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Abstract. In the fair exchange problem, mutually untrusting parties must se-
curely exchange digital goods. A fair exchange protocol must ensure that no
combination of cheating or failures will result in some goods being delivered but
not others, and that all goods will be delivered in the absence of cheating and
failures.
This paper proposes two novel randomized protocols for solving fair exchange
using simple trusted units. Both protocols have an optimal expected running
time, completing in a constant (3) expected number of rounds. They also have
optimal resilience. The first one tolerates any number of dishonest parties, as long
as one is honest, while the second one, which assumes more aggressive cheating
and failures assumptions, tolerates up to a minority of dishonest parties.
The key insight is similar to the idea underlying the code-division multiple ac-
cess (CDMA) communication protocol: outwitting an adversary is much easier if
participants share a common, secret pseudo-random number generator.

1 Introduction

In the fair exchange problem, a set of parties want to trade an item which they
have for an item of another party (for a survey of fair exchange see [11]). Fair
exchange is a fundamental problem in domains with electronic business trans-
actions since (1) items can be any type of electronic asset (electronic money,
documents, music files, etc.) and (2) fairness is especially important in rather
anonymous environments without means to establish mutual trust relationships.
Briefly spoken, fair exchange guarantees that (1) every honest party eventually
either delivers its desired item or aborts the exchange, (2) the exchange is suc-
cessful if no party misbehaves and all items match their descriptions, and (3)
the exchange should be fair, i.e., if the desired item of any party does not match
its description, then no party can obtain any (useful) information about any
other item. Fair exchange algorithms must guarantee these properties even in
the presence of arbitrary (malicious) misbehavior of a subset of participants.

Fair exchange, a security problem, can be reduced [2] to a fault-tolerance
problem, namely a special form of uniform consensus. In the (non-uniform) con-
sensus problem [13], each process in a group starts with a private input value, and
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after some communication, each non-faulty process is required to decide (termi-
nation) on the same private output value (agreement), so that all processes that
decide choose some process’s private input value (validity). In its uniform ver-
sion, however, agreement requires all processes that decide (faulty or non-faulty)
to decide the same value. Only non-faulty processes are required to terminate.

wired or wireless channel between hosts

secure channel (over physical channel)

security

module

untrusted party

security

module

untrusted party

Fig. 1. Untrusted parties and security modules.

The reduction from fair exchange to consensus [2] holds in a synchronous
model where each participating party is equipped with a trusted unit, that is,
a tamper-proof security module like a smart card (see Fig. 1). Security modules
have recently been advocated by key players in industry to improve the secu-
rity of computers in the context of trusted computing [15]. Today, products exist
which implement such trusted devices (see for example [7]). Roughly speaking,
a security module is a certified piece of hardware executing a well-known algo-
rithm. Security modules can establish confidential and authenticated channels
between each other. However, since they can only communicate by exchanging
messages through their (untrusted) host parties, messages may be intercepted or
dropped. Overall, the security modules form a trusted subsystem within the over-
all (untrusted) system. The integrity and confidentiality of the algorithm running
in the trusted subsystem is protected by the shield of tamper proof hardware.
The integrity and confidentiality of data sent across the network is protected by
standard cryptographic protocols. These mechanisms reduce the type and nature
of adversarial behavior in the trusted subsystem to message loss and process self-
destruction, two standard fault-assumptions known under the names of omission
and crash in the area of fault-tolerance.

This paper proposes two novel randomized protocols for solving uniform con-
sensus with binary inputs (and hence fair exchange) using such trusted units.
Our protocols are time optimal, completing in a constant (3) expected number
of rounds. They are also optimal in terms of resilience. The key insight is similar
to the idea underlying the code-division multiple access (CDMA) communica-
tion protocol [16]: outwitting an adversary is much easier if participants share
a common, secret pseudo-random number generator. In a multi-round protocol,
each trusted unit can flip a coin, and take action secure in the knowledge that
every other trusted unit has flipped the same value, and is taking a compatible
action in that round. Because messages are encrypted, coin flip outcomes can
be hidden, so dishonest parties can neither observe past coin flips nor predict
future ones. (Of course, the pseudo-random algorithm itself need not be secret
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as long as the trusted units’ common seed is kept secret, just like their common
cryptographic key.) We believe that this approach is both efficient and practical.

