RWTH Aachen

Department of Computer Science
Technical Report

Report of the Gl Work Group
“Requirements Management Tools for
Product Line Engineering”

Danilo Beuche, Andreas Birk, Heinrich Dreier,

Andreas Fleischmann, Heidi Galle, Gerald Heller, Dirk Janzen,
Isabel John, Ramin Tavakoli Kolagari,

Thomas von der Mal3en (Ed.), Andreas Wolfram

ISSN 0935-3232 . Aachener Informatik Berichte : AlIB-2006-14
RWTH Aachen . Department of Computer Science - December 2006

The publications of the Department of Computer $me of RWTH Aachen
(Aachen University of Technolgggre in general accessible through the World Witisb.

http://aib.informatik.rwth-aachen.de/

Contents

1

4

5

6

7

8

Ta oo U Tox 1 o] o TR 4
0 R = = o3 (o | (o 11] o [4
i Y/ o] 1V 11 o] s PSP PP PP OPUPPPPPPPPPPRt 4
1.3 Organization Of WOIK GrOUPuueiiieeiiiiiiiiiicie e s st e e e e s st e e e e e e s snraae e e e e e e e s nnnnnnnees 5
1.4 AIMS AN APPIOACKeeeiiiiiee ettt e et e e e e e e e nnrane s 6

REIAIEA WOTK ... ceiiceii et et e e e e e e e e e 6
2.1 Work of the Previous WOrking GrOUPuuueeiiaaiiiiiiiiee et e e 6
2.2 Other TOOI EVAIUALIONS.........covuiieiiieiieeeiiiee ettt e e e e e e e e e a b s e e e e e e s esbbaaeeaeeeeees 7

Documentation of TOOI SCENANIOScccvvviiiiiiies e, 8
5 N o o PP SPURP PRSP 9
3.2 HAIMMAN/BECKET ...vveiieeeeeeee ettt ettt et e e e e e e e e e bt e e e e e e e e asbb e e eeeeeeseraaen 11
3.3 CoNntiNENTAl TEMIC ...coieie e 13
3.4 RWTH AQCNEN UNIVEISILY ...vveiiieieiiiciiieiiee ettt e e s st ee e e e e e s ssnananee s e e e e s snnnnaneneaeees 15

3.5 Variability-Oriented Reuse of Functional Requirements in the Framework of a Function
Signal Network in Telelogic DOORS — Current Research Approach at DaimlerChrysler

.. 17
3.5.1 Variability in the Function Signal Network (FSN)cccceviiiireiiiiine e 18
Requirements for Requirements Management Toolsint he Context of
Product Line ENQINEEIINGuvuiiiiiieiiiiiiiiiis aeeeeeeeeiiiine s e e e e e e e eeaaarnnn e e e eeeees 20
g S - 11T TN | S 20
4.2 New and Changed REQUITEMENTS..........uuviiieiiiiiiiiiiee e e e e s eeee e e e e s s srrer e e e e e e s snnranereeee e 21
4.2.1 New Requirements Related to Variability...........ccccceeeeiiiiiieie e, 22
4.2.2 Relationships to Product and Project Management.........ccccccvveeeeeievineeeeeeeeesvveneens 22
4.3 Prioritization of Requirements for the Context of Product Lines.........ccccccveeevvvcivvnnennnnn. 24
4.3.1 Particular Priorities in a Product Line CONEXL...........ccouiiiiiiiiiiiaiiiiiieeeee e 24
4.3.2 Product-Line-Specific Priorities per Requirements Groupooccvveeeeeeeneniivvnneen. 25
Evaluation Of TOOIS ...coouiiiiii it e 29
5.1 Explanation of the Evaluation APProachc...ueeiiiiiiiiiiiiiieee e 29
5.2 ViISUBIIZALION ...ttt ettt e e e e e et e e e e e e e e an b eeaaaeeas 30
Summary and FUtUre WOrK..........oooiiiiiiiiiiiiies i e e 33
RETEIENCES ... e 35

Y o] 01T T [PRSP 35

1 Introduction

1.1 Background

Why should we pay more attention to a product teguirements management process than
to a single project environment and why is requaata management for product lines very
much more difficult than for a single project emviment?

The question is easy to answer. As time goes Istomer requirements change, and so the
product itself will change as well to satisfy thastomer's needs. A feature that was
revolutionary a few years ago is now standard aag become obsolete in the future.

Like the product itself, the specifications fowiill change, evolve and vary as well.

In order to keep track of the changes and to cbatrd categorize our requirements, we need
requirements management tools. Most of the req@ntsnmanagement tools on the market
are focused on a one-project scope. But efficieatlpct development will need to re-use as
many components as possible to keep expenses tave¥o developments. Reuse by copying
all components of a previous product to form theidbaf a new one is a pragmatic approach,
but it is unsystematic and short-time orientedh&f number of product derivates increases, it
is almost impossible to select the best matchingptate for a new product in the family tree.
Total re-use is one of the goals of product lingefigoment, meaning that the components
must not only be copied but actually shared am@awgral subprojects. But the product will
not only consist of the shared requirements, sohtleeon will be specific. Commonality and
variability are the magic words that modern prodiestelopment has to deal with.

In software development, these mechanisms areyltkebe implemented in object-oriented
programming languages. Classes can be derived @thwer classes by inheritance of the
attributes and methods, with the possibility of te@®ding their methods to implement the
differences between the derived and the base class.

But requirements management for product lines ha® meeds. The differences between one
derivate and another may consist in:

changed requirements
obsolete requirements
additional requirements

The single fact that requirements can change affigket versions of the same requirement
are part of two derivates of a product makes higinahds on requirements management tools
and their configuration management functionality.

1.2 Motivation

The report bases on research findings of a preweau&ing group (see the next section for
details) identifying essential challenges in thentegt of requirements engineering and
software product lines. In [7] major challengepinduct line engineering are presented:

Justification of the platform approach as a procesdel by a cost / benefit-analysis
Independent platform team

Cooperation between platform and product developresms
Proof of justification of the platform team

Communication overhead

Configuration management

Influence of the architecture on requirements rniagjon
Description of variability for domain analysis

Domain analysis and domain description

Explicit requirements process

Sequence of integrating requirements into the qiatf
Explicit prioritization of requirements

Realization of platform requirements in products

Use of the architectural advantages

Description of the generic architecture

Effective tool support

We decided to investigate the challengeféctive tool suppoifor several reasons:
Until now there does not exist any systematic aalgf requirements for product line
tools.
Tools play the key role when installing a new apio (like product lines) because
tools are a cross sectional issue. If people anwinoed from the effectiveness and
usability of the tools then they will also be mevdling to support the overall process
— which is in fact represented by the tools.

In a methodical investigation on the product limgmach tools are not important, but to
bring a product line approach to live in practitmgls become crucial. A bad implementation
or missing requirements may result in a destruatiiothe whole product line approach. So we
started from this point of view and gathered keyureements for requirements management
tools supporting software product lines. The reouriented at practical issues and tries to
support product line approaches in industrial sg#ti The requirements are quite abstract and
don’t describe technical solutions. They are thoughas a list of demands that a tool
developer can take as a starting point and thabeafined. The motivation of this working
group is to initialize a discussion on this (ofteeglected) topic and to push the convincing
product line approach one step forward into thedation of a wide-spread industrial usage of
software product lines.

1.3 Organization of Work Group

The working group ‘Requirements Management ToolsPi@duct Line Engineering’ was set
up in January 2004. It is the successor of the ingrigroup ‘Requirements Engineering for
Product Lines’, which completed its work succedgfil December 2003.

The working group met eleven times, i.e. every maanths, to find an answer to the question
‘at which functionality do state-of-the-art requitents management tools lack for product
line development?’ Actually, requirements managentenls lack for most product line
techniques, which means that complicated workarswrdmore flexible tools like Word or
Excel are necessary to analyze and manage requitemea product line context.

The members of the working group are:

Dr. Danilo Beuche, pure-systems GmbH

Dr. Andreas Birk, sd&m AG

Dirk Janzen, Automotive Systems GmbH

Heinrich Dreier, SYNSPACE GmbH

Heidi Galle, Conti Temic microelectronic GmbH
Andreas Wolfram, Conti Temic microelectronic GmbH
Gerald Heller, Hewlett Packard GmbH

Dr. Ramin Tavakoli Kolagari, Technical Universitiy®erlin
Isabel John, Fraunhofer IESE

Andreas Fleischmann, TU Minchen

Thomas von der Mal3en, RWTH Aachen

1.4 Aims and Approach

The objective of this working group was to defihe typical features required by product line
development and to analyze and select existingstoal the market that are suitable for
product line requirements management. To achieig e organized our work into the
following steps:

1. Analysis of existing publications

2. Collection of real use scenarios for requirememigireeering tools in a product line
environment

3. Derivation of product line requirements

4. Proposal for functionality in requirements engimegrtools regarding product line
needs

5. Benchmark of existing requirements engineeringsoefjarding these requirements

2 Related Work
2.1 Work of the Previous Working Group

This work group, which deals with tool aspectsrEguirements engineering in the context of
product line engineering, is the successor of aipus working group, where aim was to
identify the main problems in product line develagr This previous work group, set up in
2000, comprised representatives of the followingaaizations: Robert Bosch GmbH,
Hewlett-Packard, Fraunhofer IESE, University of Aas (RWTH Aachen), and sd&m AG.
These organizations shared an interest in the tjprequirements engineering for product
lines and set out to identify the key problems liaduict line engineering practice along with
potential (and proven) solutions. While the grouptek focused exclusively on requirements
engineering issues, it soon became clear thatwoeyd have to adopt a broader approach,
given the close interconnection of requirementsrezeging with other issues in a product line
context. They provided an overview of the main jpeois in product line development (cf.
previous section), which could be organized toftilewing four main problem categories:

(1) organization and management,

(2) requirements engineering,

(3) product-specific vs. platform-specific integsand
(4) architecture.

These categories were the result of systematiedadh and clustering of known problems
the members of the working group. Based on thein axperience as well as their
understanding of the technology, the members ofwtbeking group derived and described
potential solutions for the main problems. The grooncluded its work in 2003. The results
are documented [7] and the report (approx. 55 pamesbe downloaded at

http://www.iese.fhg.de/Pulse/Activities/RE4PL.htr directly at
http://www.iese.fthg.de/pdf_files/iese-121_03.pdf

2.2 Other Tool Evaluations

The Software Engineering Institute (SEI) at Caraddgellon University has a long tradition
of product line research. In 2002, it conducteduevesy asking 31 companies, about their
strategies for dealing with product lines, whichlsothey used for product lines and how they
used them. The report from this survey (approxpd@es) can be viewed at

http://www.sei.cmu.edu/publications/documents/@ares/02tn017.html

The ‘Virtuelles Software-Engineering Kompetenzzentt has made a summary of the tool
aspects of the SEI survey. It shows that in 2002,tbols used in requirements engineering
for product lines were mainly proprietary toolse ttnost widely used commercial tools were
Requisite Pro (27%), Doors (19%), and Slate (3% Bummary (approx. 1 page) can be
viewed at

http://www.software-kompetenz.de/?16937

In 2003, the SEI held a workshop thexplored the area of tool support for product $inveth
representatives from technically sophisticated wimgions, having direct experience in
software product lines”. They identified and dissme hot issues of software product line
tools. The report (approx. 45 pages) can be vieated

http://www.sei.cmu.edu/publications/documents/@@res/00tr002.html

Since there is a continuous development in both gopport and product line methods, the
results of this survey are of limited utility fdre evaluation of current tools.

The International Council on Systems EngineerinflCOSE) has a requirements
management tools survey site dating back to theDd9%hey have published and still
maintain a table evaluating some 30 requirementsagement tools along with about 15
detailed attributes. However, since the vendorseastuating their own products, the results
of this evaluation should be treated with cautibime results of the survey can be viewed at

http://www.paper-review.com/tools/rms/read.php

One weakness of the INCOSE evaluation is that dbéstare evaluated not by users but by
their vendors. Also, the survey focuses exclusivaty requirements engineering; specific
product line aspects are not yet covered.

In 2003, the European research project CAFE pravidist of tools used for product line
engineering, including some of these tools’ deficies. They list 31 product line tools,
including about ten requirements tools: “This doeatncollects the knowledge of the CAFE
partners with respect to the tools available faydpict family engineering development. It
lists the tools used for product family engineeroygCAFE partners.” Two major issues were
covered: first, analysis of the available tools fwoduct family development, and second,
elicitation of requirements regarding the functidmes potential tools should provide. This
list can be viewed at

http://www.esi.es/en/Projects/Cafe/board.html

The Atlantic Systems Guild offers “a survey of regments engineering tools [that] gives
you a review of most of the current tools.” It covea broad selection of requirements
management tools and is frequently updated. Howeweeispecific product line aspects are
covered in this list. The survey can be viewed at

http://www.volere.co.uk/tools.htm

In 2004, the computer magazine IX conducted a stofdyhe eight major requirements
engineering tools: Borland CaliberRM, Compuware ddede, IBM RequisitePro, NCH
Miro.BAS, Polarion, QA Systems IRgA, Serena RTM Wa&irop, and Telelogic DOORS.
The results of this study are not freely availablg, can be downloaded for about 400€ at

http://www.heise.de/kiosk/special/ixstudie/05/01/

Unfortunately, this study focuses exclusively oguieements engineering. It does not cover
specific aspects of product line engineering.

