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Abstract. This paper presents a compositional framework for the modeling of
interactive continuous-time Markov chains with time-dependent rates, a subclass
of communicating piecewise deterministic Markov processes. A poly-time algo-
rithm is presented for computing the coarsest quotient under strong bisimulation
for rate functions that are either piecewise uniform or (piecewise) polynomial.
Strong as well as weak bisimulation are shown to be congruence relations for
the compositional framework, thus allowing component-wise minimization. In ad-
dition, a new characterization of transient probabilities in time-inhomogeneous
Markov chains with piecewise uniform rates is provided.

1 Introduction

Modeling large stochastic discrete-event dynamic systems is a difficult task that
typically requires human intelligence and ingenuity. To facilitate this process,
formalisms are needed that allow for the modeling of such systems in a composi-
tional manner. This allows to construct models of simpler components—usually
from first principles—that can be combined by appropriate composition oper-
ators to yield complete system models. In concurrency theory, process algebra
[Mil89,Hoa85] has emerged as an important framework to achieve composition-
ality: it provides a formal apparatus for compositional reasoning about structure
and behavior of systems, and features abstraction mechanisms allowing system
components to be treated as black boxes.

Although originally aimed at purely functional behavior, process algebras for
stochastic systems have been investigated thoroughly, see e.g., [HHK02,Her02].
In all these approaches, the dynamics of the stochastic models is assumed to
be time-homogeneous, i.e., the probabilistic nature of mode transitions as well
as the time-driven behavior are independent of the global time. This is, how-
ever, a serious drawback to adequately model random phenomena that occur
in practice such as failure rates of hardware components (a bath-tub curve),
software reliability (which reduces due to memory leaks and increases after a
restart), and battery depletion (where the power extraction rate non-linearly
depends on the remaining amount of energy [CJH07]), to mention a few. This
paper attempts to overcome this deficiency by providing a process algebra for
time-inhomogeneous continuous-time Markov chains (ICTMCs). This is a very
versatile class of models and is a natural stepping-stone towards more full-fledged
stochastic hybrid system models such as piecewise deterministic Markov pro-
cesses (PDPs [Dav93]). We show that ICTMCs can be compositionally modeled
by using a time-dependent adaptation of the framework of interactive Markov



chains (IMCs) [Her02]. To facilitate this, ICTMCs are equipped with the poten-
tial for interaction, i.e., synchronization. Instrumental to this approach is the
memoryless property of ICTMCs.

More importantly though, notions of strong and weak bisimulation are de-
fined and shown to be congruences. Together with efficient quotienting algorithms
this allows for the component-wise minimization of hierarchical ICTMC models.
Finally, we present an axiomatization for strong and weak bisimulation which
allows to simplify models by pure syntactic manipulations as opposed to per-
forming minimization on the model level 3. As a generalization of results on
ordinary lumpability on Markov chains [Buc94], we show that strong bisimula-
tion preserves transient and long-run state probabilities in ICTMCs. This allows
to minimize symbolically ICTMCs prior to their analysis.

We present a bisimulation minimization algorithm to obtain the coarsest (and
thus smallest) strong bisimulation quotient of a large class of interactive ICTMCs,
viz. those that have piecewise uniform—rate Rk(t) on piece k is of the form
fk(t)·R for integrable function R—polynomial, or piecewise polynomial—where
each polynomial is of degree three—rate functions. The worst-case time and space
complexity is O (ma lg(n) + Mmr lg(n)) and O (ma + mr), respectively, where
M+1 is the number of pieces (or degrees of the polynomial), ma is the number
of action-labeled transitions and mr the number of rate-labeled transitions in the
ICTMC under consideration. This algorithm is based on the partition-refinement
bisimulation algorithm for Markov chains by Derisavi et al. [DHS03] and Paige-
Tarjan’s algorithm for labeled transition systems (LTS) [PT87].

Related work. ICTMCs are related to piecewise deterministic Markov processes
(PDPs), a more general class of continuous-time stochastic discrete-event dy-
namic systems proposed by Davis [Dav93]. The probabilistic nature of mode
transitions in PDPs is as for ICTMCs; in fact, ICTMCs are a subclass of PDPs
when the global time t has a clock dynamics i.e., ṫ = 1. The notion of parallel
composition of ICTMCs corresponds to that for communicating PDPs (CPDPs)
as introduced by Strubbe and van der Schaft [SvdS06,SJvdS03]. Alternative
modeling formalisms for PDPs are, e.g., variants of colored Petri nets [EB05]
but they lack a clear notion of compositionality. Compositional modeling for-
malisms for hybrid systems have been considered by, e.g., [AGLS06,AGH+00].
Strong bisimulation has been proposed for several classes of (stochastic) hybrid
systems, see e.g., [BLB05,HTP05,SvdS05]. Our notion of bisimulation is closely
related to that for CPDPs [SvdS05] but differs in the fact that the maximal
progress assumption—a race between one or more rates and a transition that
is not subject to interaction with the environment is resolved in favor of the
internal transition—is not considered in [SvdS05].

2 Inhomogeneous Continuous Time Markov Chains

Definition 1 (ICTMC). An inhomogeneous continuous-time Markov chain is
a tuple C = (S,R) where: S = {1, 2, . . . , n} is a finite set of states, and R(t) =
[Ri,j(t) ≥ 0] ∈ IRn×n is a time-dependent rate matrix, where Ri,j(t) is the rate
between states i, j ∈ S at time t ∈ IR≥0.

3 The proofs for the congruence results and the axiomatization have been obtained by standard
proof techniques and are omitted from the paper.
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Let diagonal matrix E(t) = diag [Ei(t)] ∈ IRn×n, where Ei(t) =
∑

j∈S
Ri,j(t) for

all i, j ∈ S, i 6= j i.e., Ei(t) is the total exit rate of state i at time t. Consider a
non-homogeneous Poisson process {Z(t)|t ≥ 0} with rate R(t). The probability
of k arrivals in the interval [t, t + ∆t] is:

Pr{Z(t + ∆t) − Z(t) = k} =

[

∫ t+∆t
t R(ℓ)dℓ

]k

k!
e−

R t+∆t
t

R(ℓ)dℓ, k = 0, 1, . . . .

The probability that there will be no arrivals in the interval [t, t + ∆t] is:

Pr{Z(t + ∆t) − Z(t) = 0} = e−
R t+∆t

t
R(ℓ)dℓ = e−

R ∆t

0
R(t+ℓ)dℓ. (1)

Let the random variable Wi,j(t) be the firing time of transition i → j (i, j ∈
S) with rate Ri,j(t) at time t. From (1) we obtain the cumulative probability
distribution of the firing time of transition i → j:

Pr {Wi,j(t) ≤ ∆t} = 1 − Pr{Z(t + ∆t) − Z(t) = 0} = 1 − e−
R ∆t

0
Ri,j(t+ℓ)dℓ. (2)

Probability measures. For every ICTMC one can specify measures of interest.
These measures are either related to the states or to the transitions of an ICTMC.
Consider a random variable Wi(t) which denotes the waiting time in state i.

Property 1.

