
Aachen
Department of Computer Science

Technical Report

An optimal algorithm for the k-fixed-endpoint

path cover on proper interval graphs

George B. Mertzios and Walter Unger

ISSN 0935–3232 · Aachener Informatik Berichte · AIB-2008-09

RWTH Aachen · Department of Computer Science · May 2008

1

The publications of the Department of Computer Science of RWTH Aachen University are in
general accessible through the World Wide Web.

http://aib.informatik.rwth-aachen.de/

2

An optimal algorithm for the k-fixed-endpoint

path cover on proper interval graphs

George B. Mertzios and Walter Unger
Department of Computer Science

RWTH Aachen University
{mertzios, quax}@cs.rwth-aachen.de

Abstract. In this paper we consider the k-fixed-endpoint path cover problem on proper interval
graphs, which is a generalization of the path cover problem. Given a graph G and a set T of k
vertices, a k-fixed-endpoint path cover of G with respect to T is a set of vertex-disjoint simple
paths that covers the vertices of G, such that the vertices of T are all endpoints of these paths. The
goal is to compute a k-fixed-endpoint path cover of G with minimum cardinality. We propose an
optimal algorithm for this problem with runtime O(n), where n is the number of intervals in G. This
algorithm is based on the Stair Normal Interval Representation (SNIR) matrix that characterizes
proper interval graphs. In this characterization, every maximal clique of the graph is represented
by one matrix element; the proposed algorithm uses this structural property, in order to determine
directly the paths in an optimal solution.

1 Introduction

A graph G is called an interval graph, if its vertices can be assigned to intervals on the real line,
such that two vertices of G are adjacent if and only if the corresponding intervals intersect. The
set of intervals assigned to the vertices of G is called a realization of G. If G has a realization,
in which no interval contains another one properly, then G is called a proper interval graph.
Proper interval graphs arise naturally in biological applications such as the physical mapping
of DNA [1]. Several linear-time recognition algorithms have been presented for both graph
classes in the literature [2–5]. These classes of graphs have numerous applications to scheduling
problems, biology, VLSI circuit design, as well as to psychology and social sciences [6, 7].

Several difficult optimization problems, which are NP-hard for general graphs [8], are solvable
in polynomial time on interval and proper interval graphs. Some of them are the maximum
clique, the maximum independent set [9,10], the Hamiltonian cycle (HC) and the Hamiltonian
path (HP) problem [11]. A generalization of the HP problem is the path cover (PC) problem.
That is, given a graph G, the goal is to find the minimum number of vertex-disjoint simple paths
that cover all vertices of G. Except graph theory, the PC problem finds many applications in the
area of database design, networks, code optimization and mapping parallel programs to parallel
arcitectures [12–15].

The PC problem is known to be NP-complete even on the classes of planar graphs [16],
bipartite graphs, chordal graphs [17], chordal bipartite graphs, strongly chordal graphs [18], as
well as in several classes of intersection graphs [19]. On the other hand, it is solvable in linear
O(n + m) time on interval graphs with n vertices and m edges [12]. For the greater class of
circular-arc graphs there is an optimal O(n)-time approximation algorithm, given a set of n
arcs with endpoints sorted [20]. The cardinality of the path cover found by this approximation
algorithm is at most one more than the optimal one. Several variants of the HP and the PC
problems are of great interest. The simplest of them are the 1HP and 2HP problems, where
the goal is to decide whether G has a Hamiltonian path with one, or two fixed endpoints,
respectively. Both problems are NP-hard for general graphs, as a generalization of the HP
problem, while their complexity status remains open for interval graphs [21–23].

In this paper, we consider the k-fixed-endpoint path cover (kPC) problem, which generalizes
the PC problem in the following way. Given a graph G and a set T of k vertices, the goal is to
find a path cover of G with minimum cardinality, such that the elements of T are endpoints of
these paths. Note that the vertices of V \ T are allowed to be endpoints of these paths as well.
For k = 1, 2, the kPC problem constitutes a direct generalization of the 1HP and 2HP problems,
respectively. For the case, where the input graph is a cograph on n vertices and m edges, a linear
O(n + m) time algorithm for the kPC problem has been recently presented in [22].

We propose an optimal algorithm for the kPC problem on proper interval graphs with
runtime O(n), based on the zero-one Stair Normal Interval Representation (SNIR) matrix HG

that characterizes a proper interval graph G on n vertices [24]. In this characterization, every
maximal clique of G is represented by one matrix element. It provides insight and may be
useful for the efficient formulation and solution of difficult optimization problems. In most of
the practical applications, the interval endpoints are sorted. Given such an interval realization
of G, we construct first in O(n) time a particular perfect ordering of the vertices of G [24],
which complies with the ordering of the vertices in the SNIR matrix HG.

We introduce the notion of a singular point in a proper interval graph G on n vertices.
An arbitrary vertex of G is called singular point, if it is the unique common vertex of two
consecutive maximal cliques. Due to the special structure of HG, we need to compute only
O(n) of its entries, in order to capture the complete information of this matrix. Based on this
structure, the proposed algorithm detects the singular points of G in O(n) time and then it
determines directly the paths in an optimal solution, using only the positions of the singular
points. Namely, it turns out that every such path is a Hamiltonian path of a particular subgraph
Gi,j of G with two specific endpoints. Here, Gi,j denotes the induced subgraph of the vertices
{i, . . . , j} in the vertex ordering of HG. Since any algorithm for this problem has to visit at least
all n vertices of G, this runtime is optimal.

Recently, while writing this paper, it has been drawn to our attention that another algorithm
has been independently presented for the kPC problem on proper interval graphs with runtime
O(n + m) [23], where m is the number of edges of the input graph. This algorithm uses a
greedy approach to augment the already constructed paths with connect/insert operations, by
distinguishing whether these paths have already none, one, or two endpoints in T . The main
advantage of the here proposed algorithm, besides its runtime optimality, is that an optimal
solution is constructed directly by the positions of the singular points, which is a structural
property of the investigated graph. Given an interval realization of the input graph G, we do
not need to visit all its edges, exploiting the special structure of the SNIR matrix. Additionally,
the representation of proper interval (resp. interval) graphs by the SNIR (resp. NIR) matrix [24]
may lead to efficient algorithms for other optimization problems, such as the 1HP, 2HP, or even
kPC problem on interval graphs [21,22].

The paper is organized as follows. In Section 2 we recall the SNIR matrix of a proper
interval graph. Furthermore, in Section 3 we present an algorithm for the 2HP, based on the
SNIR matrix. This algorithm is used in Section 4, in order to derive an algorithm for the kPC
problem on proper interval graphs with runtime O(n). Finally, we discuss some conclusions and
open questions for further research in Section 5.

