
Aachen
Department of Computer Science

Technical Report

Code Stabilization

Felix C. Freiling and Sukumar Ghosh

ISSN 0935–3232 · Aachener Informatik Berichte · AIB-2005-14

RWTH Aachen · Department of Computer Science · June 2005

1



The publications of the Department of Computer Science of RWTH Aachen
University are in general accessible through the World Wide Web.

http://aib.informatik.rwth-aachen.de/

2



Code Stabilization

Felix C. Freiling1 and Sukumar Ghosh2?

1 Laboratory for Dependable Distributed Systems,
RWTH Aachen University, Germany

2 The University of Iowa, Iowa City, USA

Abstract. Dijkstra’s concept of self-stabilization assumes that faults can only
affect the variables of a program. We study the notion of self-stabilization if faults
can also affect (i.e., augment) the program code of a system. A code stabilizing sys-
tem automatically recovers from (almost) arbitrary perturbations of its program
code. We prove some lower bounds for code stabilizing systems and argue that
code stabilization has many resemblances to the area of integrity management in
the domain of security.

1 Introduction

The concept of self-stabilization by Dijkstra [6] describes the fact that a system
will eventually return to good behavior when starting from an arbitrary state.
The arbitrary state was used as a tool to model the effects of transient faults
that changed the values of variables stored in volatile memory. The program code
however was always assumed to remain unchanged.

Interestingly, the assumption that the program code is not affected by faults
has remained unchallenged for a long time. Usually it is argued that the program
code resides in non-volatile read-only memory and can therefore be assumed to
remain constant. This is however only true for small and specialized systems (like
embedded systems) today. Most software which runs on PCs is stored on hard
disks which—while being non-volatile—still can be subject to changes through
faults. Moreover, the threats from unauthorized code alterations through mali-
cious software (like worms or viruses) are steadily increasing. Hence we feel that
it is time to investigate the notion of self-stabilization where faults can also affect
the code of the program.

In this paper we ask the question: How and when can self-stabilizing systems
recover not only from perturbations of the data but also from perturbations of the
program code? To answer this question we first give a formal definition of what
we call code stabilization. In analogy to self-stabilization (which we in contrast
call data stabilization) we define code stabilization to mean eventual recovery
of the program code to a “legal state”. Our definition is a clean extension of
Dijkstra’s definition: If the legal state of the code is a self-stabilizing algorithm,
then code stabilization implies also data stabilization.

We further investigate the amount of perturbation tolerable in code stabi-
lization and prove that code stabilization is impossible if the entire code space
can be perturbed. Hence, a minimal nucleus of unaltered code space must always
remain. This is in clear contrast to self-stabilization where faults could affect all
the variables. We show that this minimal nucleus must have a size in the order

? This research was supported in part by a Fellowship from the Alexander von Humboldt
Foundation.



of the entire program. This result implies that code stabilization is a very costly
concept. However, in a distributed system it is possible to reduce the space re-
quirement of this nucleus to about the size of the code which is stored in only
one process.

Finally, we relate our findings to observations made in the area of security.
We discuss the area of software integrity management and argue that the concept
of code stabilization underlies many practical methods used in this area.

In summary, we provide the following contributions in this paper:

– We extend the definition of self-stabilization to code perturbations.

– We prove some lower bounds for this type of stabilization.

– We relate the new type of stabilization to practical methods from the area of
security.

To the best of our knowledge, the investigation of code perturbations in the
context of self-stabilization is novel. In can be seen as standing in a line of research
which considers stabilization as a useful abstraction in the area of security (see
for example work by Gouda [10]).

The paper is structured as follows: In Section 2 we present the system model
and the definition of code stabilization. In Section 3 we consider code stabilization
in the context of local (non-distributed) computations and subsequently extend
our findings to distributed computations in Section 4. In Section 5 we relate code
stabilization to concepts from the area of security. We conclude in Section 6.

2 Code Stabilization: Definition

In this section we present a definition of code stabilization and relate it to the
concept of self-stabilization.

2.1 Systems, Programs, Code, and Data

A system is a general purpose computing machine that consists of an execution
unit and memory. Intuitively the execution unit is a microprocessor and the
memory is some form of data storage like RAM, ROM or external memory (e.g.
hard disk). The memory of a system is separated into two parts: a code part and
a data part. The code part stores the program which the system should execute.
We are not concerned here with the way in which the program is encoded in
memory except that we assume that it be executable. To execute the program,
the system chooses the next instruction from the code part, loads it into the
execution unit and executes the instruction, thereby possibly changing the data
or code part of memory. Choice of the next program instruction can be done
deterministically (e.g. by using an explicit program counter stored in the data
part) or non-deterministically (like in the language of guarded commands [7]).
Note that we allow a program to update also the code part of memory, i.e., we
allow programs to be self-modifying.

The data part of memory can hold many different values. A particular assign-
ment of values to the variables in the data part is called a state of the program.
Let D denote the set of all possible states, i.e., all possible combinations of values
which may be stored in the data part.

4



A representation of the program in memory is called the code of the program
(or simply code). The code part of memory may hold many different codes (i.e.,
many different programs). Let C denote the set of all different codes that may
be stored in the code part of memory.

2.2 Distributed Systems and Executions

The definitions above can be easily extended to cover aspects of (geographical)
distribution. In a distributed system, the concept which we called a system above
is called a process. Each process has its individual execution unit and memory.
The code part of the memory of the distributed system is the union of all the code
parts of the processes. Similarly, the data part of the memory of the distributed
system is the union of the data part of the memories of all processes.

In a distributed system, processes need a method to communicate. Here we
assume that processes communicate through shared memory, i.e., we assume
that portions of the processes’ memory can be accessed by other processes. The
topology of the distributed system defines which process has access to the memory
of which other process. The type of access can be distinguished by its type (read
and/or write access) and the portion of the memory which it affects (code and/or
data part of the memory). We will differentiate special types of access later in
Section 4 where we consider distributed systems.

In general, for any system (be it distributed or not), the state of the entire
memory can be expressed as an element (c, d) ∈ C × D where c identifies the
code and d identifies the data state. An execution of a system is a sequence
σ = ((c1, d1), (c2, d2), . . .) of such code/data state pairs for which holds that for
all i, (ci+1, di+1) results from executing the fetch-execute cycle described above
on state (ci, di).

2.3 Memory Perturbations

We adopt here the standard fault-assumption of self-stabilization, i.e., the type
of faults we assume here are transient faults that can alter the state stored in
memory. This is a very general fault assumption encompassing things like tran-
sient memory faults (e.g., bit flips), faults during data transmission, brown-outs
due to transiently weak power supply, and effects of cosmic rays on memories. We
rule out faults that permanently affect the execution unit. We model the effect of
a fault by assuming that memory can spontaneously change into a certain “bad”
state. Recovery of faults is achieved if the system by itself manages to return
into a “good” state, as we explain shortly. Given some type of fault, the fault
span [4] of that fault is the largest set of memory values which can be reached
by faulty behavior.

2.4 Data Stabilization

We now recall the definition of self-stabilization [3, 6]. To distinguish it from
other forms of stabilization, we use the term data stabilization instead of self-
stabilization.

Intuitively, data stabilization means that, given some set A of states, starting
from a state in A, a system always eventually reaches a set of legal states. If it

5



enters a legal state, then, as long as no faults occur, the next state of the system
is also legal. In the following, let D ⊆ D denote the set of legal states.

Definition 1 (data stabilization). Let A ⊆ D be a set of (data) states that
includes D (i.e., D ⊆ A). A system data stabilizes from A to D if the following
conditions hold for every execution σ = ((c1, d1), (c2, d2), . . .) of the system:

– (closure) for any (ci, di), if di ∈ D then di+1 ∈ D.
– (convergence) for any (ci, di) such that di ∈ A there exists a j ≥ i such that

dj ∈ D.

If A = D = true we omit mentioning the set A in the definition and simply
say that a system data stabilizes. Data stabilization from D = A is equivalent to
the notion of self-stabilization as introduced by Dijkstra [6].

2.5 Code Stabilization

We assume that the set of all codes C contains some programs that are illegal
(they do not solve the problem for which the system was built by, e.g., going into
an infinite loop). Conversely, we assume that there exists a set C ⊂ C of legal
codes.1

We now define code stabilization in analogy to data stabilization.

Definition 2 (code stabilization). Let B ⊆ C be a set of codes that includes
C (i.e., C ⊆ B). A system code stabilizes from B to C if the following conditions
hold for every execution σ = ((c1, d1), (c2, d2), . . .) of the system:

– (closure) for any (ci, di), if ci ∈ C then ci+1 ∈ C.
– (convergence) for any (ci, di) such that ci ∈ B there exists a j ≥ i such that

cj ∈ C.