At DaimlerChrysler, a research team has developsdhama for evaluating requirements
engineering tools. Our work group has adopted ¢vigluation schema and extended it to
cover product line aspects, too [2].

3 Documentation of Tool Scenarios

In this section, we describe scenarios of the ado@nd use of tools in the context of product
line engineering. The collected scenarios are istitibus but describe real practice based on
daily routine of members of the work group. Thensg®s thus reflect real problems in the
context of product line engineering. All the scéoardescribe problems that arise during the
modeling and management of information, with a #ocn modeling and managing
requirements. The problems arise because a spémificdoes not fully support the desired
modeling or management activities.

The descriptions of the scenarios cover the folhgnaspects:

1. The development context in which the tool is used

2. Efficient und practicable handling of the used toathe specific context
3. Workarounds, if the tool support is unsuitable

As all the scenarios are written by experts whotheetool in their daily work, the scenarios
provide a good insight into the functionality proed by the selected tool, what functionality
is lacking and what practicable workarounds capdxéormed.

The descriptions of the scenarios are designedtade:

1. A documented and comprehensible description ofcalpiise scenarios for selected
tools.

2. A catalogue of requirements for tools that musirbplemented in order to support
product line engineering.

While the documented scenarios are valuable in $lebras, they also help in deriving new
requirements for tools. The derived requiremergsdacumented in Section 4.

The documented scenarios comprise the following:

Using CaliberRM at hp’s OpenView Business Unit

Using IRgA at ContiTemic

Using RequiLine, a university prototype of a reguients engineering tool for
product lines

Using DOORS in a current research approach at [2a@hirysler

3.1 hp

by Gerald Heller

hp is a technology solutions provider for consumeusinesses and institutions globally. The
company offers a range of products and servicas 1D infrastructure, personal computing
and access devices to global services and imagidgoanting for individual consumers as
well as for small and medium-sized businesses. rRore details, visit hp’s website at
http://www.hp.com. The OpenView Business Unit ispart of hp’s global software
organization. OpenView has more than 15 years’ ggpee in developing IT management
software. The OpenView product line consists oaaety of products in the areas of network,
storage, systems and service management. Seédpgnview.hp.com for details.

The OpenView organization develops its product lamcurrently at different locations
around the world. In the early years, the OpenVigoduct line started with independently
developed products in the area of network and syst@anagement. These products proved
to be extremely useful for customers and the prbtine was therefore extended over a
period of many years. OpenView products are typicahultitier products (Ul clients,
management servers, database servers and agemésprdducts support a wide range of
operating-system platforms.

A suite of new products has supplemented this mtdlne over the years, some were
developed in-house, others acquired externallyhWiihe, the following challenges became
increasingly apparent:

Products started to overlap in functionality.

Customers who bought more than one product facddosnsistency and efficiency
problems.

Development and maintenance costs rocketed.

Given this situation OpenView's management decigetengineer the products into a more
tightly integrated product family. The driving gealere:

Time to value

(Fast and easy deployment, common configuration)

Cost of ownership

(Minimal training and operation cost for IT persefn

Offering solutions and services

(Provide a tightly integrated suite of productsiiravhich customers create a solution
to address their specific business needs

Around 1999, the development paradigm was chargadtodel in which reusable
components with a shared data model are devel®s=ides changes in organization, new
processes and tools were also introduced to sugipsmnodel.

Requirements engineering and management was ontheofmain improvement areas.

Standard training sessions were organized at diftesites to achieve a common skill base
across the organization. Théolere Requirements Templatésee [10]) was selected as a
standard requirements structure for all projectsrld®hd’'s requirements management tool
CaliberRM Borland [1] was chosen to support theriisted development needs of the
organization. The tool was customized to ensuredhery project had the same requirements
structure by applying the Volere Requirement Tenepkiructure. Each requirement type in
Volere is represented by one requirement typeertdbl. The Volere requirements shell was
also translated into the tool's capabilities.

Having the same structure applied in each projeables easy navigation between different
projects, minimizes training needs and facilitatesssharing of requirements.
Our basic principles for the requirements procesktaol were:

allow broad sharing of information

promote consistency to support efficiency, shaand reporting
enable flexibility

allow individual empowerment

The application of these principles means thatvaltkers with a requirements management
tool account have access to all information. Thisludes workers from a wide range of
departments, e.g. product development, product etiagds information engineering
(documentation), support and testing. The entitpeéomanaged in the tool (called project)
may be a solution, product, component or a shared. &equirements can be traced from
products to shared components in order to suppoduyct line planning and monitoring.
Specific projects were created to support more genequirements which apply for a certain
set of products or components. In these projedtaresl requirements are specified and
maintained once only; the individual projects mgraked to refer (trace) to the global
requirement.

10

The tool offers some basic functionality. hp depeld additional add-ins and domain-specific
reporting to increase the value for users of tlggirement infrastructure. From a product line
perspective, the tool should provide more efficigrdceability mechanisms. Also, the
management of shared requirements can be imprdvedtool’s limitations forced us to still
use spreadsheet tables for multidimensional operatrequirements.

The requirements process has constantly evolvemhrporating the experiences of past
projects. hp has established a requirements profrassework that is customized for
individual project types. This process frameworloyides useful guidelines on how to
establish consistent and efficient requirementsgsses for the whole product line.

3.2 Harman/Becker

Harman/Becker Automotive Systems GmbH develops ammhufactures infotainment
systems at many locations worldwide. These systaomporate the following elements are
made up of radio, TV, CD/DVD player, phone and gation. The systems are developed
and manufactured as supply parts for car manufaswar original equipment manufacturers
(OEM) as well as systems for the consumer market.

Becker has a very long tradition of developing amahufacturing car radios dating back to
before 1950. In 1995, Becker was taken over by Harinternational. In recent years, several
mergers have brought new know-how to the group.

Since the 1980s, software has accounted for a aaihgt growing share of overall
development effort. Today, this share is more irtgrdr than hardware and mechanical
components taken together.

Infotainment systems are complex, embedded systeiths multiple external and internal
interfaces. Requirements specifications for a siisgstem comprise several thousand files.
Requirements specifications for OEM systems arallysdrawn up by the car manufacturer.
such specifications differ in many ways:

The requirements specifications of different maetirers vary in their structure and
level of detalil.

Some specifications are highly inhomogeneous.

Different parts of the specifications are oftentten in different departments of the
car manufacturer. This usually leads to inconssén

The requirements specifications are normally dedisleas a set of files (Microsoft Word,
Microsoft Excel, Adobe Acrobat, etc.).

Requirements management tools for exchanging rempaints specifications with suppliers
are have been used by one car manufacturer fot albowyears now. Other car manufacturers
have followed this example but use other exchamgegsses and formats. Telelogic DOORS
is widely used by car manufacturers for requiremenainagement. All manufacturers use
DOORS in different ways. No manufacturer currentiges DOORS to manage all
requirements specifications. Individual manufaatsiteave also developed their own specific
exchange processes. At first sight, a single tom@himbe expected to produce a single

11

exchange process. Unfortunately, the use of aesiiogll does not result in a single process in
requirements management and exchange.

During development of the system, usually a peroddseveral years, the requirements
specifications undergo numerous changes. Someestthhanges are submitted as explicit
change requests, or implicitly as new documentiomssor file versions. Analyzing such
changes and their impact involves considerableteffo

Traditionally, the systems for different seriesdifferent car manufacturers (OEMs) have
been developed by independent projects there wame $echnology transfer from products
that were developed for the consumer market. Sirdéaelopments in different projects still
remained a risk, however.

To avoid parallel development, a common platforns hecently been developed to make
available basic functions for all customer-spedifevelopment projects. From a requirements
management view, two tasks have to be performed:

Identification and description of common requiremseor the platform

Matching customer-specific requirements to thefptat requirements

The complexity of this task grows owing to the ¢oabus changes in the requirements for
both the platform and the customer-specific systems

To summarize: requirements management covers llogvfiog main areas:

Management of requirements documents

Management of changes to requirements documents
Exchange of requirements documents with car matwias
Identification of requirements for the platform

Matching requirements from car manufacturers téfquian requirements

12

3.3 Continental Temic

by Heidi Galle
and Andreas Wolfram

Continental AG, based in Hannover, Germany wasdedrnin 1871 and operates worldwide
as leading automotive supplier with 80,000 emplsyetethe end of 2005

Continental Temic, the provider of high-quality @miotive electronics is today part of
Continental Automotive Systems, a corporate divi©sbContinental AG.

In 2002, the business unit ‘Body Electronics’ sdrtimplementation of a tool based,
structured requirement management process. Firs@allpf the needs of product line
development was taken into account by changingotiganisational structure into the so
called ‘competence centres’, reflecting differerdquct lines as shown in figure 1 below.

Methcod: The challenge RM in BU body electronics

u Basic develcpment
Advanced H H =
development D Mechanical design
D Crozs section functions
— Competence | | Competenca [| Competence [| Competence
| Center Center Center Center
CC BMW Central Control | [Security Systems| | Door Control Seat Control
| - - = = Marketing
CC VW-Gruppe || || [| | | Productmanage-
ment
RC Europa 1)
— Coordination
KC Systempartner 2) 9 Projectmanage-
| ment
RC USA 3)
RC Azien |
KT = Kundencenter | =l | El

1) Onel, Fiat, Saah, Renail, PS4
2) Tier! - Hunden wie Meritor, JC,..
3)Ford USA, GM, Chrysier

Continental Automotive Systems
BU Hody Electronics

Figure 1: organizational structure of the businessinit ‘body electronics’

The challenge of requirements management of sefPecaluct Lines for different customers
was to handle many reusable set of requirementssd®dity not only considered for a special
product line, each intersection between two sete@firements has to be analyzed for reuse
A customer project means development of severawar of the product for the customer.

The tool should solve the following challenges:
General Rules from customers (non functional quaditjuirements, environment

requirements...) are valid for all projects of thisstomer.
General internal rules (quality rules, developnmotess rules, ...)

13

Product line requirements for each project of adpct line (reusable components)
Project specific requirements which are only védidthis product

Variant requirements, which are valid for speciliants of an product

Type or model based requirements which are validlfgroducts for a special series
type or model of a car (p.e. S-model of DC)

As result of a tool evaluation, IRgA [3] seemed®the best solution for the business unit. A
single database, accessible from all involved 3tekkers was the approach. All
Requirements reside in this database and a prigjecisubset of the database content IRgA
has the ability to build a graphical, standard meuent model as guidance for all projects.
Requirements have a specific type with a speciabgattributes. As shown in the figure
below, for example the requirements R5, R6 and &a@ny to project A and project B. The
yellow and red ones can belong to project A, tlteaees and the dark blue ones can belong
to project B. The project leaders decides over ppimg to domains which requirements are
visible in the project, this is represented with thubbles. Over several user groups and their
access rights on the different set of requireménepped to partitions) the requirements get
visible and/or writable in the project. In this exagle a project A developer (Usergroup 1)
needs access rights on the yellow and the rednesgants.

The same mechanism is used to construct attritaftgsoject A, project B and attributes
belonging to both projects.

IRgA: Projects F"ﬁ__‘ ‘Usergroum ‘ ‘Userqroup2 ‘
(Domains) Partticn3

A
=

' Requirements

Neme
DM_DC_LT3_EZ5
DM_DC_NCV3_EZ5
DM_DC_NCV3_SAM
DM_DC_NCY3_SAM_WAR1
DM_DC_NCV3_SAM_YARZ
DM_DC_NCV3_SAM_YAR3
DM_DC_NCY3_SAM_YAR4
DM_DC_NCV3_T35
DM_DC_Wied_ELD
DM_DC_W204_EZS
DM_DC_W221 _EZ5
DM_DC XX _H5M
DM_PSA_A7 _TSG
DI_RENALILT_X44_BCM
DN_REMAULT_X44_FY_IMMO
DlM_wWwW_AL716_CW
Di_wWw_PQ46_GWw

1 Projekt A
1 ProjektB

Continental Automotive Systems
BU Body Electronks

Figure 2: database organization

This is a very simple example. To manage all ofitlkersections which belong to a project, it
Is important to decide which set of requirements worth to be reused. The complexity of
managing the shareable sets of requirements shmmulals small as possible and as big as
necessary.

14

What happens if a special version perhaps versiohrgquirement R5 is valid for project A
and the version 2.1 of the same requirement belémgzroject B. To change a common
shared requirement isn’t solved really in the RMolTahere is no possibility to branch and
merge this requirement. The interface to the Camégon Management Tool doesn't offer a
solution for this as well, but state of the arthat Configuration Management Tools can’t
manage objects; they can manage files and theirgesa So at the moment, there is only the
possibility to create a new requirement instea@d oew version of the requirement, the red
requirements become a yellow and a blue one.

Another problem to handle common requirementsas you need a person in charge for the
shared set of requirements, an independent regeirsnengineer for the ‘basic project’ is a
must. If there is no basic group which developshswrjuirements you never gets shareable
project independent requirements, the project mesnhave to develop their project and
nothing else. If you look in the first picture yaan see that we have no such persons or
groups in our organization.

The challenge to develop and work with shared requeénts in different projects for several
customers can only be solved with a product linguRements Management Tool and an
adequate organizational structure.

3.4 RWTH Aachen University

by Thomas von der Mal3en
One research project of the “Software Construct@search Group” at the University of
Aachen is concerned with the requirements engingesf software product lines. A special
focus of the project is modeling variability withiaquirements. As variability is a key aspect
distinguishing product lines from individual prodsicit must be identified and explicitly
modeled during the requirements engineering preses$ product line development. The
research group uses feature models to model viiyahithin requirements.

