
Aachen
Department of Computer Science

Technical Report

A New Algorithm for Finding Trees

with Many Leaves

Joachim Kneis, Alexander Langer, and Peter Rossmanith

ISSN 0935–3232 · Aachener Informatik Berichte · AIB-2008-15

RWTH Aachen · Department of Computer Science · Juni 2001

The publications of the Department of Computer Science of RWTH Aachen
University are in general accessible through the World Wide Web.

http://aib.informatik.rwth-aachen.de/

A New Algorithm for

Finding Trees with Many Leaves⋆

Joachim Kneis, Alexander Langer, Peter Rossmanith

Dept. of Computer Science, RWTH Aachen University, Germany
Email: {kneis, langer, rossmani}@cs.rwth-aachen.de

Abstract. We present an algorithm that finds trees with at least k leaves in
undirected and directed graphs. These problems are known as Maximum Leaf

Spanning Tree for undirected graphs, and, respectively, Directed Maximum

Leaf Out-Tree and Directed Maximum Leaf Spanning Out-Tree in the
case of directed graphs.
The run time of our algorithm is O(poly(|V |) + 4kk2) on undirected graphs, and
O(4k|V | · |E|) on directed graphs. Currently, the fastest algorithms for these prob-
lems have run times of O(poly(n) + 6.75kpoly(k)) and 2O(k log k)poly(n), respec-
tively.

1 Introduction

In this paper we consider the graph theoretical problem of finding trees and
spanning trees in graphs, so that their number of leaves is maximal. To be more
precise, given a graph G and a number k, we are to find a (spanning) tree
with at least k leaves. For undirected graphs, the terms tree and spanning tree
are common. The terms translate to out-tree and spanning out-tree on directed
graphs. Here, a (spanning) out-tree is a rooted tree, such that every leaf (every
node of G) can be reached from the root via a directed path within this tree.

Being a problem that has many practical applications, e.g., in network de-
sign [10, 18, 21, 24], it is already widely studied with regard to its complexity
and approximability. All versions are APX-hard [15] and there is a polynomial
time 2-approximation for undirected graphs [23] and a 3-approximation in almost
linear time [20]. On cubic graphs, a 3/2-approximation was found recently [8].

In the area of parameterized algorithms, the Maximum Leaf Spanning

Tree problem is very prominent. Parameterized complexity theory is an ap-
proach to explore whether hard problems can be solved exactly with a run time
that comes close to polynomial time on well-behaved instances. Formally, a pa-
rameterized problem L is a set of pairs (I, k) where I is an instance and k the
parameter. A parameterized problem L is called fixed parameter tractable and
belongs to the complexity class FPT if there is an algorithm that decides mem-
bership of L in time f(k)poly(|I|), where f is an arbitrary function. If the param-
eter is small, such an algorithm can be quite efficient in spite of the NP-hardness
of the problem — in particular if f is a moderately exponential function.

The parameterized version of the undirected case is defined as follows:

Maximum Leaf Spanning Tree (MLST)

Input: An undirected graph G = (V,E), a positive integer k
Parameter: k
Question: Does G have a spanning tree with at least k leaves?

⋆ Supported by the DFG under grant RO 927/7-1

It is long known that MLST ∈ FPT because a graph G contains a k-leaf
spanning tree iff G has K1,k (a k-star) as a minor [13]. However, the proof uses
the graph minor theorem from Robertson and Seymour [22] and only proves the
existence of an algorithm with running time f(k)|V |3.

The first explicit algorithm is due to Bodlaender [3], who uses the fact that
G does contain K1,k as a minor if its treewidth is larger than wk, a value that
depends on k. The algorithm hence tests if the treewidth of G is bigger than w.
In this case, the algorithm directly answers yes. Otherwise, it uses dynamic pro-
gramming on a small tree decomposition of G. The overall run time is roughly
O((17k4)! |G|).

In the following years, the run time of algorithms deciding MLST was im-
proved further to O((2k)4kpoly(|G|)) by Downey and Fellows [11], and to O(|G|+
14.23kk) by Fellows, McCartin, Rosamond, and Stege [14].

The latter was the first algorithm with an exponential f(k) and the first
algorithm that employs a small problem kernel : In polynomial time an instance
(G, k) of MLST is reduced to an equivalent instance (G′, k′) with |G′| ≤ f(k) and
k′ ≤ g(k). Note that the existence of a small problem kernel for a parameterized
problem implies that the respective problem is in FPT.

Bonsma, Brueggemann, and Woeginger [5] use an involved result from ex-
tremal graph theory by Linial and Sturtevant [19], and Kleitman and West [17] to
bound the number of nodes that can possibly be leaves by 4k. A brute force check
for each k-subset of these 4k nodes yields a run time bound of O(|V |3+9.4815kk3).
A new problem kernel of size 3.75k by Estivill-Castro, Fellows, Langston, and
Rosamond [12] improves the exponential factor of this algorithm to 8.12k [4].

The currently best known algorithm for MLST is due to Bonsma and Zick-
feld [9], who reduce the instance to a graph without certain subgraphs called
diamonds and blossoms that admit a better extremal result, obtaining a run
time bound of O(poly(|V |) + 6.75kpoly(k)).

In the directed case, we have to distinguish between the two following vari-
ants:

Directed Maximum Leaf Out-Tree (DMLOT)

Input: A directed graph G = (V,E), a positive integer k
Parameter: k
Question: Does G contain a rooted out-tree with at least k leaves?

Directed Maximum Leaf Spanning Out-Tree (DMLST)

Input: An directed graph G = (V,E), a positive integer k
Parameter: k
Question: Does G have a spanning tree with at least k leaves?

While it is easy to see that a k-leaf tree in an undirected graph can always be
extended to a k-leaf spanning tree, this is not the case for directed graphs that
are not strongly connected (see Figure 1 [6]).

For both of these problems, membership in FPT was discovered only recently,
since neither the graph minor theorem by Robertson and Seymour in its current
shape, nor the method used by Bodlaender, nor the extremal results by Kleitman-
West are applicable for directed graphs.

In the case of DMLOT, Alon, Fomin, Gutin, Krivelevich, and Saurabh [2]
proved an extremal result for directed graphs, so that either an k-leaf out-tree

Fig. 1. A graph containing a 3-leaf out-tree, but no 3-leaf spanning tree.

exists, or the pathwidth of the underlying graph is bounded by 2k2. This allows
dynamic programming, so that an overall run time bound of 2O(k2 log k)poly(|V |)
can be achieved, answering the long open question whether DMLOT is fixed
parameter tractable. They could further improve this [1] to 2O(k log2 k)poly(|V |)
and, if G is acyclic, to 2O(k log k)poly(|V |).