We define probabilistic code stabilization (with probability p) as code stabi-
lization where the convergence property holds only probabilistically (i.e., with
probability p). Clearly, any system that is code stabilizing is also probabilistically
code stabilizing, therefore probabilistic code stabilization is a weaker concept that
code stabilization.

2.6 Relations between Code and Data Stabilization

Code and data stabilization are defined independently, but they are not orthog-
onal since data stabilization relies on execution of correct code.

If faults are only allowed to perturb the data, then the code can be initialized
to some chosen value. If the code happens to be data stabilizing algorithm, then
we get the usual setting of self-stabilization. However, in the following assume
that faults may happen in data and code. In this case, data stabilization depends
on code stabilization.

Lemma 1. For any system, if the set of legal codes C contains only data stabi-
lizing algorithms, then the system data stabilizes only if it code stabilizes.

1 Note that our definition allows the case where more than one code is legal, e.g., if there are
different syntactic representations which are semantically equivalent.

6



Proof. For a contradiction, assume that the code does not stabilize to a legal code
in C. This means that the code remains in a state which is not data stabilizing.
Hence, the system does not data stabilize. ut

Note that Lemma 1 cannot be strengthened to an equivalence. To see this
consider the case where a system does not code stabilize. In this case it may be
stuck in an arbitrary program, e.g. one that executes an infinite loop. Clearly,
such a system will not data stabilize. So data stabilization of some system is by
no means sufficient for code stabilization of that system.

We define a system to be completely stabilizing if and only if it is code stabi-
lizing and data stabilizing. A completely stabilizing system can tolerate a larger
fault-span than a data stabilizing system because an additional level of perturba-
tion is possible: corruptions of code space (see Figure 1). Code stabilization can
therefore be explained as driving the fault-span past the border of the variable
state space.

code space data space

data stabilizationcode stabilization

Fig. 1. Code stabilization: Moving the fault-span past to the left of the border between code
and data.

3 Code Stabilization for Local Computations

In this section we consider code stabilization in a non-distributed setting, i.e.,
where the system consists of only one execution unit (one process).

3.1 A Technique to Establish Code Stabilization

How can code stabilizing systems be constructed? One simple way to do this is
to apply a layered approach and regard the code of one layer as the data of the
next layer (see Fig. 2). This approach builds upon the ideas of fair composition
of stabilizing protocols by Dolev, Israeli, and Moran [8]. If the system at one level
i is not code stabilizing, we enlarge the system by adding another code part at
level i− 1 which can modify the code at level i (the code of level i is the data of
level i − 1). Now define the correct codes of level i as the set of legal states for
code at level i − 1, then if the code of level i − 1 is data stabilizing, the code at
level i is code stabilizing.

If the code at the lowest layer (layer 1) is not affected by faults, then we can
show that the entire system is code stabilizing.

Theorem 1. Given the system as constructed in Fig. 2 in which the code of
every layer is a data stabilizing algorithm. If the code of level 1 is not perturbed
by faults, then the system is code stabilizing.

7



datam

codem = datam−1

code2 = data1

code1

...

code3=data2

Fig. 2. Hierarchical construction of code stabilization. The code at level i is regarded as the
data at level i − 1.

Proof. The proof is similar to the proof of self-stabilizing algorithms using the
idea of a convergence stair as introduced by Gouda and Multari [11]. The proof
is by induction over the levels.

Since we assume that the code of level 1 is not perturbed by faults, this code
is trivially code stabilizing, which proves the base case.

Assume that all codes up to level i are code stabilizing. Since the code at
level i is data stabilizing, eventually the data of level i + 1 will reach a legal
configuration. The legal configurations however are precisely the set of codes of
level i +1. Therefore, the code at level i+ 1 is code stabilizing, which proves the
induction step. ut

The construction of Theorem 1 is conceptual. It does not necessarily mean
that additional execution units or memory (additional “hardware”) need to be
added to the system. It is just a way to structure the code and memory space of a
system. Note here that this construction results in programs which are inherently
self-modifying.

3.2 Minimal Requirements for Code Stabilization

One central prerequisite for Theorem 1 to hold is that the code of level m is not
perturbed by faults. This raises the question whether this assumption is really
necessary, i.e., is there a way to construct code stabilizing systems such that the
entire code part of the memory may be perturbed by faults? Unfortunately, this
is not the case, as we now explain.

The code of a program holds some form of information about this program.
We define the size of a code as the amount of information (in bits) which it en-
codes. Basically, the amount of information in a code is the size of this code when
compressed with an optimal compression program (e.g., one that uses Huffman
codes). We now show that some minimal part of the code space must be safe
from perturbations in order to achieve code stabilization.

8



Theorem 2. In general, a code stabilizing system of size k requires an area of
non-perturbation of size at least O(k).

Proof. The most unfavorable case is one where faults perturb the entire code
and data space. Assuming that a code stabilizing system could recover from this
case would mean that the information contained in the original program must be
reconstructed from some source. However, if faults have perturbed the entire state
space, it is impossible to recover the data from anywhere. In general, the amount
of unperturbed storage corresponds directly to the amount of information which
is expressed by the code. In the worst case, the code can be (almost) random data
and so no more compression is possible. Hence, for a code of size k at least O(k)
storage needs to be maintained and this storage must be always unperturbed. ut

Note that Theorem 2 is rather general. It holds for any type of system (even
ones with self-modifying code) and also for probabilistic code stabilization. In
a sense, it prescribes for any program of size k a “safe nucleus” of size O(k)
from which it can be reconstructed. This makes code stabilization fundamentally
different from data stabilization because in data stabilization all data can be
perturbed without losing the ability to stabilize.

4 Code Stabilization for Distributed Computations

We now investigate how code stabilization can be achieved in distributed systems
and what the minimal requirements are to achieve code stabilization.

4.1 Uniformity Issues and Types of Remote Access

Let p and q be two processes. In the context of distributed systems with shared
memory we need to distinguish different types of access from p to q. Process p

has remote read access to q if p can read the entire code part of the memory of
q. Process p has remote write access to q if p can write to the entire code part of
q. If p has neither remote read nor remote write access to any other process, we
say that p has local access. Note that local access does not prohibit processes to
communicate since communication can still be done through some shared data
part of memory.

Many distributed algorithms assume the fact that individual processes can be
named using unique identifiers. Usually, these identifiers are assumed to be hard
coded into the algorithm. In the terminology of this paper unique identifiers are
part of the code. If faults can perturb the entire memory of a process, then also
these identifiers can change. This is not a problem if the algorithm is uniform,
i.e., it does not rely on the existence of unique identifiers and all processes in
the system execute an identical copy of the same code. However, due to issues of
symmetry breaking, uniform algorithms are faced with many problems. Never-
theless, in the following we focus on uniform algorithms. We discuss the impact
of unique identifiers on our results later.

4.2 Techniques to Achieve Code Stabilization

Theorem 2 states that any program of size k needs an unperturbed memory
portion of size O(k) to code stabilize. In distributed systems with uniform algo-
rithms, the code is stored redundantly at all processes. Therefore, it is possible

9



to exploit this redundancy to achieve lower bounds for code stabilization than
were possible in the non-distributed setting.

In the following, let k be the size of the code of an individual process. A simple
and sufficient bound for code stabilization follows directly from Theorem 2. Since
every process can be regarded as a non-distributed system, if all processes have
only local access, then it is sufficient that all processes contain unperturbed code
space of size O(k). If processes have remote read and write access, this bound
can be improved.

Theorem 3. If some processes p has remote write access to all other processes
and all other processes do not have remote write access to p, then it is sufficient
that p contains unperturbed code space of size O(k).

Proof. We prove the theorem by sketching a solution that achieves code stabi-
lization using unperturbed code space at a single process. The idea is as follows:
The code of every process is augmented with a program part that regularly tries
to write a copy of its own code to the code space of all other processes at once.
Even if all processes have been perturbed, eventually process p will overwrite the
perturbed code with an unperturbed copy of the code. Since p itself will not be
perturbed, eventually all processes contain a version of the unperturbed code,
yielding code stabilization. ut

Note that Theorem 3 needs special read/write restrictions on the topology
of the system. These are necessary in order to prevent a perturbed process from
writing a perturbed version of the code into p. This cannot be prevented even if
we assume that processes contain unique identifiers which cannot be perturbed by
faults. The atomic update of the entire code state of the system is also necessary
since otherwise two perturbed processes could “re-perturb” each other infinitely
often if one of them is overwritten by p.

The assumption about the atomic update can be relaxed if we place restric-
tions on the scheduling of processes. Alternatively, we can weaken all of the
above assumptions by assuming a local checking mechanism and reverting to
probabilistic code stabilization, at the expense of requiring at least a constant
size of unperturbed code space at every process.

Theorem 4. If all processes have only remote read access to each other (and no
remote write access), then it is sufficient that some process contains unperturbed
code space of size O(k) and all other processes contain unperturbed code space of
size O(1) to achieve probabilistic code stabilization.