Pr {Wi(t) ≤ ∆t} = 1 − e−
R ∆t

0
Ei(t+ℓ)dℓ. (3)

An intuitive explanation of (3) is that the waiting time Wi(t) in state i is deter-
mined by the minimal firing time of all k outgoing transitions from state i, i.e.,
Wi(t) = min {Wi,1(t), . . . ,Wi,k(t)}. When Ri,j(t) = Ri,j and Ei(t) = Ei for all
t ∈ IR≥0, i.e., the ICTMC is a CTMC, Wi(t) has the distribution 1− e−Ei∆t. An
interesting property is that the waiting time in any state i is memoryless, i.e.:

Pr
{

Wi(t) ≤ t′ + ∆t|Wi(t) > t′
}

= Pr
{

Wi(t + t′) ≤ ∆t
}

. (4)

This can be shown as follows:

Pr
{

Wi(t) ≤ t′ + ∆t|Wi(t) > t′
}

=
e−

R t′

0 Ei(t+ℓ)dℓ − e−
R t′+∆t
0 Ei(t+ℓ)dℓ

e−
R t′

0
Ei(t+ℓ)dℓ

=1 − e−
R t′+∆t

0
Ei(t+ℓ)dℓ+

R t′

0
Ei(t+ℓ)dℓ = Pr

{

Wi(t + t′) ≤ ∆t
}

.

Equation (4) will be of importance when we later define a calculus for ICTMCs.

Property 2. The probability Pri,j(t) to select transition i → j (i 6= j, i, j ∈ S)
with rate Ri,j(t) at time t is:

Pri,j(t) =

∫ ∞

0
Ri,j(t + τ)e−

R τ
0 Ei(t+ℓ)dℓdτ. (5)

When rates are constant, the measure (5) takes the form Pri,j =
Ri,j

Ei
(Pri,j(t) =

Pri,j for all t ∈ IR≥0), which corresponds to transition probability in CTMCs. An
important relation which always holds for CTMCs is that the probability to leave
a non-absorbing state i (Ei(t) 6= 0 for all t ∈ IR≥0) equals

∑

j∈S
Pri,j = 1. On the

other hand, for ICTMCs,
∑

j∈S
Pri,j(t) = 1 only holds when limτ→∞

∫ τ
0 Ei(ℓ)dℓ =

∞.
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Property 3. The cumulative probability distribution Pri,j(t,∆t) to move from
state i to state j (i 6= j) with rate Ri,j(t) in ∆t units of time starting at time t
is:

Pri,j(t,∆t) =

∫ ∆t

0
Ri,j(t + τ)e−

R τ

0
Ei(t+ℓ)dℓdτ. (6)

Notice that (6) is the same as (5) except that the range of the outer-most integral
is [0,∆t]. For CTMCs, equation (6) results (Pri,j(t,∆t) = Pri,j(∆t) for all t ∈

IR≥0) in Pri,j(∆t) =
Ri,j

Ei

(

1 − e−Ei∆t
)

.

Transient probability distribution. One important measure which quantifies the
probability to be in a specific state at some time point is the transient prob-
ability distribution. Consider an ICTMC described by the stochastic process
{X(t)|t ≥ 0}. The transient probability distribution Pr {X(t + ∆t) = j}, denoted
by πj (t + ∆t), is the probability to be in state j at time t+∆t, and is described
by the equation:

πj (t + ∆t) =
∑

i∈S

Pr {X(t) = i} · Pr {X(t + ∆t) = j|X(t) = i} . (7)

Equation (7) can be expressed in matrix form as: π(t + ∆t) = π(t)Φ(t + ∆t, t),
where π(t) = [π1 (t) , . . . , πn (t)] and Φ(t + ∆t, t) represents the transition prob-
ability matrix. This equation represents the solution of a system of ODEs:

dπ(t)

dt
= lim

∆t→0

π(t + ∆t) − π(t)

∆t
= lim

∆t→0
π(t)

[Φ(t + ∆t, t) − I]

∆t
. (8)

For the diagonal elements qi,i(t) of the matrix lim∆t→0
[Φ(t+∆t,t)−I]

∆t from (8), we
obtain:

qi,i(t) = lim
∆t→0

Pr {X(t + ∆t) = i|X(t) = i} − 1

∆t
.

As Pr {X(t + ∆t) = i|X(t) = i} denotes the probability to stay in state i for at
least ∆t units of time or the probability to return to state i in two or more steps,
it follows:

qi,i(t) = lim
∆t→0

e−
R ∆t

0
Ei(t+ℓ)dℓ − 1 + o (∆t)

∆t
= −Ei(t),

where o (∆t) denotes the probability to make two or more transitions in ∆t

units of time. Notice that lim∆t→0
o(∆t)

∆t = 0. For the off-diagonal elements qi,j(t)

(i 6= j) of matrix lim∆t→0
[Φ(t+∆t,t)−I]

∆t , the relation is similar:

qi,j(t) = lim
∆t→0

Pr {X(t + ∆t) = j|X(t) = i}

∆t
= lim

∆t→0

Pri,j(t,∆t) + o (∆t)

∆t
,

which can be reduced using (6) to:

qi,j(t) = lim
∆t→0

∫ ∆t
0 Ri,j(t + τ)e−

R τ
0 Ei(t+ℓ)dℓdτ + o (∆t)

∆t
= Ri,j(t).

The resulting infinitesimal generator matrix Q(t) has the form:

Q(t) = lim
∆t→0

[Φ(t + ∆t, t) − I]

∆t
= R′(t) −E(t),
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where R′ equals R except that R
′

i,i(t) = 0. Plugging Q(t) into equation (8)
yields the system of ODEs which describe the evolution of transient probability
distribution over time (Chapman-Kolmogorov equations):

dπ(t)

dt
= π(t)Q(t),

n
∑

i=1

πi(t0) = 1, (9)

where π(t0) is the initial condition. From the literature (see [Kai80, pages 594–
631]) it is known that the solution π(t) of (9), written as:

π(t) = π(t0)Φ(t, t0) (10)

has the transition probability matrix given by the Peano-Baker series:

Φ(t, t0) = I +

∫ t

t0

Q(τ1)dτ1 +

∫ t

t0

Q(τ1)

∫ τ1

t0

Q(τ2)dτ2dτ1 + . . . . (11)

Note that if Q(τ1)
∫ τ1
t0

Q(τ2)dτ2 =
∫ τ1
t0

Q(τ2)dτ2Q(τ1) then Φ(t, t0) = e
R t

t0
Q(τ)dτ

.
If the rate matrix R(t) is piecewise constant i.e., R(t) = Rk or Q(t) = Qk for
all t ∈ [tk, tk+1) and k ≤ M ∈ IN (M + 1 is the total number of constant pieces),
equation (10) can also be rewritten as (see [RWVT95]):

π(t) =











π(t0)e
Q0(t−t0) if t ∈ [t0, t1)

...
...

π(tM )eQM (t−tM ) if t ∈ [tM ,∞)

and π(tk) = π(tk−1)e
Qk−1(tk−tk−1).

The general case is when the rate matrix is piecewise uniform i.e., R(t) = Rk(t) =
fk(t)Rk or Q(t) = Qk(t) = fk(t)Qk for any integrable function fk(t) : IR≥0 →
IR≥0 on time interval [tk, tk+1), constant matrices Rk, Qk and k ≤ M .

Theorem 1. The transient probability distribution π(t) of an ICTMC C = (S,R)
with a piecewise uniform rate matrix R(t) and M+1 pieces is given by:

π(t) =















π(t0)e
Q0

R t

t0
f0(τ)dτ

if t ∈ [t0, t1)
...