The more important question, if DMLST ∈ FPT, remained open. Only very
recently, Bonsma and Dorn [6] were able to answer this question in the affirma-
tive. Their approach is based on pathwidth and dynamic programming as well
and yields a run time bound of 2O(k3 log k)poly(|V |). In a subsequent paper [7],
they proved that a run time of 2O(k log k)poly(|V |) suffices to solve both, DMLOT

and DMLST.
The current state of affairs can be summarized as follows: While algorithms

for MLST can already be considered efficient for sufficiently small values of k,
today’s algorithm for directed graphs are still far from being practical.

Our contribution

Recall that in the directed case a k-leaf out-tree cannot necessarily be extended
to a k-leaf spanning out-tree even if G does contain a spanning out-tree (see
Figure 1). Therefore previous algorithms for DMLOT cannot solve DMLST

even with small modifications. In this paper, we show that a k-leaf out-tree with
root r can always be extended to a k-leaf spanning out-tree if G does contain a
spanning out-tree rooted in r.

We develop a new algorithm that — in contrast to the prior approaches based
on extremal graph theory — grows an out-tree from the root and therefore solves
both DMLOT and DMLST. The algorithm recursively selects and tries two of
the many possible ways to extend the tree. We prove that at least one of these
recursive calls finds a k-leaf tree, if such a tree exists. The number of recursive
calls can be bounded by 4k. The same algorithm can be used to solve MLST.

2 Preliminaries

Let G = (V,E) be a graph, and let n := |V | and m := |E| be the number of
vertices and edges, respectively. If G is undirected, we call a (spanning) tree T in
G a k-leaf (spanning) tree iff T has at least k leaves. If G is a directed graph, a
rooted out-tree T is a tree in G, such that T has a unique root r = root(T), and
each vertex in T can be reached by a unique directed path from r in T . A k-leaf
out-tree is an out-tree with at least k leaves, and a k-leaf spanning out-tree is a
k-leaf out-tree that is also a spanning out-tree.

In this paper, we do not distinguish between directed and undirected graphs
except when explicitly stated. The results and the algorithm can easily be trans-
ferred from directed graphs to undirected graphs and vice versa — in particular,
if undirected graphs are seen as symmetric directed graphs, where every edge has

an reverse edge. Such a representation is commonly used by algorithmic graph
libraries like LEDA. Edges are therefore denoted by (u, v). Without loss of gen-
erality (k > 2 or n 6= 2), trees in undirected graphs are assumed to be rooted,
and we use terms tree and spanning tree for out-tree and spanning out-tree.

Let T be a tree in G. V (T) denotes the set of nodes of T , E(T) the set
of edges of T . The root, leaves, and inner nodes of T are denoted by root(T),
leaves(T) and inner(T) := V (T) \ leaves(T), respectively.

We denote by N(v) := {u ∈ V | (v, u) ∈ E } the set of all neighbors of v ∈ V ,
N [v] := N(v) ∪ {v}, and for U ⊆ V we let N(U) :=

⋃
u∈U N(u). For a tree T

and v ∈ V , we set NT (v) := N(v) \ V (T). Similarly, NT (U) := N(U) \ V (T) for
U ⊆ V .

For v ∈ V , let Tv := (N [v],
⋃

u∈N(v){(v, u)}) be the star rooted in v that
contains all neighbors of v.

Recall that our algorithm grows a tree from the root. To do so, the algorithm
further distinguishes between leaves of trees that will be leaves in the final k-
leaf tree (R), and leaves that are still allowed to become inner nodes (B), when
the tree is extended by the algorithm. This extension consists of the complete
remaining neighborhood of the particular node. The resulting tree T will be
such that each inner node has all of its neighbors in V (T). We call such trees
inner-maximal trees.

Definition 1. Let G = (V,E) be a graph, and let T be a tree. If N(inner(T)) ⊆
V (T), we call T an inner-maximal tree. A leaf-labeled tree is a 3-tuple (T,R,B),
such that T is a tree, and R and B form a partition of leaves(T). (T,R,B) is an
inner-maximal leaf-labeled tree, if T is inner-maximal.

For trees T 6= T ′, we say T ′ extends T , denoted by T ′ ≻ T , iff root(T ′) =
root(T) and T is an induced subgraph of T ′. If (T,R,B) is a leaf-labeled tree and
T ′ is a tree such that T ′ ≻ T and R ⊆ leaves(T ′) (R-colored leaves of T remain
leaves in T ′), we say T ′ is an leaf-preserving extension of (T,R,B), denoted by
T ′ ≻ (T,R,B). We say a leaf-labeled tree (T ′, R′, B′) extends a leaf-labeled tree
(T,R,B), denoted by (T ′, R′, B′) ≻ (T,R,B), iff T ′ ≻ (T,R,B).

Lemma 1. Let (T,R,B) be an inner-maximal leaf-labeled tree, and T ′ ≻ (T,R,B)
a leaf-preserving extension of (T,R,B). Then B 6= ∅.

Proof. Since T 6= T ′, there is x ∈ V (T ′) with x /∈ V (T). Let x1 := root(T) =
root(T ′) and consider the path x1, . . . , xl with x = xl from x1 to x in T . Since
x = xl /∈ V (T), there is some i such that xi ∈ V (T) and xi+1 6∈ V (T). Since
T ≺ T ′, xi is a leaf in T and hence xi ∈ leaves(T) = R ∪ B. On the other hand,
xi ∈ inner(T ′), and with R ⊆ leaves(T ′), we have xi ∈ B.

3 k-Leaf Trees versus k-Leaf Spanning Trees

In this section, we show when and how k-leaf trees can be extended to k-leaf
spanning trees. For this to work, remember that we consider trees with at least
k leaves. In particular, we allow that the resulting spanning tree has more leaves
than the originating k-leaf tree. While Lemma 2 can be considered folklore,
Lemma 3 is a new contribution that significantly eases our search for k-leaf
spanning trees in directed graphs.

Lemma 2. A connected, undirected graph G = (V,E) contains a k-leaf tree iff
G contains a k-leaf spanning tree. Furthermore, each k-leaf tree can be expanded
to a k-leaf spanning tree in time O(n + m).

Proof. Let T be a tree in G with at least k leaves, and let l := |V − V (T)| be
the number of nodes that are not part of T . If l = 0, then T is a spanning tree
with at least k leaves. If otherwise l > 0, choose u ∈ V (T) and v ∈ NT (V (T)),
such that u and v are adjacent. Let T ′ := T + {u, v}. It is easy to see that T ′

has at least as many leaves as T . Furthermore, this operation can efficiently be
done with a breadth-first-search on G starting in V (T), and hence after at most
O(n+m) steps a spanning tree with at least k leaves can be constructed from T .

In the undirected case, it is therefore sufficient to search for an arbitrary tree
with at least k leaves. If an explicit k-leaf spanning tree is asked for, the k-leaf
tree can then be expanded to a spanning tree using an efficient postprocessing
operation.

