
 Aachen

Department of Computer Science

Technical Report

Report of the GI Work Group
“Requirements Management Tools for
Product Line Engineering”

Danilo Beuche, Andreas Birk, Heinrich Dreier,
Andreas Fleischmann, Heidi Galle, Gerald Heller, Dirk Janzen,
Isabel John, Ramin Tavakoli Kolagari,
Thomas von der Maßen (Ed.), Andreas Wolfram

ISSN 0935–3232 · Aachener Informatik Berichte · AIB-2006-14

RWTH Aachen · Department of Computer Science · December 2006

 2

The publications of the Department of Computer Science of RWTH Aachen
(Aachen University of Technology) are in general accessible through the World Wide Web.

http://aib.informatik.rwth-aachen.de/

 3

Contents

1 Introduction..4

1.1 Background ...4
1.2 Motivation..4
1.3 Organization of Work Group ...5
1.4 Aims and Approach...6

2 Related Work..6

2.1 Work of the Previous Working Group ...6
2.2 Other Tool Evaluations..7

3 Documentation of Tool Scenarios ...8

3.1 hp ..9
3.2 Harman/Becker ...11
3.3 Continental Temic ...13
3.4 RWTH Aachen University ...15
3.5 Variability-Oriented Reuse of Functional Requirements in the Framework of a Function

Signal Network in Telelogic DOORS – Current Research Approach at DaimlerChrysler
..17

3.5.1 Variability in the Function Signal Network (FSN) ...18

4 Requirements for Requirements Management Tools in the Context of

Product Line Engineering...20
4.1 Starting Point...20
4.2 New and Changed Requirements...21

4.2.1 New Requirements Related to Variability...22
4.2.2 Relationships to Product and Project Management ...22

4.3 Prioritization of Requirements for the Context of Product Lines.....................................24
4.3.1 Particular Priorities in a Product Line Context..24
4.3.2 Product-Line-Specific Priorities per Requirements Group25

5 Evaluation of Tools ...29

5.1 Explanation of the Evaluation Approach...29
5.2 Visualization ..30

6 Summary and Future Work...33

7 References ...35

8 Appendix ..35

 4

1 Introduction

1.1 Background

Why should we pay more attention to a product line requirements management process than
to a single project environment and why is requirements management for product lines very
much more difficult than for a single project environment?

The question is easy to answer. As time goes by, customer requirements change, and so the
product itself will change as well to satisfy the customer’s needs. A feature that was
revolutionary a few years ago is now standard and may become obsolete in the future.

Like the product itself, the specifications for it will change, evolve and vary as well.

In order to keep track of the changes and to control and categorize our requirements, we need
requirements management tools. Most of the requirements management tools on the market
are focused on a one-project scope. But efficient product development will need to re-use as
many components as possible to keep expenses low for new developments. Reuse by copying
all components of a previous product to form the basis of a new one is a pragmatic approach,
but it is unsystematic and short-time oriented. If the number of product derivates increases, it
is almost impossible to select the best matching template for a new product in the family tree.
Total re-use is one of the goals of product line development, meaning that the components
must not only be copied but actually shared among several subprojects. But the product will
not only consist of the shared requirements, some of them will be specific. Commonality and
variability are the magic words that modern product development has to deal with.

In software development, these mechanisms are likely to be implemented in object-oriented
programming languages. Classes can be derived from other classes by inheritance of the
attributes and methods, with the possibility of overloading their methods to implement the
differences between the derived and the base class.

But requirements management for product lines has more needs. The differences between one
derivate and another may consist in:

• changed requirements
• obsolete requirements
• additional requirements

The single fact that requirements can change and different versions of the same requirement
are part of two derivates of a product makes high demands on requirements management tools
and their configuration management functionality.

1.2 Motivation

The report bases on research findings of a previous working group (see the next section for
details) identifying essential challenges in the context of requirements engineering and
software product lines. In [7] major challenges in product line engineering are presented:

 5

• Justification of the platform approach as a process model by a cost / benefit-analysis
• Independent platform team
• Cooperation between platform and product development teams
• Proof of justification of the platform team
• Communication overhead
• Configuration management
• Influence of the architecture on requirements negotiation
• Description of variability for domain analysis
• Domain analysis and domain description
• Explicit requirements process
• Sequence of integrating requirements into the platform
• Explicit prioritization of requirements
• Realization of platform requirements in products
• Use of the architectural advantages
• Description of the generic architecture
• Effective tool support

We decided to investigate the challenge of effective tool support for several reasons:

• Until now there does not exist any systematic analysis of requirements for product line
tools.

• Tools play the key role when installing a new approach (like product lines) because
tools are a cross sectional issue. If people are convinced from the effectiveness and
usability of the tools then they will also be more willing to support the overall process
– which is in fact represented by the tools.

In a methodical investigation on the product line approach tools are not important, but to
bring a product line approach to live in practice, tools become crucial. A bad implementation
or missing requirements may result in a destruction of the whole product line approach. So we
started from this point of view and gathered key requirements for requirements management
tools supporting software product lines. The report is oriented at practical issues and tries to
support product line approaches in industrial settings. The requirements are quite abstract and
don’t describe technical solutions. They are thought of as a list of demands that a tool
developer can take as a starting point and that can be refined. The motivation of this working
group is to initialize a discussion on this (often neglected) topic and to push the convincing
product line approach one step forward into the direction of a wide-spread industrial usage of
software product lines.

1.3 Organization of Work Group

The working group ‘Requirements Management Tools for Product Line Engineering’ was set
up in January 2004. It is the successor of the working group ‘Requirements Engineering for
Product Lines’, which completed its work successfully in December 2003.

The working group met eleven times, i.e. every two months, to find an answer to the question
‘at which functionality do state-of-the-art requirements management tools lack for product
line development?’ Actually, requirements management tools lack for most product line
techniques, which means that complicated workarounds or more flexible tools like Word or
Excel are necessary to analyze and manage requirements in a product line context.

 6

The members of the working group are:

• Dr. Danilo Beuche, pure-systems GmbH
• Dr. Andreas Birk, sd&m AG
• Dirk Janzen, Automotive Systems GmbH
• Heinrich Dreier, SYNSPACE GmbH
• Heidi Galle, Conti Temic microelectronic GmbH
• Andreas Wolfram, Conti Temic microelectronic GmbH
• Gerald Heller, Hewlett Packard GmbH
• Dr. Ramin Tavakoli Kolagari, Technical University of Berlin
• Isabel John, Fraunhofer IESE
• Andreas Fleischmann, TU München
• Thomas von der Maßen, RWTH Aachen

1.4 Aims and Approach

The objective of this working group was to define the typical features required by product line
development and to analyze and select existing tools on the market that are suitable for
product line requirements management. To achieve this, we organized our work into the
following steps:

1. Analysis of existing publications
2. Collection of real use scenarios for requirements engineering tools in a product line

environment
3. Derivation of product line requirements
4. Proposal for functionality in requirements engineering tools regarding product line

needs
5. Benchmark of existing requirements engineering tools regarding these requirements

2 Related Work

2.1 Work of the Previous Working Group

This work group, which deals with tool aspects for requirements engineering in the context of
product line engineering, is the successor of a previous working group, where aim was to
identify the main problems in product line development. This previous work group, set up in
2000, comprised representatives of the following organizations: Robert Bosch GmbH,
Hewlett-Packard, Fraunhofer IESE, University of Aachen (RWTH Aachen), and sd&m AG.
These organizations shared an interest in the topic of requirements engineering for product
lines and set out to identify the key problems in product line engineering practice along with
potential (and proven) solutions. While the group’s work focused exclusively on requirements
engineering issues, it soon became clear that they would have to adopt a broader approach,
given the close interconnection of requirements engineering with other issues in a product line
context. They provided an overview of the main problems in product line development (cf.
previous section), which could be organized to the following four main problem categories:

 7

(1) organization and management,
(2) requirements engineering,
(3) product-specific vs. platform-specific interests, and
(4) architecture.

These categories were the result of systematic collection and clustering of known problems
the members of the working group. Based on their own experience as well as their
understanding of the technology, the members of the working group derived and described
potential solutions for the main problems. The group concluded its work in 2003. The results
are documented [7] and the report (approx. 55 pages) can be downloaded at

• http://www.iese.fhg.de/Pulse/Activities/RE4PL.html or directly at

• http://www.iese.fhg.de/pdf_files/iese-121_03.pdf

2.2 Other Tool Evaluations

The Software Engineering Institute (SEI) at Carnegie Mellon University has a long tradition
of product line research. In 2002, it conducted a survey asking 31 companies, about their
strategies for dealing with product lines, which tools they used for product lines and how they
used them. The report from this survey (approx. 70 pages) can be viewed at

• http://www.sei.cmu.edu/publications/documents/02.reports/02tn017.html

The ‘Virtuelles Software-Engineering Kompetenzzentrum’ has made a summary of the tool
aspects of the SEI survey. It shows that in 2002, the tools used in requirements engineering
for product lines were mainly proprietary tools; the most widely used commercial tools were
Requisite Pro (27%), Doors (19%), and Slate (3%). The Summary (approx. 1 page) can be
viewed at

• http://www.software-kompetenz.de/?16937

In 2003, the SEI held a workshop that “explored the area of tool support for product lines with
representatives from technically sophisticated organizations, having direct experience in
software product lines”. They identified and discussed hot issues of software product line
tools. The report (approx. 45 pages) can be viewed at

• http://www.sei.cmu.edu/publications/documents/00.reports/00tr002.html

Since there is a continuous development in both tool support and product line methods, the
results of this survey are of limited utility for the evaluation of current tools.

The International Council on Systems Engineering (INCOSE) has a requirements
management tools survey site dating back to the 1990s. They have published and still
maintain a table evaluating some 30 requirements management tools along with about 15
detailed attributes. However, since the vendors are evaluating their own products, the results
of this evaluation should be treated with caution. The results of the survey can be viewed at

• http://www.paper-review.com/tools/rms/read.php

 8

One weakness of the INCOSE evaluation is that the tools are evaluated not by users but by
their vendors. Also, the survey focuses exclusively on requirements engineering; specific
product line aspects are not yet covered.

In 2003, the European research project CAFÉ provided a list of tools used for product line
engineering, including some of these tools’ deficiencies. They list 31 product line tools,
including about ten requirements tools: “This document collects the knowledge of the CAFÉ
partners with respect to the tools available for product family engineering development. It
lists the tools used for product family engineering by CAFÉ partners.” Two major issues were
covered: first, analysis of the available tools for product family development, and second,
elicitation of requirements regarding the functionalities potential tools should provide. This
list can be viewed at

• http://www.esi.es/en/Projects/Cafe/board.html

The Atlantic Systems Guild offers “a survey of requirements engineering tools [that] gives
you a review of most of the current tools.” It covers a broad selection of requirements
management tools and is frequently updated. However, no specific product line aspects are
covered in this list. The survey can be viewed at

• http://www.volere.co.uk/tools.htm

In 2004, the computer magazine IX conducted a study of the eight major requirements
engineering tools: Borland CaliberRM, Compuware Reconcile, IBM RequisitePro, NCH
Miro.BAS, Polarion, QA Systems IRqA, Serena RTM Workshop, and Telelogic DOORS.
The results of this study are not freely available, but can be downloaded for about 400€ at

• http://www.heise.de/kiosk/special/ixstudie/05/01/

Unfortunately, this study focuses exclusively on requirements engineering. It does not cover
specific aspects of product line engineering.

At DaimlerChrysler, a research team has developed a schema for evaluating requirements
engineering tools. Our work group has adopted this evaluation schema and extended it to
cover product line aspects, too [2].

3 Documentation of Tool Scenarios

In this section, we describe scenarios of the adoption and use of tools in the context of product
line engineering. The collected scenarios are not fictitious but describe real practice based on
daily routine of members of the work group. The scenarios thus reflect real problems in the
context of product line engineering. All the scenarios describe problems that arise during the
modeling and management of information, with a focus on modeling and managing
requirements. The problems arise because a specific tool does not fully support the desired
modeling or management activities.

The descriptions of the scenarios cover the following aspects:

1. The development context in which the tool is used

 9

2. Efficient und practicable handling of the used tool in the specific context
3. Workarounds, if the tool support is unsuitable

As all the scenarios are written by experts who use the tool in their daily work, the scenarios
provide a good insight into the functionality provided by the selected tool, what functionality
is lacking and what practicable workarounds can be performed.

The descriptions of the scenarios are designed to provide:

1. A documented and comprehensible description of typical use scenarios for selected
tools.

2. A catalogue of requirements for tools that must be implemented in order to support
product line engineering.

While the documented scenarios are valuable in themselves, they also help in deriving new
requirements for tools. The derived requirements are documented in Section 4.

The documented scenarios comprise the following:

• Using CaliberRM at hp’s OpenView Business Unit
• Using IRqA at ContiTemic
• Using RequiLine, a university prototype of a requirements engineering tool for

product lines
• Using DOORS in a current research approach at DaimlerChrysler

3.1 hp

by Gerald Heller

hp is a technology solutions provider for consumers, businesses and institutions globally. The
company offers a range of products and services from IT infrastructure, personal computing
and access devices to global services and imaging and printing for individual consumers as
well as for small and medium-sized businesses. For more details, visit hp’s website at
http://www.hp.com. The OpenView Business Unit is a part of hp’s global software
organization. OpenView has more than 15 years’ experience in developing IT management
software. The OpenView product line consists of a variety of products in the areas of network,
storage, systems and service management. See http://openview.hp.com for details.

