
Aachen
Department of Computer Science

Technical Report

Efficient Reductions for Wait-Free Termination

Detection in Faulty Distributed Systems

Neeraj Mittal, S. Venkatesan, Felix Freiling and Lucia Draque Penso

ISSN 0935–3232 · Aachener Informatik Berichte · AIB-2005-12

RWTH Aachen · Department of Computer Science · May 2005

The publications of the Department of Computer Science of RWTH Aachen University are in
general accessible through the World Wide Web.

http://aib.informatik.rwth-aachen.de/

Efficient Reductions for Wait-Free Termination Detection in

Faulty Distributed Systems

Neeraj Mittal2?, Felix Freiling1, S. Venkatesan2, and Lucia Draque Penso1??

1 Computer Science Department, RWTH Aachen University,
D-52056 Aachen, Germany

2 Department of Computer Science, The University of Texas at Dallas,
Richardson, TX 75083, USA

Abstract. We investigate the problem of detecting termination of a distributed computation in asyn-
chronous systems where processes can fail by crashing. More specifically, for both fully and arbitrarily
connected communication topologies, we describe efficient ways to transform any fault-sensitive ter-
mination detection algorithm A, that has been designed for a failure-free environment , into a wait-free
termination detection algorithm B, that tolerates up to any number of process crashes. The transfor-
mations are such that a competitive fault-sensitive termination detection algorithm A results in a
competitive wait-free termination detection algorithm B. Furthermore, they work whether the termi-
nation detection is effective (allowing messages in-transit from crashed processes towards a live one
able to ignore them) or strict (not allowing messages in-transit towards a live process). Finally, though
we focus on crash failures, we also discuss how to tolerate message omissions, and how they impact on
the performance.
Let µ(n, c, M) and δ(n, c, M) denote message complexity and detection latency of A when the system
has n processes and c bidirectional reliable channels, and when the distributed computation exchanges
M application messages. For fully connected communication topologies, the message complexity and
the detection latency of B are at most O(n + µ(n, c, 0)) messages per fault more and O(δ(n, c, 0)) time
units per fault more than those of A, while for arbitrary ones, they are at most O(n log n+c+µ(n, c, 0))
messages per fault more and O(n + δ(n, c, 0)) time units per fault more than those of A. Moreover, for
both cases, the overhead (that is, the amount of control data piggybacked) increases by only O(log n)
bits per fault on an application message and at most O(log n) bits per fault plus O(log M) on a control
message.
We also prove that in a crash-prone distributed system, irrespective of the number of faulty processes,
the perfect failure detector is the weakest failure detector for solving the effective-termination detection
problem, whereas a failure detection sequencer is both necessary and sufficient for solving the strict-
termination detection problem. This guarantees that our transformation method, which requires a
perfect failure detector, does not demand stronger than necessary assumptions.

Key words: asynchronous system, failure detector, fault-tolerance, faulty processes, reduction,
termination detection, wait-free algorithm

1 Introduction

The problem of detecting termination of an underlying distributed application still remains as one of
the main problems in distributed systems, despite having been independently proposed more than
two decades ago by Francez [11] and Dijkstra and Scholten [9]. As expected, the problem has been
extensively studied since then, and a variety of efficient protocols have been designed for termination
detection (e.g., [11, 9, 25, 22, 27, 20, 8, 21, 31, ?,15, 5, 33, 29, 18, 30, 28, ?,19, 32, 24, 23]). Interestingly,
most of the termination detection algorithms in the literature have been developed assuming that
both processes and channels stay operational throughout an execution and not much effort has

? Neeraj Mittal was supported by Deutsche Forschungsgemeinschaft (DFG) when visiting RWTH Aachen University.
?? Lucia Draque Penso was supported by Deutsche Forschungsgemeinschaft (DFG) as part of the Graduiertenkolleg

“Software for Mobile Communication Systems” at RWTH Aachen University.

been done towards obtaining efficient fault-tolerant termination detection algorithms. Real-world
systems, however, are often prone to failures. For example, processes may fail by crashing and
channels may be lossy.

In this paper, we investigate the termination detection problem when any number of processes
can fail by crashing and the (fault-tolerant) underlying distributed application is not restarted as
a result. Hence, we search for solutions which are wait-free [14]: any live process finishes in a fixed
number of steps regardless of delays or failures by other processes, or equivalently, in a crash-
prone distributed system, regardless of the number of process crashes. In particular, we do that by
efficiently reducing the wait-free termination detection problem in a crash-prone distributed system
to the fault-sensitive (that is, fault-intolerant) case, making it possible to have a competitive wait-
free termination detection algorithm B out of a competitive fault-sensitive termination detection
algorithm A. More precisely, for both fully and arbitrary connected topologies, we show how to
efficiently transform any fault-sensitive termination detection algorithm A, that has been designed
for a failure-free environment, into a wait-free termination detection algorithm B, that tolerates up
to any number of process crashes. We also discuss how both reductions may be extended to tolerate
message omissions and how their performance gets impacted.

Given a crash-prone distributed system, let n be the total number of processes, c be the number
of bidirectional reliable channels, f be the actual number of processes that fail during an execution,
M be the number of application messages exchanged by the underlying distributed application,
µ(n, c,M) and δ(n, c,M) be the message complexity and the detection latency of A, and α(n, c,M)
and β(n, c,M) be the amount of control data piggybacked, called overhead, on an application
message and on a control message of A.

Our reductions perform as follows. Note that, for most competitive termination detection failure-
free algorithms, µ(n, c, 0) varies from O(n) to O(c) and δ(n, c, 0) is O(1), 1 ≤ c ≤ n(n − 1)/2. The
message complexity and the detection latency of B are at most O(n+µ(n, c, 0)) messages per fault
more and O(δ(n, c, 0)) time units per fault more than those of A for fully connected communication
topologies, and at most O(n log n + c + µ(n, c, 0)) messages per fault more and O(n + δ(n, c, 0))
time units per fault more than those of A for arbitrarily connected ones. Furthermore, the overhead
increases by only O(log n) bits per fault on an application message and either O(log n) or O(log M)
bits per fault on a control message. In particular, the overhead of O(log M) applies only to those
control messages that are exchanged whenever a crash is detected. Clearly, our reductions do not
impose any additional overhead on the system (besides that imposed by A) if no process actually
crashes during an execution.

One of the earliest fault-tolerant termination detection algorithms was proposed by Venkatesan
[31], which was derived from the fault-sensitive termination detection algorithm by Chandrasekaran
and Venkatesan [5]. Venkatesan’s algorithm achieves crash-tolerance by replicating state informa-
tion at multiple processes that communicate through bidirectional reliable FIFO channels in a
k-connected communication topology, 1 ≤ k ≤ n. However, to become wait-free in a crash-prone
system, it requires not only a fully connected communication topology, but also an atomic send of
n recipient-distinct messages. Its wait-free version has a message complexity of O(nM + n2) and a
detection latency of O(M).