Lemma 2 is, however, not applicable for directed graphs, as seen in Figure 1:
It is easy to see that this graph contains an out-tree with three leaves, but the
unique spanning out-tree contains only one leaf. If we fix the root of the trees,
we obtain the following weaker result for directed graphs.

Lemma 3. Let G = (V,E) be a directed graph. If G contains a k-leaf spanning
out-tree rooted in r, then any k-leaf out-tree rooted in r can be expanded to a
k-leaf spanning out-tree of G in time O(n + m).

Proof. Let T be an out-tree that has at least k leaves, let x1 := r be its root, and
let l := |V −V (T)| be the number of nodes that are not in T . If l = 0, then T is a
spanning out-tree for G with at least k leaves. If l > 0, choose x ∈ V −V (T) and
consider a path x1, x2, . . . , xs with xs = x from x1 to x. Since G has a spanning
tree rooted in r = x1, such a path must exist in G. Furthermore, x /∈ V (T) and
hence there is 1 ≤ i ≤ s such that xi ∈ V (T) and xj /∈ U for each j = i+1, . . . , s.
It is easy to see that by adding the path xi, . . . , xs to T , the number of leaves does
not decrease. Repeating this procedure yields a spanning out-tree for G that has
at least k leaves. Again, this can be efficiently done with a breadth-first-search
on G, which starts in T and takes time at most O(n + m). See Figure 2 for an
illustration.

4 The Algorithm

In this section, we introduce Algorithm 1, which given an inner-maximal leaf-
labeled tree (T,R,B) recursively decides whether there is a k-leaf tree T ′ �
(T,R,B). Informally, the algorithm works as follows: Choose a node u ∈ B and
recursively test whether there is a solution where u is a leaf, or whether there is
a solution where u is an inner node. In the first case, u is moved from B to the
set of fixed leaves R, so that they are preserved in solutions T ′. In the second
case, u is considered an inner node and all of its outgoing edges to nodes in
NT (u) are added to T . The upcoming Lemma 4 guarantees that at least one of
these two branches is successful, if a solution exists at all. In the special case
that |NT (u)| ≤ 1, we can skip the latter of the two branches by Lemma 5 and

r = x1 r = x1

xi

xi+1

x = xs

r = x1

Fig. 2. How to extend a k-leaf out-tree into a k-leaf spanning out-tree: For the ease of illustra-
tion, we do not show all the edges in G. A 4-leaf out-tree is depicted in the first figure. The
second figure shows an arbitrary spanning out-tree, we chose one with two leaves. We can enrich
the first out-tree with edges from the spanning out-tree so that all nodes are covered.

Corollary 1. Please note that the resulting algorithm is basically the same for
directed and undirected graphs.

Lemma 4. Let G = (V,E) be a graph, (T,R,B) a leaf-labeled tree, and x ∈ B.

1. If there is no k-leaf tree T ′, such that T ′ � (T,R ∪ {x}, B \ {x}), then all
k-leaf trees T ′ with T ′ � (T,R,B) have x ∈ inner(T ′).

2. If there is a k-leaf tree T ′, such that T ′ � (T,R,B) and x ∈ inner(T ′), then
there is also a k-leaf tree T ′′ � (T +{ (x, u) | u ∈ NT (x) }, R,NT (x)∪B\{x}).

Proof. 1. Let T ′ be a k-leaf tree, such that T ′ � (T,R,B), i.e., T ′ is a leaf-
preserving extension of T . Then either x ∈ inner(T ′) or x ∈ leaves(T ′). If x ∈
leaves(T ′), then T ′ is also a leaf-preserving extension of (T,R ∪ {x}, B \ {x}).

2. Let T ′ be a k-leaf tree, such that T ′ � (T,R,B) and x ∈ inner(T ′). First
note that NT (x) 6= ∅, because x ∈ inner(T ′) and T is an induced subgraph of
T ′. Hence consider arbitrary y ∈ NT (x). If y /∈ V (T ′), then we can construct
a k-leaf tree T ′′ from T ′ by adding y and the edge (x, y). If y ∈ V (T ′), but
(x, y) /∈ E(T ′), consider the unique path x1, x2, . . . , xi, y from x1 := root(T ′) to
y in T ′. We can now replace the edge (xi, y) with (x, y) without decreasing the
number of leaves in T ′: x is inner node in T ′ by definition, and y ∈ leaves(T ′)
implies y ∈ leaves(T ′′). Furthermore, the connectivity of T ′ remains intact. See
Figure 3 for an example. Doing so iteratively for all neighbors y of x yields
a k-leaf tree T ′′ with { (x, u) | u ∈ NT (x) } ⊆ E(T ′′). Therefore we obtain
T ′′ � (T + { (x, u) | u ∈ NT (x) }, R,NT (x) ∪ B \ {x}).

The algorithm furthermore does only fix some node x as an inner node, if this
will result in a tree that has at least two new leaves. Hence, paths are followed
until at least two new nodes have been found.

Lemma 5. Let G = (V,E) be a graph, (T,R,B) a leaf-labeled tree and x ∈ B
with NT (x) = {y}. If there is no k-leaf tree that extends (T,R ∪ {x}, B \ {x}),
then there is no k-leaf tree that extends (T + (x, y), R ∪ {y}, B \ {x}).

Proof. Assume T ′ is a k-leaf tree that extends (T + (x, y), R ∪ {y}, B \ {x}).
Since in particular T ′ ≻ T + (x, y) ≻ T , y is the only child of x in T ′, and since
T ′ ≻ (T + (x, y), R ∪ {y}, B \ {x}), y is leaf in T ′. Hence y can be removed from
T ′, obtaining a k-leaf tree T ′′ with x ∈ leaves(T ′′), i.e., T ′′ ≻ (T,R∪{x}, B\{x}).

Algorithm 1 A fast algorithm for maximum leaf problems.
Algorithm MaxLeaf:
Input: Graph G = (V, E), an inner-maximal leaf-labeled tree (T, R, B), k ∈ N

Output: Is there a k-leaf tree T ′ � (T, R, B)?

01: if |R| + |B| ≥ k then return “yes”
02: if B = ∅ then return “no”
03: Choose u ∈ B.

// Try branch where u is a leaf
04: if MaxLeaf(G, T, R ∪ {u}, B \ {u}, k) then return “yes”

// If u is not a leaf, it must be inner node in all extending solutions
05: B := B \ {u}
06: N := N

T
(u)

07: T := T ∪ { (u, u′) | u′ ∈ N }
// follow paths, see Lemma 5
08: while |N | = 1 do

09: u := v ∈ N

10: N := N
T
(u)

11: T := T ∪ { (u, u′) | u′ ∈ N }
12: done

// Do not branch if no neighbors left, see Corollary 1
13: if N = ∅ then return “no”.