A feature model captures requirements in terms eaftures. Typically, a feature is an
abstraction from several requirements. A so-catiiedform feature model (PLFM) contains
all identified features that are relevant to theolghproduct line and structures them
hierarchically in a tree. Furthermore, variabililg expressed by so-called domain
relationships between features and feature atgghhuThe PLFM is part of the platform
requirements specification. From the common PLFkcalled product feature models
(PFMs) can be derived. The derivation is perfornbgdbinding the variation points, i.e.
selecting features that should be part of the PRlay setting values of feature attributes. A
derived PFM is part of a product requirements gppation.

While much research effort has been expended orelingdof different variability types and
investigating derivation processes, the qualityeda that a PLFM must satisfy have so far
been neglected. A requirements specification fatividual products should be correct,
unambiguous, complete, consistent, ranked, vel#jahodifiable and traceable, and this also
applies to PLFMs. The research group thereforesinyated how variability influences the
above-mentioned attributes, and how the attribcéesbe applied to a PLFM.

As current requirements engineering tools suppeithar the necessary variability concepts,
multi project specifications nor the analysis ofatflrm specifications, the Software

15

Construction Research Group developed RequiLin@ptotypical requirements engineering

tool for product lines. RequiLine allows the modgliof requirements in terms of features and
natural-language requirements. A detailed desonptf the provided functionality can be

found in [6] and [9]. The use of RequiLine is nastricted to a special requirements
engineering method or development approach. Reggilithus supports requirements
engineering for product lines using a proactiveeactive approach. A typical use scenario is
described below:

1. The administrator creates a new product line ptojec

2. The administrator creates the required user acs@amt assigns roles to them to grant
privileges.

3. The analysts develop a PLFM for the product line by

a. modeling features

b. structuring features through domain relationships

c. modeling variation points

d. modeling dependencies between features

4. Optionally, the analysts write natural-languageunsgnents and associate them with
features. Natural-language requirements can be tseatkscribe features in more
detail.

5. The analysts verify and validate the PLFM using

a. the query interface to create user-defined queries

b. the consistency checker to check the PLFM’s comscst

c. the metric interface to reveal information about tRLFM’s flexibility
(variation degree) and appropriateness

6. The analysts derive PFMs from the PLFM following

a. an explorative approach: the analysts create apreduct and add features
from the PLFM to the PFM using the feature selectioterface and
parameterize selected features by setting valuestheir attributes. A
subsequent consistency check of the PFM must berpexd to guarantee the
consistency and completeness of the PFM with reé$pebe PLFM.

b. a guided approach: the analysts derive a new ptdayaising the product
configuration wizard. The wizard guides users tglothe PLFM and requests
them to resolve variation points, regarding the astins of the variation points
and modeled dependencies. The wizard ensures astamsand complete
PFM.

Typically, the steps described above are not chioig sequentially but in a highly iterative
manner.

RequiLine has been evaluated in several project®aperation with industrial and academic

partners. It supports the requirements engineepracess by providing the necessary
variability concepts and analysis functions.

16

3.5 Variability-Oriented Reuse of Functional Requir ements
in the Framework of a Function Signal Network in
Telelogic DOORS — Current Research Approach at
DaimlerChrysler

by Ramin Tavakoli Kolagari, Matthias Hoffmann, Johas Fasolt

DaimlerChrysler is a premium car manufacturer dewelg automobiles for a global market.
DaimlerChrysler’s global presence and its innovatoiented brand mean that development
activities must meet two essential challenges wbddwide market. First, the cars’ features
must be innovative and manifold and at the same take account of current trends in the
different markets. Second, the cars must be deedlap short development cycles and to a
high level of quality. To meet these challengesetlpment activities must be reuse-oriented.
Since the actual development process of a car raanuér typically takes place on the level
of requirements (that are passed on to suppliers irfigplementation), requirements
specifications for different car series must behigh quality and at the same time rapidly
produced. This is only possible with systematicsesapproaches.

This section motivates, why developing requiremémt®lectronic control units (ECUSs) for a
wide platform of different model ranges each cowsipg a whole bunch of model range
specific variability is a challenging task for amtotive original equipment manufacturers
(OEMSs). Furthermore it is shown how current shartows of requirements specifications
can be overcome by using a product line orientettept called Function Signal Network
(FSN). Section 3.5.1 looks at a FSN in more detad explains its use in the tool DOORS.

Variability of functions in automotive ECUs dependa different car configurations or
optional equipment that can vary from one modelgeamo another. The functions are
networked and thus constitute a complex web of niégecies. Since OEMs develop most of
their ECUs with the help of suppliers, their mamterest is to develop the requirements for
the ECUs on a concrete level consistent with tleeiip goals of their organization.
Requirements constitute the main interface betweesnpplier and OEMs and thus the right
level of concretion for the description of requims must be met such that an integration of
the resulting ECUs into the vehicle can be realidddny functions do not vary much from
one model range to another, but innovative functiare often developed that are not in the
focus of the presented concept. Nevertheless, yeem design can differ greatly, which
means that the distribution of functions over tHeUs of different model ranges changes.
Analyses conducted at DaimlerChrysler show thatiireqnents described independently of a
specific hardware or software design have signitigahigher reuse potential than design-
oriented requirements. Typically, requirements aoents are described more concretely than
characteristic requirements like features, desugifiunctions from a customer’s point of view
and that are the basis for management decisionscesleequirements documents exhibit a
developer-centric technical view of functions. Tédanctions consist of subfunctions that
communicate with one another by means of signals.

Reuse can be established mainly in the dimensiod1EECU2, describing the variability
between different ECUs with respect to time, madele or configuration. In the context of
OEMs, handling variability is even more complexrth@a classic variability problems because
the kind of variability here is two-layered heréassic variability problems encompass a set
of products that share certain features and hdferehces. Differences must be made visible
and an easy way to do so is by using feature diagjras proposed in [5]. In the automotive

17

domain, this level of variability is in the autoriva domain only the first layer; variability
within a model range with respect to country vasamptional equipment, body variants ...
This kind of variability we calmodel-specific variabilityBut the need to reuse goes beyond
model ranges — in fact, the need to reuse requimttsrier an OEM arises because of the
necessity of managing these different model randesl model ranges differ from one
another with respect to their different featuraffecent technical environments and different
management decisions — and they also differ witbpeet to different model-specific
variabilities, e.g. optional equipment may becommamdatory feature from one model range
to another one. This kind of variability is callewdel-independent variability

To systematically support reuse within an OEMs iimportant to develop a process to handle
this two-layered variability and to have reliabtmls at hand to support this process. In the
context of this report, we are unable to preseatpitocess in detail, but we sketch the use of
DOORS in the described scenario. Please note tlatptoposed ideas are still being
developed and reliable practice experience waavaitable on publication of this report.

The basic approach to managing the two-layeredaliity is to construct a Function Signal
Network (FSN) comprising a set of functional requients or functions with input and
output ports for signals. To facilitate reuse, fimts are described independently of any
specific design and subfunctions are structuredsunh a way that they can be easily
composed to functional specifications. To supptw tleveloper of an FSN, we have
developed a set of rules, including examples, patand instructions. Functions embrace the
functionality of the selected ECUs for all modetgas, i.e. the FSN library is on the level of
model-independent variability. Some subfunctionshef FSN directly represent a feature and
can thus be identified as part of a model-spesibecification. Other subfunctions are needed
to ensure the correct interaction of already setesubfunctions and can be identified by the
selected signals until all communication relatiopstare complete (for every selected signal
there exists a generating function, which can b#hiwithe system or part of the system
interface, and a consuming function, again eithert pf the system or of the system
interface).

3.5.1 Variability in the Function Signal Network (FSN)

This section presents the elementary objects d¥&M library (the functional requirements)
and the rules for combining these objects into aehspecific specification. It is concrete
and very detailed and addresses readers who widetmen their understanding of an FSN.

Modeling with a FSN library

Functions are represented as objects with a undgmifier, textual description and relations
to signals. A function may be linked to an arbijrawumber of input signals and output
signals. Noninstantiated functions in the FSN kipranclude input and output ports for
signals, either obligatory or optional.

Signals are described as objects with a uniquetifilen A signal may be linked from an
arbitrary number of functions as input as well afpat. In a correct instantiation of the FSN
into a model-specific specification, each signay/raaly be generated once as output.
Variability in the library of FSN objects is dedwed as a property of the use of signals by
functions, which is represented as a relation.ghai may be used obligatorily or optionally

18

by a function (with respect to its port). The irdhce of the presence or absence of an optional
signal on a function is only visible in its textudscription.

The starting point for an instantiation of an F3ibia model specific specification is a set of
abstract features that are initially selected. Tistantiation now becomes tricky because
further variability occurring during the instant@t process must be properly managed: all
the decisions made during the instantiation mustdiesistent and the algorithm leading a
user through the possible flat tree of hierarchthenFSN library must enable the user to jump
back to each decision and undo the set of followdlegisions. Because of the net of
relationships between the objects describing afilicit dependencies, we have the problem
that there is no deterministic way through the tkebjects, which means that the decisions
made may preclude possible subsequent decisionththaser wishes to make. However we
don’'t wish to deepen the discussion about the rements regarding an algorithm for a
product line wizard because this is currently aaldlp discussed problem in the community
developing tools for product lines (e.qg. [4]).

During the instantiation process, the features ntlustefore be deduced into one or more
functions. There exists an Or-relationship betwieatures and their deducible functions.

For an instantiation of a specific FSN from thedity, we assume an initial feature selection.
The user decides

for each selected feature, which deducible funstiare to be instantiated for the
specific FSN, in which at least one function musdeduced for each selected feature
for each optional signal usage of the selected tiong, if they are part of the
instantiated FSN,

for each signal, if it is generated within the F&S a unique output signal) or if it is
part of the system'’s interface and is thus gendra¢gond the borders of the system
for each signal, if it is consumed within the FS&d @n input signal) or if it is part of
the system’s interface and is thus consumed betfentorders of the system

The instantiation of a specific FSN (being a predsor of a model-specific functional
specification) is completed if

for each feature and each deduced function itegldd whether or not it is selected
for each selected function and for each linkedaignis decided whether or not it is
used by a function

for each selected signal it is decided, whethesrgart of the system interface

Using DOORS

In the above section we describe how we proposséaa Function Signal Network library to
derive specifications. Note that the specificatidhemselves include a large amount of
variability. The FSN library thus includes variatyilon a more abstract layer, also comprising
variability of variability. Currently, there are rtools on the market supporting users in such a
two-layered variability setting. The tool widely ats by German automotive OEMSs is
Telelogic DOORS [8] and we developed a first prgpatal extension of DOORS realizing
the above-described scenario. Since it is easylaptaDOORS to specific needs based on a
tool-specific script language (doors extension lexgge, dxl), we were initially able to develop
the prototype. We tried to implement the describ&N library with the signals representing
dependencies and with the obligatory or optionatgpmodeling variation in such a way that

19

the properties of DOORS were sufficient. NevertbglddOORS is not a tool for managing
requirements of a family of products, and much kdeol for managing requirements for a
set of families of products, as we need here, & ¢bntext of reusing requirements for
automotive model ranges.

4 Requirements for Requirements Management
Tools in the Context of Product Line Engineering

Based on the practical use scenarios describedealveer wish to derive requirements for
requirements engineering tools for software prodiloeés. Our aim is to provide the

requirements engineering community, and especiadlguirements management tool
developers, with a catalogue of current requiresiéntadapt their tools to be make them
suitable for product line engineering.

4.1 Starting Point

The basis for the requirements catalogue is a lddtaescription of tool requirements for
single product developments, written by Hoffmanmlein [2]. Additionally to the presented
paper, they developed a comprehensible requiremeatalogue for single product
development tool. This catalogue comprises aboQtr&quirements, which are hierarchically
structured. The top level serves as a groupingtakebolders, the second level contains
categories, which group related requirements:

Requirements from tool users
o Information model
Views
Formatting, multimedia and external files
Documentation of history
Baselining
Traceability
Analysis functions
Tool integration
Import
Change management and comments
Document generation
Collaborative work
Checking out for offline use
o Web access
Requirements from project administrators
o Users, roles and rights
0 Size restrictions
o Workflow management
o0 Extensibility
Requirements from tool administrators
o Database
o0 Encryption

O O0OO0OO0O0OO0OO0OO0OO0OO0OO0oOOo

20

Each requirement has also been prioritized by tlieoas. The existing catalogue has been
taken and adapted in the following way, to malaiitable for product line development:

1. The documented requirements have been revisedaahdlly reformulated

2. Requirements that become relevant in the contexirodluct line engineering have
been added to the catalogue. About 20 new requitesmand three requirements
categories (Configuration Management, Discussiopp8tt and Priorities) have been
additionally documented.

3. Each requirement has been prioritized. For eachimament, it has been defined
whether it is equally important, more importantroost important in a product line
context compared with single product development.

The full catalogue of requirements and their ptiesi can be found in the appendix. The
following subsections describe the new elicitecuresments and the prioritization in detail.

4.2 New and Changed Requirements

To switch the focus from single product developnterppiroduct line engineering, roughly ten
percent new requirements were introduced and abheusame number of requirements was
changed to make them better match the productcliimeext. Some of the new requirements
are directly tied to variability handling. Thesdlvae discussed later in this section. First, we
present the requirements that are not directlyedlto variability.