Lai and Wu [18] and Tseng [30] modify fault-sensitive termination detection algorithms by
Dijkstra and Scholten [9] and Huang [15], respectively, to derive two different wait-free termination
detection algorithms for crash-prone systems. Both algorithms assume that the communication
topology is fully connected. However, unlike Venkatesan’s algorithm, both have a low message
complexity of O(M + fn + n) and detection latencies of O(n) and O(f), respectively. Despite
the lower detection latency, note that the algorithm by Tseng has higher application and control

4

Algorithm
Message

Complexity
Detection
Latency

Message
Application

Overhead
Control

Assumptions

Venkatesan∗ [31] O(nM + n2) O(M) n-way duplication O(log n + log M)

Fully connected
topology

+ Atomic n-send†

+ FIFO channels

Lai and Wu [18] O(M + fn + n) O(n) 0 O(f log n + log M)
Fully connected

topology

Tseng [30] O(M + fn + n) O(f) O(M) O(f log n + nM)
Fully connected

topology

Our Approach
for Fully

[this paper]
with Dijkstra

and Scholten [9]

O(M + fn + n) O(n) O(M log n) O(f log n + log M)
Fully connected

topology

Our Approach
for Fully

[this paper]
with Huang [15]

O(M + fn + n) O(f) O(M log n) O(f log n + log M)
Fully connected

topology

Our Approach
for Fully

[this paper]

O(µ(n, c, M))
+

O(f(n + µ(n, c, 0)))

O(δ(n, c, M))
+

O(fδ(n, c, 0))
O(α(n, c, M) + f log n)

O(β(n, c, M) + f log n)1

and

O(f log n + log M)2

Fully connected
topology

Our Approach
for Arbitrarily

[this paper]

O(µ(n, c, M))
+

O(f(c + µ(n, c, 0)))
+

O(fn log n)

O(δ(n, c, M))
+

O(f(n + δ(n, c, 0)))
O(α(n, c, M) + f log n)

O(β(n, c, M) + f log n)1

and

O(f log n)2

Arbitrarily
connected
topology

+ FIFO channels

Our Approach
for Arbitrarily

[this paper]
with Neeraj and
Venkatesan [23]

O(M)
+

O(f(c + n log n))
O(fn) O((M + f) log n) O(c + f log n)

Arbitrarily
connected
topology

+ FIFO channels

Shah and
Toueg [26]

O(cM) O(n2) O((M + f) log n) O(c + n log n)

Arbitrarily
connected
topology

+ FIFO channels

Gärtner and
Pleisch [12]

O((n + c)M) O(n2) O((M + f) log n) O(c + n log n)

Arbitrarily
connected
topology
+ Failure
detection

sequencer‡
∗Venkatesan’s algorithm has non-trivial preparation cost of ≈ 3nM + n(n − 1)
1overhead for control messages of the fault-sensitive termination detection algorithm
2overhead for control messages exchanged whenever a crash is detected
†atomic send of n recipient-distinct messages
‡failure detector sequencers are able to emulate FIFO channels

n: initial number of processes in the system
c: number of channels in the connected communication topology, equal to n(n − 1)/2 for fully ones
f : actual number of processes that crash during an execution
M: number of application messages exchanged
µ(n, c, M): message complexity of the fault-sensitive termination detection algorithm
δ(n, c, M): detection latency of the fault-sensitive termination detection algorithm
α(n, c, M): application message overhead of the fault-sensitive termination detection algorithm
β(n, c, M): control message overhead of the fault-sensitive termination detection algorithm

Table 1. Comparing wait-free termination detection algorithms for crash-prone distributed systems.

message overheads of O(M) and O(f log n + nM), in comparison to 0 and O(f log n + log M) by
Lai and Wu.

Shah and Toueg give a crash-tolerant algorithm for taking a consistent snapshot of a distributed
system in [26]. Their algorithm is derived from the fault-sensitive consistent snapshot algorithm by
Chandy and Lamport [6]. As a result, each invocation of their consistent snapshot algorithm may
generate up to O(c) control messages. It is easy to verify that, when their algorithm is used for
termination detection, the message complexity of the resulting algorithm reaches up to O(cM) in
the worst-case.

Similarly, Gärtner and Pleisch [12] give an algorithm for detecting an arbitrary stable predicate
in a crash-prone distributed system. (Note that termination is a stable property.) In their algorithm,
every relevant local event is reliably and causally broadcast to a set of monitors, thereby increasing
the message complexity significantly.

5

Typically, generalized reductions tend to be inefficient compared to customized ones. However,
when our transformation for a fully connected communication topology is applied to fault-sensitive
termination detection algorithms by Dijkstra and Scholten [9] and Huang [15], the resulting wait-
free algorithms for crash-prone systems are comparable to those by Lai and Wu [18] and Tseng [30]
and even outperform the one by Venkatesan [31], in terms of message complexity and detection
latency. Moreover, when our transformation for an arbitrarily connected communication topology
is applied to the fault-sensitive termination detection algorithm by Neeraj and Venkatesan [23], the
resulting wait-free algorithm for crash-prone systems outperforms those by Shah and Toueg [26]
and Gärtner and Pleisch [12].

More specifically, when our transformation for a fully connected communication topology is
applied to Dijkstra and Scholten’s algorithm [9], the resulting algorithm has the same message
complexity, detection latency and control message overhead as the algorithm by Lai and Wu [18].
However, the application message overhead is higher for our algorithm. Likewise, when our trans-
formation for a fully connected communication topology is applied to Huang’s algorithm [15], the
resulting algorithm has the same message complexity and detection latency as that of the algo-
rithm by Tseng [30]. Our algorithm has slightly higher application message overhead but much
lower control message overhead. Higher application message overheads are not surprising because
our transformation is general; it works for any termination detection algorithm. Finally, when our
transformation for an arbitrarily connected communication topology is applied to the algorithm
by Neeraj and Venkatesan [23], the resulting algorithm has better message complexity, detection
latency and (application and control) message overhead than those of the algorithms by Shah and
Toueg [26] and Gärtner and Pleisch [12]. For comparison between various wait-free termination
detection algorithms for crash-prone distributed systems, please refer to Table 1.

The main idea behind our approach is to restart the fault-sensitive termination detection al-
gorithm whenever a new failure is detected . A separate mechanism is used to account for those
application messages that are in-transit when the termination detection algorithm is restarted. In-
terestingly, it works whether the termination detection is effective (allowing messages in-transit
from crashed processes towards a live one able to ignore them) or strict (not allowing messages
in-transit towards a live process).

We build upon the work by Wu et al [33]. We do this in the context of the failure detector
hierarchy proposed by Chandra and Toueg [4], a way to compare problems based on the level of
synchrony required for solving them. More precisely, we show that in a crash-prone distributed
system, irrespective of the number of faulty processes, a perfect failure detector [4] is the weak-
est synchrony assumption (therefore, needed and sufficient) for the effective-termination detection
problem to be solvable, whereas a failure detection sequencer [12] is the weakest one for the strict-
termination detection problem to be solvable. Despite not being itself a failure detector, note that
it is straightforward to verify that a failure detection sequencer has a higher level of synchrony than
a perfect failure detector, as the first is capable of emulating the second. This result can be used
to further understand the relationship between (effective or strict) termination detection and other
problems in fault-tolerant distributed computing, such as consensus. Moreover, it proves that our
approach, which makes use of a perfect failure detector, does not require stronger than necessary
assumptions.