2 The SNIR matrix

An arbitrary proper interval graph G with n vertices {1, . . . , n} can be characterized by the
SNIR matrix HG, which has been introduced in [24]. This is the lower portion of the adjacency
matrix of G, which uses a particular ordering of its vertices. In this ordering, the vertex with
index i corresponds to the ith diagonal element of HG. All diagonal elements of HG are zero,

4

i.e. HG(i, i) = 0 for every i ∈ {1, . . . , n}. Every diagonal element has a (possibly empty) chain
of consecutive ones immediately below it, while the remaining entries of this column are zero.
These chains are ordered in such a way that HG has a stair-shape, as it is illustrated in Figure
2(a). We recall now the definitions of a stair and a pick of the SNIR matrix HG [24].

Definition 1. Consider the SNIR matrix HG of the proper interval graph G. The matrix ele-
ment HG(i, j) is called a pick of HG, iff:

1. i ≥ j,
2. if i > j then HG(i, j) = 1,
3. HG(i, k) = 0, for every k ∈ {1, 2, . . . , j − 1}, and
4. HG(l, j) = 0, for every l ∈ {i + 1, i + 2, . . . , n}.

Definition 2. Given the pick HG(i, j) of HG, the set

S = {HG (k, ℓ) : j ≤ ℓ ≤ k ≤ i} (1)

of matrix entries is called the stair of HG, which corresponds to this pick.

Lemma 1 ([24]). Any stair of HG corresponds bijectively to a maximal clique of G.

A stair of HG can be recognized in Figure 2(a), where the corresponding pick is marked with
a circle. Given an interval realization of G with sorted endpoints, the ordering of vertices in
HG can be computed in O(n) time [24]. Furthermore, the picks of HG can be also computed in
O(n) time during the construction of the ordering of the vertices, since every pick corresponds
to the right endpoint of an interval in G [24]. Due to its stair-shape, the matrix HG is uniquely
determined by its O(n) picks.

For an arbitrary vertex w of G, denote by s(w) and e(w) the adjacent vertices of w with
the smallest and greatest index in this ordering, respectively. Due to the stair-shape of HG,
the vertices s(w) and e(w) are the uppermost and lowermost diagonal elements of HG, which
belong to a common stair with w. Denote now the maximal cliques of G by Q1, Q2, . . . , Qm,
m ≤ n and suppose that the corresponding pick to Qi is the matrix element HG(ai, bi), where
i ∈ {1, . . . ,m}. Since the maximal cliques of G, i.e. the stairs of HG, are linearly ordered, it
holds that 1 ≤ a1 ≤ . . . ≤ am ≤ n and 1 ≤ b1 ≤ . . . ≤ bm ≤ n. Denote for simplicity a0 = b0 = 0
and am+1 = bm+1 = n+1. Then, Algorithm 1 computes the values s(w) and e(w) for all vertices
w ∈ {1, . . . , n}, as it is illustrated in Figure 1. Since m ≤ n, the runtime of Algorithm 1 is O(n).

bi

ai

ai+1

w
Qi

Qi+1

bi+1 = s(w)

(a)

bi

Qi

Qi+1

bi+1

ai = e(w)

ai+1

w

(b)

Fig. 1. The computation of s(w) and e(w).

The vertices {i, . . . , j} of G, where i ≤ j, constitute a submatrix Hi,j of HG, which is
equivalent to the induced subgraph Gi,j of these vertices. Since the proper interval graphs are
hereditary, this subgraph remains a proper interval graph as well. In particular, H1,n = HG is
equivalent to G1,n = G.

5

Algorithm 1 Compute s(w) and e(w) for all vertices w
1: for i = 0 to m do

2: for w = ai + 1 to ai+1 do

3: s(w)← bi+1

4: for w = bi to bi+1 − 1 do

5: e(w)← ai

(a)

· · ·

· · ·

w − 1

w

w + 1

Q

Q′

i

j

(b)

Fig. 2. (a) The SNIR matrix HG, (b) a singular point w of Gi,j .

Definition 3. A vertex w of Gi,j is called singular point of Gi,j , if there exist two consecutive
cliques Q,Q′ of Gi,j, such that

|Q ∩ Q′| = {w} (2)

Otherwise, w is called regular point of Gi,j . The set of all singular points of Gi,j is denoted by
S(Gi,j).

Proposition 1. For every singular point w of Gi,j , it holds i + 1 ≤ w ≤ j − 1.

Proof. Since w is a singular point of Gi,j, there exist two consecutive maximal cliques Q,Q′ of
Gi,j with Q∩Q′ = {w}. Then, as it is illustrated in Figure 2(b), both Q and Q′ contain at least
another vertex than w, since otherwise one of them would be included in the other, which is a
contradiction. It follows that i + 1 ≤ w ≤ j − 1.

Definition 4. Consider a connected proper interval graph G and two indices i ≤ j ∈ {1, . . . , n}.
The submatrix Hi,j of HG is called two-way matrix, if all vertices of Gi,j are regular points of
it. Otherwise, Hi,j is called one-way matrix.

The intuition resulting from Definition 4 is the following. If Hi,j is an one-way matrix, then
Gi,j has at least one singular point w. In this case, no vertex among {i, . . . , w− 1} is connected
to any vertex among {w + 1, . . . , j}, as it is illustrated in Figure 2(b). Thus, every Hamiltonian
path of Gi,j passes only once from the vertices {i, . . . , w − 1} to the vertices {w + 1, . . . , j},
through vertex w. Otherwise, if Hi,j is a two-way matrix, a Hamiltonian path may pass more
than once from {i, . . . , w − 1} to {w + 1, . . . , j} and backwards, where w is an arbitrary vertex
of Gi,j. The next corollary follows directly from Proposition 1.

Corollary 1. An arbitrary vertex w of G is a regular point of the subgraphs Gi,w and Gw,j , for
every i ≤ w and j ≥ w.

3 The 2HP problem on proper interval graphs

3.1 Necessary and sufficient conditions

In this section we solve the 2HP problem on proper interval graphs. In particular, given two
fixed vertices u, v of a proper interval graph G, we provide necessary and sufficient conditions

6

for the existence of a Hamiltonian path in G with endpoints u and v. An algorithm with runtime
O(n) follows directly from these conditions, where n is the number of vertices of G.

Denote by 2HP(G,u, v) this particular instance of 2HP on G. Since G is equivalent to the
SNIR matrix HG and since this matrix specifies a particular ordering of its vertices, we identify
w.l.o.g. the vertices of G with their indices in this ordering. Observe at first that if G is not
connected, then there is no Hamiltonian path at all in G. Also, if G is connected with only two
vertices u, v, then there exists trivially a Hamiltonian path with u and v as endpoints. Thus,
we assume in the following that G is connected and n ≥ 3. The next Theorems 1 and 2 provide
necessary and sufficient conditions for the existence of a Hamiltonian path with endpoints u, v
in a connected proper interval graph G.

