
Aachen
Department of Computer Science

Technical Report

Optimal Randomized Fair Exchange

with Secret Shared Coins

Felix Freiling, Maurice Herlihy and Lucia Draque Penso

ISSN 0935–3232 · Aachener Informatik Berichte · AIB-2005-22

RWTH Aachen · Department of Computer Science · December 2005

The publications of the Department of Computer Science of RWTH Aachen
University are in general accessible through the World Wide Web.

http://aib.informatik.rwth-aachen.de/

Optimal Randomized Fair Exchange

with Secret Shared Coins

Felix Freiling1, Maurice Herlihy2?, and Lucia Draque Penso3??

1 Computer Science Department, University of Mannheim,
D-68131 Mannheim, Germany

2 Computer Science Department, Box 1910, Brown University,
Providence, RI 02912, U.S.A.

3 Computer Science Department, RWTH Aachen University,
D-52056 Aachen, Germany

Abstract. In the fair exchange problem, mutually untrusting parties must se-
curely exchange digital goods. A fair exchange protocol must ensure that no
combination of cheating or failures will result in some goods being delivered but
not others, and that all goods will be delivered in the absence of cheating and
failures.
This paper proposes two novel randomized protocols for solving fair exchange
using simple trusted units. Both protocols have an optimal expected running
time, completing in a constant (3) expected number of rounds. They also have
optimal resilience. The first one tolerates any number of dishonest parties, as long
as one is honest, while the second one, which assumes more aggressive cheating
and failures assumptions, tolerates up to a minority of dishonest parties.
The key insight is similar to the idea underlying the code-division multiple ac-
cess (CDMA) communication protocol: outwitting an adversary is much easier if
participants share a common, secret pseudo-random number generator.

1 Introduction

In the fair exchange problem, a set of parties want to trade an item which they
have for an item of another party (for a survey of fair exchange see [11]). Fair
exchange is a fundamental problem in domains with electronic business trans-
actions since (1) items can be any type of electronic asset (electronic money,
documents, music files, etc.) and (2) fairness is especially important in rather
anonymous environments without means to establish mutual trust relationships.
Briefly spoken, fair exchange guarantees that (1) every honest party eventually
either delivers its desired item or aborts the exchange, (2) the exchange is suc-
cessful if no party misbehaves and all items match their descriptions, and (3)
the exchange should be fair, i.e., if the desired item of any party does not match
its description, then no party can obtain any (useful) information about any
other item. Fair exchange algorithms must guarantee these properties even in
the presence of arbitrary (malicious) misbehavior of a subset of participants.

Fair exchange, a security problem, can be reduced [2] to a fault-tolerance
problem, namely a special form of uniform consensus. In the (non-uniform) con-
sensus problem [13], each process in a group starts with a private input value, and

? Maurice Herlihy was supported by Deutsche Forschungsgemeinschaft (DFG) when visiting
RWTH Aachen University.

?? Lucia Draque Penso was supported by Deutsche Forschungsgemeinschaft (DFG) as part of
the Graduiertenkolleg “Software for Mobile Communication Systems” at RWTH Aachen
University.

after some communication, each non-faulty process is required to decide (termi-
nation) on the same private output value (agreement), so that all processes that
decide choose some process’s private input value (validity). In its uniform ver-
sion, however, agreement requires all processes that decide (faulty or non-faulty)
to decide the same value. Only non-faulty processes are required to terminate.

wired or wireless channel between hosts

secure channel (over physical channel)

security

module

untrusted party

security

module

untrusted party

Fig. 1. Untrusted parties and security modules.

The reduction from fair exchange to consensus [2] holds in a synchronous
model where each participating party is equipped with a trusted unit, that is,
a tamper-proof security module like a smart card (see Fig. 1). Security modules
have recently been advocated by key players in industry to improve the secu-
rity of computers in the context of trusted computing [15]. Today, products exist
which implement such trusted devices (see for example [7]). Roughly speaking,
a security module is a certified piece of hardware executing a well-known algo-
rithm. Security modules can establish confidential and authenticated channels
between each other. However, since they can only communicate by exchanging
messages through their (untrusted) host parties, messages may be intercepted or
dropped. Overall, the security modules form a trusted subsystem within the over-
all (untrusted) system. The integrity and confidentiality of the algorithm running
in the trusted subsystem is protected by the shield of tamper proof hardware.
The integrity and confidentiality of data sent across the network is protected by
standard cryptographic protocols. These mechanisms reduce the type and nature
of adversarial behavior in the trusted subsystem to message loss and process self-
destruction, two standard fault-assumptions known under the names of omission
and crash in the area of fault-tolerance.

This paper proposes two novel randomized protocols for solving uniform con-
sensus with binary inputs (and hence fair exchange) using such trusted units.
Our protocols are time optimal, completing in a constant (3) expected number
of rounds. They are also optimal in terms of resilience. The key insight is similar
to the idea underlying the code-division multiple access (CDMA) communica-
tion protocol [16]: outwitting an adversary is much easier if participants share
a common, secret pseudo-random number generator. In a multi-round protocol,
each trusted unit can flip a coin, and take action secure in the knowledge that
every other trusted unit has flipped the same value, and is taking a compatible
action in that round. Because messages are encrypted, coin flip outcomes can
be hidden, so dishonest parties can neither observe past coin flips nor predict
future ones. (Of course, the pseudo-random algorithm itself need not be secret

4

as long as the trusted units’ common seed is kept secret, just like their common
cryptographic key.) We believe that this approach is both efficient and practical.

The presentation is structured as follows. In section 2 we describe the model
of computation considered, whereas in section 3 we show how to reduce fair ex-
change to uniform consensus. Section 4 displays related work. Optimal random-
ized uniform consensus protocols for binary inputs with a constant (3) expected
number of rounds are introduced in sections 5 and 6. Note that both protocols
may be generalized to a larger set of k values with an extra factor cost of log(k).
However, we concentrate on the binary case, since we are mainly interested in
solving fair exchange efficiently. Finally, we conclude with section 7, where a
summary and work future directions are exhibited.

2 Model of Computation

Our model of computation is essentially synchronous: participants exchange mes-
sages in synchronous rounds. Of course, real distributed systems are not syn-
chronous in the classical sense, but it is reasonable to assume an upper bound
on how long one can expect a non-faulty processor to take before responding to
a message. A processor that takes too long to join in a round is assumed to be
faulty or malicious.

sec. mod.

A

sec. mod.

B

untrusted
system

party

C

party

A

party

B

C

sec. mod.

trusted
subsystem

Fig. 2. The untrusted system and the trusted subsystem.

The system is logically structured into an untrusted system (including the
untrusted parties and their communication channels) and the trusted subsystem
consisting of the parties’ individual trusted units, that is, their tamper-proof se-
curity modules (see Fig. 2). The untrusted parties can interact with their trusted
units through a well-defined interface, but they cannot in any other form influ-
ence the computation within the trusted unit.

As noted, communication among the trusted units is confidential and authen-
ticated, so malicious parties cannot interpret or tamper with these messages. Be-
cause each trusted unit sends the same encrypted message to every other trusted
unit, we have receiver anonymity and so a cheating party cannot learn who is

5

communicating to who from traffic analysis. An untrusted party can, however,
prevent outgoing messages from being sent (called a send omission), or incoming
messages from being received (called a receive omission) or destroy its trusted
unit (called a crash). The effects of a crash can be regarded as a permanent send
(and receive) omission.

Define a party as cheating if it causes send or receive omissions of its trusted
unit. A party which does not cheat is honest. A fair exchange protocol must
ensure that under no circumstances will goods be delivered to a cheating party
but not to all honest parties. It is, however, acceptable to deliver the goods to
all honest parties, but not to some cheating parties. Cheating may cause the
exchange to fail, so that no goods are delivered to any party. In the absence
of cheating, the exchange should succeed, causing goods to be delivered to all
participants. For brevity, we refer to processes when we really mean untrusted
processes equipped with trusted units. With a process failure we mean either a
crash, a send message omission or a receive message omission.

3 Fair Exchange as Consensus

The reduction from fair exchange to uniform consensus works as follows. In the
first round of the protocol, each party applies its acceptance test to the en-
crypted digital goods received from the others (in special cases this test can also
be performed within the trusted unit). It then informs its trusted unit whether
the goods passed the test. The trusted units broadcast this choice (using con-
fidential and authenticated messages) within the trusted subsystem. Each unit
that receives unanimous approvals starts the consensus protocol with input 1,
and each trusted unit that either observes a disapproval or no message from a
trusted unit starts the consensus protocol with input 0. At the end of the proto-
col, each trusted unit delivers the goods if the outcome of the protocol is 1, and
refuses to do so if the outcome is 0.

It is easy to see that in the absence of failures or cheating all goods will be
delivered. The uniform consensus protocol ensures that all honest parties agree
on whether to deliver the goods, and its uniformity ensures that no trusted unit
residing at a cheating party will deliver the goods if any trusted unit at an honest
party decides not to. (Recall that it is acceptable if the honest processes deliver
the goods after deciding 1, even if a cheating process fails to deliver the goods
after deciding 0.)

As noted, the protocols considered in this paper are randomized, in the sense
that they rely on the assumption that trusted units generate pseudo-random
values that cannot be predicted by an adversary. These protocols always produce
correct results, but their running time is a random variable, the so-called Las
Vegas model. (It is straightforward to transform these protocols into Monte-
Carlo protocols that run for a fixed number of rounds, and produce correct
results with very high probability.)