The OpenView organization develops its product line concurrently at different locations
around the world. In the early years, the OpenView product line started with independently
developed products in the area of network and systems management. These products proved
to be extremely useful for customers and the product line was therefore extended over a
period of many years. OpenView products are typically multitier products (UI clients,
management servers, database servers and agents). The products support a wide range of
operating-system platforms.
A suite of new products has supplemented this product line over the years, some were
developed in-house, others acquired externally. With time, the following challenges became
increasingly apparent:

• Products started to overlap in functionality.

 10

• Customers who bought more than one product faced with consistency and efficiency
problems.

• Development and maintenance costs rocketed.

Given this situation OpenView’s management decided to reengineer the products into a more
tightly integrated product family. The driving goals were:

• Time to value
(Fast and easy deployment, common configuration)

• Cost of ownership
(Minimal training and operation cost for IT personnel)

• Offering solutions and services
(Provide a tightly integrated suite of products from which customers create a solution
to address their specific business needs

Around 1999, the development paradigm was changed to a model in which reusable
components with a shared data model are developed. Besides changes in organization, new
processes and tools were also introduced to support this model.

Requirements engineering and management was one of the main improvement areas.
Standard training sessions were organized at different sites to achieve a common skill base
across the organization. The Volere Requirements Template (see [10]) was selected as a
standard requirements structure for all projects. Borland’s requirements management tool
CaliberRM Borland [1] was chosen to support the distributed development needs of the
organization. The tool was customized to ensure that every project had the same requirements
structure by applying the Volere Requirement Template structure. Each requirement type in
Volere is represented by one requirement type in the tool. The Volere requirements shell was
also translated into the tool’s capabilities.

Having the same structure applied in each project enables easy navigation between different
projects, minimizes training needs and facilitates the sharing of requirements.
Our basic principles for the requirements process and tool were:

• allow broad sharing of information
• promote consistency to support efficiency, sharing and reporting
• enable flexibility
• allow individual empowerment

The application of these principles means that all workers with a requirements management
tool account have access to all information. This includes workers from a wide range of
departments, e.g. product development, product marketing, information engineering
(documentation), support and testing. The entity to be managed in the tool (called project)
may be a solution, product, component or a shared area. Requirements can be traced from
products to shared components in order to support product line planning and monitoring.
Specific projects were created to support more generic requirements which apply for a certain
set of products or components. In these projects, shared requirements are specified and
maintained once only; the individual projects merely need to refer (trace) to the global
requirement.

 11

The tool offers some basic functionality. hp developed additional add-ins and domain-specific
reporting to increase the value for users of the requirement infrastructure. From a product line
perspective, the tool should provide more efficient traceability mechanisms. Also, the
management of shared requirements can be improved. The tool’s limitations forced us to still
use spreadsheet tables for multidimensional operational requirements.

The requirements process has constantly evolved, incorporating the experiences of past
projects. hp has established a requirements process framework that is customized for
individual project types. This process framework provides useful guidelines on how to
establish consistent and efficient requirements processes for the whole product line.

3.2 Harman/Becker

Harman/Becker Automotive Systems GmbH develops and manufactures infotainment
systems at many locations worldwide. These systems incorporate the following elements are
made up of radio, TV, CD/DVD player, phone and navigation. The systems are developed
and manufactured as supply parts for car manufacturers or original equipment manufacturers
(OEM) as well as systems for the consumer market.

Becker has a very long tradition of developing and manufacturing car radios dating back to
before 1950. In 1995, Becker was taken over by Harman International. In recent years, several
mergers have brought new know-how to the group.

Since the 1980s, software has accounted for a constantly growing share of overall
development effort. Today, this share is more important than hardware and mechanical
components taken together.

Infotainment systems are complex, embedded systems with multiple external and internal
interfaces. Requirements specifications for a single system comprise several thousand files.
Requirements specifications for OEM systems are usually drawn up by the car manufacturer.
such specifications differ in many ways:

• The requirements specifications of different manufacturers vary in their structure and
level of detail.

• Some specifications are highly inhomogeneous.

• Different parts of the specifications are often written in different departments of the
car manufacturer. This usually leads to inconsistencies.

The requirements specifications are normally delivered as a set of files (Microsoft Word,
Microsoft Excel, Adobe Acrobat, etc.).

Requirements management tools for exchanging requirements specifications with suppliers
are have been used by one car manufacturer for about two years now. Other car manufacturers
have followed this example but use other exchange processes and formats. Telelogic DOORS
is widely used by car manufacturers for requirements management. All manufacturers use
DOORS in different ways. No manufacturer currently uses DOORS to manage all
requirements specifications. Individual manufacturers have also developed their own specific
exchange processes. At first sight, a single tool might be expected to produce a single

 12

exchange process. Unfortunately, the use of a single tool does not result in a single process in
requirements management and exchange.

During development of the system, usually a period of several years, the requirements
specifications undergo numerous changes. Some of these changes are submitted as explicit
change requests, or implicitly as new document versions or file versions. Analyzing such
changes and their impact involves considerable effort.

Traditionally, the systems for different series of different car manufacturers (OEMs) have
been developed by independent projects there was. Some technology transfer from products
that were developed for the consumer market. Similar developments in different projects still
remained a risk, however.

To avoid parallel development, a common platform has recently been developed to make
available basic functions for all customer-specific development projects. From a requirements
management view, two tasks have to be performed:

• Identification and description of common requirements for the platform

• Matching customer-specific requirements to the platform requirements

The complexity of this task grows owing to the continuous changes in the requirements for
both the platform and the customer-specific systems.

To summarize: requirements management covers the following main areas:

• Management of requirements documents

• Management of changes to requirements documents

• Exchange of requirements documents with car manufacturers

• Identification of requirements for the platform

• Matching requirements from car manufacturers to platform requirements

 13

3.3 Continental Temic

by Heidi Galle

 and Andreas Wolfram

Continental AG, based in Hannover, Germany was founded in 1871 and operates worldwide
as leading automotive supplier with 80,000 employees at the end of 2005
Continental Temic, the provider of high-quality automotive electronics is today part of
Continental Automotive Systems, a corporate division of Continental AG.
In 2002, the business unit ‘Body Electronics’ started implementation of a tool based,
structured requirement management process. First of all, the needs of product line
development was taken into account by changing the organisational structure into the so
called ‘competence centres’, reflecting different product lines as shown in figure 1 below.

Figure 1: organizational structure of the business unit ‘body electronics’

The challenge of requirements management of several Product Lines for different customers
was to handle many reusable set of requirements. Reusability not only considered for a special
product line, each intersection between two sets of requirements has to be analyzed for reuse
A customer project means development of several variants of the product for the customer.

The tool should solve the following challenges:

• General Rules from customers (non functional quality requirements, environment
requirements…) are valid for all projects of this customer.

• General internal rules (quality rules, development process rules, …)

 14

• Product line requirements for each project of an product line (reusable components)
• Project specific requirements which are only valid for this product
• Variant requirements, which are valid for special variants of an product
• Type or model based requirements which are valid for all products for a special series

type or model of a car (p.e. S-model of DC)

As result of a tool evaluation, IRqA [3] seemed to be the best solution for the business unit. A
single database, accessible from all involved Stakeholders was the approach. All
Requirements reside in this database and a project is a subset of the database content IRqA
has the ability to build a graphical, standard requirement model as guidance for all projects.
Requirements have a specific type with a special set of attributes. As shown in the figure
below, for example the requirements R5, R6 and R7 belong to project A and project B. The
yellow and red ones can belong to project A, the red ones and the dark blue ones can belong
to project B. The project leaders decides over a mapping to domains which requirements are
visible in the project, this is represented with the bubbles. Over several user groups and their
access rights on the different set of requirements (mapped to partitions) the requirements get
visible and/or writable in the project. In this example a project A developer (Usergroup 1)
needs access rights on the yellow and the red requirements.

The same mechanism is used to construct attributes of project A, project B and attributes
belonging to both projects.

Figure 2: database organization

This is a very simple example. To manage all of the intersections which belong to a project, it
is important to decide which set of requirements are worth to be reused. The complexity of
managing the shareable sets of requirements should be as small as possible and as big as
necessary.

 15

What happens if a special version perhaps version 2 of requirement R5 is valid for project A
and the version 2.1 of the same requirement belongs to project B. To change a common
shared requirement isn’t solved really in the RM Tool, there is no possibility to branch and
merge this requirement. The interface to the Configuration Management Tool doesn’t offer a
solution for this as well, but state of the art is that Configuration Management Tools can’t
manage objects; they can manage files and their changes. So at the moment, there is only the
possibility to create a new requirement instead of a new version of the requirement, the red
requirements become a yellow and a blue one.

Another problem to handle common requirements is that you need a person in charge for the
shared set of requirements, an independent requirements engineer for the ‘basic project’ is a
must. If there is no basic group which develops such requirements you never gets shareable
project independent requirements, the project members have to develop their project and
nothing else. If you look in the first picture you can see that we have no such persons or
groups in our organization.

The challenge to develop and work with shared requirements in different projects for several
customers can only be solved with a product line Requirements Management Tool and an
adequate organizational structure.

3.4 RWTH Aachen University

by Thomas von der Maßen

One research project of the “Software Construction Research Group” at the University of
Aachen is concerned with the requirements engineering of software product lines. A special
focus of the project is modeling variability within requirements. As variability is a key aspect
distinguishing product lines from individual products, it must be identified and explicitly
modeled during the requirements engineering processes of product line development. The
research group uses feature models to model variability within requirements.

A feature model captures requirements in terms of features. Typically, a feature is an
abstraction from several requirements. A so-called platform feature model (PLFM) contains
all identified features that are relevant to the whole product line and structures them
hierarchically in a tree. Furthermore, variability is expressed by so-called domain
relationships between features and feature attributes. The PLFM is part of the platform
requirements specification. From the common PLFM, so-called product feature models
(PFMs) can be derived. The derivation is performed by binding the variation points, i.e.
selecting features that should be part of the PFM and by setting values of feature attributes. A
derived PFM is part of a product requirements specification.

While much research effort has been expended on modeling of different variability types and
investigating derivation processes, the quality criteria that a PLFM must satisfy have so far
been neglected. A requirements specification for individual products should be correct,
unambiguous, complete, consistent, ranked, verifiable, modifiable and traceable, and this also
applies to PLFMs. The research group therefore investigated how variability influences the
above-mentioned attributes, and how the attributes can be applied to a PLFM.

As current requirements engineering tools support neither the necessary variability concepts,
multi project specifications nor the analysis of platform specifications, the Software

 16

Construction Research Group developed RequiLine, a prototypical requirements engineering
tool for product lines. RequiLine allows the modeling of requirements in terms of features and
natural-language requirements. A detailed description of the provided functionality can be
found in [6] and [9]. The use of RequiLine is not restricted to a special requirements
engineering method or development approach. RequiLine thus supports requirements
engineering for product lines using a proactive or reactive approach. A typical use scenario is
described below:

1. The administrator creates a new product line project.
2. The administrator creates the required user accounts and assigns roles to them to grant

privileges.
3. The analysts develop a PLFM for the product line by

a. modeling features
b. structuring features through domain relationships
c. modeling variation points
d. modeling dependencies between features

4. Optionally, the analysts write natural-language requirements and associate them with
features. Natural-language requirements can be used to describe features in more
detail.

5. The analysts verify and validate the PLFM using
a. the query interface to create user-defined queries
b. the consistency checker to check the PLFM’s consistency
c. the metric interface to reveal information about the PLFM’s flexibility

(variation degree) and appropriateness
6. The analysts derive PFMs from the PLFM following

a. an explorative approach: the analysts create a new product and add features
from the PLFM to the PFM using the feature selection interface and
parameterize selected features by setting values of their attributes. A
subsequent consistency check of the PFM must be performed to guarantee the
consistency and completeness of the PFM with respect to the PLFM.

b. a guided approach: the analysts derive a new product by using the product
configuration wizard. The wizard guides users through the PLFM and requests
them to resolve variation points, regarding the semantics of the variation points
and modeled dependencies. The wizard ensures a consistent and complete
PFM.

Typically, the steps described above are not carried out sequentially but in a highly iterative
manner.

RequiLine has been evaluated in several projects in cooperation with industrial and academic
partners. It supports the requirements engineering process by providing the necessary
variability concepts and analysis functions.

 17

3.5 Variability-Oriented Reuse of Functional Requirements
in the Framework of a Function Signal Network in
Telelogic DOORS – Current Research Approach at
DaimlerChrysler

by Ramin Tavakoli Kolagari, Matthias Hoffmann, Johannes Fasolt

DaimlerChrysler is a premium car manufacturer developing automobiles for a global market.
DaimlerChrysler’s global presence and its innovation-oriented brand mean that development
activities must meet two essential challenges of a worldwide market. First, the cars’ features
must be innovative and manifold and at the same time take account of current trends in the
different markets. Second, the cars must be developed in short development cycles and to a
high level of quality. To meet these challenges, development activities must be reuse-oriented.
Since the actual development process of a car manufacturer typically takes place on the level
of requirements (that are passed on to suppliers for implementation), requirements
specifications for different car series must be of high quality and at the same time rapidly
produced. This is only possible with systematic reuse approaches.