Proof. The central idea to construct a solution with the above characteristics is
to use cryptographic hash functions [14]. A cryptographic hash function maps
any finite string of bits to a fixed-size bit string, the fingerprint. Hash functions
have the property that it is very hard to find collisions, i.e., two input strings
that have the same fingerprint. In other words, it is very improbable that an
arbitrary (random or intentional) perturbation of some bit string results in a bit
string with the same fingerprint.

We augment every process with the following integrity checker program: Pe-
riodically, the process applies a cryptographic hash function to its own code and
compares the resulting fingerprint with the value stored in its unperturbed code

10



space. In case there is a mismatch, the process reads the code space of the totally
unperturbed process and overwrites its own code with that copy. By doing this,
any local code perturbations are erased. The only case that this does not happen
is when code is perturbed to a state which has the same fingerprint as the legal
code. The properties of cryptographic hash functions make this sufficiently im-
probable. The integrity checker together with the fingerprint can be implemented
in constant space. Hence, probabilistic code stabilization with the claimed space
requirements is achieved. ut

In the proof of Theorem 4 it is necessary that all processes know from where
to copy the unperturbed code. This information must be encoded in the con-
stant size unperturbed part of their own code. Note also that the fingerprint
must not be stored locally, it can be stored remotely at the same location where
the unperturbed code resides or even can be computed on-the-fly. The method
to implement the integrity check (a cryptographic hash function) can also be
replaced by some form of error detecting code (like a CRC checksum) as long as
faults can be assumed to be random.

5 Related Work and Concepts

The techniques described in Section 4 to achieve code stabilization in distributed
systems have some similarities to other work in the area self-stabilization, namely
the principle of local checking and correction [5] and work by Katz and Perry
[13]. The idea is to regularly aquire a (local or global) snapshot of the state of
the system and in case of discovered inconsistencies to locally correct or globally
reset the system into a legal state. The problem in this area is to construct snap-
shot and reset procedures that are themselves self-stabilizing. In practice these
methods can be found in the form of automatically generated or handcrafted
runtime assertions within program code and exception handler mechanisms that
perform corrective measures. However note, that all of these methods rely on the
fact that the program code itself is unchanged.

Interestingly, there are close resemblances between our methods and the ap-
proaches from the area of security, more specifically from the area of (operating
system) integrity management. There, integrity is defined as protection against
unauthorized modification of the data and/or the code of a program. Integrity
violations usually occur due to malicious actions by attackers. A common threat
is a Trojan horse, a software which pretends to do something useful (like a screen-
saver or a computer game) but in fact alters your operating system in unforseen
and unpleasant ways. Popular alterations are the installation of sniffers and key-
loggers that capture sensitive data processed by the system, and post it on the
Internet. Another typical alteration is the installation of a back door for a hacker,
which enables unauthorized access to the system to outsiders. Modern operating
systems have become so complex that these alterations usually are not noticed
by the user or system administrator. Integrity management assumes that code
is stored on writable media (like a hard disk) and aims at detecting even subtle
modifications and wherever possible also to correct them.

Concepts to prevent the effect of these types of modifications are read-only
files or filesystems that are supported by many of today’s Unix-like operating
systems (for example BSD 4.4 Unix offers read-only and append-only files, for a

11



more involved discussion see Garfinkel, Spafford and Schwartz [9]). However, the
most general approach in integrity management requires “clean” original copies
of all the data and code which is part of the operating system. On a regular
basis, the files of the running operating system are compared with the originals.
If unauthorized alterations are found, the compromised version is replaced by
the original version. The problems in integrity management correspond to the
minimal requirements of code stabilization: Care must be taken that the original
versions are unaltered and that the comparison and replacement software is also
not compromised.

Maintaining a full clean copy of the original files and comparing it with the
current ones on a computer is cumbersome in practice. This gave rise to a tool
called Tripwire that exists in a commercial [2] and a freely available open source
variant [1]. Tripwire maintains a database of cryptographic checksums of impor-
tant files. This database has to be initialized by creating checksums of a known
and unaltered baseline. At regular intervals, Tripwire takes snapshots of the sys-
tem by comparing the checksums of the current version with the clean stored
checksums. By reporting on mismatches, integrity violations can be detected or
accepted changes merged into the database. Again it is vital that Tripwire it-
self is unaltered when it is run. Ideally, the filesystem is checked after booting a
clean and original version of the operating system from CD including the Trip-
wire program itself. If Tripwire is executed off a compromised operating system,
it may not operate in a trustworthy way [12]. The paradigm of Tripwire closely
resembles the observations made in Theorem 4. Note that Tripwire needs to use
cryptographic hash functions and not CRC checksums for example.

6 Conclusion

As noted by Ken Thompson in his 1984 Turing Award lecture [15], it is (almost)
impossible to trust a system which you have not checked down to the transistor
level. Today, integrity management software allows you to place trust on the
integrity of your operating system. Integrity means prevention of unauthorized
code or data modifications. Integrity is an increasingly important concern in
today’s computer systems, but requires a minimal amount of trustworthy code
to be manageable.

In this paper we have revisited the notion of self-stabilization in a new con-
text. Instead of allowing only data to be corrupted, we asked the question: To
what extent can code corruptions be tolerated? We extended the notion of self-
stabilization to also cover code corruptions. Our results on minimal unperturbed
storage space and on techniques to achieve code stabilization directly reflect
structures in the area of integrity management, and therefore can be used as a
theoretical foundation for this important area of security.

References

1. Open source tripwire. Internet: http://www.sourceforge.net/projects/tripwire/.
2. Tripwire change auditing solutions. Internet: www.tripwire.com.
3. A. Arora and M. Gouda. Closure and convergence: A foundation of fault-tolerant comput-

ing. IEEE Transactions on Software Engineering, 19(11):1015–1027, 1993.
4. A. Arora and S. S. Kulkarni. Component based design of multitolerant systems. IEEE

Transactions on Software Engineering, 24(1):63–78, Jan. 1998.

12



5. B. Awerbuch, B. Patt-Shamir, and G. Varghese. Self-stabilization by local checking and
correction. In FOCS91 Proceedings of the 31st Annual IEEE Symposium on Foundations

of Computer Science, pages 268–277, 1991.
6. E. W. Dijkstra. Self stabilizing systems in spite of distributed control. Communications of

the ACM, 17(11):643–644, 1974.
7. E. W. Dijkstra. Guarded commands, nondeterminacy, and formal derivation of programs.

Communications of the ACM, 18(8):453–457, Aug. 1975.
8. S. Dolev, A. Israeli, and S. Moran. Self-stabilization of dynamic systems assuming only

read/write atomicity. Distributed Computing, 7:3–16, 1993.
9. S. Garfinkel, G. Spafford, and A. Schwartz. Practical UNIX & Internet Security. O’Reilly

& Associates, 2003.
10. M. G. Gouda. Elements of security: Closure, convergence, and protection. Information

Processing Letters, 77(2–4):109–114, 2001.
11. M. G. Gouda and N. J. Multari. Stabilizing communication protocols. IEEE Transactions

on Computers, 40(4):448–458, Apr. 1991.
12. halflife. Bypassing integrity checkers. Phrack Magazine, 7(51), Sept. 1997.
13. S. Katz and K. J. Perry. Self-stabilizing extensions for message-passing systems. Distributed

Computing, 7:17–26, 1993.
14. A. J. Menezes, P. C. V. Oorschot, and S. A. Vanstone. Handbook of Applied Cryptography.

CRC Press, Boca Raton, FL, 1997.
15. K. L. Thompson. Reflections on trusting trust. Communications of the Association for

Computing Machinery, 27(8):761–763, Aug. 1984.