Arora and Gouda [1] also provide a mechanism to reset a distributed system. However, their
work is completely distinct from ours in many ways.

First of all, the semantics of their reset operation is totally different from the semantics of our
restart operation. More specifically, if their reset mechanism is applied to our system, then it will
not only reset the termination detection algorithm but will also reset the underlying distributed ap-
plication, whose termination is to be detected. Furthermore, application messages exchanged by the

6

underlying distributed application before it is reset will be discarded. Thus, if a failure occurs near
the completion of the underlying distributed application, the entire work needs to be redone if the
distributed reset procedure is used. In contrast, in our case, the underlying distributed application
continues to execute without interruption. Therefore, in our case, application messages exchanged
before the termination detection algorithm is restarted, especially those exchanged between correct
processes, cannot be ignored. In short, Arora and Gouda’s approach is more suitable for underlying
distributed applications that can be reset on occurrence of a failure whereas our approach is more
suitable for those that continue to execute despite failures.

Second, in their approach, the system may be reset more than once due to the same failure.
This may happen, for example, when multiple processes detect the same failure at different times.
Third, their reset operation, which is self-stabilizing in nature, is designed to tolerate much broader
and more severe kinds of faults, such as restarts and arbitrary state perturbations. Not surprisingly,
their reset operation has higher message and time complexities than our restart operation.

Finally, their approach is non-masking fault-tolerant, which implies that the safety specification
of the application may be violated temporarily, even if there is a single crash fault. When trans-
lated to our problem, this means that the termination detection algorithm may wrongly announce
termination, a case which our approach avoids.

This paper is organized as follows. In Section 2, we present our crash-prone distributed system
model and describe what it means to detect (effective or strict) termination in such a system.
In Section 3, we discuss our reductions for both fully and arbitrarily connected communication
topologies, and comment on how they may be extended to tolerate message omissions. In Section 4,
we determine which type of synchrony is both necessary and sufficient for solving (effective or strict)
termination detection. Finally, we display our conclusions and outline directions for future research
in Section 5.

2 Model and Problem Definitions

2.1 System Model

We assume an asynchronous distributed system consisting of n processes, which communicate with
each other by exchanging messages over a set of c communication channels. There is no global clock
or shared memory.

Processes are not reliable and may fail by crashing. Once a process crashes, it halts all its
operations and never recovers.

We use the terms “non-crashed process”, “live process” and “operational process” interchange-
ably. A process that crashes is called faulty. A process that is never faulty is called correct. Note
that there is a difference between the terms “live process” and “correct process”. A live process has
not crashed yet but may crash in the future.

Let P = {p1, p2, . . . , pn} denote the initial set of processes in the system. We assume f to be
the actual number of processes that fail during an execution, and that there is at least one correct
process in the system at all times.

We assume that all channels are bidirectional but may not be FIFO (first-in-first-out). Chan-
nels are reliable in the sense that if a process never crashes, then every message destined for it
is eventually delivered. A message may, however, take an arbitrary amount of time to reach its
destination.

We assume the existence of a perfect failure detector [4], a device which gives processes reliable
information about the operational state of other processes. Upon querying the local failure detector,
a process receives a list of currently suspected processes. A perfect failure detector satisfies two

7

properties [4]: strong accuracy (no process is suspected before it crashes) and strong completeness
(a crashed process is eventually suspected by every correct process). (Although a perfect failure
detector is traditionally defined for a fully connected topology, the definition can be easily extended
to an arbitrary topology.)

2.2 Termination Detection in a Crash-Prone System

Informally, the termination detection problem involves determining when a distributed computation
has ceased all its activity. The distributed computation satisfies the following four properties or
rules. First, a process is either active or passive. Second, a process can send a message only if
it is active. Third, an active process may become passive at any time. Fourth, a passive process
may become active only on receiving a message. Intuitively, an active process is involved in some
local activity, whereas a passive process is idle. In case both processes and channels are reliable, a
distributed computation terminates once all processes become passive and stay passive thereafter.
In other words, a distributed computation is said to be classically-terminated once all processes
become passive and all channels become empty.

In a crash-prone distributed system, once a process crashes, it ceases all its activities. Moreover,
any message in-transit towards a crashed process can be ignored because the message cannot initiate
any new activity. Therefore, a crash-prone distributed system is said to be strictly-terminated if all
live processes are passive and no channel contains a message in-transit towards a live process. Wu
et al [33] establish that, for the strict-termination detection problem to be solvable in a crash-prone
distributed system, it must be possible to flush the channel from a crashed process to a live process.
A channel can be flushed using either return-flush [31] or fail-flush [18] primitive. Both primitives
allow a live process to ascertain that its incoming channel from the crashed process has become
empty.

In case neither return-flush nor fail-flush primitive is available, Tseng suggested freezing the
channel from a crashed process to a live process [30]. When a live process freezes its channel with a
crashed process, any message that arrives after the channel has been frozen is ignored. (A process
can freeze a channel only after detecting that the process at the other end of the channel has
crashed.) We say that a message is deliverable if it is destined for a live process along a channel
that has not been frozen yet; otherwise it is undeliverable. We say that the system is effectively-
terminated if all live processes are passive and there is no deliverable message in-transit towards a
live process. Trivially, strict-termination implies effective-termination but not vice versa. Deciding
which of the two termination conditions is to be detected depends on the application semantics.

For convenience, we refer to messages exchanged by the underlying distributed computation as
application messages and to messages exchanged by the termination detection algorithm as control
messages. The performance of a termination detection algorithm is measured in terms of three met-
rics: message complexity, detection latency and message overhead. Message complexity refers to the
number of control messages exchanged by the termination detection algorithm in order to detect
termination. Detection latency measures the time elapsed between when the underlying compu-
tation terminates and when the termination detection algorithm actually announces termination.
Finally, message overhead refers to the amount of control data piggybacked on a message by the
termination detection algorithm.

We call a termination detection algorithm fault-tolerant if it works correctly even in the presence
of faults; otherwise it is called fault-sensitive or fault-intolerant. In this paper, we use the terms
“crash”, “fault” and “failure” interchangeably. Therefore, for example, the phrase “crash-tolerant”
has the same meaning as the phrase “fault-tolerant”.

8

3 From Fault-Sensitive Algorithm to Wait-Free Algorithm

We assume that the given fault-sensitive termination detection algorithm is able to detect termina-
tion of a non-diffusing computation, when any subset of processes can be initially active. This is not
a restrictive assumption as it is proved in [24] that any termination detection algorithm for a dif-
fusing computation, when at most one process is initially active, can be efficiently transformed into
a termination detection algorithm for a non-diffusing computation. The transformation increases
the message complexity of the underlying termination detection algorithm by only O(n) messages
and, moreover, does not increase its detection latency.

