
Aachen
Department of Computer Science

Technical Report

Revisiting Failure Detection and

Consensus in Omission Failure

Environments

Carole Delporte-Gallet and Hugues Fauconnier and

Felix C. Freiling

ISSN 0935–3232 · Aachener Informatik Berichte · AIB-2005-13

RWTH Aachen · Department of Computer Science · June 2005

1



The publications of the Department of Computer Science of RWTH Aachen
University are in general accessible through the World Wide Web.

http://aib.informatik.rwth-aachen.de/

2



Revisiting Failure Detection and Consensus

in Omission Failure Environments

Carole Delporte-Gallet1 , Hugues Fauconnier1, and Felix C. Freiling2

1 Laboratoire d’Informatique Algorithmique, Fondements et Applications, University Paris
VII, France

2 Laboratory for Dependable Distributed Systems, RWTH Aachen University, Germany

Abstract. It has recently been shown that fair exchange, a security problem in
distributed systems, can be reduced to a fault tolerance problem, namely a special
form of distributed consensus. The reduction uses the concept of security modules
which reduce the type and nature of adversarial behavior to two standard fault-
assumptions: message omission and process crash. In this paper, we investigate
the feasibility of solving consensus in asynchronous systems in which crash and
message omission faults may occur. Due to the impossibility result of consensus
in such systems, following the lines of unreliable failure detectors of Chandra and
Toueg, we add to the system a distributed device that gives information about
the failure of other processes. Then we give an algorithm using this device to
solve the consensus problem. Finally, we show how to implement such a device
in an asynchronous system using some weak timing assumptions

1 Introduction

In systems with electronic business transactions, fair exchange is a fundamen-
tal problem. In fair exchange, the participating parties start with an item they
want to trade for another item. They possess an executable description of the
desired item and they know from which party to expect the desired item and
which party is expecting their own item. An algorithm that solves fair exchange
must ensure three properties: (1) every honest party eventually either delivers
its desired item or aborts the exchange (termination property). (2) If no party
misbehaves and all items match their descriptions then the exchange should suc-
ceed (effectiveness property). (3) If the desired item of any party does not match
its description, then no party can obtain any (useful) information about any
other item (fairness property). Fair exchange algorithms should guarantee these
properties for mutually untrusted parties, i.e., even in the presence of arbitrary
(malicious) misbehavior of a subset of participants. Therefore, fair exchange is
usually considered a problem in the area of security.

It has recently been shown [4] that fair exchange, a security problem, can
be reduced to a fault-tolerance problem, namely a special form of consensus.
In the consensus problem, a set of processes must reach agreement on a single
value out of a set of values, values which the individual processes have each
proposed. The reduction from fair exchange to consensus holds in a model where
each participating party is equipped with a tamper proof security module like
a smart card. Roughly speaking, the security modules are certified pieces of
hardware executing a well-known algorithm so they can establish confidential
and authenticated channels between each other. However, since they can only
communicate by exchanging messages through their (untrusted) host parties,
messages may be intercepted or dropped. Overall, the security modules form



a trusted subsystem within the overall (untrusted) system. The integrity and
confidentiality of the algorithm running in the trusted subsystem is protected
by the shield of tamper proof hardware. The integrity and confidentiality of
data sent across the network is protected by standard cryptographic protocols.
These mechanisms reduce the type and nature of adversarial behavior in the
trusted subsystem to message loss and process self-destruction, two standard
fault-assumptions known under the names of omission and crash in the area of
fault-tolerance. To summarize, problems from the area of security motivate us
to revisit the consensus problem in omission failure environments.

A central assumption for the reduction of fair exchange to consensus to hold
is that the system be synchronous. A synchronous system has known upper
bounds on all important timing parameters of the system like message delivery
delay and relative process speeds. Synchronous systems are rare in practice. More
common are asynchronous systems, i.e., systems with no or merely uncertain
timing guarantees. This holds especially true for systems in which smart cards
are used as security modules. Smart cards do not possess any device to reliably
measure real-time since they are totally dependent on power supply from their
host. If we would like to implement fair exchange using smart cards as security
modules, we need an asynchronous consensus algorithm under the assumption of
crash and omission faults.

