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Abstract. Gradients of scalar multivariate functions can be computed by elim-
ination methods on the linearized computational graph. The combinatorial op-
timization problem that aims to minimize the number of arithmetic operations
performed by the elimination algorithm is known to be NP-complete. In this
paper we present a polynomial algorithm for solving a relevant subclass of this
problem’s instances. The proposed method relies on the ability to compute vertex
covers in bipartite graphs in polynomial time. A simplified version of this graph
algorithm is used in a research prototype of the differentiation-enabled NAGWare
Fortran compiler for the preaccumulation of local gradients of scalar assignments
in the context of automatic generation of efficient tangent-linear code for numer-
ical programs.

1 Context

The motivation for the graph-algorithmic work in this paper has its origins in
automatic differentiation (AD) of numerical programs. In AD we consider im-
plementations of vector functions F : IRn → IRm as computer programs writ-
ten in some (often high-level) imperative programming language. Whenever we
talk about F we actually mean the given implementation.1 For given input val-
ues we expect the program that computes the values of dependent output vari-
ables y = (yk)k=1,...,m by y = F (x) as a function of independent input variables
x = (xi)i=1,...,n to decompose into a sequence of elementary assignments

vj = ϕj(vi)i≺j, j = 1, . . . , p + m . (1)

Equation (1) is also referred to as the single assignment code. The direct depen-
dence of vj on vi is denoted by i ≺ j. Hence, vi is an argument of the elemental
function ϕj .

2 The transitive closure of this relation is denoted by ≺∗ . It is reflex-
ive, that is j ≺∗ j. We use p intermediate variables vj, j = 1, . . . , p, and we set
vi−n = xi, i = 1, . . . , n and vp+k = yk, k = 1, . . . ,m. Whenever appropriate we
use q = p+m for notational brevity. We follow Griewank’s notation [9] wherever
possible. Refer to the same source for a comprehensive discussion of both funda-
mental and advanced issues in AD. Applications and special topics in past and
ongoing research and development in the field are covered by the proceedings of
the four international workshops on AD held in 1991 [6], 1996 [2], 2000 [5], and
2004 [4].

1 Often there are multiple alternatives for implementing a given function. We put ourselves
into the position of a compiler that “sees” the given implementation but not the underlying
problem that the programmer had intended to implement.

2 Think of elemental functions as the arithmetic operators and numerical intrinsics provided
by your favorite programming language.



Equation (1) induces a directed acyclic graph (dag) G = (V,E) (also called
the computational graph) with V = {1 − n, . . . , q} and (i, j) ∈ E ⇔ i ≺ j. With
the mutually disjoint3 vertex sets X, Z, and Y representing the independent,
intermediate, and dependent vertices, respectively, we also write

G = ({X,Z, Y }, E) .

For given values of the inputs the dag is linearized by attaching for all i, j with
i ≺ j the values of the local partial derivatives

cj,i = cj,i(vk)k≺j ≡
∂ϕj

∂vi

(vk)k≺j (2)

to the corresponding edges (i, j). It has been well known for some time that
the Jacobian matrix F ′ = F ′(x) ∈ IRm×n can be accumulated by making G
bipartite (transformation G → G′ where G′ = ({X, ∅, Y }, E′) by the elimination
techniques to be discussed below) with the labels on the remaining edges in E′

representing exactly the nonzero entries of F ′.
The first elimination technique is due to Baur and Strassen [1] who interpret

the computation of each Jacobian entry

F ′(j, i) ≡
∂yj

∂xi

(x) =
∑

π∈{(1−i)→(p+j)}

∏

(k,l)∈π

cl,k (3)

as the elimination of all paths π connecting the corresponding vertices 1 − i
and p + j in G.4 In 1991 Griewank and Reese [10] propose a vertex elimination
technique to get from G to G′ together with a local heuristic for approximating
the minimal number of arithmetic operations required for the transformation.
Refined versions in the form of edge and face elimination techniques are pro-
posed by Naumann in 1999 [15] and 2004 [16]. Griewank and Vogel [11] observe
that pure chain-rule-based arithmetic may not minimize the operations count
in some situations. They propose a rerouting technique motivated by a kind of
LU-factorization of a submatrix of the extended Jacobian [9].

