
Aachen
Department of Computer Science

Technical Report

A Probabilistic Justification of the

Combining Calculus under the Uniform

Scheduler Assumption

Tina Kraußer and Heiko Mantel and Henning Sudbrock

ISSN 0935–3232 · Aachener Informatik Berichte · AIB-2007-09

RWTH Aachen · Department of Computer Science · May 2007

The publications of the Department of Computer Science of RWTH Aachen
University are in general accessible through the World Wide Web.

http://aib.informatik.rwth-aachen.de/

http://aib.informatik.rwth-aachen.de/

A Probabilistic Justification of the Combining
Calculus under the Uniform Scheduler Assumption

Tina Kraußer and Heiko Mantel and Henning Sudbrock⋆

Security Engineering Group
RWTH Aachen, Germany

Email: {krausser, mantel, sudbrock}@cs.rwth-aachen.de

Abstract. The combining calculus [MSK07] provides a framework for analyzing
the information flow of multi-threaded programs. The calculus incorporates so
called plug-in rules for integrating several previously existing analysis techniques.
By applying a plug-in rule to a subprogram, one decides to analyze this subpro-
gram with the given analysis technique, and not with the rules of the combining
calculus. The novelty of the combining calculus was that one can analyze the in-
formation flow security of a given program by using multiple analysis techniques
in combination. It was demonstrated that this flexibility leads to a more precise
analysis, allowing one to successfully verify the security of some programs that
cannot be verified with any of the existing analysis techniques in isolation.
In [MSK07], the soundness of the combining calculus is proved for a possibilis-
tic characterization of information flow security. This characterization assumes
a purely nondeterministic scheduling of concurrent threads. In this report, we
demonstrate that the combining calculus is also sound for a probabilistic char-
acterization of security that assumes a uniform scheduler. This result further
increases the confidence in the combining calculus as a reliable and flexible tool
for formally analyzing the information flow security of multi-threaded programs.

1 Introduction

Before giving a program access to secret data, one wants to know whether there
is any danger that the program might leak secrets to untrusted sinks or, in other
words, whether the program has secure information flow. The two main research
problems in information flow security are, firstly, finding formal characterizations
that faithfully capture the security requirements and, secondly, developing anal-
ysis techniques based on these characterizations. Information flow security has
been a focal research topic for more than 30 years. Nevertheless, the problem to
secure the flow of information in programs is far from being solved [SM03].

In [VSI96], Volpano, Smith and Irvine proposed a type-based information
flow analysis for imperative programs. This article is widely acknowledged as a
milestone in language-based security because it not only presented an analysis
technique that can be efficiently automated, but also a proof that this analysis
technique is sound with respect to a formal definition of information flow security.

A soundness result ensures that all programs that pass the analysis are, in-
deed, secure. However, this does not imply that all programs that are secure also
pass the analysis. In fact, many type-based analysis techniques are imprecise,

⋆ This work was funded in part by the Information Society Technologies program of the Euro-
pean Commission, Future and Emerging Technologies under the IST-2005-015905 MOBIUS
project and by the German Research Association (DFG) in the Computer Science Action
Program. This paper reflects only the author’s views and the Community is not liable for
any use that may be made of the information contained therein.

which means that some secure programs are rejected by these techniques. Al-
though it would be desirable to have analysis techniques that are precise, one is
often willing to sacrifice precision for making the analysis more efficient.

Our main motivation for the combining calculus [MSK07] was the need for
more precise techniques to analyze the information flow security of multi-threa-
ded programs. The plug-in rules of the combining calculus allow one to exploit
previously existing analysis techniques and to analyze different subprograms by
applying different analysis techniques. The combination of combining calculus
rules with existing analysis techniques, indeed, improves the precision of the
analysis, as demonstrated in [MSK07]. The soundness result for the combin-
ing calculus assumes a possibilistic characterization of information flow security.
While this result creates some confidence in the calculus, it is not yet fully sat-
isfactory, as already pointed out in [MSK07]. The possibilistic characterization
assumes that threats are selected in a particular way, namely by a purely non-
deterministic scheduler. Although a particular scheduler is also assumed in other
soundness results (see, e.g., [SV98,VS98]), it would be even more desirable to
have a soundness result that is scheduler independent (like, e.g., in [SS00]).

The novel contributions of this report are a probabilistic security character-
ization and a proof that the combining calculus is sound with respect to this
characterization for a uniform scheduler. The soundness result further increases
the confidence in the combining calculus. The result also constitutes another step
towards a scheduler-independent soundness result for the combining calculus.

Overview. In Section 2, a simple multi-threaded programming language is intro-
duced. The probabilistic characterization of information flow security is proposed
in Section 3. In Section 4, compositionality results are derived and the general
rules of the combining calculus are proved sound with respect to the probabilis-
tic security characterization by exploiting these compositionality results. The
various plug-in rules are proved to be sound in Sections 5 and 6. In Section 7,
we elaborate the relationship between our probabilistic security characterization
and the possibilistic characterization from [MSK07] in more detail. The report
concludes with a discussion of related work and an outlook in Section 8.

2 Multi-Threaded While-Language

We use the multi-threaded while language from [SS00], extended by a primitive
for barrier synchronization. The set of commands Com is defined by:

C ::= skip | Id:=Exp | C1;C2 | if B then C1 else C2 fi |

while B do C od | fork(C, 〈C1 | .. | Cn〉) | sync

The execution of programs is modeled by a sequence of transitions between
configurations 〈|V, s|〉 where V = 〈C1 | .. | Cn〉 is a thread pool and s is a memory
state. We denote the set of memory states by S. The deterministic semantics is
given in Figure 1, where 〈|V, s|〉_〈|V ′, s′|〉 means that 〈|V, s|〉 is deterministically
evaluating to 〈|V ′, s′|〉 in a single execution step.

The evaluation of a thread pool bases on the underlying scheduler. During
the evaluation of a multi-threaded program we track the decisions of the sched-

uler. Single probabilistic transitions are denoted by 〈|V, s|〉
p,i
−→〈|V ′, s′|〉 where p is

4

〈|skip, s|〉 _ 〈|〈〉, s|〉

〈|Exp, s|〉 ↓ n

〈|Id :=Exp, s|〉 _ 〈|〈〉, [Id = n]s|〉

〈|C1, s|〉 _ 〈|〈〉, t|〉

〈|C1; C2, s|〉 _ 〈|C2, t|〉

〈|C1, s|〉 _ 〈|〈C′
1〉V, t|〉

〈|C1; C2, s|〉 _ 〈|〈C′
1; C2〉V, t|〉 〈|fork(C, V), s|〉 _ 〈|〈C〉V, s|〉

〈|B, s|〉 ↓ True

〈|if B then C1 else C2 fi, s|〉 _ 〈|C1, s|〉

〈|B, s|〉 ↓ False

〈|if B then C1 else C2 fi, s|〉 _ 〈|C2, s|〉

〈|B, s|〉 ↓ True

〈|while B do C od, s|〉 _ 〈|C; while B do C od, s|〉

〈|B, s|〉 ↓ False

〈|while B do C od, s|〉 _ 〈|〈〉, s|〉

Fig. 1. Small-step deterministic semantics

the probability for this transition and i is the number of the thread that was
chosen by the scheduler. For the execution of the sync statement we need that all
threads do the step together. We mark this by the special symbol ⋆ for the thread
choice. Moreover, threads that are blocked due to a sync statement increase the
probability for non-blocked threads to be chosen next. This fact is taken into
account by the usage of the function blkd:

Definition 1. Let V = 〈C1 | C2 | .. | Cn〉 be a thread pool. The function blkd(V)
returns the number of currently blocked threads in V = 〈C1 | C2 | .. | Cn〉.
Formally we have:

blkd(V) =























0 if V = 〈〉,

blkd(〈C2 | .. | Cn〉) + 1 if C1 = sync,

blkd(〈C2 | .. | Cn〉) + 1 if C1 = sync;C ′
1,

blkd(〈C2 | .. | Cn〉) otherwise.

A single decision made by a scheduler along a transition is in the following
called decision step:

Definition 2. A decision step is a triple (〈|V, s|〉, p, i) where p is a probability,
and i ∈ N ∪ {◦, ⋆}.

Figure 2 shows the semantics of thread choices under the uniform scheduler where
each transition is labeled with the decision that leads from the left to the right
configuration. Notice that the condition blkd(〈C1 | . . . | Cn〉) < n in the first
rule is already implied by the fact that Ci can make a deterministic transition,
we list it only for clarity. We write 〈V, s〉 → 〈W, t〉 if there exist p, i such that

〈V, s〉
p,i
−→ 〈W, t〉.

Figure 3 illustrates the transition rules that reason about a sequence of sched-
uler choices by using judgments of the form 〈|V, s|〉

p
−→→ l〈|V

′, s′|〉 where the sequence
of scheduler decisions is formulated as the decision path l and p is the probability
of l. The infix operator ++ denotes concatenation of lists of decision steps.

Definition 3. Let l be a list of decision steps, and 〈|V, s|〉 as well as 〈|V ′, s′|〉
configurations. We call l a decision path from 〈|V, s|〉 to 〈|V ′, s′|〉 if the following
holds:

∃p.〈|V, s|〉
p
−→→ l〈|V

′, s′|〉.

5

〈|Ci, s|〉 _ 〈|V ′
i , s′i|〉 blkd(〈C1 | . . . | Cn〉) < n p = 1/(n − blkd(〈C1 | .. | Cn〉))

〈|〈C1 | .. | Ci | .. | Cn〉, s|〉
p,i
−−→ 〈|〈C1 | .. | V ′

i | .. | Cn〉, s
′
i|〉

∀i.((Ci = sync ∧ C′
i = 〈〉) ∨ (Ci = sync; C′

i))

〈|〈C1 | .. | Cn〉, s|〉
1,⋆
−−→ 〈|〈C′

1 | .. | C′
n〉, s|〉

Fig. 2. Semantics of thread choices

〈|V, s|〉
p,i
−−→ 〈|V ′, s′|〉

l = [(〈|V, s|〉, 1, ◦), (〈|V ′, s′|〉, p, i)]

〈|V, s|〉
p
−→→ l〈|V

′, s′|〉

〈|V, s|〉
p1−→→ l〈|V

′, s′|〉 〈|V ′, s′|〉
p2,i
−−→ 〈|V ′′, s′′|〉 l′ = l + +[(〈|V ′′, s′′|〉, p2, i)]

〈|V, s|〉
p1∗p2−−−−→→ l′〈|V

′′, s′′|〉

Fig. 3. Probabilistic semantics

We call l a decision path if there exist V, s such that l = [(〈|V, s|〉, 1, ◦)], or if
there exist V, V ′, s, s′ such that l is a decision path from 〈|V, s|〉 to 〈|V ′, s′|〉. We
denote the set of all decision paths by DP .

Let l ∈ DP be a decision path with

l = [(〈|V1, s1|〉, p1, i1), (〈|V2, s2|〉, p2, i2), . . . , (〈|Vn, sn|〉, pn, in)].

We define the following functions on decision paths:

length of a decision path The number n of decision steps in l is called length
of l (denoted by length(l)).

tail of a decision path The list [(〈|V2, s2|〉, p2, i2), . . . , (〈|Vn, sn|〉, pn, in)] is the
tail of l (denoted by l−).

concatenation Let

h = [(〈|Vn+1, sn+1|〉, pn+1, in+1), . . . , (〈|Vn+k, sn+k|〉, pn+k, in+k)]

be a list of decision steps. The concatenation of l and h (denoted by l + +h)
is defined by:

l + +h = [(〈|V1, s1|〉, p1, i1), . . . , (〈|Vn, sn|〉, pn, in),

(〈|Vn+1, sn+1|〉, pn+1, in+1), . . . , (〈|Vn+k , sn+k|〉, pn+k, in+k)].

prefixing A decision path l′ with

∃h ∈ DP. length(h) > 1 ∧ l = l′ + +h−

is called proper prefix of l (denoted by l′ ⊏ l). Moreover, l′′ is a prefix of l if
l′′ is either a proper prefix of l or l′′ = l.

We call a decision path l = [(〈|V1, s1|〉, p1, i1), . . . , (〈|Vn, sn|〉, pn, in)] non final if
Vn is not the empty program.

6

Definition 4. Let l be a decision path and p the probability such that

l = [(〈|V, s|〉, p, ◦)] ∧ p = 1 or 〈|V, s|〉
p
−→→ l〈|V

′, s′|〉.

The probability p is the probability of l (denoted by probl).

Lemma 1. For all decision paths l the following holds:

0 < probl ≤ 1

Proof. Since a decision path of length one cannot be generated by the transition
rules we have from Definition 3 that l = [(〈|V, s|〉, 1, ◦)]. From this we have

∀l.length(l) = 1 =⇒ 0 < probl = p = 1. (1)

The first rule of Figure 2 requires that p = 1/(n − blkd(〈C1 | .. | Cn〉)). Since
blkd(〈C1 | .. | Cn〉) has to be smaller than n we know that the denominator is
not equal to 0. Hence,

0 < p = 1/(n − blkd(〈C1 | .. | Cn〉)) ≤ 1

holds. The second rule requires p = 1.
The first rule of Figure 3 produces paths of the length 2 and does not change

the probability. Hence from the knowledge that rules 1 and 2 require probabilities
p with 0 < p ≤ 1 we have by rule 1 of Figure 3 that

∀l′.length(l′) = 2 =⇒ (0 < probl′ ≤ 1). (2)

The second rule of Figure 3 multiplies the probability values p1 for a shorter
path l and p2 for a single step. Assume 0 < p1 = probl ≤ 1 holds for all decision
paths l with length(l)=n. Since p1 as well as p2 are always greater than 0 and
less or equal than 1 we know that

0 < p1 ∗ p2 = probl′ ≤ 1

holds and, hence,

∀l′.(∃l, V ′, s′, p′, i′.l′ = l + +
[

(〈|V ′, s′|〉, p′, i′)
]

) =⇒ (0 < probl′ ≤ 1). (3)

From (1), (2) and (3) we can inductively show that the lemma holds. ⊓⊔

The sum of probabilities for all possibilities for a single evaluation step of a
program is 1 unless the program is the empty program. Hence, we know that
the evaluation along a given path l has the same probability as the sum over all
probabilities of paths that incorporate one further decision step than l.