Most new requirements (11) belong to the newlyoeiticed “configuration management”
category. However, most of the requirements in taitegory deal with issues that are of
similar importance as in single product developrmer@ome of these issues have been
implicitly represented in the category “Documergatiof History”, but since this was a
mixture of configuration management issues and @hamanagement, this has been
separated. The first block of new requirements dd@ath basic version and configuration
management requirements like object identificatioil versioning. These requirements are
relevant in any development. Support for baselinafgthe requirements database was
considered more important in a product line cont&ke focus here is to be able to baseline

arbitrary parts of the database in order to captaly the state of several projects/products
at once.

In a similar fashion, support for multi project/iyggroduct status and progress reporting was
considered a necessary new requirement for prdithgctools.

Also important, but not covered in the original uggments list, is good support for tool-
based communication among users. In product liggnerring, artifacts have to be discussed
more intensively across a larger (and often distad) group of people. An integrated but
relatively informal type of discussion support isnsidered necessary in addition to the
formalized change process, which the tool shoufgpstt anyway. Examples are Wiki-like
discussions or forum discussions which are direliigable or linked to a specific (set of)
requirement(s).

In order to break down work, the definition of darry, named subsets of requirements is also

a more important issue for product lines becausenttmber of requirements is usually higher
than in single product developments and some artan be helpful.

21

The changes we made to existing requirements westlyrdesinged to clarify their meaning,
not to change their intention, so a detailed disicus of changed requirements is not
considered necessary.

4.2.1 New Requirements Related to Variability

This section discusses the newly introduced togliirements related to variability. In total,
we have added only five requirements that fall this category.

It is important that the tool supports shared mphbject and multi product information
models in order to provide a consistent modelifigastructure for related projects or products
that are part of the same product line developnmfeisimple information model copy when a
new derived project starts is not sufficient heeeduse changes made afterwards have to be
made individually to all related projects, whicmdae problematic if there are a lot of them.

Additionally, the information model provided by theol must support the expression of
variability and variation. In other words there mbge ways of expressing variation points,
rules for variation point instantiation and the atgstion of relations between product variants
in the tool’s information model.

(Defined) variants must have a first class repriedem in the tool which allows the addition
of “meta” attributes to the variant. Examples oflsuneta attributes are a list of stakeholders
for this specific variant (customer, account mamagec.) or links to other variant-specific
artifacts.

Given an information model that provides supportvariability definition, the tool not only
offers support for variant representation but malsb support the variant creation process
using the stored variability information. Dependescbetween variants must be expressed,
e.g. it should be possible to check in which varamequirement is realized or to compare
variants with each other.

A similar requirement is the need for multidimemsib prioritization of requirements in the
tool with respect to different stakeholders. Thes de used to help the track of individual
realizations of several products using the sameiregent. Use cases for such functionality
are manifold. For instance, one project might decfdht a feature described in a requirement
is a “nice-to-have” item, while it might be essahfor other projects.

4.2.2 Relationships to Product and Project Manageme nt

The management of variability in requirements ig @motask in a delimited area of
requirements engineering. In fact, product andgmtojnanagement must be considered major
stakeholders requirements management. Both needbkpdormation about variability.

Product Management

One of the main tasks of product management idao @nd control the process of product
development. Within this context, requirements eragring is a consumer of information

22

produced by product management (e.g. new markeemnmequirements) and a supplier of
information needed by product management to makategic decisions in product
development.

The following questions therefore come to mind:
- Should the new product be developed from scratckhould it enhance an existing
product?
Which relationships exist between the new prodadtexisting products?
Can the basic functionality be conserved while features are implemented?
Should the new product be a variant of an exigtirgluct?
How do the changes influence the product life c¥ycle

These are just a few of the questions that nedx toonsidered during product management,
but they are a fundamentally related to requiresy@minagement in the context of product
line engineering. How can a product manager anslhese questions without knowing the

requirements? In addition to the number of featutes number of variants must also be
considered, to make accurate cost estimation.

Furthermore, not only the development and prodostscare influenced by the number of
variants, but also the costs that must be congidéueing the product life cycle, e.g. update
effort, maintenance costs and staff training.

Requirements engineering must therefore supportptioeuct management by providing
information about dependencies between features.mbre complex the requirements are,
the more adequate tool support is needed to faelthe management of information.

Project Management

The task of the project management in the contéxdotiware development is to plan and
control the project. The main focus is on the fiorality that should be provided by the new
product. The change in functional requirementsahsisong impact on the project plan.

If products are being developed in the context pfauct line, multiple projects often use a
common set of requirements concurrently. Withowtnpked coordination of the projects,

multiple implementations of the same requiremeatthe result, which leads to an enormous
overhead in development. Since the additional efonsumes additional resources, project
managers have even less time for coordination kestwilee projects — a vicious circle.

Again, the information about dependencies betweguirements across products must be
provided by requirements engineering. Integratibmeguirements engineering can help to
distribute the different tasks across projects tmatefore to optimize the use of resources.
The main advantage can be achieved by verificagiod validation. These two tasks are
typically performed half-heartedly at the end gifraject.

Requirements engineering must thus be based ondeguate tool to support project
management by providing the necessary informatieurthermore, it is important that
information in projects be swiftly available to éhaeffective control of projects.

To summarize, the coordination of product, projactd requirements management is
necessary to effectively handle variability in regments. Adequate tool support is essential.

23

4.3 Prioritization of Requirements for the Context of
Product Lines

This section presents the prioritization of toafjugements defined by the working group.
The starting point was the list of tool requirensefur single product development and the
associated prioritization suggested by [2]. Thekivay group rated each tool requirement
with regard to product lines. Each tool requiremigom single product development was
rated as (1) equally important, (2) more importamt(3) highly important in a product line

context. The working group also identified furthemuirements specific to product line
development, as described above, and rated thporiance.

The prioritization was derived by a vote among mhembers of the working group. It was
validated through subsequent discussions. As dt m@sthis approach, some priorities are not
unique. This is due to the different backgroundshef working group members in terms of
application domain and project type. This reporthaf working group’s results documents the
variation in priorities, allowing the reader to neak well-informed evaluation of the proposed
requirements list.

This section begins by presenting the key resultd éindings of the requirements
prioritization for the context of product lines (Sen 4.3.1). It then goes on to describe the
peculiarities of each group of requirements in adpct line context (Section 4.3.2). A
complete list of tool requirements and their ptiadtion is given in the appendix.

4.3.1 Particular Priorities in a Product Line Context

In the context of product lines, five aspects ofuieements management tools are particularly
important:

Explicit modeling concepts for requirements repnéson

Changeability and adaptability of requirements espntation and functionality
Graphical presentation and visualization of requeats and their interrelations
Collaborative work during requirements management

Management of multiplicity in requirements defiaiti (multiple products and
projects, as well as interrelations between them)

Often, product lines pose very specific requireraant requirements management tools. It is
scarcely conceivable that a tool is able to mddhake different requirements and use modes.
This is due in part to the fact that the variouscpsses, methods and organizational
infrastructures applied in product line developmemé not yet fully understood and
established. It is also due to the many differeaysvin which product line development is
implemented throughout industry. It must therefdre possible to tailor and adapt a
requirements management tool to the specific naedscharacteristics of a given product line
development infrastructure.

The tailoring of requirements management tools todpct line development contexts

requires that a tool include modeling concepts #rat explicit, modifiable, extendable and
adaptable. Typically, tailoring of requirements mgement tools is achieved by well-

24

accessible programming interfaces, the embeddirsgmgbts or programs into a tool, as well
as extensible user interfaces (e.g. via plug-inhraeisms).

Graphical presentation and visualization are ingrdrto enable the user to keep track and
control of the complex information structures inxed in product line engineering.

Examples of such visualizations are dependencyracdability graphs, as well as illustration
or highlighting of variability across requiremestss.

Collaborative work during requirements engineeriagd management is much more
important in product line contexts than it is dgringle product development. This is due to
the large number of stakeholders that a produe typically involves. Also the project-
internal activities for collaboration and communica among management, platform
development and product development are compleguiREaments management tools must
support this collaborative work. They must alsccéraand document communication and
communication results.

Managing multiplicity is essential in a productdinontext because there is always more than
one product being developed, and there is alwayee rttan one project being conducted.
There exist various interrelations and dependertéseen the products and projects, which
must be represented and managed by the requiremantsgement tool and be understood by
the users.

4.3.2 Product-Line-Specific Priorities per Requiremen ts Group

This section describes the peculiarities of eadegmay of requirements for requirements
management tools listed in [2] in a product lineteat. Figure 2 visualizes the average
priorities given by the group members for each megouent. To improve readability, the
requirements are represented by diamonds. Thersaejaresent the requirements categories
and the concentric circles represent the prioritthe requirements in the context of product
lines. The innermost circle contains requiremehét aire most important in the product line
context, the outermost circle contains requiremeaiish are equally important in the product
line context compared to single product development

An Analysis of Figure 2 reveals that it is maingguirements from the categories Information
Model, Views and Analysis that become most impdrt@nthe product line context. A
detailed analysis is given below.

User Requirements: Information Model

Priorities of tool requirements are the same assiiogle product development. For product
lines, there are two additional requirements, lmdtiwhich are highly important:

The tool must support multi project and multi produequirements management

information models (RMIs) (highly important)
The tool must support variability mechanisms (hyghtportant)

25

Figure 2: Prioritization of requirements in the context of product lines

User Requirements: Views

Views-related requirements are more important,dsy rarely much moreémportant, than
for single product development. They are partidulaglevant with regard to the following
aspects:

Definition of user-specific views

Availability of graphical diagrams
Configuration and rule-based control of views
Modification of views in the course of a project

For product lines, there are two additional requeats:
The tool should allow views to be predefined foeumles (important)

The tool must support multi project and multi produequirement views (highly
important)

User Requirements: Formatting, Multimedia and Exter nal Files
Mainly the same as for single product development.

26

User Requirements: Change Management and Comments
More important than for single product development.

User Requirements: Documentation of the History

Mainly the same as for single product developméir product line development, the
following three requirements are slightly more intpat:

All changes to the requirements must be tracked.
All objects managed in the tool must be versioned.
There must be a distinction between major and mreaions regarding objects.

User Requirements: Baselining
Mainly the same as for single product developmaightly higher importance.

User Requirements: Traceability

Slightly more important than for single product d®pment, in particular with regard to the
following requirements:

It must be possible to define attributes for links.

It should be possible to create rules governingtwimals of objects must have links to
what other kinds of objects.

Links must connect all objects in the database,ombt in the same subset (module,
project, etc.). (important to highly important)

The tools must feature a practical, user-friendigl aoncise graphical representation,
and navigation of the traces (e.g. matrices, toeggaphs).

User Requirements: Analysis Functions

Slightly more important than for single product d®pment, in particular with regard to the
following requirement:

The tool should allow inconsistencies in the linkusture to be analyzed (e.g. find
gaps in the traces).

For product lines, there is one additional requeatn

The tool should provide information on the statusl @rogress of multiple projects
and products. (highly important)

User Requirements: Tool Integration

Slightly more important to much more important thfan single product development, in
particular with regard to the following requiremgnt

27

The tool must have open interfaces to other toségliun the development process and
make information stored in them visible and linkeal{imore important to much more
important)

Access rights to the external objects must be md@zed. (partly more important)

Tool classes that ought to be integrated with megquents management within product line
contexts are:

Slightly much more important than for single proddevelopment: Configuration
management, communication (e.g. e-mail communicgtroject management
Slightly more important than for single product d®pment: Test, validation, and
verification, problem tracking, modeling and design

User Requirements: Import / Export

Slightly more important than for single product d®pment, in particular with regard to the
following requirements for requirements informatiarport/export:

The tools should be able import existing requirements specification documents
based on a predefined, customizable exchange format

The tools should be able txport existing requirements information based on a
predefined, customizable exchange format.

User Requirements: Document Generation

Mainly the same as for single product developméir product line development, the
following two requirements are more important:

The tool must swiftly generate very large documeémtsrporating numerous external
objects. A 5,000-page document with formatting amddia objects should be
generated overnight.

It should be possible to run the document generaistomatically as a background
task.

User Requirements: Collaborative Working
Much more important than for single product deveiept.

User Requirements: Checking Out for Offline Use
More important than for single product development.

User Requirements: Web Access
More important than for single product development.

28

Requirements Regarding Project-Related Tool Adminis tration

Mostly more important than for single product deyehent. In particular, the following
aspects are more important for product line devek than they are for single product
development:

Central installation and administration of projects
Users, roles and rights

Workflow management

Extensibility

Requirements Regarding Technical Tool Administratio n
Slightly more to much more important than for sengroduct development.

Databaserequirements are Slightly more important for pratddine development with
regard to scalability, availability, and backup aadtoring.

Requirements prioritizatiofstakeholder-specific) is much more importantdoyduct
line development.

5 Evaluation of Tools

5.1 Explanation of the Evaluation Approach

Starting with the concrete list of requirements fpooduct line tools, we were delighted to
learn how current tools available on the markejpsupproduct line engineering. Fortunately
the team had some practical experience with sontleeaharket-leading products.

Several interesting questions arose, which we htpadswer based on the tool evaluation:

Are there any common deficiencies across the tools?
Do some tools clearly outperform others in termprouct line requirements?

It was clear from the beginning that these questmuld only be answered very subjectively
given the working group’s limited time and resos.ce

With the requirements table described in the previohapter, we already had a means to
distinguish between typical requirements for regmients management tools and those that
are more important in the context of product linBse goal of the product evaluation was to
find out which tool is better suited for productdidevelopment.