The presentation is structured as follows. In section 2 we describe the model
of computation considered, whereas in section 3 we show how to reduce fair ex-
change to uniform consensus. Section 4 displays related work. Optimal random-
ized uniform consensus protocols for binary inputs with a constant (3) expected
number of rounds are introduced in sections 5 and 6. Note that both protocols
may be generalized to a larger set of k values with an extra factor cost of log(k).
However, we concentrate on the binary case, since we are mainly interested in
solving fair exchange efficiently. Finally, we conclude with section 7, where a
summary and work future directions are exhibited.

2 Model of Computation

Our model of computation is essentially synchronous: participants exchange mes-
sages in synchronous rounds. Of course, real distributed systems are not syn-
chronous in the classical sense, but it is reasonable to assume an upper bound
on how long one can expect a non-faulty processor to take before responding to
a message. A processor that takes too long to join in a round is assumed to be
faulty or malicious.

sec. mod.

A

sec. mod.

B

untrusted
system

party

C

party

A

party

B

C

sec. mod.

trusted
subsystem

Fig. 2. The untrusted system and the trusted subsystem.

The system is logically structured into an untrusted system (including the
untrusted parties and their communication channels) and the trusted subsystem
consisting of the parties’ individual trusted units, that is, their tamper-proof se-
curity modules (see Fig. 2). The untrusted parties can interact with their trusted
units through a well-defined interface, but they cannot in any other form influ-
ence the computation within the trusted unit.

As noted, communication among the trusted units is confidential and authen-
ticated, so malicious parties cannot interpret or tamper with these messages. Be-
cause each trusted unit sends the same encrypted message to every other trusted
unit, we have receiver anonymity and so a cheating party cannot learn who is
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communicating to who from traffic analysis. An untrusted party can, however,
prevent outgoing messages from being sent (called a send omission), or incoming
messages from being received (called a receive omission) or destroy its trusted
unit (called a crash). The effects of a crash can be regarded as a permanent send
(and receive) omission.

Define a party as cheating if it causes send or receive omissions of its trusted
unit. A party which does not cheat is honest. A fair exchange protocol must
ensure that under no circumstances will goods be delivered to a cheating party
but not to all honest parties. It is, however, acceptable to deliver the goods to
all honest parties, but not to some cheating parties. Cheating may cause the
exchange to fail, so that no goods are delivered to any party. In the absence
of cheating, the exchange should succeed, causing goods to be delivered to all
participants. For brevity, we refer to processes when we really mean untrusted
processes equipped with trusted units. With a process failure we mean either a
crash, a send message omission or a receive message omission.

3 Fair Exchange as Consensus

The reduction from fair exchange to uniform consensus works as follows. In the
first round of the protocol, each party applies its acceptance test to the en-
crypted digital goods received from the others (in special cases this test can also
be performed within the trusted unit). It then informs its trusted unit whether
the goods passed the test. The trusted units broadcast this choice (using con-
fidential and authenticated messages) within the trusted subsystem. Each unit
that receives unanimous approvals starts the consensus protocol with input 1,
and each trusted unit that either observes a disapproval or no message from a
trusted unit starts the consensus protocol with input 0. At the end of the proto-
col, each trusted unit delivers the goods if the outcome of the protocol is 1, and
refuses to do so if the outcome is 0.