14: return MaxLeaf(G, T, R,B ∪ N, k)

Corollary 1. Let G = (V,E) be a graph, (T,R,B) a leaf-labeled tree and x ∈ B
with NT (x) = ∅. If there is a k-leaf tree that extends (T,R,B), there is a k-leaf
tree that extends (T,R ∪ {x}, B \ {x}).

Proof. Let T ′ be a k-leaf tree that extends (T,R,B). It is x ∈ leaves(T). Since
NT (x) = ∅, we have N(x) ⊆ V (T) ⊆ V (T ′). For each y ∈ N(x), there is z ∈ V (T)
with (z, x) ∈ E(T), and E(T) ⊆ E(T ′). In particular, (x, y) /∈ E(T ′), since T ′ is
a tree. Hence x ∈ leaves(T ′) and T ′ ≻ (T,R ∪ {x}, B \ {x}).

Lemma 6. Let G = (V,E) be a graph and let k > 2. If G does not con-
tain a k-leaf tree, MaxLeaf(G,Tv , ∅,N(v), k) returns “no” for each v ∈ V .
If G contains a k-leaf tree rooted in r, Algorithm 1 returns “yes” if called as
MaxLeaf(G,Tr, ∅, N(r), k).

Proof. We first show that all subsequent calls to MaxLeaf are always given
an inner-maximal leaf-labeled tree: The star Tv is inner-maximal, and hence
(Tv, ∅, N(v)) is an inner-maximal leaf-labeled tree. Let (T,R,B) be the inner-
maximal tree given as argument to MaxLeaf. The algorithm chooses x ∈ B
and either fixes it as a leaf or as an inner node. If x becomes a leaf, then (T,R∪
{x}, B \ {x}) ≻ (T,R,B) is inner-maximal. If otherwise x becomes inner node,
a tree T ′ is obtained from T by adding the nodes in NT (x) as children of x, so
that they are leaves. Since N(x) ⊆ V (T ′) and N(inner(T ′)) = N(inner(T)) ∪
N(x) ⊆ V (T) ∪ N(x) = V (T ′), the new tree T ′ is inner-maximal, and so is
(T ′, R,NT (x)∪B \ {x}). This step might be repeated l times while |NT (x)| = 1,
so that we obtain a sequence of leaf-labeled trees (T,R,B) ≺ (T ′, R′, B′) ≺
· · · ≺ (T (l+1), R(l+1), B(l+1)), each of them being inner-maximal for the same
reason. Therefore, MaxLeaf is called with an inner-maximal leaf-labeled tree
(T (l+1), R(l+1), B(l+1)).

r = x1

x

y1

y2 y3

y4

r = x1

x

y1

y2 y3

y4

r = x1

x

y1

y2 y3

y4

Fig. 3. The exchange argument (Lemma 4): The first figure shows a leaf-labeled tree (T, R,B)
with x ∈ B. The neighborhood of x, N

T
(x), is shown with dashed edges. The second figure

shows a 5-leaf tree T ′ ≻ (T, R, B), but different choices for edges originating in x have been
made: y1 is not in T ′ at all, and different paths to y3 and y4, respectively, have been chosen.
The third figure shows how the T ′ can be modified so that all y ∈ N

T
(x) are children of x. This

modification does not decrease the number of leaves in T ′: y1 becomes a new leaf; no changes
are made to the edge (x, y2), y3 remains inner node, and y4 remains leaf, although it is now
connected through x.

Whenever MaxLeaf(G,T,R,B, k) returns “yes”, T is a tree in G with
|leaves(T)| = |R ∪ B| = |R| + |B| ≥ k. Therefore, G does contain a k-leaf
tree and the algorithm never answers “yes” on no-instances.

If otherwise G contains a k-leaf tree rooted in r, we use induction over ≻ as
follows: Under the hypothesis that (T,R,B) is an inner-maximal leaf-labeled tree,
such that there is a k-leaf tree T ′ � (T,R,B), we prove: Either T = T ′, or there
are (T ′′′, R′′′, B′′′) and (T ′′, R′′, B′′), such that T ′′′ is a k-leaf tree, (T ′′′, R′′′, B′′′) �
(T ′′, R′′, B′′) ≻ (T,R,B) and MaxLeaf is called with (T ′′, R′′, B′′). Since G is
finite, eventually MaxLeaf is called with a k-leaf leaf-labeled tree and returns
“yes”.

Let r be the root of some k-leaf tree T in G. Since k > 2, r ∈ inner(T).
Consider T ′ = ({r}, ∅). Then (T ′, ∅, {r}) is a leaf-labeled tree, and trivially T ≻
(T ′, ∅, {r}). By Lemma 4, then there is also a k-leaf tree T ′′ ≻ (Tr, ∅,N(r)).

We hence may now consider an arbitrary inner-maximal leaf-labeled tree
(T,R,B) that is given a argument to MaxLeaf, such that there is a k-leaf tree
T ′ � (T,R,B). If |leaves(T)| = |R ∪ B| ≥ k, then (T,R,B) already is a k-leaf
tree in G and the algorithm correctly returns “yes”.

Otherwise, B 6= ∅ by Lemma 1 since (T,R,B) is inner-maximal. Fix an
arbitrary x ∈ B. By Lemma 4,

1. there is a k-leaf tree T ′′ � (T,R ∪ {x}, B \ {x}), or

2. there is a k-leaf tree T ′′ � (T + { (x, u) | u ∈ NT (x) }, R,NT (x) ∪ B \ {x}).

We first assume the first case is true. Then T ′′ � (T,R ∪ {u}, B \ {u}) ≻
(T,R,B) and the call to MaxLeaf(G,T,R ∪ {u}, B \ {u}, k) does satisfy the
induction hypothesis for the next induction step. If however the first case is false,
we know by Lemma 4, that since there is at least one k-leaf tree that extends
(T,R,B) (namely T ′ � (T,R,B)), there is also a k-leaf tree T ′′′ � (R,B \
{x} ∪ NR,B,I(x), I ∪ {x}). Furthermore, by Lemma 5 there is a unique sequence
of vertices v0, v1, . . . , vl and leaf-labeled trees (T0, R0, B0), . . . , (Tl, Rl, Bl), such
that v0 = x, (T0, R0, B0) = (T,R,B), and

1. (Ti+1, Ri+1, Bi+1) = (Ti + (vi, vi+1), Ri, Bi ∪ NTi
(vi)),

2. NTi
(vi) = {vi+1} for 0 ≤ i < l,

3. |NTl
(vl)| 6= 1, and

4. for each 0 ≤ i ≤ l there is a k-leaf tree T ′
i � (Ti, Ri, Bi, Ii).