In this paper, we investigate the feasibility of solving consensus in totally
asynchronous systems in which crash and message omission faults may occur.
Since a result by Fischer, Lynch, and Paterson [10] states that solving consen-
sus deterministically is impossible even if only crash faults can happen, we must
strengthen the model so that solutions are possible. We do this using the ap-
proach of unreliable failure detectors pioneered by Chandra and Toueg [6]. In
this approach, the asynchronous model is augmented with a device that gives
information about the failures of other processes. Failure detectors have proven
to be a very powerful abstraction of timing assumptions that can express nec-
essary and sufficient conditions for the solvability of problems in the presence
of failures. In practice, we want to build a system that solves a certain problem
(like consensus). So interesting for practical purposes is the question: What type
of failure detector is sufficient to solve that problem? If such a failure detector
is found, we only need to implement the failure detector to implement the algo-
rithm in practice, usually reducing the complexity of solving the overall problem
substantially. Interesting from a theoretical standpoint is the question: What
type of failure detector is necessary to solve a problem? Answers to this question
point to the minimum level of timing information which is needed to solve that
problem. If only less is available, the problem is impossible to solve.

Here, we focus on the sufficiency part of the question, i.e., what type of failure
detector is sufficient to solve consensus in asynchronous systems in which crash
and omission faults can occur and what are the timing assumptions needed to
solve Consensus. Omission faults, meaning that a process drops a message either
while sending or while receiving it, were introduced by Hadzilacos [11] and later
generalized by Perry and Toueg [14]. We make the following two contributions
in this paper:
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– We define a new type of failure detector, which we call Ω in analogy to [5],
and give a protocol that solves consensus in omission failure environments as
long as a majority of processes remains fault-free.

– We exhibit a set of weak timing assumptions in the spirit of earlier work
[1, 3] that allow to implement Ω. More precisely, we show that the existence
of some process with which every other process eventually can communicate
in a timely way is sufficient to implement Ω.

The timing assumptions we exhibit are weaker than any other assumptions pro-
posed up to now for the omission model. They therefore allow to implement
consensus, and hence fair exchange, in a larger class of practical systems than
before.

This paper is structured as follows: Section 2 introduces the system model,
Section 3 specifies the new type of failure detector. Section 4 presents the algo-
rithm to solve consensus using the failure detector from Section 3. Section 5 shows
how to implement the failure detector under very weak synchrony assumptions.
Finally, Section 6 concludes the paper.

2 Definitions and Model

We model a distributed system by a set of n processes Π = {p1, p2, . . . , pn}
that communicate using message passing over a network of channels in a fully
connected topology. The communication primitives we assume are send and re-
ceive. Communication channels are reliable, i.e., every message sent is eventually
received and every received message was previously sent. Processes can be faulty,
as explained later.

We assume that the network is asynchronous, i.e., there is neither a bound
on the relative process speeds nor on the message delivery delays. This means
that while one process takes a single step within the execution of its local al-
gorithm, any other process can take an arbitrary (but finite) number of steps.
Also, messages can take an arbitrary (but finite) amount of time to travel from
the source to the destination.

2.1 Failure Assumption

There are three ways in which processes can fail: (1) Processes can crash, i.e., they
stop to execute steps of their local algorithm. Crashed processes never recover.
(2) Processes can experience send omission failures, i.e., a message which is
sent by a process is never placed into the communication channel. (3) Processes
can experience receive omission failures, i.e., a message which arrives over the
communication channel is never actually received by the algorithm of the process.
Crash faults model, the usual hardware or operating system crashes, omission
faults model overruns of internal I/O buffers within the operating system.

The types of failures result in three distinct failure assumptions:

– the send omission model, in which processes can crash and experience only
send-omissions (and no receive omissions),

– the receive omission model (analogous to the send-omission model), and
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– the send/receive omission model (sometimes also called general omission),
in which processes can crash and experience either send-omissions or receive
omissions.

A process p is correct if it does not make any failure at all, i.e., it is never
crashed and experiences neither send nor receive omissions. Process p is crash-
correct if it never crashes. If process p crashes at some time we say it is crash-
faulty.

Due to the omissions, some processes could be disconnected forever from cor-
rect processes. More precisely, we say that process p is in-connected, if infinitely
often it receives messages from some correct processes. In analogy, we say that
process p is out-connected, if an infinity of its messages are received by some
correct processes. A process is connected if it is in-connected and out-connected.

Clearly, in the send-omission failure model every process is in-connected, and
in the receive omission failure model every process is out-connected.

2.2 Relations to Crash Model

Transient omissions refer to cases when a process regularly omits a message but
equally regularly sends/receives a message over the channel. Such omissions can
be masked by piggybacking information about previous messages on every new
message sent over a channel.

Code for p:
1 on receive (m, d) from q
2 if d = p ∧ m not delivered before then Receive m
3 else if d 6= p then send (m, d) to d

4 to Send(m) to d:
5 send (m, d) to all

Fig. 1. Send/Receive with relay.