In the following we review some of the known elimination techniques. We
focus on the aspects that are essential for further understanding the development
of this paper’s ideas.

The application of Equation (3) to the graph in Figure 1 (a) yields the bi-
partite graph displayed in Figure 1 (b). The rule for eliminating an intermediate
vertex j from G follows immediately. Vertex 1 is eliminated in Figure 1 at the
cost of |P1| · |S1| = 2 · 2 = 4 scalar floating-point multiplications.5 We use Pj and
Sj to denote the sets of predecessors and successors of a vertex j in G, respec-
tively. With |A| denoting the cardinality of a set A, the indegree and outdegree

3 W.l.o.g. we assume that dependent variables never occur as arguments of an elemental func-
tion.

4 We use the notation {i → j} to denote the set of all distinct paths from i to j. Paths in G

are regarded as ordered sets (sequences) of edges.
5 For the time being we use the number of scalar floating-point multiplications as a cost

function. Later we will also count scalar additions. We shall see that multiplications and
additions are the only operations performed during the accumulation of Jacobians using the
elimination techniques on the type of linearized computational graph that this paper focuses
on.
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Fig. 1. Linearized Computational Graphs

of a vertex j are equal to |Pj | and |Sj |, respectively. Applying Equation (3) to
a single column or row in the 2 × 2 Jacobian leads to rules for front- and back-
elimination of edges, respectively. For example, the first column is computed by
front-elimination of (−1, 1). Back-elimination of (1, 3) yields the second row. Re-
fer to Figure 2 for illustration. Naumann shows in [15] that there are graphs for
which the cost (in terms of the number of scalar multiplications and additions) of
the best edge elimination sequence undercuts that of the best vertex elimination
sequence.
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Fig. 2. Edge Elimination

For the graph in Figure 1 neither front- nor back-elimination allow for single
Jacobian entries to be computed without affecting others. In [16] Naumann shows
that this independent evaluation of partial derivatives is required to undercut the
cost of the best edge elimination sequence. He introduces face elimination as an
edge elimination technique on the dual linearized computational graph (a special
form of the original graph’s line graph). The step to the dual graph is required as
there is no structural equivalent to face elimination in the original graph. Later
we shall see that any face elimination sequence can be expressed by an equivalent
edge elimination sequence for the type of graphs that this paper focuses on.

Rerouting has been introduced in [11] as an elimination technique that allows
for the number of arithmetic operations to be lowered even further. Intuitively,
the contribution of a local partial derivative in G (an edge label) is rerouted via
an alternative path from the edge’s source vertex to its target. In this paper we
focus on pure chain rule arithmetic. Rerouting is not considered.
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2 Single-Expression-Use Graphs

Definition 1 A single-expression-use graph (SEU-graph) is a linearized compu-
tational graph whose intermediate vertices have outdegree one.

−1 0

1

2

3

Fig. 3. Single-Expression-Use Graph

Typical representatives of SEU-graphs are induced by right-hand sides of
scalar assignments that are frequently used in numerical programs.

Example. Consider

y = x1 · sin(x1)/x2 . (4)

The single assignment code of Equation (4) is

v1 = sin(v−1); v2 = v−1 · v1; v3 = v2/v0 .

It yields the computational graph in Figure 3. Systems of equations can yield
SEU-graphs. For example, in

t = x1 · sin(x1); y1 = t/x2; y2 = x3/x1

the computations of the two outputs y1 and y2 are mutually independent in that
they do not share a common intermediate value. �

Larger SEU-graphs can result from sequences of scalar assignments provided
that one is able to flatten the corresponding sequence of smaller SEU-graphs
[20].