...

π(tM )e
QM

R t
tM

fM (τ)dτ
if t ∈ [tM ,∞)

where π(tk) = π(tk−1)e
Qk−1

R tk
tk−1

fk−1(τ)dτ
.

Proof. When the rate matrix R(t) is piecewise uniform with M+1 pieces, the
infinitesimal generator Q(t) takes the form:

Q(t) =











Q0(t) if t ∈ [t0, t1)
...

...
QM (t) if t ∈ [tM ,∞)

where Q(t) = Qk(t) = fk(t)Qk for all t ∈ [tk, tk+1) and k ≤ M . Therefore, we
can describe the transient probability distribution as follows:

π(t) =











π(t0)Φ(t, t0) if t ∈ [t0, t1)
...

...
π(tM )Φ(t, tM ) if t ∈ [tM ,∞)

.
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Notice that π(tk) = π(tk−1)Φ(tk, tk−1). Now the question is: how can we compute
Φ? As we already know, Φ is given by the Peano-Baker series, cf. Equation (11).
The characterization of Φ in terms of the Peano-Baker series does not yield
an effective computational recipe for Φ. Note however that the infinitesimal
generator Q(t) commutes. Let us consider the k’th piece i.e., Q(t) = Qk(t) for
all t ∈ [tk, tk+1). The fact that Qk(t) commutes follows from:

Qk(t)

∫ t

tk

Qk(τ)dτ =

∫ t

tk

Qk(τ)dτQk(t) ⇔

fk(t)Qk

∫ t

tk

fk(t)Qkdτ =

∫ t

tk

fk(t)Qkdτfk(t)Qk ⇔

Q2
kfk(t)

∫ t

tk

fk(t)dτ =

∫ t

tk

fk(t)dτfk(t)Q
2
k.

Therefore, Φ(t, tk) = e
Qk

R t

tk
fk(τ)dτ

. The transient probability distribution be-
comes:

π(t) =















π(t0)e
Q0

R t
t0

f0(τ)dτ
if t ∈ [t0, t1)

...
...

π(tM )e
QM

R t
tM

fM (τ)dτ
if t ∈ [tM ,∞)

3 Inhomogeneous Interactive Markov Chains

In order to facilitate the compositional modeling of ICTMCs, we equip these
processes with the capability to allow for their mutual interaction. This is es-
tablished by adding actions to ICTMCs. Let Act be the countable universe of
actions. The aim of these actions is that certain actions can only be performed
together with other processes.

Definition 2 (I2MC). An inhomogeneous interactive Markov chain (I2MC) is
a tuple I = (S, Act,→,R, s0) where S and R are as before, →⊆ S × Act × S is
a transition relation and s0 ∈ S is the initial state.

The semantic model of I2MC represents the time-dependent variant of IMC
[Her02].

Process algebra for I2MC. Originally developed by Hoare and Milner (see [Mil89,Hoa85]),
process algebras have been developed as a compositional framework for describ-
ing the functional behavior of the system. It allows for modeling complex systems
in a component-wise manner by offering a set of operators to combine component
models. Actions are the most elementary notions. The combination of several ac-
tions using the operators forms a process. We extend this framework by stochastic
timing facilities.

Definition 3. Let X be a process variable, λ(t) ∈ IR≥0 with t ∈ IR≥0, A ⊆ Act
and a ∈ Act. The syntax of inhomogeneous interactive Markov language (I2ML)
for I2MCs is defined as follows:

P ::= 0 | a.P | λ(t).P | P + P | P‖AP | P \ A | X.
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a.P
a

−→P λ(t).P
λ(t)
−→P

P
a

−→P ′

P+Q
a

−→P ′

P
λ(t)
−→P ′

P+Q
λ(t)
−→P ′

P
a

−→P ′

P‖AQ
a

−→P ′‖AQ
(a /∈ A)

P
λ(t)
−→P ′

P‖AQ
λ(t)
−→P ′‖AQ

P
a

−→P ′ and Q
a

−→Q′

P‖AQ
a

−→P ′‖AQ′
(a ∈ A)

P
λ(t)
−→P ′

P\A
λ(t)
−→P ′\A

P
a

−→P ′

P\A
a

−→P ′\A
(a /∈ A)

E[X :=E/X ]
λ(t)
−→E′

X :=E
λ(t)
−→E′

P
a

−→P ′

P\A
τ

−→P ′\A
(a ∈ A)

E[X :=E/X ]
a

−→E′

X :=E
a

−→E′

Table 1. Inference rules for the operational semantics of I2ML.

Process variables are assumed to be defined by recursive equations of the form
X := P , where P is an I2ML term. The null process 0 is the deadlock process and
cannot perform any action. The prefix operators are a.P and λ(t).P for actions
and rates, respectively. The choice operator P + Q chooses between processes
P or Q. Process P‖AQ denotes the parallel composition of processes P and
Q where synchronization is required only for actions in A; actions not in A are
performed autonomously. The process P \A behaves like P except that all actions
in A become unobservable to other processes; this is established by relabeling a
by the distinguished action τ ∈ Act. The operational semantics of I2ML terms
is defined by the inference rules in Table 1 where for the sake of conciseness
symmetric rules are not shown.

A few remarks concerning time-prefix and choice are in order. The process
λ(t).P evolves into P within ∆t time units with probability:

Prλ(t).P,P (t,∆t) =

∫ ∆t

0
λ(t + τ)e−

R τ

0
λ(t+ℓ)dℓdτ = 1 − e−

R ∆t

0
λ(t+ℓ)dℓ,

given that λ(t).P is enabled at the global time t. The above relation can be
easily proven from (6) by taking i = λ(t).P , j = P , Ri,j(t + τ) = λ(t + τ) and
Es(t+ℓ) = λ(t+ℓ). The process λ(t).P +µ(t).Q can evolve into P if the time delay
generated by a stochastic process with rate λ(t) is smaller than that generated
by a different stochastic process with rate µ(t). By a symmetric argument it may
evolve into Q. Therefore, from (3) it follows that the distribution of time until

a choice is made is Pr{W (t) ≤ ∆t} = 1 − e−
R ∆t
0 λ(t+τ)+µ(t+τ)dτ . For a choice

between |J | processes (J is a finite index set), the distribution of the waiting

time becomes Pr{W (t) ≤ ∆t} = 1 − e−
R ∆t
0

P

i∈J λi(t+τ)dτ . If the rates λi(t) in
the process

∑

i∈J λi(t).Pi are constant (λi(t) = λi), then the waiting time is
exponentially distributed with the sum of the rates λi i.e. Pr{W (t) ≤ ∆t} =
1 − e−

P

i∈J λi∆t. This corresponds to the interpretation of choice in Markovian
process algebras [HHK02]. It is important to note that when Pi = P for all i ∈ J ,
the process

∑

i∈J λi(t).P will evolve into P with rate
∑

i∈J λi(t).
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0 use.PP
λ1(t)

λ2(t)

use

(a) The I2MC for process P

0 use.QQ
µ1(t)

µ2(t)

use

(b) The I2MC for process Q

P‖{use}Q

0‖{use}Q P‖{use}use.Q P‖{use}0

λ1(t)

µ2(t)

µ1(t)

use.P‖{use}use.Q

0‖{use}0

0‖{use}use.Q use.P‖{use}0

use

µ2(t) λ2(t) λ2(t)

use.P‖{use}Q

µ2(t)

µ1(t)

λ2(t)

λ1(t)

µ1(t) λ1(t)

(c) The I2MC for the process P‖{use}Q

Fig. 2. Two faulty components.