To simplify the presentation, we first present an uniform consensus protocol
that works in a failure model that permits send, but not receive omissions. This
protocol is slightly simpler and more robust: it tolerates f < n cheating processes,
while the full send/receive omissions model protocol tolerates f < n/2 failures.
Both resilience levels are optimal for their respective models [12]. Presenting the

6

protocol in two stages illustrates how assumptions about the model affect the
protocol’s complexity and resilience.

4 Related Work

We build on work of Parvédy and Raynal [12]. They derive optimal early stopping
deterministic uniform consensus algorithms for synchronous systems with send
or send/receive omission failures. However, our algorithms are more efficient in
most cases (if the number of failures is not constant) and at least comparable
(otherwise).

Feldman and Micali [8] exhibit optimal consensus algorithms for Byzantine
agreement, which in principle could also be used in omission failure models. De-
spite having also an optimal expected running time, our algorithms outperform
theirs both on resilience and on the probability of not having termination vio-
lated.

Avoine, Gärtner, Guerraoui and Vukolic [2] show how to reduce the fair ex-
change problem in a system where processes are provided with security modules
to the consensus problem in omission failure models. A solution to the fair ex-
change problem is presented by use of the algorithms of Parvédy and Raynal
[12]. In the same context, Delporte, Fauconnier and Freiling [6] investigate solu-
tions to consensus for asynchronous systems which are equipped with unreliable
failure detectors. They exhibit a weak failure detector in the spirit of previous
work by Chandra, Hadzilacos and Toueg [4] that allows to solve asynchronous
consensus in omission failure environments.

Aspnes [1] presents a survey of randomized consensus algorithms for the
shared memory model where processes are prone to crashes. These results are
particularly interesting, since consensus cannot be solved deterministically in a
pure asynchronous distributed system, as proved in [9] by Fischer, Lynch and
Paterson.

Finally, Chaudhuri [5] introduces the k-set agreement problem, a generaliza-
tion of the consensus problem, and proves it to be harder. Later, Borowsky and
Gafni [3], Herlihy and Shavit [10], and Saks and Zaharoglou [14] would demon-
strate that there is no wait-free protocol for k-set agreement (or consensus) in
asynchronous message-passing or read/write memory models.

5 Optimal Protocol for Send Omissions

The ConsensusS algorithm in Figure 3 solves uniform consensus with binary
inputs in optimal 3 expected synchronous rounds tolerating an optimal number
of up to f < n failures - send message omissions as well as process crashes.

As noted, all processes share a common secret seed and pseudo-random num-
ber generator. We denote the r-th such pseudo-random binary number by flip(r).
For each r, every process computes the same value for flip(r).

In ConsensusS, each process broadcasts its binary input (line 1). In each
subsequent round, the process waits to hear each process’s preference. If they
disagree (line 3), the process broadcasts a message informing the others. When
receiving such a broadcast for the first time (line 6), every process relays it.
Hence, if any non-faulty process receives mixed preferences or a disagreement(r)

7

1 send prefer(binary preference) to all ;
2 for each round r {
3 if (both prefer(0) and prefer(1) received) {
4 send disagreement(r) to all ;
5 }
6 on (receipt of disagreement(r) for the first time) {
7 send disagreement(r) to all ;
8 }
9 if (all received preferences are prefer(v)) and (no disagreement(r) received){

10 if (flip (r) == v) {
11 send decide(v) to all and return(v);
12 } else {
13 send prefer(v) to all ;
14 }
15 } else {
16 send prefer(flip (r)) to all ;
17 }
18 if (any decide(v) received) {
19 return(v)
20 }
21 }

Fig. 3. Uniform consensus for send message omissions and process crashes.

message, then all processes receive a disagreement(r) message and will change
preference according to the coin flip. If they agree (line 9) and no message com-
municating disagreement seen by another process is received, then the process
checks whether that preference agrees with the common pseudo-random binary
number for that round. If so, it is safe to decide that value (line 11). If not, the
process simply rebroadcasts the preference (line 13). If the preferences disagree
or the process is informed so, then the process uses the common pseudo-random
binary number to choose a new preference (line 16). If any process announces
that it has decided, then the process decides on the same value (line 18).

Very informally, this protocol exploits in an essential way the observation that
each process (but not the adversary) can predict the others’ next coin flips. If a
process receives v from all processes, then v was sent by at least one good process,
so every other process will either receive all v preferences or both preferences.
Any processes that receive either mixed preferences or disagreement(r) messages
will change preference according to the coin flip. If the coin flip is the same as v,
then all processes will prefer v, and it is safe to decide.

Lemma 1. If f < n, for every process the expected number of rounds of Con-
sensusS is 3, and the protocol terminates with probability 1.

Proof. Think of an execution as a tree, where the root node represents the initial
round and the children of a node represent the following round possibilities. Let
E(n) be the expected number of rounds from node n. If n has children n.1 and
n.2, chosen by coin flip, then E(n) = (1/2)(1 + E(n.1)) + (1/2)(1 + E(n.2)).
Each child contributes one plus its expected running time, but with probability
one-half. Now let

– E(n) = E1(n) if at node n some non-faulty processes sent prefer (0) and some
non-faulty processes sent prefer (1),

8

– E(n) = E2(n) if at node n all non-faulty processes sent prefer (v) and some
non-faulty processes receive a disagreement message or both prefer (0) and
prefer (1),

– E(n) = E3(n) if at node n all non-faulty processes sent prefer (v) and all
non-faulty processes receive no disagreement messages and only prefer (v).

Note that if E(n) = Ez(n) and E(n.1) = Ew(n.1), it may be that z 6= w.
However, it is always the case that if E(n.1) = Ez(n.1) then E(n.2) = Ez(n.2).
The reason is that from one round to the other the values that the non-faulty
processes send and receive may change. However, if the non-faulty processes
behave in a way at one children, then they should behave the same way at the
other, since both children just differ in the coin flip. Hence, executions differing
themselves by the values sent and received by non-faulty processes may generate
distinct execution trees.

Now let e be the root of an execution tree. Consider that

– E(e) = E1(e): If there are non-faulty processes that sent prefer (0) and other
non-faulty processes that sent prefer (1) in round r, then at round r+1 every
process receives at least one message prefer(0) and one message prefer (1),
and thus, from round r + 1 on, all preference messages sent by every process
(and all received as well) will be prefer(flip(r + 1)). Hence, all processes will
decide on flip(r+1) in the first round t such that flip(t) = flip(r+1), and the
probability that any process (and thus, a non-faulty one) violates termination
is the same as the probability that such a round t never happens, that is,
zero. Besides, the expected number of rounds to achieve a round t such that
flip(t) = flip(r+1) is 2. Thus, the expected number of rounds of ConsensusS
is 3 = E1(e) = (1/2)(1 + 2) + (1/2)(1 + 2).

– E(e) = E2(e): If all non-faulty processes sent prefer (v) in round r and part
of the non-faulty processes receive a disagreement message or both messages
prefer (0) and prefer(1) in round r+1, then all processes receive disagreement
messages and from round r + 1 on, all preference messages sent by every
process (and all received as well) will be prefer(flip(r+1)). Thus, all processes
will decide on flip(r + 1) in the first round t such that flip(t) = flip(r + 1),
and the probability that any process (and thus, a non-faulty one) violates
termination is the same as the probability that such a round t never happens,
that is, zero. Besides, the expected number of rounds to achieve a round t
such that flip(t) = flip(r + 1) is 2. Thus, the expected number of rounds of
ConsensusS is 3 = E2(e) = (1/2)(1 + 2) + (1/2)(1 + 2).

– E(e) = E3(e): If all non-faulty processes sent prefer (v) and receive no dis-
agreement messages and only prefer (v) in round r+1, then if flip(r+1) = v,
all non-faulty processes send decide(v) messages and then decide by return-
ing v themselves. Moreover, on receipt of decide(v), all remaining processes
decide by returning v. If flip(r) 6= v, then we fall again into the case that
all non-faulty processes send prefer (v). That is, E3(e.2) = E2(e.2)orE3(e.2).
Thus, the probability that any process (and thus, a non-faulty one) violates
termination is zero and the expected number of rounds of ConsensusS is
3 = E3(e) = (1/2)(1 + 1) + (1/2)(1 + 3).

9

In short, in all cases, if f < n, the probability that any process (and thus, a
non-faulty one) violates termination is zero. Moreover, the expected number of
rounds of ConsensusS is 3 for all processes. ut

Lemma 2. If f < n, each decided value is some process’s input.

Proof. Any decided value v is either an original input or the result of a shared
coin flip. Consider the first prefer(flip(r)) statement to be executed, if any. In
this case, there must have been a process received both prefer(0) and a prefer (1)
messages, which means that some process had input value 0 and another had
input value 1. It follows that either value is some process’s input. ut

Lemma 3. If f < n, no two processes decide differently.

Proof. Consider the first round r in which a process decides v. It must be the
case that at round r, flip(r) = v and all preference messages received by the
process are prefer (v). As the messages from all non-faulty processes are received
by all processes and there is at least one non-faulty process, all processes receive
at least one prefer (v) message, and either decide on v at the same round r or
send prefer (v) = prefer(flip(r)). It follows that from the next round r + 1 on,
all messages sent from all processes (and thus, also all received ones) will be
prefer (v). Henceforth, no process can decide a value different from v. ut

Theorem 1. ConsensusS solves uniform consensus with binary inputs in a syn-
chronous system prone to crashes and send message omissions, with a probability
zero of termination violation, and both an optimal constant (3) expected rounds
and an optimal n − 1 resilience (that is, up to n − 1 processes may be faulty:
f < n).