Example. The first two equations of the previous example

t = x1 · sin(x1); y1 = t/x2

yield the SEU-graph in Figure 3. In order to be able to flatten the correspond-
ing two separate SEU-graphs one needs to establish that the t on the left-hand
side of the first assignment refers to the same memory location as the t on the
right-hand side of the second assignment. This task is easy to accomplish if the
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variable is both static and scalar (as it is in this example). However, if the mem-
ory reference is dynamic (via pointers or array accesses with runtime-dependent
indexes), then the unique identification is often impossible – undecidable in gen-
eral. �

In this paper we present an algorithm that minimizes the number of arithmetic
operations required for the accumulation of first derivatives of numerical pro-
grams whose computational graphs are SEU-graphs. We prove the correctness
and optimality of an algorithm that uses vertex elimination [10] to achieve the
transformation from the original dag into a bipartite one. The proof is based
on the assumption that all local partial derivatives that are defined in Equa-
tion (2) are algebraically independent. Although this may be a serious restriction
in theory (see [17]) we believe that for most practical situations the algorithm
does produce optimal results, that is, derivative accumulation procedures with
minimum arithmetic cost. Moreover it contributes to our still not satisfactory
understanding of the structural properties of optimal derivative code.

3 Optimal Vertex Elimination in SEU-Graphs
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Fig. 4. Search Space for Optimal Edge Elimination Problem: The edges in this meta graph are
labeled with the number of multiplications involved in the respective elimination step. We shall
see later that only the number of multiplications is of interest from a combinatorial point of
view as the number of additions is constant for SEU-graphs.

The main result of this section is a vertex elimination algorithm that mini-
mizes the number of arithmetic operations required for the accumulation of first
derivatives using elimination techniques on SEU-graphs. We have already seen
that face elimination does not contribute to improving the best edge elimina-
tion sequence. Despite the fact that not every edge elimination sequence has an
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equivalent vertex elimination sequence6 we shall see that vertex elimination is in
fact sufficient.

According to Equation (3) the accumulation of the Jacobian involves the
elimination of all intermediate vertices. We are looking for an edge elimination
sequence that accomplishes this task at minimum cost. Note that the elimination
of a vertex is equivalent to the back-elimination of its outgoing edges. There
is only one outgoing edge per intermediate vertex in SEU-graphs. The front-
elimination of all incoming edges has a similar effect. The search space of this
combinatorial optimization problem consists of all graphs that can be generated
by applying arbitrary edge elimination sequences to the original graph G. For
example, Figure 4 shows the search space for the graph in Figure 1 (a). The
solution of the optimal edge elimination problem is equivalent to that of a shortest
path problem in the meta graph whose size is exponential in the size of the original
graph G [16].7 We need to front-[back-]eliminate a minimum of |P j| [|Sj|] in-[out-
]edges to eliminate some vertex j. An immediate consequence of Equation (3) is
that the sets P j are minimal X-j vertex cuts in G, that is minimal vertex sets
Cv ⊆ X ∪ Z \ {j} with the property that every path from some i ∈ X to j ∈ Z
includes a vertex from Cv. Similarly, the sets Sj are minimal j-Y vertex cuts.
Hence we get the following lower bound on the cost of Jacobian accumulation by
edge elimination on the linearized computational graph.

Lemma 1. The minimal number of multiplications required for the elimination
of a vertex j over all possible edge elimination sequences in G is equal to |P j ||Sj |.

Proof. According to Equation (3) the elimination of a path (i → j) makes i an
immediate predecessor of j. The number of immediate predecessors of j cannot
undercut that of a minimal vertex cut since by Menger’s theorem [12] the latter
is equal to the maximum number of vertex-disjoint paths connecting the vertices
in X with j. �

Lemma 2. The minimal number of multiplications required for the transforma-
tion G → G′ is equal to

∑

j∈Z |P j||Sj|.

Proof. The proof follows immediately from Lemma 1. �

A reverse vertex elimination sequence eliminates all intermediate vertices such
that for any two i, j ∈ Z the vertex j is eliminated before i whenever i ≺∗

j. We say that the vertices are reverse eliminated. With the outdegree of all
intermediate vertices in SEU-graphs being equal to one we can prove the following
result.

Lemma 3. A reverse vertex elimination sequence minimizes the number of scalar
multiplications for SEU-graphs whose intermediate vertices have minimum inde-
gree, that is, ∀j ∈ Z : |Pj | = |P j|.

Proof. According to Lemma 1 the minimum cost of accumulating the Jacobian of
an SEU-graph is

∑

j∈Z |P j|. While the elimination of an intermediate vertex may
change the indegree of its successor it leaves the outdegrees of its predecessors

6 For example, in Figure 3 the front-elimination of edge (1, 2) followed by the elimination of
vertex 1 and vertex 2 has no equivalent in terms of vertex elimination sequences.