13



14



Aachener Informatik-Berichte

This is a list of recent technical reports. To obtain copies of technical reports

please consult http://aib.informatik.rwth-aachen.de/ or send your re-

quest to: Informatik-Bibliothek, RWTH Aachen, Ahornstr. 55, 52056 Aachen,

Email: biblio@informatik.rwth-aachen.de

1987-01 ∗ Fachgruppe Informatik: Jahresbericht 1986

1987-02 ∗ David de Frutos Escrig, Klaus Indermark: Equivalence Relations of Non-

Deterministic Ianov-Schemes

1987-03 ∗ Manfred Nagl: A Software Development Environment based on Graph

Technology

1987-04 ∗ Claus Lewerentz, Manfred Nagl, Bernhard Westfechtel: On Integration

Mechanisms within a Graph-Based Software Development Environment

1987-05 ∗ Reinhard Rinn: Über Eingabeanomalien bei verschiedenen Inferenzmod-

ellen

1987-06 ∗ Werner Damm, Gert Döhmen: Specifying Distributed Computer Archi-

tectures in AADL*

1987-07 ∗ Gregor Engels, Claus Lewerentz, Wilhelm Schäfer: Graph Grammar En-

gineering: A Software Specification Method

1987-08 ∗ Manfred Nagl: Set Theoretic Approaches to Graph Grammars

1987-09 ∗ Claus Lewerentz, Andreas Schürr: Experiences with a Database System

for Software Documents

1987-10 ∗ Herbert Klaeren, Klaus Indermark: A New Implementation Technique

for Recursive Function Definitions

1987-11 ∗ Rita Loogen: Design of a Parallel Programmable Graph Reduction Ma-

chine with Distributed Memory

1987-12 J. Börstler, U. Möncke, R. Wilhelm: Table compression for tree automata

1988-01 ∗ Gabriele Esser, Johannes Rückert, Frank Wagner: Gesellschaftliche As-

pekte der Informatik

1988-02 ∗ Peter Martini, Otto Spaniol: Token-Passing in High-Speed Backbone

Networks for Campus-Wide Environments

1988-03 ∗ Thomas Welzel: Simulation of a Multiple Token Ring Backbone

1988-04 ∗ Peter Martini: Performance Comparison for HSLAN Media Access Pro-

tocols

1988-05 ∗ Peter Martini: Performance Analysis of Multiple Token Rings

1988-06 ∗ Andreas Mann, Johannes Rückert, Otto Spaniol: Datenfunknetze

1988-07 ∗ Andreas Mann, Johannes Rückert: Packet Radio Networks for Data Ex-

change

1988-08 ∗ Andreas Mann, Johannes Rückert: Concurrent Slot Assignment Protocol

for Packet Radio Networks

1988-09 ∗ W. Kremer, F. Reichert, J. Rückert, A. Mann: Entwurf einer Netzw-

erktopologie für ein Mobilfunknetz zur Unterstützung des öffentlichen

Straßenverkehrs

1988-10 ∗ Kai Jakobs: Towards User-Friendly Networking

1988-11 ∗ Kai Jakobs: The Directory - Evolution of a Standard

1988-12 ∗ Kai Jakobs: Directory Services in Distributed Systems - A Survey

1988-13 ∗ Martine Schümmer: RS-511, a Protocol for the Plant Floor

15



1988-14 ∗ U. Quernheim: Satellite Communication Protocols - A Performance

Comparison Considering On-Board Processing

1988-15 ∗ Peter Martini, Otto Spaniol, Thomas Welzel: File Transfer in High Speed

Token Ring Networks: Performance Evaluation by Approximate Analysis

and Simulation

1988-16 ∗ Fachgruppe Informatik: Jahresbericht 1987

1988-17 ∗ Wolfgang Thomas: Automata on Infinite Objects

1988-18 ∗ Michael Sonnenschein: On Petri Nets and Data Flow Graphs

1988-19 ∗ Heiko Vogler: Functional Distribution of the Contextual Analysis in

Block-Structured Programming Languages: A Case Study of Tree Trans-

ducers

1988-20 ∗ Thomas Welzel: Einsatz des Simulationswerkzeuges QNAP2 zur Leis-

tungsbewertung von Kommunikationsprotokollen

1988-21 ∗ Th. Janning, C. Lewerentz: Integrated Project Team Management in a

Software Development Environment

1988-22 ∗ Joost Engelfriet, Heiko Vogler: Modular Tree Transducers

1988-23 ∗ Wolfgang Thomas: Automata and Quantifier Hierarchies

1988-24 ∗ Uschi Heuter: Generalized Definite Tree Languages

1989-01 ∗ Fachgruppe Informatik: Jahresbericht 1988

1989-02 ∗ G. Esser, J. Rückert, F. Wagner (Hrsg.): Gesellschaftliche Aspekte der

Informatik

1989-03 ∗ Heiko Vogler: Bottom-Up Computation of Primitive Recursive Tree

Functions

1989-04 ∗ Andy Schürr: Introduction to PROGRESS, an Attribute Graph Gram-

mar Based Specification Language

1989-05 J. Börstler: Reuse and Software Development - Problems, Solutions, and

Bibliography (in German)

1989-06 ∗ Kai Jakobs: OSI - An Appropriate Basis for Group Communication?

1989-07 ∗ Kai Jakobs: ISO’s Directory Proposal - Evolution, Current Status and

Future Problems

1989-08 ∗ Bernhard Westfechtel: Extension of a Graph Storage for Software Doc-

uments with Primitives for Undo/Redo and Revision Control

1989-09 ∗ Peter Martini: High Speed Local Area Networks - A Tutorial

1989-10 ∗ P. Davids, Th. Welzel: Performance Analysis of DQDB Based on Simu-

lation

1989-11 ∗ Manfred Nagl (Ed.): Abstracts of Talks presented at the WG ’89 15th

International Workshop on Graphtheoretic Concepts in Computer Sci-

ence

1989-12 ∗ Peter Martini: The DQDB Protocol - Is it Playing the Game?

1989-13 ∗ Martine Schümmer: CNC/DNC Communication with MAP

1989-14 ∗ Martine Schümmer: Local Area Networks for Manufactoring Environ-

ments with hard Real-Time Requirements

1989-15 ∗ M. Schümmer, Th. Welzel, P. Martini: Integration of Field Bus and

MAP Networks - Hierarchical Communication Systems in Production

Environments

1989-16 ∗ G. Vossen, K.-U. Witt: SUXESS: Towards a Sound Unification of Ex-

tensions of the Relational Data Model

16



1989-17 ∗ J. Derissen, P. Hruschka, M.v.d. Beeck, Th. Janning, M. Nagl: Integrat-

ing Structured Analysis and Information Modelling

1989-18 A. Maassen: Programming with Higher Order Functions

1989-19 ∗ Mario Rodriguez-Artalejo, Heiko Vogler: A Narrowing Machine for Syn-

tax Directed BABEL

1989-20 H. Kuchen, R. Loogen, J.J. Moreno Navarro, M. Rodriguez Artalejo:

Graph-based Implementation of a Functional Logic Language

1990-01 ∗ Fachgruppe Informatik: Jahresbericht 1989

1990-02 ∗ Vera Jansen, Andreas Potthoff, Wolfgang Thomas, Udo Wermuth: A

Short Guide to the AMORE System (Computing Automata, MOnoids

and Regular Expressions)

1990-03 ∗ Jerzy Skurczynski: On Three Hierarchies of Weak SkS Formulas

1990-04 R. Loogen: Stack-based Implementation of Narrowing

1990-05 H. Kuchen, A. Wagener: Comparison of Dynamic Load Balancing Strate-

gies

1990-06 ∗ Kai Jakobs, Frank Reichert: Directory Services for Mobile Communica-

tion

1990-07 ∗ Kai Jakobs: What’s Beyond the Interface - OSI Networks to Support

Cooperative Work

1990-08 ∗ Kai Jakobs: Directory Names and Schema - An Evaluation

1990-09 ∗ Ulrich Quernheim, Dieter Kreuer: Das CCITT - Signalisierungssystem

Nr. 7 auf Satellitenstrecken; Simulation der Zeichengabestrecke

1990-11 H. Kuchen, R. Loogen, J.J. Moreno Navarro, M. Rodriguez Artalejo:

Lazy Narrowing in a Graph Machine

1990-12 ∗ Kai Jakobs, Josef Kaltwasser, Frank Reichert, Otto Spaniol: Der Com-

puter fährt mit

1990-13 ∗ Rudolf Mathar, Andreas Mann: Analyzing a Distributed Slot Assign-

ment Protocol by Markov Chains

1990-14 A. Maassen: Compilerentwicklung in Miranda - ein Praktikum in funk-

tionaler Programmierung (written in german)