Proof. Follows directly from Lemmas 1, 2 and 3. ut

6 Optimal Protocol for Send and Receive Omissions

The ConsensusSR algorithm in Figure 4 solves uniform consensus with binary
inputs in optimal 3 expected synchronous rounds tolerating an optimal number
of up to f < n/2 failures - send message omissions and receive message omissions
as well as process crashes.

In ConsensusSR, all processes start by broadcasting their inputs (line 2).
Whenever one process does not receive a message from another, it decides that
process must be faulty, and ignores it from that point on (line 6). Even so, all
non-faulty processes send and receive messages from one another. Moreover, a
live faulty process always receives messages from at least one non-faulty process,
since otherwise, it would have less than n/2+1 messages and it would halt before
reaching a decision (line 7).

On each round, every process checks if all received messages contain the same
preferred value v (line 9). If so, it broadcasts a message that it wants to decide
on v (line 10). When receiving this message for the first time (line 12), processes
relay it. If a process receives such message from a majority of processes (line
15) or if it receives a message to decide on v (line 18), then it sends messages
to all processes to decide on v and returns v. Note that if a non-faulty process

10

1 Recipients = set of all processes ;
2 send prefer(binary preference) to all ;
3 foreach round r {
4 Received(r) = set of processes from which messages were received in round r
5 Recipients = Recipients intersection Received(r);
6 Messages(r) = set of messages received in round r which were sent by Recipients;
7 if (|Messages(r)|<n/2+1) {
8 halt ; // too many failures
9 if (all in Messages(r) are prefer(v)) {

10 send want decide(v) to Recipients;
11 }
12 on (receipt of want decide(r,v) for the first time) {
13 send want decide(r,v) to Recipients;
14 }
15 if (want decide(r,v) received from majority of processes) {
16 send decide(v) to all and return(v);
17 }
18 on (receipt of decide(v)) {
19 send decide(v) to all and return(v);
20 }
21 if (majority in Messages(r) are prefer (v)) {
22 send prefer(v);
23 } else {
24 send prefer(\ flip (r));
25 }
26 }

Fig. 4. Uniform consensus for send and receive message omissions and process crashes.

relays the message, all non-faulty processes will relay the message as well, so all
non-faulty processes will receive the message from a majority of processes. As
every process needs a non-faulty process to relay the message in order to decide
on v, if any process decides on v, then every non-faulty process does as well. If
a decision is not reached, then the process either sends a message with v as its
current preference (line 22), if it received a majority of preferences v, or sends a
message containing flip(r) (line 24), otherwise.

Lemma 4. On any single round after initialization (sending the binary private
input), only one value is preferred or chosen deterministically.

Proof. A process prefers or decides v deterministically only if it sees a majority
for v.

ut

Lemma 5. If f < n/2, for every process the expected number of rounds of Con-
sensusSR is 3, and the protocol terminates with probability 1.

Proof. After initialization (sending the binary private input), if all live processes
send prefer (flip(r)) or if all live processes send prefer (v), they agree right away, by
Lemma 4. If some send prefer (v) and some send prefer (flip(r)), again by Lemma
4, then all live processes will agree in the first round t such that v = flip(r),
and the probability that any non-faulty process violates termination is the same
as the probability that such a round t never happens, that is, zero. Besides, the
expected number of rounds to achieve a round t such that v = flip(r) is 2.

11

Once agreement by all live processes is achieved, non-faulty processes will
receive a majority of wantdecide(r, v), send decide(v) and return(v), immediately
in the same round. This is because they always receive messages from each other,
that is, they always belong to the Recipients of non-faulty processes, so once
a non-faulty process sends a wantdecide(r, v) message, all non-faulty processes
will send wantdecide(r, v) messages to (and receive them from) all non-faulty
processes and guarantee a majority of wantdecide(r, v).

In short, in all cases, if f < n/2, the probability that a non-faulty process
violates termination is zero. Moreover, the expected number of rounds of Con-
sensusSR is 3 for all processes.

ut

Lemma 6. If f < n/2, all processes in ConsensusSR decide some process’s
input.

Proof. A decided value v, from decide(v), is just obtained from a prefer (v). Now,
by induction, a v from prefer (v) has to be either an input or a flip(r) for some r.
However, take the first prefer (flip(r)) to occur, if any do. In this case, a process
received both a prefer (0) and a prefer (1), which means that there should be
a proposed input value equal to 0 and another equal to 1, as the particular
prefer (flip(r)) was the first one to take place. Otherwise, either there would be
a majority of prefer(v) or Hence, flip(r) must be a proposed input value if any
prefer (flip(r)) occurs, and v must also be one of the proposed values.

ut

Lemma 7. If f < n/2, agreement is never violated in ConsensusSR: no two
processes decide differently.

Proof. Consider the first round r when a process decides by returning v. Then,
it must be the case that a majority of wantdecide(r, v) is received by the process.
However, because each process deciding has to receive a wantdecide(r, v) from a
non-faulty process and non-faulty processes always receive messages from each
other, when any process has a majority of wantdecide(r, v), it must be the case
that all non-faulty processes have a majority of wantdecide(r, v), that is, all
non-faulty processes decide by returning v as well.

ut

Theorem 2. ConsensusSR solves uniform consensus with binary inputs in a
synchronous system prone to crashes, send message omissions and receive mes-
sage omissions, with a probability zero of termination violation, and both an op-
timal constant (3) expected number of rounds and an optimal n/2 − 1 resilience
(that is, up to n/2 − 1 processes may be faulty: f < n/2).

Proof. Follows directly from Lemma 5, 6 and 7.
ut

7 Conclusions

The key idea in this paper is that if secure coprocessors can share secret cryp-
tographic keys (as they do), then they can also share secret seeds for secure

12

pseudo-random number generators. Such shared coins enable randomized (Las
Vegas) algorithms for fair exchange and uniform consensus that are optimal in
terms of expected running time and resilience.

Both the ConsensusS and ConsensusSR binary consensus protocols can be
extended to a larger set of k values in 3 log(k) rounds via bit-by-bit consensus. It
is an open question whether faster protocols exist (perhaps by doing bit-by-bit
consensus in parallel).

References

1. James Aspnes. Randomized protocols for asynchronous consensus. Distributed Computing,
16(2–3):165–175, September 2003.

2. Gildas Avoine, Felix Gärtner, Rachid Guerraoui, and Marko Vukolic. Gracefully degrading
fair exchange with security modules. In Proceedings of the Fifth European Dependable
Computing Conference, pages 55–71. Springer-Verlag, April 2005.

3. Elizabeth Borowsky and Eli Gafni. Generalized FLP impossibility result for t-resilient asyn-
chronous computations. In Proceedings of the Twenty-Fifth ACM Symposium on Theory of
Computing, pages 91–100. ACM Press, May 1993.

4. Tushar Deepak Chandra, Vassos Hadzilacos, and Sam Toueg. The weakest failure detector
for solving consensus. J.ACM, 43(4):685–722, July 1996.

5. Soma Chaudhuri. Agreement is harder than consensus: Set consensus problems in totally
asynchronous systems. In Proceedings of the Ninth Annual ACM Symposium on Principles
of Distributed Computing, pages 311–234. ACM Press, August 1990.

6. Carole Delporte-Gallet, Hugues Fauconnier, and Felix C. Freiling. Revisiting failure detec-
tion and consensus in omission failure environments. In Proceedings of the International
Colloquium on Theoretical Aspects of Computing (ICTAC05), Hanoi, Vietnam, October
2005.

7. Joan G. Dyer, Mark Lindemann, Ronald Perez, Reiner Sailer, Leendert van Doorn, Sean W.
Smith, and Steve Weingart. Building the IBM 4758 secure coprocessor. IEEE Computer,
34(10):57–66, October 2001.

8. Paul Feldman and Silvio Micali. Optimal algorithms for byzantine agreement. In Proceed-
ings of the Twentieth Annual ACM Symposium on Theory of Computing, pages 148–161.
ACM Press, May 1988.

9. Michael Fischer, Nancy Lynch, and Michael Paterson. Impossibility of distributed consensus
with one faulty process. Journal of the ACM (JACM), 32(2):374–382, April 1985.

10. Maurice Herlihy and Nir Shavit. The topological structure of asynchronous computability.
Journal of the ACM (JACM), 46(6):858–923, November 1999.

11. Henning Pagnia, Holger Vogt, and Felix C. Gärtner. Fair exchange. The Computer Journal,
46(1), 2003.

12. Philippe Räıpin Parvédy and Michel Raynal. Optimal early stopping uniform consensus in
synchronous systems with process omission failures. In Proceedings of the Sixteenth Annual
ACM Symposium on Parallelism in Algorithms and Architectures, pages 302–310. ACM
Press, June 2004.

13. Marshall Pease, Robert Shostak, and Leslie Lamport. Reaching agreements in the presence
of faults. Journal of the ACM (JACM), 27(2):228–234, April 1980.

14. Michael Saks and Fotios Zaharoglou. Wait-free k-set agreement is impossible: The topology
of public knowledge. SIAM Journal on Computing, 29(5):1449–1483, March 2000.