Lemma 2. Let l be a non final decision path from the configuration 〈|V, s|〉 to
the configuration 〈|V ′, s′|〉. Moreover, let Υ denote the set of all decision paths h
with

∃i, V ′′
i , s′′i , pi, p. (h = l + +[(〈|V ′′

i , s′′i |〉, pi, i)] ∧ 〈|V, s|〉
p
−→→ h〈|V

′′
i , s′′i |〉).

Under those conditions the following holds:

probl =
∑

h∈Υ

probh.

7

Proof. Assume length(l)=1. Since we cannot generate a path of length 1 by
the evaluation of the transition rules we know by Definition 4 that probl = 1.
Moreover, we know that for all h generated from l length(h) = 2 holds. Paths of
length 2 can either be generated by the combination of the first rule of Figure 2
and the first rule of Figure 3 or by a combination of the second rule of Figure 2
and the first rule of Figure 3. Assume V ′ = 〈C ′

1 | .. | C ′
n〉 and blkd(V ′) < n. By

the combination of rule one of Figure 2 and rule one of Figure 3 and from the
fact that l is non final we know that we can generate (n − blkd(V ′)) different
paths h′ and for each of those paths the following transition is the only valid:

〈|V, s|〉
1/(n−blkd(V ′))
−−−−−−−−−→→ h′〈|V ′′

i , s′′i |〉.

Hence, we have for each of the (n − blkd(V ′)) paths h with length(h) = 2 that
the following holds:

probh = 1/(n − blkd(V ′))

The sum over (n − blkd(V ′)) times 1/(n − blkd(V ′)) is 1. On the other hand if
blkd(V ′) equals n then we have by the second rule of Figure 2 and the first rule
of Figure 3 and again from the fact that l is non final that p = probh = 1.

Now assume length(l)>1. The only rule that allows us to generate paths h
with length(h)>2 is the second rule of Figure 3. Let n be the number of threads
in V ′. We can use the same argumentation as before to show that

n
∑

i=1

{ p | 〈|V ′, s′|〉
p,i
−→ 〈|V ′′, s′′|〉} = 1

and, hence,

∑

h∈Υ

probh = probl ∗
n
∑

i=1

{ p | 〈|V ′, s′|〉
p,i
−→ 〈|V ′′, s′′|〉}

= probl ∗ 1

= probl

holds. ⊓⊔

Sets of decision paths that give us information about the distribution of proba-
bilities are summarized as probability trees.

Definition 5. The set of probability trees for a configuration 〈|V, s|〉 (denoted
by Tr〈|V,s|〉) is a set of sets of decision paths that is inductively defined by:

{[(〈|V, s|〉, 1, ◦)]} ∈ Tr〈|V,s|〉

and

∀tr ∈ Tr〈|V,s|〉, l ∈ DP. l is a nonfinal decision path ∧ l ∈ tr =⇒

(

(tr \ l) ∪ {h | ∃i, V ′′
i , s′′i , pi, p.

(h = l + +[(〈|V ′′
i , s′′i |〉, pi, i)] ∧ 〈|V, s|〉

p
−→→ h〈|V

′′
i , s′′i |〉)}) ∈ Tr〈|V,s|〉

)

.

8

In the following we will show that probability trees form a probability space
in a natural way.

Definition 6. Let Ω be a set and A be a σ-algebra over Ω (i.e., a non-empty
subset of P(Ω) that is closed under complements and countable unions).1 Let
P : A → R be a probability measure, i.e. a function satisfying

1. P (A) ≥ 0 for all A ∈ A,

2. P (Ω) = 1,

3. and P (
⋃∞

i=1 Ai) =
∑∞

i=1 P (Ai) for pairwise disjoint sets Ai ∈ A.

Then the triple (Ω,A, P) is called probability space. The elements of A are called
events.

In our case, we assign a probability to each occurrence of a decision path.

Proposition 1. Let Ω be a probability tree and let P be the function from P(Ω)
to the real numbers given by

P (A) =
∑

l∈A

probl.

Then the triple (Ω, P(Ω), P) is a probability space.

Proof. We prove the first two properties from Definition 6, the third property is
trivially satisfied.
P(Ω) =1 We do a proof by induction over the definition of probability trees.
Assume Ω0 = {[(〈|V, s|〉, p, ◦)]}. Hence, the number of steps that are needed to
generate Ω0 is 1. Only the first case of Definition 5 argues about probability trees
containing a single decision path with length 1. Hence, we know that p=1 holds
and that

P (Ω0) =
∑

prob[(〈|V,s|〉,p,◦)]

= 1

holds as well.

By Lemma 2 we know that if we remove a non-final decision path l from a
tree and add the set Υ of all paths h to the tree such that

∀h ∈ Υ.∃i, V ′′
i , s′′i , pi, p. h = l + +[(〈|V ′′

i , s′′i |〉, pi, i)] ∧ 〈|V, s|〉
p
−→→ h〈|V

′′
i , s′′i |〉

then

probl =
∑

h∈Υ

probh.

Hence, for a probability tree Ω′ that is generated from a probability tree Ω by
using the second construction rule for trees once we have

∑

l∈Ω

probl =
∑

l′∈Ω′

probl′ .

1 Here P(X) denotes the powerset of X.

9

Since we have already shown that for the base case

∑

l0∈Ω0

probl0 = 1

holds, we obtain by induction that

P (Ω) =
∑

l∈Ω

probl = 1

holds for all probability trees Ω.
0 ≤ P(A) ≤ 1 Assume A = Ω then we have already shown that P (A) = 1.

Otherwise A is a proper subset of Ω. From Lemma 1 we have for all decision
paths l

0 < probl ≤ 1. (4)

This implies that for A ⊂ Ω the following holds:

P (A) =
∑

l′∈A

probl′ <
∑

l∈Ω

probl = 1.

Moreover, we get from (4) that as long as A is non-empty the following holds:

0 <
∑

l′∈A

probl′ = P (A).

For A = ∅ we have P (A) = 0. ⊓⊔

Sets of paths that give us information about the probability to run through
a given configuration at least once are summarized as sets of minimal paths.

Definition 7. A decision path l is called minimal path from a configuration
〈|V, s|〉 to a configuration 〈|V ′, s′|〉 if either

V = V ′ ∧ s = s′ ∧ l = [(〈|V, s|〉, 1, ◦)]

or

l is a decision path from 〈|V, s|〉 to 〈|V ′, s′|〉 and

¬∃l′ ∈ DP, p. 〈|V, s|〉
p
−→→ l′〈|V

′, s′|〉 ∧ l′ ⊏ l.

We denote the set of all minimal paths from 〈|V, s|〉 to 〈|V ′, s′|〉 by min
〈|V,s|〉
〈|V ′,s′|〉.

Example 1. Figure 4 illustrates two possible probability trees (the first one rep-
resented by only the dotted lines, the second one represented by both the dotted
and the solid lines) for the configuration 〈|C, s|〉 with

C = fork(l := 1, 〈frk〉) and

frk = fork(l := 2, 〈l := 1〉).

The labels of the arrows denote the probability for the decision path starting in
〈|C, s|〉 and ending at the destination of the arrow. The set of minimal paths from
〈|C, s|〉 to 〈|〈l := 2 | l := 1〉, s[l = 1]|〉 contains the following elements:

10

path1 = [(〈|C, s|〉, 1, ◦), (〈|〈l := 1 | frk〉, s|〉, 1, 1), (〈|frk, s[l = 1]|〉, 1/2, 1),
(〈|〈l := 2 | l := 1〉, s[l = 1]|〉, 1, 1)] and

path2 = [(〈|C, s|〉, 1, ◦), (〈|〈l := 1 | frk〉, s|〉, 1, 1),
(〈|l := 1 | l := 2 | l := 1, s|〉, 1/2, 2),
(〈|〈l := 2 | l := 1〉, s[l = 1]|〉, 1/3, 1)]

♦

〈|C, s|〉 〈|〈l := 1 | frk〉, s|〉

〈|frk, s[l = 1]|〉

〈|〈l := 1 | l := 2 | l := 1〉, s|〉

〈|l := 2 | l := 1, s[l = 1]|〉

〈|l := 2 | l := 1, s[l = 1]|〉

〈|l := 1 | l := 1, s[l = 2]|〉

〈|l := 1 | l := 2, s[l = 1]|〉

〈|l := 1, s[l = 2]|〉

〈|l := 2, s[l = 1]|〉

〈|l := 1, s[l = 2]|〉

〈|l := 2, s[l = 1]|〉

〈|l := 1, s[l = 1]|〉

〈|l := 1, s[l = 1]|〉

〈|l := 2, s[l = 1]|〉

〈|l := 1, s[l = 2]|〉

〈|〈〉, s[l = 1]|〉

〈|〈〉, s[l = 2]|〉

〈|〈〉, s[l = 1]|〉

〈|〈〉, s[l = 2]|〉

〈|〈〉, s[l = 1]|〉

〈|〈〉, s[l = 1]|〉

〈|〈〉, s[l = 2]|〉

〈|〈〉, s[l = 1]|〉

1/2

1/6

1/12

1/12

1/12

1/12

1/12

1/4

1/4

1/12

1/12

1/12

1/12

Fig. 4. Two possible probability trees for 〈|C, s|〉.

The probability to run through a given configuration at least once can now
be computed with the help of the set of minimal paths to that configuration:

Definition 8. Let h be a minimal path from the configuration 〈|V, s|〉 to the con-
figuration 〈|V ′, s′|〉 and let p be the probability of h. For each path l with h ⊑ l the
probability p is called the reaching probability for 〈|V ′, s′|〉 along the path l
(denoted by probl,〈|V ′,s′|〉).

Definition 9. The reaching probability to run from a configuration 〈|V, s|〉 to
a configuration 〈|V ′, s′|〉 (denoted by prob〈|V,s|〉,〈|V ′,s′|〉) is defined by:

prob〈|V,s|〉,〈|V ′,s′|〉 =
∑

l∈min
〈|V,s|〉

〈|V ′,s′|〉

probl,〈|V ′,s′|〉

Example 2. The reaching probability from the configuration 〈|C, s|〉 from Exam-
ple 1 to the configuration 〈|〈l := 2 | l := 1〉, s[l = 1]|〉 is the following:

prob〈|C,s|〉,〈|〈l:=2 | l:=1〉,s[l=1]|〉 = probpath1,〈|〈l:=2 | l:=1〉,s[l=1]|〉 +

probpath2,〈|〈l:=2 | l:=1〉,s[l=1]|〉

= 1/2 + 1/6.

♦

Proposition 2. The reflexive transitive closure of −→ (denoted by −→∗) can now
be expressed as follows:

〈|V, s|〉 −→∗ 〈|V ′, s′|〉 ⇐⇒ prob〈|V,s|〉,〈|V ′,s′|〉 > 0

11

3 Security Condition

As in [MSK07], we aim for a security definition that characterizes the possible
influences of an initial state on the set of memory states after termination. Ac-
cording to the termination behavior we can divide the set of programs into three
different types. First of all, we have programs that always evaluate to the empty
program and hence, always terminate. Next, we have programs that never result
in the empty program and, hence, always diverge. Finally, we have programs that
have the possibility to terminate but do not do it for sure. Our security condition
should provide an appropriate statement for all three types of programs.

Definition 10. A program V is deterministic terminating in the state s
if

∃n ∈ N. ∀V ′, s′, p, l.
(

〈|V, s|〉
p
−→→ l〈|V

′, s′|〉 =⇒ length(l) ≤ n
)

holds.The program V is deterministic terminating if it is deterministic ter-
minating under all states.2

All deterministic terminating programs, started in an arbitrary state, terminate
with probability 1:

Lemma 3. Let C be a deterministic terminating program and s a state, then

∑

s′

prob〈|C,s|〉,〈|〈〉,s′|〉 = 1.

Proof. From Definition 10 we have that

∀s.∃n ∈ N. ∀V ′, s′, p, l. 〈|C, s|〉
p
−→→ l〈|V

′, s′|〉 =⇒ length(l) ≤ n.

Hence, all paths are bounded above by n and there exists a fully expanded
probability tree for each configuration 〈|C, s|〉 (denoted by TRs). Given s we can
generate TRs by starting with {[(〈|C, s|〉, 1, ◦)]} and repeatedly using the second
rule of Definition 5 to substitute paths that do not have the empty program as
right most program. Since all paths are shorter than n and we have no possibility
to fork an infinite set of threads this procedure terminates. Moreover since we
assume only syntactically correct programs we know from the semantics that
the generated tree has the empty program as right most program in each of its
decision paths. From Proposition 1 we know

∑

l∈TRs

probl = 1.

Hence, the probability to reach the empty program is 1. ⊓⊔

2 With this definition, the length of evaluation sequences of deterministic terminating programs
is bounded from above by some n ∈ N. It thus might appear to exclude programs that have
arbitraryly long execution sequences, but nevertheless always terminate. But such programs
are not possible in our programming language, since in each step only finitely many threads
can be forked.