It is easy to see that in the absence of failures or cheating all goods will be
delivered. The uniform consensus protocol ensures that all honest parties agree
on whether to deliver the goods, and its uniformity ensures that no trusted unit
residing at a cheating party will deliver the goods if any trusted unit at an honest
party decides not to. (Recall that it is acceptable if the honest processes deliver
the goods after deciding 1, even if a cheating process fails to deliver the goods
after deciding 0.)

As noted, the protocols considered in this paper are randomized, in the sense
that they rely on the assumption that trusted units generate pseudo-random
values that cannot be predicted by an adversary. These protocols always produce
correct results, but their running time is a random variable, the so-called Las
Vegas model. (It is straightforward to transform these protocols into Monte-
Carlo protocols that run for a fixed number of rounds, and produce correct
results with very high probability.)

To simplify the presentation, we first present an uniform consensus protocol
that works in a failure model that permits send, but not receive omissions. This
protocol is slightly simpler and more robust: it tolerates f < n cheating processes,
while the full send/receive omissions model protocol tolerates f < n/2 failures.
Both resilience levels are optimal for their respective models [12]. Presenting the
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protocol in two stages illustrates how assumptions about the model affect the
protocol’s complexity and resilience.

4 Related Work

We build on work of Parvédy and Raynal [12]. They derive optimal early stopping
deterministic uniform consensus algorithms for synchronous systems with send
or send/receive omission failures. However, our algorithms are more efficient in
most cases (if the number of failures is not constant) and at least comparable
(otherwise).

Feldman and Micali [8] exhibit optimal consensus algorithms for Byzantine
agreement, which in principle could also be used in omission failure models. De-
spite having also an optimal expected running time, our algorithms outperform
theirs both on resilience and on the probability of not having termination vio-
lated.

Avoine, Gärtner, Guerraoui and Vukolic [2] show how to reduce the fair ex-
change problem in a system where processes are provided with security modules
to the consensus problem in omission failure models. A solution to the fair ex-
change problem is presented by use of the algorithms of Parvédy and Raynal
[12]. In the same context, Delporte, Fauconnier and Freiling [6] investigate solu-
tions to consensus for asynchronous systems which are equipped with unreliable
failure detectors. They exhibit a weak failure detector in the spirit of previous
work by Chandra, Hadzilacos and Toueg [4] that allows to solve asynchronous
consensus in omission failure environments.

Aspnes [1] presents a survey of randomized consensus algorithms for the
shared memory model where processes are prone to crashes. These results are
particularly interesting, since consensus cannot be solved deterministically in a
pure asynchronous distributed system, as proved in [9] by Fischer, Lynch and
Paterson.

Finally, Chaudhuri [5] introduces the k-set agreement problem, a generaliza-
tion of the consensus problem, and proves it to be harder. Later, Borowsky and
Gafni [3], Herlihy and Shavit [10], and Saks and Zaharoglou [14] would demon-
strate that there is no wait-free protocol for k-set agreement (or consensus) in
asynchronous message-passing or read/write memory models.

5 Optimal Protocol for Send Omissions

The ConsensusS algorithm in Figure 3 solves uniform consensus with binary
inputs in optimal 3 expected synchronous rounds tolerating an optimal number
of up to f < n failures - send message omissions as well as process crashes.

As noted, all processes share a common secret seed and pseudo-random num-
ber generator. We denote the r-th such pseudo-random binary number by flip(r).
For each r, every process computes the same value for flip(r).

In ConsensusS, each process broadcasts its binary input (line 1). In each
subsequent round, the process waits to hear each process’s preference. If they
disagree (line 3), the process broadcasts a message informing the others. When
receiving such a broadcast for the first time (line 6), every process relays it.
Hence, if any non-faulty process receives mixed preferences or a disagreement(r)
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1 send prefer(binary preference) to all ;
2 for each round r {
3 if (both prefer(0) and prefer(1) received) {
4 send disagreement(r) to all ;
5 }
6 on (receipt of disagreement(r) for the first time) {
7 send disagreement(r) to all ;
8 }
9 if ( all received preferences are prefer(v)) and (no disagreement(r) received){