1990-15 ∗ Manfred Nagl, Andreas Schürr: A Specification Environment for Graph

Grammars

1990-16 A. Schürr: PROGRESS: A VHL-Language Based on Graph Grammars

1990-17 ∗ Marita Möller: Ein Ebenenmodell wissensbasierter Konsultationen - Un-

terstützung für Wissensakquisition und Erklärungsfähigkeit

1990-18 ∗ Eric Kowalewski: Entwurf und Interpretation einer Sprache zur Beschrei-

bung von Konsultationsphasen in Expertensystemen

1990-20 Y. Ortega Mallen, D. de Frutos Escrig: A Complete Proof System for

Timed Observations

1990-21 ∗ Manfred Nagl: Modelling of Software Architectures: Importance, No-

tions, Experiences

1990-22 H. Fassbender, H. Vogler: A Call-by-need Implementation of Syntax Di-

rected Functional Programming

1991-01 Guenther Geiler (ed.), Fachgruppe Informatik: Jahresbericht 1990

1991-03 B. Steffen, A. Ingolfsdottir: Characteristic Formulae for Processes with

Divergence

1991-04 M. Portz: A new class of cryptosystems based on interconnection net-

works

17



1991-05 H. Kuchen, G. Geiler: Distributed Applicative Arrays

1991-06 ∗ Ludwig Staiger: Kolmogorov Complexity and Hausdorff Dimension

1991-07 ∗ Ludwig Staiger: Syntactic Congruences for w-languages

1991-09 ∗ Eila Kuikka: A Proposal for a Syntax-Directed Text Processing System

1991-10 K. Gladitz, H. Fassbender, H. Vogler: Compiler-based Implementation

of Syntax-Directed Functional Programming

1991-11 R. Loogen, St. Winkler: Dynamic Detection of Determinism in Func-

tional Logic Languages

1991-12 ∗ K. Indermark, M. Rodriguez Artalejo (Eds.): Granada Workshop on the

Integration of Functional and Logic Programming

1991-13 ∗ Rolf Hager, Wolfgang Kremer: The Adaptive Priority Scheduler: A More

Fair Priority Service Discipline

1991-14 ∗ Andreas Fasbender, Wolfgang Kremer: A New Approximation Algorithm

for Tandem Networks with Priority Nodes

1991-15 J. Börstler, A. Zündorf: Revisiting extensions to Modula-2 to support

reusability

1991-16 J. Börstler, Th. Janning: Bridging the gap between Requirements Anal-

ysis and Design

1991-17 A. Zündorf, A. Schürr: Nondeterministic Control Structures for Graph

Rewriting Systems

1991-18 ∗ Matthias Jarke, John Mylopoulos, Joachim W. Schmidt, Yannis Vassil-

iou: DAIDA: An Environment for Evolving Information Systems

1991-19 M. Jeusfeld, M. Jarke: From Relational to Object-Oriented Integrity

Simplification

1991-20 G. Hogen, A. Kindler, R. Loogen: Automatic Parallelization of Lazy

Functional Programs

1991-21 ∗ Prof. Dr. rer. nat. Otto Spaniol: ODP (Open Distributed Processing):

Yet another Viewpoint

1991-22 H. Kuchen, F. Lücking, H. Stoltze: The Topology Description Language

TDL

1991-23 S. Graf, B. Steffen: Compositional Minimization of Finite State Systems

1991-24 R. Cleaveland, J. Parrow, B. Steffen: The Concurrency Workbench: A

Semantics Based Tool for the Verification of Concurrent Systems

1991-25 ∗ Rudolf Mathar, Jürgen Mattfeldt: Optimal Transmission Ranges for Mo-

bile Communication in Linear Multihop Packet Radio Networks

1991-26 M. Jeusfeld, M. Staudt: Query Optimization in Deductive Object Bases

1991-27 J. Knoop, B. Steffen: The Interprocedural Coincidence Theorem

1991-28 J. Knoop, B. Steffen: Unifying Strength Reduction and Semantic Code

Motion

1991-30 T. Margaria: First-Order theories for the verification of complex FSMs

1991-31 B. Steffen: Generating Data Flow Analysis Algorithms from Modal Spec-

ifications

1992-01 Stefan Eherer (ed.), Fachgruppe Informatik: Jahresbericht 1991

1992-02 ∗ Bernhard Westfechtel: Basismechanismen zur Datenverwaltung in struk-

turbezogenen Hypertextsystemen

1992-04 S. A. Smolka, B. Steffen: Priority as Extremal Probability

1992-05 ∗ Matthias Jarke, Carlos Maltzahn, Thomas Rose: Sharing Processes:

Team Coordination in Design Repositories

18



1992-06 O. Burkart, B. Steffen: Model Checking for Context-Free Processes

1992-07 ∗ Matthias Jarke, Klaus Pohl: Information Systems Quality and Quality

Information Systems

1992-08 ∗ Rudolf Mathar, Jürgen Mattfeldt: Analyzing Routing Strategy NFP in

Multihop Packet Radio Networks on a Line

1992-09 ∗ Alfons Kemper, Guido Moerkotte: Grundlagen objektorientierter Daten-

banksysteme

1992-10 Matthias Jarke, Manfred Jeusfeld, Andreas Miethsam, Michael Gocek:

Towards a logic-based reconstruction of software configuration manage-

ment

1992-11 Werner Hans: A Complete Indexing Scheme for WAM-based Abstract

Machines

1992-12 W. Hans, R. Loogen, St. Winkler: On the Interaction of Lazy Evaluation

and Backtracking

1992-13 ∗ Matthias Jarke, Thomas Rose: Specification Management with CAD

1992-14 Th. Noll, H. Vogler: Top-down Parsing with Simultaneous Evaluation on

Noncircular Attribute Grammars

1992-15 A. Schuerr, B. Westfechtel: Graphgrammatiken und Graphersetzungssys-

teme(written in german)

1992-16 ∗ Graduiertenkolleg Informatik und Technik (Hrsg.): Forschungsprojekte

des Graduiertenkollegs Informatik und Technik

1992-17 M. Jarke (ed.): ConceptBase V3.1 User Manual

1992-18 ∗ Clarence A. Ellis, Matthias Jarke (Eds.): Distributed Cooperation in

Integrated Information Systems - Proceedings of the Third International

Workshop on Intelligent and Cooperative Information Systems

1992-19-00 H. Kuchen, R. Loogen (eds.): Proceedings of the 4th Int. Workshop on

the Parallel Implementation of Functional Languages

1992-19-01 G. Hogen, R. Loogen: PASTEL - A Parallel Stack-Based Implementation

of Eager Functional Programs with Lazy Data Structures (Extended

Abstract)

1992-19-02 H. Kuchen, K. Gladitz: Implementing Bags on a Shared Memory MIMD-

Machine

1992-19-03 C. Rathsack, S.B. Scholz: LISA - A Lazy Interpreter for a Full-Fledged

Lambda-Calculus

1992-19-04 T.A. Bratvold: Determining Useful Parallelism in Higher Order Func-

tions

1992-19-05 S. Kahrs: Polymorphic Type Checking by Interpretation of Code

1992-19-06 M. Chakravarty, M. Köhler: Equational Constraints, Residuation, and

the Parallel JUMP-Machine

1992-19-07 J. Seward: Polymorphic Strictness Analysis using Frontiers (Draft Ver-

sion)

1992-19-08 D. Gärtner, A. Kimms, W. Kluge: pi-Redˆ+ - A Compiling Graph-

Reduction System for a Full Fledged Lambda-Calculus

1992-19-09 D. Howe, G. Burn: Experiments with strict STG code

1992-19-10 J. Glauert: Parallel Implementation of Functional Languages Using

Small Processes

1992-19-11 M. Joy, T. Axford: A Parallel Graph Reduction Machine

1992-19-12 A. Bennett, P. Kelly: Simulation of Multicache Parallel Reduction

19



1992-19-13 K. Langendoen, D.J. Agterkamp: Cache Behaviour of Lazy Functional

Programs (Working Paper)

1992-19-14 K. Hammond, S. Peyton Jones: Profiling scheduling strategies on the

GRIP parallel reducer

1992-19-15 S. Mintchev: Using Strictness Information in the STG-machine

1992-19-16 D. Rushall: An Attribute Grammar Evaluator in Haskell

1992-19-17 J. Wild, H. Glaser, P. Hartel: Statistics on storage management in a lazy

functional language implementation

1992-19-18 W.S. Martins: Parallel Implementations of Functional Languages

1992-19-19 D. Lester: Distributed Garbage Collection of Cyclic Structures (Draft

version)

1992-19-20 J.C. Glas, R.F.H. Hofman, W.G. Vree: Parallelization of Branch-and-

Bound Algorithms in a Functional Programming Environment

1992-19-21 S. Hwang, D. Rushall: The nu-STG machine: a parallelized Spineless

Tagless Graph Reduction Machine in a distributed memory architecture

(Draft version)

1992-19-22 G. Burn, D. Le Metayer: Cps-Translation and the Correctness of Opti-

mising Compilers

1992-19-23 S.L. Peyton Jones, P. Wadler: Imperative functional programming (Brief

summary)

1992-19-24 W. Damm, F. Liu, Th. Peikenkamp: Evaluation and Parallelization of

Functions in Functional + Logic Languages (abstract)

1992-19-25 M. Kesseler: Communication Issues Regarding Parallel Functional Graph

Rewriting

1992-19-26 Th. Peikenkamp: Charakterizing and representing neededness in func-

tional loginc languages (abstract)

1992-19-27 H. Doerr: Monitoring with Graph-Grammars as formal operational Mod-

els

1992-19-28 J. van Groningen: Some implementation aspects of Concurrent Clean on

distributed memory architectures

1992-19-29 G. Ostheimer: Load Bounding for Implicit Parallelism (abstract)