12

Definition 11. A program V is deterministic non-terminating in a state s
if the following holds:

∀s′.prob〈|V,s|〉,〈|〈〉,s′|〉 = 0

The program V is (generally) deterministic non-terminating if it is deterministic
non-terminating in all states.

Definition 12. A program V is possibly terminating if it is neither deter-
ministic terminating nor deterministic non-terminating.

Example 3. Let C1=(h:=False) and C2=(h:=True;while h do skip od). Then C1 is
deterministic terminating, C2 is deterministic non-terminating and 〈C1 | C2〉 is
possibly terminating. ♦

To formalize our instance of the indistinguishability property we use a two-
level security lattice with a distinction between high (secure) variables and low
(public) variables where no information is allowed to flow from high to low. We
will refer to states that differ only in the values of the high variables as low-equal
states (denoted by s =L t) and summarize the set of all states that are low equal
to a state s as low-equivalence class of s (denoted by [s]=L

). Two expressions are
low equivalent (denoted by Exp1 ≡L Exp2) if they evaluate to the same value
for each pair of low-equal states.

We assume an attacker who can see the initial low memory and the final low
memory of terminated programs. Moreover, we give him the possibility to re-run
the program as often as he wishes. We classify a program as secure if it fulfills
the following requirements:

– the termination probability is independent of initial values of high variables
– the probability to terminate in a given set of low-equal states is independent

of the initial value of high variables

The probabilities for the sets of low equal final states of a secure program
should be distributed equally and, hence, indistinguishable for an attacker if we
start the execution in two low equal states.

Definition 13. Two thread pools V and W are low indistinguishable (denoted
by V ∼p

L W) iff the following holds:

∀s, t, r ∈ S. s =L t =⇒
∑

s′∈[r]=L

prob〈|V,s|〉,〈|〈〉,s′|〉

=
∑

t′∈[r]=L

prob〈|W,t|〉,〈|〈〉,t′|〉

Definition 14. A program V is probBL secure if

V ∼p
L V.

This definition is applicable for each type of program identified at the begin-
ning of this section. Moreover, for deterministic non-terminating programs the
probability to terminate is 0 independent of the starting state. Hence, we can
easily show the following Lemma:

Lemma 4. All deterministic non-terminating programs are probBL secure.

Proof. Due to the definition of probBL security and low indistinguishability. ⊓⊔

13

4 Combining Calculus

In the previous section we have introduced a definition of program security. The
next step is to support the check of programs against probBL security. Instead of
developing a new proof system from scratch we reuse the calculus from [MSK07].

4.1 Compositionality and Basic Calculus

Sequential and parallel composition do not preserve probBL security as the fol-
lowing examples show:

Example 4. Let C1 = (if h then l := 0 else l := 1 fi; l := 2) and C2 = (fork(skip, 〈C1〉)).
Both programs are probBL secure. Nevertheless a parallel respectively sequential
composition with the probBL secure program l′ := l result in programs that are
not probBL secure. ♦

The program fork(C1, 〈l
′ := l〉) in Example 4 demonstrates that races are a major

problem during parallel composition. To avoid races we demand variable inde-
pendence of concurrent threads during parallel composition:

Definition 15 ([MSK07]). Two thread pools V and W are variable inde-

pendent (denoted by V ≷ W) if the sets of variables occurring in V respectively
W are disjoint.

Example 4 demonstrates that races are not only a problem for security when
composing programs in parallel, but also in a sequential composition. These races
originate from the termination of the first (main) thread before the termination
of spawned threads. To avoid those races we use a property that guarantees that
the main thread is the last one that terminates:

Definition 16 ([MSK07]). V is main-surviving in s (denoted by 〈|V, s|〉�) iff

∀D1 . . . Dn, t. 〈|V, s|〉 →∗ 〈|〈D1| . . . |Dn〉, t|〉 =⇒ (n = 1 ∨ (¬∃t′. 〈|D1, t|〉 _ 〈|〈〉, t′|〉)).

A non main-surviving program can be transformed into a main-surviving pro-
gram by adding sync-statements into the main thread.

The repeated execution of a probBL secure program can either be a secure
composition if the number of iterations depends only on low variables or the
number of iterations cannot be reproduced by the observation of the low mem-
ory after termination. To formulate the second case we introduce the following
property, which is inspired by [BC01]:

Definition 17. A program V is free of low affectings (denoted by H(V)) if
the following holds:

∀s, s′, V ′. 〈|V, s|〉 →∗ 〈|V ′, s′|〉 =⇒ s =L s′

The following two lemmas will help us to prove our compositionality result:

Lemma 5. Let l=[(〈|V, s|〉, 1, ◦), (〈|V1 , s1|〉, p1, i1), . . . , (〈|Vn, sn|〉, pn, in)] respectively
l’=[(〈|V ′, s′|〉, 1, ◦), (〈|V ′

1 , s′1|〉, p
′
1, i

′
1), . . . , (〈|V

′
k , s′k|〉, p

′
k, i

′
k)] be decision paths such that

Vn = V ′ ∧ sn = s′.

14

Then

h = [(〈|V, s|〉, 1, ◦), (〈|V1 , s1|〉, p1, i1), . . . , (〈|Vn, sn|〉, pn, in),

(〈|V ′
1 , s′1|〉, p

′
1, i

′
1), . . . , (〈|V

′
k , s′k|〉, p

′
k, i

′
k)]

is a decision path from 〈|V, s|〉 to 〈|V ′
k, s′k|〉. Moreover, we have probh = probl ∗

probl′.

Proof. Due to the use of the uniform scheduler the transition probabilities are
independent of the history. Hence, the decision-steps of l′ are the same inde-
pendent if the execution starts in 〈|V ′, s′|〉 or if a sequence of transitions leads
to 〈|V ′, s′|〉 respectively 〈|Vn, sn|〉. From the rules of Figure 3 we have also that
probh = probl ∗ probl′. ⊓⊔

Lemma 6.

∀C, V ′, V ′′, s, s′, s′′. ((〈|〈C〉, s|〉 6= 〈|V ′′, s′′|〉 ∧ 〈|C, s|〉 _ 〈|V ′, s′|〉) =⇒

prob〈|C,s|〉,〈|V ′′,s′′|〉 = prob〈|V ′,s′|〉,〈|V ′′,s′′|〉)

Proof. Let l = [(〈|〈C〉, s|〉, 1, ◦), (〈|V ′, s′|〉, p, i)] be a decision path. Since 〈C〉 is
single-threaded we know that there exists exactly one such path with p = 1, i = 1.
From Lemma 5 we know that for each path l′ from 〈|V ′, s′|〉 to 〈|V ′′, s′′|〉 there exists
a path h with

h = l + +l′− and

probh = probl ∗ probl′

= 1 ∗ probl′ .

From this and the definition of minimal paths we have

∑

l′∈min
〈|V ′,s′|〉

〈|V ′′,s′′|〉

probl′,〈|V ′′,s′′|〉

=
∑

l′∈min
〈|V ′,s′|〉

〈|V ′′,s′′|〉
,

h=l++l′−

probh,〈|V ′′,s′′|〉.

Since we excluded the case where 〈|C, s|〉=〈|V ′′, s′′|〉 we know that for each minimal
path l′ the corresponding path h is a minimal path from 〈|C, s|〉 to 〈|V ′′, s′′|〉.
Moreover, since there is only one possible transition for 〈|〈C〉, s|〉, there are no
other minimal paths to 〈|V ′′, s′′|〉. Hence, we have

∑

l∈min
〈|V ′,s′|〉

〈|V ′′,s′′|〉

probl,〈|V ′′,s′′|〉 =
∑

h∈min
〈|C,s|〉

〈|V ′′,s′′|〉

probh,〈|V ′′,s′′|〉.

Lemma 6 follows by Definition 9. ⊓⊔

For a composition of the form if B then C else D fi with B 6≡L B we introduce
the notion of branch low-equivalence.

15

Definition 18. Let Exps denote the value n with 〈|Exp, s|〉↓ n. Moreover, let C1

and C2 be probBL secure programs. A program C = if B then C1 else C2 fi is
branch low-equivalent (denoted by ifB

C1∼
p
L

C2
) if the following holds:

∀s, t, r.

(

(s =L t ∧ Bs 6= Bt) =⇒
∑

s′∈[r]=L

prob〈|C1,s|〉,〈|〈〉,s′|〉 =

∑

t′∈[r]=L

prob〈|C2,t|〉,〈|〈〉,t′|〉

)

Remark 1. Branch low-equivalence allows to analyze two different cases: Firstly,
the case that the guard is constant on low-equivalence classes, i.e., the choice
between C1 and C2 does not depend on the high part of the state. And secondly,
the case that the probabilities to terminate in a given low equivalence class in
one of the two branches C1 and C2 do not depend on the high part of the state.
In both cases, branch low-equivalence is satisfied.

But branch low-equivalence admits even more programs to be checked. Con-
sider the program C = if (hl = 1) then C1 else C2 fi with C1 = if l = 0 then l :=
1 else skip fi and C2 = if l = 0 then l := 2 else skip fi. The guard is only constant on
the low equivalence class of l = 0, while the probabilities to terminate in a given
low equivalence class of the two branches differ only on the low equivalence class

of l = 0. But still if
(hl=1)

C1∼
p

L
C2

holds. ♦

Theorem 1. Let C, D, V, W be probBL secure programs. The following table
describes under which condition (left side) the compositions on the right side pre-
serve probBL security:

Condition probBL Secure Composition

∀s ∈ S.〈|C, s|〉� C;D

ifB
C∼p

L
D

if B then C else D fi

(B≡LB ∧ ∀s ∈ S.〈|C, s|〉�) while B do C od

C ≷ W fork(C,W)

V ≷ W 〈V W 〉

Proof. Let E denote the particular composition for each sub-theorem. Then we
have to show that E ∼p

L E holds, if the respective condition is satisfied.

C;D Since D is probBL secure we have the following:

∀s′, t′, r′, r′′. s′, t′ ∈ [r′]=L
=⇒

∑

s′′∈[r′′]=L

prob〈|D,s′|〉,〈|〈〉,s′′|〉

=
∑

t′′∈[r′′]=L

prob〈|D,t′|〉,〈|〈〉,t′′|〉
(5)

16

Moreover, from the rules in Figure 1 we know that D is only executed if the
main thread of C has terminated before. Since C is main-surviving we know
that the main thread of C only terminates if all other threads have terminated
before. Hence, we know that D is executed after the full termination of C and,
hence, has no influence on the scheduling of C. Together with the probBL
security of C this results in:

∀s, t, r′. s =L t =⇒
∑

s′∈[r′]=L

prob〈|C;D,s|〉,〈|D,s′|〉

=
∑

t′∈[r′]=L

prob〈|C;D,t|〉,〈|D,t′|〉
(6)

Since s′ and t′ are in the same low-equivalence class [r′]=L
we can combine

(5) and (6) to

∀s, t, r′, r′′. s =L t =⇒

∑

s′∈[r′]=L

(

prob〈|C;D,s|〉,〈|D,s′|〉 ∗ (
∑

s′′∈[r′′]=L

prob〈|D,s′|〉,〈|〈〉,s′′|〉)

)

=
∑

t′∈[r′]=L

(

prob〈|C;D,t|〉,〈|D,t′|〉 ∗ (
∑

t′′∈[r′′]=L

prob〈|D,t′|〉,〈|〈〉,t′′|〉)

)

.

(7)

This can be done since both sides use only states s′ and t′ from the same low-
equivalence class. Hence, by (5) the second coefficient is a constant. Since
we assume a uniform scheduler the execution of C has no influence on the
scheduling of D and the Equation (7) states that the probabilities to run
from a configuration 〈|C;D, s|〉 respectively 〈|C;D, t|〉 through a configuration
〈|D, s′|〉 respectively 〈|D, t′|〉 with s′, t′ ∈[r′]=L

and finally terminate in the
low equivalence class [r′′]=L

are equal for two low equal starting states s and
t. Since the inner sums of Equation (7) are constants for given s′ and t′ this
can be transformed into the following equation:

∀s, t, r′, r′′. s =L t =⇒
∑

s′∈[r′]=L

∑

s′′∈[r′′]=L

(

prob〈|C;D,s|〉,〈|D,s′|〉 ∗ prob〈|D,s′|〉,〈|〈〉,s′′|〉

)

=
∑

t′∈[r′]=L

∑

t′′∈[r′′]=L

(

prob〈|C;D,t|〉,〈|D,t′|〉 ∗ prob〈|D,t′|〉,〈|〈〉,t′′|〉

)

Since we have a quantification over all states r′ we can sum up over all possible
low-equivalence classes (LEC) and get the following equation:

∀s, t, r′′. s =L t =⇒

∑

[r′]=L
∈LEC

(

∑

s′∈[r′]=L

∑

s′′∈[r′′]=L

(

prob〈|C;D,s|〉,〈|D,s′|〉 ∗ prob〈|D,s′|〉,〈|〈〉,s′′|〉

)

)

=
∑

[r′]=L
∈LEC

(

∑

t′∈[r′]=L

∑

t′′∈[r′′]=L

(

prob〈|C;D,t|〉,〈|D,t′|〉 ∗ prob〈|D,t′|〉,〈|〈〉,t′′|〉

)

)

The outer most two sums can be summarized as follows:

∑

[r′]=L
∈LEC





∑

s′∈[r′]=L

p(s′)



 =
∑

s′∈S

p(s′)

17

Hence, we have

∀s, t, r′′. s =L t =⇒
∑

s′∈S

∑

s′′∈[r′′]=L

(

prob〈|C;D,s|〉,〈|D,s′|〉 ∗ prob〈|D,s′|〉,〈|〈〉,s′′|〉

)

=
∑

t′∈S

∑

t′′∈[r′′]=L

(

prob〈|C;D,t|〉,〈|D,t′|〉 ∗ prob〈|D,t′|〉,〈|〈〉,t′′|〉

)

.