7 It is easy to verify that the length of any path is equal to four in Figure 4.
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constant (equal to one). Consequently, a reverse vertex elimination sequence
eliminates all intermediate vertices at minimal cost. Hence, it reaches the lower
bound established by Lemma 2. �

Lemma 4. All elimination sequences perform
∑

i∈X |Si|−µ additions when ap-
plied to an SEU-graph G. The parameter µ denotes the number of nonzeros in
the corresponding Jacobian F ′.

Proof. First we show that the number of additions performed in Equation (3)
cannot be undercut for SEU-graphs. The proof is by deriving a contradiction.

Suppose that some elimination sequence decreases the number of additions.
Then, by the distributive law, some sum

s =
∏

(i1,j1)∈(i→j)1

cj1,i1 +
∏

(i2,j2)∈(i→j)2

cj2,i2 ,

where (i → j)ν ∈ {i → j}, ν = 1, 2, are two vertex disjoint paths that connect
i and j, must appear as a common subterm in two or more Jacobian entries.
The above implies that i ∈ X since only independent vertices can have more
than one successor. Moreover, j or some k with j ≺∗ k needs to have at least
two successors for s to appear in two different Jacobian entries. The above yields
a contradiction to the definition of SEU-graphs. Consequently, |{i → j}| − 1
additions must be performed for each pair i ∈ X and j ∈ Y .

The sum over all these pairs is equal to N −µ, where N denotes the number
of all distinct paths in G. Let ni denote the number of distinct paths through
a vertex i in G. Furthermore, let nb

i [nf
i ] denote the number of different paths

leading into [emanating from] a vertex i. Initializing nb
i = 1 for i ∈ X and nf

i = 1
for i ∈ Y, we get

nb
i =

∑

j∈Pi

nb
j , and nf

i =
∑

j∈Si

nf
j . (5)

It follows that

ni =











nb
i i ∈ Y

nf
i i ∈ X

nb
in

f
i i ∈ Z

,

and we get N =
∑

j∈X nj =
∑

j∈Y nj. By the definition of SEU-graphs nf
i = 1

for all i ∈ Z. With Equation (5) it follows that

N =
∑

j∈Y

nj =
∑

j∈Y

nb
j =

∑

i∈X

nf
i =

∑

i∈X

|Si| .

The proof of the lemma follows immediately. �

Example. The application of the above argument to the graph in Figure 3 delivers
the following.

We set nb
−1 = nb

0 = 1. It follows that

1. nb
1 = nb

−1 = 1
2. nb

2 = nb
1 + nb

−1 = 2

3. nb
3 = nb

2 + nb
0 = 3 .
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The gradient to be computed contains two entries. Hence, 1 = 3 − 2 addition is
performed by any elimination sequence. �

Theorem 2 states an optimal vertex elimination algorithm for SEU-graphs
that minimizes the number of multiplications by reaching the lower bound estab-
lished in Lemma 2. The algorithm relies on the ability to compute the cardinality
of minimal X-j vertex cuts for all j ∈ Z as well as a corresponding minimizer.

For any j ∈ Z we consider the single-source-single-sink dag

Ġj = (V̇j , Ėj)

V̇j = {i ∈ V : i ≺∗ j} ∪ {s}

Ėj = {(i, k) ∈ E : i, k ∈ V̇j} ∪ {(s, i) : i ∈ X ∩ V̇j}

(6)

as a flow network with integer edge capacities c(i, k) = 1 for all (i, k) ∈ Ėj .
Negative flows are disallowed. Hence, the flow φ(i, k) along any edge (i, k) ∈ Ėj

can be either 0 or 1. According to the Maximum-Flow-Minimum-Cut theorem
[8] the cardinality of a minimal edge cut separating vertex j from s is equal to
a maximal flow from s to j in Ġ. A maximal flow from s to j can be computed
by the well-known Ford-Fulkerson algorithm [8] via the gradual saturation of all
augmenting paths ensuring that all paths from s to j have been eliminated in
the corresponding residual network. The complexity of this algorithm is known
to be O(|Ėj | · Φ̄) where Φ̄ denotes the value of a maximal flow in Ġj . Motivated
by the worst-case complexity of the Ford-Fulkerson algorithm that is known to
be exponential in the size of the underlying network Edmonds and Karp [7]
presented an improvement of the algorithm by implementing the computation
of the augmenting path with a breadth-first search. This approach ensures a
polynomial complexity of O(|Ėj | · |V̇j|

2). For networks based on SEU-graphs as
defined above we observe that Φ̄ ≤ |Pj | for all j ∈ Z. Hence, the complexity of
the Ford-Fulkerson algorithm is O(|Ėj | · |V̇j |).