This section motivates, why developing requirements for electronic control units (ECUs) for a
wide platform of different model ranges each comprising a whole bunch of model range
specific variability is a challenging task for automotive original equipment manufacturers
(OEMs). Furthermore it is shown how current shortcomings of requirements specifications
can be overcome by using a product line oriented concept called Function Signal Network
(FSN). Section 3.5.1 looks at a FSN in more detail and explains its use in the tool DOORS.

Variability of functions in automotive ECUs depends on different car configurations or
optional equipment that can vary from one model range to another. The functions are
networked and thus constitute a complex web of dependencies. Since OEMs develop most of
their ECUs with the help of suppliers, their main interest is to develop the requirements for
the ECUs on a concrete level consistent with the specific goals of their organization.
Requirements constitute the main interface between a supplier and OEMs and thus the right
level of concretion for the description of requirements must be met such that an integration of
the resulting ECUs into the vehicle can be realized. Many functions do not vary much from
one model range to another, but innovative functions are often developed that are not in the
focus of the presented concept. Nevertheless, the system design can differ greatly, which
means that the distribution of functions over the ECUs of different model ranges changes.
Analyses conducted at DaimlerChrysler show that requirements described independently of a
specific hardware or software design have significantly higher reuse potential than design-
oriented requirements. Typically, requirements documents are described more concretely than
characteristic requirements like features, describing functions from a customer’s point of view
and that are the basis for management decisions. Hence, requirements documents exhibit a
developer-centric technical view of functions. These functions consist of subfunctions that
communicate with one another by means of signals.

Reuse can be established mainly in the dimension ECU1-ECU2, describing the variability
between different ECUs with respect to time, model range or configuration. In the context of
OEMs, handling variability is even more complex than in classic variability problems because
the kind of variability here is two-layered here: classic variability problems encompass a set
of products that share certain features and have differences. Differences must be made visible
and an easy way to do so is by using feature diagrams, as proposed in [5]. In the automotive

 18

domain, this level of variability is in the automotive domain only the first layer; variability
within a model range with respect to country variants, optional equipment, body variants …
This kind of variability we call model-specific variability. But the need to reuse goes beyond
model ranges – in fact, the need to reuse requirements for an OEM arises because of the
necessity of managing these different model ranges. And model ranges differ from one
another with respect to their different features, different technical environments and different
management decisions – and they also differ with respect to different model-specific
variabilities, e.g. optional equipment may become a mandatory feature from one model range
to another one. This kind of variability is called model-independent variability.

To systematically support reuse within an OEM, it is important to develop a process to handle
this two-layered variability and to have reliable tools at hand to support this process. In the
context of this report, we are unable to present the process in detail, but we sketch the use of
DOORS in the described scenario. Please note that the proposed ideas are still being
developed and reliable practice experience was not available on publication of this report.

The basic approach to managing the two-layered variability is to construct a Function Signal
Network (FSN) comprising a set of functional requirements or functions with input and
output ports for signals. To facilitate reuse, functions are described independently of any
specific design and subfunctions are structured in such a way that they can be easily
composed to functional specifications. To support the developer of an FSN, we have
developed a set of rules, including examples, patterns and instructions. Functions embrace the
functionality of the selected ECUs for all model ranges, i.e. the FSN library is on the level of
model-independent variability. Some subfunctions of the FSN directly represent a feature and
can thus be identified as part of a model-specific specification. Other subfunctions are needed
to ensure the correct interaction of already selected subfunctions and can be identified by the
selected signals until all communication relationships are complete (for every selected signal
there exists a generating function, which can be within the system or part of the system
interface, and a consuming function, again either part of the system or of the system
interface).

3.5.1 Variability in the Function Signal Network (FSN)

This section presents the elementary objects of an FSN library (the functional requirements)
and the rules for combining these objects into a model-specific specification. It is concrete
and very detailed and addresses readers who wish to deepen their understanding of an FSN.

Modeling with a FSN library

Functions are represented as objects with a unique identifier, textual description and relations
to signals. A function may be linked to an arbitrary number of input signals and output
signals. Noninstantiated functions in the FSN library include input and output ports for
signals, either obligatory or optional.

Signals are described as objects with a unique identifier. A signal may be linked from an
arbitrary number of functions as input as well as output. In a correct instantiation of the FSN
into a model-specific specification, each signal may only be generated once as output.
Variability in the library of FSN objects is described as a property of the use of signals by
functions, which is represented as a relation. A signal may be used obligatorily or optionally

 19

by a function (with respect to its port). The influence of the presence or absence of an optional
signal on a function is only visible in its textual description.

The starting point for an instantiation of an FSN into a model specific specification is a set of
abstract features that are initially selected. The instantiation now becomes tricky because
further variability occurring during the instantiation process must be properly managed: all
the decisions made during the instantiation must be consistent and the algorithm leading a
user through the possible flat tree of hierarchy in the FSN library must enable the user to jump
back to each decision and undo the set of following decisions. Because of the net of
relationships between the objects describing all implicit dependencies, we have the problem
that there is no deterministic way through the tree of objects, which means that the decisions
made may preclude possible subsequent decisions that the user wishes to make. However we
don’t wish to deepen the discussion about the requirements regarding an algorithm for a
product line wizard because this is currently a broadly discussed problem in the community
developing tools for product lines (e.g. [4]).

During the instantiation process, the features must therefore be deduced into one or more
functions. There exists an Or-relationship between features and their deducible functions.
For an instantiation of a specific FSN from the library, we assume an initial feature selection.
The user decides

• for each selected feature, which deducible functions are to be instantiated for the
specific FSN, in which at least one function must be deduced for each selected feature

• for each optional signal usage of the selected functions, if they are part of the
instantiated FSN,

• for each signal, if it is generated within the FSN (as a unique output signal) or if it is
part of the system’s interface and is thus generated beyond the borders of the system

• for each signal, if it is consumed within the FSN (as an input signal) or if it is part of
the system’s interface and is thus consumed beyond the borders of the system

The instantiation of a specific FSN (being a predecessor of a model-specific functional
specification) is completed if

• for each feature and each deduced function it is decided whether or not it is selected
• for each selected function and for each linked signal it is decided whether or not it is

used by a function
• for each selected signal it is decided, whether it is part of the system interface

Using DOORS

In the above section we describe how we propose to use a Function Signal Network library to
derive specifications. Note that the specifications themselves include a large amount of
variability. The FSN library thus includes variability on a more abstract layer, also comprising
variability of variability. Currently, there are no tools on the market supporting users in such a
two-layered variability setting. The tool widely used by German automotive OEMs is
Telelogic DOORS [8] and we developed a first prototypical extension of DOORS realizing
the above-described scenario. Since it is easy to adapt DOORS to specific needs based on a
tool-specific script language (doors extension language, dxl), we were initially able to develop
the prototype. We tried to implement the described FSN library with the signals representing
dependencies and with the obligatory or optional ports modeling variation in such a way that

 20

the properties of DOORS were sufficient. Nevertheless, DOORS is not a tool for managing
requirements of a family of products, and much less a tool for managing requirements for a
set of families of products, as we need here, in the context of reusing requirements for
automotive model ranges.

4 Requirements for Requirements Management
Tools in the Context of Product Line Engineering

Based on the practical use scenarios described above, we wish to derive requirements for
requirements engineering tools for software product lines. Our aim is to provide the
requirements engineering community, and especially requirements management tool
developers, with a catalogue of current requirements to adapt their tools to be make them
suitable for product line engineering.

4.1 Starting Point

The basis for the requirements catalogue is a detailed description of tool requirements for
single product developments, written by Hoffmann et al. in [2]. Additionally to the presented
paper, they developed a comprehensible requirements catalogue for single product
development tool. This catalogue comprises about 100 requirements, which are hierarchically
structured. The top level serves as a grouping by stakeholders, the second level contains
categories, which group related requirements:

• Requirements from tool users
o Information model
o Views
o Formatting, multimedia and external files
o Documentation of history
o Baselining
o Traceability
o Analysis functions
o Tool integration
o Import
o Change management and comments
o Document generation
o Collaborative work
o Checking out for offline use
o Web access

• Requirements from project administrators
o Users, roles and rights
o Size restrictions
o Workflow management
o Extensibility

• Requirements from tool administrators
o Database
o Encryption

 21

Each requirement has also been prioritized by the authors. The existing catalogue has been
taken and adapted in the following way, to make it suitable for product line development:

1. The documented requirements have been revised and partially reformulated
2. Requirements that become relevant in the context of product line engineering have

been added to the catalogue. About 20 new requirements and three requirements
categories (Configuration Management, Discussion Support and Priorities) have been
additionally documented.

3. Each requirement has been prioritized. For each requirement, it has been defined
whether it is equally important, more important or most important in a product line
context compared with single product development.

The full catalogue of requirements and their priorities can be found in the appendix. The
following subsections describe the new elicited requirements and the prioritization in detail.

4.2 New and Changed Requirements

To switch the focus from single product development to product line engineering, roughly ten
percent new requirements were introduced and about the same number of requirements was
changed to make them better match the product line context. Some of the new requirements
are directly tied to variability handling. These will be discussed later in this section. First, we
present the requirements that are not directly related to variability.

Most new requirements (11) belong to the newly introduced “configuration management”
category. However, most of the requirements in this category deal with issues that are of
similar importance as in single product developments. Some of these issues have been
implicitly represented in the category “Documentation of History”, but since this was a
mixture of configuration management issues and change management, this has been
separated. The first block of new requirements deals with basic version and configuration
management requirements like object identification and versioning. These requirements are
relevant in any development. Support for baselining of the requirements database was
considered more important in a product line context. The focus here is to be able to baseline
arbitrary parts of the database in order to capture easily the state of several projects/products
at once.

In a similar fashion, support for multi project/multi product status and progress reporting was
considered a necessary new requirement for product line tools.

Also important, but not covered in the original requirements list, is good support for tool-
based communication among users. In product line engineering, artifacts have to be discussed
more intensively across a larger (and often distributed) group of people. An integrated but
relatively informal type of discussion support is considered necessary in addition to the
formalized change process, which the tool should support anyway. Examples are Wiki-like
discussions or forum discussions which are directly linkable or linked to a specific (set of)
requirement(s).

In order to break down work, the definition of arbitrary, named subsets of requirements is also
a more important issue for product lines because the number of requirements is usually higher
than in single product developments and some partition can be helpful.

 22

The changes we made to existing requirements were mostly desinged to clarify their meaning,
not to change their intention, so a detailed discussion of changed requirements is not
considered necessary.

4.2.1 New Requirements Related to Variability

This section discusses the newly introduced tool requirements related to variability. In total,
we have added only five requirements that fall into this category.

It is important that the tool supports shared multi project and multi product information
models in order to provide a consistent modeling infrastructure for related projects or products
that are part of the same product line development. A simple information model copy when a
new derived project starts is not sufficient here because changes made afterwards have to be
made individually to all related projects, which can be problematic if there are a lot of them.

Additionally, the information model provided by the tool must support the expression of
variability and variation. In other words there must be ways of expressing variation points,
rules for variation point instantiation and the description of relations between product variants
in the tool’s information model.

(Defined) variants must have a first class representation in the tool which allows the addition
of “meta” attributes to the variant. Examples of such meta attributes are a list of stakeholders
for this specific variant (customer, account manager, etc.) or links to other variant-specific
artifacts.

Given an information model that provides support for variability definition, the tool not only
offers support for variant representation but must also support the variant creation process
using the stored variability information. Dependencies between variants must be expressed,
e.g. it should be possible to check in which variant a requirement is realized or to compare
variants with each other.

A similar requirement is the need for multidimensional prioritization of requirements in the
tool with respect to different stakeholders. This can be used to help the track of individual
realizations of several products using the same requirement. Use cases for such functionality
are manifold. For instance, one project might decide that a feature described in a requirement
is a “nice-to-have” item, while it might be essential for other projects.

4.2.2 Relationships to Product and Project Management

The management of variability in requirements is not a task in a delimited area of
requirements engineering. In fact, product and project management must be considered major
stakeholders requirements management. Both need special information about variability.

Product Management

One of the main tasks of product management is to plan and control the process of product
development. Within this context, requirements engineering is a consumer of information

 23

produced by product management (e.g. new market-driven requirements) and a supplier of
information needed by product management to make strategic decisions in product
development.

The following questions therefore come to mind:

• Should the new product be developed from scratch or should it enhance an existing
product?

• Which relationships exist between the new product and existing products?
• Can the basic functionality be conserved while new features are implemented?
• Should the new product be a variant of an existing product?
• How do the changes influence the product life cycle?

These are just a few of the questions that need to be considered during product management,
but they are a fundamentally related to requirements management in the context of product
line engineering. How can a product manager answer these questions without knowing the
requirements? In addition to the number of features, the number of variants must also be
considered, to make accurate cost estimation.

Furthermore, not only the development and product costs are influenced by the number of
variants, but also the costs that must be considered during the product life cycle, e.g. update
effort, maintenance costs and staff training.

Requirements engineering must therefore support the product management by providing
information about dependencies between features. The more complex the requirements are,
the more adequate tool support is needed to facilitate the management of information.

Project Management

The task of the project management in the context of software development is to plan and
control the project. The main focus is on the functionality that should be provided by the new
product. The change in functional requirements has a strong impact on the project plan.