(8)

From the main-surviving of C and the rules of Figure 1 we know that the
execution of D cannot start until C is completely executed. Hence, each
decision path l from 〈|C;D, s|〉 to any configuration 〈|〈〉, s′′|〉 has the form:

∃s′, p′, i′.l =
[

(〈|C;D, s|〉, 1, ◦), . . . , (〈|D, s′|〉, p′, i′), . . . (〈|〈〉, s|〉, p′′ , i′′)
]

Hence, for each such path l the probability can be computed by

probl = probl1 ∗ probl2,

where l1 = [(〈|C;D, s|〉, 1, ◦), . . . , (〈|D, s′|〉, p′, i′)] is an initial segment of l, l′2 is
a terminal segment of l such that l = l1 ++l′2, and l2 = [(〈|D, s′|〉, 1, ◦)] ++l′2.
Hence, we can summarize (8) to

∀s, t, r′′. s =L t =⇒
∑

s′′∈[r′′]=L

(prob〈|C;D,s|〉,〈|〈〉,s′′|〉)

=
∑

t′′∈[r′′]=L

(prob〈|C;D,t|〉,〈|〈〉,t′′|〉).

if B then C else D (ifB
C∼p

L
D
)

Let E abbreviate the program if B then C else D fi. For Bs = Bt = True the
configuration 〈|E, s|〉 deterministically results in the new configuration 〈|C, s|〉.
Moreover, from the conditions we have that C is probBL secure. Due to
Definitions 14 and 13 that implies:

∀s, t, r′ ∈ S. s =L t =⇒
∑

s′∈[r′]=L

prob〈|C,s|〉,〈|〈〉,s′|〉

=
∑

t′∈[r′]=L

prob〈|C,t|〉,〈|〈〉,t′|〉

This and Lemma 6 give us

∀s, t, r′ ∈ S. Bs = Bt = True ∧ s =L t =⇒
∑

s′∈[r′]=L

prob〈|E,s|〉,〈|〈〉,s′|〉

=
∑

t′∈[r′]=L

prob〈|E,t|〉,〈|〈〉,t′|〉.

By Definition 14 this implies for Bs = Bt = True that E is probBL secure.
Following the same argumentation over the probBL security of D we can
show that E is also probBL secure for Bs = Bt = False.
Now, assume Bs 6= Bt. For the case Bs = True and Bt = False we have to show
that

∀r′ ∈ S.
∑

s′∈[r′]=L

prob〈|C,s|〉,〈|〈〉,s′|〉 =
∑

t′∈[r′]=L

prob〈|D,t|〉,〈|〈〉,t′|〉,

18

and for the case Bs = False and Bt = True that

∀r′ ∈ S.
∑

s′∈[r′]=L

prob〈|D,s|〉,〈|〈〉,s′|〉 =
∑

t′∈[r′]=L

prob〈|C,t|〉,〈|〈〉,t′|〉

holds.

We have both due to ifB
C∼p

L
D

and by using Definition 18. Using Lemma 6 we

can now show

∀s, t, r′ ∈ S. Bs 6= Bt ∧ s =L t =⇒
∑

s′∈[r′]=L

prob〈|E,s|〉,〈|〈〉,s′|〉

=
∑

t′∈[r′]=L

prob〈|E,t|〉,〈|〈〉,t′|〉.

while B do C od (B ≡L B ∧ ∀s ∈ S.〈|C, s|〉�) Let E = while B do C od. Let the
function #while : DP → N be defined as follows:

#while(l) =











0 if length(l) = 0,

#while(l−) + 1 if l = [(〈|E, s|〉, p, i)] + +h for some s, p, i, h,

#while(l−) otherwise.

Hence, #while(l) is the number of configurations in a path l containing the
program E. If l is a decision path from 〈|E, s|〉 for some state s we know
from the rules from Figure 1 and the fact that C is main-surviving that
such configurations only occur as initial configuration and every time C is
completely executed. Hence, the number #while(l) − 1 is the number of
executions of C along the decision path l. We denote the set of decision
paths l that end up with a configuration of the form 〈|E, s|〉 for some state s
and for that #while(l) = n holds for a given n with Pn

E .

First we show that starting in two low equal states s and t and evaluating the
body of the loop (n−1) times will result with the same probability in a given
low-equivalence class. Hence, we start by proving the following statement by
induction over n:

∀n ∈ N1, r
′, s, t.s =L t =⇒ (9)

∑

ls∈P n
E ,s′∈[r′]=L

∃i,q.ls=[(〈|E,s|〉,1,◦)],...,[(〈|E,s′|〉,q,i)]

probls =
∑

lt∈P n
E ,t′∈[r′]=L

∃i,q.lt=[(〈|E,t|〉,1,◦)],...,[(〈|E,t′|〉,q,i)]

problt

For l ∈ P 1
E we have only one possible decision path with ls = [〈|E, s|〉, 1, ◦]. For

any state t with s =L t we have the decision path lt = [〈|E, t|〉, 1, ◦]. Hence,
for n = 1 the statement holds since probls = problt .

Assume now that (9) holds for n ∈ N1. From B ≡L B we know that Bs′ = Bt′

for s′, t′ ∈ [r′]=L
. With the semantics for while loops we therefore obtain for

19

all states r′, s, t with s =L t
















∑

ls∈P n
E

,s′∈[r′]=L

∃i,q.ls=([(〈|E,s|〉,1,◦)],
...,[(〈|E,s′|〉,q,i)])

probls++[(〈|C;E,s′|〉,1,1)] =
∑

lt∈P n
E

,t′∈[r′]=L

∃i,q.lt=([(〈|E,t|〉,1,◦)],
...,[(〈|E,t′|〉,q,i)])

problt++[(〈|C;E,t′|〉,1,1)]

















∧

















∑

ls∈P n
E ,s′∈[r′]=L

∃i,q.ls=([(〈|E,s|〉,1,◦)],
...,[(〈|E,s′|〉,q,i)])

probls++[(〈|〈〉,s′|〉,1,1)] =
∑

lt∈P n
E ,t′∈[r′]=L

∃i,q.lt=([(〈|E,t|〉,1,◦)],
...,[(〈|E,t′|〉,q,i)])

problt++[(〈|〈〉,t′|〉,1,1)].

















.

From the main-surviving of C and the semantic rule for sequential compo-
sition we know that C has to be completely executed before E is touched
again and hence

∀s, s′, s′′, is, ks, qs, i, p, ls, l〈〉.

(ls = [(〈|E, s|〉, 1, ◦)] + +ks + +[(〈|E, s′|〉, qs, is)] ∧

l〈〉 = ls + +[(〈|C;E, s′|〉, 1, 1), . . . , (〈|〈〉, s′′|〉, p, i)]) =⇒

#while(l〈〉) ≥ (#while(ls) + 1).

Since C is main-surviving and C is probBL secure we have the following:

∀r′, r′′, s′ ∈ [r′]=L
, t′ ∈ [r′]=L

. (10)

∑

s′′∈[r′′]=L
,ls′∈P 2

E

ls′=[(〈|C;E,s′|〉,1,◦),...,(〈|E,s′′|〉,1,1)]

probls′
=

∑

t′′∈[r′′]=L
,lt′∈P 2

E

lt′=[(〈|C;E,t′|〉,1,◦),...,(〈|E,t′′|〉,1,1)]

problt′

The probability to execute C (n−1) times resulting in a configuration 〈|E, s′|〉
with s′ ∈ [r′]=L

followed by another execution of C finally resulting in a
configuration 〈|E, s′′|〉 with s′′ ∈ [r′′]=L

can now be computed by

∑

ls∈P n
E ,s′∈[r′]=L

∃i,q.ls=[(〈|E,s|〉,1,◦)],
...,[(〈|E,s′|〉,q,i)]

















probls++[(〈|C;E,s′|〉,1,1)] ∗

















∑

ls′∈P 2
E

,s′′∈[r′′]=L

ls′=[(〈|C;E,s′|〉,1,◦),
...,(〈|E,s′′|〉,1,1)]

probls′

































.

Using the identities from above this is equal to

∑

lt∈P n
E ,t′∈[r′]=L

∃i,q.lt=[(〈|E,t|〉,1,◦)],
...,[(〈|E,t′|〉,q,i)]

















problt++[(〈|C;E,t′|〉,1,1)] ∗

















∑

lt′∈P 2
E

,t′′∈[r′′]=L

lt′=[(〈|C;E,t′|〉,1,◦),
...,(〈|E,t′′|〉,1,1)]

problt′

































20

for all s =L t. Using distributivity we transform the equation to:

∑

ls∈P n
E ,s′∈[r′]=L

∃i,q.ls=[(〈|E,s|〉,1,◦)],
...,[(〈|E,s′|〉,q,i)]

∑

ls′∈P 2
E

,s′′∈[r′′]=L

ls′=[(〈|C;E,s′|〉,1,◦),
...,(〈|E,s′′|〉,1,1)]

probls++[(〈|C;E,s′|〉,1,1)] ∗ probls′

=
∑

lt∈P n
E ,t′∈[r′]=L

∃i,q.lt=[(〈|E,t|〉,1,◦)],
...,[(〈|E,t′|〉,q,i)]

∑

lt′∈P 2
E

,t′′∈[r′′]=L

lt′=[(〈|C;E,t′|〉,1,◦),
...,(〈|E,t′′|〉,1,1)]

problt++[(〈|C;E,t′|〉,1,1)] ∗ problt′

Summing up over all low-equivalence classes [r′]=L
we obtain

∑

ls∈P n
E ,s′∈S

∃i,q.ls=[(〈|E,s|〉,1,◦)],
...,[(〈|E,s′|〉,q,i)]

∑

ls′∈P 2
E

,s′′∈[r′′]=L

ls′=[(〈|C;E,s′|〉,1,◦),
...,(〈|E,s′′|〉,1,1)]

probls++[(〈|C;E,s′|〉,1,1)] ∗ probls′

=
∑

lt∈P n
E ,t′∈S

∃i,q.lt=[(〈|E,t|〉,1,◦)],
...,[(〈|E,t′|〉,q,i)]

∑

lt′∈P 2
E

,t′′∈[r′′]=L

lt′=[(〈|C;E,t′|〉,1,◦),
...,(〈|E,t′′|〉,1,1)]

problt++[(〈|C;E,t′|〉,1,1)] ∗ problt′
.

In summary, we have for all s, t, r′, r′′ with s =L t that the following holds:

∑

s′′∈[r′′]=L
,ls′′∈P

(n+1)
E

ls′′=[(〈|E,s|〉,1,◦),
...,(〈|E,s′′|〉,1,1)]

probls′′ =
∑

t′′∈[r′′]=L
,lt′′∈P

(n+1)
E

lt′′=[(〈|E,t|〉,1,◦),
...,(〈|E,t′′|〉,1,1)]

problt′′

As we have already shown above if the equation holds for n then the prob-
abilities to terminate in the next step in low equal states is equal for two
runs starting in low equal states. Since we have now shown that the equa-
tion holds for all n we know that starting in two low equal states we have
the same probability to execute C n times and then terminate in low equal
states. Since the number of passes is not of interest for us we can sum up
over all n and obtain for all s, t, r′′ with s =L t that

∑

n∈N1

∑

s′′∈[r′′]=L

l=[(〈|E,s|〉,1,◦),...,(〈|〈〉,s′′|〉,1,1)]
l∈P n

E

probl =
∑

n∈N1

∑

t′′∈[r′′]=L

l=[(〈|E,t|〉,1,◦),...,(〈|〈〉,t′′|〉,1,1)]
l∈P n

E

probl,

which can be summarized to

∑

s′′∈[r′′]=L

l=[(〈|E,s|〉,1,◦),...,(〈|〈〉,s′′|〉,1,1)]

probl =
∑

t′′∈[r′′]=L

l=[(〈|E,t|〉,1,◦),...,(〈|〈〉,t′′|〉,1,1)]

probl.

Since we sum up over all paths to the empty program this is by Definition 9
the same as

∀s, t, r′′.s =L t =⇒
∑

s′′∈[r′′]=L

prob〈|E,s|〉,〈|〈〉,s′′|〉 =
∑

t′′∈[r′′]=L

prob〈|E,t|〉,〈|〈〉,t′′|〉.

21

〈VW〉 Let Ω(A) denote the set of variables occurring syntactically in A. Since,
V≷W we have Ω(V)∩Ω(W) = ∅. Moreover, let sv and sw be the parts of the
memory s that can influence and can be written by V and W respectively,
and let s′ be the part of s that is neither read nor written by either V or
W . Let sV ◦ sW ◦ s′ denote the combined memory of sV and sW . Hence,
s = sV ◦ sW ◦ s′. We now color each thread occurring in the probability tree
of 〈|V W, s|〉 with either red or green. Initially all threads occurring in V are
colored red and all threads occurring in W are colored green. Every thread
that is the result of the execution of a red (green) thread is also colored red
(green). I.e., for each transition

〈|〈C1..Ci..Cn〉, s|〉
p,i
−→ 〈|〈C1..Ui..Cn〉, s

′|〉

all threads in Ui are colored with the same color as Ci.