15. Trusted Computing Group. Trusted computing group homepage. Internet:
https://www.trustedcomputinggroup.org/, 2003.

16. Andrew J. Viterbi. CDMA : Principles of Spread Spectrum Communication. Prentice Hall,
1995. ISBN 0201633744.

13

14

Aachener Informatik-Berichte

This is a list of recent technical reports. To obtain copies of technical reports
please consult http://aib.informatik.rwth-aachen.de/ or send your request
to: Informatik-Bibliothek, RWTH Aachen, Ahornstr. 55, 52056 Aachen, Email:
biblio@informatik.rwth-aachen.de

1987-01 ∗ Fachgruppe Informatik: Jahresbericht 1986
1987-02 ∗ David de Frutos Escrig, Klaus Indermark: Equivalence Relations of Non-

Deterministic Ianov-Schemes
1987-03 ∗ Manfred Nagl: A Software Development Environment based on Graph

Technology
1987-04 ∗ Claus Lewerentz, Manfred Nagl, Bernhard Westfechtel: On Integration

Mechanisms within a Graph-Based Software Development Environment

1987-05 ∗ Reinhard Rinn: Über Eingabeanomalien bei verschiedenen Inferenzmod-
ellen

1987-06 ∗ Werner Damm, Gert Döhmen: Specifying Distributed Computer Archi-
tectures in AADL*

1987-07 ∗ Gregor Engels, Claus Lewerentz, Wilhelm Schäfer: Graph Grammar En-
gineering: A Software Specification Method

1987-08 ∗ Manfred Nagl: Set Theoretic Approaches to Graph Grammars
1987-09 ∗ Claus Lewerentz, Andreas Schürr: Experiences with a Database System

for Software Documents
1987-10 ∗ Herbert Klaeren, Klaus Indermark: A New Implementation Technique

for Recursive Function Definitions
1987-11 ∗ Rita Loogen: Design of a Parallel Programmable Graph Reduction Ma-

chine with Distributed Memory
1987-12 J. Börstler, U. Möncke, R. Wilhelm: Table compression for tree automata
1988-01 ∗ Gabriele Esser, Johannes Rückert, Frank Wagner Gesellschaftliche As-

pekte der Informatik
1988-02 ∗ Peter Martini, Otto Spaniol: Token-Passing in High-Speed Backbone

Networks for Campus-Wide Environments
1988-03 ∗ Thomas Welzel: Simulation of a Multiple Token Ring Backbone
1988-04 ∗ Peter Martini: Performance Comparison for HSLAN Media Access Pro-

tocols
1988-05 ∗ Peter Martini: Performance Analysis of Multiple Token Rings
1988-06 ∗ Andreas Mann, Johannes Rückert, Otto Spaniol: Datenfunknetze
1988-07 ∗ Andreas Mann, Johannes Rückert: Packet Radio Networks for Data Ex-

change
1988-08 ∗ Andreas Mann, Johannes Rückert: Concurrent Slot Assignment Protocol

for Packet Radio Networks
1988-09 ∗ W. Kremer, F. Reichert, J. Rückert, A. Mann: Entwurf einer Netzw-

erktopologie für ein Mobilfunknetz zur Unterstützung des öffentlichen
Straßenverkehrs

1988-10 ∗ Kai Jakobs: Towards User-Friendly Networking
1988-11 ∗ Kai Jakobs: The Directory - Evolution of a Standard
1988-12 ∗ Kai Jakobs: Directory Services in Distributed Systems - A Survey
1988-13 ∗ Martine Schümmer: RS-511, a Protocol for the Plant Floor
1988-14 ∗ U. Quernheim: Satellite Communication Protocols - A Performance

Comparison Considering On-Board Processing
1988-15 ∗ Peter Martini, Otto Spaniol, Thomas Welzel: File Transfer in High Speed

Token Ring Networks: Performance Evaluation by Approximate Analysis
and Simulation

1988-16 ∗ Fachgruppe Informatik: Jahresbericht 1987
1988-17 ∗ Wolfgang Thomas: Automata on Infinite Objects
1988-18 ∗ Michael Sonnenschein: On Petri Nets and Data Flow Graphs
1988-19 ∗ Heiko Vogler: Functional Distribution of the Contextual Analysis in

Block-Structured Programming Languages: A Case Study of Tree Trans-
ducers

15

1988-20 ∗ Thomas Welzel: Einsatz des Simulationswerkzeuges QNAP2 zur Leis-
tungsbewertung von Kommunikationsprotokollen

1988-21 ∗ Th. Janning, C. Lewerentz: Integrated Project Team Management in a
Software Development Environment

1988-22 ∗ Joost Engelfriet, Heiko Vogler: Modular Tree Transducers
1988-23 ∗ Wolfgang Thomas: Automata and Quantifier Hierarchies
1988-24 ∗ Uschi Heuter: Generalized Definite Tree Languages
1989-01 ∗ Fachgruppe Informatik: Jahresbericht 1988
1989-02 ∗ G. Esser, J. Rückert, F. Wagner (Hrsg.): Gesellschaftliche Aspekte der

Informatik
1989-03 ∗ Heiko Vogler: Bottom-Up Computation of Primitive Recursive Tree

Functions
1989-04 ∗ Andy Schürr: Introduction to PROGRESS, an Attribute Graph Gram-

mar Based Specification Language
1989-05 J. Börstler: Reuse and Software Development - Problems, Solutions, and

Bibliography (in German)
1989-06 ∗ Kai Jakobs: OSI - An Appropriate Basis for Group Communication?
1989-07 ∗ Kai Jakobs: ISO’s Directory Proposal - Evolution, Current Status and

Future Problems
1989-08 ∗ Bernhard Westfechtel: Extension of a Graph Storage for Software Doc-

uments with Primitives for Undo/Redo and Revision Control
1989-09 ∗ Peter Martini: High Speed Local Area Networks - A Tutorial
1989-10 ∗ P. Davids, Th. Welzel: Performance Analysis of DQDB Based on Simu-

lation
1989-11 ∗ Manfred Nagl (Ed.): Abstracts of Talks presented at the WG ’89 15th

International Workshop on Graphtheoretic Concepts in Computer Sci-
ence

1989-12 ∗ Peter Martini: The DQDB Protocol - Is it Playing the Game?
1989-13 ∗ Martine Schümmer: CNC/DNC Communication with MAP
1989-14 ∗ Martine Schümmer: Local Area Networks for Manufactoring Environ-

ments with hard Real-Time Requirements
1989-15 ∗ M. Schümmer, Th. Welzel, P. Martini: Integration of Field Bus and

MAP Networks - Hierarchical Communication Systems in Production
Environments

1989-16 ∗ G. Vossen, K.-U. Witt: SUXESS: Towards a Sound Unification of Ex-
tensions of the Relational Data Model

1989-17 ∗ J. Derissen, P. Hruschka, M.v.d. Beeck, Th. Janning, M. Nagl: Integrat-
ing Structured Analysis and Information Modelling

1989-18 A. Maassen: Programming with Higher Order Functions
1989-19 ∗ Mario Rodriguez-Artalejo, Heiko Vogler: A Narrowing Machine for Syn-

tax Directed BABEL
1989-20 H. Kuchen, R. Loogen, J.J. Moreno Navarro, M. Rodriguez Artalejo:

Graph-based Implementation of a Functional Logic Language
1990-01 ∗ Fachgruppe Informatik: Jahresbericht 1989
1990-02 ∗ Vera Jansen, Andreas Potthoff, Wolfgang Thomas, Udo Wermuth: A

Short Guide to the AMORE System (Computing Automata, MOnoids
and Regular Expressions)

1990-03 ∗ Jerzy Skurczynski: On Three Hierarchies of Weak SkS Formulas
1990-04 R. Loogen: Stack-based Implementation of Narrowing
1990-05 H. Kuchen, A. Wagener: Comparison of Dynamic Load Balancing Strate-

gies
1990-06 ∗ Kai Jakobs, Frank Reichert: Directory Services for Mobile Communica-

tion
1990-07 ∗ Kai Jakobs: What’s Beyond the Interface - OSI Networks to Support

Cooperative Work
1990-08 ∗ Kai Jakobs: Directory Names and Schema - An Evaluation
1990-09 ∗ Ulrich Quernheim, Dieter Kreuer: Das CCITT - Signalisierungssystem

Nr. 7 auf Satellitenstrecken; Simulation der Zeichengabestrecke
1990-11 H. Kuchen, R. Loogen, J.J. Moreno Navarro, M. Rodriguez Artalejo:

Lazy Narrowing in a Graph Machine

16

1990-12 ∗ Kai Jakobs, Josef Kaltwasser, Frank Reichert, Otto Spaniol: Der Com-
puter fährt mit

1990-13 ∗ Rudolf Mathar, Andreas Mann: Analyzing a Distributed Slot Assign-
ment Protocol by Markov Chains

1990-14 A. Maassen: Compilerentwicklung in Miranda - ein Praktikum in funk-
tionaler Programmierung (written in german)

1990-15 ∗ Manfred Nagl, Andreas Schürr: A Specification Environment for Graph
Grammars

1990-16 A. Schürr: PROGRESS: A VHL-Language Based on Graph Grammars
1990-17 ∗ Marita Möller: Ein Ebenenmodell wissensbasierter Konsultationen - Un-

terstützung für Wissensakquisition und Erklärungsfähigkeit
1990-18 ∗ Eric Kowalewski: Entwurf und Interpretation einer Sprache zur Beschrei-

bung von Konsultationsphasen in Expertensystemen
1990-20 Y. Ortega Mallen, D. de Frutos Escrig: A Complete Proof System for