If products are being developed in the context of a product line, multiple projects often use a
common set of requirements concurrently. Without planned coordination of the projects,
multiple implementations of the same requirement are the result, which leads to an enormous
overhead in development. Since the additional effort consumes additional resources, project
managers have even less time for coordination between the projects – a vicious circle.

Again, the information about dependencies between requirements across products must be
provided by requirements engineering. Integration of requirements engineering can help to
distribute the different tasks across projects and therefore to optimize the use of resources.
The main advantage can be achieved by verification and validation. These two tasks are
typically performed half-heartedly at the end of a project.

Requirements engineering must thus be based on an adequate tool to support project
management by providing the necessary information. Furthermore, it is important that
information in projects be swiftly available to enable effective control of projects.

To summarize, the coordination of product, project and requirements management is
necessary to effectively handle variability in requirements. Adequate tool support is essential.

 24

4.3 Prioritization of Requirements for the Context of
Product Lines

This section presents the prioritization of tool requirements defined by the working group.
The starting point was the list of tool requirements for single product development and the
associated prioritization suggested by [2]. The working group rated each tool requirement
with regard to product lines. Each tool requirement from single product development was
rated as (1) equally important, (2) more important, or (3) highly important in a product line
context. The working group also identified further requirements specific to product line
development, as described above, and rated their importance.

The prioritization was derived by a vote among the members of the working group. It was
validated through subsequent discussions. As a result of this approach, some priorities are not
unique. This is due to the different backgrounds of the working group members in terms of
application domain and project type. This report of the working group’s results documents the
variation in priorities, allowing the reader to make a well-informed evaluation of the proposed
requirements list.

This section begins by presenting the key results and findings of the requirements
prioritization for the context of product lines (Section 4.3.1). It then goes on to describe the
peculiarities of each group of requirements in a product line context (Section 4.3.2). A
complete list of tool requirements and their prioritization is given in the appendix.

4.3.1 Particular Priorities in a Product Line Context

In the context of product lines, five aspects of requirements management tools are particularly
important:

• Explicit modeling concepts for requirements representation
• Changeability and adaptability of requirements representation and functionality
• Graphical presentation and visualization of requirements and their interrelations
• Collaborative work during requirements management
• Management of multiplicity in requirements definition (multiple products and

projects, as well as interrelations between them)

Often, product lines pose very specific requirements on requirements management tools. It is
scarcely conceivable that a tool is able to meet all these different requirements and use modes.
This is due in part to the fact that the various processes, methods and organizational
infrastructures applied in product line development are not yet fully understood and
established. It is also due to the many different ways in which product line development is
implemented throughout industry. It must therefore be possible to tailor and adapt a
requirements management tool to the specific needs and characteristics of a given product line
development infrastructure.

The tailoring of requirements management tools to product line development contexts
requires that a tool include modeling concepts that are explicit, modifiable, extendable and
adaptable. Typically, tailoring of requirements management tools is achieved by well-

 25

accessible programming interfaces, the embedding of scripts or programs into a tool, as well
as extensible user interfaces (e.g. via plug-in mechanisms).

Graphical presentation and visualization are important to enable the user to keep track and
control of the complex information structures involved in product line engineering.

Examples of such visualizations are dependency and traceability graphs, as well as illustration
or highlighting of variability across requirements sets.

Collaborative work during requirements engineering and management is much more
important in product line contexts than it is during single product development. This is due to
the large number of stakeholders that a product line typically involves. Also the project-
internal activities for collaboration and communication among management, platform
development and product development are complex. Requirements management tools must
support this collaborative work. They must also trace and document communication and
communication results.

Managing multiplicity is essential in a product line context because there is always more than
one product being developed, and there is always more than one project being conducted.
There exist various interrelations and dependencies between the products and projects, which
must be represented and managed by the requirements management tool and be understood by
the users.

4.3.2 Product-Line-Specific Priorities per Requirements Group

This section describes the peculiarities of each category of requirements for requirements
management tools listed in [2] in a product line context. Figure 2 visualizes the average
priorities given by the group members for each requirement. To improve readability, the
requirements are represented by diamonds. The sectors represent the requirements categories
and the concentric circles represent the priority of the requirements in the context of product
lines. The innermost circle contains requirements that are most important in the product line
context, the outermost circle contains requirements which are equally important in the product
line context compared to single product development.

An Analysis of Figure 2 reveals that it is mainly requirements from the categories Information
Model, Views and Analysis that become most important in the product line context. A
detailed analysis is given below.

User Requirements: Information Model

Priorities of tool requirements are the same as for single product development. For product
lines, there are two additional requirements, both of which are highly important:

• The tool must support multi project and multi product requirements management
information models (RMIs) (highly important)

• The tool must support variability mechanisms (highly important)

 26

Figure 2: Prioritization of requirements in the context of product lines

User Requirements: Views

Views-related requirements are more important, but only rarely much more important, than
for single product development. They are particularly relevant with regard to the following
aspects:

• Definition of user-specific views
• Availability of graphical diagrams
• Configuration and rule-based control of views
• Modification of views in the course of a project

For product lines, there are two additional requirements:

• The tool should allow views to be predefined for user roles (important)
• The tool must support multi project and multi product requirement views (highly

important)

User Requirements: Formatting, Multimedia and External Files

Mainly the same as for single product development.

 27

User Requirements: Change Management and Comments

More important than for single product development.

User Requirements: Documentation of the History

Mainly the same as for single product development. For product line development, the
following three requirements are slightly more important:

• All changes to the requirements must be tracked.
• All objects managed in the tool must be versioned.
• There must be a distinction between major and minor versions regarding objects.

User Requirements: Baselining

Mainly the same as for single product development, slightly higher importance.

User Requirements: Traceability

Slightly more important than for single product development, in particular with regard to the
following requirements:

• It must be possible to define attributes for links.
• It should be possible to create rules governing what kinds of objects must have links to

what other kinds of objects.
• Links must connect all objects in the database, not only in the same subset (module,

project, etc.). (important to highly important)
• The tools must feature a practical, user-friendly and concise graphical representation,

and navigation of the traces (e.g. matrices, trees or graphs).

User Requirements: Analysis Functions

Slightly more important than for single product development, in particular with regard to the
following requirement:

• The tool should allow inconsistencies in the link structure to be analyzed (e.g. find
gaps in the traces).

For product lines, there is one additional requirement:

• The tool should provide information on the status and progress of multiple projects
and products. (highly important)

User Requirements: Tool Integration

Slightly more important to much more important than for single product development, in
particular with regard to the following requirements:

 28

• The tool must have open interfaces to other tools used in the development process and
make information stored in them visible and linkable. (more important to much more
important)

• Access rights to the external objects must be recognized. (partly more important)

Tool classes that ought to be integrated with requirements management within product line
contexts are:

• Slightly much more important than for single product development: Configuration
management, communication (e.g. e-mail communication), project management

• Slightly more important than for single product development: Test, validation, and
verification, problem tracking, modeling and design

User Requirements: Import / Export

Slightly more important than for single product development, in particular with regard to the
following requirements for requirements information import/export:

• The tools should be able to import existing requirements specification documents
based on a predefined, customizable exchange format.

• The tools should be able to export existing requirements information based on a
predefined, customizable exchange format.

User Requirements: Document Generation

Mainly the same as for single product development. For product line development, the
following two requirements are more important:

• The tool must swiftly generate very large documents incorporating numerous external
objects. A 5,000-page document with formatting and media objects should be
generated overnight.

• It should be possible to run the document generation automatically as a background
task.

User Requirements: Collaborative Working

Much more important than for single product development.

User Requirements: Checking Out for Offline Use

More important than for single product development.

User Requirements: Web Access

More important than for single product development.

 29

Requirements Regarding Project-Related Tool Administration

Mostly more important than for single product development. In particular, the following
aspects are more important for product line development than they are for single product
development:

• Central installation and administration of projects
• Users, roles and rights
• Workflow management
• Extensibility

Requirements Regarding Technical Tool Administration

Slightly more to much more important than for single product development.

• Database requirements are Slightly more important for product line development with
regard to scalability, availability, and backup and restoring.

• Requirements prioritization (stakeholder-specific) is much more important for product
line development.

5 Evaluation of Tools

5.1 Explanation of the Evaluation Approach

Starting with the concrete list of requirements for product line tools, we were delighted to
learn how current tools available on the market support product line engineering. Fortunately
the team had some practical experience with some of the market-leading products.

Several interesting questions arose, which we hoped to answer based on the tool evaluation:

• Are there any common deficiencies across the tools?
• Do some tools clearly outperform others in terms of product line requirements?

It was clear from the beginning that these questions could only be answered very subjectively
given the working group’s limited time and resources.

With the requirements table described in the previous chapter, we already had a means to
distinguish between typical requirements for requirements management tools and those that
are more important in the context of product lines. The goal of the product evaluation was to
find out which tool is better suited for product line development.

To reduce the degree of subjectivity we created an evaluation schema based on numerical
values with associated semantics:

Value Semantics
0 Don’t know.
1 The requirement isn’t supported by the tool.
2 The requirement isn’t supported in a way that is suitable for day-to-day

operations. Custom solutions (extensions) are required (and possible) to

 30

address the requirement.
3 The requirement isn’t supported adequately but it can be addressed with

organizational conventions to use the tool in a specific way.
4 The requirement is addressed well enough to do daily work.
5 The tool’s implementation of the requirement is perfect (at least we cannot

imagine a better way of doing it).

At first, we thought that the criteria were sufficiently well defined. However, when trying to
evaluate the tools, a few problems arose.

The first was that a wide range of subjective interpretation was still possible. We believe that
the situation can be improved by applying fit criteria to requirements, which we failed to do
despite knowing that this is good requirements engineering practice.

Another reason for the lack of clarity is the configuration and customization capabilities of the
tools. Based on above schema, values of 2 to 4 can be applied, depending on how
customization is seen by the evaluator. One can argue that the tool should address the
requirement out of the box but we can also argue that customization allows more flexibility.

After some discussion, we reached agreement within the group. Future work might focus on
improving the evaluation schema.

5.2 Visualization

Once we had obtained the data, the challenge was to visualize the various dimensions:

1. Show the importance of the requirement with regard to product line support
2. Show how well the tool addresses the requirement
3. Be able to compare tools
4. Visualize requirement categories

(The table has a series of categories for requirements)

We experimented with various display formats and finally decided that spider charts are best
suited because they address all the dimensions described above. Bubble charts and 3D column
graphics failed to visualize all dimensions.

The following charts show how well the analyzed tools address the specific requirements. The
categories View, Analysis Functions, Information Model, User Rights and Roles and
Configuration Management have been chosen because requirements belonging to these
categories are most important in a product line context.

The red line indicates the product line priority of the specific requirements. Using this line, it
is easy to evaluate how well the respective tools perform. Figures 4 to 8 visualize the
evaluation.

 31

0,00

0,20

0,40

0,60

0,80

1,00

The tool must allow view s to be defined centrally as w ell as in a

user-specif ic manner.

These view s must be freely configurable, including complex

filters on objects, relations, and attributes

The objects must be changeable in the current view .

The user must be able to view the requirements in a document-

oriented manner, i.e. as sequential text w ith headings, tables,

etc

The user must be able to view the requirements in an

information-model-oriented (sometimes called database oriented)

manner. Tables or forms are examples of such a representation

Graphical view s of the requirements should be available.

The tool should allow view s to be predefined for user roles.

 In the course of a project, the view s and the assignment to

roles should be changeable.

The tool must support multi-project and multi-product requirement

view s.

Product Line Priority

DOORS

Caliber RM

IRqA

RequiLine

Figure 3: Category View

0,00

0,20

0,40

0,60

0,80

1,00

The tool should provide information about status and progress of the project.

The tool should provide information about status and progress of multiple

projects/products.

The tool should allow to analyze inconsistencies in the link structure like f inding gaps

in the traces.

The tool could scan the description texts of the requirements for patterns like

unsuitable/inexact language or w rongly used terminology.

Product Line Priority

DOORS

Caliber RM

IRqA

RequiLine

Figure 4: Category Analysis Functions

 32

0,00

0,20

0,40

0,60

0,80

1,00

Every object in the database must be uniquely identif iable over its lifetime. If a

hierarchical or other structure is in place, it must be independent from the unique

identification and adapt automatically.

Inheritance and reuse should be available for all classes, types and attributes.

It could be possible to graphically def ine and configure the RMI.

The tool could support RMIs that are needed w hen using standard RE templates (e.g.

MIL-STD-490, DoD-2167A, INCOSE, Volere or IEEE 830-1998). Project templates

should be included

The tool must support multi-project and multi-product RMIs

The RMI must support variability mechanisms

Product Line Priority

DOORS

Caliber RM

IRqA

RequiLine

Figure 5: Category Information Model

0,00

0,20

0,40

0,60

0,80

1,00

The tool must allow f ine-grained administration of users, user groups, user roles,

user rights and user-roles rights. A history of changes to these must be available

Rationale: The bigger and the more critical the project, the more important user and

righ

The assignment and execution of administrative task such as user and role

management must be flexible delegable to the stucture of responisbilities in the

organisation. I.e. some administrative task can be defined to be handle in centralized

manner (e.g.

Users must be defined centrally for all projects. External user management

information must be used, if it exists.