Let nV be the number of red threads in the current thread pool and nW be
the number of green threads. The probability for each non-blocked red (green)
thread to be chosen as next thread is 1/(nV −blkd(V)+nW −blkd(W)). Hence
the relation between the probabilities of two non-blocked red (green) threads
is 1:1. The probability for blocked threads is always 0 if not all threads have
reached a sync-statement. It is the same relation as if 〈|V, sV |〉 (〈|W, sW |〉) would
be executed separately. If during the separated execution of V the choice of
the i-th thread would cause the following transition

〈|〈C1..Ci..Cn〉, sV |〉
1/(nV −blkd(V)),i
−−−−−−−−−−−→ 〈|〈C1..Vi..Cn〉, s

′
V |〉

then due to the variable independence the choice of the i-th red thread in
〈|V W, sV ◦ sW ◦ s′|〉 would produce the following transition:

〈|〈C1..Ci..Cn〉W, sV ◦ sW ◦ s′|〉
p∗,i
−−→ 〈|〈C1..Vi..Cn〉W, s′V ◦ sW ◦ s′|〉,

where p∗ = 1/(nV − blkd(V) + nW − blkd(W)). From Ω(V) ∩ Ω(W) = ∅ we
know that each green (red) thread is neither influenced by variables occurring
in Ω(W) (Ω(V)) nor will it change the value of any of these variables. Hence,
the execution of a green (red) thread would only introduce an idle step for
the execution of the red (green) thread pool.

Since this holds for each step in the execution the probabilities for each
sequence of the execution of red (green) threads are the same independently
if the red (green) threads are separated or in parallel with the green (red)
threads. Let pV (pW) be the probability to run from a given state s (t) into a
configuration with the empty program and a state from the low-equivalence
class [rV]=L

([rW]=L
). Since both events are independent of each other

we have the probability pV ∗ pW to run from the state sV ◦ sW ◦ s′ into a
configuration with the empty program and a final state from [rV ◦rW ◦r′]=L

.

22

Hence, we have:

∀sV , sW , s′, rV , rW , r′. (pV =
∑

s′
V
∈[rV]=L

prob〈|V,sV |〉,〈|〈〉,s′
V
|〉 ∧

pW =
∑

s′
W

∈[rW]=L

prob〈|W,sW |〉,〈|〈〉,s′
W

|〉 =⇒

pV ∗ pW =
∑

(s′
V
◦s′

W
◦s′)∈[rV ◦rW ◦r′]=L

prob〈|V W,sV ◦sW ◦s′|〉,〈|〈〉,s′
V
◦s′

W
◦s′|〉)

Since V and W are probBL secure this implies

∀sV , sW , s′, tV , tW , t′, rV , rW , r′.(sV ◦ sW ◦ s′) =L (tV ◦ tW ◦ t′) =⇒
∑

(s′
V
◦s′

W
◦s′)∈[rV ◦rW ◦r′]=L

prob〈|V W,sV ◦sW ◦s′|〉,〈|〈〉,s′
V
◦s′

W
◦s′|〉) =

∑

(t′
V
◦t′

W
◦t′)∈[rV ◦rW ◦r′]=L

prob〈|V W,tV ◦tW ◦t′|〉,〈|〈〉,t′
V
◦t′

W
◦t′|〉)

and hence, the probBL security of 〈V W 〉.
fork(C,W) Due to the rules in Figure 1, the result of the former subproof, and

the fact that V = 〈C〉 and W are probBL secure we have (where {| . . . |}
denotes a multiset):

∀s, t, r ∈ S. s =L t =⇒
∑

s′∈[r]=L

{| p | 〈|fork(C,W), s|〉 _ 〈|V W, s|〉 ∧ p = prob〈|V W,s|〉〈|〈〉, s
′|〉|} =

∑

t′∈[r]=L

{| p | 〈|fork(C,W), t|〉 _ 〈|V W, t|〉 ∧ p = prob〈|V W,t|〉〈|〈〉, t
′|〉|}

From Lemma 6 and by the Definitions 14, 13 this implies probBL security
for fork(C,W).

⊓⊔

Basic calculus rules of the combining calculus. The judgement V ⊢ probBL
intuitively means that V is probBL secure.

[SEQ]
C ⊢ probBL D ⊢ probBL ∀s ∈ S.〈|C, s|〉�

C;D ⊢ probBL

[SNC]
C ⊢ probBL

C; sync ⊢ probBL
[IF]

C ⊢ probBL D ⊢ probBL ifB
C∼p

L
D

if B then C else D fi ⊢ probBL

[WHLlow]
C ⊢ probBL ∀s ∈ S. 〈|C, s|〉 � B ≡L B

while B do C od ⊢ probBL

[PAR]
V ⊢ probBL W ⊢ probBL V ≷ W

V W ⊢ probBL
[FRK]

〈C〉W ⊢ probBL

fork(C,W) ⊢ probBL

Remark 2. In comparison to [MSK07], the rules for sequential composition, while
loops, parallel composition,forking, and sync-statements remain unchanged. The

23

rule for the if-construct was enhanced by relaxing the original assumption that
the guard must be constant on low-equivalence classes: the new rule allows ar-
bitrary guards, as long as the branches are not distinguishable by an attacker.
E.g., the program if h1 then h2 = 0 else h2 = 1 fi cannot be checked with the basic
rules from [MSK07], but it can be checked with the rule [IF] (and a simple plugin
rule for the assignments in the branches). That is, a modified rule results in a
slightly more precise calculus.3

Hence the basic calculus rules from [MSK07] are sensible rules for both a
possibilistic and a probabilistic baseline security property. ♦

5 Plugins for Semantic Security Definitions

In previous works the major practical effect of compositionality results was the
possibility to split the proof of large programs into subproblems. The approach
of [MSK07] goes one step further. Subprograms can be checked against differ-
ent security definitions as long as each of these security definitions fulfills the
following condition:

– The subprograms that are classified as secure by the considered security def-
inition must also be secure according to the baseline definition of security.

For such security definitions we can formulate plugin rules to integrate them into
the basic calculus.

Sections 5.1 and 5.2 illustrate the use of the plugin approach based on the
integration of strong security [SS00] and low-deterministic security [ZM03]. A
soundness result for the basic calculus and the plugin rules is provided in Sec-
tion 5.3.

5.1 Strong-Security Plugin

Definition 19 ([SS00]). The strong low-bisimulation (denoted by ≅L) is
the union of all symmetric relations R on command vectors V = 〈C1 . . . Cn〉 and
W = 〈D1 . . . Dn〉 of equal size, such that

(∀s, s′, t, V ′, i ∈ {1 . . . n}. (V RW ∧ s =L t ∧ 〈|Ci, s|〉 _ 〈|V ′, s′|〉) =⇒

(∃W ′, t′.〈|Di, t|〉 _ 〈|W ′, t′|〉 ∧ s′ =L t′ ∧ V ′RW ′)).

Definition 20 ([SS00]). A program V is strongly secure iff V≅LV holds.

As mentioned before we have to show that the set of strongly secure programs
is a subset of probBL secure programs. However, this is not true in general.
Consider, e.g., the program C = sync; l := h. It is intuitively insecure, since the
value of h is leaked to the public variable l after processing sync. Nevertheless it
is strongly secure, since there is no program V such that C _ V (processing the

sync-statement results in a
1,⋆
→-transition and not a _ transition).

3 This improvement is independent from the move from a possibilistic to a probabilistic char-
acterization, which is the main contribution of this report.

24

Lemma 7. Let V and W be strongly low-bisimilar programs that do not contain
sync-statements. Let furthermore

lV = [(〈|V, s|〉, 1, ◦), (〈|V1 , s1|〉, p1, i1), . . . , (〈|Vm, sm|〉, pm, im)]

be a decision path. Then for s =L t there exist W1, . . . ,Wm, t1, . . . , tm such that
[(〈|W1, t1|〉, q1, j1), . . . , (〈|Wm, tm|〉, qm, jm)] is a decision path for suitable qi, ji,
and such that ∀j ∈ {1..m}. (Vj ≅L Wj ∧ sj =L tj). Moreover, the programs
W1, . . . ,Wm and the states t1, . . . , tm are unique with this property.

Proof. Let lV = [(〈|V, s|〉, 1, ◦)]. We can choose lW = [(〈|W, t|〉, 1, ◦)]. Since there
exists no second decision step in lV and lW the statement is true for length(lV) =
1 (uniqueness is trivially fulfilled). Now, let length(lV)=2 and V = 〈C1| . . . |Cn〉
as well as W = 〈D1| . . . |Dn〉. Since neither V nor W contain any sync-statements
we have blkd(V) = blkd(W) = 0 < n. From Definition 19 we have:

∀s, t, s′i, V
′
i , i ∈ {1..n}.((s =L t∧ 〈|Ci, s|〉 _ 〈|V ′

i , s′i|〉) =⇒

(∃W ′
i , t

′
i. 〈|Di, t|〉 _ 〈|W ′

i , t
′
i|〉 ∧ s′i =L t′i ∧ V ′

i ≅L W ′
i))

Hence, we have by the first rule of Figure 3 that the following holds:

∀s, t, s′i, V
′
i , i ∈ {1..n}.((s =L t ∧

〈|〈C1| . . . |Ci| . . . |Cn〉, s|〉
1/n,i
−−−→ 〈|〈C1| . . . |V

′
i | . . . |Cn〉, s

′
i|〉) =⇒

(∃W ′
i , t

′
i. 〈|〈D1| . . . |Di| . . . |Dn〉, t|〉

1/n,i
−−−→ 〈|〈D1| . . . |W

′
i | . . . |Dn〉, t

′
i|〉

∧s′i =L t′i ∧ V ′
i ≅L W ′

i))

Moreover, since all threads except for Ci remain unchanged we know from V ≅L W
and V ′

i ≅L W ′
i that V ′

≅L W ′ holds for V ′ = 〈C1| . . . |V
′
i | . . . |Cn〉 and W ′ =

〈D1| . . . |W
′
i | . . . |Dn〉. If we now generate paths of length 2 by using the third

rule of Figure 3 we obtain

∀s, t, s′, V ′ , i ∈ {1..n}.((s =L t∧

〈|V, s|〉
1/n
−−→→ [(〈|V,s|〉,1,◦),(〈|V ′,s′|〉,1/n,i)]〈|V

′, s′|〉) =⇒

(∃W ′, t′. 〈|W, t|〉
1/n
−−→→ [(〈|W,t|〉,1,◦),(〈|W ′,t′|〉,1/n,i)]〈|W

′, t′|〉 ∧ s′ =L t′ ∧ V ′
≅L W ′)).

(11)

By the deterministic operational semantics there is only one choice for W ′
i , and

hence the constructed path is unique with the desired property. Since paths of
length 2 can only be produced by a combination of the first and the third rule
of Figure 3 or by a combination of the second and the third rule of Figure 3 we
have shown that

∀s, t, lV . (s =L t∧ lV = [(〈|V, s|〉, 1, ◦), (〈|V1 , s1|〉, 1/n, i1)]) =⇒

(∃lW . (lW = [(〈|W, t|〉, 1, ◦), (〈|W1 , t1|〉, 1/n, i1)] ∧ V1 ≅L W1 ∧ s1 =L t1)).

Assume that for all lV with length(lV) = m and m ≥ 2 we can find an appropriate
path lW such that Lemma 7 holds (induction hypothesis). The only possibility
to generate paths l′V with length(l′V) = m + 1 is provided by the last rule of
Figure 3. From the condition we have that for each path lV such that

〈|V, s|〉
p1
−→→ lV 〈|Vm, sm|〉

25

there exists a path lW of length m such that

〈|W, t|〉
p1
−→→ lW 〈|Wm, tm|〉 ∧ Vm ≅L Wm ∧ sm =L tm.

Moreover, we already have shown that from Vm ≅L Wm and sm =L tm for each
path

l′′V = [(〈|Vm, sm|〉, 1, ◦), (〈|V ′, s′|〉, p′, i′)]

exists a path

l′′W = [(〈|Wm, tm|〉, 1, ◦), (〈|W ′ , t′|〉, p′, i′)]

such that V ′
≅L W ′ and s′ =L t′. Together this results in

∀s, t, lV . (s =L t ∧

lV = [(〈|V, s|〉, 1, ◦), . . . , (〈|Vj , sj|〉, pj , ij), . . . ,

(〈|Vm, sm|〉, pm, im), (〈|V ′, s′|〉, p′, i′)]) =⇒

(∃lW . (lW = [(〈|W, t|〉, 1, ◦), . . . , (〈|Wj , tj|〉, pj , ij), . . . ,

(〈|Wm, tm|〉, pm, im), (〈|W ′, t′|〉, p′, i′)] ∧

∀j ∈ {1..m}. (Vj ≅L Wj ∧ sj =L tj) ∧ V ′
≅L W ′ ∧ s′ =L t′)).

Again, one has no choice while constructing lW , and hence lW is unique with the
desired property. Hence, Lemma 7 holds for all l′V with length(l′V) = m + 1. ⊓⊔

Theorem 2. Let V be a strongly secure program that does not contain any sync-
statements. Then V is probBL secure.

Proof. We show V ≅L W =⇒ V ∼p
L W . From this Theorem 2 follows instantly

by Definition 14 and Definition 20.

Assume V ≅L W . The only program without sync-statements that is strongly
low-bisimilar to the empty program is the empty program itself. Hence, we have
by Lemma 7 that the following holds:

∀s, t, lV . (s =L t ∧

lV = [(〈|V, s|〉, 1, ◦), . . . , (〈|〈〉, sn|〉, pn, in)]) =⇒

(∃lw. (lW = [(〈|W, t|〉, 1, ◦), . . . , (〈|〈〉, tn|〉, pn, in)] ∧

∀j ∈ {1..n}. (Vj ≅L Wj ∧ sj =L tj)))

Moreover, we know that all paths to the empty program are minimal paths to
the empty program and from the semantics of our language we know that for a
path l to the empty program the following holds:

¬∃l′.l ⊏ l′.