By Corollary 1, we have NTl
(vl) 6= ∅, i.e., the algorithm does not return “no”.

Hence the algorithm recursively calls itself as MaxLeaf(G,Tl, Rl, Bl, k), where
(Tl, Rl, Bl) satisfies the induction hypothesis.

Lemma 7. Let G = (V,E) be a graph and v ∈ V . The number of recursive calls
of Algorithm 1 when called as MaxLeaf(G,Tv , ∅,N(v), k) for v ∈ V is bounded
by O(22k−|N(v)|) = O(4k).

Proof. Consider a potential function Φ(k,R,B) := 2k − 2|R| − |B|.

When MaxLeaf is called with a leaf-labeled tree (T,R,B), the algorithm
recursively calls itself at most two times: In the first branch some vertex u ∈ B is
fixed as a leaf and the algorithm calls itself as MaxLeaf(G,T,R∪{u}, B\{u}, k).
The potential decreases by Φ(k,R,B) − Φ(k,R ∪ {u}, B \ {u}) = 1.

The while loop in lines 8–12 does not change the size of B. If, however,
line 14 of the algorithm is reached, we have |N | ≥ 2. Here, the recursive call
is MaxLeaf(G,T ′, R,B \ {u} ∪ N, k) for some tree T ′, and hence the potential
decreases by Φ(k,R,B) − Φ(k,R,B \ {u} ∪ N) ≥ 1.

Note that Φ(k,R,B) ≤ 0 implies |R + B| ≥ k. Since the potential decreases
by at least 1 in each recursive call, the height of the search tree is therefore at
most Φ(k,R,B) ≤ 2k. For arbitrary inner-maximal leaf-labeled trees (T,R,B),
the number of recursive calls is hence bounded by 2Φ(k,R,B).

In the very first call, we already have |B| = |N(v)|. Hence we obtain a bound
of 2Φ(∅,N(v)) = O(22k−|N(v)|) = O(4k).

Theorem 1. MLST can be solved in time O(poly(n) + 4k · k2).

Proof. Let G = (V,E). As Estivill-Castro et al. have shown [12], there is a
problem kernel of size 3.75k = O(k) for MLST, which can be computed in a
preprocessing that requires time poly(n). Hence, n = |V | = O(k).

Without loss of generality, we assume G is connected and k > 2. We do not
know, which node v ∈ V suffices as a root, so we need to iterate over possible
roots. Since k > 2, it is easy to see that either some v ∈ V or one of its neighbors
is root of some k-leaf spanning tree, if any k-leaf spanning tree T exists at all: If
v ∈ leaves(T), the unique predecessor u of v in T is an inner node u ∈ inner(T).
By choosing a node of minimum degree, we obtain the best run time bounds.

Let v ∈ V be a node of minimum degree. We need to call MaxLeaf with
parameters (G,Tu, R,N(u), k) for all u ∈ N [v]. By Lemma 6, these calls suffice
to solve MLST: If G contains a k-leaf tree, at least one of those u is a root
of some k-leaf tree, and hence the respective call to MaxLeaf returns “yes”.
Otherwise each call returns “no”.

By Lemma 7, the total number of recursive calls is bounded by

O(2Φ(k,∅,N(v))) +
∑

u∈N(v)

O(2Φ(k,∅,N(u))) = O((d + 1)22k−d) = O(4k d + 1

2d
).

It remains to show that the number of operations in each recursive call is
bounded by O(n2) = O(k2). We can assume the sets V , E, V (T), E(T), R, and
B are realized as doubled linked lists and an additional per-vertex membership
flag is used, so that a membership test and insert and delete set operations only
require constant time each.

Hence lines 1–3 and computing the new sets in lines 4 and 5 takes constant
time. Computing NT (u) and the new tree T takes time O(k), since u has only up
to k neighbors, which are tested for membership in V (T) in constant time. The
while loop is executed at most once per vertex u ∈ V . Each execution of the while
loop can be done in constant time as well, since |NT (u)| = 1. Concatenating N
to B in line 14 takes constant time, but updating the B-membership flag for each
v ∈ N takes up to k steps.

At this point we have shown that the overall number of operations required
to decide whether G contains a k-leaf tree is bounded by O(poly(n) + 4k · k2).
By Lemma 2, each k-leaf tree can be extended to a spanning tree with at least
k leaves, so MLST can be solved in the same amount of time.

Note that Algorithm 1 can easily be modified to return a k-leaf (spanning)
tree in G within the same run time bound. In this case, an additional O(n + m)
postprocessing is required to expand the k-leaf tree to a k-leaf spanning tree.

Theorem 2. DMLOT and DMLST can be solved in time O(4knm).

Proof. Let G = (V,E) be a directed graph. We first consider DMLOT: If G
contains a k-leaf out-tree rooted in r, MaxLeaf(G,Tr , ∅,N(r), k) returns “yes”
by Lemma 6. Otherwise, MaxLeaf(G,Tv , ∅,N(v), k) returns “no” for all v ∈ V .
We do not know r, so we need to iterate over all v ∈ V . By Lemma 7, the total
number of recursive calls is therefore bounded by

∑

v∈V

O(2Φ(k,∅,N(v))) = O(n · 22k) = O(4kn).

What remains to show is that only O(n+m) = O(m) operations are performed on
average on each call of MaxLeaf. Consider one complete path in the recursion
tree: It is easy to see, that each vertex v ∈ V occurs at most once as the respective
u in either lines 6 or 10. In particular each edge (v,w) is visited at most once per
path when computing NT (u). Therefore, the overall run time to solve DMLOT

is bounded by O(4k · nm).

To prove the run time bound for DMLST, the algorithm must be slightly
modified in line 1. Here, it may only return “yes” if the leaf-labeled out-tree
(T,R,B) can be extended to a k-leaf spanning out-tree. By Lemma 3, each k-
leaf out-tree that shares the same root with some k-leaf spanning out-tree can
be extended to a k-leaf spanning out-tree in time O(n + m) = O(m). Thus the
run time remains bounded by O(4k · nm).

Conclusion

We solve open problems [7, 16] on whether there exist ckpoly(n)-time algorithms
for the k-leaf out-tree and k-leaf spanning out-tree problems on directed graphs.

Our algorithms for DMLOT and DMLST have a run time of O(4k|V ||E|), which
is a significant improvement over the currently best bound of 2O(k log k)poly(|V |).

Since the undirected case is easier, has a linear size problem kernel, and
the root of some k-leaf tree can be found faster, we can solve MLST in time
O(poly(|V |)+4k ·k2), where poly(|V |) is the time to compute the problem kernel
of size 3.75k. This improves over the currently best algorithm with a run time of
O(poly(|V |) + 6.75kpoly(k)).