Since omissions introduce asymmetry in the communication relation, it is also
an issue who can communicate with whom. For example, a process with receive
omissions may receive messages from a correct process p but may fail to receive
messages from another correct process q. We can mask parts of this asymmetry
by using the relay algorithm of Figure 1 which defines new primitives Send
and Receive. These primitives ensure that if a process p is in-connected then it
receives infinitely often messages from all correct processes. Correspondingly, if
a process is out-connected, then infinitely many of its messages are received by
all correct processes. However note that the relay algorithm is costly concerning
the communication load (each message from p to q generates 2n − 1 messages).

In the following algorithms we avoid to use this relay algorithm. But it shows
that if all crash-correct processes are connected, then by piggybacking old mes-
sages and with the relay algorithm all omissions can be masked and the omission
models become equivalent to the crash failure model. Interesting cases arise if
not all crash-correct processes are always connected.

6



2.3 Consensus

We use the standard definition of Uniform Consensus in this paper. The problem
is defined using two primitives called propose and decide, both taking a binary
value v. An algorithm solving consensus must satisfy the following properties:

– (Termination) Every correct process eventually decides.
– (Uniform Agreement) No two processes decide differently.
– (Validity) The decided value must have been proposed.

3 Failure Detectors for Omission Failure Environments

In this section we revisit failure detectors in crash environments and give a suit-
able definition for such a failure detector in omission failure environments.

The definition of failure detectors in the crash model are standard [6] and
the literature contains a lot of definitions of failure detectors for crash failures.
Among these, the failure detector Ω is particularly interesting: It has been proved
to be the weakest failure detector to solve the consensus problem in the crash
failure model with a majority of correct processes [5]. The output of Ω for each
process p is the identity of one process, the assumed leader for p, such that
eventually all correct processes have the same leader forever and this leader is a
correct process. Hence Ω implements an eventual leader election .

We extend the definition of failure detector Ω to omission models, but some
difficulties arise concerning the types of non faulty processes we considered. In
the omission models, this definition is generally too restrictive because, it could
be impossible to ensure that the chosen eventual leader does not experience
permanent omissions. So we consider the following weaker definition:

Definition 1. Failure detector Ω for omission models is a failure detector that
outputs at each time for each process one process, called the leader, such that (1)
there is a time after which, this leader is the same forever at all correct processes
and (2) this process is crash-correct and connected.

In the following algorithms the output of the failure detector Ω for process p
is given by the value of local variable Leader.

4 Solving Consensus

We now show that the failure detector Ω introduced in the previous section is suf-
ficient to solve consensus with a majority of correct processes in the send/receive
omission model. Figure 2 depicts our consensus algorithm. It employs the well-
known rotating coordinator paradigm, i.e., processes run through asynchronous
rounds (counted using the variable r in task 1) and in every such round one
process C is chosen as the coordinator. The processes start with v being their
proposal value of consensus and spawn three concurrent tasks. In task 1, the
coordinator is urged (by using COORD messages) to “impose” its value on all
processes by sending ONE messages (task 2). Processes then evaluate the value
they receive from the coordinator (stored in estfromC). Unless it comes from
the leader (referred to by Ω), a ⊥ value is stored. In the second part of the algo-
rithm, all processes broadcast their received value to all other processes (TWO
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messages). If such messages are received from a majority of processes, the non-⊥
value given in the messages is the decided value and an appropriate decision
message is broadcast to all. Task 3 just ensures that eventually all processes who
receive the decision message actually do decide.

Code for p:
1 Initialization:
2 r := 0 /* round number */
3 v := 〈proposed value〉
4 start Task 0 and Task 1 and Task 2
Task 0:

5 upon receive(COORD, ∗, k) for the first time

6 let (COORD, w, k) such a message
7 send(ONE, w, k) to all

8 upon receive(ONE, ∗, k) for the first time from another process

9 let (ONE, w, k) such a message
10 send(ONE, w, k) to all

Task 1:

11 loop forever

12 C := 1 + r mod n /* coordinator */
13 send(COORD, v, r) to pC

14 wait until (receive (ONE, ∗, r) from pC) or (pC 6= Leader)
15 if (ONE, w, r) is received then

16 estfromC := w
17 else

18 estFromC := ⊥

19 send(TWO, estFromC, r) to all
20 wait until receive(TWO,∗, r) from a majority of processes
21 let L = {w | (TWO,w, r) is received }
22 if L = {rec} for some rec 6= ⊥ then

23 send (DECIDE, rec) to all
24 decide(rec)
25 halt
26 else

27 if L = {rec,⊥} for some rec 6= ⊥ then

28 v := rec
29 r := r + 1

Task 2:

30 upon received(DECIDE, k) from q
31 send(DECIDE, k) to all
32 decide(k)
33 halt

Fig. 2. Consensus algorithm for the send/receive omission model using Ω.