Hence, we know from the equation above and Definition 4 that the following
holds:

∀s, t, s′, lV . lV ∈ min
〈|V,s|〉
〈|〈〉,s′|〉 ∧s =L t =⇒

(∃t′, lW . lW ∈ min
〈|W,t|〉
〈|〈〉,t′|〉 ∧s′ =L t′ ∧ problV = problW)

26

Moreover, from the symmetry of V≅LW we also have:

∀s, t, t′, lW . lW ∈ min
〈|W,t|〉
〈|〈〉,t′|〉

∧t =L s =⇒

(∃s′, lV . lV ∈ min
〈|V,s|〉
〈|〈〉,s′|〉 ∧t′ =L s′ ∧ problW = problV)

From the uniqueness property of Lemma 7 we know that there is only one
path lW matching a path lV (and vice versa). Hence there is a bijection between
the paths from 〈|V, s|〉 to the empty program and the paths from 〈|W, t|〉 to the
empty program.

Hence, if we sum up over all probabilities problV and problW such that lV ∈

min
〈|V,s|〉
〈|〈〉,s′|〉 and lW ∈ min

〈|W,t|〉
〈|〈〉,t′|〉 and over the same set [r′]=L

of low-equal final
states we have:

∀s, t, r′.s =L t =⇒
∑

s′∈[r′]=L

∑

lV ∈min
〈|V,s|〉

〈|〈〉,s′ |〉

problV =
∑

t′∈[r′]=L

∑

lW∈min
〈|W,t|〉

〈|〈〉,t′ |〉

problW

Due to Definition 9 and Definition 13 this is equal to

V ∼p
L W.

⊓⊔

That strongly secure programs form a proper subset of probBL secure pro-
grams even in the case of sync-free programs can be seen by the following example:

Example 5. A program violates strong security if it contains a loop that is reach-
able and whose guard depends on the values of high variables. Nevertheless, such
programs may be probBL secure. Consider the following two programs:

P1 = while h > 0 do h := h − 1 od; l := 1

P2 = h := 1; while h = 1 do skip od; l := 1

For all starting states we have the probability 1 respectively 0 to terminate the
computation in 〈|〈〉, s[l = 1]|〉. Hence, P1 and P2 are probBL secure.

♦

Theorem 2 provides a justification for the plugin rule from [MSK07] that
allows one to use analysis techniques for strong security as a plugin for the
combining calculus:

[PSLS]
V ≅L V V is sync-free

V ⊢ probBL

The integration of strong security provides the possibility to allow races be-
tween threads without loosing compositionality in general.

Example 6. Let C1 = (l := 0) and C2 = (l := 1). Since both C1 as well as
C2 use the variable l we cannot use the rule [PAR] to deduce probBL security
of the composition of the two probBL secure programs. Nevertheless, using the
compositionality result from [SS00] we can show that 〈C1|C2〉 is strongly secure.
With the help of the plugin rule we can derive that the parallel composition of
C1 and C2 is also probBL secure.

♦

27

5.2 Low-Deterministic Security Plugin

We use the notion of low-deterministic security formulated in [MSK07]:

Definition 21. A program V is low-deterministic secure iff

∀s, t, s′, t′.
((

s =L t ∧ 〈|V, s|〉 →∗ 〈|〈〉, s′|〉 ∧ 〈|V, t|〉 →∗ 〈|〈〉, t′|〉
)

=⇒ s′ =L t′
)

.

We cannot show the general case

∀V. (V low deterministic secure =⇒ V probBL secure),

as for some possibly non-terminating programs this implication does not hold.

Example 7. The program

while h do skip od; l := 0

is intuitively insecure: if it terminates the observer can be sure that the initial
value of h was False. It is also rejected by Definition 14: Two low-equal starting
states s = [l = 1, h = True] and t = [l = 1, h = False] would result in the
probability 0 and the probability 1 respectively for a final state in the low-
equivalence class where l = 0. Nevertheless, it is low-deterministic secure.

♦

For deterministic terminating and deterministic non-terminating programs
the implication of probBL security for low-deterministic secure programs holds.
Before we can give a formal proof of this proposition we show the following
lemma:

Lemma 8. If a deterministic-terminating program V is low-deterministic secure
then the following holds:

∀s.∃r′.
∑

s′∈[r′]=L

prob〈|V,s|〉,〈|〈〉,s′|〉 = 1 ∧

∑

t′ /∈[r′]=L

prob〈|V,s|〉,〈|〈〉,t′|〉 = 0

Proof. From Lemma 3 we have

∀s.
∑

s′∈S

prob〈|V,s|〉,〈|〈〉,s′|〉 = 1.

Hence,

∀s, r′.





∑

s′∈[r′]=L

prob〈|V,s|〉,〈|〈〉,s′|〉



+





∑

t′ /∈[r′]=L

prob〈|V,s|〉,〈|〈〉,t′|〉



 = 1 (12)

and
∀s.∃r′.prob〈|V,s|〉,〈|〈〉,r′|〉 > 0.

Because V is low-deterministic secure we have:

∀s.∃r′.∀s′.〈|V, s|〉 →∗ 〈|〈〉, s′|〉 =⇒ s′ ∈ [r′]=L

28

which implies

∀s.∃r′.∀s′.prob〈|V,s|〉,〈|〈〉,s′|〉 > 0 =⇒ s′ ∈ [r′]=L

and, hence,
∀s.∃r′.∀t′ /∈ [r′]=L

. prob〈|V,s|〉,〈|〈〉,t′|〉 = 0.

This results in
∀s.∃r′.

∑

t′ /∈[r′]=L

prob〈|V,s|〉,〈|〈〉,t′|〉 = 0.

From this we get by (12):

∑

s′∈[r′]=L

prob〈|V,s|〉,〈|〈〉,s′|〉 = 1.

⊓⊔

Theorem 3. For all deterministic terminating programs V the following holds:

V is low deterministic secure =⇒ V is probBL secure.

Proof. Let s and t be low-equal states. Assume s′ and t′ such that 〈|V, s|〉 →∗ 〈|〈〉, s′|〉
and 〈|V, t|〉 →∗ 〈|〈〉, t′|〉. This implies

prob〈|V,s|〉,〈|〈〉,s′|〉 > 0 ∧ prob〈|V,t|〉,〈|〈〉,t′|〉 > 0

and by Definition 21 s′ =L t′. From this we know for a low-equivalence class
[r′]=L

with s′ ∈[r′]=L
that t′ ∈[r′]=L

holds. Moreover, since Lemma 8 reasons
about all states we have the following:

∑

s′∈[r′]=L

prob〈|V,s|〉,〈|〈〉,s′|〉 =

∑

t′∈[r′]=L

prob〈|V,t|〉,〈|〈〉,t′|〉 = 1

and

∀[q′]=L
6= [r′]=L

.
∑

s′′∈[q′]=L

prob〈|V,s|〉,〈|〈〉,s′′|〉 =

∑

t′′∈[q′]=L

prob〈|V,t|〉,〈|〈〉,t′′|〉 = 0.

By Definition 14 this leads to the probBL security of V. ⊓⊔

The following example shows that for deterministic terminating programs the
set of low-deterministic secure programs is a proper subset of the probBL secure
programs.

Example 8. The program C = fork(l := 1, 〈fork(l := 2, 〈l := 1〉)〉) from Example 1
has two possible final low-equivalence classes [s[l = 1]]=L

and [s[l = 2]]=L
(here,

s[l = x] denotes the state which is equal to s, but for the value of l, which equals
x). Since there is no branching or looping in C the probabilities to reach these
final low-equivalence classes are equal for all starting states. Hence, C is probBL
secure. Nevertheless, since we have two possible final low-equivalence classes C
is not low-deterministic secure.

29

♦

Theorem 3 provides a justification for the plugin rule from [MSK07] that
allows one to use low-deterministic security. A low-deterministic secure program
is probBL secure if it is either deterministic terminating or deterministic non-
terminating.

The judgment V |= lds means that V is low-deterministic secure.

[PLDS]
V |= lds, ¬(V poss.term.)

V ⊢ probBL

5.3 Soundness

The combining calculus is sound with respect to the following proposition:

Theorem 4. Let V be a program. If V ⊢ probBL is derivable in the combining
calculus then V is probBL secure.

Proof. Except for [SNC] the soundness of the basic calculus follows instantly from
Theorem 1. The rule [SNC] is sound due to the fact that sync neither changes the
memory state nor the termination probability of the program C.

The plugin rules are sound due to Theorems 2 and 3. ⊓⊔

6 Plugins for Type-based Analysis techniques

Plugin-rules for semantic characterizations of security offer the possibility to re-
use analysis techniques that guarantee the security of a given program according
to the given security definition. The combining calculus also provides plugin rules
for integrating syntactic analysis techniques correctly. In order to be integrated,
a plugin type system must fulfill the following condition:

– The set of typable programs is a subset of probBL secure programs.

For such type systems we can formulate plugin rules to integrate them into the
basic calculus.

Section 6.1 illustrates the use of the plugin approach based on the integration
of the transforming type system of [SS00]. Section 6.2 provides an integration of
the type system of [BC01].

6.1 Sabelfeld and Sand’s Security Type System

This subsection introduces a plugin for the type system introduced in [SS00] in
the same way as it was done in [MSK07].

The strong security condition introduced by Sabelfeld and Sands [SS00] is
a very restrictive security condition but it has the advantage that it is the
”largest compositional indistinguishability-based security property that implies
scheduler-independent security” [Sab03]. The type system of [SS00] provides a
possibility to make the restrictive security definition easier to fulfill. Instead of
just checking programs against strong security the judgments of the transforming
type system transform the original program V into a strongly secure program
V’ that has type Sl (denoted by V →֒ V ′ : Sl). The type Sl contains information
that is needed for the transformation process. Sabelfeld and Sands [SS00] provide
the following theorem:

30

Theorem 5. [SS00]
V →֒ V ′ : Sl =⇒ V ′

≅L V ′

Since we have already shown that strongly secure programs that do not contain
sync-statements are probBL secure we have by this theorem and Definition 20
that the transformed program is probBL secure. Let V →֒ V ′ ⊢ probBL denote
that V can be transformed into a probBL secure program V’. We can justify the
following plugin rule of our calculus:

[TSS]
V →֒ V ′ : Sl V is sync-free

V →֒ V ′ ⊢ probBL

Due to the non-transforming nature of the basic calculus it does not support
the possibility to integrate a security property of a program different from the
program that should be checked. Hence, the integration of the transforming type
system into the combining calculus needs the introduction of further rules:

[MIX1]
C ⊢ probBL

C →֒ C ⊢ probBL
[SNC’]

C →֒ C ′ ⊢ probBL

C; sync →֒ C ′; sync ⊢ probBL

[SEQ’]
C →֒ C ′ ⊢ probBL D →֒ D′ ⊢ probBL ∀s ∈ S.〈|C ′, s|〉�

C;D →֒ C ′;D′ ⊢ probBL

[IF’]

C →֒ C ′ ⊢ probBL D →֒ D′ ⊢ probBL ifB
C′∼p

L
D′

if B then C else D fi →֒ if B then C ′ else D′ fi ⊢ probBL

[WHL’]
C →֒ C ′ ⊢ probBL ∀s ∈ S. 〈|C ′, s|〉 � B ≡L B

while B do C od →֒ while B do C ′ od ⊢ probBL

[PAR’]
V →֒ V ′ ⊢ probBL W →֒ W ′ ⊢ probBL V ′ ≷ W ′

V W →֒ V ′W ′ ⊢ probBL

[FRK’]
〈C〉W →֒ 〈C ′〉W ′ ⊢ probBL

fork(C,W) →֒ fork(C ′,W ′) ⊢ probBL

Based on Theorem 4 we can show the following theorem:

Theorem 6.

V →֒ V ′ ⊢ probBL =⇒ V ′ is probBL secure

Proof. For rule [MIX1] we know from the condition that C is probBL secure.
Hence, each transformation to C leads to a probBL secure program. From [SNC]
we know that for a probBL secure program C ′ the sequential execution of C ′; sync

is also probBL secure. Hence, if a transformation to C ′ leads to a probBL secure
program then a transformation to C ′; sync leads to a probBL secure program, too.
With the same argumentation we can show that Theorem 6 also holds for the
rest of the rules. ⊓⊔

Hence, we can add the following rule to the calculus without loosing soundness:

[MIX2]
V →֒ V ′ ⊢ probBL

V ′ ⊢ probBL

31

This allows us to support the programmer during the programming process by
transforming some probBL insecure programs to probBL secure programs. More-
over, if a transformation of a program leads to the same program then the integra-
tion of the transforming type system provides a first possibility for an automated
security check.

Example 9. For a program like fork(l1:=1 〈l1:=l2〉) we can now show probBL secu-
rity due to the typability according to the type system of Sabelfeld and Sands
[SS00]. More precisely we show that fork(l1:=1 〈l1:=l2〉) can be transformed into a
probBL secure program that is the same as the original program:

. . .

fork(l1:=1 〈l1:=l2〉) →֒ fork(l1:=1 〈l1:=l2〉) : fork(l1:=1 〈l1:=l2〉)

fork(l1:=1 〈l1:=l2〉) →֒ fork(l1:=1 〈l1:=l2〉) ⊢ probBL

fork(l1:=1 〈l1:=l2〉) ⊢ probBL
MIX2

TSS

[SS00]

♦

6.2 Boudol and Castellani’s Security Type System

The type system of [SS00] restricts guards of while loops to be of type low. Since
probBL security does not prohibit high guarded loops in general we want to inte-
grate a type system that allows us to be more precise at the formal check of high
guarded loops. Boudol and Castellani [BC01] provide such a type system. Their
approach bases on the concept that low assignments must not follow sequentially
after a high-guarded loop or a high conditional. Formally this is achieved by a
security typing Γ ⊢ C : (τ, σ) cmd, where Γ is a context given by an assignment
of variables to security levels in a security lattice. Here we consider only the
two element security lattice consisting of high and low, but we will stick to Γ
to preserve the notation used by Boudol and Castellani. Intuitively, a program
C can be typed with (τ, σ) cmd in the context Γ , if τ is a lower bound of the
security levels of variables occurring on the left hand side of an assignment in C
and σ is an upper bound of the security levels of guards and conditionals in C.
Figure 5 recalls the type system of [BC01] adapted to our language. The typing
rules WHLBC and IFBC increase σ if the security label of the guard is higher
than σ was before. The rule SEQBC allows the sequential composition C1;C2

only if assignments in C2 change only variables with a higher security level than
the highest guard in C1. Hence no high loops or conditionals can influence a low
assignment.