The tool must allow f ine-grained access and w riting rights to be f lexibly granted.

Rights must be grantable dow n to object and attribute level. A distinction must be

made betw een rights to view , propose changes or make changes.

Security based on overlapping roles is preferred to security based on hierarchical

security levels.

The security concept must not be compromised by unauthorized use of extensions

like API programming or scripting.

Rationale: Security among competing suppliers w ith access to the tool is an important

issue.

Access rights must be grantable via roles a user is assigned to.

A user must be able to perform more than one role at a time.

Product Line Priority

DOORS

Caliber RM

IRqA

RequiLine

Figure 6: Category User Rights and Roles

 33

0,00

0,20

0,40

0,60

0,80

1,00

The tool should provide extensive conf iguration management capabilities. This section

provides a complete view on conf iguration management functionalities. It overlaps

partially w ith section 1.1 'Information model', 1.5 'Documentation of history' and sect

Every object must be uniquely identif iable.

Every object must be versioned

Every change of an object must be recorded w ith date, version number and content

of change (see 1.5.1)

It must be possible to retrieve a specific version of an object at any point in time (see

1.5.6).

The tool must support baselines. A baseline is the state of a (specif ied subset of the)

requirements database fixed at a given point in time. Compared w ith object

versioning, a baseline is a (partial) database consisting of numerous objects, each in

a cer

It should be possible to create baselines based on time.

The tool should support analysis of baseline information. It should be possible to

perform analysis on a set of baselines.

The tool should support ef ficient creation of a new variant of a product. The tool must

track the dependency betw een variants. It should be possible to visualize this

dependencies at any point in time.

It should be possible to easily w ork on a sub-set of requirements. This set may be

derived from a large set. It should get a unique name w ith w hich can be w orked on.

The tool should track relationships betw een original requirement set and subset.

Each variant should support meta attributes.

Product Line Priority

DOORS

Caliber RM

IRqA

RequiLine

Figure 7: Category Configuration Management

6 Summary and Future Work

A software product-line-oriented approach to developing systems has an impact on the
development process as a whole. All artifacts produced during the process have to be properly
managed in order to benefit from a product-line-oriented approach. Although the basic idea of
product lines is simple, systematic implementation of the approach is a challenging task. In
fact, today’s software system families have such complex variability that their handling must
be supported by tools, otherwise a systematic approach would not be possible.

The same holds for requirements management of software product lines. The technical report
presented here analyzes specific scenarios in the context of requirements management and
software product lines and derives important requirements that have to be observed if
requirements management tools are to be usefully applied to product lines. Current
requirements management tools are evaluated on the basis of these requirements. This
evaluation revealed that all requirements management tools currently used in industry need to
be improved if they are to be successfully used in a product line setting. Nevertheless these
tools are used in practice and are also used in product line settings and as the scenarios
described in this report show they are also used successfully – but this is only achieved
because workarounds are in place: either the tool itself is enhanced or related processes
bypass shortcomings of the tool. But this situation is not satisfying, because especially small
companies need to rely on all-embracing tool support because enhancements or heavy
processes to overcome shortcomings of tools are too expensive.

 34

The presented scenarios describe current development procedures formulated by the working
group members from industry. The scenarios make it clear that a software product-line-
oriented approach is possible in a development process where all produced artifacts are
managed in one organizational unit as well as in a split development environment, e.g. OEM
and supplier. Nevertheless, requirements management in these settings needs specific support.
Recently – there being no commercial requirements management tool tailored to product lines
– a whole series of flexible workarounds have emerged. Flexible tools like MS Excel or MS
Word provide the means to realize these workarounds – and they are actually effective: Being
born of a practical need, these workarounds are pragmatic as well as necessary and have
therefore been widely adopted.

However, mature software development that is geared to product lines requires more than
pragmatic, stop-gap solutions. Systematic software product line engineering calls for
systematic tool support especially in the context of requirements management, mainly
because one is confronted with the task of handling a huge number of requirements for multi
projects and multi products. This has an impact on the information model, views, baselining,
etc.

The requirements for requirements management tools were gathered by the working group
and prioritized by each working group member based on his/her subjective rating of their
relevance for product lines. The result is a comprehensive analysis of requirements and
requirements management tools in the context of software product lines based on practical
experience. The list gives an overview of the key requirements – some are newly introduced
to support product lines. Especially scalability is the main driver to identify requirements or to
prioritize requirements in the context of product line engineering, because in this case a huge
set of data items must be handled.

None of the investigated tools (DOORS, CaliberRM, IRqA, RequiLine) supported all or most
of the presented requirements best, but each tool has its strengths and weaknesses and in order
to decide which tool meets best the demands of a specific organization or development
approach one has to decide on the basis of the presented requirements independently.

The presented analysis and the results are so far unique. This technical report is intended to
direct the attention of both researchers and tool developers to the current problem of
inadequate requirements management tools for software product lines. The presented
requirements indicate the future direction of tool development.

A reader with interest in tool supported requirements management for software product lines
can gain the following from the report at hand:

• Current tools can be used in product line settings as the described scenarios show, but
this is only possible with a huge amount of extra effort.

• The list of requirements given in this report is a basis to implement requirements
management tools supporting software product lines.

• Current organizational processes can be analyzed for actual requirements and the
fulfillment of these requirements in different tools can be seen in the requirements list
at hand. The adequate tool can then be selected.

• The catalogue of requirements was reviewed a second time (because it bases on the
published version of requirements for requirements management tools [2]) and is also
interesting for single product development.

 35

To substantiate the findings of the report, the working group has set up a website
http://www.gi-ev.de/fachbereiche/softwaretechnik/re-pl/, where interested people with
practical experience in using one of the listed tools are invited to evaluate them on the basis of
the requirements catalogue. The website also provides more detailed information about the
working group and its members.

7 References

[1] Borland, Caliber website: http://www.borland.com/de/products/caliber/index.html
[2] M. Hoffmann, N. Kühn, M. Weber, M. Bittner: Requirements for Requirements Management Tools,

Proceedings of 12th IEEE International Conference on Requirements Engineering (RE 2004), 6-10
September 2004, Kyoto, Japan. IEEE Computer Society 2004, ISBN 0-7695-2174-6.

[3] QA Systems, IRqA website: http://www.qa-systems.de/html/deutsch/produkte/irqa/irqa.php.
[4] G. Jiménez-Pérez: Design Wizards for Software Product Lines, Workshop on Generative Techniques in

Product Lines, First Software Product Line Conference, Ed. G. Butler, K. Czarnecki, U. Eisenecker,
http://www.cs.concordia.ca/~gregb/splc-workshop.

[5] K.C. Kang, K.C., S.G. Cohen, J.A. Hess, W.E. Novak, and A.S. Petersen: Feature-Oriented Domain

Analysis (FODA) Feasibility Study, Software Engineering Institute of the Carnegie Mellon University,
CMU/SEI-90-TR-21, Pittsburgh, 1990

[6] Research Group Software Construction, RequiLine website:
http://www-lufgi3.informatik.rwth-aachen.de/TOOLS/requiline/.

[7] K. Schmid, A. Birk, G. Heller, I. John, S. Joos, K. Müller, T. von der Maßen: Report of the GI Work

Group “Requirements Engineering for Product Lines”, IESE-Report No. 121.03/E, November 2003.
[8] Telelogic, DOORS website: http://www.telelogic.com/corp/products/doors/index.cfm
[9] T. von der Maßen, H. Lichter: RequiLine: A Requirements Engineering Tool for Software Product Lines,

Software Product-Family Engineering, Springer LNCS 3014, 2004.
[10] J. Robertson, S. Robertson: Mastering the Requirements Process, Addison-Wesley, 1999.

8 Appendix

The following table lists the complete set of identified requirements for requirements
engineering tools in the context of product line engineering, based on the requirements
presented in [2]. The individual requirements have been prioritized for the context of product
line engineering and the result of the voting by the members of the work group are presented
in the last three columns. The maximum number of points reveal the maximum score, if all
members would vote that the requirement is “highly important” in the product line context.

The following table shows furthermore the results of the evaluation of the analyzed tools.
Each tool has been evaluated according to the procedure presented in section 5.1 using the
mentioned evaluation scheme based on numerical values with associated semantics:

Value Semantics
0 Don’t know
1 The requirement isn’t supported by the tool
2 The requirement isn’t supported in a way that in can be used in day to day

operations. Custom solutions (extensions) are required (and possible) to
address the requirement.

3 The requirement isn’t supported adequately, but the requirement can be

 36

addressed with organizational conventions to use the tool in a specific way.
4 The requirement is addressed well enough to do daily work.
5 The tools solution to the requirement is perfect (at least we cannot imagine a

better way of doing it)

Finally, we analyzed how the specific tools perform with respect to the priority we defined for
each requirement. We use a color spectrum from blue over green to red to indicate the level of
the priority respectively the level of fulfillment of the requirement. In the following table the
color of a cell border indicated the level of the priority (scaled up to 50) whereas the
background color of a cell indicates the fulfillment.

 37

Category Prio
(single

systems)

Points rel. Prio
SPL

Tool-Evaluation

v3.6

Name

Description

++ high
+ medium
- low

 DOORS
7.1

Caliber
RM v

2005 SP2

IRqA Requi
Line

DOORS
7.1

Caliber
RM v

2005 SP2

IRqA Requi
Line

1. Requirements from the Users

1.1. Informatio
n Model

 The tool must allow the user to freely
define a RMI.
Rationale: Since a requirements
management tool must be independent
of process and method, the requirements
must be modeled freely in the tool. The
detailed mapping of a process and its
artifacts to a requirements management
tool can be described using a RMI.
Experience shows that especially in pilot
projects this mapping varies to achieve a
higher benefit from a requirements
management tool.

1.1.1. Information Model Every object in the database must be
uniquely identifiable over its lifetime. If a
hierarchical or other structure is in place,
it must be independent from the unique
identification and adapt automatically.

++ 8 0,20 5 6 3 5 42 50 25 42

1.1.2. Information Model Inheritance and reuse should be
available for all classes, types and
attributes.

+ 10 0,25 1 3 5 3 8 25 42 25

1.1.3. Information Model It could be possible to graphically define
and configure the RMI.

- 10 0,25 2 6 2 0 17 50 17

1.1.4. Information Model The tool could support RMIs that are
needed when using standard
requirements engineering templates (e.g.
MIL-STD-490, DoD-2167A, INCOSE,
Volere or IEEE 830-1998). Project
templates should be included

- 8 0,20 5 4 1 3 42 33 8 25

1.1.5. Information Model The tool must support multi-project and
multi-product RMIs

 40 1,00 6 5 5 5 50 42 42 42

 38

Category Prio
(single

systems)

Points rel. Prio
SPL

Tool-Evaluation

v3.6

Name

Description

++ high
+ medium
- low

 DOORS
7.1

Caliber
RM v

2005 SP2

IRqA Requi
Line

DOORS
7.1

Caliber
RM v

2005 SP2

IRqA Requi
Line

1.1.6. Information Model The RMI must support variability
mechanisms

 38 0,95 2 1 2 5 17 8 17 42

1.2. Views The tool must support various views of
the same data. A view offers the
possibility to view and change a freely
defined collection of parts of the data of
several projects or subprojects in a freely
configurable representation.
Rationale: Depending on the current
process step requirements management
tool users work only on certain aspects
of a certain part of the specification. It is
therefore important, that a requirements
management tool provides suitable
views of the huge amount of information
accessible in requirements management
tools. This has a strong impact on the
acceptance of the tool by the users.

++

1.2.1. Views The tool must allow views to be defined
centrally as well as in a user-specific
manner.

++ 28 0,70 5 3 2 4 42 25 17 33

1.2.2. Views These views must be freely configurable,
including complex filters on objects,
relations, and attributes

++ 28 0,70 6 4 5 2 50 33 42 17

1.2.3. Views The objects must be changeable in the
current view.

+ 14 0,35 6 5 5 2 50 42 42 17

1.2.4. Views The user must be able to view the
requirements in a document-oriented
manner, i.e. as sequential text with
headings, tables, etc

++ 8 0,20 6 1 2 3 50 8 17 25

1.2.5. Views The user must be able to view the
requirements in an information-model-
oriented (sometimes called database
oriented) manner. Tables or forms are
examples of such a representation

++ 8 0,20 1 5 6 5 8 42 50 42

 39

Category Prio
(single

systems)

Points rel. Prio
SPL

Tool-Evaluation

v3.6

Name

Description

++ high
+ medium
- low

 DOORS
7.1

Caliber
RM v

2005 SP2

IRqA Requi
Line

DOORS
7.1

Caliber
RM v

2005 SP2

IRqA Requi
Line

1.2.6. Views Graphical views of the requirements
should be available.

+ 30 0,75 2 4 2 4 17 33 17 33

1.2.7 Views The tool should allow views to be
predefined for user roles.

 28 0,70 1 1 1 0 8 8 8

1.2.8. Views In the course of a project, the views and
the assignment to roles should be
changeable.

+ 20 0,50 5 5 3 0 42 42 25

1.2.9. Views The tool must support multi-project and
multi-product requirement views.

 40 1,00 5 1 3 5 42 8 25 42

1.3. Formattin
g,
Multimedi
a and
External
files

 ++

1.3.1. Formatting,
Multimedia and
External files

The tool must allow the requirements to
be enriched with formatting and objects
not native to the tool.
Rationale: Many specifications created
with text processing tools like Word
contain lots of graphics or other
multimedia elements. Developers expect
similar means of expressions from a
requirements management tool, which
must be directly visible in the
requirements management tool user
interface.