Theorem 1. Let G be a connected proper interval graph and u, v be two vertices of G, with
v ≥ u+2. There is a Hamiltonian path in G with u, v as endpoints if and only if the submatrices
H1,u+1 and Hv−1,n of HG are two-way matrices.

Proof. Suppose that H1,u+1 is an one-way matrix. Then, due to Definition 4, G1,u+1 has at least
one singular point w. Since G1,u+1 is connected as an induced subgraph of G, Proposition 1
implies that 2 ≤ w ≤ u.

In order to obtain a contradiction, let P be a Hamiltonian path in G with u and v as its
endpoints. Suppose first that for the singular point w it holds w < u. Then, due to the stair-
shape of HG, the path P has to visit w in order to reach the vertices {1, . . . , w − 1}. On the
other hand, P has to visit w again in order to reach v, since w < v. This is a contradiction, since
P visits w exactly once. Suppose now that w = u. The stair-shape of HG implies that u has
to be connected in P with at least one vertex of {1, . . . , u − 1} and with at least one vertex of
{u + 1, . . . , n}. This is also a contradiction, since u is an endpoint of P . Therefore, there exists
no such path P in G, if Hi,u+1 is an one-way matrix. Similarly, we obtain that there exists again
no such path P in G, if Hv−1,n is an one-way matrix. This completes the necessity part of the
proof.

For the sufficiency part, suppose that both H1,u+1 and Hv−1,n are two-way matrices. Then,
Algorithm 2 constructs a Hamiltonian path P in G having u and v as endpoints, as follows.
In the while-loop of the lines 2-4 of Algorithm 2, P starts from vertex u and reaches vertex 1
using sequentially the uppermost diagonal elements, i.e. vertices, of the visited stairs of HG.
Since H1,u+1 is a two-way matrix, P does not visit any two consecutive diagonal elements until
it reaches vertex 1. In the while-loop of the lines 5-10, P continues visiting all unvisited vertices
until vertex v − 1. Let t be the actual visited vertex of P during these lines. Since P did not
visit any two consecutive diagonal elements until it reached vertex 1 in lines 2-4, at least one
of the vertices t + 1, t + 2 has not been visited yet. Thus, always one of the lines 7 and 10 is
executed.

Next, in the while-loop of the lines 11-13, P starts from vertex v − 1 and reaches vertex
n using sequentially the lowermost diagonal elements of the visited stairs of HG. During the
execution of lines 11-13, since Hv−1,n is a two-way matrix, P does not visit any two consecutive
diagonal elements until it reaches vertex n. Finally, in the while-loop of the lines 14-18, P
continues visiting all unvisited vertices until v. Similarly to the lines 5-10, let t be the actual
visited vertex of P . Since P did not visit any two consecutive diagonal elements until it reached
vertex n in lines 11-13, at least one of the vertices t − 1, t − 2 has not been visited yet. Thus,
always one of the lines 16 and 18 is executed. Figure 3(a) illustrates the construction of such a
Hamiltonian path by Algorithm 2 in a small example.

Theorem 2. Let G be a connected proper interval graph and u be a vertex of G. There is a
Hamiltonian path in G with u, u + 1 as endpoints if and only if HG is a two-way matrix and
either u ∈ {1, n − 1} or the vertices u − 1 and u + 2 are adjacent.

7

Proof. Suppose that HG is an one-way matrix. Then, at least one of the matrices H1,u+1 and
Hu,n is one-way matrix. Similarly to the proof of Theorem 1, there is no Hamiltonian path in
G having as endpoints the vertices u and v = u + 1.

Suppose now that HG is a two-way matrix and let u ∈ {2, . . . , n − 2}. Then, both vertices
u − 1 and u + 2 exist in G. Since the desired path P starts at u and ends at u + 1, at least
one vertex in {1, . . . , u − 1} has to be connected to at least one vertex in {u + 2, . . . , n}. Thus,
due to the stair-shape of HG, it follows that the vertices u − 1 and u + 2 are connected. This
completes the necessity part of the proof.

For the sufficiency part, suppose that the conditions of Theorem 2 hold. Then, Algorithm
2 constructs a Hamiltonian path P in G having u and u + 1 as endpoints. The only differences
from the proof of Theorem 1 about the correctness of Algorithm 2 are the following. If u = 1, the
lines 2-10 are not executed at all. In this case, P visits all vertices of G during the execution of
lines 11-18, exactly as in the proof of Theorem 1. If u ≥ 2, none of the lines 7 and 10 of Algorithm
2 is executed when P visits vertex t = u − 1, since in this case it holds that t + 1 = u ∈ P and
t + 2 = u + 1 ∈ P ∪ {u + 1}. If u + 1 = n, then P visits the last vertex u + 1 in lines 12 and
13. Otherwise, if u + 1 < n, the vertices u − 1 and u + 2 are adjacent, due to the conditions of
Theorem 2. In this case, P continues visiting all the remaining vertices of G, as in the proof of
Theorem 1. Figure 3(b) illustrates the construction of such a Hamiltonian path by Algorithm 2
in a small example.

Algorithm 2 Construct a Hamiltonian path P in G with u, v as endpoints
1: t← u; P ← {u}
2: while t > 1 do

3: p← s(t) {the adjacent vertex of t with the smallest index}
4: P ← P ◦ p; t← p
5: while t < v − 1 do

6: if (t + 1) /∈ P then

7: P ← P ◦ (t + 1); t← t + 1
8: else

9: if (t + 2) /∈ P ∪ {v} then

10: P ← P ◦ (t + 2); t← t + 2
11: while t < n do

12: p← e(t) {the adjacent vertex of t with the greatest index}
13: P ← P ◦ p; t← p
14: while t > v do

15: if (t− 1) /∈ P then

16: P ← P ◦ (t− 1); t← t− 1
17: else

18: P ← P ◦ (t− 2); t← t− 2
19: return P

If the conditions of Theorems 1 and 2 are satisfied, Algorithm 2 constructs a Hamiltonian
path with endpoints u, v, as it is described in the proofs of these theorems. Algorithm 2 operates
on every vertex of G at most twice. Thus, since all values s(t) and e(t) can be computed in O(n)
time, its runtime is O(n) as well. Figure 3 illustrates the construction of such a Hamiltonian
path by Algorithm 2 in a small example, for both cases v ≥ u + 2 and v = u + 1.

3.2 The decision of 2HP in O(n) time

We can use now the results of Section 3.1 in order to decide in O(n) time whether a given proper
interval graph G has a Hamiltonian path P with two specific endpoints u, v and to construct P ,

8

u

v

(a)

u

u + 1

(b)

Fig. 3. The construction of the HP with endpoints u, v where (a) v ≥ u + 2, (b) v = u + 1.

if it exists. The values s(w) and e(w) for all vertices w ∈ {1, . . . , n} can be computed in O(n)
time. Due to the stair-shape of HG, the graph G is not connected if and only if there is a vertex
w ∈ {1, . . . , n − 1}, for which it holds e(w) = w and thus, we can check the connectivity of G
in O(n) time. If G is not connected, then it has no Hamiltonian path at all. Finally, a vertex
w is singular if and only if e(w − 1) = s(w + 1) = w and thus, the singular points of G can be
computed in O(n).