To reduce the degree of subjectivity we createc\aluation schema based on numerical
values with associated semantics:

Value | Semantics
0 Don’t know.
1 The requirement isn’t supported by the tool.
2 The requirement isn’t supported in a way thasugable for day-to-day
operations. Custom solutions (extensions) are redu{and possible) t

O

29

address the requirement.
3 The requirement isn’'t supported adequately butait be addressed with
organizational conventions to use the tool in asjgevay.
The requirement is addressed well enough to dydark.
The tool's implementation of the requirement ésfect (at least we cannpt
imagine a better way of doing it).

gl

At first, we thought that the criteria were suféiotly well defined. However, when trying to
evaluate the tools, a few problems arose.

The first was that a wide range of subjective iptetation was still possible. We believe that
the situation can be improved by applying fit ardeto requirements, which we failed to do
despite knowing that this is good requirementsresgying practice.

Another reason for the lack of clarity is the cgafiation and customization capabilities of the
tools. Based on above schema, values of 2 to 4 bmarapplied, depending on how
customization is seen by the evaluator. One cameatpat the tool should address the
requirement out of the box but we can also argaedhstomization allows more flexibility.

After some discussion, we reached agreement witi@rgroup. Future work might focus on
improving the evaluation schema.

5.2 Visualization
Once we had obtained the data, the challenge wasualize the various dimensions:

Show the importance of the requirement with regandroduct line support
Show how well the tool addresses the requirement

Be able to compare tools

Visualize requirement categories

(The table has a series of categories for requinéshe

PwpPE

We experimented with various display formats amalfy decided that spider charts are best
suited because they address all the dimensionsilded@bove. Bubble charts and 3D column
graphics failed to visualize all dimensions.

The following charts show how well the analyzeds$address the specific requirements. The
categoriesView, Analysis Functions Information Model User Rights and Rolesand
Configuration Managemenhave been chosen because requirements belongirigese
categories are most important in a product lingexdn

The red line indicates the product line prioritytbé specific requirements. Using this line, it

is easy to evaluate how well the respective toa@dgopm. Figures 4 to 8 visualize the
evaluation.

30

The tool must allow view s to be defined centrally as well as in a
user-specific manner.

The tool must support multi-project and multi-product requirement

These view s must be freely configurable, including complex
views.

filters on objects, relations, and attributes

In the course of a project, the view s and the assignment to

roles should be changeable. The objects must be changeable in the current view .

The user must be able to view the requirements in a document-
oriented manner, i.e. as sequential text with headings, tables,
etc

The tool should allow view s to be predefined for user roles.

The user must be able to view the requirements in an
formation-model-oriented (sometimes called database oriented)
manner. Tables or forms are examples of such a representation

Graphical view s of the requirements should be available.

—— Product Line Priority
DOORS

= & =Caliber RM

= @& =|RgA

—¥— RequiLine

Figure 3: CategoryView

The tool should provide information about status and progress of the project.
1,00

The tool could scan the description texts of the requirements for patterns like The tool should provide information about status and progress of multiple
unsuitable/inexact language or wrongly used terminology.

projects/products.

The tool should allow to analyze inconsistencies in the link structure like finding gaps
in the traces.

—e&— Product Line Priority
DOORS

= & =Caliber RM

- ® =IRgA

—¥— Requiline

Figure 4: CategoryAnalysis Functions

31

Every object in the database must be uniquely identifiable over its lifetime. If a
hierarchical or other structure is in place, it must be independent from the unique
identification and adapt automatically.

The RMI must support variability mechanisms 4 Inheritance and reuse should be available for all classes, types and attributes.

The tool must support multi-project and multi-product RMIS could be possible to graphically define and configure the RMI.

The tool could support RMIs that are needed w hen using standard RE templates (e.g.
MIL-STD-490, DoD-2167A, INCOSE, Volere or IEEE 830-1998). Project templates
should be included

—— Product Line Priority
—u—DOORS

= & =Caliber RM

= ® =|RgA

—¥— RequiLine

Figure 5: CategoryInformation Model

The tool must allow fine-grained administration of users, user groups, user roles,

user rights and user-roles rights. A history of changes to these must be available

Rationale: The bigger and the more critical the project, the more important user and
righ

The assignment and execution of administrative task such as user and role
management must be flexible delegable to the stucture of responisbilities in the
prganisation. l.e. some administrative task can be defined to be handle in centralized

manner (e.g.

A user must be able to perform more than one role at a time J&

WI

2N

- Users must be defined centrally for all projects. External user management
Access rights must be grantable via roles a user is assigned to.|

information must be used, if it exists.

5

S

5.

%

The security concept must not be compromised by unauthorized use of extensions! N
ty P ke API pro nr:mmln o sycri tin 4 e tool must allow fine-grained access and writing rights to be flexibly granted.
. p 9 9 pting. . . Rights must be grantable dow n to object and attribute level. A distinction must be
Rationale: Security among conpeting suppliers w ith access to the tool is an importar
issue. made betw een rights to view , propose changes or make changes.

Security based on overlapping roles is preferred to security based on hierarchical
security levels.

g
&

—— Product Line Priority
—m— DOORS

= & =Caliber RM

- ® =IRgA

—¥— RequiLine

Figure 6: CategoryUser Rights and Roles

32

The tool should provide extensive configuration management capabilties. This section
provides a complete view on t overlaps
partially with section 1.1 ‘Information moder', 1.5 ‘Documentation of history' and sect

Each variant should support meta attributes Every object must be uniquely identifiable.

It should be possible to easily work on a sub-set of requirements. This set may be
derived froma large set. It should get a unique name with w hich can be w orked on.
The tool should track relationships betw een original requirement set and subset.

The tool should support efficient creation of a new variant of a product. The tool must
track the dependency betw een variants. It should be possible to visualize this

of change (see 1.5.1]
dependencies at any point in time. ge (:)

must be possible to retrieve a specific version of an object at any point in time (see
15.6).

The tool should support analysis of baseline information. It should be possible to
perform analysis on a set of baseines

W\ Theo6l must support baselines. A baseline is the state of a (specified subset of the)

database fixed at a given point in time. Compared w ith object

versioning, a baseline is a (partial) database consisting of numerous objects, each in
acer

It should be possible to create baselines based on time.

—&— Product Line Priority
DOORS

= & =Caliber RM

- ® =IRgA

—¥—RequiLine

Figure 7: Category Configuration Management

6 Summary and Future Work

A software product-line-oriented approach to depilg systems has an impact on the
development process as a whole. All artifacts pceduduring the process have to be properly
managed in order to benefit from a product-linexoted approach. Although the basic idea of
product lines is simple, systematic implementatérthe approach is a challenging task. In
fact, today’s software system families have suammex variability that their handling must
be supported by tools, otherwise a systematic @gpravould not be possible.

The same holds for requirements management of aadtproduct lines. The technical report
presented here analyzes specific scenarios indhtext of requirements management and
software product lines and derives important rexjognts that have to be observed if
requirements management tools are to be usefuliyliegp to product lines. Current
requirements management tools are evaluated ornbdlses of these requirements. This
evaluation revealed that all requirements managetoets currently used in industry need to
be improved if they are to be successfully used product line setting. Nevertheless these
tools are used in practice and are also used iduptoline settings and as the scenarios
described in this report show they are also usetessfully — but this is only achieved
because workarounds are in place: either the tselfiis enhanced or related processes
bypass shortcomings of the tool. But this situat®not satisfying, because especially small
companies need to rely on all-embracing tool supp@cause enhancements or heavy
processes to overcome shortcomings of tools arexpensive.

33

The presented scenarios describe current develdgmeredures formulated by the working
group members from industry. The scenarios makeeiar that a software product-line-
oriented approach is possible in a developmentga®avhere all produced artifacts are
managed in one organizational unit as well as spla development environment, e.g. OEM
and supplier. Nevertheless, requirements managemémse settings needs specific support.
Recently — there being no commercial requiremerisagement tool tailored to product lines
— a whole series of flexible workarounds have eme@rdgrlexible tools like MS Excel or MS
Word provide the means to realize these workarourasd they are actually effective: Being
born of a practical need, these workarounds argnpatic as well as necessary and have
therefore been widely adopted.

However, mature software development that is ge&weproduct lines requires more than
pragmatic, stop-gap solutions. Systematic softwapreduct line engineering calls for
systematic tool support especially in the contektrequirements management, mainly
because one is confronted with the task of handlihgige number of requirements for multi
projects and multi products. This has an impactheninformation model, views, baselining,
etc.

The requirements for requirements management twete gathered by the working group
and prioritized by each working group member basedis/her subjective rating of their
relevance for product lines. The result is a com@nsive analysis of requirements and
requirements management tools in the context diveoé product lines based on practical
experience. The list gives an overview of the keyuirements — some are newly introduced
to support product lines. Especially scalabilityhe main driver to identify requirements or to
prioritize requirements in the context of produntlengineering, because in this case a huge
set of data items must be handled.

None of the investigated tools (DOORS, CaliberRRgA, RequiLine) supported all or most
of the presented requirements best, but each &xoith strengths and weaknesses and in order
to decide which tool meets best the demands ofezifép organization or development
approach one has to decide on the basis of themessrequirements independently.

The presented analysis and the results are safguet This technical report is intended to
direct the attention of both researchers and tamlelbpers to the current problem of
inadequate requirements management tools for satwmoduct lines. The presented
requirements indicate the future direction of tdelelopment.

A reader with interest in tool supported requiretaananagement for software product lines
can gain the following from the report at hand:

Current tools can be used in product line settamythe described scenarios show, but
this is only possible with a huge amount of exffare

The list of requirements given in this report idasis to implement requirements

management tools supporting software product lines.

Current organizational processes can be analyzeddwal requirements and the

fulfillment of these requirements in different teaan be seen in the requirements list
at hand. The adequate tool can then be selected.

The catalogue of requirements was reviewed a setiora (because it bases on the

published version of requirements for requiremendésmagement tools [2]) and is also

interesting for single product development.

34

To substantiate the findings of the report, the kivay group has set up a website
http://www.qgi-ev.de/fachbereiche/softwaretechnikite where interested people with
practical experience in using one of the listeds@me invited to evaluate them on the basis of
the requirements catalogue. The website also pesvidore detailed information about the
working group and its members.

7 References

[1] | Borland, Caliber websitéttp://www.borland.com/de/products/caliber/indemht

[2] | M. Hoffmann, N. Kiihn, M. Weber, M. BittheRequirements for Requirements Management Tools
Proceedings of 12th IEEE International ConferenoeRequirements Engineering (RE 2004), 6:10
September 2004, Kyoto, Japan. IEEE Computer So2igdg, ISBN 0-7695-2174-6.

[3] | QA Systems, IRgA websitéattp://www.ga-systems.de/html/deutsch/produkte/irqa.php

[4] | G. Jiménez-PéreDesign Wizards for Software Product Lin¥gorkshop on Generative Techniques
Product Lines, First Software Product Line ConfesnEd.G. Butler, K. Czarnecki, U. Eisenecke
http://www.cs.concordia.ca/~gregb/splc-workshop

n

=

[5] | K.C. Kang, K.C., S.G. Cohen, J.A. Hess, W.E.vhlg and A.S. Petersefeature-Oriented Domain
Analysis (FODA) Feasibility Studyoftware Engineering Institute of the Carnegiellde University,
CMU/SEI-90-TR-21, Pittsburgh, 1990

[6] | Research Group Software Construction, Requiliedsite:
http://www-lufgi3.informatik.rwth-aachen.de/TOOL 8fjuiline/

[7]1 | K. Schmid, A. Birk, G. Heller, I. John, S. Jods. Miiller, T. von der MalRerReport of the Gl Worl
Group “Requirements Engineering for Product Lithd&SE-Report No. 121.03/E, November 2003.

[8] | Telelogic, DOORS websitdattp://www.telelogic.com/corp/products/doors/indsgm

[9] | T.von der Mal3en, H. Lichter: RequiLin&:Requirements Engineering Tool for Software Prodlires
Software Product-Family Engineering, Springer LN&X& 4, 2004.

[10] | J. Robertson, S. Robertsdviastering the Requirements Proceaddison-Wesley, 1999.

8 Appendix

The following table lists the complete set of idéetl requirements for requirements
engineering tools in the context of product linegierering, based on the requirements
presented in [2]. The individual requirements hbagen prioritized for the context of product
line engineering and the result of the voting by thembers of the work group are presented
in the last three columns. The maximum number aftpaeveal the maximum score, if all
members would vote that the requirement is “highdgortant” in the product line context.

The following table shows furthermore the resultsh® evaluation of the analyzed tools.
Each tool has been evaluated according to the gubeepresented in section 5.1 using the
mentioned evaluation scheme based on numericatsvalth associated semantics:

Value | Semantics
0 Don’t know
1 The requirement isn’t supported by the tool
2 The requirement isn’t supported in a way thatan be used in day to day
operations. Custom solutions (extensions) are redu{and possible) t
address the requirement.
3 The requirement isn't supported adequately, bet requirement can be

O

35

addressed with organizational conventions to useédbl in a specific way.
The requirement is addressed well enough to dpdark.