Proposition 1. If Leaderp is the output of failure detector, algorithm of Fig-
ure 2 implements consensus for a majority of correct processes in the send/receive
omission model.

In the proofs of algorithms, by convention, given a variable x of process p, xτ
p

denotes the value of x in p at time τ .

To prove the proposition, we first state the two following lemmas:
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Lemma 1. If p and q end the first part (Lines 13 to 18) of a round r, then:

(1) if estFromCp = x for some x 6= ⊥ then estFromCq ∈ {⊥, x},

If p and q end Line 21 of a round r, then:

(2) if Lp = {x} for some x 6= ⊥ then Lq = {x} or Lq = {x,⊥},

(3) if Lp = {⊥, x} for some x 6= ⊥ then Lq = {x} or Lq = {x,⊥} or Lq = {⊥}.

Proof. (1): Notice first that for any process q, vq is always a value proposed by
some process and obviously vq 6= ⊥.

If estFromCp = x for some x 6= ⊥ then p has received one message (ONE, x,
r) from the coordinator p1+r mod n. By the algorithm, the coordinator p1+r mod n

sends only one message (ONE, ∗, r) per round to all processes. Either the coor-
dinator is not the leader for q (p1+r mod n 6= Leaderq) and then estFromCq = ⊥,
or the coordinator is the leader for q and q waits for the message ONE, and then
estFromCq = x.

(2) and (3): If Lp = {⊥, x} or Lp = {x} then at least one process, say u, ends
the first part (Lines 13 to 18) of round r, and EstFromCu = x. By (1), at most
two values, ⊥ and x, could be sent by processes to all processes in Line 19. And
hence for any process q that ends round r either Lq = {x} or Lq = {⊥, x} or
Lq = {⊥}. This concludes the proof of (3).

For (2), it remains to prove that if Lp = {x} then Lq 6= {⊥}. As processes
wait for a majority of processes, p and q get message from at least one common
process s. By the algorithm s sends at most one message (TWO, ∗, ∗) per round.
Then s sends message (TWO, y, r) with either y = ⊥ or y = x. As p and q have
waited for this message, this excludes the case Lp = {x} and Lq = {⊥}. ut

Lemma 2. If every process p begins some round r, with variable v equal to the
same value d then all processes q ending this round either decides d or has vq = d
at the end of this round.

Proof. Consider such a round r. In this round, every message COORD sent to
the coordinator contains value d. Therefore, if the coordinator sends message
ONE in round r, it sends (ONE, d, r). If a process p ends the first part of
the algorithm (until Line 18), either it suspects the coordinator by Ω and then
estFromCp = ⊥, or it receives message (ONE, d, r) from the coordinator and
then estFromCp = d. Hence, every message TWO sent in round r contains either
d or ⊥. Thus, for every p ending round r, either (a) Lp = {d} and p decides d,
or (b) Lp = {d,⊥} and v = d at the end of round r, or (c) Lp = {⊥} and v does
not change and remains equal to d. ut

Now we show that the algorithm satisfies the properties of consensus.

Lemma 3. The algorithm ensures the agreement property.

Proof. Consider the first time a process, say p, sends a message (DECIDE, d)
for some d. By an easy induction, this sending occurs in Task 1, say in round r.
In this round, after Line 21, Lp is {d}. Let q be any other process ending round
r, by Lemma 1, in this round Lq is either {d} and q decides in round r, or {d,⊥}
and q ends the round r with v = d.
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By Lemma 2 and an easy induction, in every round r ′ ≥ r, every process
either decides d or ends the round with v = d. Hence, all processes which decide
in Task 1, decide d. If a process decides in Task 2, by an easy induction, this
decision is issued from a process which has decided in Task 1. This proves the
agreement property. ut

Lemma 4. The algorithm ensures validity property.

Proof. In the algorithm, all the processes send the values they have just received
and by an easy induction they never insert in the algorithm a value of their
own. ut

Lemma 5. The algorithm ensures termination.

Proof. If there is no correct process, termination is trivial.
If any correct process decides by task 2 or task 1 then clearly all correct

processes decide.
Assume that no correct process decides, then we prove that all correct pro-

cesses participate to an unbounded number of rounds. For this, assume the con-
trary and let r0 be the minimal round number in which at least one correct
process is blocked forever. Let p be such a process in round r0:

– p cannot be blocked in Line 14: if the current coordinator pC is not crash-
correct or is not connected, there is a time after which it cannot be leader
and then p cannot be blocked. If the current coordinator is crash-correct and
connected, by an easy induction p will eventually receive a ONE message
from the coordinator.