 8 0,20 6 6 50 0 50 0

1.3.2. Formatting,
Multimedia and
External files

The tool should support basic text
formatting. It should also support
scientific and foreign-language character
sets. The tool should allow mathematical
formulas to be used in the description
texts.

+ 10 0,25 2 4 6 1 17 33 50 8

 40

Category Prio
(single

systems)

Points rel. Prio
SPL

Tool-Evaluation

v3.6

Name

Description

++ high
+ medium
- low

 DOORS
7.1

Caliber
RM v

2005 SP2

IRqA Requi
Line

DOORS
7.1

Caliber
RM v

2005 SP2

IRqA Requi
Line

1.3.3. Formatting,
Multimedia and
External files

Non-text objects should be saved directly
in the database or at least in a
configuration management tool that is
tightly coupled with the tool. If they are
stored in the tool database, they must be
fully covered by its version and rights
control.

++ 16 0,40 5 6 6 5 42 50 50 42

1.3.4. Formatting,
Multimedia and
External files

External objects must be viewed either
through a pre-viewer inside the tool or in
the native application if called directly
from the tool's user interface.

++ 8 0,20 5 4 6 5 42 33 50 42

1.4. Change
Managem
ent and
Comment
s

 The tool must support change
management. This can either be done by
the tool itself or the tool should provide a
suitable interface that conforms to the
following requirements.

++ 28 0,70 3 25 0 0 0

1.4.1. Change
Management and
Comments

Change requests must be customizable
to the change process of the users

 24 0,60 2 1 2 1 17 8 17 8

1.4.2. Change
Management and
Comments

The change request handling must be
integrated into rights management.

 26 0,65 2 1 1 1 17 8 8 8

1.5. Document
ation of
the
History

 Rationale: In the usual highly parallel
development, which is needed to reduce
time to market, developers need to
synchronize their specifications
periodically. Differences from previous
versions must be easy identifiable.
During such synchronization steps
discussions reconcilement may be
necessary. Due to cost and complexity
issues it should be possible to partially
return to previous versions.

++

1.5.1. History All changes to the requirements must be
tracked.

++ 18 0,45 5 4 6 2 42 33 50 17

 41

Category Prio
(single

systems)

Points rel. Prio
SPL

Tool-Evaluation

v3.6

Name

Description

++ high
+ medium
- low

 DOORS
7.1

Caliber
RM v

2005 SP2

IRqA Requi
Line

DOORS
7.1

Caliber
RM v

2005 SP2

IRqA Requi
Line

1.5.2. History All objects managed in the tool must be
versioned

++ 16 0,40 6 4 6 2 50 33 50 17

1.5.3. History There must be a distinction between
major and minor versions regarding
objects.

+ 12 0,30 1 5 1 1 8 42 8 8

1.5.4. History The version number should be
incremented automatically when certain
changes occur.

+ 8 0,20 6 6 6 5 50 50 50 42

1.5.5. History Changes must be tracked down to the
smallest unit of data structures, in most
cases to attributes.

++ 8 0,20 6 6 6 2 50 50 50 17

1.5.6. History Changes and old versions must always
be available.

++ 8 0,20 6 6 6 1 50 50 50 8

1.5.7. History The tool must allow a requirement to be
changed back to any previous version
anytime.

++ 8 0,20 6 1 6 1 50 8 50 8

1.5.8. History The tool should visualize the change
history.

+ 8 0,20 1 6 4 3 8 50 33 25

1.5.9. History The tool must generate freely
configurable change reports. These
reports should relate to views, baselines
and generated documents.

++ 8 0,20 2 3 2 1 17 25 17 8

1.5.10. History A comment should be saved with the
change to enable it to be understood
later on

- 8 0,20 3 6 6 1 25 50 50 8

1.5.11. History Changes could be categorized for
analysis.

+ 8 0,20 2 1 2 1 17 8 17 8

1.6. Baselining Baselining The tool must support baselines. A
baseline is the state of a (specified
subset of the) requirements database
fixed at a given point in time. Compared

++ 16 0,40 6 5 6 3 50 42 50 25

 42

Category Prio
(single

systems)

Points rel. Prio
SPL

Tool-Evaluation

v3.6

Name

Description

++ high
+ medium
- low

 DOORS
7.1

Caliber
RM v

2005 SP2

IRqA Requi
Line

DOORS
7.1

Caliber
RM v

2005 SP2

IRqA Requi
Line

with object versioning, a baseline is a
(partial) database consisting of
numerous objects, each in a certain
version. The development status saved
in a baseline is the starting point for
further development.
Rationale: Baselines are used to save
the state of a specified set of
requirements objects, a document or
project before a larger development step.
They also serve to freeze a development
object after its completion or review.
Baselines are not branches. They do not
copy the objects; they are a catalog of
object/version references.

1.7. Traceabilit
y

 The tool must enable traceability through
links between requirements. The linking
must be implemented in a highly user-
friendly manner because it helps only if it
is relatively complete.
Rationale: For years traceability has
been one of the big discussion and
research issues in requirements
engineering. Certain standards for
security-critical fields even enforce
complete traceability. Unfortunately,
linking is not popular among developers
because it costs time, its benefit is visible
mostly in later phases, and it needs
discipline in linking. Good tool support
could change this and enable analyses
and consistency support that would
otherwise require much more effort.

++

1.7.1. Traceability Links must be directed and an object
must be a source and target at the same
time (but not of the same link).
Additionally, the user must be able to
create links starting from the source or
the target of the directed link.

++ 8 0,20 5 6 6 4 42 50 50 33

 43

Category Prio
(single

systems)

Points rel. Prio
SPL

Tool-Evaluation

v3.6

Name

Description

++ high
+ medium
- low

 DOORS
7.1

Caliber
RM v

2005 SP2

IRqA Requi
Line

DOORS
7.1

Caliber
RM v

2005 SP2

IRqA Requi
Line

1.7.2. Traceability It must be possible to follow links directly
in both directions.

++ 8 0,20 5 6 6 4 42 50 50 33

1.7.3. Traceability It must be possible to give the links
attributes, e.g. to differentiate different
kinds of links for later filtering or analysis.

++ 24 0,60 3 1 4 3 25 8 33 25

1.7.4. Traceability It should be possible to create rules
governing what kinds of objects must
have links to what other kinds of objects.

+ 16 0,40 0 1 6 1 0 8 50 8

1.7.5. Traceability Links must connect any objects in the
database, not only in the same subset
(module, project, etc.)

++ 28 0,70 6 6 2 4 50 50 17 33

1.7.6. Traceability Links could be n-ary. - 8 0,20 6 6 6 1 50 50 50 8

1.7.7. Traceability The tool must feature a practical, user-
friendly and concise graphical
representation and navigation of the
traces, g.g, matrices, trees or graphs.

++ 20 0,50 4 4 3 4 33 33 25 33

1.8. Analysis
Functions

 The tool should be able to analyze
requirements. Examples are linguistic
analysis, analysis of the link structure,
analysis of project progress and risk
management.
Rationale: The enrichment of
requirements in a requirements
management tool with additional
information stored in links and attributes
allows automatic analyses that would be
costly and time-consuming if done with
requirements saved in ordinary
documents.

+

1.8.1. Analysis
Functions

The tool should provide information
about status and progress of the project.

+ 8 0,20 2 2 2 3 17 17 17 25

 44

Category Prio
(single

systems)

Points rel. Prio
SPL

Tool-Evaluation

v3.6

Name

Description

++ high
+ medium
- low

 DOORS
7.1

Caliber
RM v

2005 SP2

IRqA Requi
Line

DOORS
7.1

Caliber
RM v

2005 SP2

IRqA Requi
Line

1.8.2. Analysis
Functions

The tool should provide information
about status and progress of multiple
projects/products.

 40 1,00 2 2 2 3 17 17 17 25

1.8.3. Analysis
Functions

The tool should allow to analyze
inconsistencies in the link structure like
finding gaps in the traces.

+ 24 0,60 2 2 2 5 17 17 17 42

1.8.4. Analysis
Functions

The tool could scan the description texts
of the requirements for patterns like
unsuitable/inexact language or wrongly
used terminology.

- 8 0,20 1 5 1 1 8 42 8 8

1.9. Tool
Integration

 The tool must have open interfaces to
other tools used in the development
process and make information stored in
them visible and linkable.
Rationale: To improve consistency
between development phases and
allows complete traceability over the
complete product life cycle requirements
management tools must be integrated
tightly into existing tool environments.
The expected benefit is an improved
development process and improved
product quality. The introduction of a
requirements management tool should
not result in additional major changes of
the tool environment.

++ 25 0,71 2 17 0 0 0

1.9.1. Tool Integration Linking must not lead to redundant data. ++ 7 0,20 1 1 1 0 8 8 8 0

1.9.2. Tool Integration The connection should be transparent in
both tools.

+ 11 0,31 1 1 1 1 8 8 8 8

1.9.3. Tool Integration Links to external objects should be
managed by the tool in the same way as
internal links.

+ 11 0,31 6 1 4 0 50 8 33

 45

Category Prio
(single

systems)

Points rel. Prio
SPL

Tool-Evaluation

v3.6

Name

Description

++ high
+ medium
- low

 DOORS
7.1

Caliber
RM v

2005 SP2

IRqA Requi
Line

DOORS
7.1

Caliber
RM v

2005 SP2

IRqA Requi
Line

1.9.4. Tool Integration The user should be able to navigate to
these objects.

+ 7 0,20 1 6 3 4 8 50 25 33

1.9.5. Tool Integration Access rights to the external objects
must be recognized.

++ 13 0,37 1 0 0 1 8 0 0 8

1.9.6. Tool Integration The links should be able to target the
smallest possible structure of the
external object (like the attribute of a
class in the class diagram).

++ 9 0,26 1 0 0 1 8 0 0 8

1.9.7. Tool Integration The interfaces used for tool integration
should be active, i.e. synchronization or
change notification should occur
automatically.

+ 9 0,26 1 6 1 2 8 50 8 17

1.9.8. Tool Integration Tool classes that could be sensibly
integrated with requirements
management are:

1.9.8.1 Tool Integration configuration management ++ 29 0,83 2 4 4 2 17 33 33 17

1.9.8.2 Tool Integration test, validation & verification ++ 23 0,66 2 4 4 1 17 33 33 8

1.9.8.3 Tool Integration problem tracking + 25 0,71 2 2 1 1 17 17 8 8

1.9.8.4 Tool Integration modeling and design + 23 0,66 2 4 3 1 17 33 25 8

1.9.8.5 Tool Integration communication, e.g. e-mail + 31 0,89 2 2 2 1 17 17 17 8

1.9.8.6 Tool Integration project management - 29 0,83 2 3 1 1 17 25 8 8

 46

Category Prio
(single

systems)

Points rel. Prio
SPL

Tool-Evaluation

v3.6

Name

Description

++ high
+ medium
- low

 DOORS
7.1

Caliber
RM v

2005 SP2

IRqA Requi
Line

DOORS
7.1

Caliber
RM v

2005 SP2

IRqA Requi
Line

1.10. Import /
Export

 +

1.10.1. Import / Export The tool should be able to import existing
requirements specification documents
based on a predefined, customizable
exchange format.

 19 0,54 2 2 4 1 17 17 33 8

1.10.2. Import / Export The tool should be able to export existing
requirements information based on a
predefined, customizable exchange
format.

 21 0,60 3 1 5 3 25 8 42 25

1.10.3. Import / Export The tool should recognize text marks,
formatting, line ends, grammatical
structure or keywords to interpret them
as the beginning or end of requirements
texts.

+ 7 0,20 1 5 6 1 8 42 50 8

1.10.4. Import / Export The tool should support a
semiautomatic, i.e. user interactive,
import of requirements from existing
documents.

+ 9 0,26 2 5 6 2 17 42 50 17

1.11. Document
Generatio
n

Document
Generation

The tool must be able to generate official
and internal documents. To achieve this,
the tool needs a document generator
that uses predefined document
definitions to generate documents with
current data from the database.
Document generation differs from
document-oriented views in that the
generated documents are no longer
connected to the database and an
independent document file is created.
Rationale: A requirements management
tool is of no worth without powerful
document generation capabilities. The
days of paperless development are still
far away, especially in fields where
interaction with suppliers is important.
Specifications are an important part of

++ 9 0,26 3 25 0 0 0

 47

Category Prio
(single

systems)

Points rel. Prio
SPL

Tool-Evaluation

v3.6

Name

Description

++ high
+ medium
- low

 DOORS
7.1

Caliber
RM v

2005 SP2

IRqA Requi
Line

DOORS
7.1

Caliber
RM v

2005 SP2

IRqA Requi
Line

the contract with the supplier, which is
why something document-like is always
needed, whether it is printed or just a file.
Document generation can be one of the
main productivity-enhancing applications
of requirements management tools, if
developers can generate documents at
the push of a button and don’t have to
carry out detailed formatting before and
after document generation.

1.11.1. Document
Generation

The subset of data to be included in the
document must be flexibly configurable,
comparable to views. Formatting and
positioning must be flexibly configurable,
too.