Since the proper interval graphs are hereditary, the subgraphs G1,u+1 and Gv−1,n of G remain
proper interval graphs as well. Thus, if G is connected, we can check in O(n) time whether these
graphs have singular points, or equivalently, whether H1,u+1 and Hv−1,n are two-way matrices.
On the other hand, we can check in constant time whether the vertices u − 1 and u + 2 are
adjacent. Thus, we can decide in O(n) time whether there exists a Hamiltonian path in G with
endpoints u, v, due to Theorems 1 and 2. In the case of non-existence, we output “NO”, while
otherwise Algorithm 2 constructs in O(n) time the desired Hamiltonian path.

4 The kPC problem on proper interval graphs

4.1 The algorithm

In this section we present Algorithm 3, which solves in O(n) the k-fixed-endpoint path cover
(kPC) problem on a proper interval graph G with n vertices, for any k ≤ n. This algorithm uses
the characterization of the 2HP problem of the previous section. We assume that for the given
set T = {t1, t2, . . . , tk} it holds t1 < t2 < . . . < tk. Denote also for simplicity tk+1 = n + 1.

Algorithm 3 Compute C(G,T) for a proper interval graph G

1: if G = ∅ then

2: return ∅
3: Compute the values s(w) and e(w) for every vertex w
4: w← 1
5: while w < n do

6: if e(w) = w then {G is not connected}
7: T1 ← T ∩ {1, 2, . . . , w}; T2 ← T \ T1

8: return C(G1,w, T1) ∪ C(Gw+1,n, T2)
9: w ← w + 1

10: if k ≤ 1 then

11: call Algorithm 4
12: if t1 ∈ S(G) then

13: P1 ← 1 ◦ . . . ◦ t1
14: return {P1} ∪ C(Gt1+1,n, T \ {t1})
15: call Algorithm 5

9

Algorithm 3 computes an optimal path cover C(G,T) of G. In lines 4-9, it checks the
connectivity of G. If it is not connected, the algorithm computes in lines 7-8 recursively the
optimal solutions of the first connected component and of the remaining graph. It reaches line
10 only if G is connected. In the case |T | = k ≤ 1, Algorithm 3 calls Algorithm 4 as subroutine.

In lines 12-14, Algorithm 3 considers the case, where G is connected, |T | ≥ 2 and t1 is a
singular point of G. Then, Proposition 1 implies that 2 ≤ t1 ≤ n − 1. Since no vertex among
{1, . . . , t1 − 1} is connected to any vertex among {t1 + 1, . . . , n} and since t1 ∈ T , an optimal
solution must contain at least two paths. Thus, it is always optimal to choose in line 13 a path
that visits sequentially the first t1 vertices and then to compute recursively in line 14 an optimal
solution in the remaining graph Gt1+1,n. Algorithm 3 reaches line 15 if G is connected, |T | ≥ 2
and t1 is a regular point of G. In this case, it calls Algorithm 5 as subroutine.

Algorithm 4 Compute C(G,T), if G is connected and |T | ≤ 1
1: if k = 0 then

2: return {1 ◦ 2 ◦ . . . ◦ n}
3: if k = 1 then

4: if t1 ∈ {1, n} then

5: return {1 ◦ 2 ◦ . . . ◦ n}
6: else

7: P1 ← 2HP(G, 1, t1)
8: P2 ← 2HP(G, t1, n)
9: if P1=“NO” then

10: if P2=“NO” then

11: return {1 ◦ . . . ◦ t1} ∪ {(t1 + 1) ◦ . . . ◦ n}
12: else

13: return {P2}
14: else

15: return {P1}

Algorithm 4 computes an optimal path cover C(G,T) of G in the case, where G is connected
and |T | = k ≤ 1. If k = 0, then the optimal solution includes clearly only one path, which visits
sequentially the vertices 1, 2, . . . , n, since G is connected. Let now k = 1. If t1 ∈ {1, n}, then the
optimal solution is again the single path {1, 2, . . . , n}. Otherwise, suppose that t1 ∈ {2, . . . , n−
1}. In this case, a trivial path cover is that with the paths {1 ◦ . . . ◦ t1} and {(t1 + 1) ◦ . . . ◦ n}.
This path cover is not optimal if and only if G has a Hamiltonian path P with u = t1 as
one endpoint. The other endpoint v of P lies either in {1, . . . , t1 − 1} or in {t1 + 1, . . . , n}. If
v ∈ {t1 + 1, . . . , n}, then H1,t1+1 and Hv−1,n have to be two-way matrices, due to Theorems
1 and 2. However, due to Definition 4, if Hv−1,n is a two-way matrix, then Hn−1,n is also a
two-way matrix, since Hn−1,n is a trivial submatrix of Hv−1,n.

Thus, if such a Hamiltonian path with endpoints t1 and v exists, then there exists also
one with endpoints t1 and n. Similarly, if there exists a Hamiltonian path with endpoints
v ∈ {1, . . . , t1 − 1} and t1, then there exists also one with endpoints 1 and t1. Thus, we call
P1 = 2HP(G, 1, t1) and P2 = 2HP(G, t1, n) in lines 7 and 8, respectively. If both outputs are
“NO”, then {1 ◦ . . . ◦ t1} and {(t1 + 1) ◦ . . . ◦ n} constitute an optimal solution. Otherwise, we
return one of the obtained paths P1 or P2 in lines 15 or 13, respectively. Since the runtime of
Algorithm 2 for the 2HP problem is O(n), the runtime of Algorithm 4 is O(n) as well.

In lines 5-9 and 12-14, Algorithm 3 separates G in two subgraphs and computes their optimal
solutions recursively. Thus, since the computation of all values s(w) and e(w) can be done in
O(n) and since the runtime of Algorithms 4 and 5 is O(n), Algorithm 3 runs in O(n) time as
well.

10

Algorithm 5 Compute C(G,T), where G is connected, |T | ≥ 2, t1 /∈ S(G).