10 if ( flip (r) == v) {
11 send decide(v) to all and return(v);
12 } else {
13 send prefer(v) to all ;
14 }
15 } else {
16 send prefer( flip (r)) to all ;
17 }
18 if (any decide(v) received) {
19 return(v)
20 }
21 }

Fig. 3. Uniform consensus for send message omissions and process crashes.

message, then all processes receive a disagreement(r) message and will change
preference according to the coin flip. If they agree (line 9) and no message com-
municating disagreement seen by another process is received, then the process
checks whether that preference agrees with the common pseudo-random binary
number for that round. If so, it is safe to decide that value (line 11). If not, the
process simply rebroadcasts the preference (line 13). If the preferences disagree
or the process is informed so, then the process uses the common pseudo-random
binary number to choose a new preference (line 16). If any process announces
that it has decided, then the process decides on the same value (line 18).

Very informally, this protocol exploits in an essential way the observation that
each process (but not the adversary) can predict the others’ next coin flips. If a
process receives v from all processes, then v was sent by at least one good process,
so every other process will either receive all v preferences or both preferences.
Any processes that receive either mixed preferences or disagreement(r) messages
will change preference according to the coin flip. If the coin flip is the same as v,
then all processes will prefer v, and it is safe to decide.

Lemma 1. If f < n, for every process the expected number of rounds of Con-
sensusS is 3, and the protocol terminates with probability 1.

Proof. Think of an execution as a tree, where the root node represents the initial
round and the children of a node represent the following round possibilities. Let
E(n) be the expected number of rounds from node n. If n has children n.1 and
n.2, chosen by coin flip, then E(n) = (1/2)(1 + E(n.1)) + (1/2)(1 + E(n.2)).
Each child contributes one plus its expected running time, but with probability
one-half. Now let

– E(n) = E1(n) if at node n some non-faulty processes sent prefer (0) and some
non-faulty processes sent prefer (1),
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– E(n) = E2(n) if at node n all non-faulty processes sent prefer (v) and some
non-faulty processes receive a disagreement message or both prefer (0) and
prefer (1),

– E(n) = E3(n) if at node n all non-faulty processes sent prefer (v) and all
non-faulty processes receive no disagreement messages and only prefer (v).

Note that if E(n) = Ez(n) and E(n.1) = Ew(n.1), it may be that z 6= w.
However, it is always the case that if E(n.1) = Ez(n.1) then E(n.2) = Ez(n.2).
The reason is that from one round to the other the values that the non-faulty
processes send and receive may change. However, if the non-faulty processes
behave in a way at one children, then they should behave the same way at the
other, since both children just differ in the coin flip. Hence, executions differing
themselves by the values sent and received by non-faulty processes may generate
distinct execution trees.

Now let e be the root of an execution tree. Consider that

– E(e) = E1(e): If there are non-faulty processes that sent prefer (0) and other
non-faulty processes that sent prefer (1) in round r, then at round r+1 every
process receives at least one message prefer(0) and one message prefer (1),
and thus, from round r + 1 on, all preference messages sent by every process
(and all received as well) will be prefer(flip(r + 1)). Hence, all processes will
decide on flip(r+1) in the first round t such that flip(t) = flip(r+1), and the
probability that any process (and thus, a non-faulty one) violates termination
is the same as the probability that such a round t never happens, that is,
zero. Besides, the expected number of rounds to achieve a round t such that
flip(t) = flip(r+1) is 2. Thus, the expected number of rounds of ConsensusS
is 3 = E1(e) = (1/2)(1 + 2) + (1/2)(1 + 2).