Timed Observations
1990-21 ∗ Manfred Nagl: Modelling of Software Architectures: Importance, No-

tions, Experiences
1990-22 H. Fassbender, H. Vogler: A Call-by-need Implementation of Syntax Di-

rected Functional Programming
1991-01 Guenther Geiler (ed.), Fachgruppe Informatik: Jahresbericht 1990
1991-03 B. Steffen, A. Ingolfsdottir: Characteristic Formulae for Processes with

Divergence
1991-04 M. Portz: A new class of cryptosystems based on interconnection net-

works
1991-05 H. Kuchen, G. Geiler: Distributed Applicative Arrays
1991-06 ∗ Ludwig Staiger: Kolmogorov Complexity and Hausdorff Dimension
1991-07 ∗ Ludwig Staiger: Syntactic Congruences for w-languages
1991-09 ∗ Eila Kuikka: A Proposal for a Syntax-Directed Text Processing System
1991-10 K. Gladitz, H. Fassbender, H. Vogler: Compiler-based Implementation

of Syntax-Directed Functional Programming
1991-11 R. Loogen, St. Winkler: Dynamic Detection of Determinism in Func-

tional Logic Languages
1991-12 ∗ K. Indermark, M. Rodriguez Artalejo (Eds.): Granada Workshop on the

Integration of Functional and Logic Programming
1991-13 ∗ Rolf Hager, Wolfgang Kremer: The Adaptive Priority Scheduler: A More

Fair Priority Service Discipline
1991-14 ∗ Andreas Fasbender, Wolfgang Kremer: A New Approximation Algorithm

for Tandem Networks with Priority Nodes
1991-15 J. Börstler, A. Zündorf: Revisiting extensions to Modula-2 to support

reusability
1991-16 J. Börstler, Th. Janning: Bridging the gap between Requirements Anal-

ysis and Design
1991-17 A. Zündorf, A. Schürr: Nondeterministic Control Structures for Graph

Rewriting Systems
1991-18 ∗ Matthias Jarke, John Mylopoulos, Joachim W. Schmidt, Yannis Vassil-

iou: DAIDA: An Environment for Evolving Information Systems
1991-19 M. Jeusfeld, M. Jarke: From Relational to Object-Oriented Integrity

Simplification
1991-20 G. Hogen, A. Kindler, R. Loogen: Automatic Parallelization of Lazy

Functional Programs
1991-21 ∗ Prof. Dr. rer. nat. Otto Spaniol: ODP (Open Distributed Processing):

Yet another Viewpoint
1991-22 H. Kuchen, F. Lücking, H. Stoltze: The Topology Description Language

TDL
1991-23 S. Graf, B. Steffen: Compositional Minimization of Finite State Systems
1991-24 R. Cleaveland, J. Parrow, B. Steffen: The Concurrency Workbench: A

Semantics Based Tool for the Verification of Concurrent Systems
1991-25 ∗ Rudolf Mathar, Jürgen Mattfeldt: Optimal Transmission Ranges for Mo-

bile Communication in Linear Multihop Packet Radio Networks

17

1991-26 M. Jeusfeld, M. Staudt: Query Optimization in Deductive Object Bases
1991-27 J. Knoop, B. Steffen: The Interprocedural Coincidence Theorem
1991-28 J. Knoop, B. Steffen: Unifying Strength Reduction and Semantic Code

Motion
1991-30 T. Margaria: First-Order theories for the verification of complex FSMs
1991-31 B. Steffen: Generating Data Flow Analysis Algorithms from Modal Spec-

ifications
1992-01 Stefan Eherer (ed.), Fachgruppe Informatik: Jahresbericht 1991
1992-02 ∗ Bernhard Westfechtel: Basismechanismen zur Datenverwaltung in struk-

turbezogenen Hypertextsystemen
1992-04 S. A. Smolka, B. Steffen: Priority as Extremal Probability
1992-05 ∗ Matthias Jarke, Carlos Maltzahn, Thomas Rose: Sharing Processes:

Team Coordination in Design Repositories
1992-06 O. Burkart, B. Steffen: Model Checking for Context-Free Processes
1992-07 ∗ Matthias Jarke, Klaus Pohl: Information Systems Quality and Quality

Information Systems
1992-08 ∗ Rudolf Mathar, Jürgen Mattfeldt: Analyzing Routing Strategy NFP in

Multihop Packet Radio Networks on a Line
1992-09 ∗ Alfons Kemper, Guido Moerkotte: Grundlagen objektorientierter Daten-

banksysteme
1992-10 Matthias Jarke, Manfred Jeusfeld, Andreas Miethsam, Michael Gocek:

Towards a logic-based reconstruction of software configuration manage-
ment

1992-11 Werner Hans: A Complete Indexing Scheme for WAM-based Abstract
Machines

1992-12 W. Hans, R. Loogen, St. Winkler: On the Interaction of Lazy Evaluation
and Backtracking

1992-13 ∗ Matthias Jarke, Thomas Rose: Specification Management with CAD
1992-14 Th. Noll, H. Vogler: Top-down Parsing with Simultaneous Evaluation on

Noncircular Attribute Grammars
1992-15 A. Schuerr, B. Westfechtel: Graphgrammatiken und Graphersetzungssys-

teme(written in german)
1992-16 ∗ Graduiertenkolleg Informatik und Technik (Hrsg.): Forschungsprojekte

des Graduiertenkollegs Informatik und Technik
1992-17 M. Jarke (ed.): ConceptBase V3.1 User Manual
1992-18 ∗ Clarence A. Ellis, Matthias Jarke (Eds.): Distributed Cooperation in

Integrated Information Systems - Proceedings of the Third International
Workshop on Intelligent and Cooperative Information Systems

1992-19-00 H. Kuchen, R. Loogen (eds.): Proceedings of the 4th Int. Workshop on
the Parallel Implementation of Functional Languages

1992-19-01 G. Hogen, R. Loogen: PASTEL - A Parallel Stack-Based Implementation
of Eager Functional Programs with Lazy Data Structures (Extended
Abstract)

1992-19-02 H. Kuchen, K. Gladitz: Implementing Bags on a Shared Memory MIMD-
Machine

1992-19-03 C. Rathsack, S.B. Scholz: LISA - A Lazy Interpreter for a Full-Fledged
Lambda-Calculus

1992-19-04 T.A. Bratvold: Determining Useful Parallelism in Higher Order Func-
tions

1992-19-05 S. Kahrs: Polymorphic Type Checking by Interpretation of Code
1992-19-06 M. Chakravarty, M. Köhler: Equational Constraints, Residuation, and

the Parallel JUMP-Machine
1992-19-07 J. Seward: Polymorphic Strictness Analysis using Frontiers (Draft Ver-

sion)
1992-19-08 D. Gärtner, A. Kimms, W. Kluge: pi-Redˆ+ - A Compiling Graph-

Reduction System for a Full Fledged Lambda-Calculus
1992-19-09 D. Howe, G. Burn: Experiments with strict STG code
1992-19-10 J. Glauert: Parallel Implementation of Functional Languages Using

Small Processes

18

1992-19-11 M. Joy, T. Axford: A Parallel Graph Reduction Machine
1992-19-12 A. Bennett, P. Kelly: Simulation of Multicache Parallel Reduction
1992-19-13 K. Langendoen, D.J. Agterkamp: Cache Behaviour of Lazy Functional

Programs (Working Paper)
1992-19-14 K. Hammond, S. Peyton Jones: Profiling scheduling strategies on the

GRIP parallel reducer
1992-19-15 S. Mintchev: Using Strictness Information in the STG-machine
1992-19-16 D. Rushall: An Attribute Grammar Evaluator in Haskell
1992-19-17 J. Wild, H. Glaser, P. Hartel: Statistics on storage management in a lazy

functional language implementation
1992-19-18 W.S. Martins: Parallel Implementations of Functional Languages
1992-19-19 D. Lester: Distributed Garbage Collection of Cyclic Structures (Draft

version)
1992-19-20 J.C. Glas, R.F.H. Hofman, W.G. Vree: Parallelization of Branch-and-

Bound Algorithms in a Functional Programming Environment
1992-19-21 S. Hwang, D. Rushall: The nu-STG machine: a parallelized Spineless

Tagless Graph Reduction Machine in a distributed memory architecture
(Draft version)

1992-19-22 G. Burn, D. Le Metayer: Cps-Translation and the Correctness of Opti-
mising Compilers

1992-19-23 S.L. Peyton Jones, P. Wadler: Imperative functional programming (Brief
summary)

1992-19-24 W. Damm, F. Liu, Th. Peikenkamp: Evaluation and Parallelization of
Functions in Functional + Logic Languages (abstract)

1992-19-25 M. Kesseler: Communication Issues Regarding Parallel Functional Graph
Rewriting

1992-19-26 Th. Peikenkamp: Charakterizing and representing neededness in func-
tional loginc languages (abstract)

1992-19-27 H. Doerr: Monitoring with Graph-Grammars as formal operational Mod-
els

1992-19-28 J. van Groningen: Some implementation aspects of Concurrent Clean on
distributed memory architectures

