Expected Results

It is expected that using this approach the data-intensive timed-automata models become
more manageable during model checking as well as testing for several reasons. 1) The state-
space of the model can be significantly reduced using this abstraction. This is accomplished
by reducing the, potentially infinitely large, database into a set of relatively small lists.
2) in offline test generation, the proposed sets directly reveal what data items have to be
present/absent in the database in order to fulfill the purpose of the test. 3) During online
test, the state estimate size does not grow due to data uncertainty anymore and the precision
is increasing as the test progresses.
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Offensive Approach to Teaching Information Security: “Aachen Summer
School Applied IT Security”
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