The tools solution to the requirement is pertatieast we cannot imaging a
better way of doing it)

gl

Finally, we analyzed how the specific tools perfaxith respect to the priority we defined for
each requirement. We use a color spectrum fromdlee green to red to indicate the level of
the priority respectively the level of fulfilmewtf the requirement. In the following table the
color of a cell border indicated the level of theopty (scaled up to 50) whereas the
background color of a cell indicates the fulfillnten

36

v3.6

Name

Category

Description

Prio
(single
systems)

Points

rel. Prio
SPL

Tool-Evaluation

++ high
+ medium
- low

DOORS
7.1

Caliber
RM v
2005 SP2

IRGA

Requi
Line

DOORS
7.1

Caliber
RM v
2005 SP2

IRgA

Requi
Line

Requirements from the Users

1.1.

Informatio
n Model

The tool must allow the user to freely
define a RMI.
Rationale: Since a requirements
management tool must be independent
of process and method, the requirements
must be modeled freely in the tool. The
detailed mapping of a process and its
artifacts to a requirements management
tool can be described using a RMI.
Experience shows that especially in pilot
projects this mapping varies to achieve a
higher benefit from a requirements
management tool.

1.1.1.

Information Model

Every object in the database must be
uniquely identifiable over its lifetime. If a
hierarchical or other structure is in place,
it must be independent from the unique
identification and adapt automatically.

++

0,20

1.1.2.

Information Model

Inheritance and reuse should be
available for all classes, types and
attributes.

10

0,25

1.1.3.

Information Model

It could be possible to graphically define
and configure the RMI.

10

0,25

1.1.4.

Information Model

The tool could support RMIs that are
needed when using standard
requirements engineering templates (e.qg.
MIL-STD-490, DoD-2167A, INCOSE,
Volere or IEEE 830-1998). Project
templates should be included

0,20

1.1.5.

Information Model

The tool must support multi-project and
multi-product RMls

40

1,00

37

v3.6

Name

Category

Description

Prio
(single
systems)

Points

rel. Prio
SPL

Tool-Evaluation

++ high
+ medium
- low

DOORS
7.1

Caliber IRQA
RM v
2005 SP2

Requi
Line

DOORS
7.1

1.1.6.

Information Model

The RMI must support variability
mechanisms

38

0,95

1.2.

Views

The tool must support various views of
the same data. A view offers the
possibility to view and change a freely
defined collection of parts of the data of
several projects or subprojects in a freely
configurable representation.
Rationale: Depending on the current
process step requirements management
tool users work only on certain aspects
of a certain part of the specification. It is
therefore important, that a requirements
management tool provides suitable
views of the huge amount of information
accessible in requirements management
tools. This has a strong impact on the
acceptance of the tool by the users.

++

1.2.1.

Views

The tool must allow views to be defined
centrally as well as in a user-specific
manner.

++

28

0,70

1.2.2.

Views

These views must be freely configurable,
including complex filters on objects,
relations, and attributes

++

28

0,70

1.2.3.

Views

The objects must be changeable in the
current view.

14

0,35

1.2.4.

Views

The user must be able to view the
requirements in a document-oriented
manner, i.e. as sequential text with
headings, tables, etc

++

0,20

1.2.5.

Views

The user must be able to view the
requirements in an information-model-
oriented (sometimes called database
oriented) manner. Tables or forms are
examples of such a representation

++

0,20

38

Caliber

RM v
2005 SP2

IRgA

Requi
Line

v3.6

Name

Category

Description

Prio
(single
systems)

Points

rel. Prio
SPL

Tool-Evaluation

++ high
+ medium
- low

DOORS
7.1

Caliber IRQA
RM v
2005 SP2

Requi
Line

DOORS
7.1

1.2.6.

Views

Graphical views of the requirements
should be available.

30

0,75

1.2.7

Views

The tool should allow views to be
predefined for user roles.

28

0,70

1.2.8.

Views

In the course of a project, the views and
the assignment to roles should be
changeable.

20

0,50

1.2.9.

Views

The tool must support multi-project and
multi-product requirement views.

40

1,00

1.3.

Formattin
g,
Multimedi
a and
External
files

++

1.3.1.

Formatting,
Multimedia
External files

and

The tool must allow the requirements to
be enriched with formatting and objects
not native to the tool.
Rationale: Many specifications created
with text processing tools like Word
contain lots of graphics or other
multimedia elements. Developers expect
similar means of expressions from a
requirements management tool, which
must be directly visible in the
requirements management tool user
interface.

0,20

1.3.2.

Formatting,
Multimedia
External files

and

The tool should support basic text
formatting. It should also support
scientific and foreign-language character
sets. The tool should allow mathematical
formulas to be used in the description
texts.

10

0,25

39

Caliber

RM v
2005 SP2

IRgA

Requi
Line

Name Category Description Prio Points | rel. Prio Tool-Evaluation
(single SPL
systems)
++ high DOORS Caliber IRQA Requi DOORS Caliber IRQA Requi
v3.6 + medium 7.1 RM v Line 7.1 RM v Line
- low 2005 SP2 2005 SP2
1.3.3. Formatting, Non-text objects should be saved directly | ++ 16 0,40 5 6 6 5
Multimedia and |in the database or at least in a
External files configuration management tool that is
tightly coupled with the tool. If they are
stored in the tool database, they must be
fully covered by its version and rights
control.
1.3.4. Formatting, External objects must be viewed either | ++ 8 0,20 5 4 6 5
Multimedia and | through a pre-viewer inside the tool or in
External files the native application if called directly
from the tool's user interface.
1.4. Change The tool must support change |++ 28 0,70 3
Managem management. This can either be done by
ent and the tool itself or the tool should provide a
Comment suitable interface that conforms to the
S following requirements.
1.4.1. Change Change requests must be customizable 24 0,60 2 1 2 1
Management and | to the change process of the users
Comments
14.2. Change The change request handling must be 26 0,65 2 1 1 1
Management and | integrated into rights management.
Comments
15. Document Rationale: In the usual highly parallel | ++
ation of development, which is needed to reduce
the time to market, developers need to
History synchronize their specifications
periodically. Differences from previous
versions must be easy identifiable.
During such synchronization steps
discussions reconcilement may be
necessary. Due to cost and complexity
issues it should be possible to partially
return to previous versions.
15.1. History All changes to the requirements must be | ++ 18 0,45 5 4 6 2
tracked.

40

Name Category Description Prio Points | rel. Prio Tool-Evaluation
(single SPL
systems)
++ high DOORS Caliber IRQA Requi DOORS Caliber IRQA Requi
v3.6 + medium 7.1 RM v Line 7.1 RM v Line
- low 2005 SP2 2005 SP2
1.5.2. History All objects managed in the tool must be | ++ 16 0,40 6 4 6 2
versioned
1.5.3. History There must be a distinction between | + 12 0,30 1 5 1 1
major and minor versions regarding
objects.
15.4. History The version number should be|+ 8 0,20 6 6 6 5
incremented automatically when certain
changes occur.
15.5. History Changes must be tracked down to the | ++ 8 0,20 6 6 6 2
smallest unit of data structures, in most
cases to attributes.
1.5.6. History Changes and old versions must always | ++ 8 0,20 6 6 6 1
be available.
1.5.7. History The tool must allow a requirement to be | ++ 8 0,20 6 1 6 1
changed back to any previous version
anytime.
15.8. History The tool should visualize the change | + 8 0,20 1 6 4 3
history.
15.9. History The tool must generate freely | ++ 8 0,20 2 3 2 1
configurable change reports. These
reports should relate to views, baselines
and generated documents.
1.5.10. History A comment should be saved with the | - 8 0,20 3 6 6 1
change to enable it to be understood
later on
1.5.11. History Changes could be categorized for |+ 8 0,20 2 1 2 1
analysis.
1.6. Baselining | Baselining The tool must support baselines. A|++ 16 0,40 6 5 6 3
baseline is the state of a (specified
subset of the) requirements database
fixed at a given point in time. Compared

41

v3.6

Name

Category

Description

Prio
(single
systems)

Points

rel. Prio
SPL

Tool-Evaluation

++ high
+ medium
- low

DOORS
7.1

Caliber IRQA
RM v
2005 SP2

Requi
Line

DOORS
7.1

with object versioning, a baseline is a
(partial) ~ database consisting of
numerous objects, each in a certain
version. The development status saved
in a baseline is the starting point for
further development.
Rationale: Baselines are used to save
the state of a specified set of
requirements objects, a document or
project before a larger development step.
They also serve to freeze a development
object after its completion or review.
Baselines are not branches. They do not
copy the objects; they are a catalog of
object/version references.

1.7.

Traceabilit
y

The tool must enable traceability through
links between requirements. The linking
must be implemented in a highly user-
friendly manner because it helps only if it
is relatively complete.
Rationale: For years traceability has
been one of the big discussion and
research issues in requirements
engineering. Certain standards for
security-critical fields even enforce
complete traceability. Unfortunately,
linking is not popular among developers
because it costs time, its benefit is visible
mostly in later phases, and it needs
discipline in linking. Good tool support
could change this and enable analyses
and consistency support that would
otherwise require much more effort.

++

1.7.1.

Traceability

Links must be directed and an object
must be a source and target at the same
time (but not of the same link).
Additionally, the user must be able to
create links starting from the source or
the target of the directed link.

++

0,20

42

Caliber

RM v
2005 SP2

IRgA

Requi
Line

v3.6

Name

Category

Description

Prio
(single
systems)

Points

rel. Prio
SPL

Tool-Evaluation

++ high
+ medium
- low

DOORS
7.1

Caliber IRQA
RM v
2005 SP2

Requi
Line

DOORS
7.1

1.7.2.

Traceability

It must be possible to follow links directly
in both directions.

++

0,20

1.7.3.

Traceability

It must be possible to give the links
attributes, e.g. to differentiate different
kinds of links for later filtering or analysis.

++

24

0,60

1.7.4.

Traceability

It should be possible to create rules
governing what kinds of objects must
have links to what other kinds of objects.

16

0,40

1.7.5.

Traceability

Links must connect any objects in the
database, not only in the same subset
(module, project, etc.)

++

28

0,70

1.7.6.

Traceability

Links could be n-ary.

0,20

1.7.7.

Traceability

The tool must feature a practical, user-
friendly and concise graphical
representation and navigation of the
traces, g.g, matrices, trees or graphs.

++

20

0,50

1.8.

Analysis
Functions

The tool should be able to analyze
requirements. Examples are linguistic
analysis, analysis of the link structure,
analysis of project progress and risk
management.

Rationale: The enrichment of
requirements in a requirements
management tool with additional
information stored in links and attributes
allows automatic analyses that would be
costly and time-consuming if done with
requirements saved in ordinary
documents.

1.8.1.

Analysis
Functions

The tool should provide information
about status and progress of the project.

0,20

43

Caliber

RM v
2005 SP2

IRgA

Requi
Line

v3.6

Name

Category

Description

Prio
(single
systems)

Points

rel. Prio
SPL

Tool-Evaluation

++ high
+ medium
- low

DOORS
7.1

Caliber
RM v
2005 SP2

IRGA

Requi
Line

DOORS
7.1

1.8.2.

Analysis
Functions

The tool should provide information
about status and progress of multiple
projects/products.

40

1,00

1.8.3.

Analysis
Functions

The tool should allow to analyze
inconsistencies in the link structure like
finding gaps in the traces.

24

0,60

1.8.4.

Analysis
Functions

The tool could scan the description texts
of the requirements for patterns like
unsuitable/inexact language or wrongly
used terminology.

0,20

1.9

Tool
Integration

The tool must have open interfaces to
other tools used in the development
process and make information stored in
them visible and linkable.
Rationale: To improve consistency
between development phases and
allows complete traceability over the
complete product life cycle requirements
management tools must be integrated
tightly into existing tool environments.
The expected benefit is an improved
development process and improved
product quality. The introduction of a
requirements management tool should
not result in additional major changes of
the tool environment.

++

25

0,71

1.9.1.

Tool Integration

Linking must not lead to redundant data.

++

0,20

1.9.2.

Tool Integration

The connection should be transparent in
both tools.

11

0,31

1.9.3.

Tool Integration

Links to external objects should be
managed by the tool in the same way as
internal links.

11

0,31

44

Caliber

RM v
2005 SP2

IRgA

Requi
Line

Name Category Description Prio Points | rel. Prio Tool-Evaluation
(single SPL
systems)
++ high DOORS Caliber IRQA Requi DOORS Caliber IRQA Requi
v3.6 + medium 7.1 RM v Line 7.1 RM v Line
- low 2005 SP2 2005 SP2
1.9.4. Tool Integration The user should be able to navigate to | + 7 0,20 1 6 3 4
these objects.
1.9.5. Tool Integration Access rights to the external objects | ++ 13 0,37 1 0 0 1
must be recognized.
1.9.6. Tool Integration The links should be able to target the | ++ 9 0,26 1 0 0 1
smallest possible structure of the
external object (like the attribute of a
class in the class diagram).
1.9.7. Tool Integration The interfaces used for tool integration | + 9 0,26 1 6 1 2
should be active, i.e. synchronization or
change notification should occur
automatically.
1.9.8. Tool Integration Tool classes that could be sensibly
integrated with requirements
management are:
1.98.1 Tool Integration configuration management ++ 29 0,83 2 4 4 2
1.9.8.2 Tool Integration test, validation & verification ++ 23 0,66 2 4 4 1
1.9.8.3 Tool Integration problem tracking + 25 0,71 2 2 1 1
1.9.84 Tool Integration modeling and design + 23 0,66 2 4 3 1
1.9.85 Tool Integration communication, e.g. e-mail + 31 0,89 2 2 2 1
1.9.8.6 Tool Integration project management - 29 0,83 2 3 1 1

45

v3.6

Name

Category

Description

Prio
(single
systems)

Points

rel. Prio
SPL

Tool-Evaluation

++ high
+ medium
- low

DOORS
7.1

Caliber
RM v
2005 SP2

IRGA

Requi
Line

DOORS
7.1

Caliber
RM v
2005 SP2

IRgA

Requi
Line

1.10.