1: if {1, ..., t1 − 1} ∩ S(G) = ∅ then {e1 = t2}
2: if 2HP(G1,t2+1, t1, t2) =“NO” then

3: a← t2
4: else

5: if {t2 + 1, ..., t3 − 1} ∩ S(G) 6= ∅ then

6: a← min{{t2 + 1, ..., t3 − 1} ∩ S(G)}
7: else

8: a← t3 − 1
9: P1 ← 2HP(G1,a, t1, t2)

10: C2 ← C(Ga+1,n, T \ {t1, t2})
11: else {e1 = 1}
12: if 2HP(G1,t1+1, 1, t1) =“NO” then

13: a← t1
14: else

15: if {t1 + 1, ..., t2 − 1} ∩ S(G) 6= ∅ then

16: a← min{{t1 + 1, ..., t2 − 1} ∩ S(G)}
17: else

18: a← t2 − 1
19: P1 ← 2HP(G1,a, 1, t1)
20: C2 ← C(Ga+1,n, T \ {t1})
21: return {P1} ∪ C2

4.2 Correctness of Algorithm 5

The correctness of Algorithm 5 follows from the technical Lemmas 3 and 4. To this end, we
prove first the auxiliary Lemma 2. For the purposes of these proofs, we assume an optimal
solution C of G. Denote by Pi the path in C, which has ti as endpoint and let ei be its second
endpoint. Observe that, if ei = tj, then Pi = Pj . Let further ℓi be the vertex of Pi with the
greatest index in the ordering of HG. It holds clearly ℓi ≥ ti, for every i ∈ {1, . . . , k}.

Lemma 2. If e1 ≤ t1, then w.l.o.g. ℓ1 < t2 and e1 = 1.

Proof. At first, suppose that e1 = t1, i.e. P1 is a trivial path of one vertex. If t1 = 1, the lemma
holds obviously. Otherwise, we can extend P1 by visiting sequentially the vertices t1 − 1, . . . , 1.
Since there is no vertex of T among the vertices {1, . . . , t1 − 1}, the resulting path cover has
not greater cardinality than C and e1 = 1.

Let now e1 < t1. Suppose that ℓ1 ≥ t2. Thus, since ℓ1 is not an endpoint of P1, it holds
that ti < ℓ1 for some i ∈ {2, . . . , k}. Suppose first that ti < ℓ1 < ℓi, as it is illustrated in Figure
4(a). Then, we can clearly transfer to Pi all vertices of P1 with index between ti +1 and ℓ1. The
obtained path cover has the same cardinality as C, while the greatest index of the vertices of
P1 is less than ti.

Suppose now that ti < ℓi < ℓ1, as it is illustrated in Figure 4(b). Since e1 < t1, the path
P1 is a Hamiltonian path of some subgraph of G1,ℓ1 with endpoints e1 and t1. Now, we obtain
similarly to the proofs of Theorems 1 and 2 that Ht1−1,ℓ1 is a two-way matrix, since otherwise
the path P1 would visit two times the same vertex, which is a contradiction. It follows that
Hℓi−1,ℓ1 is also a two-way matrix, as a submatrix of Ht1−1,ℓ1. Thus, we can extend Pi by the
vertices of P1 with index between ℓi + 1 and ℓ1. In the obtained path cover, the greatest index
ℓ′1 of the vertices of P1 is less than ℓi. Finally, if ti < ℓ′1, we can obtain, similarly to the above,
a new path cover with the same cardinality as C, in which the greatest index of the vertices of
P1 is less than ti.

It follows now by induction that there is an optimal solution, in which the greatest index ℓ1

of the vertices of P1 is less than t2, as it is illustrated in Figure 4(c). Then, similarly to above,

11

e1

t1

ti

ℓ1

ℓi

P1

Pi

(a)

e1

t1

ti

ℓ1

ℓi

P1

Pi

(b)

e1 = 1

t2

t1

ℓ1

P1

(c)

Fig. 4. The case e1 ≤ t1.

Ht1−1,ℓ1 is a two-way matrix. Now, Theorems 1 and 2 imply that G1,ℓ1 has a Hamiltonian path
with 1 and t1 as endpoints. Thus, it is always optimal to choose P1 = 2HP(G1,ℓ1 , 1, t1), for some
ℓ1 ∈ {t1, . . . , t2 − 1}.

Lemma 3. If {1, . . . , t1} ∩ S(G) = ∅, then w.l.o.g. e1 = t2.

Proof. Suppose at first that e1 ≤ t1. Then, Lemma 2 implies that e1 = 1 and ℓ1 < t2. In
particular, the proof of Lemma 2 implies that P1 = 2HP(G1,ℓ1 , 1, t1), as it is illustrated in
Figure 5(a). Thus, since P1 visits all vertices {1, 2, . . . , ℓ1}, it holds that

|C| = 1 + |C(Gℓ1+1,n, T \ {t1})| (3)

Suppose now that e1 > t1. Since there are no singular points of G among {1, . . . , t1}, the
submatrix H1,t1+1 is a two-way matrix. Then, Theorems 1 and 2 imply that G1,t2 has a Hamil-
tonian path with endpoints t1 and t2. Thus, we may suppose w.l.o.g. that P1 = 2HP(G1,a, t1, t2),
for an appropriate a ≥ t2, as it is illustrated in Figure 5(b). Since P1 = P2 and thus e2 = t1 < t2,
we obtain similarly to Lemma 2 that a = ℓ2 < t3. Since P1 visits all vertices {1, 2, . . . , a}, it
follows in this case for the cardinality of C that

|C| = 1 + |C(Ga+1,n, T \ {t1, t2})| (4)

Since in (3) it holds ℓ1 < t2 and in (4) it holds a ≥ t2, it follows that Ga+1,n is a strict
subgraph of Gℓ1+1,n. Since T \ {t1, t2} is a subset of T \ {t1}, it follows that the quantity in (4)
is less than or equal to that in (3). Thus, we may suppose w.l.o.g. that e1 = t2.

P1

t2

t1

1

ℓ1

t3

(a)

P1

a

t2

t3

t1

1

(b)

Fig. 5. The case, where there is no singular point of G among {1, . . . , t1}.

Lemma 4. If {1, . . . , t1 − 1} ∩ S(G) 6= ∅ and t1 /∈ S(G), then w.l.o.g. e1 = 1.

12

Proof. Let w ∈ {1, . . . , t1 − 1} be the singular point of G with the smallest index. Due to
Proposition 1, it holds w ≥ 2. Then, there is a path P0 in the optimal solution C, which has an
endpoint t0 ∈ {1, . . . , w− 1}. Indeed, otherwise there would be a path visiting vertex w at least
twice, which is a contradiction.

Thus, since {1, . . . , t0} ∩ S(G) = ∅ and since t0 is an endpoint, Lemma 3 implies for the
other endpoint e0 of P0 that e0 = t1 and therefore P0 = P1. Thus, since the second endpoint of
P1 is e1 = t0 < t1, Lemma 2 implies that w.l.o.g. it holds e1 = t0 = 1 and, in particular that
P1 = 2HP(G1,a, 1, t1) for some a ∈ {t1, . . . , t2 − 1}, as it is illustrated in Figure 6.

a

t1
P1

1

t2

Fig. 6. The case, where there are singular points of G among {1, . . . , t1 − 1} and t1 is a regular point of G.