Parallel composition. When considering just actions the asynchronous parallel
composition has the same functionality as that from basic process calculi. On the
other hand when considering stochastic delays the composition is more involved.

P‖Q

P ′‖Q P‖Q′

P ′‖Q′

λ(t)

µ(t)

µ(t)

λ(t)

Fig. 1. P‖Q.

Consider P := λ(t).P ′ and Q := µ(t).Q′. They can
evolve into P ′ and Q′ after a time delay governed by a
distribution with rate λ(t) and µ(t), respectively. Since
the waiting time in any state is memoryless (4), we can
show the way by which processes P and Q are com-
posed (Fig. 1). First consider that when both processes
start their execution in initial state P‖Q (the shad-
owed state) they probabilistically select a time delay,
say, ∆tλ for P and ∆tµ for Q. If ∆tλ < ∆tµ then

P finishes its execution first and evolves into P ′. The same applies to Q when
∆tµ < ∆tλ. By intuition we could think that when it is already in P ′‖Q, ∆tλ = 0
and the remaining delay for process Q until it finishes its execution is ∆tµ−∆tλ.
What really happens is that on entering state P ′‖Q both delays are set to zero
i.e., ∆tλ = ∆tµ = 0. As P ′ has no transitions, ∆tλ remains 0 but for Q its delay
is initialized to a new value which might be different from ∆tµ − ∆tλ due to a
probabilistic selection. Due to the memoryless property, however, the remaining
delay for Q is fully determined by µ only.

Example 1. Consider two hardware components described by the equations P :=
λ1(t).0+λ2(t).use.P and Q := µ1(t).0+µ2(t).use.Q, respectively. The underlying
I2MCs for both components are depicted in Fig. 2 (a) and (b). Each of the

10



components may fail with rate λ1(t) and µ1(t), respectively. As a result of the
failure they evolve into process 0. On the other hand, the components may move
to the working state with the rate λ2(t) and µ2(t), respectively, where they
can use some resources. If one of them fails then the entire system fails. Both
components can use the resources at the same time if the system is working
properly. Fig. 2 (c) depicts the I2MC of P‖{use}Q.

4 Strong and Weak Bisimulation

In order to compare the behavior of ICTMCs (and their interactive variants) we
exploit the well-studied and widely accepted notion of bisimulation [Buc94,Mil89,Her02].
A classical bisimulation relation requires equivalent states to be able to mutually
mimic their stepwise behavior. In the probabilistic setting this is interpreted as
requiring equivalent states to have equal cumulative rates to move to any equiva-
lence class. Bisimulation is considered as a natural notion of equivalent behavior,
is equipped with quotienting algorithms, and has a clear correspondence to equiv-
alence in terms of logical behavioral specifications. In this section, we will define
strong bisimulation for I2MC starting from a similar notion on ICTMCs. Some
algebraic and probabilistic properties of bisimulation are investigated. The same
applies to weak bisimulation that allows for the abstraction of internal, i.e., τ
actions.

Bisimulation for ICTMCs.

Definition 4 (ICTMC strong bisimulation). An equivalence R ⊆ S × S is
a strong bisimulation whenever for all (P,Q) ∈ R, t ∈ IR≥0 and C ∈ S/R:

R(P,C, t) = R(Q,C, t),

where R(P,C, t) =
∑

i{|λ(t)|P
λ(t)
→i P ′, P ′ ∈ C|}. P and Q are strongly bisimilar,

denoted P ∼ Q, if (P,Q) is contained in some strong bisimulation R.

Here, {| . . . |} denotes a multiset. It follows that ∼ is the largest strong bisimula-
tion, i.e., it contains any strong bisimulation. To be able to compare ICTMCs by
bisimulation, let us equip an ICTMC with an initial state s0 ∈ S. Two ICTMCs
CP = (SP ,RP , s0

P ) and CQ = (SQ,RQ, s0
Q) are bisimilar, denoted CP ∼ CQ, iff

their initial states are bisimilar, i.e., s0
P ∼ s0

Q. The quotient of an ICTMC under
∼ is defined in the following way.

Definition 5 (Bisimulation quotient). For the ICTMC C = (S,R, s0) and
∼, the quotient C/∼ is defined by C/∼= (S/∼,R∼, s0

∼) where s0
∼ = [s0]∼ and R∼

is defined by: R∼([P ]∼, [P ′]∼, t) = R(P, [P ′]∼, t) for all t ∈ IR≥0.

Note that C is strongly bisimilar to C/∼. An important property of strong bisim-
ulation is that it preserves transient probabilities; in particular, this means that
there is a strong relationship between the transient probabilities in an ICTMC
and its quotient.

Theorem 2. Let C = (S,R, s0) be an ICTMC. For every C ∈ S/∼, the transient
probability distribution πC(t) of the state C in the quotient chain C/∼ is:

πC(t) =
∑

s∈C

πs(t) for all t ∈ IR≥0,
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where πs(t) is the transient probability distribution of state s ∈ S in C.

Proof. The proof is carried out in two steps. First, we characterize the transient
probability distribution by a system of ODEs for the aggregated chain C/∼ in
terms of equivalence classes C ∈ S/∼. Then by suitable transformation we will
derive an equivalent system of ODEs for the original ICTMC with state space S.
Note that if πC(t) =

∑

s∈C πs(t), then dπC(t)
dt =

∑

s∈C
dπs(t)

dt due to the linearity
of the differentiation operator. The system of ODEs for C/∼ is:







































dπC1
(t)

dt =
∑

Cv∈S/∼ R∼(Cv , C1, t)πCv (t) −
∑

Ck∈S/∼ R∼(C1, Ck, t)πC1(t)
...
dπCi

(t)

dt =
∑

Cv∈S/∼ R∼(Cv, Ci, t)πCv (t) −
∑

Ck∈S/∼ R∼(Ci, Ck, t)πCi
(t)

...
dπCn (t)

dt =
∑

Cv∈S/∼ R∼(Cv, Cn, t)πCv (t) −
∑

Ck∈S/∼ R∼(Cn, Ck, t)πCn(t)

where R∼(Cv, Ci, t) is the time-dependent rate between classes Cv and Ci in C/∼.
The equation:

dπCi
(t)

dt
=

∑

Cv∈S/∼

R∼(Cv , Ci, t)πCv (t) −
∑

Ck∈S/∼

R∼(Ci, Ck, t)πCi
(t)

shows that the change of probability mass in class Ci is equal to the difference
between the in-flow and the out-flow for the state Ci. We assume that the rate
R∼(Ci, Ci, t) = 0 for every Ci ∈ S/∼, as for ICTMCs the presence of such rate
does not influence the transient probability distribution of the class Ci. The
out-flow can be rewritten using Definition 5 as:

∑

Ck∈S/∼

R∼(Ci, Ck, t)πCi
(t) = πCi

(t)
∑

Ck∈S/∼

R(s(i)
m , Ck, t)

here m = |Ci| and s
(i)
m is the m’th state of class Ci (in fact the choice of s

(i)
m is

arbitrary; any state in Ci could be taken). By substituting πC(t) =
∑

s∈C πs(t)
in the above equation, we get:
(

π
s
(i)
1

(t) + · · · + π
s
(i)
m

(t)
)

∑

Ck∈S/∼

R(s(i)
m , Ck, t) =π

s
(i)
1

(t)
∑

Ck∈S/∼

R(s(i)
m , Ck, t) + · · ·

+ π
s
(i)
m

(t)
∑

Ck∈S/∼

R(s(i)
m , Ck, t).