−1 0

1 2 3

4

s

−1 0

1 2 3

4 = j

(a) (b)

Fig. 5. G and Ġ4

Example. Ġ4 is shown in Figure 5 (b) for the graph in Figure 5 (a). �

We partition the vertices in Ġj as

V̇j = (s,Xj , Zj , Pj , j) , (7)
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where s is the unique source, j is the unique sink, Xj = Ss are those independent
vertices that are connected to j by some path, Pj are the immediate predecessors
of j, Zj are the remaining vertices. We require Zj ∩ (Xj ∪ Pj) = ∅.

Note that ∀i ∈ Xj : |Pi| = 1 and ∀j ∈ Zj ∪Pj \Xj : |Sj | = 1 in Ġj . We define
a s-j edge cut as a set Ce of edges with the property that every path from s to
j contains an edge from Ce.

Lemma 5. Let Ce be a minimal s-j edge cut in Ġj . Then

∃C ′
e :

(

∀(i, k) ∈ C ′
e i 6∈ Xj

)

∧ |C ′
e| = |Ce| .

Proof. The lemma states that there is always a minimal s-j edge cut in Ġj such
that none of its elements emanates from a vertex in Xj .

Let (i, k) ∈ Ce where i ∈ Xj . Then C ′
e = (Ce \ {(i, k)}) ∪ {s, i} is such that

|C ′
e| = |Ce|. The proof follows from the repeated application of this transforma-

tion. �

Lemma 5 establishes the unique identifiability of vertices via edges in given min-
imal edge cuts. Hence a minimal X-j vertex cut Cv can be derived from a given
edge cut Ce as follows:

Cv = ∅
∀(i, k) ∈ Ce

Cv := Cv ∪

{

i if i ∈ Z

k if k ∈ X
.

Consequently, the minimal indegrees |P j | of all intermediate vertices j ∈ Z can
be computed at O(|E| · |V |2).

For the graph in Figure 5 (b) we find, for example, Ce = {(−1, 1), (s, 0)}.
According to Lemma 5 the set C ′

e = {(s,−1), (s, 0)} is a minimal edge cut too.
Consequently, we get Cv = {−1, 0}.

Suppose that j is the first vertex according to the topological order of all ver-
tices with respect to dependence of the corresponding variables in Equation (1)
whose current indegree |Pj | is not minimal. The indegrees of all vertices k on
paths that lead into j are minimal.

Lemma 6. Consider Ġj as in Equation (6) and with the vertices partitioned as
in Equation (7). Paths from any k ∈ Zj ∪ (Pj \ Xj) to j are unique.

Proof. |Sk| = 1 ∀k ∈ Zj ∪ (Pj \ Xj) as G is an SEU-graph. Hence, all these k
have a single outgoing path leading into j. �

Lemma 7. Consider Ġj as in Equation (6). Let the vertices be partitioned as
in Equation (7). Paths from any k ∈ Zj to j′ ∈ Pj are unique if they exist.

Proof. The proof follows immediately from that of Lemma 6. �

Lemma 8. There is always a minimal X-j vertex cut in Ġj that contains only
vertices from Xj and Pj.

11



Proof. Let Cv be a minimal X-j vertex cut such that Cv 6⊆ Xj ∪ Pj . Let k ∈ Cv

and k 6∈ Xj ∪ Pj . According to Lemma 7 the vertex k can be replaced by the
unique j′ ∈ Pj such that the resulting vertex set C ′

v is still a vertex cut with a
cardinality that is less than or equal to that of Cv. Since Cv is minimal so is C ′

v.
�

The key consequence of Lemma 8 is that a minimal X-j vertex cut in Ġj is
equivalent to one in the augmented bipartite graph Ḃj defined as

Ḃj = (V̇ b
j , Ėb

j )

V̇ b
j = (s,Xj ∪ Pj ∪ P̃j , j)

Ėb
j = {(i, k)|i, k ∈ V̇ b

j ∧ (i ≺∗ k ∨ k =̂ i)} ∪ {(k, j)|k ∈ P̃j} .