++ 9 0,26 2 5 3 2 17 42 25 17

1.11.2. Document
Generation

The document generator must be able to
include all information available in the
tool.

++ 7 0,20 2 4 4 3 17 33 33 25

1.11.3. Document
Generation

The document generator could be able
to create documents in certain standard
formats. Templates for these formats
could be included.

- 7 0,20 3 3 4 3 25 25 33 25

1.11.4. Document
Generation

Non-textual objects must be included in
the generated documents

++ 7 0,20 4 6 6 1 33 50 50 8

1.11.5. Document
Generation

The tool must generate very large
documents with many included external
objects quickly. A 5000-page document
with formatting and media objects should
be generated in one night.

++ 19 0,54 6 0 0 0 50 0 0 0

1.11.6. Document
Generation

It should be possible to run the
document generation automatically as a
background task.

+ 21 0,60 0 6 0 1 0 50 0 8

1.11.7. Document
Generation

The document generator must be
extensible via a programming interface
(or similar) provided by the tool.

+ 9 0,26 5 1 3 1 42 8 25 8

 48

Category Prio
(single

systems)

Points rel. Prio
SPL

Tool-Evaluation

v3.6

Name

Description

++ high
+ medium
- low

 DOORS
7.1

Caliber
RM v

2005 SP2

IRqA Requi
Line

DOORS
7.1

Caliber
RM v

2005 SP2

IRqA Requi
Line

1.12. Collaborat
ive
Working
on the
Same
Developm
ent Task

Collaborative
Work

It must be possible for many users to
work on the same data at the same time.
Of the many users working on a single
requirement object, only one must be
able to apply changes in a transaction
save manner. If a user changes an
object, it should refresh automatically in
the user interfaces of the other users.
Rationale: It is a typical situation that
several users work on same or adjacent
parts of specifications at the same time.
Managing the data using a requirements
management tool can provide a single
source and up-to-date state of the
project for all participants, but fine-
grained locks are important not to
suspend each others work. Especially if
users want to reconcile a part of a
specification at different locations, e.g.
during a conference call, they need an
instantaneous feedback of performed
changes.

++ 35 1,00 3 6 5 3 25 50 42 25

1.13. Checking
out for
Offline
Use

Checking out for
Offline Use

It must be possible to check out data and
a license to work on mobile offline
computers without sacrificing
consistency and access rights.
Rationale: Although mobile network
access is constantly improving, it is still
far from perfect and performance is not
yet predictable. In addition, many
organizations have security restrictions
that do not allow mobile access to the
databases.

++ 21 0,60 2 1 0 1 17 8 0 8

1.14. Web
Access

Web Access The tool should have a web interface or
another browser-based client that makes
it unnecessary to install a client
application for occasional users.
Rationale: Web interfaces offer a reliable
and easily manageable possibility to

+ 21 0,60 5 6 1 1 42 50 8 8

 49

Category Prio
(single

systems)

Points rel. Prio
SPL

Tool-Evaluation

v3.6

Name

Description

++ high
+ medium
- low

 DOORS
7.1

Caliber
RM v

2005 SP2

IRqA Requi
Line

DOORS
7.1

Caliber
RM v

2005 SP2

IRqA Requi
Line

work with the requirements. They are
interesting for collaboration with external
partners (“extranet”) and for internal
users that use the tool only occasionally.
Nevertheless, in reality most users are
“power users” for whom the native clients
provide a smoother user experience and
opening the tool to the web causes some
managers and administrators
headaches.

1.15. Configurat
ion
Managem
ent

Configuration
Management

The tool should provide extensive
configuration management capabilities.
This section provides a complete view on
configuration management
functionalities. It overlaps partially with
section 1.1 'Information model', 1.5
'Documentation of history' and section
1.6 'Baselining'. Baselining is considered
as a component of configuration
management.

 20 0,67 0 0 0 0

1.15.1 basic Configuration
Management

Every object must be uniquely
identifiable.

 10 0,25 5 4 5 5 42 33 42 42

1.15.2 basic Configuration
Management

Every object must be versioned 20 0,50 6 4 6 2 50 33 50 17

1.15.3 basic Configuration
Management

Every change of an object must be
recorded with date, version number and
content of change (see 1.5.1)

 20 0,50 6 6 6 2 50 50 50 17

1.15.4 basic Configuration
Management

It must be possible to retrieve a specific
version of an object at any point in time
(see 1.5.6).

 22 0,55 4 6 6 1 33 50 50 8

1.15.5 baseline Configuration
Management

The tool must support baselines. A
baseline is the state of a (specified
subset of the) requirements database
fixed at a given point in time. Compared
with object versioning, a baseline is a

++ 16 0,40 6 6 6 3 50 50 50 25

 50

Category Prio
(single

systems)

Points rel. Prio
SPL

Tool-Evaluation

v3.6

Name

Description

++ high
+ medium
- low

 DOORS
7.1

Caliber
RM v

2005 SP2

IRqA Requi
Line

DOORS
7.1

Caliber
RM v

2005 SP2

IRqA Requi
Line

(partial) database consisting of
numerous objects, each in a certain
version. The development status saved
in a baseline is the starting point for
further development.

1.15.5.1 baseline Configuration
Management

It should be possible to create baselines
based on time.

 14 0,35 1 2 0 1 8 17 0 8

1.15.5.2 baseline Configuration
Management

The tool should support analysis of
baseline information. It should be
possible to perform analysis on a set of
baselines.

 28 0,70 1 2 3 3 8 17 25 25

1.15.6 Product
Line

Configuration
Management

The tool should support efficient creation
of a new variant of a product. The tool
must track the dependency between
variants. It should be possible to
visualize this dependencies at any point
in time.

 40 1,00 2 1 1 4 17 8 8 33

1.15.7 Product
Line

Configuration
Management

It should be possible to easily work on a
sub-set of requirements. This set may be
derived from a large set. It should get a
unique name with which can be worked
on. The tool should track relationships
between original requirement set and
subset.

 32 0,80 1 1 4 4 8 8 33 33

1.15.8 Product
Line

Configuration
Management

Each variant should support meta
attributes.

 24 0,60 1 1 1 2 8 8 8 17

2. Requirements from the Project Administrators
This section describes criteria and their requirements that cover the
requirements management tool needs from the project and tool
administrators’ point of view. They cover issues that are not core
functionalities, but essential for large scale projects.

2.1. Central
Installatio
n and
Administra
tion of

Central
Installation and
Administration of
Projects

All productline-wide information must be
held and changed at one place. A history
of associated changes must be
available.
Rationale: Typically a dedicated group of

++ 19 0,54 6 6 6 5 50 50 50 42

 51

Category Prio
(single

systems)

Points rel. Prio
SPL

Tool-Evaluation

v3.6

Name

Description

++ high
+ medium
- low

 DOORS
7.1

Caliber
RM v

2005 SP2

IRqA Requi
Line

DOORS
7.1

Caliber
RM v

2005 SP2

IRqA Requi
Line

Projects persons takes the responsibility for the
correct mapping of the process
specification to the requirements
management tool implementation. They
must master and document the further
development from the initial project
installation. Without such a responsibility
uncoordinated deviations will take place,
which can be very extensive to
administrate

2.2. Users,
Roles and
Rights

Users, Roles and
Rights

The tool must allow fine-grained
administration of users, user groups,
user roles, user rights and user-roles
rights. A history of changes to these
must be available
Rationale: The bigger and the more
critical the project, the more important
user and rights administration becomes.
Including external and possibly
competing partners in the development
process increases the importance of this
functionality.

++ 23 0,66 3 4 3 3 25 33 25 25

2.2.1. Users, Roles and
Rights

The assignment and execution of
administrative task such as user and role
management must be flexible delegable
to the stucture of responisbilities in the
organisation. I.e. some administrative
task can be defined to be handle in
centralized manner (e.g. user account
creation) while others (e.g. assignement
to a user to a specific project&role) may
handled decentralized on project level
Rationale: Structure of organization, size
of product-lines

++ 21 0,60 4 6 2 3 33 50 17 25

2.2.2. Users, Roles and
Rights

Users must be defined centrally for all
projects. External user management
information must be used, if it exists.

++ 15 0,43 5 5 6 3 42 42 50 25

 52

Category Prio
(single

systems)

Points rel. Prio
SPL

Tool-Evaluation

v3.6

Name

Description

++ high
+ medium
- low

 DOORS
7.1

Caliber
RM v

2005 SP2

IRqA Requi
Line

DOORS
7.1

Caliber
RM v

2005 SP2

IRqA Requi
Line

2.2.3. Users, Roles and
Rights

The tool must allow fine-grained access
and writing rights to be flexibly granted.
Rights must be grantable down to object
and attribute level. A distinction must be
made between rights to view, propose
changes or make changes.

++ 23 0,66 5 5 4 3 42 42 33 25

2.2.4. Users, Roles and
Rights

Security based on overlapping roles is
preferred to security based on
hierarchical security levels.

- 21 0,60 5 6 2 3 42 50 17 25

2.2.5. Users, Roles and
Rights

The security concept must not be
compromised by unauthorized use of
extensions like API programming or
scripting.
Rationale: Security among competing
suppliers with access to the tool is an
important issue.

++ 17 0,49 0 6 0 2 0 50 0 17

2.2.6. Users, Roles and
Rights

Access rights must be grantable via roles
a user is assigned to.

++ 17 0,49 6 6 6 4 50 50 50 33

2.2.7. Users, Roles and
Rights

A user must be able to perform more
than one role at a time.

++ 19 0,54 6 6 0 5 50 50 0 42

2.3. Size
Restriction
s

Size Restrictions There must not be an upper limit for the
size of the database and the number of
requirements, users, groups etc. If such
limits exist, they must be known exactly.
The database must be able to handle
very large projects. The database fields
should not have a fixed size restriction.
Rationale: Large projects in particular
benefit from requirements management
tools. To pre-estimate the limitations of a
new project is inaccurate, because it
could be the starting point of a single
product or a wide product family.

++ 9 0,26 6 6 50 0 50 0

 53

Category Prio
(single

systems)

Points rel. Prio
SPL

Tool-Evaluation

v3.6

Name

Description

++ high
+ medium
- low

 DOORS
7.1

Caliber
RM v

2005 SP2

IRqA Requi
Line

DOORS
7.1

Caliber
RM v

2005 SP2

IRqA Requi
Line

2.3.1. Unlimited size of a requirement ++ 7 0,20 6 4 4 4 50 33 33 33

2.3.2. Unlimited number of requirements ++ 9 0,26 6 4 6 5 50 33 50 42

2.3.3. Unlimited number of users ++ 9 0,26 6 4 6 5 50 33 50 42

2.3.4. Unlimited number of user groups ++ 9 0,26 6 4 6 2 50 33 50 17

2.3.5. Unlimited database size ++ 9 0,26 6 4 6 5 50 33 50 42

2.4. Workflow
Managem
ent

Workflow
Management

The tool could support systems
development via an administrable,
organized and structured process, called
workflow. Information could be provided
and rights granted depending on the
current phase or step in the process. The
workflow must not simply restrict the
users, but guide them through the
process.
Rationale: A workflow provides steering
mechanisms which ensure that all
needed steps of an activity are
completed. Workflows can help to
implement a certain requirements
engineering process and can improve
consistency and standardization of the
requirements. Rigidly IT-driven
workflows are very unpopular among
high skilled workers and in projects with
tight timelines.

- 19 0,54 1 1 2 3 8 8 17 25

 54

Category Prio
(single

systems)

Points rel. Prio
SPL

Tool-Evaluation

v3.6

Name

Description

++ high
+ medium
- low

 DOORS
7.1

Caliber
RM v

2005 SP2

IRqA Requi
Line

DOORS
7.1

Caliber
RM v

2005 SP2

IRqA Requi
Line

2.5. Extensibili
ty

Extensibility The tool must be adaptable and
extensible to the needs of the
organization or project.
Rationale: Every organization has
different needs and usage patterns for a
requirements management tool. Often
nonstandard or domain-specific
development tools have to be integrated
with the requirements management tool.

++ 19 0,54 5 5 42 0 42 0

2.5.1. Extensibility The tool must provide an open and well-
documented object model and an API
which makes all data and functions
accessible to extensions. Standard
programming languages should be used.

++ 15 0,43 2 2 2 3 17 17 17 25

2.5.2. Extensibility The object model and the API must be
follow the "open-closed" principle.
Existing models and functions must not
change, extensions should be possible
across versions of the tool, even major
versions. It should at least stay
downwards compatible.
Rationale: Long lifetime of product-line

++ 21 0,60 0 1 0 4 0 8 0 33

2.5.3. Extensibility The user interface of the tool must be
customizable.

++ 7 0,20 4 4 3 2 33 33 25 17

2.5.4. Extensibility The user interface of the tool must be
extensible with a non tool-specific
programming language.

++ 21 0,60 1 2 2 1 8 17 17 8

3. Requirements from the tool administrators
This last section of the requirements catalogue covers the requirements
from the IT system administrators for a requirements management tool.
Reliability and data security are the most important issues for them.