As all states s
(i)
m ∈ Ci are bisimilar we have for every equivalence class Ck the

relation R(s
(i)
1 , Ck, t) = · · · = R(s

(i)
m , Ck, t) which gives:

π
s
(i)
1

(t)
∑

Ck∈S/∼

R(s
(i)
1 , Ck, t) + · · · + π

s
(i)
m

(t)
∑

Ck∈S/∼

R(s(i)
m , Ck, t).

By noting that
⋃n

j=1 Cj = S for |S/∼| = n we get the out-flow equation:

∑

Ck∈S/∼

R∼(Ci, Ck, t)πCi
(t) = π

s
(i)
1

(t)R(s
(i)
1 , S, t) + · · · + π

s
(i)
m

(t)R(s(i)
m , S, t).
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Now we proceed with the in-flow equation:

∑

Cv∈S/∼

R∼(Cv, Ci, t)πCv (t) = R∼(C1, Ci, t)πC1(t) + · · · + R∼(Cn, Ci, t)πCn(t)

Using Definition 5, the above right-hand sum results in:

R(s(1)
v1

, Ci, t)πC1(t) + · · · + R(s(n)
vn

, Ci, t)πCn(t),

where vℓ = |Cℓ| and s
(ℓ)
vℓ

is the vℓ’th states of class Cℓ. By substituting πC(t) =
∑

s∈C πs(t) we get:

R(s(1)
v1

, Ci, t)
(

π
s
(1)
1

(t) + · · · + π
s
(1)
v1

(t)
)

+ · · · + R(s(n)
vn

, Ci, t)
(

π
s
(n)
1

(t) + · · ·

+π
s
(n)
vn

(t)
)

= R(s(1)
v1

, Ci, t)πs
(1)
1

(t) + · · · + R(s(1)
v1

, Ci, t)πs
(1)
v1

(t) + · · ·

+ R(s(n)
vn

, Ci, t)πs
(n)
1

(t) + · · · + R(s(n)
vn

, Ci, t)πs
(n)
n

(t).

As all states s(ℓ) in the equivalence class Cℓ are bisimilar, R(s
(ℓ)
1 , Ci, t) = · · · =

R(s
(ℓ)
vℓ

, Ci, t) which yields:

R(s
(1)
1 , Ci, t)πs

(1)
1

(t) + · · · + R(s(1)
v1

, Ci, t)πs
(1)
v1

(t) + · · ·+

R(s
(n)
1 , Ci, t)πs

(n)
1

(t) + · · · + R(s(n)
vn

, Ci, t)πs
(n)
vn

(t) =
∑

s∈S

R(s,Ci, t)πs(t) =
∑

s∈S

R(s, s
(i)
1 , t)πs(t) + · · · +

∑

s∈S

R(s, s(i)
m , t)πs(t).

Combining the equations for the in-flow and out-flow we obtain:

d
∑m

j=1 π
s
(i)
j

(t)

dt
=

∑

s∈S

R(s, s
(i)
1 , t)πs(t) + · · · +

∑

s∈S

R(s, s(i)
m , t)πs(t)−

π
s
(i)
1

(t)R(s
(i)
1 , S, t) − · · · − π

s
(i)
m

(t)R(s(i)
m , S, t).

By linearity of the differential operator for the equivalence class Ci we obtain m
equations:



















































dπ
s
(i)
1

(t)

dt =
∑

s∈S
R(s, s

(i)
1 , t)πs(t) − π

s
(i)
1

(t)R(s
(i)
1 , S, t)

...
dπ

s
(i)
ℓ

(t)

dt =
∑

s∈S
R(s, s

(i)
ℓ , t)πs(t) − π

s
(i)
ℓ

(t)R(s
(i)
ℓ , S, t)

...
dπ

s
(i)
m

(t)

dt =
∑

s∈S
R(s, s

(i)
m , t)πs(t) − π

s
(i)
m

(t)R(s
(i)
m , S, t)

.

Forming a system of ODEs from the equations of all equivalence classes Ci ∈ S/∼
we obtain the transient probability distribution for the original ICTMC.

From Theorem 2 we may conclude that the steady state probability distribu-
tion (if it exists) is also preserved.
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Corollary 1. Let C = (S,R, s0) be an ICTMC. For every C ∈ S/∼, the steady-
state probability distribution πC of the state C in the quotient chain C/∼ is:

πC = lim
t→∞

πC(t) = lim
t→∞

∑

s∈C

πs(t) =
∑

s∈C

πs,

where πs is the steady-state probability distribution of state s ∈ S.

In many cases it is reasonable to assume that two processes P and Q are
equal up to time T . For this case we propose the finite-horizon bisimulation.

Definition 6. An equivalence R ⊆ S × S is a finite-horizon bisimulation when-
ever for all (P,Q) ∈ R, t ∈ [0, T ] (T ∈ IR≥0) and C ∈ S/R:

R(P,C, t) = R(Q,C, t).

P and Q are finitely-horizon bisimilar, denoted P ∼T Q, if (P,Q) is contained
in some finite-horizon bisimulation R.

Notice that the definition of finite-horizon bisimulation ∼T is the same except
that the time t lies in the interval [0, T ]. It is easy to see that finite-horizon
bisimulation preserves the transient distribution up to time T .

Proposition 1. For 0 < t1 < · · · < T < · · · < ∞ it holds:

∼0⊆ ∼t1⊆ · · · ⊆ ∼T · · · ⊆ ∼∞=∼

Thus , P ∼ti Q implies P ∼tj Q for every tj < ti. It follows that for tj < ti, the
quotient under ∼tj is coarser than under ∼ti .

Bisimulation for I2MCs. So far, we have presented bisimulation for ICTMCs.
In order to define bisimulation for I2MCs, unobservable actions (i.e., τ) require
special care. Consider the following diagram:

P0
2λ(t)

//

τ
  

A

A

A

A

A

A

A

A

P1

∼

P2

Q0
λ(t)

//

λ(t)
  

B

B

B

B

B

B

B

B

Q1

∼

Q2

where P1 ∼ P2 ∼ Q1 ∼ Q2. At first sight, it seems natural to consider P0 ∼ Q0

as R(P0, C, t) = R(Q0, C, t) = 2λ(t). But, state P0 can do something more.
There is a transition P0

τ
→ P2 which consumes no time as a τ -action is an

internal one and is not prevented by the environment (maximal progress as-

sumption). The probability that transition P0
2λ(t)
−→ P1 will be taken in 0 time

units is PrP0,P1(t, 0) =
∫ 0
0 2λ(t + τ)e−

R τ

0
2λ(t+ℓ)dℓdτ = 0. Thus, we may conclude

that P0 ≁ Q0. When specifying the definition of bisimilarity we have to treat
immediate actions (τ) in a special way. Let S be the state-space of an I2MC.