As for the low-deterministic security in Section 5.2 we cannot show the general
case:

∀V.(Γ ⊢ V : (τ, σ)cmd =⇒ V is probBL secure)

Again, possibly terminating programs as P = while h do skip od are the reason.
Nevertheless, for deterministic terminating programs the implication holds.

Lemma 9. Let V and V’ be probBL secure programs such that

V = 〈C1|..|Ci−1|Ci|Ci+1|..|Cn〉

V ′ = 〈C1|..|Ci−1|C
′
i|Ci+1|..|Cn〉

32

SKIPBC
Γ ⊢ skip : (τ, σ)cmd

ASSIGNBC

Γ ⊢ e : τ Γ (x) = τ

Γ ⊢ x := e : (τ, σ)cmd

SEQBC

Γ ⊢ C : (τ, σ)cmd Γ ⊢ D : (τ ′, σ′)cmd σ ≤ τ ′

Γ ⊢ C; D : (τ ⊓ τ ′, σ ⊔ σ′)cmd

IFBC

Γ ⊢ e : θ Γ ⊢ Ci : (τ, σ)cmd θ ≤ τ

Γ ⊢ if e then C1 else C2 fi : (τ, σ ⊔ θ)cmd

WHLBC

Γ ⊢ e : θ Γ ⊢ C : (τ, σ)cmd θ ⊔ σ ≤ τ

Γ ⊢ while e do C od : (τ, σ ⊔ θ)cmd

PARABC

∀i : 1..k : Γ ⊢ Ci : (τ, σ)cmd

Γ ⊢ 〈C1|..|CK〉 : (τ, σ)cmd
FRKBC

Γ ⊢ 〈CV 〉 : (τ, σ)cmd

Γ ⊢ fork(C, V) : (τ, σ)cmd

SUBBC

Γ ⊢ C : (τ, σ)cmd τ ′ ≤ τ σ ≤ σ′

Γ ⊢ C : (τ ′, σ′)cmd

Fig. 5. Adapted Typing Rules [BC01]

with
Ci = C ′

i;D ∧ H(D)

and D deterministic terminating. Then we have

∀s, t, r.s =L t =⇒
∑

s′∈[r]=L

prob〈|V,s|〉,〈|〈〉,s′|〉

=
∑

t′∈[r]=L

prob〈|V ′,t|〉,〈|〈〉,t′|〉.

Hence, a high program that is deterministic terminating can be attached sequen-
tially to each thread without changing the probabilities for low-equal final states
for the evaluation of the thread pool.

Proof. Assume Lemma 9 does not hold. Then the execution of D influences
the probabilities for the final low-equivalence classes. This implies that D either
changes the low part of the states directly or D influences the probabilities for
the execution sequence of other threads that change the low part of the state. By
Definition 17 D does not change the low part of the memory directly. Moreover,
since we assume the uniform scheduler the probability for each pair of threads
Ci and Cj (i 6= j) is 1/2 that Ci is executed before Cj and 1/2 for the other
way round. This is independent of the number of threads and the nature of the
threads. Moreover, since D is free of low affectings and V as well as V ′ are
probBL secure, assignments in D have no influence on the probabilities for the
final low-equivalence classes. Hence, D introduces just stuttering steps but has
no influence on the probabilities of the execution sequences of the other threads.

⊓⊔

Definition 22. A program V is a simple program (denoted by simp(V)) iff V
fulfils one of the following conditions:

– V=〈skip〉

33

– V=〈x := e〉 ∧ Γ ⊢ e : τ ∧ Γ (x) ≥ τ
– V=〈C1;C2〉 ∧ simp(C1) ∧ simp(C2)
– V=〈if B then C1 else C2 fi〉 ∧ simp(C1) ∧ simp(C2) ∧ Γ ⊢ B : low
– V=〈while B do C od〉 ∧ simp(C) ∧ Γ ⊢ B : low
– V=fork(C, V) ∧ simp(C) ∧ simp(V)
– V=〈V1V2〉 ∧ simp(V1) ∧ simp(V2)

Hence, a simple program is a program without high conditionals, high guarded
loops, or assignments from high to low.

Lemma 10. Let V be a program vector then the following holds:

simp(V) =⇒ V ⊢ probBLsecure

Proof. The only possibility where high variables might have an influence are
assignments to high variables. Hence, two low equal starting states will produce
decision trees that differ at most on their high parts of the states. This implies
that the sum over all probabilities for each equivalence class is the same for both
starting states. Hence, simple programs are probBL secure. ⊓⊔

Theorem 7. For all deterministic terminating and all deterministic non-termi-
nating programs V the following holds:

∀V.(Γ ⊢ V : (τ, σ)cmd =⇒ V is probBL secure)

Proof. All deterministic non-terminating programs are probBL secure due to
Lemma 4. Hence, we have only to show that the theorem also holds for deter-
ministic terminating programs: After a high conditional or a high-guarded loop
no low assignment is allowed by the typing rules. Hence, as soon as a high con-
ditional or a high-guarded loop occurs syntactically in a thread we can be sure
that the rest of the thread is free of low assignments. Since we know that V is
deterministic terminating we have that all threads are deterministic terminating.
Hence, by Lemma 9 we can remove those high programs without changing the
results for the sums over the probabilities for low-equivalence classes. Moreover,
removing all such high programs will result in a simple program. By Lemma 10
simple programs are probBL secure. Hence, the probabilities for the final equiv-
alence classes sum up in the right way. ⊓⊔

Since Boudol and Castellani assume an attacker who can observe the low
part of the memory at any time some probBL secure programs are not typable
in [BC01] as the following example shows:

Example 10. Let

P1 = if h then l := 1 else l := 1 fi fi and

P2 = while h > 0 do h := h − 1 od; l := 1.

Both programs are probBL secure. Nevertheless, the high conditions lift the rest
of the program into a high context where no low assignment is allowed by the
typing rules.

♦

34

The integration of the type system of [BC01] allows us the check of programs
containing loops with high guards:

Example 11. Let

P = h := 10; while h > 0 do h := h − 1 od.

Due to the high guard of the loop we cannot check the program with the type
system by Sabelfeld and Sands, but we can check it with the type system by
Boudol and Castellani.

7 Integration to Possibilistic Low Security [MSK07]

In [MSK07] we have introduced a plugin calculus that supports a possibilistic
based security definition. We will now show, that we can use probBL security as
a plugin for this calculus.

Definition 23. [MSK07] A symmetric relation R on command vectors is a
possibilistic low indistinguishability iff for all programs V, W with V R W holds:

∀s, s′, t.((s =L t ∧ 〈|V, s|〉 →∗ 〈|〈〉, s′|〉) =⇒ ∃t′.(〈|W, t|〉 →∗ 〈|〈〉, t′|〉 ∧ s′ =L t′))

The union of all such relations R is denoted by ∼L.

Definition 24. A program V is possibilistic low secure iff V∼L V.

Theorem 8. ∀V. (V is probBL secure =⇒ V is possibilistic low secure)

Proof. We show ∀V.(V ∼p
L V =⇒ V ∼L V). By Definition 14 and Definition 23

Theorem 8 follows instantly.
Assume states s, s′, t such that

s =L t ∧ prob〈|V,s|〉,〈|〈〉,s′|〉 > 0.

From this we have that the following holds:
∑

s′′∈[s′]=L

prob〈|V,s|〉,〈|〈〉,s′′|〉 > 0

From this, the low-equality of s and t and Definitions 13 and 14 we have
∑

t′∈[s′]=L

prob〈|V,t|〉,〈|〈〉,t′|〉 > 0.

Hence, there exists a state t′ such that the following holds:

prob〈|V,t|〉,〈|〈〉,t′|〉 > 0 ∧ s′ =L t′

Finally, we have

∀s, s′, t.((s =L t ∧ 〈|V, s|〉 →∗ 〈|〈〉, s′|〉) =⇒

(∃t′. 〈|V, s|〉 →∗ 〈|〈〉, t′|〉 ∧ s′ =L t′)).

On the other hand, if we assume a combination of states s, t, s′ such that

s 6=L t ∨ prob〈|V,s|〉,〈|〈〉,s′|〉 ≤ 0

then we have V ∼L V independently of the probBL security of V . ⊓⊔

35

Again we use an example to show that the set of probBL secure programs is
a proper subset of possibilistic low-secure programs.

Example 12. Let C be the following program:

if h then fork(l := 1, 〈l := 0|l := 1〉) else fork(l := 0, 〈l := 0〉) fi

We have two possible final low-equivalence classes [s[l = 0]]=L
and [s[l = 1]]=L

.
Both can be reached independently of the initial value of h. Hence, C is pos-
sibilistic low secure. Nevertheless, the probabilities to reach them differ for the
low-equal starting states s1 = [h = True] and s1 = [h = False]:

∑

s′∈[s[l=1]]=L

prob〈|C,s1|〉,〈|〈〉,s′|〉 = 2
3

∑

s′∈[s[l=1]]=L

prob〈|C,s2|〉,〈|〈〉,s′|〉 = 1
2

♦

We can now add the following novel plugin rule to the combining calculus
of [MSK07] where V ⊢ bls means that V is possibilistic low secure:

[Pprob]
V ⊢ probBL

V ⊢ bls

In summary, we have given a probabilistic justification for the framework
from [MSK07] where one can flexibly chose the security definition under which
a program should be checked. The security under a less restrictive security defi-
nition can then be derived instantly.

Possibilistic Low-Security[MSK07]

probBL Security

l:=0
. . .

Strong Security1

[SS00]

Typable under [SS00]1

Low-Deterministic Security2

[MSK07]

Typable under [BC01]2

1 constrained to sync-free programs
2 constrained to deterministic terminating and deterministic non-terminating programs

Fig. 6. Hierarchy of Security Definitions

36

8 Conclusion and Future Work

We have presented a probabilistic justification of the plugin approach of [MSK07].
With this work the basis is given for research in several directions. The de-

velopment of a scheduler-independent justification of the baseline policy and
an appropriate integration would lead to more flexibility in choosing a runtime
environment, where one is currently limited to two schedulers: the possibilistic
scheduler and the uniform scheduler. On the other hand the integration of further
plugin rules might lead to an even higher precision of the analysis.

The setting assumed by such a characterization is appropriate for programs
running internally on devices and that have no intermediate output on observable
channels. Programs that produce intermediate output such as messages on the
screen or network communication would need a slightly different characterization
of security.

Another interesting research topic might be the integration of probabilistic
non-interference [Smi03] into our framework. Like the type system of [BC01], the
approach of [Smi03] allows us to use high-guarded loops as well as flexible high
conditionals. This can be done due to the following restriction:

– it is not allowed to use assignments to low variables in or sequentially after a
high-guarded loop or a high condition that has different timing-behavior for
both branches

Smith uses the protect statement that allows him to treat program blocks as
atomic computations. The use of protect relaxes the restrictions for high-conditio-
nals, but also reduces concurrency. Another difference between [Smi03] and our
approach is that he uses a termination-insensitive security characterization. Due
to this the following program can be typed as secure under [Smi03]:

P = fork(l := 0, 〈while h do skip od , l := 1〉))

A uniform scheduler has the probability 1
2 to set l:=0 and then l:=1 as well as

for the other way round. This probability is independent of the initial value of h.
Nevertheless, the termination probability depends on the initial value of h. The
termination of P implies that h was False. Hence, the integration of [Smi03] ap-
pears straightforward only for deterministic terminating and deterministic non-
terminating programs. An extension for the analysis of possibly terminating pro-
grams would be a more interesting topic for the future.

Finally the use of Markov-Chains instead of probability trees would integrate
a well studied mathematical background into the theory. However, we cannot
directly use the approach of [Smi03] that bases on the idea to take configurations
as states. The proof of the compositionality result is one example where this
approach would fail.

References

BC01. G. Boudol and I. Castellani. Noninterference for Concurrent Programs. Lecture Notes

in Computer Science, 2076:382+, 2001.
MSK07. Heiko Mantel, Henning Sudbrock, and Tina Kraußer. Combining different proof tech-

niques for verifying information flow security. In German Puebla, editor, 16th Interna-

tional Symposium on Logic Based Program Synthesis and Transformation, LOPSTR

2006, volume 4407 of LNCS. Springer, 2007.

37

Sab03. A. Sabelfeld. Confidentiality for Multithreaded Programs via Bisimulation. In Pro-

ceedings of Andrei Ershov 5th International Conference on Perspectives of System

Informatics, number 2890 in LNCS, pages 260–274, 2003.
SM03. A. Sabelfeld and A. C. Myers. Language-based Information-Flow Security. IEEE

Journal on Selected Areas in Communication, 21(1):5–19, 2003.
Smi03. G. Smith. Probabilistic Noninterference through Weak Probabilistic Bisimulation. In

Proceedings of the 16th IEEE Computer Security Foundations Workshop, pages 3–13,
Pacific Grove, California, USA, 2003.