1992-19-29 G. Ostheimer: Load Bounding for Implicit Parallelism (abstract)
1992-20 H. Kuchen, F.J. Lopez Fraguas, J.J. Moreno Navarro, M. Rodriguez

Artalejo: Implementing Disequality in a Lazy Functional Logic Language
1992-21 H. Kuchen, F.J. Lopez Fraguas: Result Directed Computing in a Func-

tional Logic Language
1992-22 H. Kuchen, J.J. Moreno Navarro, M.V. Hermenegildo: Independent

AND-Parallel Narrowing
1992-23 T. Margaria, B. Steffen: Distinguishing Formulas for Free
1992-24 K. Pohl: The Three Dimensions of Requirements Engineering
1992-25 ∗ R. Stainov: A Dynamic Configuration Facility for Multimedia Commu-

nications
1992-26 ∗ Michael von der Beeck: Integration of Structured Analysis and Timed

Statecharts for Real-Time and Concurrency Specification
1992-27 W. Hans, St. Winkler: Aliasing and Groundness Analysis of Logic Pro-

grams through Abstract Interpretation and its Safety
1992-28 ∗ Gerhard Steinke, Matthias Jarke: Support for Security Modeling in In-

formation Systems Design
1992-29 B. Schinzel: Warum Frauenforschung in Naturwissenschaft und Technik
1992-30 A. Kemper, G. Moerkotte, K. Peithner: Object-Orientation Axiomatised

by Dynamic Logic
1992-32 ∗ Bernd Heinrichs, Kai Jakobs: Timer Handling in High-Performance

Transport Systems
1992-33 ∗ B. Heinrichs, K. Jakobs, K. Lenßen, W. Reinhardt, A. Spinner: Euro-

Bridge: Communication Services for Multimedia Applications
1992-34 C. Gerlhof, A. Kemper, Ch. Kilger, G. Moerkotte: Partition-Based Clus-

tering in Object Bases: From Theory to Practice
1992-35 J. Börstler: Feature-Oriented Classification and Reuse in IPSEN

19

1992-36 M. Jarke, J. Bubenko, C. Rolland, A. Sutcliffe, Y. Vassiliou: Theories Un-
derlying Requirements Engineering: An Overview of NATURE at Gen-
esis

1992-37 ∗ K. Pohl, M. Jarke: Quality Information Systems: Repository Support for
Evolving Process Models

1992-38 A. Zuendorf: Implementation of the imperative / rule based language
PROGRES

1992-39 P. Koch: Intelligentes Backtracking bei der Auswertung funktional-
logischer Programme

1992-40 ∗ Rudolf Mathar, Jürgen Mattfeldt: Channel Assignment in Cellular Radio
Networks

1992-41 ∗ Gerhard Friedrich, Wolfgang Neidl: Constructive Utility in Model-Based
Diagnosis Repair Systems

1992-42 ∗ P. S. Chen, R. Hennicker, M. Jarke: On the Retrieval of Reusable Soft-
ware Components

1992-43 W. Hans, St.Winkler: Abstract Interpretation of Functional Logic Lan-
guages

1992-44 N. Kiesel, A. Schuerr, B. Westfechtel: Design and Evaluation of GRAS,
a Graph-Oriented Database System for Engineering Applications

1993-01 ∗ Fachgruppe Informatik: Jahresbericht 1992
1993-02 ∗ Patrick Shicheng Chen: On Inference Rules of Logic-Based Information

Retrieval Systems
1993-03 G. Hogen, R. Loogen: A New Stack Technique for the Management of

Runtime Structures in Distributed Environments
1993-05 A. Zündorf: A Heuristic for the Subgraph Isomorphism Problem in Ex-

ecuting PROGRES
1993-06 A. Kemper, D. Kossmann: Adaptable Pointer Swizzling Strategies in

Object Bases: Design, Realization, and Quantitative Analysis
1993-07 ∗ Graduiertenkolleg Informatik und Technik (Hrsg.): Graduiertenkolleg In-

formatik und Technik
1993-08 ∗ Matthias Berger: k-Coloring Vertices using a Neural Network with Con-

vergence to Valid Solutions
1993-09 M. Buchheit, M. Jeusfeld, W. Nutt, M. Staudt: Subsumption between

Queries to Object-Oriented Databases
1993-10 O. Burkart, B. Steffen: Pushdown Processes: Parallel Composition and

Model Checking
1993-11 ∗ R. Große-Wienker, O. Hermanns, D. Menzenbach, A. Pollacks, S. Repet-

zki, J. Schwartz, K. Sonnenschein, B. Westfechtel: Das SUKITS-Projekt:
A-posteriori-Integration heterogener CIM-Anwendungssysteme

1993-12 ∗ Rudolf Mathar, Jürgen Mattfeldt: On the Distribution of Cumulated
Interference Power in Rayleigh Fading Channels

1993-13 O. Maler, L. Staiger: On Syntactic Congruences for omega-languages
1993-14 M. Jarke, St. Eherer, R. Gallersdoerfer, M. Jeusfeld, M. Staudt: Con-

ceptBase - A Deductive Object Base Manager
1993-15 M. Staudt, H.W. Nissen, M.A. Jeusfeld: Query by Class, Rule and Con-

cept
1993-16 ∗ M. Jarke, K. Pohl, St. Jacobs et al.: Requirements Engineering: An In-

tegrated View of Representation Process and Domain
1993-17 ∗ M. Jarke, K. Pohl: Establishing Vision in Context: Towards a Model of

Requirements Processes
1993-18 W. Hans, H. Kuchen, St. Winkler: Full Indexing for Lazy Narrowing
1993-19 W. Hans, J.J. Ruz, F. Saenz, St. Winkler: A VHDL Specification of a

Shared Memory Parallel Machine for Babel
1993-20 ∗ K. Finke, M. Jarke, P. Szczurko, R. Soltysiak: Quality Management for

Expert Systems in Process Control
1993-21 M. Jarke, M.A. Jeusfeld, P. Szczurko: Three Aspects of Intelligent Co-

operation in the Quality Cycle
1994-01 Margit Generet, Sven Martin (eds.), Fachgruppe Informatik: Jahres-

bericht 1993

20

1994-02 M. Lefering: Development of Incremental Integration Tools Using Formal
Specifications

1994-03 ∗ P. Constantopoulos, M. Jarke, J. Mylopoulos, Y. Vassiliou: The Software
Information Base: A Server for Reuse

1994-04 ∗ Rolf Hager, Rudolf Mathar, Jürgen Mattfeldt: Intelligent Cruise Control
and Reliable Communication of Mobile Stations

1994-05 ∗ Rolf Hager, Peter Hermesmann, Michael Portz: Feasibility of Authenti-
cation Procedures within Advanced Transport Telematics

1994-06 ∗ Claudia Popien, Bernd Meyer, Axel Kuepper: A Formal Approach to
Service Import in ODP Trader Federations

1994-07 P. Peters, P. Szczurko: Integrating Models of Quality Management Meth-
ods by an Object-Oriented Repository

1994-08 ∗ Manfred Nagl, Bernhard Westfechtel: A Universal Component for the
Administration in Distributed and Integrated Development Environ-
ments

1994-09 ∗ Patrick Horster, Holger Petersen: Signatur- und Authentifikationsver-
fahren auf der Basis des diskreten Logarithmusproblems

1994-11 A. Schürr: PROGRES, A Visual Language and Environment for PRO-
gramming with Graph REwrite Systems

1994-12 A. Schürr: Specification of Graph Translators with Triple Graph Gram-
mars

1994-13 A. Schürr: Logic Based Programmed Structure Rewriting Systems
1994-14 L. Staiger: Codes, Simplifying Words, and Open Set Condition
1994-15 ∗ Bernhard Westfechtel: A Graph-Based System for Managing Configura-

tions of Engineering Design Documents
1994-16 P. Klein: Designing Software with Modula-3
1994-17 I. Litovsky, L. Staiger: Finite acceptance of infinite words
1994-18 G. Hogen, R. Loogen: Parallel Functional Implementations: Graphbased

vs. Stackbased Reduction
1994-19 M. Jeusfeld, U. Johnen: An Executable Meta Model for Re-Engineering

of Database Schemas
1994-20 ∗ R. Gallersdörfer, M. Jarke, K. Klabunde: Intelligent Networks as a Data

Intensive Application (INDIA)
1994-21 M. Mohnen: Proving the Correctness of the Static Link Technique Using

Evolving Algebras
1994-22 H. Fernau, L. Staiger: Valuations and Unambiguity of Languages, with

Applications to Fractal Geometry
1994-24 ∗ M. Jarke, K. Pohl, R. Dömges, St. Jacobs, H. W. Nissen: Requirements

Information Management: The NATURE Approach
1994-25 ∗ M. Jarke, K. Pohl, C. Rolland, J.-R. Schmitt: Experience-Based Method

Evaluation and Improvement: A Process Modeling Approach
1994-26 ∗ St. Jacobs, St. Kethers: Improving Communication and Decision Making

within Quality Function Deployment
1994-27 ∗ M. Jarke, H. W. Nissen, K. Pohl: Tool Integration in Evolving Informa-

tion Systems Environments
1994-28 O. Burkart, D. Caucal, B. Steffen: An Elementary Bisimulation Decision

Procedure for Arbitrary Context-Free Processes
1995-01 ∗ Fachgruppe Informatik: Jahresbericht 1994
1995-02 Andy Schürr, Andreas J. Winter, Albert Zündorf: Graph Grammar En-

gineering with PROGRES
1995-03 Ludwig Staiger: A Tight Upper Bound on Kolmogorov Complexity by