Definition 7 (I2MC strong bisimulation). An equivalence R ⊆ S × S is a
strong bisimulation whenever for all (P,Q) ∈ R, t ∈ IR≥0, a ∈ Act and C ∈ S/R:

– P
a

−→ P ′ implies Q
a

−→ Q′ for some Q′ and (P ′, Q′) ∈ R.
– Q

a
−→ Q′ implies P

a
−→ P ′ for some P ′ and (P ′, Q′) ∈ R.
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P + 0 = P (P + Q) + R = P + (Q + R)

P + Q = Q + P λ(t).P + µ(t).P = (λ(t) + µ(t)).P

a.P + a.P = a.P λ(t).P + τ.Q = τ.Q

Table 2. Sound and complete axioms for ∼ on the I2ML sequential fragment.

– P
τ
9 (or Q

τ
9) implies R(P,C, t) = R(Q,C, t).

P and Q are strongly bisimilar, denoted P ∼ Q, if (P,Q) is contained in some
strong bisimulation R.

Example 2. Consider the I2MC from Fig. 2 (c) and λ1(t) = µ1(t), λ2(t) = µ2(t).
Its quotient under bisimulation is depicted in Fig. 3. The equivalence classes
C1, C2 and C3 contain the following states C1 =

{

0‖{use}Q,P‖{use}0
}

, C2 =
{

P‖{use}use.Q, use.P‖{use}Q
}

and C3 =
{

0‖{use}use.Q, use.P‖{use}0, 0‖{use}0
}

.

P‖{use}QC1

2λ1(t)

use.P‖{use}use.QC3

use

C2

λ2(t)

2λ2(t)

λ1(t) + λ2(t)

Fig. 3. Bisimulation quotient.

In a similar way as for ICTMCs,
one can consider the quotient of
an I2MC. The compositional nature
of I2MC, however, allows in princi-
ple for obtaining such quotient in
a component-wise manner, e.g., the
quotient of P‖AQ can be obtained
by first constructing the quotients of

P and Q, then combine them, and quotienting the composition. The necessary
requirement that ∼ needs to fulfill is that it is a congruence relation. The rela-
tion ∼ is a congruence whenever for processes P and Q it holds: P ∼ Q implies
C[P ] ∼ C[Q] where C[·] is any context. (A context is basically a process term
containing a hole that may be filled with any process.)

Theorem 3. ∼ is a congruence with respect to all operators in I2ML.

Finite-horizon bisimulation is a congruence with one additional property.

Proposition 2. For any processes P , P ′, Q, Q′ and intervals [0, T1] and [0, T2]
with T1, T2 ∈ R≥0 we have:

P ∼T1 P ′ and Q ∼T2 Q′ implies P‖AQ ∼min(T1,T2) P ′‖AQ′ for all A ⊆ Act.

As a next step, we consider the possibility to establish bisimulation symbol-
ically, i.e., on the level of the syntax of the earlier introduced language I2ML.
This is facilitated by an axiomatization for ∼. The soundness of these axioms
ensures that any two terms that are syntactically equal (denoted =) are bisimi-
lar; formally, P = Q ⇒ P ∼ Q. Whenever the axioms are complete, in addition,
any strongly bisimilar processes can be represented by the same expressions in
I2ML, i.e., P ∼ Q ⇒ P = Q. Summarizing, any bisimulation can be established
syntactically, i.e., by just manipulating terms rather than I2MCs, provided the
axiom system is sound and complete. Let A∼ be the set of axioms listed in Table
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2 extended with the expansion law:

P‖AQ =
∑

i∈J1

λi(t). (Pi‖AQ) +
∑

k∈J3

µk(t). (P‖AQk) +
∑

aj=bl∈A

aj . (Pj‖AQl)+

+
∑

aj /∈A∧aj∈J2

aj. (Pj‖AQ) +
∑

bl /∈A∧bl∈J4

bl. (P‖AQl)

where P :=
∑

i∈J1
λi(t).Pi +

∑

j∈J2
aj .Pj and Q :=

∑

k∈J3
µk(t).Qk +

∑

l∈J4
bl.Ql

with the finite index sets J1, J2, J3 and J4. Then the following holds:

Theorem 4. For any P,Q ∈ RG, A∼ ⊢ P = Q if and only if P ∼ Q.

The term RG denotes the set of all regular (no parallel composition inside re-
cursion) and guarded expressions. While A∼ ⊢ P = Q means that P = Q can
be deduced from the set of sound and complete axiom system A∼. The axiom
λ(t).P + µ(t).P = (λ(t) + µ(t)).P is due to the fact that the sum of two Poisson
processes with rates λ(t) and µ(t) is a Poisson process with the rate λ(t) + µ(t),
whereas the axiom λ(t).P + τ.Q = τ.Q is due to the maximal progress assump-
tion. Notice that A∼ also contains all standard axioms which involve hiding and
recursion operators which are standard and omitted here.

Bisimulation minimization. The previous sections have set the stage for bisim-
ulation minimization. Experiments have shown that in the traditional [FV98]
as well as in the stochastic setting [KKZJ07] exponential state space savings
can be achieved. Given that ∼ is a congruence, individual processes can be re-
placed by their bisimilar quotient (under ∼) and the peak memory requirements
can be reduced significantly. This all, however, requires an efficient bisimulation
minimization algorithm. We adopt the partition-refinement paradigm to obtain a
minimization algorithm for I2MCs. As the problem for arbitrary rate functions is
undecidable, we restrict to three classes of rate matrices R(t): piecewise uniform,
polynomial (R(t) = tM+1RM+1 + · · ·+ tR2 +R1, where Ri with i ≤ M +1 ∈ IN
are constant matrices) and piecewise polynomial (each piece is a polynomial of
degree three). The same classes have been considered for the transient probabil-
ity distribution, cf. Theorem 1. Rate comparisons and summations can easily be
realized for these classes of functions. For rate matrix R, let M + 1 denote the
total number of intervals for piecewise uniform R(t), the polynomial degree when
R(t) is polynomial, and the number of polynomial pieces when R(t) is piecewise
polynomial.

Our bisimulation minimization algorithm for I2MCs is based on a generaliza-
tion of the algorithm for obtaining the coarsest quotient of a Markov chain under
bisimulation by Derisavi et al. [DHS03], and Paige-Tarjan’s algorithm for LTS.
The basic idea is to minimize iteratively over all pieces (or degrees of the poly-
nomials). The bisimulation algorithm exploits an efficient data structure which
groups all states with the same outgoing rate. This is in fact a binary tree where
each node has four parameters: node.left and node.right - pointers to the left
and right child, respectively, node.sum - stores the sum of the rates and node.S
- stores all states with the same node.sum. Using such data structures, the time-
and space complexity of bisimulation minimization for I2MCs reduces to:

Theorem 5. The coarsest quotient under ∼ of any I2MC can be obtained in
a worst-case time complexity O (ma lg(n) + Mmr lg(n)) and space complexity
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O (ma + mr), where ma and mr is the number of action-labeled and rate-labeled
transitions, respectively.

Proof. The base algorithm for I2MC bisimulation quotient computation based
on partition refinement techniques is presented in Algorithm 1.

Algorithm 1 Bisimulation quotient computation for I2MCs.