1992-20 H. Kuchen, F.J. Lopez Fraguas, J.J. Moreno Navarro, M. Rodriguez

Artalejo: Implementing Disequality in a Lazy Functional Logic Language

1992-21 H. Kuchen, F.J. Lopez Fraguas: Result Directed Computing in a Func-

tional Logic Language

1992-22 H. Kuchen, J.J. Moreno Navarro, M.V. Hermenegildo: Independent

AND-Parallel Narrowing

1992-23 T. Margaria, B. Steffen: Distinguishing Formulas for Free

1992-24 K. Pohl: The Three Dimensions of Requirements Engineering

1992-25 ∗ R. Stainov: A Dynamic Configuration Facility for Multimedia Commu-

nications

1992-26 ∗ Michael von der Beeck: Integration of Structured Analysis and Timed

Statecharts for Real-Time and Concurrency Specification

1992-27 W. Hans, St. Winkler: Aliasing and Groundness Analysis of Logic Pro-

grams through Abstract Interpretation and its Safety

1992-28 ∗ Gerhard Steinke, Matthias Jarke: Support for Security Modeling in In-

formation Systems Design

1992-29 B. Schinzel: Warum Frauenforschung in Naturwissenschaft und Technik

20



1992-30 A. Kemper, G. Moerkotte, K. Peithner: Object-Orientation Axiomatised

by Dynamic Logic

1992-32 ∗ Bernd Heinrichs, Kai Jakobs: Timer Handling in High-Performance

Transport Systems

1992-33 ∗ B. Heinrichs, K. Jakobs, K. Lenßen, W. Reinhardt, A. Spinner: Euro-

Bridge: Communication Services for Multimedia Applications

1992-34 C. Gerlhof, A. Kemper, Ch. Kilger, G. Moerkotte: Partition-Based Clus-

tering in Object Bases: From Theory to Practice

1992-35 J. Börstler: Feature-Oriented Classification and Reuse in IPSEN

1992-36 M. Jarke, J. Bubenko, C. Rolland, A. Sutcliffe, Y. Vassiliou: Theories Un-

derlying Requirements Engineering: An Overview of NATURE at Gen-

esis

1992-37 ∗ K. Pohl, M. Jarke: Quality Information Systems: Repository Support for

Evolving Process Models

1992-38 A. Zuendorf: Implementation of the imperative / rule based language

PROGRES

1992-39 P. Koch: Intelligentes Backtracking bei der Auswertung funktional-

logischer Programme

1992-40 ∗ Rudolf Mathar, Jürgen Mattfeldt: Channel Assignment in Cellular Radio

Networks

1992-41 ∗ Gerhard Friedrich, Wolfgang Neidl: Constructive Utility in Model-Based

Diagnosis Repair Systems

1992-42 ∗ P. S. Chen, R. Hennicker, M. Jarke: On the Retrieval of Reusable Soft-

ware Components

1992-43 W. Hans, St.Winkler: Abstract Interpretation of Functional Logic Lan-

guages

1992-44 N. Kiesel, A. Schuerr, B. Westfechtel: Design and Evaluation of GRAS,

a Graph-Oriented Database System for Engineering Applications

1993-01 ∗ Fachgruppe Informatik: Jahresbericht 1992

1993-02 ∗ Patrick Shicheng Chen: On Inference Rules of Logic-Based Information

Retrieval Systems

1993-03 G. Hogen, R. Loogen: A New Stack Technique for the Management of

Runtime Structures in Distributed Environments

1993-05 A. Zündorf: A Heuristic for the Subgraph Isomorphism Problem in Ex-

ecuting PROGRES

1993-06 A. Kemper, D. Kossmann: Adaptable Pointer Swizzling Strategies in

Object Bases: Design, Realization, and Quantitative Analysis

1993-07 ∗ Graduiertenkolleg Informatik und Technik (Hrsg.): Graduiertenkolleg In-

formatik und Technik

1993-08 ∗ Matthias Berger: k-Coloring Vertices using a Neural Network with Con-

vergence to Valid Solutions

1993-09 M. Buchheit, M. Jeusfeld, W. Nutt, M. Staudt: Subsumption between

Queries to Object-Oriented Databases

1993-10 O. Burkart, B. Steffen: Pushdown Processes: Parallel Composition and

Model Checking

1993-11 ∗ R. Große-Wienker, O. Hermanns, D. Menzenbach, A. Pollacks, S. Repet-

zki, J. Schwartz, K. Sonnenschein, B. Westfechtel: Das SUKITS-Projekt:

A-posteriori-Integration heterogener CIM-Anwendungssysteme

21



1993-12 ∗ Rudolf Mathar, Jürgen Mattfeldt: On the Distribution of Cumulated

Interference Power in Rayleigh Fading Channels

1993-13 O. Maler, L. Staiger: On Syntactic Congruences for omega-languages

1993-14 M. Jarke, St. Eherer, R. Gallersdoerfer, M. Jeusfeld, M. Staudt: Con-

ceptBase - A Deductive Object Base Manager

1993-15 M. Staudt, H.W. Nissen, M.A. Jeusfeld: Query by Class, Rule and Con-

cept

1993-16 ∗ M. Jarke, K. Pohl, St. Jacobs et al.: Requirements Engineering: An In-

tegrated View of Representation Process and Domain

1993-17 ∗ M. Jarke, K. Pohl: Establishing Vision in Context: Towards a Model of

Requirements Processes

1993-18 W. Hans, H. Kuchen, St. Winkler: Full Indexing for Lazy Narrowing

1993-19 W. Hans, J.J. Ruz, F. Saenz, St. Winkler: A VHDL Specification of a

Shared Memory Parallel Machine for Babel

1993-20 ∗ K. Finke, M. Jarke, P. Szczurko, R. Soltysiak: Quality Management for

Expert Systems in Process Control

1993-21 M. Jarke, M.A. Jeusfeld, P. Szczurko: Three Aspects of Intelligent Co-

operation in the Quality Cycle

1994-01 Margit Generet, Sven Martin (eds.), Fachgruppe Informatik: Jahres-

bericht 1993

1994-02 M. Lefering: Development of Incremental Integration Tools Using Formal

Specifications

1994-03 ∗ P. Constantopoulos, M. Jarke, J. Mylopoulos, Y. Vassiliou: The Software

Information Base: A Server for Reuse

1994-04 ∗ Rolf Hager, Rudolf Mathar, Jürgen Mattfeldt: Intelligent Cruise Control

and Reliable Communication of Mobile Stations

1994-05 ∗ Rolf Hager, Peter Hermesmann, Michael Portz: Feasibility of Authenti-

cation Procedures within Advanced Transport Telematics

1994-06 ∗ Claudia Popien, Bernd Meyer, Axel Kuepper: A Formal Approach to

Service Import in ODP Trader Federations

1994-07 P. Peters, P. Szczurko: Integrating Models of Quality Management Meth-

ods by an Object-Oriented Repository

1994-08 ∗ Manfred Nagl, Bernhard Westfechtel: A Universal Component for the

Administration in Distributed and Integrated Development Environ-

ments

1994-09 ∗ Patrick Horster, Holger Petersen: Signatur- und Authentifikationsver-

fahren auf der Basis des diskreten Logarithmusproblems

1994-11 A. Schürr: PROGRES, A Visual Language and Environment for PRO-

gramming with Graph REwrite Systems

1994-12 A. Schürr: Specification of Graph Translators with Triple Graph Gram-

mars

1994-13 A. Schürr: Logic Based Programmed Structure Rewriting Systems

1994-14 L. Staiger: Codes, Simplifying Words, and Open Set Condition

1994-15 ∗ Bernhard Westfechtel: A Graph-Based System for Managing Configura-

tions of Engineering Design Documents

1994-16 P. Klein: Designing Software with Modula-3

1994-17 I. Litovsky, L. Staiger: Finite acceptance of infinite words

22



1994-18 G. Hogen, R. Loogen: Parallel Functional Implementations: Graphbased

vs. Stackbased Reduction

1994-19 M. Jeusfeld, U. Johnen: An Executable Meta Model for Re-Engineering

of Database Schemas

1994-20 ∗ R. Gallersdörfer, M. Jarke, K. Klabunde: Intelligent Networks as a Data

Intensive Application (INDIA)