SS00. A. Sabelfeld and D. Sands. Probabilistic Noninterference for Multi-threaded Programs.
In Proceedings of the 13th IEEE Computer Security Foundations Workshop, pages
200–215, Cambridge, UK, 2000.

SV98. G. Smith and D. Volpano. Secure Information Flow in a Multi-threaded Imperative
Language. In Proceedings of the 27th ACM Symposium on Principles of Programming

Languages, pages 355–364, San Diego, California, 1998.
VS98. D. Volpano and G. Smith. Probabilistic Noninterference in a Concurrent Language. In

Proceedings of the 11th IEEE Computer Security Foundations Workshop, pages 34–43,
Rockport, Massachusetts, 1998.

VSI96. D. Volpano, G. Smith, and C. Irvine. A Sound Type System for Secure Flow Analysis.
Journal of Computer Security, 4(3):1–21, 1996.

ZM03. S. Zdancewic and A. C. Myers. Observational Determinism for Concurrent Program
Security. In CSFW, pages 29–, 2003.

38

Aachener Informatik-Berichte

This list contains all technical reports published during the past five years. A

complete list of reports dating back to 1987 is available from http://aib.infor-

matik.rwth-aachen.de/. To obtain copies consult the above URL or send

your request to: Informatik-Bibliothek, RWTH Aachen, Ahornstr. 55, 52056

Aachen, Email: biblio@informatik.rwth-aachen.de

2001-01 ∗ Jahresbericht 2000

2001-02 Benedikt Bollig, Martin Leucker: Deciding LTL over Mazurkiewicz

Traces

2001-03 Thierry Cachat: The power of one-letter rational languages

2001-04 Benedikt Bollig, Martin Leucker, Michael Weber: Local Parallel Model

Checking for the Alternation Free mu-Calculus

2001-05 Benedikt Bollig, Martin Leucker, Thomas Noll: Regular MSC Languages

2001-06 Achim Blumensath: Prefix-Recognisable Graphs and Monadic Second-

Order Logic

2001-07 Martin Grohe, Stefan Wöhrle: An Existential Locality Theorem

2001-08 Mareike Schoop, James Taylor (eds.): Proceedings of the Sixth Interna-

tional Workshop on the Language-Action Perspective on Communication

Modelling

2001-09 Thomas Arts, Jürgen Giesl: A collection of examples for termination of

term rewriting using dependency pairs

2001-10 Achim Blumensath: Axiomatising Tree-interpretable Structures

2001-11 Klaus Indermark, Thomas Noll (eds.): Kolloquium Programmier-

sprachen und Grundlagen der Programmierung

2002-01 ∗ Jahresbericht 2001

2002-02 Jürgen Giesl, Aart Middeldorp: Transformation Techniques for Context-

Sensitive Rewrite Systems

2002-03 Benedikt Bollig, Martin Leucker, Thomas Noll: Generalised Regular

MSC Languages

2002-04 Jürgen Giesl, Aart Middeldorp: Innermost Termination of Context-

Sensitive Rewriting

2002-05 Horst Lichter, Thomas von der Maßen, Thomas Weiler: Modelling Re-

quirements and Architectures for Software Product Lines

2002-06 Henry N. Adorna: 3-Party Message Complexity is Better than 2-Party

Ones for Proving Lower Bounds on the Size of Minimal Nondeterministic

Finite Automata

2002-07 Jörg Dahmen: Invariant Image Object Recognition using Gaussian Mix-

ture Densities

2002-08 Markus Mohnen: An Open Framework for Data-Flow Analysis in Java

2002-09 Markus Mohnen: Interfaces with Default Implementations in Java

2002-10 Martin Leucker: Logics for Mazurkiewicz traces

2002-11 Jürgen Giesl, Hans Zantema: Liveness in Rewriting

2003-01 ∗ Jahresbericht 2002

2003-02 Jürgen Giesl, René Thiemann: Size-Change Termination for Term

Rewriting

2003-03 Jürgen Giesl, Deepak Kapur: Deciding Inductive Validity of Equations

39

2003-04 Jürgen Giesl, René Thiemann, Peter Schneider-Kamp, Stephan Falke:

Improving Dependency Pairs

2003-05 Christof Löding, Philipp Rohde: Solving the Sabotage Game is PSPACE-

hard

2003-06 Franz Josef Och: Statistical Machine Translation: From Single-Word

Models to Alignment Templates

2003-07 Horst Lichter, Thomas von der Maßen, Alexander Nyßen, Thomas

Weiler: Vergleich von Ansätzen zur Feature Modellierung bei der Soft-

wareproduktlinienentwicklung

2003-08 Jürgen Giesl, René Thiemann, Peter Schneider-Kamp, Stephan Falke:

Mechanizing Dependency Pairs

2004-01 ∗ Fachgruppe Informatik: Jahresbericht 2003

2004-02 Benedikt Bollig, Martin Leucker: Message-Passing Automata are expres-

sively equivalent to EMSO logic

2004-03 Delia Kesner, Femke van Raamsdonk, Joe Wells (eds.): HOR 2004 – 2nd

International Workshop on Higher-Order Rewriting

2004-04 Slim Abdennadher, Christophe Ringeissen (eds.): RULE 04 – Fifth In-

ternational Workshop on Rule-Based Programming

2004-05 Herbert Kuchen (ed.): WFLP 04 – 13th International Workshop on Func-

tional and (Constraint) Logic Programming

2004-06 Sergio Antoy, Yoshihito Toyama (eds.): WRS 04 – 4th International

Workshop on Reduction Strategies in Rewriting and Programming

2004-07 Michael Codish, Aart Middeldorp (eds.): WST 04 – 7th International

Workshop on Termination

2004-08 Klaus Indermark, Thomas Noll: Algebraic Correctness Proofs for Com-

piling Recursive Function Definitions with Strictness Information

2004-09 Joachim Kneis, Daniel Mölle, Stefan Richter, Peter Rossmanith: Param-

eterized Power Domination Complexity

2004-10 Zinaida Benenson, Felix C. Gärtner, Dogan Kesdogan: Secure Multi-

Party Computation with Security Modules

2005-01 ∗ Fachgruppe Informatik: Jahresbericht 2004

2005-02 Maximillian Dornseif, Felix C. Gärtner, Thorsten Holz, Martin Mink: An

Offensive Approach to Teaching Information Security: “Aachen Summer

School Applied IT Security”

2005-03 Jürgen Giesl, René Thiemann, Peter Schneider-Kamp: Proving and Dis-

proving Termination of Higher-Order Functions

2005-04 Daniel Mölle, Stefan Richter, Peter Rossmanith: A Faster Algorithm for

the Steiner Tree Problem

2005-05 Fabien Pouget, Thorsten Holz: A Pointillist Approach for Comparing

Honeypots

2005-06 Simon Fischer, Berthold Vöcking: Adaptive Routing with Stale Informa-

tion

2005-07 Felix C. Freiling, Thorsten Holz, Georg Wicherski: Botnet Tracking: Ex-

ploring a Root-Cause Methodology to Prevent Distributed Denial-of-

Service Attacks

2005-08 Joachim Kneis, Peter Rossmanith: A New Satisfiability Algorithm With

Applications To Max-Cut

40

2005-09 Klaus Kursawe, Felix C. Freiling: Byzantine Fault Tolerance on General

Hybrid Adversary Structures

2005-10 Benedikt Bollig: Automata and Logics for Message Sequence Charts

2005-11 Simon Fischer, Berthold Vöcking: A Counterexample to the Fully Mixed

Nash Equilibrium Conjecture

2005-12 Neeraj Mittal, Felix Freiling, S. Venkatesan, Lucia Draque Penso: Ef-

ficient Reductions for Wait-Free Termination Detection in Faulty Dis-

tributed Systems

2005-13 Carole Delporte-Gallet, Hugues Fauconnier, Felix C. Freiling: Revisiting

Failure Detection and Consensus in Omission Failure Environments

2005-14 Felix C. Freiling, Sukumar Ghosh: Code Stabilization

2005-15 Uwe Naumann: The Complexity of Derivative Computation

2005-16 Uwe Naumann: Syntax-Directed Derivative Code (Part I: Tangent-

Linear Code)

2005-17 Uwe Naumann: Syntax-directed Derivative Code (Part II: Intraprocedu-

ral Adjoint Code)

2005-18 Thomas von der Maßen, Klaus Müller, John MacGregor, Eva Geis-

berger, Jörg Dörr, Frank Houdek, Harbhajan Singh, Holger Wußmann,

Hans-Veit Bacher, Barbara Paech: Einsatz von Features im Software-

Entwicklungsprozess - Abschlußbericht des GI-Arbeitskreises “Features”

2005-19 Uwe Naumann, Andre Vehreschild: Tangent-Linear Code by Augmented

LL-Parsers

2005-20 Felix C. Freiling, Martin Mink: Bericht über den Workshop zur Ausbil-

dung im Bereich IT-Sicherheit Hochschulausbildung, berufliche Weiter-

bildung, Zertifizierung von Ausbildungsangeboten am 11. und 12. Au-

gust 2005 in Köln organisiert von RWTH Aachen in Kooperation mit

BITKOM, BSI, DLR und Gesellschaft fuer Informatik (GI) e.V.

2005-21 Thomas Noll, Stefan Rieger: Optimization of Straight-Line Code Revis-

ited

2005-22 Felix Freiling, Maurice Herlihy, Lucia Draque Penso: Optimal Random-

ized Fair Exchange with Secret Shared Coins

2005-23 Heiner Ackermann, Alantha Newman, Heiko Röglin, Berthold Vöcking:

Decision Making Based on Approximate and Smoothed Pareto Curves

2005-24 Alexander Becher, Zinaida Benenson, Maximillian Dornseif: Tampering

with Motes: Real-World Physical Attacks on Wireless Sensor Networks

2006-01 ∗ Fachgruppe Informatik: Jahresbericht 2005

2006-02 Michael Weber: Parallel Algorithms for Verification of Large Systems

2006-03 Michael Maier, Uwe Naumann: Intraprocedural Adjoint Code Generated

by the Differentiation-Enabled NAGWare Fortran Compiler

2006-04 Ebadollah Varnik, Uwe Naumann, Andrew Lyons: Toward Low Static

Memory Jacobian Accumulation

2006-05 Uwe Naumann, Jean Utke, Patrick Heimbach, Chris Hill, Derya Ozyurt,

Carl Wunsch, Mike Fagan, Nathan Tallent, Michelle Strout: Adjoint

Code by Source Transformation with OpenAD/F

2006-06 Joachim Kneis, Daniel Mölle, Stefan Richter, Peter Rossmanith: Divide-

and-Color

2006-07 Thomas Colcombet, Christof Löding: Transforming structures by set in-

terpretations

41

2006-08 Uwe Naumann, Yuxiao Hu: Optimal Vertex Elimination in Single-

Expression-Use Graphs

2006-09 Tingting Han, Joost-Pieter Katoen: Counterexamples in Probabilistic

Model Checking

2006-10 Mesut Günes, Alexander Zimmermann, Martin Wenig, Jan Ritzerfeld,

Ulrich Meis: From Simulations to Testbeds - Architecture of the Hybrid

MCG-Mesh Testbed

2006-11 Bastian Schlich, Michael Rohrbach, Michael Weber, Stefan Kowalewski:

Model Checking Software for Microcontrollers

2006-12 Benedikt Bollig, Joost-Pieter Katoen, Carsten Kern, Martin Leucker:

Replaying Play in and Play out: Synthesis of Design Models from Sce-

narios by Learning

2006-13 Wong Karianto, Christof Löding: Unranked Tree Automata with Sibling

Equalities and Disequalities

2006-14 Danilo Beuche, Andreas Birk, Heinrich Dreier, Andreas Fleischmann,

Heidi Galle, Gerald Heller, Dirk Janzen, Isabel John, Ramin Tavakoli

Kolagari, Thomas von der Maßen, Andreas Wolfram: Report of the GI

Work Group “Requirements Management Tools for Product Line Engi-

neering”

2006-15 Sebastian Ullrich, Jakob T. Valvoda, Torsten Kuhlen: Utilizing optical

sensors from mice for new input devices

2006-16 Rafael Ballagas, Jan Borchers: Selexels: a Conceptual Framework for

Pointing Devices with Low Expressiveness

2006-17 Eric Lee, Henning Kiel, Jan Borchers: Scrolling Through Time: Improv-

ing Interfaces for Searching and Navigating Continuous Audio Timelines

2007-01 ∗ Fachgruppe Informatik: Jahresbericht 2006

2007-02 Carsten Fuhs, Jürgen Giesl, Aart Middeldorp, Peter Schneider-Kamp,

René Thiemann, and Harald Zankl: SAT Solving for Termination Anal-

ysis with Polynomial Interpretations

2007-03 Jürgen Giesl, René Thiemann, Stephan Swiderski, and Peter Schneider-

Kamp: Proving Termination by Bounded Increase

2007-04 Jan Buchholz, Eric Lee, Jonathan Klein, Jan Borchers: coJIVE: A Sys-

tem to Support Collaborative Jazz Improvisation

2007-05 Uwe Naumann: On Optimal DAG Reversal

2007-06 Joost-Pieter Katoen, Thomas Noll, and Stefan Rieger: Verifying Con-

current List-Manipulating Programs by LTL Model Checking

2007-07 Alexander Nyßen, Horst Lichter: MeDUSA - MethoD for UML2-based

Design of Embedded Software Applications

∗ These reports are only available as a printed version.

Please contact biblio@informatik.rwth-aachen.de to obtain copies.

42

	A Probabilistic Justification of the Combining Calculus under the Uniform Scheduler Assumption
	Tina Kraußer and Heiko Mantel and Henning Sudbrock