Algorithm 5 considers in lines 1-10 the case where there are no singular points of G among
{1, . . . , t1 − 1}. The proof of Lemma 3 implies for this case that e1 = t2 and, in particular
that P1 = 2HP(G1,a, t1, t2) for some a ∈ {t2, . . . t3 − 1}. In order to maximize P1 as much as
possible, we choose the greatest possible value of a, for which G1,a has a Hamiltonian path with
endpoints t1, t2. Namely, if G1,t2+1 does not have such a Hamiltonian path, we set a = t2 in line
3. Suppose now that G1,t2+1 has such a path. In the case, where there is at least one singular
point of G among {t2 + 1, . . . , t3 − 1}, we set a to be this one with the smallest index among
them in line 6. Otherwise, we set a = t3 − 1 in line 8. Denote for simplicity G1,n+1 = G. Then,
in the extreme cases t3 = t2 + 1 or t2 = n, the algorithm sets a = t2 = t3 − 1.

Next, in lines 11-20, Algorithm 5 considers the case, where there are some singular points
of G among {1, . . . , t1 − 1}. Then, the proof of Lemma 4 implies that e1 = 1 and, in particular
that P1 = 2HP(G1,a, 1, t1), for some a ∈ {t1, . . . , t2 − 1}. In order to maximize P1 as much as
possible, we choose the greatest possible value of a, for which G1,a has a Hamiltonian path with
endpoints 1 and t1. Namely, if G1,t1+1 does not have such a Hamiltonian path, we set a = t1
in line 13. Suppose now that G1,t1+1 has such a path. In the case, where there is at least one
singular point of G among {t1 + 1, . . . , t2 − 1}, we set a to be this one with the smallest index
among them in line 16. Otherwise, we set a = t2 − 1 in line 18. Note that in the extreme case
t2 = t1 + 1, the algorithm sets a = t1 = t2 − 1.

The algorithm computes P1 in lines 9 and 19, respectively. Then, it computes recursively the
optimum path cover C2 of the remaining graph in lines 10 and 20, respectively, and it outputs
{P1} ∪ C2. Since the computation of a 2HP by Algorithm 2 can be done in O(n) time, the
runtime of Algorithm 5 is O(n) as well.

5 Concluding remarks

In this article we presented a simple algorithm for the k-fixed-endpoint path cover problem on
proper interval graphs with runtime O(n). Since any algorithm for this problem has to visit
at least all n vertices of G, this runtime is optimal. The presented algorithm is based on the

13

characterization of proper interval graphs by the SNIR matrix. The complexity status of the
k-fixed-endpoint path cover problem, as well as of 1HP and 2HP, on the general class of interval
graphs remain interesting open questions for further research.

References

1. P. Hell, R. Shamir, and R. Sharan. A fully dynamic algorithm for recognizing and representing proper interval
graphs. SIAM J. Comput., 31(1):289–305, 2001.

2. W.L. Hsu. A simple test for interval graphs. In WG ’92: Proceedings of the 18th International Workshop on
Graph-Theoretic Concepts in Computer Science, pages 11–16, London, 1993. Springer-Verlag.

3. D. Corneil, H. Kim, S. Natarajan, S. Olariu, and A.P. Sprague. Simple linear time recognition of unit interval
graphs. Inform. Process. Lett., 55:99–104, 1995.

4. D.G. Corneil, S. Olariu, and L. Stewart. The ultimate interval graph recognition algorithm? In SODA ’98:
Proceedings of the ninth annual ACM-SIAM symposium on Discrete algorithms, pages 175–180, 1998.

5. B.S. Panda and S.K. Das. A linear time recognition algorithm for proper interval graphs. Information
Processing Letters, 87(3):153–161, 2003.

6. M.C. Golumbic and A.N. Trenk. Tolerance graphs. Cambridge University Press, Cambridge, 2004.
7. A.V. Carrano. Establishing the order to human chromosome-specific DNA fragments. In A. D. Woodhead

and B. J. Barnhart, editors, Biotechnology and the Human Genome, pages 37–50. Plenum Press, New York,
1988.

8. M.R. Garey and D.S. Johnson. Computers and intractability: a guide to the theory of NP-completeness. W.H.
Freeman, San Francisco, 1979.

9. U.I. Gupta, D.T. Lee, and J.Y.T. Leung. Efficient algorithms for interval graphs and circular-arc graphs.
Networks, pages 459–467, 1982.

10. Ju Yuan Hsiao and Chuan Yi Tang. An efficient algorithm for finding a maximum weight 2-independent set
on interval graphs. Inf. Process. Lett., 43(5):229–235, 1992.

11. M.S. Chang, S.L. Peng, and J.L. Liaw. Deferred-query - an efficient approach for problems on interval and
circular-arc graphs (extended abstract). In WADS, pages 222–233, 1993.

12. S.R. Arikati and C.P. Rangan. Linear algorithm for optimal path cover problem on interval graphs. Infor-
mation Processing Letters, 35(3):149–153, 1990.

13. G.S. Adhar and S. Peng. Parallel algorithms for path covering, hamiltonian path and hamiltonian cycle in
cographs. In International Conference on Parallel Processing, volume 3, pages 364–365, 1990.

14. R. Lin, S. Olariu, and G. Pruesse. An optimal path cover algorithm for cographs. Comput. Math. Appl.,
30:75–83, 1995.

15. R. Srikant, R. Sundaram, K.S. Singh, and C.P. Rangan. Optimal path cover problem on block graphs and
bipartite permutation graphs. Theoretical Computer Science, 115:351–357, 1993.

16. M.R. Garey, D.S. Johnson, and R.E. Tarjan. The planar hamiltonian circuit problem is np-comlete. SIAM
J. Comput., 5:704–714, 1976.

17. M.C. Golumbic. Algorithmic Graph Theory and Perfect Graphs, volume 57. Annals of Discrete Mathematics,
Amsterdam, The Netherlands, 2004.

18. H. Müller. Hamiltonian circuits in chordal bipartite graphs. Discrete Mathematics, 156:291–298, 1996.
19. A.A. Bertossi and M.A. Bonucelli. Finding hamiltonian circuits in interval graph generalizations. Information

Processing Letters, 23:195–200, 1986.
20. R.W. Hung and M.S. Chang. Solving the path cover problem on circular-arc graphs by using an approximation

algorithm. Discrete Applied Mathematics, 154(1):76–105, 2006.
21. P. Damaschke. Paths in interval graphs and circular-arc graphs. Discrete Mathematics, 112:49–64, 1993.
22. K. Asdre and S.D. Nikolopoulos. A linear-time algorithm for the k-fixed-endpoint path cover problem on

cographs. Networks, 50:231–240, 2007.
23. K. Asdre and S.D. Nikolopoulos. A polynomial solution to the k-fixed-endpoint path cover problem on proper

interval graphs. In 18th International Conference on Combinatorial Algorithms (IWOCA’07), Newcastle,
Australia, 2007.

24. G.B. Mertzios. A matrix characterization of interval and proper interval graphs. Applied Mathematics Letters,
21(4):332–337, 2008.