We also assume that, as soon as a process learns about the failure of its neighbouring process,
it freezes its incoming channel with the process.

3.1 Reduction for Fully Connected Topologies

The main idea behind our transformation is to restart the fault-sensitive termination detection
algorithm algorithm on the set of currently operational processes whenever a new failure is detected.

Let A refer to the fault-sensitive termination detection algorithm that is input to our transfor-
mation, and let B refer to the fault-tolerant termination detection algorithm that is outputted by
our transformation.

Before restarting A, we ensure that all operational processes agree on the set of processes that
have failed. This is useful as explained further.

Consider a subset of processes Q. We say that a distributed computation has terminated with
respect to Q (classically or strictly or effectively) if the respective termination condition holds when
evaluated only on processes and channels in the subsystem induced by Q. Also, we say that Q has
become safe if (1) all processes in P \ Q have failed, and (2) every process in Q has learned about
the failure of all processes in P \ Q. We have,

Theorem 1. Consider a safe subset of processes Q. Assume that all processes in Q stay operational.
Then a distributed computation has effectively-terminated with respect to P if and only if it has
classically-terminated with respect to Q.

Proof. (if) Assume that the distributed computation has classically-terminated with respect to Q.
Therefore all processes in Q are passive and all channels among processes in Q are empty. Since Q
is a safe subset of processes, all processes in P \ Q have crashed. In other words, all live processes
in the system, namely the processes in Q, are passive. Furthermore, since every process in Q knows
that all processes in P \ Q have crashed, all channels from processes in P \ Q to processes in Q
have been frozen. As a result, there is no deliverable message in transit to any process in Q. In
other words, there is no deliverable message in transit to any live process in the system. Thus the
distributed computation has effectively-terminated with respect to P .

(only if) Now, assume that the distributed computation has effectively-terminated with respect to
P . Therefore all live processes are passive, which implies that all processes in Q are passive. Further,
there is no deliverable message in transit towards any live process. Specifically, since all processes
in Q are live and all processes in P \ Q have crashed, none of the channels among processes in Q
contain a deliverable message in transit. This, in turn, implies that all channels among processes in
Q are actually empty. In other words, the distributed computation has classically-terminated with
respect to Q.

ut

9

The above theorem implies that if all alive processes agree on the set of failed processes and
there are no further crashes, then it is sufficient to ascertain that the underlying computation has
classically-terminated with respect to the set of operational processes. An advantage of detecting
classical termination is that we can use A, a fault-sensitive termination detection algorithm, to
detect termination. We next show that even if one or more processes crash, A does not announce
false termination.

Theorem 2. When a fault-sensitive termination detection algorithm is executed on a distributed
system prone to process crashes then the algorithm still satisfies the safety property, that is, it never
announces false termination.

Proof. Consider an execution γ of the distributed system in which one or more processes fail by
crashing. Suppose some process pi announces termination at time t. We show that the underlying
computation has actually terminated. We construct an execution σ that is similar to γ in all respects
except that the processes that have failed in γ stay operational in σ. However, they become very
slow and do not execute any further steps in σ after executing their last step in γ. Moreover, in
transit messages destined for such processes in γ are delayed and are received only after time t. Note
that this can be done since the system is asynchronous and the termination detection algorithm is
fault-sensitive (and cannot infer any information by using, say, a failure detector). Clearly, process p i

cannot distinguish between scenarios γ and σ. Therefore if pi announces termination in γ at time t,
then it also announces termination in σ at the same time. Since the termination detection algorithm
works correctly for σ—a fault-free scenario—the underlying computation has indeed terminated in
σ. This in turn implies that the underlying computation has terminated in γ as well. ut

Now, when A is restarted, a mechanism is needed to deal with application messages that were
sent before A is restarted but are received after A has been restarted. Such application messages are
referred to as stale or old application messages. Clearly, the current instance of A may not be able
to handle an old application message correctly. One simple approach is to “hide” an old application
message from the current instance of A and deliver it directly to the underlying distributed compu-
tation. However, on receiving an old application message, if the destination process changes its state
from passive to active, then, to the current instance of A, it would appear as if the process became
active spontaneously. This violates one of the four rules of the distributed computation. Clearly,
the current instance of A may not work correctly in the presence of old application messages and
therefore cannot be directly used to detect termination of the underlying computation.

We use the following approach to deal with old application messages. We superimpose another
computation on top of the underlying computation. We refer to the superimposed computation
as the secondary computation and to the underlying computation as the primary computation. As
far as live processes are concerned, the secondary computation is almost identical to the primary
computation except possibly in the beginning. Whenever a process crashes and all live processes
agree on the set of failed processes, we simulate a new instance of the secondary computation in the
subsystem induced by the set of operational processes. The processes in the subsystem are referred
to as the base set of the simulated secondary computation. We then use a new instance of the fault-
sensitive termination detection algorithm to detect termination of the secondary computation. The
older instances of the secondary computation and the fault-sensitive termination detection algo-
rithm are simply aborted. We maintain the following invariants. First, if the secondary computation
has classically terminated then the primary computation has classically terminated as well. Second,
if the primary computation has classically terminated, then the secondary computation classically
terminates eventually. Note that the new instances of both the secondary computation and the
fault-sensitive termination detection algorithm start at the same time on the same set of processes.

10

We now describe the behavior of a process with respect to the secondary computation. Intu-
itively, a process stays active with respect to the secondary computation at least until it knows that
it cannot receive any old application message in the future. Consider a safe subset of processes Q.
Suppose an instance of the secondary computation is initiated in the subsystem induced by Q. A
process pi ∈ Q is passive with respect to the current instance of the secondary computation if one
of the following conditions hold:

1. it is passive with respect to the primary computation, and
2. it knows that there is no old application message in transit towards it from any process in Q

An old application message is delivered directly to the primary computation and is hidden
from the current instance of the secondary computation as well as the current instance of the
fault-sensitive termination detection algorithm. Specifically, only those application messages that
are sent by the current instance of the secondary computation are tracked by the corresponding
instance of the fault-sensitive termination detection algorithm. It can be verified that the secondary
computation is “legal” in the sense that it satisfies all the four rules of the distributed computa-
tion. Therefore the fault-sensitive termination detection algorithm A can be safely used to detect
(classical) termination of the secondary computation even in the presence of old application mes-
sages. First, we show that, to detect termination of the primary computation, it is safe to detect
termination of the secondary computation.

Theorem 3. Consider a secondary computation initiated in the subsystem induced by processes
in Q. Then, if the secondary computation has classically terminated with respect to Q, then the
primary computation has classically terminated with respect to Q.

Proof. Assume that the secondary computation has classically terminated with respect to Q. There-
fore all processes in Q are passive with respect to the secondary computation and no channel between
processes in Q contains an application message belonging to the current instance of the secondary
computation. This, in turn, implies that all processes in Q are passive with respect to the primary
computation and no channel between processes in Q contains an application message belonging
to the current or an older instance of the secondary computation. Moreover, since all processes in
Q are passive, no process in Q has crashed, which implies that no new instance of the secondary
computation has been started. Therefore the primary computation has classically terminated with
respect to Q. ut

Next, we prove that, to detect termination of the primary computation, it is live to detect the
termination of the secondary computation under certain conditions.