– E(e) = E2(e): If all non-faulty processes sent prefer (v) in round r and part
of the non-faulty processes receive a disagreement message or both messages
prefer (0) and prefer(1) in round r+1, then all processes receive disagreement
messages and from round r + 1 on, all preference messages sent by every
process (and all received as well) will be prefer(flip(r+1)). Thus, all processes
will decide on flip(r + 1) in the first round t such that flip(t) = flip(r + 1),
and the probability that any process (and thus, a non-faulty one) violates
termination is the same as the probability that such a round t never happens,
that is, zero. Besides, the expected number of rounds to achieve a round t
such that flip(t) = flip(r + 1) is 2. Thus, the expected number of rounds of
ConsensusS is 3 = E2(e) = (1/2)(1 + 2) + (1/2)(1 + 2).

– E(e) = E3(e): If all non-faulty processes sent prefer (v) and receive no dis-
agreement messages and only prefer (v) in round r+1, then if flip(r+1) = v,
all non-faulty processes send decide(v) messages and then decide by return-
ing v themselves. Moreover, on receipt of decide(v), all remaining processes
decide by returning v. If flip(r) 6= v, then we fall again into the case that
all non-faulty processes send prefer (v). That is, E3(e.2) = E2(e.2)orE3(e.2).
Thus, the probability that any process (and thus, a non-faulty one) violates
termination is zero and the expected number of rounds of ConsensusS is
3 = E3(e) = (1/2)(1 + 1) + (1/2)(1 + 3).
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In short, in all cases, if f < n, the probability that any process (and thus, a
non-faulty one) violates termination is zero. Moreover, the expected number of
rounds of ConsensusS is 3 for all processes. ut

Lemma 2. If f < n, each decided value is some process’s input.

Proof. Any decided value v is either an original input or the result of a shared
coin flip. Consider the first prefer(flip(r)) statement to be executed, if any. In
this case, there must have been a process received both prefer(0) and a prefer (1)
messages, which means that some process had input value 0 and another had
input value 1. It follows that either value is some process’s input. ut

Lemma 3. If f < n, no two processes decide differently.

Proof. Consider the first round r in which a process decides v. It must be the
case that at round r, flip(r) = v and all preference messages received by the
process are prefer (v). As the messages from all non-faulty processes are received
by all processes and there is at least one non-faulty process, all processes receive
at least one prefer (v) message, and either decide on v at the same round r or
send prefer (v) = prefer(flip(r)). It follows that from the next round r + 1 on,
all messages sent from all processes (and thus, also all received ones) will be
prefer (v). Henceforth, no process can decide a value different from v. ut

Theorem 1. ConsensusS solves uniform consensus with binary inputs in a syn-
chronous system prone to crashes and send message omissions, with a probability
zero of termination violation, and both an optimal constant (3) expected rounds
and an optimal n − 1 resilience (that is, up to n − 1 processes may be faulty:
f < n).

Proof. Follows directly from Lemmas 1, 2 and 3. ut

6 Optimal Protocol for Send and Receive Omissions

The ConsensusSR algorithm in Figure 4 solves uniform consensus with binary
inputs in optimal 3 expected synchronous rounds tolerating an optimal number
of up to f < n/2 failures - send message omissions and receive message omissions
as well as process crashes.

In ConsensusSR, all processes start by broadcasting their inputs (line 2).
Whenever one process does not receive a message from another, it decides that
process must be faulty, and ignores it from that point on (line 6). Even so, all
non-faulty processes send and receive messages from one another. Moreover, a
live faulty process always receives messages from at least one non-faulty process,
since otherwise, it would have less than n/2+1 messages and it would halt before
reaching a decision (line 7).