Hausdorff Dimension and Uniformly Optimal Prediction
1995-04 Birgitta König-Ries, Sven Helmer, Guido Moerkotte: An experimental

study on the complexity of left-deep join ordering problems for cyclic
queries

1995-05 Sophie Cluet, Guido Moerkotte: Efficient Evaluation of Aggregates on
Bulk Types

1995-06 Sophie Cluet, Guido Moerkotte: Nested Queries in Object Bases
1995-07 Sophie Cluet, Guido Moerkotte: Query Optimization Techniques Ex-

ploiting Class Hierarchies

21

1995-08 Markus Mohnen: Efficient Compile-Time Garbage Collection for Arbi-
trary Data Structures

1995-09 Markus Mohnen: Functional Specification of Imperative Programs: An
Alternative Point of View of Functional Languages

1995-10 Rainer Gallersdörfer, Matthias Nicola: Improving Performance in Repli-
cated Databases through Relaxed Coherency

1995-11 ∗ M.Staudt, K.von Thadden: Subsumption Checking in Knowledge Bases
1995-12 ∗ G.V.Zemanek, H.W.Nissen, H.Hubert, M.Jarke: Requirements Analy-

sis from Multiple Perspectives: Experiences with Conceptual Modeling
Technology

1995-13 ∗ M.Staudt, M.Jarke: Incremental Maintenance of Externally Materialized
Views

1995-14 ∗ P.Peters, P.Szczurko, M.Jeusfeld: Oriented Information Management:
Conceptual Models at Work

1995-15 ∗ Matthias Jarke, Sudha Ram (Hrsg.): WITS 95 Proceedings of the 5th
Annual Workshop on Information Technologies and Systems

1995-16 ∗ W.Hans, St.Winkler, F.Saenz: Distributed Execution in Functional Logic
Programming

1996-01 ∗ Jahresbericht 1995
1996-02 Michael Hanus, Christian Prehofer: Higher-Order Narrowing with Defi-

nitional Trees
1996-03 ∗ W.Scheufele, G.Moerkotte: Optimal Ordering of Selections and Joins in

Acyclic Queries with Expensive Predicates
1996-04 Klaus Pohl: PRO-ART: Enabling Requirements Pre-Traceability
1996-05 Klaus Pohl: Requirements Engineering: An Overview
1996-06 ∗ M.Jarke, W.Marquardt: Design and Evaluation of Computer–Aided Pro-

cess Modelling Tools
1996-07 Olaf Chitil: The Sigma-Semantics: A Comprehensive Semantics for Func-

tional Programs
1996-08 ∗ S.Sripada: On Entropy and the Limitations of the Second Law of Ther-

modynamics
1996-09 Michael Hanus (Ed.): Proceedings of the Poster Session of ALP96 - Fifth

International Conference on Algebraic and Logic Programming
1996-09-0 Michael Hanus (Ed.): Proceedings of the Poster Session of ALP 96 -

Fifth International Conference on Algebraic and Logic Programming:
Introduction and table of contents

1996-09-1 Ilies Alouini: An Implementation of Conditional Concurrent Rewriting
on Distributed Memory Machines

1996-09-2 Olivier Danvy, Karoline Malmkjær: On the Idempotence of the CPS
Transformation

1996-09-3 Vı́ctor M. Guĺıas, José L. Freire: Concurrent Programming in Haskell
1996-09-4 Sébastien Limet, Pierre Réty: On Decidability of Unifiability Modulo

Rewrite Systems
1996-09-5 Alexandre Tessier: Declarative Debugging in Constraint Logic Program-

ming
1996-10 Reidar Conradi, Bernhard Westfechtel: Version Models for Software Con-

figuration Management
1996-11 ∗ C.Weise, D.Lenzkes: A Fast Decision Algorithm for Timed Refinement
1996-12 ∗ R.Dömges, K.Pohl, M.Jarke, B.Lohmann, W.Marquardt: PRO-

ART/CE* — An Environment for Managing the Evolution of Chemical
Process Simulation Models

1996-13 ∗ K.Pohl, R.Klamma, K.Weidenhaupt, R.Dömges, P.Haumer, M.Jarke: A
Framework for Process-Integrated Tools

1996-14 ∗ R.Gallersdörfer, K.Klabunde, A.Stolz, M.Eßmajor: INDIA — Intelligent
Networks as a Data Intensive Application, Final Project Report, June
1996

1996-15 ∗ H.Schimpe, M.Staudt: VAREX: An Environment for Validating and Re-
fining Rule Bases

1996-16 ∗ M.Jarke, M.Gebhardt, S.Jacobs, H.Nissen: Conflict Analysis Across Het-
erogeneous Viewpoints: Formalization and Visualization

22

1996-17 Manfred A. Jeusfeld, Tung X. Bui: Decision Support Components on the
Internet

1996-18 Manfred A. Jeusfeld, Mike Papazoglou: Information Brokering: Design,
Search and Transformation

1996-19 ∗ P.Peters, M.Jarke: Simulating the impact of information flows in net-
worked organizations

1996-20 Matthias Jarke, Peter Peters, Manfred A. Jeusfeld: Model-driven plan-
ning and design of cooperative information systems

1996-21 ∗ G.de Michelis, E.Dubois, M.Jarke, F.Matthes, J.Mylopoulos, K.Pohl,
J.Schmidt, C.Woo, E.Yu: Cooperative information systems: a manifesto

1996-22 ∗ S.Jacobs, M.Gebhardt, S.Kethers, W.Rzasa: Filling HTML forms simul-
taneously: CoWeb architecture and functionality

1996-23 ∗ M.Gebhardt, S.Jacobs: Conflict Management in Design
1997-01 Michael Hanus, Frank Zartmann (eds.): Jahresbericht 1996
1997-02 Johannes Faassen: Using full parallel Boltzmann Machines for Optimiza-

tion
1997-03 Andreas Winter, Andy Schürr: Modules and Updatable Graph Views for

PROgrammed Graph REwriting Systems
1997-04 Markus Mohnen, Stefan Tobies: Implementing Context Patterns in the

Glasgow Haskell Compiler
1997-05 ∗ S.Gruner: Schemakorrespondenzaxiome unterstützen die paargramma-

tische Spezifikation inkrementeller Integrationswerkzeuge
1997-06 Matthias Nicola, Matthias Jarke: Design and Evaluation of Wireless

Health Care Information Systems in Developing Countries
1997-07 Petra Hofstedt: Taskparallele Skelette für irregulär strukturierte Prob-

leme in deklarativen Sprachen
1997-08 Dorothea Blostein, Andy Schürr: Computing with Graphs and Graph

Rewriting
1997-09 Carl-Arndt Krapp, Bernhard Westfechtel: Feedback Handling in Dy-

namic Task Nets
1997-10 Matthias Nicola, Matthias Jarke: Integrating Replication and Commu-

nication in Performance Models of Distributed Databases
1997-11 ∗ R. Klamma, P. Peters, M. Jarke: Workflow Support for Failure Manage-

ment in Federated Organizations
1997-13 Markus Mohnen: Optimising the Memory Management of Higher-Order

Functional Programs
1997-14 Roland Baumann: Client/Server Distribution in a Structure-Oriented

Database Management System
1997-15 George Botorog: High-Level Parallel Programming and the Efficient Im-

plementation of Numerical Algorithms
1998-01 ∗ Fachgruppe Informatik: Jahresbericht 1997
1998-02 Stefan Gruner, Manfred Nagel, Andy Schürr: Fine-grained and

Structure-Oriented Document Integration Tools are Needed for Devel-
opment Processes

1998-03 Stefan Gruner: Einige Anmerkungen zur graphgrammatischen Spezifika-
tion von Integrationswerkzeugen nach Westfechtel, Janning, Lefering und
Schürr

1998-04 ∗ O. Kubitz: Mobile Robots in Dynamic Environments
1998-05 Martin Leucker, Stephan Tobies: Truth - A Verification Platform for

Distributed Systems
1998-06 ∗ Matthias Oliver Berger: DECT in the Factory of the Future
1998-07 M. Arnold, M. Erdmann, M. Glinz, P. Haumer, R. Knoll, B. Paech, K.