Theorem 4. Consider a secondary computation initiated in the subsystem induced by processes
in Q. Assume that the primary computation has classically terminated with respect to Q and each
process in Q eventually learns that there are there are no old application messages in transit towards
it sent by other processes in Q. If all processes in Q stay operational, then the secondary computation
eventually classically terminates with respect to Q.

Proof. Assume that the primary computation has classically terminated with respect to Q and each
process in Q eventually learns that there are there are no old application messages in transit towards
it sent by other processes in Q. Clearly, since no process in Q crashes, all processes in Q eventually
turn passive with respect to the secondary computation initiated on Q. Further, none of channels
among processes in Q contains an application message belonging to the secondary computation
initiated on Q. Therefore the secondary computation eventually classically terminates with respect
to Q. ut

11

We next describe how to ensure that all operational processes agree on the set of failed processes
before restarting the secondary computation the fault-sensitive termination detection algorithm.
Later, we describe how to ascertain that there are no relevant old application messages in transit.
We assume that both application and control messages are piggybacked with the complement of
the base set of the current instance of the secondary computation in progress, which can be used
to identify the specific instance of the secondary computation.

Achieving Agreement on the Set of Failed Processes Whenever a process crashes, one of the
live processes is chosen to act as the coordinator. Specifically, the process with the smallest identifier
among all live processes acts as the coordinator. Every process, on detecting a new failure, sends a
NOTIFY message to the coordinator containing the set of all processes that it knows have failed. The
coordinator maintains, for each operational process pi, processes that have failed according to pi.
On determining that all operational processes agree on the set of failed processes, the coordinator
sends a RESTART message to each operational process. A RESTART message instructs a process to
initiate a new instance of the secondary computation on the appropriate set of processes, and, also,
start a new instance of the fault-sensitive termination detection algorithm to detect its termination.

It is possible that, before receiving a RESTART message for a new instance, a process receives an
application message that is sent by a more recent instance of the secondary computation than that of
the secondary computation currently in progress at that process. In that case, before processing the
application message, it behaves as if it has also received a RESTART message and acts accordingly.

Tracking Old Application Messages A process stays active with respect to the current instance
of the secondary computation at least until it knows that it cannot receive any old application
message from one of the processes in the relevant subsystem. To that end, each process maintains
a count of the number of application messages it has sent to each process so far and, also, a count
of the number of application messages it has received from each process so far.

A process, on starting a new instance of the secondary computation, sends an INSTATE message
to all live processes. An INSTATE message sent to process pi contains the number of application
messages sent to pi before the process started the current instance of the secondary computation.

Clearly, once a process has received an INSTATE message from the coordinator, it can determine
how many old application messages are in transit towards it and at least wait until it has received
all those messages before becoming passive for the first time with respect to the current instance
of the secondary computation.

3.2 Formal Description for Fully Connected Topologies

A formal description of the transformation appears in Figures 1 to 3.

3.3 Proof of Correctness for Fully Connected Topologies

We now prove that our transformation produces an algorithm B that solves the effective-termination
detection problem given that A is a correct fault-sensitive algorithm for solving the classical ter-
mination detection problem.

The following proposition can be easily verified:

Proposition 1. Whenever an instance of A is initiated on a process set Q, all processes in P \Q
have in fact crashed and all channels from processes in P \ Q to Q have been frozen.

12

Transformation for process pi:

Variables:
failedi: set of process that have failed;
coordinatori: process acting as the coordinator;

currenti: the current instance of the secondary computation;

senti: vector [1..n] of number of application messages that have been sent to each process
in the current instance so far;

receivedi: vector [1..n] of number of application messages that have been received from each process

so far that belong to the current instance;
oldSenti: vector [1..n] of number of old application messages that were sent to each process in all

previous instances combined;
oldReceivedi: vector [1..n] of total number of old application messages that have been

received from each process so far;

initializedi: whether pi has received the INSTATE message for the current instance;
// othersOldSenti has a valid value only if initializedi is true

othersOldSenti: vector [1..n] of total number of old application messages that were sent to process pi

by each process;
// othersOldSenti[j] − oldReceivedi[j] captures the number of old application messages

// sent by process pj in transit towards process pi

(A0) Initial action:
// initialize all variables

currenti := ∅;
failedi := ∅;
coordinatori := p1;

∀k : senti[k] := 0;
∀k : receivedi[k] := 0;
∀k : oldSenti[k] := 0:

∀k : oldReceivedi[k] := 0;
∀k : othersOldSenti[k] := 0;

initializedi := true;
call startNewInstance(currenti);

(A1) On detecting the failure of process pj :
// update the list of failed processes

failedi := failedi ∪ {pj};
// select a new coordinator if required

coordinatori := min{p | p ∈ P and p 6∈ failedi};
send NOTIFY(failedi) message to coordinatori;
// all subsequent messages received from process pi will be dropped

freeze the incoming channel from process pj ;

(A2) On receiving RESTART(instance) from process pj :

if currenti ⊂ instance then

// start a new instance of the secondary computation and

// the fault-sensitive termination detection algorithm

call startNewInstance(instance);
endif;

Fig. 1. Transforming a fault-sensitive termination detection algorithm A into a fault-tolerant termination detection
algorithm B.

13

Transformation for process pi (continued):

(A3) On receiving INSTATE(instance, othersOldSent) from process pj :
if instance = currenti then

// can now initialize othersOldsenti

othersOldSenti := othersOldSent;
initializedi := true;

endif;

(A4) On sending an application message m to process pj :

++senti[j];
// inform the fault-sensitive termination detection algorithm about the application message

A(currenti).sndApplMsg(m,pj);

(A5) On receiving an application message m(instance, controlData) from process pj :

if instance ⊂ currenti then

// it is an old application message

++oldReceivedi[j];
deliver m to the underlying computation;

else

if currenti ⊂ instance then

// process pi has already started a new instance of the secondary computation

call startNewInstance(instance);
endif;
++receivedi[j];

// inform the fault-sensitive termination detection algorithm about the application message

A(currenti).rcvAppMsg(m(controlData), pj);

endif;

(A6) On receiving a control message m(instance) from process pj :

if currenti ⊆ instance then

if currenti ⊂ instance then

// process pi has already started a new instance of the secondary computation

call startNewInstance(instance);
endif;

// inform the fault-sensitive termination detection algorithm about the control message

A(currenti).rcvCtlMsg(m,pj);

endif;

(A7) On invocation of startNewInstance(instance):

abort A(currenti) and SC(currenti), if any;
currenti := instance;

initializedi := false;
∀k : oldSenti[k] := oldSenti[k] + senti[k];
∀k : senti[k] := 0;

∀k : oldReceivedi[k] := oldReceivedi[k] + receivedi[k];
∀k : receivedi[k] := 0;

start new instances of SC and A on P \ currenti;
process pi in SC is passive if and only if:

(1) pi is passive in the underlying computation, and

(2) initializei holds and othersOldSenti = oldReceivedi

send OUTSTATE(currenti,oldSenti) to the coordinator;

Fig. 2. Transforming a fault-sensitive termination detection algorithm A into a fault-tolerant termination detection
algorithm B (continued).