Require: I2MC (S,Act,→,R), M
Ensure: I2MC (S/∼,Act,→∼,R∼)
1: Πτ := {s ∈ S|s

τ
→} Π := {s ∈ S|s

τ
9}

2: L := push({S}) {#Create the stack of splitters}
3: while L 6= ∅ do

4: C := pop(L) {#Extract a splitter from L}
5: [Π, L] := Refinea(Π,C, L)
6: [Πτ , L] := Refinea(Πτ , C, L)
7: [Π, L] := Refiner(Π,C, L,R, M)
8: end while

9: Π := Π ∪ Πτ

10: for all B ∈ Π do

11: let s ∈ B {#Choose any state from block B}
12: for all p ∈ Post(s) do

13: B′ := [p]
Π

14: if (s, a, p) ⊆→ then

15: (B, a, B′) ⊆→∼ {#Transition from B to B′ labeled with a}
16: end if

17: for i = 0 to M do

18: R∼(B, B′, i) := R∼(B, B′, i) + R(s, p, i)
19: end for

20: end for

21: end for

22: return [Π,→∼,R∼ ]

The variables and functions used in Algorithm 1 have the following meaning:

– M - is the rate matrix R(t) parameter.

– Π - is the set of all states with no outgoing τ -transition.

– Πτ - is the set of all states with at least one outgoing τ -transition.

– L - is the stack of all current splitters.

– C - is the current splitter which splits the partition Π and Πτ .

– Refinea(Π,C,L) - is the function which refines partition Π using the current
splitter C with respect to action-labeled transitions. It returns the refined
partition and a new set of splitters.

– Refiner(Π,C,L,R,M) - is the function which refines partition Π using the
current splitter C with respect to rate-labeled transitions. It returns the re-
fined partition and a new set of splitters.

– [s]Π - is the block of state s in partition Π.

The Algorithm 1 starts with two initial partitions Π and Πτ (line 1). Then it
successively refines them by using the functions Refinea and Refiner (line 5-7). It
stops when there are no more splitters. The lines 10-21 have the role of creating
the rate matrix R∼ for the quotient state-space S/∼. The function Refinea can
be implemented using the adaptation of Fernandez (see [Fer89]) to Paige and
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Tarjan’s algorithm (see [PT87]) or the more efficient implementation of Dovier et
al. [DPP04]. The time and space complexity is of order O (ma lg n) and O (ma),
respectively, where ma is the total number of action-labeled transitions. It is
important to notice that in function Refinea as well as Refiner the splitter with
the largest size will be deleted from the set of potential splitters. This will give a
total of lg(n+1) iterations for the cycle 3-8. The pseudo code of function Refiner

is presented in Algorithm 2. The function Refiner uses the following variables

Algorithm 2 Refiner(Π,C,L,R,M)
Require: Π,C, L, R, M
Ensure: Π,L
1: for i = 0 to M do

2: BΠ := ∅

3: for all p ∈ C do

4: for all s ∈ Pre(p) do

5: s.sum := 0
6: end for

7: end for

8: for all p ∈ C do

9: for all s ∈ Pre(p) do

10: s.sum := s.sum + R(s, p, i)
11: end for

12: end for

13: for all s ∈ Pre(C) do

14: B′ := [s]
Π

15: delete s from B′

16: Insert(T(B′), s)
17: BΠ := BΠ ∪ {B′}
18: end for

19: for all B′ ∈ BΠ do

20: Π := Π ∪ {T(B′)[1], . . . , T(B′)[k]}
21: end for

22: end for

23: for all B′ ∈ BΠ do

24: Bmax := largest block of {B′, T(B′)[1], . . . , T(B′)[k]}
25: push (L, {B′, T(B′)[1], . . . , T(B′)[k]} − {Bmax})
26: end for

27: return [Π, L]

and functions:

– Pre(C) - is the set of predecessor states of splitter C.

– BΠ - is a set of blocks in partition Π.

– R(s, p, i) - the rate from state s to state p with parameter i (interval, poly-
nomial coefficient, etc).

– T(B′) - binary tree of block B′, with T(B′)[j] being the j’th sub-block of tree
T(B′).

– Insert(T(B′), s) - the function inserts the state s ∈ B′ into the binary tree
T(B′) of block B′.

The Algorithm 2 has the same functionality as Split function from Derisavi et al.
(see [DHS03]). The crucial difference is the line 1 which is a cycle over all time in-
tervals or polynomial coefficients and the lines 19-21 which after each refinement
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create a new partition, where the new refined blocks are {T(B′)[1], . . . ,T(B′)[k]}.
As the time and space complexity of Derisavi’s base algorithm (the algorithm
which calls the function Split) are bounded by O (mr lg n) and O (mr), respec-
tively, where mr is the total number of rate-labeled transitions. We obtain in
our case that the invocation of the base Algorithm 2 with Refiner function only
will result in a time and space complexity of O (Mmr lg n) and O (mr), respec-
tively. Considering also Refinea function we obtain that the total time and space
complexity of the bisimulation quotienting algorithm are O (ma lg n + Mmr lg n)
and O (ma + mr).

Recall that ICTMCs are I2MCs that contain no action-labeled transitions. As
a side result, the above theorem yields that the coarsest bisimulation quotient of
a time-inhomogeneous CTMC can be obtained with time and space complexity
O (Mmr lg(n)) and O (mr), respectively. (The time complexity for homogeneous
Markov chains is O (mr lg(n)) [DHS03]). Given the results in this paper that ∼
preserves transient and steady state distributions, our algorithm can be used to
minimize prior to any such analysis.

Weak bisimulation for I2MCs. Strong bisimulation requires equivalent states to
simulate their mutual stepwise behavior. While preserving the branching struc-
ture, strong bisimulation also requires mimicking of immediate actions (τ). As
immediate actions consume no time it seems reasonable that two states will be
equivalent regardless of the number of τ -steps in a sequence that they make.
Therefore, the equivalence which will allow for the abstraction of sequences of
immediate actions will be denoted as weak bisimulation. Let the transition

τ
=⇒ be

the reflexive and transitive closure of
τ

−→
∗

and
a

=⇒ a shorthand for
τ

=⇒
a

−→
τ

=⇒
(a 6= τ).

Definition 8 (I2MC weak bisimulation). An equivalence R ⊆ S × S is a
weak bisimulation whenever for all (P,Q) ∈ R, t ∈ IR≥0, a ∈ Act and C ∈ S/R:

– P
a

−→ P ′ implies Q
a

=⇒ Q′ for some Q′ and (P ′, Q′) ∈ R.
– P

τ
9 implies R(P,C, t) = R(Q′′, C, t) for some Q′′ τ

9 such that Q
τ

=⇒ Q′′

and (P,Q′′) ∈ R.

For Q symmetric rules apply. P and Q are weakly bisimilar, denoted P ≈ Q, if
(P,Q) is contained in some weak bisimulation R.

It seems intuitive that for the sequence Q
τ

=⇒ Q′′ the rates R(P,C, t) and
R(Q′′, C, t) have to be compared starting from time t′ = t + ∆t where ∆t is
the time needed to make all τ in the sequence Q

τ
=⇒ Q′′. As τ transitions take

no time the result will be the same even when the rates are compared from time
t.