– p cannot be blocked in Line 20: by an easy induction all correct processes
will reach round r and send a TWO message for this round. As there is a
majority of correct processes, p will receive a majority of TWO messages.

By the property of the eventual leader election, there is a time τ after which all
correct processes have the same leader pl and this leader is connected. Consider
R the set of rounds in which correct processes are at this time τ . Let r0 be the
first round number such that pl is the coordinator for r0 and r0 is greater than
all elements of R. When all correct processes are in round r0, they do not suspect
coordinator pl of the round r0. Then they adopt for estFromC the value sent by
pl. And so their L set is reduced to one element which is different from ⊥ and
they decide. ut

This concludes the proof of the proposition.

5 Implementing Failure Detectors

In this section we give algorithms to implement eventual leader elections in the
case of send and send/receive omissions. All these algorithms make some addi-
tional assumptions [6, 12, 13], that are needed if we want to implement consensus
deterministically [10]. We also assume that all processes are able to measure
time.1

1 In fact they can measure time with a very low accuracy: it is sufficient that (1) the time
interval measure is not decreasing (2) for each finite time interval I there is an integer n such
that the measure for I is always less than n and (3) if the measure of interval time I is less
than n then I is a finite time interval.
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5.1 Partially Synchronous Models and Eventual Leader Election

In the omission models, messages from p to q are not received by q only due
to send omissions from p or receive omission from q. Hence all communication
links are assumed to be reliable. There is no duplication of messages and every
message received has been sent before.

Concerning timeliness, a communication link (p, q) is eventually timely if
there is a ∆ and time τ0 after which every message sent at time τ by p to q is
received by time τ +∆. Following [1, 3], we define eventual sources and bisources:

Definition 2. Process p is an eventual source if and only if (1) p is a correct
process and (2) for all correct processes q, communication link (p, q) is eventually
timely.

Process p is an eventual bisource if and only if (1) p is a source and (2) for
all correct processes q, communication link (q, p) is eventually timely.

Note that if we have at least one eventual bisource in the system, the system
is eventually rather synchronous: If all messages are broadcast and relayed one
time, as eventually all links from correct processes to the eventual bisource and
all the links from this eventual bisource to every correct process are eventually
timely, there is a time after which all messages sent by correct processes are
received in a timely way by all correct processes. Nevertheless, note that in the
partially synchronous model of [9], it is assumed that eventually all links between
processes are timely. This assumption is strictly stronger than the existence of an
eventual bisource in the system. Having an eventual bisource does not exclude
that the communication delay between two processes is unbounded if one of these
process is faulty but crash-correct. For example, the communication delays from
(faulty but crash-correct process) p to (correct process) q are unbounded, if p
makes infinitely often send omissions to all processes but q, the communication
from p to q (or every other processes to which q could relay messages from p) is
not timely.

5.2 Eventual Leader Election

In the following, we assume for the send omission model that there is at least one
eventual source and at least one eventual bisource for the send/receive or receive
omission model. In these algorithms every process monitors the timeliness of the
communication links. For this each process sends “ping” messages regularly and
verifies that the messages arrive with a bounded delay. If this is not the case, the
origin of the message is suspected to be faulty. But, even if all the ping messages
from some process are received, due to the omission model, other messages from
this process could not be received. Then in order to simplify the presentation we
assume that all messages of the processes are piggybacked in the “ping” messages,
in this way, if there is no omission of “ping” messages from p to q then there is
no omission of any message from p to q.

Eventual Leader Election in the Send Omission Model. The algorithm in
Figure 3 implements Ω for the case of send omission faults under the assumption
that there is one eventual source.
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In the algorithm, T imer[q] is a special variable that is decremented at each
clock tick. When T imer[q] achieves a value equal to zero, we say that T imer[q] ex-
pires. The principles of the algorithm are rather simple. Each process maintains a
variable δ that is the assumed communication delay. This variable is incremented
each time a communication of a process exceeds the assumed communication de-
lay. Each process sends periodically (every η) a message to all others processes
and maintains a vector V counting the number of times each process p exceeds
the assumed communication delay δ. This vector is piggybacked in each message
and each process updates its own vector V accordingly to the received vector (by
taking the maximum of the two vectors). In this way, each vector V will evaluate
the number of times a process exceeds the assumed communication delay. The
leader will be the process having the minimal value in V (in case there is more
than one such process, the process with the smallest identity is chosen).