14

Actions when process pi becomes the coordinator:

Variables:
othersFailedi: vector [1..n] of set of failed processes according to each process;
allFailedi: set of processes suspected by at least one process;

instancei: the current instance of the secondary computation;
toReceivei: number of OUTSTATE messages still to be received;

outStatei: vector [1..n] of number of old application messages that each process has sent to other processes;

(B1) On becoming the coordinator:

// initialize all variables

∀k : k 6= i : othersFailedi[k] := ∅;
othersFailedi[i] := failedi;
instancei := failedi;
allFailedi := failedi;

(B2) On receiving NOTIFY(failed) from process pj :

// is it a new notification message?

if othersFailedi[j] ⊂ failed then

othersFailedi[j] := failed;

allFailedi := allFailedi ∪ failed;
// do all operational processes agree on the set of failed processes?

if 〈∀k : pk 6∈ failedi : othersFailedi[k] = failedi〉 then

instancei := failedi;
send RESTART(instancei) to each process pk where pk 6∈ failedi;

toReceivei := |failedi|;
endif;

endif;

(B3) On receiving OUTSTATE(instance,oldSent) from process pj :

if instance = allFailedi then

--toReceivei;

outStatei[j] := oldSent;
// have all OUTSTATE messages been received?

if toReceivei = 0 then

for k 6∈ allFailedi do

// compute the number of old application messages sent to process pk

∀l : l 6∈ allFailedi : inStatei[l] := outStatei[l][k];
send INSTATE(instancei,inStatei) to process pk;

endfor;

endif;
endif;

Fig. 3. Transforming a fault-sensitive termination detection algorithm A into a fault-tolerant termination detection
algorithm B (continued).

First, we prove the safety property.

Theorem 5 (safety property).
If B announces termination, then the underlying computation has effectively terminated.

Proof. Assume that B announces termination. This implies that some instance of A detected clas-
sical termination of the corresponding instance of the secondary computation run by some subset
Q of processes. From Theorem 3, it follows that the underlying computation has also classically

15

terminated with respect to Q. Finally, from Theorem 1, it follows that the underlying computation
has effectively terminated with respect to P . ut

Next, we show that B is live. That is,

Theorem 6 (liveness property).

Once the underlying computation effectively terminates, B eventually announces termination.

Proof. We argue that once the underlying computation is effectively terminated, then eventually
some instance of A announces termination. Assume that the underlying computation is effectively
terminated and consider the point in time when the last process crashes. Our algorithm ensures that
eventually a new instance of the secondary computation is initiated on the set Q of remaining live
processes. Further, each operational process eventually learns, via an INSTATE message, the number
of old application messages in transit towards it. Since the underlying computation has effectively
terminated, from Theorem 1, it follows that the underlying computation has classically terminated
with respect to Q. Further, using Proposition 1 and Theorem 4, it implies that the secondary
computation initiated on Q classically terminates eventually. As a result, the corresponding instance
of A eventually announces termination of the secondary computation on Q. ut

3.4 Performance Analysis for Fully Connected Topologies

Lemma 1. The number of times A is restarted is bounded by f .

Proof. A new instance of A is started only when a new failure occurs and, moreover, all operational
processes have detected the failure. Since at most f processes can fail, A can be restarted at most
f times. ut

To compute the message complexity of B, we assume that µ(n,M) satisfies the following con-
straint for k ≥ 1:

k∑

i=1

µ(n, c,Mi) ≤ µ(n, c,
k∑

i=1

Mi) + (k − 1) µ(n, 0) (1)

For all existing termination detection algorithms that we are aware of, µ(n, c,M) is linear in M . It
can be verified that if µ(n, c,M) is a linear function in M , then the inequality (1) indeed holds.

We categorize control messages into two kinds: control messages exchanged by different instances
of A, and control messages exchanged as a result of process crash, namely NOTIFY, RESTART,
OUTSTATE and INSTATE. We refer to the former as type I control messages and the later as type
II control messages.

Theorem 7 (message complexity). The message complexity of B is given by O(µ(n, c,M)+
f(n + µ(n, c, 0))).

Proof. Let Mi denote the number of application messages associated with with the ith instance of
A. From Lemma 1, there are at most f + 1 instances of A. Therefore,

f+1∑

i=1

Mi = M

16

From (1), the number of type I control messages is given by:

=

f+1∑

i=1

µ(n,Mi)

≤ µ(n,

f+1∑

i=1

Mi) + fµ(n, 0)

= µ(n,M) + fµ(n, 0)

Also, the number type II control messages is at most 4n per fault (n NOTIFY, n RESTART, n
OUTSTATE and n INSTATE). ut

We now bound the detection latency of B. We assume that message delay is at most one time
unit. Moreover, once a process crashes, a live process detects the crash within one time unit.

Theorem 8 (detection latency). The detection latency of B is given by O(δ(n, c,M)+fδ(n, c, 0)).

Proof. Assume that the underlying computation has terminated. The worst-case scenario occurs
when a process crashes just before the current instance of A is able to detect termination. Clearly,
when a process fails, a new instance of the secondary computation is started on all operational
processes within O(1) time units assuming that there are no more failures—one time unit for failure
detection, one time unit for the coordinator to receive all NOTIFY messages and one time unit for
all live processes to receive RESTART messages. Once an instance of the secondary computation is
initiated, it terminates with O(1) time units as soon as every live process has received an INSTATE

message from the coordinator. Once an instance of the secondary computation terminates, its
termination is detected within O(δ(n, c, 0)) time units. Note that δ(n, 0) = Ω(1). Therefore after a
processes fails its termination is detected within O(δ(n, c, 0)) time units unless some other process
has failed. It can be proved by induction that the termination detection can be delayed by at most
O(fδ(n, c, 0)) time units. ut

We next bound the message overhead of B. For the fault-sensitive termination detection algo-
rithm A, let α(n, c,M) and β(n, c,M) denote its application message overhead and control message
overhead, respectively, when the system has n processes and the underlying computation exchanges
M application messages.

Theorem 9 (application message overhead). The application message overhead of B is O(α(n, c,M)+
f log n).

Proof. The additional information piggybacked on an application message is the set of failed pro-
cesses, which is bounded by O(f log n). ut

Finally, we bound the control message overhead of B.

Theorem 10 (control message overhead). The control message overhead of B for type I
messages is O(β(n, c,M) + f log n). Also, the control message overhead for type II messages is
O(f log n + n log M).

Proof. The additional information piggybacked on a control message is the set of failed processes,
which is bounded by O(f log n). A type II control message contains the following information: (1)
set of failed processes, and (2) count of the number of application messages sent so far to each
process. The overhead due to the two is bounded by O(f log n) and O(n log M), respectively. ut

We next discuss how our transformation can be generalized to an arbitrary topology.