On each round, every process checks if all received messages contain the same
preferred value v (line 9). If so, it broadcasts a message that it wants to decide
on v (line 10). When receiving this message for the first time (line 12), processes
relay it. If a process receives such message from a majority of processes (line
15) or if it receives a message to decide on v (line 18), then it sends messages
to all processes to decide on v and returns v. Note that if a non-faulty process
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1 Recipients = set of all processes ;
2 send prefer(binary preference) to all ;
3 foreach round r {
4 Received(r) = set of processes from which messages were received in round r
5 Recipients = Recipients intersection Received(r);
6 Messages(r) = set of messages received in round r which were sent by Recipients;
7 if (|Messages(r)|<n/2+1) {
8 halt ; // too many failures
9 if ( all in Messages(r) are prefer(v)) {

10 send want decide(v) to Recipients;
11 }
12 on (receipt of want decide(r,v) for the first time) {
13 send want decide(r,v) to Recipients;
14 }
15 if (want decide(r,v) received from majority of processes) {
16 send decide(v) to all and return(v);
17 }
18 on (receipt of decide(v)) {
19 send decide(v) to all and return(v);
20 }
21 if (majority in Messages(r) are prefer (v)) {
22 send prefer(v);
23 } else {
24 send prefer(\ flip (r ));
25 }
26 }

Fig. 4. Uniform consensus for send and receive message omissions and process crashes.

relays the message, all non-faulty processes will relay the message as well, so all
non-faulty processes will receive the message from a majority of processes. As
every process needs a non-faulty process to relay the message in order to decide
on v, if any process decides on v, then every non-faulty process does as well. If
a decision is not reached, then the process either sends a message with v as its
current preference (line 22), if it received a majority of preferences v, or sends a
message containing flip(r) (line 24), otherwise.

Lemma 4. On any single round after initialization (sending the binary private
input), only one value is preferred or chosen deterministically.

Proof. A process prefers or decides v deterministically only if it sees a majority
for v.

ut

Lemma 5. If f < n/2, for every process the expected number of rounds of Con-
sensusSR is 3, and the protocol terminates with probability 1.

Proof. After initialization (sending the binary private input), if all live processes
send prefer (flip(r)) or if all live processes send prefer (v), they agree right away, by
Lemma 4. If some send prefer (v) and some send prefer (flip(r)), again by Lemma
4, then all live processes will agree in the first round t such that v = flip(r),
and the probability that any non-faulty process violates termination is the same
as the probability that such a round t never happens, that is, zero. Besides, the
expected number of rounds to achieve a round t such that v = flip(r) is 2.
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Once agreement by all live processes is achieved, non-faulty processes will
receive a majority of wantdecide(r, v), send decide(v) and return(v), immediately
in the same round. This is because they always receive messages from each other,
that is, they always belong to the Recipients of non-faulty processes, so once
a non-faulty process sends a wantdecide(r, v) message, all non-faulty processes
will send wantdecide(r, v) messages to (and receive them from) all non-faulty
processes and guarantee a majority of wantdecide(r, v).

In short, in all cases, if f < n/2, the probability that a non-faulty process
violates termination is zero. Moreover, the expected number of rounds of Con-
sensusSR is 3 for all processes.

ut

Lemma 6. If f < n/2, all processes in ConsensusSR decide some process’s
input.

Proof. A decided value v, from decide(v), is just obtained from a prefer (v). Now,
by induction, a v from prefer (v) has to be either an input or a flip(r) for some r.
However, take the first prefer (flip(r)) to occur, if any do. In this case, a process
received both a prefer (0) and a prefer (1), which means that there should be
a proposed input value equal to 0 and another equal to 1, as the particular
prefer (flip(r)) was the first one to take place. Otherwise, either there would be
a majority of prefer(v) or Hence, flip(r) must be a proposed input value if any
prefer (flip(r)) occurs, and v must also be one of the proposed values.

ut

Lemma 7. If f < n/2, agreement is never violated in ConsensusSR: no two
processes decide differently.