Intuitively, if a process p makes an infinite number of send omission to
some out-connected process, then eventually, the V [p] of every out-connected
crash-correct will be unbounded. However, if V [p] is bounded by b for some
out-connected crash-correct process, then it will be bounded by b for every out-
connected crash-correct process. This proves that eventually all the V [p] of out-
connected crash-correct processes will be equal. Assuming that V [p] is bounded
for at least one process, choosing as leader the minimal p with the smallest
value in vector V , ensures then that every out-connected crash-correct process
eventually chooses p forever.

Then if s is an eventual source, it is straightforward to verify that V [p] is
bounded for every crash-correct process ensuring that every crash-correct process
eventually chooses forever the same leader.

Note that this leader is not necessarily a correct process: if p makes infinitely
often send omission to some process q that is not out-connected, it is possible
that p is chosen as leader by all correct processes. In this case, the leader for q
could be different from p.

If there is at least one eventual source in the system, this algorithm implement
failure detector Ω:

Proposition 2. In Algorithm of Figure 3, if there is at least one eventual source
then there is a crash-correct out-connected l and a time after which every out-
connected process has l as leader. Moreover, all correct processes receive infinitely
often messages from l.

We give here only a sketch of the proof:

By an easy induction we get:

Lemma 6. If p is out-connected and q is crash-correct, then for all τ there exists
τ ′ ≥ τ such that V τ

p ≤ V τ ′

q .

Consider limτ→∞ V τ
p [q], as V τ

p [q] is a non decreasing sequence of integers,
either limτ→∞ V τ

p [q] = k for some integer k or limτ→∞ V τ
p [q] = ∞. In the first

case we say that V [q] converges to k for process p, and in the second case that
V [q] does not converge for process p.

If p is crash-faulty or is out-disconnected, for every correct process, T imer[p]
will expire infinitely often and then V [p] will be incremented infinitely often:
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Initialization:
1 δ := 1
2 for all q: V[q]:=0
3 for all q : T imer[q] := δ

Task 1:
4 each η
5 send V to all

Task 2:
6 on receive X from q
7 for all q : V [q] := max{V [q], X[q]}
8 set T imer[q] to δ

Task 3:
9 on T imer[q] expired
10 V [q] := V [q] + 1
11 δ := δ + 1
12 set T imer[q] to δ

Task 4:
13 forever do

14 Leader := min r such that V [r] := min{V [q]|q ∈ Π}

Fig. 3. Implementation of Ω in a system with at least one eventual source and a majority of
correct processes.

Lemma 7. If p is crash-faulty or is out-disconnected then for all q crash-correct,
limτ→∞ V τ

q [p] = ∞.

Lemma 8. If V [p] converges to k for some integer k and for some crash-correct
out-connected q, then V [p] converges to k for all crash-correct out-connected r.

Let q out-connected crash-correct such that limτ→∞ V τ
q [p] = k and crash-

correct process r such that limτ→∞ V τ
r [p] = ∞ by Lemma 6, necessarily r is

not out-connected, proving that V [p] converges to k ′ for process r and k ≤ k′.
Conversely k′ ≤ k, proving the lemma.

Now consider an eventual source s, by definition there is a time τ0 after which
all messages sent by s arrive by some ∆, as for each time T imerq[s] expires, δq

is incremented, there is a time τ1 > τ0 after which δq ≥ ∆ or T imerq[s] never
expires. Proving that Vq[s] is bounded for all process q. By the previous Lemma,
we get:

Lemma 9. If s is an eventual source then V [s] converges to k for some integer
k and for all crash-correct processes out-connected.

Hence, for at least one process q, limτ→∞ V τ
p [q] = k for all process p. By

Lemma 7 and Lemma 8, let M be the max of all k such V [r] converges to k for
some r and p, there is a time τ0 after which for all crash-correct out-connected p
we have Vp[r] = k if V [r] converges to k and Vp[r] > M if V [r] does not converge.
Then all crash-correct out-connected get the same leader forever. By Lemma 7,
this leader is crash-correct and out-connected.
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Initialization:
1 δ := 1
2 for all q : T imer[q] := δ
3 for all q, r : M [q, r] := 0
4 GoodInputs := ∅

Task 1:
5 each η
6 if (|GoodInput| ≤ n/2) then

7 for all q : M [q, p] := M [q, p] + 1
8 send (M) to all

Task 2:
9 on receive A from q
10 for all x, y : M [x, y] := max{M [x, y], A[x, y]}
11 add q to GoodInputs
12 set T imer[q] to δ

Task 3:
13 on T imer[q] expired
14 remove q from GoodInputs
15 M [p, q] := M [p, q] + 1
16 δ := δ + 1
17 set T imer[q] to δ

Task 4:
18 forever do

19 for all r do

20 V [r] := min{max{M [q, r]|q ∈ L} such that |L| = bn

2
c + 1}

21 Leader := min r such that V [r] := min{V [q]|q ∈ Π}

Fig. 4. Implementation of Ω in a system with at least one eventual bisource and a majority of
correct processes.