The question by Michael Fellows et al. from the year 2000 [14] whether there
will ever be a parameterized algorithm for MLST with running time f(k)poly(n),
where f(50) < 1020 unfortunately remains open, but the gap is not so big any-
more.

References

1. N. Alon, F. V. Fomin, G. Gutin, M. Krivelevich, and S. Saurabh. Better algorithms and
bounds for directed maximum leaf problems. In Proceedings of the 27th Conference on
Foundations of Software Technology and Theoretical Computer Science, number 4855 in
Lecture Notes in Computer Science, pages 316–327, New Delhi, India, Nov. 2007. Springer-
Verlag.

2. N. Alon, F. V. Fomin, G. Gutin, M. Krivelevich, and S. Saurabh. Parameterized algorithms
for directed maximum leaf problems. In Proceedings of the 34th International Colloquium
on Automata, Languages, and Programming (ICALP), number 4596 in Lecture Notes in
Computer Science, pages 352–362. Springer-Verlag, 2007.

3. H. L. Bodlaender. On linear time minor tests with depth-first search. J. Algorithms,
14(1):1–23, 1993.

4. P. Bonsma. Sparse cuts, matching-cuts and leafy trees in graphs. PhD thesis, University of
Twente, the Netherlands, 2006.

5. P. S. Bonsma, T. Brüggemann, and G. J. Woeginger. A faster fpt algorithm for finding
spanning trees with many leaves. In Proceedings of the 28th Conference on Mathematical
Foundations of Computer Science, volume 2747 of Lecture Notes in Computer Science,
pages 259–268. Springer-Verlag, 2003.

6. P. S. Bonsma and F. Dorn. An FPT algorithm for directed spanning k-leaf, 2007.
http://arxiv.org/abs/0711.4052.

7. P. S. Bonsma and F. Dorn. Tight Bounds and Faster Algorithms for Directed Max-Leaf
Problems. In Proceedings of the 16th European Symposium on Algorithms (ESA), Lecture
Notes in Computer Science. Springer-Verlag, 2008. To appear.

8. P. S. Bonsma and F. Zickfeld. A 3/2-Approximation Algorithm for Finding Spanning Trees
with Many Leaves in Cubic Graphs. In Proceedings of the 34th International Workshop on
Graph-Theoretic Concepts in Computer Science (WG), Lecture Notes in Computer Science.
Springer-Verlag, 2008. To appear.

9. P. S. Bonsma and F. Zickfeld. Spanning trees with many leaves in graphs without dia-
monds and blossoms. In Proceedings of the 8th Symposium on Latin American Theoretical
Informatics, number 4957 in Lecture Notes in Computer Science, pages 531–543, Búzios,
Brazil, 2008. Springer-Verlag.

10. F. Dai and J. Wu. An extended localized algorithm for connected dominating set formation
in ad hoc wireless networks. IEEE Trans. Parallel Distrib. Syst., 15(10):908–920, 2004.

11. R. G. Downey and M. R. Fellows. Parameterized computational feasibility. In P. Clote, J.
Remmel (eds.): Feasible Mathematics II, pages 219–244. Boston: Birkhäuser, 1995.

12. V. Estivill-Castro, M. R. Fellows, M. A. Langston, and F. A. Rosamond. FPT is P-time
extremal structure I. In Proceedings of the 1st ACiD Workshop, pages 1–41, 2005.

13. M. R. Fellows and M. A. Langston. On well-partial-ordering theory and its applications to
combinatorial problems in VLSI design. SIAM J. Discrete Math., 5:117–126, 1992.

14. M. R. Fellows, C. McCartin, F. A. Rosamond, and U. Stege. Coordinatized kernels and
catalytic reductions: An improved fpt algorithm for max leaf spanning tree and other prob-
lems. In Proceedings of the 20th Conference on Foundations of Software Technology and
Theoretical Computer Science, pages 240–251, London, UK, 2000. Springer-Verlag.

15. G. Galbiati, F. Maffioli, and A. Morzenti. A short note on the approximability of the
maximum leaves spanning tree problem. Inf. Process. Lett., 52(1):45–49, 1994.

16. G. Gutin, I. Razgon, and E. J. Kim. Minimum Leaf Out-Branching Problems. In Proc. of.
AAIM 2008, volume 5034 of LNCS, pages 235–246, 2008.

17. D. J. Kleitman and D. B. West. Spanning trees with many leaves. SIAM J. Discret. Math.,
4(1):99–106, 1991.

18. W. Liang. Constructing minimum-energy broadcast trees in wireless ad hoc networks. In
Proceedings of the 3rd ACM International Symposium on Mobile Ad Hoc Networking and
Computing, pages 112–122, New York, NY, USA, 2002. ACM.

19. N. Linial and D. Sturtevant, 1987. Unpublished result.
20. H. Lu and R. Ravi. Approximating maximum leaf spanning trees in almost linear time. J.

Algorithms, 29(1):132–141, 1998.
21. M. A. Park, J. Willson, C. Wang, M. Thai, W. Wu, and A. Farago. A dominating and

absorbent set in a wireless ad-hoc network with different transmission ranges. In Proceedings
of the 8th ACM International Symposium on Mobile Ad Hoc Networking and Computing,
pages 22–31, New York, NY, USA, 2007. ACM.

22. N. Robertson and P. D. Seymour. Graph minors—a survey. In I. Anderson, editor, Surveys
in Combinatorics, pages 153–171. Cambridge University Press, 1985.

23. R. Solis-Oba. 2-approximation algorithm for finding a spanning tree with maximum number
of leaves. In Proceedings of the 6th European Symposium on Algorithms (ESA), number
1461 in Lecture Notes in Computer Science, pages 441–452, London, UK, 1998. Springer-
Verlag.

24. M. Thai, F. Wang, D. Liu, S. Zhu, and D. Du. Connected dominating sets in wireless
networks with different transmission ranges. IEEE Trans. Mob. Comput., 6(7):721–730,
2007.