P̃j contains a vertex k for each edge (i, j) where i ∈ Pj ∩Xj . We write k =̂ i. An
example is discussed in Section 4.

A set Cv ⊆ Xj ∪Pj is an X-j vertex cut if and only if all edges in the bipar-
tite subgraph Bj = (V b

j , Eb
j ) of Ḃj that is obtained by removing s and j together

with all their incident edges are incident with at least one vertex in Cv. Note that
this property corresponds exactly to the definition of a minimal vertex cover in
the bipartite graph Bj. According to Königs matching theorem [14] a minimal
vertex cover is equivalent to a maximal matching in bipartite graphs. A maxi-
mal matching and a minimal vertex cover can be computed simultaneously by

the well-known O(
√

|V b
j ||E

b
j |) algorithm of Hopcroft and Karp [13]. Its compu-

tational complexity undercuts that of the Ford-Fulkerson method for computing
|P j |. Note that a minimal vertex cover is not necessarily unique. In the following
we shall see that this fact has no negative impact on correctness and optimality
of the proposed algorithm.

Theorem 2. Consider an SEU-graph G. The following vertex elimination se-
quence yields the minimal number of multiplications and additions:

[1] FOR j = 1, . . . , p
[2] IF |P j | < |Pj |
[3] reverse eliminate {k ∈ Zj ∪ Pj |∄j′ ∈ Pj : k ≺∗ j′ ∧ j′ ∈ P j}
[4] reverse eliminate {k ∈ Z}.

Proof. We visit all vertices in the order of their indexes (line 1). Consider the
first vertex j ∈ Z where |P j| < |Pj | (line 2). P j is computed using the algorithm
of Hopcroft and Karp.

To prove line 3 of the algorithm let j′ ∈ Pj such that j′ 6∈ P j . Then i ∈
P j ∀i ∈ Xj : i ≺∗ j′ as otherwise P j is not an X-j vertex cut. The same applies
to all j′′ ∈ Zj, j′′ ≺∗ j′ as paths emanating from j′′ are unique according to
Lemma 6. The elimination of all j′′ ∈ Zj ∪ (Pj \ Xj) with j′′ ≺∗ j′ transforms
Ġj such that only vertices in P j are predecessors of j. Hence, the indegree of j
becomes minimal no matter which minimal vertex cut P j is used. Moreover, the
reverse elimination of all j′′ ∈ Zj∪(Pj \Xj) happens at minimal cost according to
Lemma 1. Their outdegrees remain constant (equal to one), and their indegrees
have been minimized during previous steps of the algorithm. Moreover, the k
addressed in line 3 cannot be in Xj as k ∈ P j if k ∈ Xj ∩ Pj and because ≺∗ is
reflexive.

12



Following the forward part of the algorithm (lines 1–3) we reverse eliminate
all remaining intermediate vertices. Again, their outdegrees remain unchanged
(equal to one) while their indegrees have been minimized during the forward part
of the algorithm. Consequently, all intermediate vertices are eliminated at the
minimal possible cost in terms of the number of multiplications established by
Lemma 1. The number of additions is constant according to Lemma 4. �

Example. For the graph in Figure 3 the algorithm behaves as follows: Vertex 1
is visited first and |P 1| = |P1| = 1. For vertex 2 we get 1 = |P 2| < |P2| = 2. We
find {−1} to be the corresponding minimal X-2 cut. Vertex 1 gets eliminated at
the minimal cost of a single multiplication. This completes the forward part of
the algorithm (lines 1–3).