Eventual Leader Election for Send/Receive Omission Models For the
algorithm of Figure 4, we assume that at least a majority of processes are correct
and that there is at least one eventual bisource. The principles of this algorithm
are similar to the previous one: each process approximates in δ a bound on
communication delay. The main difference here is that processes maintain an
array M to count the number of times messages from p to q exceeded the assumed
bound. Moreover in order to ensure that the leader is in-connected it penalizes
itself if it sees that it does not receive messages in a timely way from a majority
of processes.

As processes may make receive omissions, the value of M [p, q] does not neces-
sarily mean that q has made M [p, q] send omissions, then the choice of the leader
is more intricate. For this, for each process q, we consider all the sets containing
a majority of processes and for each such set the maximum value of the M [p, q],
then the estimate for q is the minimum of these values.

If there is at least one bisource in the system, this algorithm implements Ω:

Proposition 3. In the Algorithm of Figure 4, if there is at least one eventual
bisource there is a crash-correct connected l and a time after which every crash-
correct connected process has l as leader.
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We again just give a sketch of the proof:

Note first that eventually information from out-connected processes reached
all in-connected and crash-correct processes:

Lemma 10. If p is out-connected and q is in-connected and crash-correct, then
for all τ , there is τ ′ such that M τ

p ≤ M τ ′

q .

If p is not in-connected and crash-correct, there is a time τ after which p does
not receive any message from any correct process, as there is a majority of correct
processes after time τ +η strictly less than n/2 processes belong to GoodInputsp,
and at each η, p increments for all q M [q, p] and then limτ→∞ Mp[q, p] = ∞ for
all q. Then by Lemma 10:

Lemma 11. If p is crash-correct and not in-connected then for all in-connected
and crash-correct processes q and for all r limτ→∞ M τ

q [r, p] = ∞

If p is crash-faulty or not out-connected, there is a time after which no mes-
sages from p are received by correct processes and then for every correct process
q T imer[p] expires infinitely often, and Mq[q, p] is incremented infinitely often
and limτ→∞ M τ

q [q, p] = ∞. By Lemma 10:

Lemma 12. If p is crash-faulty or not out-connected then for all in-connected
and crash-correct q: limτ→∞ M τ

q [q, p] = ∞.

As at least a majority of processes is correct, any subset of more than n/2
processes contains at least one correct process, then if p is crash-faulty or not
out-connected or not in-connected by the previous lemmas, max{M τ

q [r, p]|r ∈
L s.t. |L| = bn

2
c + 1} is unbounded for every in-connected and crash-correct

process q:

Lemma 13. If p is crash-faulty or not out-connected or not in-connected then
limτ→∞ V τ

q [p] = ∞ for every in-connected and crash-correct process q.

By lemma 10:

Lemma 14. If limτ→∞ V τ
q [p] = k for some out-connected crash-correct q, then

limτ→∞ V τ
r [p] = k for all in-connected crash-correct process r.

Now let s be an eventual bisource, then there a ∆ and a time τ after which,
(1) every message sent by a correct process to s and (2) every message sent by
s to any process correct p is received within ∆. Then as δs is incremented each
time a timer expires, there is a time τs > τ after which every correct process
are in GoodInputss, as there is a majority of correct processes, after time τs

|GoodInputss| > n/2 and s will not increment Ms[p, s] for any p. In the same
way, there is a time τ ′ > τs after which no messages from s will exceed δp for
any correct process p and then Mp[p, s] will not increase. Then:

Lemma 15. If s is an eventual bisource then for all in-connected crash-correct
process p, limτ→∞ V τ

p [s] < ∞.
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Hence, consider the set S of processes q such that for all correct p processes
limτ→∞ V τ

p [q] < ∞. From Lemma 13, S contains only crash-correct connected
processes. By the previous lemma, if there is at least one bisource this set is not
empty. By Lemma 14, for every q ∈ S all the limτ→∞ V τ

p [q] for p correct are
equal to, say kq. Let q0 be the process belonging to S with minimal identity such
that kq is minimal. It is easy to verify that eventually all correct processes will
chose q0 as leader. This concludes the proof.