1994-21 M. Mohnen: Proving the Correctness of the Static Link Technique Using

Evolving Algebras

1994-22 H. Fernau, L. Staiger: Valuations and Unambiguity of Languages, with

Applications to Fractal Geometry

1994-24 ∗ M. Jarke, K. Pohl, R. Dömges, St. Jacobs, H. W. Nissen: Requirements

Information Management: The NATURE Approach

1994-25 ∗ M. Jarke, K. Pohl, C. Rolland, J.-R. Schmitt: Experience-Based Method

Evaluation and Improvement: A Process Modeling Approach

1994-26 ∗ St. Jacobs, St. Kethers: Improving Communication and Decision Making

within Quality Function Deployment

1994-27 ∗ M. Jarke, H. W. Nissen, K. Pohl: Tool Integration in Evolving Informa-

tion Systems Environments

1994-28 O. Burkart, D. Caucal, B. Steffen: An Elementary Bisimulation Decision

Procedure for Arbitrary Context-Free Processes

1995-01 ∗ Fachgruppe Informatik: Jahresbericht 1994

1995-02 Andy Schürr, Andreas J. Winter, Albert Zündorf: Graph Grammar En-

gineering with PROGRES

1995-03 Ludwig Staiger: A Tight Upper Bound on Kolmogorov Complexity by

Hausdorff Dimension and Uniformly Optimal Prediction

1995-04 Birgitta König-Ries, Sven Helmer, Guido Moerkotte: An experimental

study on the complexity of left-deep join ordering problems for cyclic

queries

1995-05 Sophie Cluet, Guido Moerkotte: Efficient Evaluation of Aggregates on

Bulk Types

1995-06 Sophie Cluet, Guido Moerkotte: Nested Queries in Object Bases

1995-07 Sophie Cluet, Guido Moerkotte: Query Optimization Techniques Ex-

ploiting Class Hierarchies

1995-08 Markus Mohnen: Efficient Compile-Time Garbage Collection for Arbi-

trary Data Structures

1995-09 Markus Mohnen: Functional Specification of Imperative Programs: An

Alternative Point of View of Functional Languages

1995-10 Rainer Gallersdörfer, Matthias Nicola: Improving Performance in Repli-

cated Databases through Relaxed Coherency

1995-11 ∗ M.Staudt, K.von Thadden: Subsumption Checking in Knowledge Bases

1995-12 ∗ G.V.Zemanek, H.W.Nissen, H.Hubert, M.Jarke: Requirements Analy-

sis from Multiple Perspectives: Experiences with Conceptual Modeling

Technology

1995-13 ∗ M.Staudt, M.Jarke: Incremental Maintenance of Externally Materialized

Views

1995-14 ∗ P.Peters, P.Szczurko, M.Jeusfeld: Oriented Information Management:

Conceptual Models at Work

23



1995-15 ∗ Matthias Jarke, Sudha Ram (Hrsg.): WITS 95 Proceedings of the 5th

Annual Workshop on Information Technologies and Systems

1995-16 ∗ W.Hans, St.Winkler, F.Saenz: Distributed Execution in Functional Logic

Programming

1996-01 ∗ Jahresbericht 1995

1996-02 Michael Hanus, Christian Prehofer: Higher-Order Narrowing with Defi-

nitional Trees

1996-03 ∗ W.Scheufele, G.Moerkotte: Optimal Ordering of Selections and Joins in

Acyclic Queries with Expensive Predicates

1996-04 Klaus Pohl: PRO-ART: Enabling Requirements Pre-Traceability

1996-05 Klaus Pohl: Requirements Engineering: An Overview

1996-06 ∗ M.Jarke, W.Marquardt: Design and Evaluation of Computer–Aided Pro-

cess Modelling Tools

1996-07 Olaf Chitil: The Sigma-Semantics: A Comprehensive Semantics for Func-

tional Programs

1996-08 ∗ S.Sripada: On Entropy and the Limitations of the Second Law of Ther-

modynamics

1996-09 Michael Hanus (Ed.): Proceedings of the Poster Session of ALP96 - Fifth

International Conference on Algebraic and Logic Programming

1996-09-0 Michael Hanus (Ed.): Proceedings of the Poster Session of ALP 96 -

Fifth International Conference on Algebraic and Logic Programming:

Introduction and table of contents

1996-09-1 Ilies Alouini: An Implementation of Conditional Concurrent Rewriting

on Distributed Memory Machines

1996-09-2 Olivier Danvy, Karoline Malmkjær: On the Idempotence of the CPS

Transformation

1996-09-3 Vı́ctor M. Guĺıas, José L. Freire: Concurrent Programming in Haskell

1996-09-4 Sébastien Limet, Pierre Réty: On Decidability of Unifiability Modulo

Rewrite Systems

1996-09-5 Alexandre Tessier: Declarative Debugging in Constraint Logic Program-

ming

1996-10 Reidar Conradi, Bernhard Westfechtel: Version Models for Software Con-

figuration Management

1996-11 ∗ C.Weise, D.Lenzkes: A Fast Decision Algorithm for Timed Refinement

1996-12 ∗ R.Dömges, K.Pohl, M.Jarke, B.Lohmann, W.Marquardt: PRO-

ART/CE* — An Environment for Managing the Evolution of Chemical

Process Simulation Models

1996-13 ∗ K.Pohl, R.Klamma, K.Weidenhaupt, R.Dömges, P.Haumer, M.Jarke: A

Framework for Process-Integrated Tools

1996-14 ∗ R.Gallersdörfer, K.Klabunde, A.Stolz, M.Eßmajor: INDIA — Intelligent

Networks as a Data Intensive Application, Final Project Report, June

1996

1996-15 ∗ H.Schimpe, M.Staudt: VAREX: An Environment for Validating and Re-

fining Rule Bases

1996-16 ∗ M.Jarke, M.Gebhardt, S.Jacobs, H.Nissen: Conflict Analysis Across Het-

erogeneous Viewpoints: Formalization and Visualization

1996-17 Manfred A. Jeusfeld, Tung X. Bui: Decision Support Components on the

Internet

24



1996-18 Manfred A. Jeusfeld, Mike Papazoglou: Information Brokering: Design,

Search and Transformation

1996-19 ∗ P.Peters, M.Jarke: Simulating the impact of information flows in net-

worked organizations

1996-20 Matthias Jarke, Peter Peters, Manfred A. Jeusfeld: Model-driven plan-

ning and design of cooperative information systems

1996-21 ∗ G.de Michelis, E.Dubois, M.Jarke, F.Matthes, J.Mylopoulos, K.Pohl,

J.Schmidt, C.Woo, E.Yu: Cooperative information systems: a manifesto

1996-22 ∗ S.Jacobs, M.Gebhardt, S.Kethers, W.Rzasa: Filling HTML forms simul-

taneously: CoWeb architecture and functionality

1996-23 ∗ M.Gebhardt, S.Jacobs: Conflict Management in Design

1997-01 Michael Hanus, Frank Zartmann (eds.): Jahresbericht 1996

1997-02 Johannes Faassen: Using full parallel Boltzmann Machines for Optimiza-

tion

1997-03 Andreas Winter, Andy Schürr: Modules and Updatable Graph Views for

PROgrammed Graph REwriting Systems

1997-04 Markus Mohnen, Stefan Tobies: Implementing Context Patterns in the

Glasgow Haskell Compiler

1997-05 ∗ S.Gruner: Schemakorrespondenzaxiome unterstützen die paargramma-

tische Spezifikation inkrementeller Integrationswerkzeuge

1997-06 Matthias Nicola, Matthias Jarke: Design and Evaluation of Wireless

Health Care Information Systems in Developing Countries

1997-07 Petra Hofstedt: Taskparallele Skelette für irregulär strukturierte Prob-

leme in deklarativen Sprachen

1997-08 Dorothea Blostein, Andy Schürr: Computing with Graphs and Graph

Rewriting

1997-09 Carl-Arndt Krapp, Bernhard Westfechtel: Feedback Handling in Dy-

namic Task Nets

1997-10 Matthias Nicola, Matthias Jarke: Integrating Replication and Commu-

nication in Performance Models of Distributed Databases

1997-11 ∗ R. Klamma, P. Peters, M. Jarke: Workflow Support for Failure Manage-

ment in Federated Organizations

1997-13 Markus Mohnen: Optimising the Memory Management of Higher-Order

Functional Programs

1997-14 Roland Baumann: Client/Server Distribution in a Structure-Oriented

Database Management System

1997-15 George Botorog: High-Level Parallel Programming and the Efficient Im-

plementation of Numerical Algorithms

1998-01 ∗ Fachgruppe Informatik: Jahresbericht 1997

1998-02 Stefan Gruner, Manfred Nagel, Andy Schürr: Fine-grained and

Structure-Oriented Document Integration Tools are Needed for Devel-

opment Processes

1998-03 Stefan Gruner: Einige Anmerkungen zur graphgrammatischen Spezifika-

tion von Integrationswerkzeugen nach Westfechtel, Janning, Lefering und

Schürr

1998-04 ∗ O. Kubitz: Mobile Robots in Dynamic Environments

1998-05 Martin Leucker, Stephan Tobies: Truth - A Verification Platform for

Distributed Systems

25



1998-06 ∗ Matthias Oliver Berger: DECT in the Factory of the Future

1998-07 M. Arnold, M. Erdmann, M. Glinz, P. Haumer, R. Knoll, B. Paech, K.