Pohl, J. Ryser, R. Studer, K. Weidenhaupt: Survey on the Scenario Use
in Twelve Selected Industrial Projects

1998-09 ∗ Th. Lehmann: Geometrische Ausrichtung medizinischer Bilder am
Beispiel intraoraler Radiographien

1998-10 ∗ M. Nicola, M. Jarke: Performance Modeling of Distributed and Repli-
cated Databases

1998-11 ∗ Ansgar Schleicher, Bernhard Westfechtel, Dirk Jäger: Modeling Dynamic
Software Processes in UML

23

1998-12 ∗ W. Appelt, M. Jarke: Interoperable Tools for Cooperation Support using
the World Wide Web

1998-13 Klaus Indermark: Semantik rekursiver Funktionsdefinitionen mit Strik-
theitsinformation

1999-01 ∗ Jahresbericht 1998
1999-02 ∗ F. Huch: Verifcation of Erlang Programs using Abstract Interpretation

and Model Checking — Extended Version
1999-03 ∗ R. Gallersdörfer, M. Jarke, M. Nicola: The ADR Replication Manager
1999-04 Maŕıa Alpuente, Michael Hanus, Salvador Lucas, Germán Vidal: Spe-

cialization of Functional Logic Programs Based on Needed Narrowing
1999-05 ∗ W. Thomas (Ed.): DLT 99 - Developments in Language Theory Fourth

International Conference
1999-06 ∗ Kai Jakobs, Klaus-Dieter Kleefeld: Informationssysteme für die ange-

wandte historische Geographie
1999-07 Thomas Wilke: CTL+ is exponentially more succinct than CTL
1999-08 Oliver Matz: Dot-Depth and Monadic Quantifier Alternation over Pic-

tures
2000-01 ∗ Jahresbericht 1999
2000-02 Jens Vöge, Marcin Jurdzinski A Discrete Strategy Improvement Algo-

rithm for Solving Parity Games
2000-03 D. Jäger, A. Schleicher, B. Westfechtel: UPGRADE: A Framework for

Building Graph-Based Software Engineering Tools
2000-04 Andreas Becks, Stefan Sklorz, Matthias Jarke: Exploring the Semantic

Structure of Technical Document Collections: A Cooperative Systems
Approach

2000-05 Mareike Schoop: Cooperative Document Management
2000-06 Mareike Schoop, Christoph Quix (eds.): Proceedings of the Fifth Interna-

tional Workshop on the Language-Action Perspective on Communication
Modelling

2000-07 ∗ Markus Mohnen, Pieter Koopman (Eds.): Proceedings of the 12th Inter-
national Workshop of Functional Languages

2000-08 Thomas Arts, Thomas Noll: Verifying Generic Erlang Client-Server Im-
plementations

2001-01 ∗ Jahresbericht 2000
2001-02 Benedikt Bollig, Martin Leucker: Deciding LTL over Mazurkiewicz

Traces
2001-03 Thierry Cachat: The power of one-letter rational languages
2001-04 Benedikt Bollig, Martin Leucker, Michael Weber: Local Parallel Model

Checking for the Alternation Free mu-Calculus
2001-05 Benedikt Bollig, Martin Leucker, Thomas Noll: Regular MSC Languages
2001-06 Achim Blumensath: Prefix-Recognisable Graphs and Monadic Second-

Order Logic
2001-07 Martin Grohe, Stefan Wöhrle: An Existential Locality Theorem
2001-08 Mareike Schoop, James Taylor (eds.): Proceedings of the Sixth Interna-

tional Workshop on the Language-Action Perspective on Communication
Modelling

2001-09 Thomas Arts, Jürgen Giesl: A collection of examples for termination of
term rewriting using dependency pairs

2001-10 Achim Blumensath: Axiomatising Tree-interpretable Structures
2001-11 Klaus Indermark, Thomas Noll (eds.): Kolloquium Programmier-

sprachen und Grundlagen der Programmierung
2002-01 ∗ Jahresbericht 2001
2002-02 Jürgen Giesl, Aart Middeldorp: Transformation Techniques for Context-

Sensitive Rewrite Systems
2002-03 Benedikt Bollig, Martin Leucker, Thomas Noll: Generalised Regular

MSC Languages
2002-04 Jürgen Giesl, Aart Middeldorp: Innermost Termination of Context-

Sensitive Rewriting
2002-05 Horst Lichter, Thomas von der Maßen, Thomas Weiler: Modelling Re-

quirements and Architectures for Software Product Lines

24

2002-06 Henry N. Adorna: 3-Party Message Complexity is Better than 2-Party
Ones for Proving Lower Bounds on the Size of Minimal Nondeterministic
Finite Automata

2002-07 Jörg Dahmen: Invariant Image Object Recognition using Gaussian Mix-
ture Densities

2002-08 Markus Mohnen: An Open Framework for Data-Flow Analysis in Java
2002-09 Markus Mohnen: Interfaces with Default Implementations in Java
2002-10 Martin Leucker: Logics for Mazurkiewicz traces
2002-11 Jürgen Giesl, Hans Zantema: Liveness in Rewriting
2003-01 ∗ Jahresbericht 2002
2003-02 Jürgen Giesl, René Thiemann: Size-Change Termination for Term

Rewriting
2003-03 Jürgen Giesl, Deepak Kapur: Deciding Inductive Validity of Equations
2003-04 Jürgen Giesl, René Thiemann, Peter Schneider-Kamp, Stephan Falke:

Improving Dependency Pairs
2003-05 Christof Löding, Philipp Rohde: Solving the Sabotage Game is PSPACE-

hard
2003-06 Franz Josef Och: Statistical Machine Translation: From Single-Word

Models to Alignment Templates
2003-07 Horst Lichter, Thomas von der Maßen, Alexander Nyßen, Thomas

Weiler: Vergleich von Ansätzen zur Feature Modellierung bei der Soft-
wareproduktlinienentwicklung

2003-08 Jürgen Giesl, René Thiemann, Peter Schneider-Kamp, Stephan Falke:
Mechanizing Dependency Pairs

2004-01 ∗ Fachgruppe Informatik: Jahresbericht 2003
2004-02 Benedikt Bollig, Martin Leucker: Message-Passing Automata are expres-

sively equivalent to EMSO logic
2004-03 Delia Kesner, Femke van Raamsdonk, Joe Wells (eds.): HOR 2004 – 2nd

International Workshop on Higher-Order Rewriting
2004-04 Slim Abdennadher, Christophe Ringeissen (eds.): RULE 04 – Fifth In-

ternational Workshop on Rule-Based Programming
2004-05 Herbert Kuchen (ed.): WFLP 04 – 13th International Workshop on Func-

tional and (Constraint) Logic Programming
2004-06 Sergio Antoy, Yoshihito Toyama (eds.): WRS 04 – 4th International

Workshop on Reduction Strategies in Rewriting and Programming
2004-07 Michael Codish, Aart Middeldorp (eds.): WST 04 – 7th International

Workshop on Termination
2004-08 Klaus Indermark, Thomas Noll: Algebraic Correctness Proofs for Com-

piling Recursive Function Definitions with Strictness Information
2004-09 Joachim Kneis, Daniel Mölle, Stefan Richter, Peter Rossmanith: Param-

eterized Power Domination Complexity
2004-10 Zinaida Benenson, Felix C. Gärtner, Dogan Kesdogan: Secure Multi-

Party Computation with Security Modules
2005-01 ∗ Fachgruppe Informatik: Jahresbericht 2004
2005-02 Maximillian Dornseif, Felix C. Gärtner, Thorsten Holz, Martin Mink: An

Offensive Approach to Teaching Information Security: “Aachen Summer
School Applied IT Security”

2005-03 Jürgen Giesl, René Thiemann, Peter Schneider-Kamp: Proving and Dis-
proving Termination of Higher-Order Functions

2005-04 Daniel Mölle, Stefan Richter, Peter Rossmanith: A Faster Algorithm for
the Steiner Tree Problem

2005-05 Fabien Pouget, Thorsten Holz: A Pointillist Approach for Comparing
Honeypots

2005-06 Simon Fischer, Berthold Vöcking: Adaptive Routing with Stale Informa-
tion

2005-07 Felix C. Freiling, Thorsten Holz, Georg Wicherski: Botnet Tracking: Ex-
ploring a Root-Cause Methodology to Prevent Distributed Denial-of-
Service Attacks

2005-08 Joachim Kneis, Peter Rossmanith: A New Satisfiability Algorithm With
Applications To Max-Cut

25

2005-09 Klaus Kursawe, Felix C. Freiling: Byzantine Fault Tolerance on General
Hybrid Adversary Structures

2005-10 Benedikt Bollig: Automata and Logics for Message Sequence Charts
2005-11 Simon Fischer, Berthold Vöcking: A Counterexample to the Fully Mixed

Nash Equilibrium Conjecture
2005-13 Carole Delporte-Gallet, Hugues Fauconnier, Felix C. Freiling: Revisiting

Failure Detection and Consensus in Omission Failure Environments
2005-14 Felix C. Freiling, Sukumar Ghosh: Code Stabilization
2005-15 Uwe Naumann: The Complexity of Derivative Computation
2005-16 Uwe Naumann: Syntax-Directed Derivative Code (Part I: Tangent-

Linear Code)
2005-17 Uwe Naumann: Syntax-directed Derivative Code (Part II: Intraprocedu-

ral Adjoint Code)
2005-18 Thomas von der Maßen, Klaus Müller, John MacGregor, Eva Geis-

berger, Jörg Dörr, Frank Houdek, Harbhajan Singh, Holger Wußmann,
Hans-Veit Bacher, Barbara Paech: Einsatz von Features im Software-
Entwicklungsprozess - Abschlußbericht des GI-Arbeitskreises “Features”

2005-19 Uwe Naumann, Andre Vehreschild: Tangent-Linear Code by Augmented
LL-Parsers

2005-20 Felix C. Freiling, Martin Mink: Bericht über den Workshop zur Ausbil-
dung im Bereich IT-Sicherheit Hochschulausbildung, berufliche Weiter-
bildung, Zertifizierung von Ausbildungsangeboten am 11. und 12. Au-
gust 2005 in Köln organisiert von RWTH Aachen in Kooperation mit
BITKOM, BSI, DLR und Gesellschaft fuer Informatik (GI) e.V.

2005-21 Thomas Noll, Stefan Rieger: Optimization of Straight-Line Code Revis-
ited

∗ These reports are only available as a printed version.
Please contact biblio@informatik.rwth-aachen.de to obtain copies.

26