Proof. Consider the first round r when a process decides by returning v. Then,
it must be the case that a majority of wantdecide(r, v) is received by the process.
However, because each process deciding has to receive a wantdecide(r, v) from a
non-faulty process and non-faulty processes always receive messages from each
other, when any process has a majority of wantdecide(r, v), it must be the case
that all non-faulty processes have a majority of wantdecide(r, v), that is, all
non-faulty processes decide by returning v as well.

ut

Theorem 2. ConsensusSR solves uniform consensus with binary inputs in a
synchronous system prone to crashes, send message omissions and receive mes-
sage omissions, with a probability zero of termination violation, and both an op-
timal constant (3) expected number of rounds and an optimal n/2 − 1 resilience
(that is, up to n/2 − 1 processes may be faulty: f < n/2).

Proof. Follows directly from Lemma 5, 6 and 7.
ut

7 Conclusions

The key idea in this paper is that if secure coprocessors can share secret cryp-
tographic keys (as they do), then they can also share secret seeds for secure
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pseudo-random number generators. Such shared coins enable randomized (Las
Vegas) algorithms for fair exchange and uniform consensus that are optimal in
terms of expected running time and resilience.

Both the ConsensusS and ConsensusSR binary consensus protocols can be
extended to a larger set of k values in 3 log(k) rounds via bit-by-bit consensus. It
is an open question whether faster protocols exist (perhaps by doing bit-by-bit
consensus in parallel).
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1997-08 Dorothea Blostein, Andy Schürr: Computing with Graphs and Graph

Rewriting
1997-09 Carl-Arndt Krapp, Bernhard Westfechtel: Feedback Handling in Dy-

namic Task Nets
1997-10 Matthias Nicola, Matthias Jarke: Integrating Replication and Commu-

nication in Performance Models of Distributed Databases
1997-11 ∗ R. Klamma, P. Peters, M. Jarke: Workflow Support for Failure Manage-

ment in Federated Organizations
1997-13 Markus Mohnen: Optimising the Memory Management of Higher-Order

Functional Programs
1997-14 Roland Baumann: Client/Server Distribution in a Structure-Oriented

Database Management System
1997-15 George Botorog: High-Level Parallel Programming and the Efficient Im-

plementation of Numerical Algorithms
1998-01 ∗ Fachgruppe Informatik: Jahresbericht 1997
1998-02 Stefan Gruner, Manfred Nagel, Andy Schürr: Fine-grained and
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2004-10 Zinaida Benenson, Felix C. Gärtner, Dogan Kesdogan: Secure Multi-

Party Computation with Security Modules
2005-01 ∗ Fachgruppe Informatik: Jahresbericht 2004
2005-02 Maximillian Dornseif, Felix C. Gärtner, Thorsten Holz, Martin Mink: An
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2005-03 Jürgen Giesl, René Thiemann, Peter Schneider-Kamp: Proving and Dis-
proving Termination of Higher-Order Functions

2005-04 Daniel Mölle, Stefan Richter, Peter Rossmanith: A Faster Algorithm for
the Steiner Tree Problem

2005-05 Fabien Pouget, Thorsten Holz: A Pointillist Approach for Comparing
Honeypots

2005-06 Simon Fischer, Berthold Vöcking: Adaptive Routing with Stale Informa-
tion

2005-07 Felix C. Freiling, Thorsten Holz, Georg Wicherski: Botnet Tracking: Ex-
ploring a Root-Cause Methodology to Prevent Distributed Denial-of-
Service Attacks

2005-08 Joachim Kneis, Peter Rossmanith: A New Satisfiability Algorithm With
Applications To Max-Cut

25



2005-09 Klaus Kursawe, Felix C. Freiling: Byzantine Fault Tolerance on General
Hybrid Adversary Structures

2005-10 Benedikt Bollig: Automata and Logics for Message Sequence Charts
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gust 2005 in Köln organisiert von RWTH Aachen in Kooperation mit
BITKOM, BSI, DLR und Gesellschaft fuer Informatik (GI) e.V.

2005-21 Thomas Noll, Stefan Rieger: Optimization of Straight-Line Code Revis-
ited

∗ These reports are only available as a printed version.
Please contact biblio@informatik.rwth-aachen.de to obtain copies.

26