6 Comparison with Previous Work and Conclusion

Failure detection and consensus in omission environments have been studied
previously in unpublished work by Dolev, Friedman, Keidar and Malkhi [7, 8].
The failure detector ♦S(om) which they use to solve consensus is different but
rather close in power to our definition of Ω. In contrast to [7, 8], we focus on the
implementability of that failure detector under weak synchrony assumptions. To
the best of our knowledge, our consensus algorithm using Ω is also novel.

Concerning timeliness assumptions enabling to solve consensus, Dwork, Lynch
and Stockmeyer [9] proved that consensus is solvable if all correct processes are
eventually timely. Other work [2] obtained the same timeliness assumptions as
here. Note that in both cases, the authors consider the Byzantine failure model
that is strictly stronger than omission faults. Also, these solutions do not use a
modular approach with failure detectors.

In this paper we studied consensus in models where processes can crash and
experience message omissions. This model was motivated from the area of secu-
rity problems where omissions models can be used to model security problems
with smart cards. In this paper we were mainly interested in proving the fea-
sibility of solving consensus in such models, i.e., finding solutions, we were not
interested in their efficiency. Hence, most of the algorithms presented here can
probably be improved to ensure better performance. For example, in the case of
send-omissions and implementation of Ω by algorithm of Figure 3, this algorithm
could be improved: In Task 0, there is no need to relay of the messages ONE
because with send-omissions the eventual chosen leader is not only in-connected
but already receives infinitely many messages from correct processes.

One interesting open problem is to define the weakest failure detector to solve
consensus with omission models, i.e., asking the rather fundamental question
on what failure detector is necessary. In particular it is not proved that really
the existence of an eventual bisource is needed for receive (and send/receive)
omissions models.

The Ω implementation in the send omission model assumes only that there is
at least one eventual source in the system, whereas for the receive or send-receive
omission model we assume here that there is at least one eventual bisource.
We conjecture that in the receive and send-receive omission models an eventual
source is not enough.
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1987-06 ∗ Werner Damm, Gert Döhmen: Specifying Distributed Computer Archi-

tectures in AADL*

1987-07 ∗ Gregor Engels, Claus Lewerentz, Wilhelm Schäfer: Graph Grammar En-
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1987-09 ∗ Claus Lewerentz, Andreas Schürr: Experiences with a Database System

for Software Documents

1987-10 ∗ Herbert Klaeren, Klaus Indermark: A New Implementation Technique

for Recursive Function Definitions

1987-11 ∗ Rita Loogen: Design of a Parallel Programmable Graph Reduction Ma-

chine with Distributed Memory
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2001-07 Martin Grohe, Stefan Wöhrle: An Existential Locality Theorem

2001-08 Mareike Schoop, James Taylor (eds.): Proceedings of the Sixth Interna-

tional Workshop on the Language-Action Perspective on Communication

Modelling

2001-09 Thomas Arts, Jürgen Giesl: A collection of examples for termination of

term rewriting using dependency pairs

2001-10 Achim Blumensath: Axiomatising Tree-interpretable Structures

2001-11 Klaus Indermark, Thomas Noll (eds.): Kolloquium Programmier-

sprachen und Grundlagen der Programmierung

2002-01 ∗ Jahresbericht 2001

2002-02 Jürgen Giesl, Aart Middeldorp: Transformation Techniques for Context-

Sensitive Rewrite Systems

2002-03 Benedikt Bollig, Martin Leucker, Thomas Noll: Generalised Regular

MSC Languages

2002-04 Jürgen Giesl, Aart Middeldorp: Innermost Termination of Context-

Sensitive Rewriting

2002-05 Horst Lichter, Thomas von der Maßen, Thomas Weiler: Modelling Re-

quirements and Architectures for Software Product Lines

2002-06 Henry N. Adorna: 3-Party Message Complexity is Better than 2-Party

Ones for Proving Lower Bounds on the Size of Minimal Nondeterministic

Finite Automata

2002-07 Jörg Dahmen: Invariant Image Object Recognition using Gaussian Mix-

ture Densities

2002-08 Markus Mohnen: An Open Framework for Data-Flow Analysis in Java

2002-09 Markus Mohnen: Interfaces with Default Implementations in Java

2002-10 Martin Leucker: Logics for Mazurkiewicz traces

2002-11 Jürgen Giesl, Hans Zantema: Liveness in Rewriting

2003-01 ∗ Jahresbericht 2002
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