The reverse part (line 4) is reduced to the elimination of the only remaining
vertex, namely 2, at the cost of one multiplication. Hence, the graph is trans-
formed into bipartite form at the overall minimal cost of two multiplications and
a single addition. The latter is performed by any elimination sequence as shown
in Lemma 4. �

4 Application and Further Test Results

A special case of Theorem 2 finds practical application in a research prototype
of the differentiation-enabled NAGWare Fortran compiler [18, 19]. Typical repre-
sentatives for SEU-graphs result from single scalar assignments in Fortran. The
performance of tangent-linear codes generated by the forward mode of AD can
be improved by preaccumulating the local gradients of all assignments followed
by using these partial derivatives for the computation of the directional deriva-
tives. The AD tool ADIFOR [3] implements statement-level reverse mode that is
essentially equivalent to reverse vertex elimination in the corresponding computa-
tional graph. Obviously, this approach does not necessarily minimize the number
of operations required locally. For example, the gradient of Equation (4) can be
accumulated in forward vertex elimination mode at the cost of two multiplica-
tions (plus one addition) instead of the three multiplications (plus one addition)
required by the reverse vertex elimination sequence. However, the limited size of
typical right-hand sides of assignments in numerical codes suggests that this local
application is unlikely to lead to significant improvements of the overall runtime
of the tangent-linear program. The savings result primarily from the fact that
the number of factors involved in the propagation of directional derivatives is
decreased as the result of preaccumulation. The impact of the preaccumulation
method is only secondary.

In the NAGWare Fortran compiler we assume that all elemental functions
are at most binary, that is, |Pj | ≤ 2 for all j ∈ Z. This observation leads to the
following simplified version of the algorithm proposed in Theorem 2.

Lemma 9. Consider an SEU-graph G with |Pj | ≤ 2 for all j ∈ Z. The following
vertex elimination sequence yields the minimal number of multiplications and
additions:

[1] FOR j = 1, . . . , p
[2] IF |Pj | = 1
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[3] eliminate j
[4] FOR j = p, . . . , 1
[5] IF j ∈ G
[6] eliminate j

Proof. The optimality of the algorithm follows from Theorem 2. The elimination
of all j ∈ Z with |Pj | = |Sj| = 1 is performed at minimal cost. The remainder of
the proof is lead by deriving a contradiction to the fact that all vertices j with
|Pj | = |Sj| = 1 have been eliminated. Suppose that among the remaining vertex
there is one with |Pj | > |P j |, that is |Pj | = 2 and |P j | = 1. If P j = {i}, then
i ∈ X by Lemma 6. It follows that there must be at least one k with i ≺∗ k ≺∗ j
such that |Pk| = 1. �
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Fig. 6. Random SEU-Graph

The algorithm in Theorem 2 has been applied to a large number of random
SEU-graphs. We have implemented both the graph generator and the elimination
algorithm. The test results support the theoretical claims in this paper.

Consider, for example, the random SEU-graph in Figure 6 (a). The algorithm
finds 16 to be the first (and only) vertex with nonminimal indegree. An auxil-
iary vertex 0̃ is introduced to get the bipartite graph B16 = (V b

16, E
b
16) where

V b
16 = {−2,−1, 0, 13, 15, 0̃} and Eb

16 = {((−2, 15), (−1, 15), (0, 13), (0, 0̃)}. The
vertex set {15, 0} is found to be a minimal vertex cover in B16. The vertices
13, 12, and 11 need to be reverse eliminated according to line 3 in Theorem 2.
They are highlighted in Figure 6 (a). The elimination transforms the graph into
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that displayed in Figure 6 (b) at the cost of three multiplications and a single
addition. It is easy to verify that all remaining vertices have minimal indegrees.
Hence, reverse elimination makes the graph bipartite at an overall cost of 32 mul-
tiplications. Forward vertex elimination takes 38 multiplications whereas global
reverse elimination takes 33 multiplications. The number of additions is 14 in all
three cases.

5 Conclusion

The main contribution of this paper is a polynomial algorithm for the solution of
a relevant subclass of the instances of an otherwise NP-complete problem. The
savings that can be achieved by applying our algorithm as opposed to global
reverse elimination in SEU-graphs is most likely bounded from above by a factor
of two.8 Hence, the computational speedup cannot be expected to be enormous.
Moreover, the runtime of derivative code is probably dominated by memory
access issues that have been ignored in this paper.

This paper reduces a relevant problem from the theory of automatic differen-
tiation to classic graph algorithms. We believe that this novel insight contributes
to an improved understanding of the computational complexity of derivative
code. The results are likely to play an important role in future investigations in
this area.
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