17

3.5 Reduction for Arbitrarily Connected Topologies

When the communication topology is not fully connected, the crash of a process may disconnect
the system. Clearly, once the system is disconnected, it not always possible for any one proces to
detect termination of the entire distributed computation. Therefore we assume that process crashes
do not partition the system.

We assume that the fault-sensitive termination detection algorithm is such that a process only
needs to know its neighboring processes, and not the entire set of processes, to be able to execute the
termination detection algorithm. To our knowledge, most of the termination detection algorithms
can be easily modified to satisfy the above requirement, if they do not already satisfy it.

When the communication topology is not fully connected, many termination detection algo-
rithms assume the availability of a spanning tree of the communication topology to work. The
spanning tree may be unrooted or rooted. In the former case, any process can use the spanning
tree to efficiently compute a snapshot of the system as in the case of wave based algorithms (e.g.,
[25, 20, 8, 16, 2, 24, 23]). In the latter case, the root of the tree acts as a coordinator (e.g., [5, 23]).
Moreover, some termination detection algorithms assume that processes or channels are arranged
in a logical ring (e.g., [8, 22]). Clearly, if a spanning tree of the topology is available, a logical ring
of processes or channels can be easily constructed. Specifically, a logical ring of processes can be
obtained using a pre-order traversal of the tree with a token as shown in Figure 4.

Logical ring construction algorithm for process pi:

Variables:
parenti: parent of process pi in the spanning tree;

childreni: set of children processes in the spanning tree;
visitedi: set of children processes that have already been visited;

(A0) Initial action:
visitedi := ∅;
if (parenti = pi) and (childreni 6= ∅) then

let pk be some process in childreni \ visitedi;
send TOKEN message to process pk;

add pk to visitedi;
endif;

(A1) On receiving TOKEN message from process pj :
if childreni 6= visitedi then

let pk be some process in childreni \ visitedi;
send TOKEN message to process pk;

add pk to visitedi;
else

if parenti 6= pi then

send TOKEN message to parenti;
else

ring construction has been completed;
endif;

endif;

Fig. 4. Constructing a logical ring of processes using a spanning tree.

18

The root of the spanning tree starts the logical ring construction algorithm by sending a TOKEN

message to one of its children. A process, on receiving the TOKEN message from its parent, forwards
the TOKEN message to all its children one-by-one, after which it sends the TOKEN message back
to its parent. The algorithm finishes when the root receives the TOKEN message back and has sent
the TOKEN message to all its children once. The ring is given by the order in which processes are
visited by the TOKEN message. Clearly, in the logical ring obtained, each process appears at least
once and there is a channel between every pair of consecutive processes. However, it is possible for a
process to appear more than once in the ring. These multiple occurrences of processes do not affect
the correctness of a termination detection algorithm. This is because, in the second and subsequent
occurrences, a process can simply act as a relay and not execute any action with respect to the
termination detection algorithm. Also, note that the size of the ring is bounded by 2n (each edge
in the tree is visited exactly once in either direction). Therefore the performance of the termination
detection algorithm is not adversely affected by multiple occurrences of processes in the ring. A
similar algorithm can be used to construct a logical ring of channels from a spanning tree, which is
used by some termination detection algorithms [22]. Again, in the logical ring obtained, a channel
may appear more than once. However, the size of the ring is bounded by O(c + n), which is O(c)
because c ≥ n − 1.

We now describe our transformation. The main problems that need to be addressed are as
follows. First, on occurrence of a failure, a new coordinator may have to be elected that ensures
that all processes agree on the set of failed processes before restarting the termination detection
algorithm. Second, a new spanning tree has to be constructed on the set of currently operational
processes because the failure may have disconnected the current spanning tree. We solve both prob-
lems by using the spanning tree construction algorithm proposed by Awerbuch [3]. An advantage
of Awerbuch’s algorithm is that different processes can start the algorithm at different times. So,
whenever a process learns about a new failure, it simply starts a new instance of the spanning
tree construction algorithm. (Any old instance of the tree construction algorithm is aborted.) We
differentiate between various instances of the spanning tree construction algorithm by using the
process’s knowledge about the failure of other processes when it starts the new instance, which is
referred to as instance identifier. The instance identifier is piggybacked on every message exchanged
by the spanning tree construction algorithm.

A process may learn about the failure of a process either through its local failure detector
or through the instance identifier of a message received. Note that the former can only provide
information about the failure of a neighboring process, whereas the latter can provide information
about the failure of any process. In any case, on learning about a new failure, a process starts a
new instance of the spanning tree construction algorithm as explained earlier.

If no more failures occur for a sufficiently long period of time, then all operational processes
eventually learn about the failure of all crashed processes. Therefore, eventually, all operational
processes start the same instance of the spanning tree construction algorithm and a valid spanning
tree is eventually constructed. Once the tree construction algorithm terminates, the root of the
tree elects itself as the coordinator and inform other live processes of the same. The coordinator
then instructs all live processes to restart the fault-sensitive termination detection algorithm on its
currently operational neighboring processes. When a termination detection algorithm is restarted,
as described in Section 3.1, we need a mechanism to account for the old application messages.
To that end, we can maintain counters to keep track of number application messages sent to and
received from all neighboring processes as discussed in Section 3.1. Alternatively, in case all channels
are FIFO, we can use markers to flush channels between operational processes [5, 24]. On restarting
the fault-sensitive termination detection algorithm, a process sends a MARKER message to all its
live neighboring processes. A process, on receiving a MARKER message along a channel, knows that

19

there are no old application messages in transit along that channel. More details of the mechanism
can be found in [24]. The advantage of the approach based on flushing the channels is low message
overhead. If the approach based on counters is used for an arbitrary topology, then the message
overhead can be as large as O(f log n + n2 log M). On the other hand, if the approach based on
flushing channels is used, then the message overhead is only O(f log n). Hereafter we assume that
all channels are FIFO and the approach based on flushing channels is used to account for old
application messages.

3.6 Proof of Correctness for Arbitrarily Connected Topologies

The proof of correctness is very similar to that for fully connected communication topologies and
therefore has been omitted.

3.7 Performance Analysis for Arbitrarily Connected Topologies

We now analyze the performance of our transformation. A single instance of Awerbuch’s spanning
tree construction algorithm [3] has O(c+n log n) message-complexity and O(n) time-complexity. In
the worst case, however, there can be nf different instances of the tree construction algorithm. A
naive analysis therefore results in message-complexity of n(c+n log n) per fault, which is quite high.
However, note that each process participates in at most f different instances of the tree construction
algorithm. Let I denote the set of all instances of the spanning tree construction algorithm. For an
instance x ∈ I, let the set of participating processes be denoted by Vx. Also let Ex denote the set of
channels incident on processes in Vx. It can be verified that the message complexity of Awerbuch’s
algorithm [3] for instance x is given by O(cx + nx log nx), where nx = |Vx| and cx = |Ex|.