Pohl, J. Ryser, R. Studer, K. Weidenhaupt: Survey on the Scenario Use

in Twelve Selected Industrial Projects

1998-08 ∗ H. Aust: Sprachverstehen und Dialogmodellierung in

natürlichsprachlichen Informationssystemen

1998-09 ∗ Th. Lehmann: Geometrische Ausrichtung medizinischer Bilder am

Beispiel intraoraler Radiographien

1998-10 ∗ M. Nicola, M. Jarke: Performance Modeling of Distributed and Repli-

cated Databases

1998-11 ∗ Ansgar Schleicher, Bernhard Westfechtel, Dirk Jäger: Modeling Dynamic

Software Processes in UML

1998-12 ∗ W. Appelt, M. Jarke: Interoperable Tools for Cooperation Support using

the World Wide Web

1998-13 Klaus Indermark: Semantik rekursiver Funktionsdefinitionen mit Strik-

theitsinformation

1999-01 ∗ Jahresbericht 1998

1999-02 ∗ F. Huch: Verifcation of Erlang Programs using Abstract Interpretation

and Model Checking — Extended Version

1999-03 ∗ R. Gallersdörfer, M. Jarke, M. Nicola: The ADR Replication Manager

1999-04 Maŕıa Alpuente, Michael Hanus, Salvador Lucas, Germán Vidal: Spe-

cialization of Functional Logic Programs Based on Needed Narrowing

1999-05 ∗ W. Thomas (Ed.): DLT 99 - Developments in Language Theory Fourth

International Conference

1999-06 ∗ Kai Jakobs, Klaus-Dieter Kleefeld: Informationssysteme für die ange-

wandte historische Geographie

1999-07 Thomas Wilke: CTL+ is exponentially more succinct than CTL

1999-08 Oliver Matz: Dot-Depth and Monadic Quantifier Alternation over Pic-

tures

2000-01 ∗ Jahresbericht 1999

2000-02 Jens Vöge, Marcin Jurdzinski: A Discrete Strategy Improvement Algo-

rithm for Solving Parity Games

2000-04 Andreas Becks, Stefan Sklorz, Matthias Jarke: Exploring the Semantic

Structure of Technical Document Collections: A Cooperative Systems

Approach

2000-05 Mareike Schoop: Cooperative Document Management

2000-06 Mareike Schoop, Christoph Quix (eds.): Proceedings of the Fifth Interna-

tional Workshop on the Language-Action Perspective on Communication

Modelling

2000-07 ∗ Markus Mohnen, Pieter Koopman (Eds.): Proceedings of the 12th Inter-

national Workshop of Functional Languages

2000-08 Thomas Arts, Thomas Noll: Verifying Generic Erlang Client-Server Im-

plementations

2001-01 ∗ Jahresbericht 2000

2001-02 Benedikt Bollig, Martin Leucker: Deciding LTL over Mazurkiewicz

Traces

2001-03 Thierry Cachat: The power of one-letter rational languages

26



2001-04 Benedikt Bollig, Martin Leucker, Michael Weber: Local Parallel Model

Checking for the Alternation Free mu-Calculus

2001-05 Benedikt Bollig, Martin Leucker, Thomas Noll: Regular MSC Languages

2001-06 Achim Blumensath: Prefix-Recognisable Graphs and Monadic Second-

Order Logic

2001-07 Martin Grohe, Stefan Wöhrle: An Existential Locality Theorem

2001-08 Mareike Schoop, James Taylor (eds.): Proceedings of the Sixth Interna-

tional Workshop on the Language-Action Perspective on Communication

Modelling

2001-09 Thomas Arts, Jürgen Giesl: A collection of examples for termination of

term rewriting using dependency pairs

2001-10 Achim Blumensath: Axiomatising Tree-interpretable Structures

2001-11 Klaus Indermark, Thomas Noll (eds.): Kolloquium Programmier-

sprachen und Grundlagen der Programmierung

2002-01 ∗ Jahresbericht 2001

2002-02 Jürgen Giesl, Aart Middeldorp: Transformation Techniques for Context-

Sensitive Rewrite Systems

2002-03 Benedikt Bollig, Martin Leucker, Thomas Noll: Generalised Regular

MSC Languages

2002-04 Jürgen Giesl, Aart Middeldorp: Innermost Termination of Context-

Sensitive Rewriting

2002-05 Horst Lichter, Thomas von der Maßen, Thomas Weiler: Modelling Re-

quirements and Architectures for Software Product Lines

2002-06 Henry N. Adorna: 3-Party Message Complexity is Better than 2-Party

Ones for Proving Lower Bounds on the Size of Minimal Nondeterministic

Finite Automata

2002-07 Jörg Dahmen: Invariant Image Object Recognition using Gaussian Mix-

ture Densities

2002-08 Markus Mohnen: An Open Framework for Data-Flow Analysis in Java

2002-09 Markus Mohnen: Interfaces with Default Implementations in Java

2002-10 Martin Leucker: Logics for Mazurkiewicz traces

2002-11 Jürgen Giesl, Hans Zantema: Liveness in Rewriting

2003-01 ∗ Jahresbericht 2002

2003-02 Jürgen Giesl, René Thiemann: Size-Change Termination for Term

Rewriting

2003-03 Jürgen Giesl, Deepak Kapur: Deciding Inductive Validity of Equations

2003-04 Jürgen Giesl, René Thiemann, Peter Schneider-Kamp, Stephan Falke:

Improving Dependency Pairs

2003-05 Christof Löding, Philipp Rohde: Solving the Sabotage Game is PSPACE-

hard

2003-06 Franz Josef Och: Statistical Machine Translation: From Single-Word

Models to Alignment Templates

2003-07 Horst Lichter, Thomas von der Maßen, Alexander Nyßen, Thomas

Weiler: Vergleich von Ansätzen zur Feature Modellierung bei der Soft-

wareproduktlinienentwicklung

2003-08 Jürgen Giesl, René Thiemann, Peter Schneider-Kamp, Stephan Falke:

Mechanizing Dependency Pairs

2004-01 ∗ Fachgruppe Informatik: Jahresbericht 2003

27



2004-02 Benedikt Bollig, Martin Leucker: Message-Passing Automata are expres-

sively equivalent to EMSO logic

2004-03 Delia Kesner, Femke van Raamsdonk, Joe Wells (eds.): HOR 2004 – 2nd

International Workshop on Higher-Order Rewriting

2004-04 Slim Abdennadher, Christophe Ringeissen (eds.): RULE 04 – Fifth In-

ternational Workshop on Rule-Based Programming

2004-05 Herbert Kuchen (ed.): WFLP 04 – 13th International Workshop on Func-

tional and (Constraint) Logic Programming

2004-06 Sergio Antoy, Yoshihito Toyama (eds.): WRS 04 – 4th International

Workshop on Reduction Strategies in Rewriting and Programming

2004-07 Michael Codish, Aart Middeldorp (eds.): WST 04 – 7th International

Workshop on Termination

2004-08 Klaus Indermark, Thomas Noll: Algebraic Correctness Proofs for Com-

piling Recursive Function Definitions with Strictness Information

2004-09 Joachim Kneis, Daniel Mölle, Stefan Richter, Peter Rossmanith: Param-

eterized Power Domination Complexity

2004-10 Zinaida Benenson, Felix C. Gärtner, Dogan Kesdogan: Secure Multi-

Party Computation with Security Modules

2005-01 ∗ Fachgruppe Informatik: Jahresbericht 2004

2005-02 Maximillian Dornseif, Felix C. Gärtner, Thorsten Holz, Martin Mink: An

Offensive Approach to Teaching Information Security: “Aachen Summer

School Applied IT Security”

2005-03 Jürgen Giesl, René Thiemann, Peter Schneider-Kamp: Proving and Dis-

proving Termination of Higher-Order Functions

2005-04 Daniel Mölle, Stefan Richter, Peter Rossmanith: A Faster Algorithm for

the Steiner Tree Problem

2005-05 Fabien Pouget, Thorsten Holz: A Pointillist Approach for Comparing

Honeypots

2005-06 Simon Fischer, Berthold Vöcking: Adaptive Routing with Stale Informa-

tion

2005-07 Felix C. Freiling, Thorsten Holz, Georg Wicherski: Botnet Tracking: Ex-

ploring a Root-Cause Methodology to Prevent Distributed Denial-of-

Service Attacks

2005-08 Joachim Kneis, Peter Rossmanith: A New Satisfiability Algorithm With

Applications To Max-Cut

2005-09 Klaus Kursawe, Felix C. Freiling: Byzantine Fault Tolerance on General

Hybrid Adversary Structures

2005-10 Benedikt Bollig: Automata and Logics for Message Sequence Charts

2005-11 Simon Fischer, Berthold Vöcking: A Counterexample to the Fully Mixed

Nash Equilibrium Conjecture

∗ These reports are only available as a printed version.

Please contact biblio@informatik.rwth-aachen.de to obtain copies.

28