14

Aachener Informatik-Berichte

This list contains all technical reports published during the past five years. A complete

list of reports dating back to 1987 is available from http://aib.informatik.rwth-aachen.de/.

To obtain copies consult the above URL or send your request to: Informatik-Bibliothek,

RWTH Aachen, Ahornstr. 55, 52056 Aachen, Email: biblio@informatik.rwth-aachen.de

2003-01 ∗ Jahresbericht 2002

2003-02 Jürgen Giesl, René Thiemann: Size-Change Termination for Term

Rewriting

2003-03 Jürgen Giesl, Deepak Kapur: Deciding Inductive Validity of Equations

2003-04 Jürgen Giesl, René Thiemann, Peter Schneider-Kamp, Stephan Falke:

Improving Dependency Pairs

2003-05 Christof Löding, Philipp Rohde: Solving the Sabotage Game is PSPACE-

hard

2003-06 Franz Josef Och: Statistical Machine Translation: From Single-Word

Models to Alignment Templates

2003-07 Horst Lichter, Thomas von der Maßen, Alexander Nyßen, Thomas

Weiler: Vergleich von Ansätzen zur Feature Modellierung bei der Soft-

wareproduktlinienentwicklung

2003-08 Jürgen Giesl, René Thiemann, Peter Schneider-Kamp, Stephan Falke:

Mechanizing Dependency Pairs

2004-01 ∗ Fachgruppe Informatik: Jahresbericht 2003

2004-02 Benedikt Bollig, Martin Leucker: Message-Passing Automata are expres-

sively equivalent to EMSO logic

2004-03 Delia Kesner, Femke van Raamsdonk, Joe Wells (eds.): HOR 2004 – 2nd

International Workshop on Higher-Order Rewriting

2004-04 Slim Abdennadher, Christophe Ringeissen (eds.): RULE 04 – Fifth In-

ternational Workshop on Rule-Based Programming

2004-05 Herbert Kuchen (ed.): WFLP 04 – 13th International Workshop on Func-

tional and (Constraint) Logic Programming

2004-06 Sergio Antoy, Yoshihito Toyama (eds.): WRS 04 – 4th International

Workshop on Reduction Strategies in Rewriting and Programming

2004-07 Michael Codish, Aart Middeldorp (eds.): WST 04 – 7th International

Workshop on Termination

2004-08 Klaus Indermark, Thomas Noll: Algebraic Correctness Proofs for Com-

piling Recursive Function Definitions with Strictness Information

2004-09 Joachim Kneis, Daniel Mölle, Stefan Richter, Peter Rossmanith: Param-

eterized Power Domination Complexity

2004-10 Zinaida Benenson, Felix C. Gärtner, Dogan Kesdogan: Secure Multi-

Party Computation with Security Modules

2005-01 ∗ Fachgruppe Informatik: Jahresbericht 2004

2005-02 Maximillian Dornseif, Felix C. Gärtner, Thorsten Holz, Martin Mink: An

Offensive Approach to Teaching Information Security: “Aachen Summer

School Applied IT Security”

2005-03 Jürgen Giesl, René Thiemann, Peter Schneider-Kamp: Proving and Dis-

proving Termination of Higher-Order Functions

2005-04 Daniel Mölle, Stefan Richter, Peter Rossmanith: A Faster Algorithm for

the Steiner Tree Problem

15

2005-05 Fabien Pouget, Thorsten Holz: A Pointillist Approach for Comparing

Honeypots

2005-06 Simon Fischer, Berthold Vöcking: Adaptive Routing with Stale Informa-

tion

2005-07 Felix C. Freiling, Thorsten Holz, Georg Wicherski: Botnet Tracking: Ex-

ploring a Root-Cause Methodology to Prevent Distributed Denial-of-

Service Attacks

2005-08 Joachim Kneis, Peter Rossmanith: A New Satisfiability Algorithm With

Applications To Max-Cut

2005-09 Klaus Kursawe, Felix C. Freiling: Byzantine Fault Tolerance on General

Hybrid Adversary Structures

2005-10 Benedikt Bollig: Automata and Logics for Message Sequence Charts

2005-11 Simon Fischer, Berthold Vöcking: A Counterexample to the Fully Mixed

Nash Equilibrium Conjecture

2005-12 Neeraj Mittal, Felix Freiling, S. Venkatesan, Lucia Draque Penso: Ef-

ficient Reductions for Wait-Free Termination Detection in Faulty Dis-

tributed Systems

2005-13 Carole Delporte-Gallet, Hugues Fauconnier, Felix C. Freiling: Revisiting

Failure Detection and Consensus in Omission Failure Environments

2005-14 Felix C. Freiling, Sukumar Ghosh: Code Stabilization

2005-15 Uwe Naumann: The Complexity of Derivative Computation

2005-16 Uwe Naumann: Syntax-Directed Derivative Code (Part I: Tangent-

Linear Code)

2005-17 Uwe Naumann: Syntax-directed Derivative Code (Part II: Intraprocedu-

ral Adjoint Code)

2005-18 Thomas von der Maßen, Klaus Müller, John MacGregor, Eva Geis-

berger, Jörg Dörr, Frank Houdek, Harbhajan Singh, Holger Wußmann,

Hans-Veit Bacher, Barbara Paech: Einsatz von Features im Software-

Entwicklungsprozess - Abschlußbericht des GI-Arbeitskreises “Features”

2005-19 Uwe Naumann, Andre Vehreschild: Tangent-Linear Code by Augmented

LL-Parsers

2005-20 Felix C. Freiling, Martin Mink: Bericht über den Workshop zur Ausbil-

dung im Bereich IT-Sicherheit Hochschulausbildung, berufliche Weiter-

bildung, Zertifizierung von Ausbildungsangeboten am 11. und 12. Au-

gust 2005 in Köln organisiert von RWTH Aachen in Kooperation mit

BITKOM, BSI, DLR und Gesellschaft fuer Informatik (GI) e.V.