Import /
Export

1.10.1.

Import / Export

The tool should be able to import existing
requirements specification documents
based on a predefined, customizable
exchange format.

19

0,54

1.10.2.

Import / Export

The tool should be able to export existing
requirements information based on a
predefined, customizable exchange
format.

21

0,60

1.10.3.

Import / Export

The tool should recognize text marks,
formatting, line ends, grammatical
structure or keywords to interpret them
as the beginning or end of requirements
texts.

0,20

1.10.4.

Import / Export

The tool should support a
semiautomatic, i.e. user interactive,
import of requirements from existing
documents.

0,26

1.11.

Document
Generatio
n

Document
Generation

The tool must be able to generate official
and internal documents. To achieve this,
the tool needs a document generator
that uses predefined document
definitions to generate documents with
current data from the database.
Document generation differs from
document-oriented views in that the
generated documents are no longer
connected to the database and an
independent document file is created.
Rationale: A requirements management
tool is of no worth without powerful
document generation capabilities. The
days of paperless development are still
far away, especially in fields where
interaction with suppliers is important.
Specifications are an important part of

++

0,26

46

v3.6

Name

Category

Description

Prio
(single
systems)

Points

rel. Prio
SPL

Tool-Evaluation

++ high
+ medium
- low

DOORS
7.1

Caliber IRQA
RM v
2005 SP2

Requi
Line

DOORS
7.1

the contract with the supplier, which is
why something document-like is always
needed, whether it is printed or just a file.
Document generation can be one of the
main productivity-enhancing applications
of requirements management tools, if
developers can generate documents at
the push of a button and don’'t have to
carry out detailed formatting before and
after document generation.

1.11.1.

Document
Generation

The subset of data to be included in the
document must be flexibly configurable,
comparable to views. Formatting and
positioning must be flexibly configurable,
too.

++

0,26

1.11.2.

Document
Generation

The document generator must be able to
include all information available in the
tool.

++

0,20

1.11.3.

Document
Generation

The document generator could be able
to create documents in certain standard
formats. Templates for these formats
could be included.

0,20

1.11.4.

Document
Generation

Non-textual objects must be included in
the generated documents

++

0,20

1.11.5.

Document
Generation

The tool must generate very large
documents with many included external
objects quickly. A 5000-page document
with formatting and media objects should
be generated in one night.

++

19

0,54

1.11.6.

Document
Generation

It should be possible to run the
document generation automatically as a
background task.

21

0,60

1.11.7.

Document
Generation

The document generator must be
extensible via a programming interface
(or similar) provided by the tool.

0,26

47

Caliber

RM v
2005 SP2

IRgA

Requi
Line

v3.6

Name

Category

Description

Prio
(single
systems)

Points

rel. Prio
SPL

Tool-Evaluation

++ high
+ medium
- low

DOORS
7.1

Caliber IRQA
RM v
2005 SP2

Requi
Line

DOORS
7.1

1.12.

Collaborat
ive
Working
on the
Same
Developm
ent Task

Collaborative
Work

It must be possible for many users to
work on the same data at the same time.
Of the many users working on a single
requirement object, only one must be
able to apply changes in a transaction
save manner. If a user changes an
object, it should refresh automatically in
the user interfaces of the other users.
Rationale: It is a typical situation that
several users work on same or adjacent
parts of specifications at the same time.
Managing the data using a requirements
management tool can provide a single
source and up-to-date state of the
project for all participants, but fine-
grained locks are important not to
suspend each others work. Especially if
users want to reconcile a part of a
specification at different locations, e.g.
during a conference call, they need an
instantaneous feedback of performed
changes.

++

35

1,00

1.13.

Checking
out for
Offline
Use

Checking out for
Offline Use

It must be possible to check out data and
a license to work on mobile offline
computers without sacrificing
consistency and access rights.
Rationale: Although mobile network
access is constantly improving, it is still
far from perfect and performance is not
yet predictable. In addition, many
organizations have security restrictions
that do not allow mobile access to the
databases.

++

21

0,60

1.14.

Web
Access

Web Access

The tool should have a web interface or
another browser-based client that makes
it unnecessary to install a client
application for occasional users.
Rationale: Web interfaces offer a reliable
and easily manageable possibility to

21

0,60

48

Caliber

RM v
2005 SP2

IRgA

Requi
Line

v3.6

Name

Category

Description

Prio
(single
systems)

Points

rel. Prio
SPL

Tool-Evaluation

++ high
+ medium
- low

DOORS
7.1

Caliber IRQA
RM v
2005 SP2

Requi
Line

DOORS
7.1

work with the requirements. They are
interesting for collaboration with external
partners (“extranet”) and for internal
users that use the tool only occasionally.
Nevertheless, in reality most users are
“power users” for whom the native clients
provide a smoother user experience and
opening the tool to the web causes some
managers and administrators
headaches.

1.15.

Configurat
ion
Managem
ent

Configuration
Management

The tool should provide extensive
configuration management capabilities.
This section provides a complete view on
configuration management
functionalities. It overlaps partially with
section 1.1 ‘Information model', 1.5
'Documentation of history' and section
1.6 'Baselining'. Baselining is considered
as a component of configuration
management.

20

0,67

1.15.1

basic

Configuration
Management

Every object must be uniquely
identifiable.

10

0,25

1.15.2

basic

Configuration
Management

Every object must be versioned

20

0,50

1.153

basic

Configuration
Management

Every change of an object must be
recorded with date, version number and
content of change (see 1.5.1)

20

0,50

1.15.4

basic

Configuration
Management

It must be possible to retrieve a specific
version of an object at any point in time
(see 1.5.6).

22

0,55

1.15.5

baseline

Configuration
Management

The tool must support baselines. A
baseline is the state of a (specified
subset of the) requirements database
fixed at a given point in time. Compared
with object versioning, a baseline is a

++

16

0,40

49

Caliber

RM v
2005 SP2

IRgA

Requi
Line

Name Category Description Prio Points | rel. Prio Tool-Evaluation
(single SPL
systems)
++ high DOORS Caliber IRQA Requi DOORS Caliber IRQA Requi
v3.6 + medium 7.1 RM v Line 7.1 RM v Line
- low 2005 SP2 2005 SP2
(partial) database consisting of
numerous objects, each in a certain
version. The development status saved
in a baseline is the starting point for
further development.
1.15.5.1 | baseline Configuration It should be possible to create baselines 14 0,35 1 2 0 1
Management based on time.
1.15.5.2 | baseline Configuration The tool should support analysis of 28 0,70 1 2 3 3
Management baseline information. It should be
possible to perform analysis on a set of
baselines.
1.15.6 | Product Configuration The tool should support efficient creation 40 1,00 2 1 1 4
Line Management of a new variant of a product. The tool
must track the dependency between
variants. It should be possible to
visualize this dependencies at any point
in time.
1.15.7 Product Configuration It should be possible to easily work on a 32 0,80 1 1 4 4
Line Management sub-set of requirements. This set may be
derived from a large set. It should get a
unique name with which can be worked
on. The tool should track relationships
between original requirement set and
subset.
1.15.8 | Product Configuration Each variant should support meta 24 0,60 1 1 1 2
Line Management attributes.
2. Requirements from the Project Administrators
This section describes criteria and their requirements that cover the
requirements management tool needs from the project and tool
administrators’ point of view. They cover issues that are not core
functionalities, but essential for large scale projects.
2.1. Central Central All productline-wide information must be | ++ 19 0,54 6 6 6 5
Installatio | Installation and | held and changed at one place. A history
n and | Administration of | of associated changes must be
Administra | Projects available.
tion of Rationale: Typically a dedicated group of

50

v3.6

Name

Category

Description

Prio
(single
systems)

Points

rel. Prio
SPL

Tool-Evaluation

++ high
+ medium
- low

DOORS
7.1

Caliber
RM v
2005 SP2

IRGA

Requi
Line

DOORS
7.1

Projects

persons takes the responsibility for the
correct mapping of the process
specification to the requirements
management tool implementation. They
must master and document the further
development from the initial project
installation. Without such a responsibility
uncoordinated deviations will take place,
which can be very extensive to
administrate

2.2,

Users,
Roles and
Rights

Users, Roles and
Rights

The tool must allow fine-grained
administration of users, user groups,
user roles, user rights and user-roles
rights. A history of changes to these
must be available
Rationale: The bigger and the more
critical the project, the more important
user and rights administration becomes.
Including external and possibly
competing partners in the development
process increases the importance of this
functionality.

++

23

0,66

2.2.1.

Users, Roles and
Rights

The assignment and execution of
administrative task such as user and role
management must be flexible delegable
to the stucture of responisbilities in the
organisation. l.e. some administrative
task can be defined to be handle in
centralized manner (e.g. user account
creation) while others (e.g. assignement
to a user to a specific project&role) may
handled decentralized on project level
Rationale: Structure of organization, size
of product-lines

++

21

0,60

2.2.2.

Users, Roles and
Rights

Users must be defined centrally for all
projects. External user management
information must be used, if it exists.

++

15

0,43

51

Caliber

RM v
2005 SP2

IRgA

Requi
Line

v3.6

Name

Category

Description

Prio
(single
systems)

Points

rel. Prio
SPL

Tool-Evaluation

++ high
+ medium
- low

DOORS
7.1

Caliber IRQA
RM v
2005 SP2

Requi
Line

DOORS
7.1

2.2.3.

Users, Roles and
Rights

The tool must allow fine-grained access
and writing rights to be flexibly granted.
Rights must be grantable down to object
and attribute level. A distinction must be
made between rights to view, propose
changes or make changes.

++

23

0,66

2.2.4.

Users, Roles and
Rights

Security based on overlapping roles is
preferred to security based on
hierarchical security levels.

21

0,60

2.2.5.

Users, Roles and
Rights

The security concept must not be
compromised by unauthorized use of
extensions like APl programming or
scripting.

Rationale: Security among competing
suppliers with access to the tool is an
important issue.

++

17

0,49

2.2.6.

Users, Roles and
Rights

Access rights must be grantable via roles
a user is assigned to.

++

17

0,49

2.2.7.

Users, Roles and
Rights

A user must be able to perform more
than one role at a time.

++

19

0,54

2.3.

Size
Restriction
s

Size Restrictions

There must not be an upper limit for the
size of the database and the number of
requirements, users, groups etc. If such
limits exist, they must be known exactly.
The database must be able to handle
very large projects. The database fields
should not have a fixed size restriction.
Rationale: Large projects in particular
benefit from requirements management
tools. To pre-estimate the limitations of a
new project is inaccurate, because it
could be the starting point of a single
product or a wide product family.

++

0,26

52

Caliber

RM v
2005 SP2

IRgA

Requi
Line

Name Category Description Prio Points | rel. Prio Tool-Evaluation
(single SPL
systems)
++ high DOORS Caliber IRQA Requi DOORS Caliber IRQA Requi
v3.6 + medium 7.1 RM v Line 7.1 RM v Line
- low 2005 SP2 2005 SP2
2.3.1. Unlimited size of a requirement ++ 7 0,20 6 4 4 4
2.3.2. Unlimited number of requirements ++ 9 0,26 6 4 6 5
2.3.3. Unlimited number of users ++ 9 0,26 6 4 6 5
2.3.4. Unlimited number of user groups ++ 9 0,26 6 4 6 2
2.3.5. Unlimited database size ++ 9 0,26 6 4 6 5
2.4, Workflow | Workflow The tool could support systems|- 19 0,54 1 1 2 3
Managem [Management development via an administrable,
ent organized and structured process, called

workflow. Information could be provided
and rights granted depending on the
current phase or step in the process. The
workflow must not simply restrict the
users, but guide them through the
process.

Rationale: A workflow provides steering
mechanisms which ensure that all
needed steps of an actvity are
completed. Workflows can help to
implement a certain requirements
engineering process and can improve
consistency and standardization of the
requirements. Rigidly IT-driven
workflows are very unpopular among
high skilled workers and in projects with
tight timelines.

53

v3.6

Name

Category

Description

Prio
(single
systems)

Points

rel. Prio
SPL

Tool-Evaluation

++ high
+ medium
- low

DOORS
7.1

Caliber
RM v
2005 SP2

IRGA

Requi
Line

2.5.

Extensibili
ty

Extensibility

The tool must be adaptable and
extensible to the needs of the
organization or project.
Rationale: Every organization has
different needs and usage patterns for a
requirements management tool. Often
nonstandard or domain-specific
development tools have to be integrated
with the requirements management tool.

++

19

0,54

2.5.1.

Extensibility

The tool must provide an open and well-
documented object model and an API
which makes all data and functions
accessible to extensions. Standard
programming languages should be used.

++

15

0,43

25.2.

Extensibility

The object model and the API must be
follow the “"open-closed" principle.
Existing models and functions must not
change, extensions should be possible
across versions of the tool, even major
versions. It should at least stay
downwards compatible.
Rationale: Long lifetime of product-line

++

21

0,60

2.5.3.

Extensibility

The user interface of the tool must be
customizable.