Example 3. Consider the I2MC from Fig. 3 and its abstraction i.e. all actions are
transformed into immediate ones (τ). The quotient under ≈ is depicted in Fig. 4,
with C1, C2 and C3 as in Fig. 3 and C0 = {P‖{use}Q, use.P‖{use}use.Q}. It is
important to note that after abstraction the transition labeled with use results
in an immediate transition which gives the possibility to put the states P‖{use}Q
and use.P‖{use}use.Q in the same equivalence class. Also note that the obtained
I2MC has no transitions labeled with actions, i.e., it is an ICTMC. This shows
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a.τ.P = a.P a.(P + τ.Q) + a.Q = a.(P + τ.Q)

P + τ.P = τ.P λ(t).τ.P = λ(t).P

Table 3. Sound and complete axioms for ⋍ on the I2ML sequential fragment.

that weak bisimulation may be an effective mechanism to turn an I2MC into an
ICTMC, which may be subject to analysis as discussed in Section 2.

C0C1
2λ1(t)

C3 C2

λ1(t) + λ2(t) 2λ2(t)λ2(t)

Fig. 4. Weak bisimulation quotient.

As in the case of strong bisimulation,
weak bisimulation is also a congruence
with respect to I2ML operators. But there
is an exception. Weak bisimulation is not
a congruence with respect to the choice
(P + Q) operator [Mil89]. This is due to
the fact that weak bisimulation will equate

two processes whenever one can do
τ

=⇒ and the other one can do nothing. In
order to cope with the choice operator one has to differentiate between

a
=⇒ and

τ
=⇒

a
−→

τ
=⇒ when a = τ as follows:

Definition 9 (Weak congruence). Pand Q are weakly congruent, denoted by
P ⋍ Q, whenever for all a ∈ Act, t ∈ IR≥0 and C ∈ RG/≈:

– P
a

−→ P ′ implies Q
τ

=⇒
a

−→
τ

=⇒ Q′ for some Q′ and P ′ ≈ Q′.

– Q
a

−→ Q′ implies P
τ

=⇒
a

−→
τ

=⇒ P ′ for some P ′ and P ′ ≈ Q′.

– P
τ
9 (or Q

τ
9) implies R(P,C, t) = R(Q,C, t).

Theorem 6. ⋍ is a congruence with respect to all operators in I2ML.

Consider the set of axioms from Table 2 and 3 together with axioms related
to hiding and recursion operators as A⋍. As for strong bisimulation the following
also holds for weak congruence:

Theorem 7. For any P,Q ∈ RG, A⋍ ⊢ P = Q if and only if P ⋍ Q.

Recall that P and Q are regular and guarded process terms.

5 Concluding Remarks and Future Work

This paper presented a compositional formalism for time-inhomogeneous continu-
ous-time Markov chains (ICTMCs), a subclass of piecewise deterministic Markov
processes (PDPs). The main contributions are a full-fledged process algebra for
interactive ICTMCs, congruence results for weak and strong bisimulation, and
a polynomial-time quotienting algorithm. In addition, a new characterization of
transient probabilities is provided for rate functions that are piecewise uniform.
In contrast to works on communicating PDPs [SvdS06,SJvdS03,SvdS05], this
paper considers weak bisimulation, congruence results and axiomatization, and,
more importantly a notion of bisimulation which respects maximal progress.
Current work consists of investigating improvements to the quotienting algorithm
akin to [DPP04], model-checking algorithms [Kat06], and simulation relations for
ICTMCs.
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1990-15 ∗ Manfred Nagl, Andreas Schürr: A Specification Environment for Graph

Grammars
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1994-12 A. Schürr: Specification of Graph Translators with Triple Graph Gram-

mars
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1996-09-4 Sébastien Limet, Pierre Réty: On Decidability of Unifiability Modulo

Rewrite Systems

1996-09-5 Alexandre Tessier: Declarative Debugging in Constraint Logic Program-

ming

1996-10 Reidar Conradi, Bernhard Westfechtel: Version Models for Software Con-

figuration Management

1996-11 ∗ C.Weise, D.Lenzkes: A Fast Decision Algorithm for Timed Refinement

1996-12 ∗ R.Dömges, K.Pohl, M.Jarke, B.Lohmann, W.Marquardt: PRO-

ART/CE* — An Environment for Managing the Evolution of Chemical

Process Simulation Models

1996-13 ∗ K.Pohl, R.Klamma, K.Weidenhaupt, R.Dömges, P.Haumer, M.Jarke: A

Framework for Process-Integrated Tools

1996-14 ∗ R.Gallersdörfer, K.Klabunde, A.Stolz, M.Eßmajor: INDIA — Intelligent

Networks as a Data Intensive Application, Final Project Report, June

1996

1996-15 ∗ H.Schimpe, M.Staudt: VAREX: An Environment for Validating and Re-

fining Rule Bases

1996-16 ∗ M.Jarke, M.Gebhardt, S.Jacobs, H.Nissen: Conflict Analysis Across Het-

erogeneous Viewpoints: Formalization and Visualization

1996-17 Manfred A. Jeusfeld, Tung X. Bui: Decision Support Components on the

Internet

32



1996-18 Manfred A. Jeusfeld, Mike Papazoglou: Information Brokering: Design,

Search and Transformation

1996-19 ∗ P.Peters, M.Jarke: Simulating the impact of information flows in net-

worked organizations

1996-20 Matthias Jarke, Peter Peters, Manfred A. Jeusfeld: Model-driven plan-

ning and design of cooperative information systems

1996-21 ∗ G.de Michelis, E.Dubois, M.Jarke, F.Matthes, J.Mylopoulos, K.Pohl,

J.Schmidt, C.Woo, E.Yu: Cooperative information systems: a manifesto

1996-22 ∗ S.Jacobs, M.Gebhardt, S.Kethers, W.Rzasa: Filling HTML forms simul-

taneously: CoWeb architecture and functionality

1996-23 ∗ M.Gebhardt, S.Jacobs: Conflict Management in Design

1997-01 Michael Hanus, Frank Zartmann (eds.): Jahresbericht 1996

1997-02 Johannes Faassen: Using full parallel Boltzmann Machines for Optimiza-

tion
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Structure-Oriented Document Integration Tools are Needed for Devel-

opment Processes

1998-03 Stefan Gruner: Einige Anmerkungen zur graphgrammatischen Spezifika-

tion von Integrationswerkzeugen nach Westfechtel, Janning, Lefering und

Schürr
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2000-02 Jens Vöge, Marcin Jurdzinski A Discrete Strategy Improvement Algo-

rithm for Solving Parity Games
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2005-11 Simon Fischer, Berthold Vöcking: A Counterexample to the Fully Mixed

Nash Equilibrium Conjecture

2005-12 Neeraj Mittal, Felix Freiling, S. Venkatesan, Lucia Draque Penso: Ef-

ficient Reductions for Wait-Free Termination Detection in Faulty Dis-

tributed Systems

2005-13 Carole Delporte-Gallet, Hugues Fauconnier, Felix C. Freiling: Revisiting

Failure Detection and Consensus in Omission Failure Environments

2005-14 Felix C. Freiling, Sukumar Ghosh: Code Stabilization

2005-15 Uwe Naumann: The Complexity of Derivative Computation

36



2005-16 Uwe Naumann: Syntax-Directed Derivative Code (Part I: Tangent-

Linear Code)

2005-17 Uwe Naumann: Syntax-directed Derivative Code (Part II: Intraprocedu-

ral Adjoint Code)

2005-18 Thomas von der Maßen, Klaus Müller, John MacGregor, Eva Geis-
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