2005-21 Thomas Noll, Stefan Rieger: Optimization of Straight-Line Code Revis-

ited

2005-22 Felix Freiling, Maurice Herlihy, Lucia Draque Penso: Optimal Random-

ized Fair Exchange with Secret Shared Coins

2005-23 Heiner Ackermann, Alantha Newman, Heiko Röglin, Berthold Vöcking:

Decision Making Based on Approximate and Smoothed Pareto Curves

2005-24 Alexander Becher, Zinaida Benenson, Maximillian Dornseif: Tampering

with Motes: Real-World Physical Attacks on Wireless Sensor Networks

2006-01 ∗ Fachgruppe Informatik: Jahresbericht 2005

2006-02 Michael Weber: Parallel Algorithms for Verification of Large Systems

2006-03 Michael Maier, Uwe Naumann: Intraprocedural Adjoint Code Generated

by the Differentiation-Enabled NAGWare Fortran Compiler

16

2006-04 Ebadollah Varnik, Uwe Naumann, Andrew Lyons: Toward Low Static

Memory Jacobian Accumulation

2006-05 Uwe Naumann, Jean Utke, Patrick Heimbach, Chris Hill, Derya Ozyurt,

Carl Wunsch, Mike Fagan, Nathan Tallent, Michelle Strout: Adjoint

Code by Source Transformation with OpenAD/F

2006-06 Joachim Kneis, Daniel Mölle, Stefan Richter, Peter Rossmanith: Divide-

and-Color

2006-07 Thomas Colcombet, Christof Löding: Transforming structures by set in-

terpretations

2006-08 Uwe Naumann, Yuxiao Hu: Optimal Vertex Elimination in Single-

Expression-Use Graphs

2006-09 Tingting Han, Joost-Pieter Katoen: Counterexamples in Probabilistic

Model Checking

2006-10 Mesut Günes, Alexander Zimmermann, Martin Wenig, Jan Ritzerfeld,

Ulrich Meis: From Simulations to Testbeds - Architecture of the Hybrid

MCG-Mesh Testbed

2006-11 Bastian Schlich, Michael Rohrbach, Michael Weber, Stefan Kowalewski:

Model Checking Software for Microcontrollers

2006-12 Benedikt Bollig, Joost-Pieter Katoen, Carsten Kern, Martin Leucker:

Replaying Play in and Play out: Synthesis of Design Models from Sce-

narios by Learning

2006-13 Wong Karianto, Christof Löding: Unranked Tree Automata with Sibling

Equalities and Disequalities

2006-14 Danilo Beuche, Andreas Birk, Heinrich Dreier, Andreas Fleischmann,

Heidi Galle, Gerald Heller, Dirk Janzen, Isabel John, Ramin Tavakoli

Kolagari, Thomas von der Maßen, Andreas Wolfram: Report of the GI

Work Group “Requirements Management Tools for Product Line Engi-

neering”

2006-15 Sebastian Ullrich, Jakob T. Valvoda, Torsten Kuhlen: Utilizing optical

sensors from mice for new input devices

2006-16 Rafael Ballagas, Jan Borchers: Selexels: a Conceptual Framework for

Pointing Devices with Low Expressiveness

2006-17 Eric Lee, Henning Kiel, Jan Borchers: Scrolling Through Time: Improv-

ing Interfaces for Searching and Navigating Continuous Audio Timelines

2007-01 ∗ Fachgruppe Informatik: Jahresbericht 2006

2007-02 Carsten Fuhs, Jürgen Giesl, Aart Middeldorp, Peter Schneider-Kamp,

René Thiemann, and Harald Zankl: SAT Solving for Termination Anal-

ysis with Polynomial Interpretations

2007-03 Jürgen Giesl, René Thiemann, Stephan Swiderski, and Peter Schneider-

Kamp: Proving Termination by Bounded Increase

2007-04 Jan Buchholz, Eric Lee, Jonathan Klein, and Jan Borchers: coJIVE: A

System to Support Collaborative Jazz Improvisation

2007-05 Uwe Naumann: On Optimal DAG Reversal

2007-06 Joost-Pieter Katoen, Thomas Noll, and Stefan Rieger: Verifying Con-

current List-Manipulating Programs by LTL Model Checking

2007-07 Alexander Nyßen, Horst Lichter: MeDUSA - MethoD for UML2-based

Design of Embedded Software Applications

2007-08 Falk Salewski and Stefan Kowalewski: Achieving Highly Reliable Em-

bedded Software: An empirical evaluation of different approaches

17

2007-09 Tina Kraußer, Heiko Mantel, and Henning Sudbrock: A Probabilistic

Justification of the Combining Calculus under the Uniform Scheduler

Assumption

2007-10 Martin Neuhäußer, Joost-Pieter Katoen: Bisimulation and Logical

Preservation for Continuous-Time Markov Decision Processes

2007-11 Klaus Wehrle (editor): 6. Fachgespräch Sensornetzwerke

2007-12 Uwe Naumann: An L-Attributed Grammar for Adjoint Code

2007-13 Uwe Naumann, Michael Maier, Jan Riehme, and Bruce Christianson:

Second-Order Adjoints by Source Code Manipulation of Numerical Pro-

grams

2007-14 Jean Utke, Uwe Naumann, Mike Fagan, Nathan Tallent, Michelle Strout,

Patrick Heimbach, Chris Hill, and Carl Wunsch: OpenAD/F: A Modular,

Open-Source Tool for Automatic Differentiation of Fortran Codes

2007-15 Volker Stolz: Temporal assertions for sequential and concurrent programs

2007-16 Sadeq Ali Makram, Mesut Güneç, Martin Wenig, Alexander Zimmer-

mann: Adaptive Channel Assignment to Support QoS and Load Balanc-

ing for Wireless Mesh Networks

2007-17 René Thiemann: The DP Framework for Proving Termination of Term

Rewriting

2007-18 Uwe Naumann: Call Tree Reversal is NP-Complete

2007-19 Jan Riehme, Andrea Walther, Jörg Stiller, Uwe Naumann: Adjoints for

Time-Dependent Optimal Control

2007-20 Joost-Pieter Katoen, Daniel Klink, Martin Leucker, and Verena Wolf:

Three-Valued Abstraction for Probabilistic Systems

2007-21 Tingting Han, Joost-Pieter Katoen, and Alexandru Mereacre: Compo-

sitional Modeling and Minimization of Time-Inhomogeneous Markov

Chains

2007-22 Heiner Ackermann, Paul W. Goldberg, Vahab S. Mirrokni, Heiko Röglin,

and Berthold Vöcking: Uncoordinated Two-Sided Markets

2008-01 ∗ Fachgruppe Informatik: Jahresbericht 2007

2008-02 Henrik Bohnenkamp, Marielle Stoelinga: Quantitative Testing

2008-03 Carsten Fuhs, Jürgen Giesl, Aart Middeldorp, Peter Schneider-Kamp,

René :Thiemann, Harald Zankl: Maximal Termination

2008-04 Uwe Naumann, Jan Riehme: Sensitivity Analysis in Sisyphe with the

AD-Enabled NAGWare Fortran Compiler

2008-05 Frank G. Radmacher: An Automata Theoretic Approach to the Theory

of Rational Tree Relations

2008-06 Uwe Naumann, Laurent Hascoet, Chris Hill, Paul Hovland, Jan Riehme,

Jean Utke: A Framework for Proving Correctness of Adjoint Message

Passing Programs

2008-08 George B. Mertzios, Stavros D. Nikolopoulos: The λ-cluster Problem on

Parameterized Interval Graphs

2008-09 George B. Mertzios, Walter Unger: An optimal algorithm for the k-fixed-

endpoint path cover on proper interval graphs

∗ These reports are only available as a printed version.

Please contact biblio@informatik.rwth-aachen.de to obtain copies.

18