++

0,20

2.5.4.

Extensibility

The user interface of the tool must be
extensible with a non tool-specific
programming language.

++

21

0,60

Requirements

from

the tool administrators

This last section of the requirements catalogue covers the requirements
from the IT system administrators for a requirements management tool.
Reliability and data security are the most important issues for them.

DOORS
7.1

Caliber
RM v
2005 SP2

IRgA

Requi
Line

3.1

Database

Worldwide cooperation in development
projects requires a round-the-clock
access to the requirements management
project database. A requirements
management tool database failure can
be very expensive, if developers can't

++

54

v3.6

Name

Category

Description

Prio
(single
systems)

Points

rel. Prio
SPL

Tool-Evaluation

++ high
+ medium
- low

DOORS
7.1

Caliber IRQA
RM v
2005 SP2

Requi
Line

DOORS Caliber IRQA Requi
7.1 RM v Line
2005 SP2

work and deadlines are missed.

3.1.1.

Database

The tool must use an database
technology, which must be scalable.

++

19

0,54

(&)]

3.1.2.

Database

The database must be available 24h a
day and 365 days a year. Maintenance
work on the database must be done on
the running system.

++

19

0,54

3.1.3.

Database

The database system use must be
transaction-safe and the tool must
consistently use this feature.

++

0,20

3.1.4.

Database

The database must have a consistency-
analysis and data-integrity check. It must
be able to repair such errors.

++

0,20

3.15.

Database

To improve data security and availability,
the tool must use a database that is
independent of the tool and can be
administered independently.

++

0,20

3.1.6.

Database

It must be possible to backup and
restore only a part of the data in the
database, e.g. just a specific project or
the complete database. This must be
possible while the system is running.

13

0,37

3.1.7.

Database

It must be possible to export all project
data and to import them again at a
different time or places for/with different
tool.

++

0,20

3.1.8.

Database

The data should be stored in a universal
format.

0,20

3.2.

Encryption

Rationale: Requirements specifications
of upcoming products and research
prototypes are the main target of
industrial espionage. In highly
competitive high-tech markets, this is a

55

v3.6

Name

Category

Description

Prio
(single
systems)

Points

rel. Prio
SPL

Tool-Evaluation

++ high
+ medium
- low

DOORS
7.1

Caliber IRQA
RM v
2005 SP2

Requi
Line

DOORS
7.1

Caliber
RM v
2005 SP2

IRgA

Requi
Line

major problem. Suppliers have a strong
interest in data security, too

3.2.1.

Encryption

The information stored in the database of
the tool must not be readable to system
administrators or intruders.

0,20

3.2.2.

Encryption

The tool must allow all communication
between client and server to be
encrypted.

0,20

3.3.

Collaborat
ive Work

Collaborative
Work

There could be a comments or
discussion function tightly linked to the
requirements, but outside formal change
management. Users could add
comments to requirements and changes
to requirements

0,26

3.4.

Priorities

3.4.1.

Priorities

Explicit multi-dimensional prioritisation of
requirements with respect to
stakeholders

33

0,94

56

Aachener Informatik-Berichte

This list contains all technical reports published during the past bve years. A complete list
of reports dating back to 1987 is available from http://aib.informatik.rwth-aachen.de/

To obtain copies consult the above URL or send your request to: Informatik-Bibliothek,
RWTH Aachen, Ahornstr. 55, 52056 Aachen, Email: biblio@informatik.rwth-aachen.de

2001-01 Jahresbericht 2000

2001-02 Benedikt Bollig, Martin Leucker. Deciding LTL over Mazurkiewicz
Traces

2001-03 Thierry Cachat: The power of one-letter rational languages

2001-04 Benedikt Bollig, Martin Leucker, Michael Weber: Local Parallel Model
Checking for the Alternation Free mu-Calculus

2001-05 Benedikt Bollig, Martin Leucker, Thomas Noll: Regula MSC Languages

2001-06 Achim Blumensath: Pre“x-Recognisable Graphs and Monadic Second-
Order Logic

2001-07 Martin Grohe, Stefan Wohrle: An Existential Locality Theorem

2001-08 Mareike Schoop, James Taylor (eds.): Proceedings of the Sixthterna-
tional Workshop on the Language-Action Perspective on Communication
Modelling

2001-09 Thomas Arts, dirgen Giesl: A collection of examples for termination of
term rewriting using dependency pairs

2001-10 Achim Blumensath: Axiomatising Tree-interpretable Structures

2001-11 Klaus Indermark, Thomas Noll (eds.): Kolloquium Programmier-
sprachen und Grundlagen der Programmierung

2002-01 Jahresbericht 2001

2002-02 dirgen Giesl, Aart Middeldorp: Transformation Techniques for Context-
Sensitive Rewrite Systems

2002-03 Benedikt Bollig, Martin Leucker, Thomas Noll: Genealised Regular
MSC Languages

2002-04 dirgen Giesl, Aart Middeldorp: Innermost Termination of Context-
Sensitive Rewriting

2002-05 Horst Lichter, Thomas von der Maf3en, Thomas Weiler: Modelling Re-
guirements and Architectures for Software Product Lines

2002-06 Henry N. Adorna: 3-Party Message Complexity is Better than 2-Rrty
Ones for Proving Lower Bounds on the Size of Minimal Nondetermiistic
Finite Automata

2002-07 dHrg Dahmen: Invariant Image Object Recognition using Gaussian Mix-
ture Densities

2002-08 Markus Mohnen: An Open Framework for Data-Flow Analysis in Jaa

2002-09 Markus Mohnen: Interfaces with Default Implementations inJava

2002-10 Martin Leucker: Logics for Mazurkiewicz traces

2002-11 dirgen Giesl, Hans Zantema: Liveness in Rewriting

2003-01 Jahresbericht 2002

2003-02 dirgen Giesl, Reré Thiemann: Size-Change Termination for Term
Rewriting

2003-03 dirgen Giesl, Deepak Kapur: Deciding Inductive Validity of Equations

2003-04 dirgen Giesl, Reré Thiemann, Peter Schneider-Kamp, Stephan Falke:
Improving Dependency Pairs

2003-05 Christof Loding, Philipp Rohde: Solving the Sabotage Game is
PSPACE-hard

2003-06 Franz Josef Och: Statistical Machine Translation: From Single-Wadl
Models to Alignment Templates

2003-07 Horst Lichter, Thomas von der MaRen, Alexander NyRen, Thomas
Weiler: Vergleich von Ansatzen zur Feature Modellierung bei der Soft-
wareproduktlinienentwicklung

2003-08 dirgen Giesl, Reré Thiemann, Peter Schneider-Kamp, Stephan Falke:
Mechanizing Dependency Pairs

2004-01 Fachgruppe Informatik: Jahresbericht 2003

2004-02 Benedikt Bollig, Martin Leucker: Message-Passing Automata are gxes-
sively equivalent to EMSO logic

2004-03 Delia Kesner, Femke van Raamsdonk, Joe Wells (eds.): HOR 2004 .d 2n
International Workshop on Higher-Order Rewriting

2004-04 Slim Abdennadher, Christophe Ringeissen (eds.): RULE 04 .. ftRiln-
ternational Workshop on Rule-Based Programming

2004-05 Herbert Kuchen (ed.): WFLP 04 ... 13th International Workshop on
Functional and (Constraint) Logic Programming

2004-06 Sergio Antoy, Yoshihito Toyama (eds.): WRS 04 ... 4th Internaihal
Workshop on Reduction Strategies in Rewriting and Programming

2004-07 Michael Codish, Aart Middeldorp (eds.): WST 04 ... 7th Internabnal
Workshop on Termination

2004-08 Klaus Indermark, Thomas Noll: Algebraic Correctness Proofs for @m-
piling Recursive Function De“nitions with Strictness Info rmation

2004-09 Joachim Kneis, Daniel Mlle, Stefan Richter, Peter Rossmanith: Param-
eterized Power Domimation Complexity

2004-10 Zinaida Benenson, Felix C. @itner, Dogan Kesdogan: Secure Multi-
Party Computation with Security Modules

2005-01 Fachgruppe Informatik: Jahresbericht 2004

2005-02 Maximillian Dornseif, Felix C. Gartner, Thorsten Holz, Martin Mink: An
O ensive Approach to Teaching Information Security: sAachen Summer
School Applied IT SecurityZ

2005-03 dirgen Giesl, Reré Thiemann, Peter Schneider-Kamp: Proving and Dis-
proving Termination of Higher-Order Functions

2005-04 Daniel Mille, Stefan Richter, Peter Rossmanith: A Faster Algorithm for
the Steiner Tree Problem

2005-05 Fabien Pouget, Thorsten Holz: A Pointillist Approach for Comparing
Honeypots

2005-06 Simon Fischer, Berthold \6cking: Adaptive Routing with Stale Infor-
mation

2005-07 Felix C. Freiling, Thorsten Holz, Georg Wicherski: Botnet Traking:
Exploring a Root-Cause Methodology to Prevent Distributed Denial-of-
Service Attacks

2005-08

2005-09

2005-10
2005-11

2005-12

2005-13
2005-14
2005-15
2005-16
2005-17

2005-18

2005-19

2005-20

2005-21

2005-22

2005-23

2005-24

2006-01
2006-03

2006-04

2006-05

2006-06

Joachim Kneis, Peter Rossmanit A New Satis“ability Algorithm With
Applications To Max-Cut

Klaus Kursawe, Felix C. Freiling: Byzantine Fault Tolerance on General
Hybrid Adversary Structures

Benedikt Bollig: Automata and Logics for Message Sequence Charts
Simon Fischer, Berthold \6cking: A Counterexample to the Fully Mixed
Nash Equilibrium Conjecture

Neeraj Mittal, Felix Freiling, S. Venkatesan, Lucia Draque Paso: Ef-
“cient Reductions for Wait-Free Termination Detection in F aulty Dis-
tributed Systems

Carole Delporte-Gallet, Hugues Faconnier, Felix C. Freiling: Revisiting
Failure Detection and Consensus in Omission Failure Enviroments
Felix C. Freiling, SukumarGhosh: Code Stabilization

Uwe Naumann: The Complexity of Derivative Computation

Uwe Naumann: Syntax-Directed Derivative Code (Part I: Tangent
Linear Code)

Uwe Naumann: Syntax-directed Derivative Code (Part Il: Intraproce-
dural Adjoint Code)

Thomas von der MaRen, Klaus Miler, John MacGregor, Eva Geis-
berger, Jrg Dorr, Frank Houdek, Harbhajan Singh, Holger Wu3mann,
Hans-Veit Bacher, Barbara Paech: Einsatz von Features im Software-
Entwicklungsprozess - AbschluBberichdes Gl-Arbeitskreises *FeaturesZ
Uwe Naumann, Andre Vehreschild: Tangent-Linear Code by Augmead
LL-Parsers

Felix C. Freiling, Martin Mink: Bericht “uber den Workshop zur Ausbil-
dung im Bereich IT-Sicherheit Hochschulausbildung, beru’iche Weiter-
bildung, Zerti“zierung von Ausbildungsangeboten am 11. urd 12. Au-
gust 2005 in Koln organisiert von RWTH Aachen in Kooperation mit
BITKOM, BSI, DLR und Gesellschaft fuer Informatik (Gl) e.V.

Thomas Noll, Stefan Rieger: Optimization of Straight-Line Code Reis-
ited

Felix Freiling, Maurice Herlihy, Lucia Draque Penso: Optimal Random-
ized Fair Exchange with Secret Shared Coins

Heiner Ackermann, Alantha Newman, Heiko Rglin, Berthold V'ocking:
Decision Making Based on Approximate and Smoothed Pareto Crves
Alexander Becher, Zinaida Beneson, Maximillian Dor nseif: Tampering
with Motes: Real-World Physical Attacks on Wireless Sensor Networks
Fachgruppe Informatik: Jahresbericht 2005

Michael Maier, Uwe Naumann: Intraprocedural Adjoint Code Geneated
by the Di erentiation-Enabled NAGWare Fortran Compiler

Ebadollah Varnik, Uwe Naumann, Andrew Lyons: Toward Low Static
Memory Jacobian Accumulation

Uwe Naumann, Jean Utke, Patrick Heimbach, Chris Hill, Derya Ozurt,
Carl Wunsch, Mike Fagan, Nathan Tallent, Michelle Strout: Adjoint
Code by Source Transformation with OpenAD/F

Joachim Kneis, Daniel Mille, Stefan Richter, Peter Rossmanith: Divide-
and-Color

2006-07

2006-08

2006-09

2006-10

2006-11

2006-12

Thomas Colcombet, Christof loding: Transforming structures by set
interpretations

Uwe Naumann, Yuxiao Hu: Optimal Vertex Elimination in Single-
Expression-Use Graphs

Tingting Han, Joost-Pieter Katoen: Counterexamples in Probabilistic
Model Checking

Mesut Gines, Alexander Zimmermann, Martin Wenig, Jan Ritzerfeld,
Ulrich Meis: From Simulations to Testbeds - Architecture of the Hybrid
MCG-Mesh Testbed

Bastian Schlich, Michael Rohrbach, Michael Weber, Stefan Kowelvski:
Model Checking Software for Microcontrollers

Benedikt Bollig, Joost-Pieter Katen, Carsten Kern, Martin Leucker:
Replaying Play in and Play out: Synthesis of Design Models fom Sce-
narios by Learning

These reports are only available as a printed version.
Please contactbiblio@informatik.rwth-aachen.de to obtain copies.