3.1. Database Worldwide cooperation in development
projects requires a round-the-clock
access to the requirements management
project database. A requirements
management tool database failure can
be very expensive, if developers can’t

++

 55

Category Prio
(single

systems)

Points rel. Prio
SPL

Tool-Evaluation

v3.6

Name

Description

++ high
+ medium
- low

 DOORS
7.1

Caliber
RM v

2005 SP2

IRqA Requi
Line

DOORS
7.1

Caliber
RM v

2005 SP2

IRqA Requi
Line

work and deadlines are missed.

3.1.1. Database The tool must use an database
technology, which must be scalable.

++ 19 0,54 1 5 6 5 8 42 50 42

3.1.2. Database The database must be available 24h a
day and 365 days a year. Maintenance
work on the database must be done on
the running system.

++ 19 0,54 1 5 6 4 8 42 50 33

3.1.3. Database The database system use must be
transaction-safe and the tool must
consistently use this feature.

++ 7 0,20 1 6 6 3 8 50 50 25

3.1.4. Database The database must have a consistency-
analysis and data-integrity check. It must
be able to repair such errors.

++ 7 0,20 5 6 0 5 42 50 0 42

3.1.5. Database To improve data security and availability,
the tool must use a database that is
independent of the tool and can be
administered independently.

++ 7 0,20 1 1 6 5 8 8 50 42

3.1.6. Database It must be possible to backup and
restore only a part of the data in the
database, e.g. just a specific project or
the complete database. This must be
possible while the system is running.

+ 13 0,37 1 1 1 5 8 8 8 42

3.1.7. Database It must be possible to export all project
data and to import them again at a
different time or places for/with different
tool.

++ 7 0,20 2 1 6 5 17 8 50 42

3.1.8. Database The data should be stored in a universal
format.

+ 7 0,20 1 5 6 5 8 42 50 42

3.2. Encryption Rationale: Requirements specifications
of upcoming products and research
prototypes are the main target of
industrial espionage. In highly
competitive high-tech markets, this is a

 56

Category Prio
(single

systems)

Points rel. Prio
SPL

Tool-Evaluation

v3.6

Name

Description

++ high
+ medium
- low

 DOORS
7.1

Caliber
RM v

2005 SP2

IRqA Requi
Line

DOORS
7.1

Caliber
RM v

2005 SP2

IRqA Requi
Line

major problem. Suppliers have a strong
interest in data security, too

3.2.1. Encryption The information stored in the database of
the tool must not be readable to system
administrators or intruders.

+ 7 0,20 0 1 0 1 0 8 0 8

3.2.2. Encryption The tool must allow all communication
between client and server to be
encrypted.

 7 0,20 0 0 0 4 0 0 0 33

3.3. Collaborat
ive Work

Collaborative
Work

There could be a comments or
discussion function tightly linked to the
requirements, but outside formal change
management. Users could add
comments to requirements and changes
to requirements

 9 0,26 1 5 6 1 8 42 50 8

3.4. Priorities

3.4.1. Priorities Explicit multi-dimensional prioritisation of
requirements with respect to
stakeholders

 33 0,94 3 1 1 2 25 8 8 17

Aachener Informatik-Berichte

This list contains all technical reports published during the past five years. A complete list

of reports dating back to 1987 is available from http://aib.informatik.rwth-aachen.de/.

To obtain copies consult the above URL or send your request to: Informatik-Bibliothek,

RWTH Aachen, Ahornstr. 55, 52056 Aachen, Email: biblio@informatik.rwth-aachen.de

2001-01 ∗ Jahresbericht 2000

2001-02 Benedikt Bollig, Martin Leucker: Deciding LTL over Mazurkiewicz

Traces

2001-03 Thierry Cachat: The power of one-letter rational languages

2001-04 Benedikt Bollig, Martin Leucker, Michael Weber: Local Parallel Model

Checking for the Alternation Free mu-Calculus

2001-05 Benedikt Bollig, Martin Leucker, Thomas Noll: Regular MSC Languages

2001-06 Achim Blumensath: Pre�x-Recognisable Graphs and Monadic Second-

Order Logic

2001-07 Martin Grohe, Stefan Wöhrle: An Existential Locality Theorem

2001-08 Mareike Schoop, James Taylor (eds.): Proceedings of the Sixth Interna-

tional Workshop on the Language-Action Perspective on Communication

Modelling

2001-09 Thomas Arts, Jürgen Giesl: A collection of examples for termination of

term rewriting using dependency pairs

2001-10 Achim Blumensath: Axiomatising Tree-interpretable Structures

2001-11 Klaus Indermark, Thomas Noll (eds.): Kolloquium Programmier-

sprachen und Grundlagen der Programmierung

2002-01 ∗ Jahresbericht 2001

2002-02 Jürgen Giesl, Aart Middeldorp: Transformation Techniques for Context-

Sensitive Rewrite Systems

2002-03 Benedikt Bollig, Martin Leucker, Thomas Noll: Generalised Regular

MSC Languages

2002-04 Jürgen Giesl, Aart Middeldorp: Innermost Termination of Context-

Sensitive Rewriting

2002-05 Horst Lichter, Thomas von der Maßen, Thomas Weiler: Modelling Re-

quirements and Architectures for Software Product Lines

2002-06 Henry N. Adorna: 3-Party Message Complexity is Better than 2-Party

Ones for Proving Lower Bounds on the Size of Minimal Nondeterministic

Finite Automata

2002-07 Jörg Dahmen: Invariant Image Object Recognition using Gaussian Mix-

ture Densities

2002-08 Markus Mohnen: An Open Framework for Data-Flow Analysis in Java

2002-09 Markus Mohnen: Interfaces with Default Implementations in Java

2002-10 Martin Leucker: Logics for Mazurkiewicz traces

2002-11 Jürgen Giesl, Hans Zantema: Liveness in Rewriting

2003-01 ∗ Jahresbericht 2002

2003-02 Jürgen Giesl, René Thiemann: Size-Change Termination for Term

Rewriting

2003-03 Jürgen Giesl, Deepak Kapur: Deciding Inductive Validity of Equations

2003-04 Jürgen Giesl, René Thiemann, Peter Schneider-Kamp, Stephan Falke:

Improving Dependency Pairs

2003-05 Christof Löding, Philipp Rohde: Solving the Sabotage Game is

PSPACE-hard

2003-06 Franz Josef Och: Statistical Machine Translation: From Single-Word

Models to Alignment Templates

2003-07 Horst Lichter, Thomas von der Maßen, Alexander Nyßen, Thomas

Weiler: Vergleich von Ansätzen zur Feature Modellierung bei der Soft-

wareproduktlinienentwicklung

2003-08 Jürgen Giesl, René Thiemann, Peter Schneider-Kamp, Stephan Falke:

Mechanizing Dependency Pairs

2004-01 ∗ Fachgruppe Informatik: Jahresbericht 2003

2004-02 Benedikt Bollig, Martin Leucker: Message-Passing Automata are expres-

sively equivalent to EMSO logic

2004-03 Delia Kesner, Femke van Raamsdonk, Joe Wells (eds.): HOR 2004 � 2nd

International Workshop on Higher-Order Rewriting

2004-04 Slim Abdennadher, Christophe Ringeissen (eds.): RULE 04 � Fifth In-

ternational Workshop on Rule-Based Programming

2004-05 Herbert Kuchen (ed.): WFLP 04 � 13th International Workshop on

Functional and (Constraint) Logic Programming

2004-06 Sergio Antoy, Yoshihito Toyama (eds.): WRS 04 � 4th International

Workshop on Reduction Strategies in Rewriting and Programming

2004-07 Michael Codish, Aart Middeldorp (eds.): WST 04 � 7th International

Workshop on Termination

2004-08 Klaus Indermark, Thomas Noll: Algebraic Correctness Proofs for Com-

piling Recursive Function De�nitions with Strictness Information

2004-09 Joachim Kneis, Daniel Mölle, Stefan Richter, Peter Rossmanith: Param-

eterized Power Domination Complexity

2004-10 Zinaida Benenson, Felix C. Gärtner, Dogan Kesdogan: Secure Multi-

Party Computation with Security Modules

2005-01 ∗ Fachgruppe Informatik: Jahresbericht 2004

2005-02 Maximillian Dornseif, Felix C. Gärtner, Thorsten Holz, Martin Mink: An

Offensive Approach to Teaching Information Security: �Aachen Summer

School Applied IT Security�

2005-03 Jürgen Giesl, René Thiemann, Peter Schneider-Kamp: Proving and Dis-

proving Termination of Higher-Order Functions

2005-04 Daniel Mölle, Stefan Richter, Peter Rossmanith: A Faster Algorithm for

the Steiner Tree Problem

2005-05 Fabien Pouget, Thorsten Holz: A Pointillist Approach for Comparing

Honeypots

2005-06 Simon Fischer, Berthold Vöcking: Adaptive Routing with Stale Infor-

mation

2005-07 Felix C. Freiling, Thorsten Holz, Georg Wicherski: Botnet Tracking:

Exploring a Root-Cause Methodology to Prevent Distributed Denial-of-

Service Attacks

2005-08 Joachim Kneis, Peter Rossmanith: A New Satis�ability Algorithm With

Applications To Max-Cut

2005-09 Klaus Kursawe, Felix C. Freiling: Byzantine Fault Tolerance on General

Hybrid Adversary Structures

2005-10 Benedikt Bollig: Automata and Logics for Message Sequence Charts

2005-11 Simon Fischer, Berthold Vöcking: A Counterexample to the Fully Mixed

Nash Equilibrium Conjecture

2005-12 Neeraj Mittal, Felix Freiling, S. Venkatesan, Lucia Draque Penso: Ef-

�cient Reductions for Wait-Free Termination Detection in Faulty Dis-

tributed Systems

2005-13 Carole Delporte-Gallet, Hugues Fauconnier, Felix C. Freiling: Revisiting

Failure Detection and Consensus in Omission Failure Environments

2005-14 Felix C. Freiling, Sukumar Ghosh: Code Stabilization

2005-15 Uwe Naumann: The Complexity of Derivative Computation

2005-16 Uwe Naumann: Syntax-Directed Derivative Code (Part I: Tangent-

Linear Code)

2005-17 Uwe Naumann: Syntax-directed Derivative Code (Part II: Intraproce-

dural Adjoint Code)

2005-18 Thomas von der Maßen, Klaus Müller, John MacGregor, Eva Geis-

berger, Jörg Dörr, Frank Houdek, Harbhajan Singh, Holger Wußmann,

Hans-Veit Bacher, Barbara Paech: Einsatz von Features im Software-

Entwicklungsprozess - Abschlußbericht des GI-Arbeitskreises �Features�

2005-19 Uwe Naumann, Andre Vehreschild: Tangent-Linear Code by Augmented

LL-Parsers

2005-20 Felix C. Freiling, Martin Mink: Bericht über den Workshop zur Ausbil-

dung im Bereich IT-Sicherheit Hochschulausbildung, beru�iche Weiter-

bildung, Zerti�zierung von Ausbildungsangeboten am 11. und 12. Au-

gust 2005 in Köln organisiert von RWTH Aachen in Kooperation mit

BITKOM, BSI, DLR und Gesellschaft fuer Informatik (GI) e.V.

2005-21 Thomas Noll, Stefan Rieger: Optimization of Straight-Line Code Revis-

ited

2005-22 Felix Freiling, Maurice Herlihy, Lucia Draque Penso: Optimal Random-

ized Fair Exchange with Secret Shared Coins

2005-23 Heiner Ackermann, Alantha Newman, Heiko Röglin, Berthold Vöcking:

Decision Making Based on Approximate and Smoothed Pareto Curves

2005-24 Alexander Becher, Zinaida Benenson, Maximillian Dornseif: Tampering

with Motes: Real-World Physical Attacks on Wireless Sensor Networks

2006-01 ∗ Fachgruppe Informatik: Jahresbericht 2005

2006-03 Michael Maier, Uwe Naumann: Intraprocedural Adjoint Code Generated

by the Differentiation-Enabled NAGWare Fortran Compiler

2006-04 Ebadollah Varnik, Uwe Naumann, Andrew Lyons: Toward Low Static

Memory Jacobian Accumulation

2006-05 Uwe Naumann, Jean Utke, Patrick Heimbach, Chris Hill, Derya Ozyurt,

Carl Wunsch, Mike Fagan, Nathan Tallent, Michelle Strout: Adjoint

Code by Source Transformation with OpenAD/F

2006-06 Joachim Kneis, Daniel Mölle, Stefan Richter, Peter Rossmanith: Divide-

and-Color

2006-07 Thomas Colcombet, Christof Löding: Transforming structures by set

interpretations

2006-08 Uwe Naumann, Yuxiao Hu: Optimal Vertex Elimination in Single-

Expression-Use Graphs

2006-09 Tingting Han, Joost-Pieter Katoen: Counterexamples in Probabilistic

Model Checking

2006-10 Mesut Günes, Alexander Zimmermann, Martin Wenig, Jan Ritzerfeld,

Ulrich Meis: From Simulations to Testbeds - Architecture of the Hybrid

MCG-Mesh Testbed

2006-11 Bastian Schlich, Michael Rohrbach, Michael Weber, Stefan Kowalewski:

Model Checking Software for Microcontrollers

2006-12 Benedikt Bollig, Joost-Pieter Katoen, Carsten Kern, Martin Leucker:

Replaying Play in and Play out: Synthesis of Design Models from Sce-

narios by Learning

∗ These reports are only available as a printed version.

Please contact biblio@informatik.rwth-aachen.de to obtain copies.