Aachener Informatik-Berichte

This list contains all technical reports published during the past five years. A

complete list of reports dating back to 1987 is available from http://aib.informatik.rwth-

aachen.de/. To obtain copies consult the above URL or send your request to:

Informatik-Bibliothek, RWTH Aachen, Ahornstr. 55, 52056 Aachen, Email:

biblio@informatik.rwth-aachen.de

2003-01 ∗ Jahresbericht 2002

2003-02 Jürgen Giesl, René Thiemann: Size-Change Termination for Term

Rewriting

2003-03 Jürgen Giesl, Deepak Kapur: Deciding Inductive Validity of Equations

2003-04 Jürgen Giesl, René Thiemann, Peter Schneider-Kamp, Stephan Falke:

Improving Dependency Pairs

2003-05 Christof Löding, Philipp Rohde: Solving the Sabotage Game is PSPACE-

hard

2003-06 Franz Josef Och: Statistical Machine Translation: From Single-Word

Models to Alignment Templates

2003-07 Horst Lichter, Thomas von der Maßen, Alexander Nyßen, Thomas

Weiler: Vergleich von Ansätzen zur Feature Modellierung bei der Soft-

wareproduktlinienentwicklung

2003-08 Jürgen Giesl, René Thiemann, Peter Schneider-Kamp, Stephan Falke:

Mechanizing Dependency Pairs

2004-01 ∗ Fachgruppe Informatik: Jahresbericht 2003

2004-02 Benedikt Bollig, Martin Leucker: Message-Passing Automata are expres-

sively equivalent to EMSO logic

2004-03 Delia Kesner, Femke van Raamsdonk, Joe Wells (eds.): HOR 2004 – 2nd

International Workshop on Higher-Order Rewriting

2004-04 Slim Abdennadher, Christophe Ringeissen (eds.): RULE 04 – Fifth In-

ternational Workshop on Rule-Based Programming

2004-05 Herbert Kuchen (ed.): WFLP 04 – 13th International Workshop on Func-

tional and (Constraint) Logic Programming

2004-06 Sergio Antoy, Yoshihito Toyama (eds.): WRS 04 – 4th International

Workshop on Reduction Strategies in Rewriting and Programming

2004-07 Michael Codish, Aart Middeldorp (eds.): WST 04 – 7th International

Workshop on Termination

2004-08 Klaus Indermark, Thomas Noll: Algebraic Correctness Proofs for Com-

piling Recursive Function Definitions with Strictness Information

2004-09 Joachim Kneis, Daniel Mölle, Stefan Richter, Peter Rossmanith: Param-

eterized Power Domination Complexity

2004-10 Zinaida Benenson, Felix C. Gärtner, Dogan Kesdogan: Secure Multi-

Party Computation with Security Modules

2005-01 ∗ Fachgruppe Informatik: Jahresbericht 2004

2005-02 Maximillian Dornseif, Felix C. Gärtner, Thorsten Holz, Martin Mink: An

Offensive Approach to Teaching Information Security: “Aachen Summer

School Applied IT Security”

2005-03 Jürgen Giesl, René Thiemann, Peter Schneider-Kamp: Proving and Dis-

proving Termination of Higher-Order Functions

2005-04 Daniel Mölle, Stefan Richter, Peter Rossmanith: A Faster Algorithm for

the Steiner Tree Problem

2005-05 Fabien Pouget, Thorsten Holz: A Pointillist Approach for Comparing

Honeypots

2005-06 Simon Fischer, Berthold Vöcking: Adaptive Routing with Stale Informa-

tion

2005-07 Felix C. Freiling, Thorsten Holz, Georg Wicherski: Botnet Tracking: Ex-

ploring a Root-Cause Methodology to Prevent Distributed Denial-of-

Service Attacks

2005-08 Joachim Kneis, Peter Rossmanith: A New Satisfiability Algorithm With

Applications To Max-Cut

2005-09 Klaus Kursawe, Felix C. Freiling: Byzantine Fault Tolerance on General

Hybrid Adversary Structures

2005-10 Benedikt Bollig: Automata and Logics for Message Sequence Charts

2005-11 Simon Fischer, Berthold Vöcking: A Counterexample to the Fully Mixed

Nash Equilibrium Conjecture

2005-12 Neeraj Mittal, Felix Freiling, S. Venkatesan, Lucia Draque Penso: Ef-

ficient Reductions for Wait-Free Termination Detection in Faulty Dis-

tributed Systems

2005-13 Carole Delporte-Gallet, Hugues Fauconnier, Felix C. Freiling: Revisiting

Failure Detection and Consensus in Omission Failure Environments

2005-14 Felix C. Freiling, Sukumar Ghosh: Code Stabilization

2005-15 Uwe Naumann: The Complexity of Derivative Computation

2005-16 Uwe Naumann: Syntax-Directed Derivative Code (Part I: Tangent-

Linear Code)

2005-17 Uwe Naumann: Syntax-directed Derivative Code (Part II: Intraprocedu-

ral Adjoint Code)

2005-18 Thomas von der Maßen, Klaus Müller, John MacGregor, Eva Geis-

berger, Jörg Dörr, Frank Houdek, Harbhajan Singh, Holger Wußmann,

Hans-Veit Bacher, Barbara Paech: Einsatz von Features im Software-

Entwicklungsprozess - Abschlußbericht des GI-Arbeitskreises “Features”

2005-19 Uwe Naumann, Andre Vehreschild: Tangent-Linear Code by Augmented

LL-Parsers

2005-20 Felix C. Freiling, Martin Mink: Bericht über den Workshop zur Ausbil-

dung im Bereich IT-Sicherheit Hochschulausbildung, berufliche Weiter-

bildung, Zertifizierung von Ausbildungsangeboten am 11. und 12. Au-

gust 2005 in Köln organisiert von RWTH Aachen in Kooperation mit

BITKOM, BSI, DLR und Gesellschaft fuer Informatik (GI) e.V.

2005-21 Thomas Noll, Stefan Rieger: Optimization of Straight-Line Code Revis-

ited

2005-22 Felix Freiling, Maurice Herlihy, Lucia Draque Penso: Optimal Random-

ized Fair Exchange with Secret Shared Coins

2005-23 Heiner Ackermann, Alantha Newman, Heiko Röglin, Berthold Vöcking:

Decision Making Based on Approximate and Smoothed Pareto Curves

2005-24 Alexander Becher, Zinaida Benenson, Maximillian Dornseif: Tampering

with Motes: Real-World Physical Attacks on Wireless Sensor Networks

2006-01 ∗ Fachgruppe Informatik: Jahresbericht 2005

2006-02 Michael Weber: Parallel Algorithms for Verification of Large Systems

2006-03 Michael Maier, Uwe Naumann: Intraprocedural Adjoint Code Generated

by the Differentiation-Enabled NAGWare Fortran Compiler

2006-04 Ebadollah Varnik, Uwe Naumann, Andrew Lyons: Toward Low Static

Memory Jacobian Accumulation

2006-05 Uwe Naumann, Jean Utke, Patrick Heimbach, Chris Hill, Derya Ozyurt,

Carl Wunsch, Mike Fagan, Nathan Tallent, Michelle Strout: Adjoint

Code by Source Transformation with OpenAD/F

2006-06 Joachim Kneis, Daniel Mölle, Stefan Richter, Peter Rossmanith: Divide-

and-Color

2006-07 Thomas Colcombet, Christof Löding: Transforming structures by set in-

terpretations

2006-08 Uwe Naumann, Yuxiao Hu: Optimal Vertex Elimination in Single-

Expression-Use Graphs

2006-09 Tingting Han, Joost-Pieter Katoen: Counterexamples in Probabilistic

Model Checking

2006-10 Mesut Günes, Alexander Zimmermann, Martin Wenig, Jan Ritzerfeld,

Ulrich Meis: From Simulations to Testbeds - Architecture of the Hybrid

MCG-Mesh Testbed

2006-11 Bastian Schlich, Michael Rohrbach, Michael Weber, Stefan Kowalewski:

Model Checking Software for Microcontrollers

2006-12 Benedikt Bollig, Joost-Pieter Katoen, Carsten Kern, Martin Leucker:

Replaying Play in and Play out: Synthesis of Design Models from Sce-

narios by Learning

2006-13 Wong Karianto, Christof Löding: Unranked Tree Automata with Sibling

Equalities and Disequalities

2006-14 Danilo Beuche, Andreas Birk, Heinrich Dreier, Andreas Fleischmann,

Heidi Galle, Gerald Heller, Dirk Janzen, Isabel John, Ramin Tavakoli

Kolagari, Thomas von der Maßen, Andreas Wolfram: Report of the GI

Work Group “Requirements Management Tools for Product Line Engi-

neering”

2006-15 Sebastian Ullrich, Jakob T. Valvoda, Torsten Kuhlen: Utilizing optical

sensors from mice for new input devices

2006-16 Rafael Ballagas, Jan Borchers: Selexels: a Conceptual Framework for

Pointing Devices with Low Expressiveness

2006-17 Eric Lee, Henning Kiel, Jan Borchers: Scrolling Through Time: Improv-

ing Interfaces for Searching and Navigating Continuous Audio Timelines

2007-01 ∗ Fachgruppe Informatik: Jahresbericht 2006

2007-02 Carsten Fuhs, Jürgen Giesl, Aart Middeldorp, Peter Schneider-Kamp,

René Thiemann, and Harald Zankl: SAT Solving for Termination Anal-

ysis with Polynomial Interpretations

2007-03 Jürgen Giesl, René Thiemann, Stephan Swiderski, and Peter Schneider-

Kamp: Proving Termination by Bounded Increase

2007-04 Jan Buchholz, Eric Lee, Jonathan Klein, and Jan Borchers: coJIVE: A

System to Support Collaborative Jazz Improvisation

2007-05 Uwe Naumann: On Optimal DAG Reversal

2007-06 Joost-Pieter Katoen, Thomas Noll, and Stefan Rieger: Verifying Con-

current List-Manipulating Programs by LTL Model Checking

2007-07 Alexander Nyßen, Horst Lichter: MeDUSA - MethoD for UML2-based

Design of Embedded Software Applications

2007-08 Falk Salewski and Stefan Kowalewski: Achieving Highly Reliable Em-

bedded Software: An empirical evaluation of different approaches

2007-09 Tina Kraußer, Heiko Mantel, and Henning Sudbrock: A Probabilistic

Justification of the Combining Calculus under the Uniform Scheduler

Assumption

2007-10 Martin Neuhäußer, Joost-Pieter Katoen: Bisimulation and Logical

Preservation for Continuous-Time Markov Decision Processes

2007-11 Klaus Wehrle (editor): 6. Fachgespräch Sensornetzwerke

2007-12 Uwe Naumann: An L-Attributed Grammar for Adjoint Code

2007-13 Uwe Naumann, Michael Maier, Jan Riehme, and Bruce Christianson:

Second-Order Adjoints by Source Code Manipulation of Numerical Pro-

grams

2007-14 Jean Utke, Uwe Naumann, Mike Fagan, Nathan Tallent, Michelle Strout,

Patrick Heimbach, Chris Hill, and Carl Wunsch: OpenAD/F: A Modular,

Open-Source Tool for Automatic Differentiation of Fortran Codes

2007-15 Volker Stolz: Temporal assertions for sequential and concurrent programs

2007-16 Sadeq Ali Makram, Mesut Güneç, Martin Wenig, Alexander Zimmer-

mann: Adaptive Channel Assignment to Support QoS and Load Balanc-

ing for Wireless Mesh Networks

2007-17 René Thiemann: The DP Framework for Proving Termination of Term

Rewriting

2007-18 Uwe Naumann: Call Tree Reversal is NP-Complete

2007-19 Jan Riehme, Andrea Walther, Jörg Stiller, Uwe Naumann: Adjoints for

Time-Dependent Optimal Control

2007-20 Joost-Pieter Katoen, Daniel Klink, Martin Leucker, and Verena Wolf:

Three-Valued Abstraction for Probabilistic Systems

2007-21 Tingting Han, Joost-Pieter Katoen, and Alexandru Mereacre: Compo-

sitional Modeling and Minimization of Time-Inhomogeneous Markov

Chains

2007-22 Heiner Ackermann, Paul W. Goldberg, Vahab S. Mirrokni, Heiko Röglin,

and Berthold Vöcking: Uncoordinated Two-Sided Markets

2008-01 ∗ Fachgruppe Informatik: Jahresbericht 2007

2008-02 Henrik Bohnenkamp, Marielle Stoelinga: Quantitative Testing

2008-03 Carsten Fuhs, Jürgen Giesl, Aart Middeldorp, Peter Schneider-Kamp,

René :Thiemann, Harald Zankl: Maximal Termination

2008-04 Uwe Naumann, Jan Riehme: Sensitivity Analysis in Sisyphe with the

AD-Enabled NAGWare Fortran Compiler

2008-05 Frank G. Radmacher: An Automata Theoretic Approach to the Theory

of Rational Tree Relations

2008-06 Uwe Naumann, Laurent Hascoet, Chris Hill, Paul Hovland, Jan Riehme,

Jean Utke: A Framework for Proving Correctness of Adjoint Message

Passing Programs

2008-08 George B. Mertzios, Stavros D. Nikolopoulos: The λ-cluster Problem on

Parameterized Interval Graphs

2008-09 George B. Mertzios, Walter Unger: An optimal algorithm for the k-fixed-

endpoint path cover on proper interval graphs

2008-10 George B. Mertzios, Walter Unger: Preemptive Scheduling of Equal-

Length Jobs in Polynomial Time

2008-11 George B. Mertzios: Fast Convergence of Routing Games with Splittable

Flows

2008-12 Joost-Pieter Katoen, Daniel Klink, Martin Leucker, Verena Wolf: Ab-

straction for stochastic systems by Erlang’s method of stages

2008-13 Beatriz Alarcón, Fabian Emmes, Carsten Fuhs, Jürgen Giesl, Raúl

Gutierrez, Salvador Lucas, Peter Schneider-Kamp, René Thiemann: Im-

proving Context-Sensitive Dependency Pairs

2008-14 Bastian Schlich: Model Checking Software for Microcontrollers

∗ These reports are only available as a printed version.

Please contact biblio@informatik.rwth-aachen.de to obtain copies.