Let Ii denote the set of instances in which process pi participates. Also, let ci denote the initial
number of channels incident on process pi. Then the total number of messages exchanged by all
instances of the spanning tree construction algorithm is given by:

∑

x∈I

O(cx + nx log nx)

= O(
∑

x∈I

∑

pi∈Vx

(ci + log nx))

≤ O(
∑

x∈I

∑

pi∈Vx

(ci + log n))

= O(
∑

pi∈P

∑

x∈Ii

(ci + log n))

≤ O(
∑

pi∈P

f(ci + log n))

= O(
∑

pi∈P

f(ci + log n))

= O(f(c + n log n))

Therefore the number of messages exchanged due to spanning tree (re)construction is given
by O(c + n log n) messages per fault. Once a spanning tree has been constructed, at most O(n)
messages per fault are required to instruct all processes to restart the fault-sensitive termination

20

detection algorithm. When the termination detection algorithm is restarted, at most O(c) messages
are required to flush all channels between operational processes.

Theorem 11 (message complexity). For an arbitrary topology, the message complexity of B is
given by O(µ(n, c,M) + f(c + n log n + µ(n, c, 0))).

We now analyze the detection latency of the fault-tolerant termination detection algorithm.
For ease of analysis, we use flooding to disseminate information about the failure of a process.
Specifically, a process, on learning about a new failure, sends a FAILED message to all its neighboring
processes. This allows operational processes to come to an agreement on the set of failed processes
as soon as possible. Clearly, the number of FAILED messages is bounded by O(c) per fault. Therefore
message complexity stays the same. We have,

Theorem 12 (detection latency). For an arbitrary topology, the detection latency of B is given
by O(δ(n, c,M) + f(n + δ(n, c, 0))).

Proof. Assume that the underlying computation has terminated. The worst-case scenario occurs
when a process crashes just before the current instance of A is able to detect termination. Note
that once a process fails, a new instance of the secondary computation is started on all processes
within O(n) time units assuming that there are no more failures—O(n) time units for spanning
tree construction and O(n) time units for all processes to receive RESTART messages from the
coordinator. Once the secondary computation is initiated on all processes, it terminates within
O(1) time units [24]. Once the secondary computation terminates, its termination is detected within
O(δ(n, c, 0)) time units. Therefore after a processes fails, its termination is detected within O(n +
δ(n, c, 0)) time units unless some other process has failed. It can be proved by induction that the
termination detection can be delayed by at most O(f(n + δ(n, c, 0))) time units. ut

Theorem 13 (message overhead). For an arbitrary topology, the application message overhead
of B is given by O(α(n, c,M) + f log n). Its control message overhead for type I messages is given
by O(β(n, c,M) + f log n). Finally, the control message overhead for type II messages is given by
O(f log n).

3.8 Message Omissions

If channels are FIFO, the following procedure guarantees its reliability. Suppose that messages
from x to a neighbour process y are always numbered. A process x should always keep recorded
the number of the last message that its neighbour y acknowledged to have received.

A process x will always periodically resend the last message sent to y while its number does
not match the number of the last message that its neighbour y acknowledged to have received, and
that it is now recorded at x. On the other hand, only when receiving a message, y sends x either
the number of the last message received from x or a warning that it knows that messages were lost
together with the number of the last message received when losses started.

As the message omission is not permanent, if a message is lost, x will keep on resending the
last message and y will get it at some point and notice that there is a gap in the numbers, and it
will warn x. Note that x will keep on resending the last message until the number recorded at it
matches, so even it the warning message is lost, at some point y will receive again this last message
and send a new warning message, and so on, until x gets it and it starts resending messages from
the moment there were losses.

While there are no losses (x’s recorded number matches the one of the y’s last message), neither
x ory generate extra messages.

21

This procedure is expensive, though. Note also that, for permanent message omissions, it would
be necessary to include some device to detect them as an extra assumption.

4 Weakest Synchrony Assumption for Termination Detection

Failure detectors are not only an abstraction to yield information about the operational state of
processes, they can also be regarded as synchrony abstractions since they are usually implemented
using heartbeat messages and timeouts. For example, since an eventually perfect failure detector is
strictly weaker than a perfect failure detector, it can be implemented with less synchrony assump-
tions (namely those of partial synchrony [10] instead of full synchrony). Proving that a certain type
of failure detector is necessary for a problem gives an indication about the minimal amount of syn-
chrony which is needed to solve that problem. Unless otherwise stated, in this section, “termination”
refers to “effective-termination”.

We now show that a perfect failure detector is necessary for solving termination detection
in crash-prone systems. We show this by transforming an instance of the termination detection
problem into a perfect failure detector at one process q, that is, q is able to reliably detect process
crashes. A perfect failure detector can then be implemented by using n parallel instances of the
transformation algorithm, one per process.

Assume we are given an algorithm A which solves termination detection for an arbitrary com-
putation among n processes. We now set up n independent computations Ci, one per process pi.
The computation Ci is such that process pi is initially active and all processes apart from pi are
passive. In the computation no messages are sent and received and pi never becomes passive. Now
consider some process q 6= pi and the corresponding computation Ci. Process q starts an instance
of algorithm A with respect to computation Ci. Whenever A announces the termination of Ci, q
henceforth permanently suspects pi. The same actions are performed for every other process in the
system, that is, q invokes n parallel instances of A, one per computation Ci.

We now show that this algorithm implements a perfect failure detector if A solves termination
detection. First consider strong accuracy (a process is never suspected before it crashes) and assume
that q has suspected pi. From our transformation algorithm, it follows that A has announced
termination of the computation Ci. This means that all processes in Ci (that is, process pi) are
either crashed or passive. Since Ci is such that pi is never passive, this implies that pi must be
crashed.

Now consider strong completeness (eventually every crashed process is suspected by every cor-
rect process) and assume that pi crashed and q is correct. Once pi crashes, the termination condition
holds for computation Ci. Because A is a correct termination detection algorithm, A must eventu-
ally announce termination of Ci at q. Upon announcing termination, q suspects pi, concluding the
proof.

Overall, this shows that if you can solve termination detection, then you can also implement a
perfect failure detector. Hence, it is impossible to solve termination detection assuming merely a
failure detector which is strictly weaker than the perfect one. Therefore, the perfect failure detector
is necessary for solving termination detection.

The weakest failure detector for a problem is a failure detector that is necessary and sufficient to
solve that problem. Above we show that a perfect failure detector is necessary. Our transformation
algorithm in Section 3 shows that a perfect failure detector is also sufficient. Therefore, perfect
failure detector is the weakest failure detector for solving the effective-termination detection prob-
lem. The result holds as long as at least one process can crash and assuming that channels can
be frozen. Therefore, it generalizes the result of Wu et al [33] which shows that a failure detector

22

must be complete. Our result also further clarifies the relationship between the termination detec-
tion problem and the consensus problem: Wu et al [33] show that consensus is at least as hard to
solve as termination detection. By relating termination detection to the failure detector hierarchy
of Chandra and Toueg [4], our result has two interesting corollaries. First, termination detection is
strictly harder than consensus in environments where a majority of processes remains correct. This
follows from the result that in such cases the weakest failure detector for consensus is strictly weaker
than the perfect failure detector [4]. Second, when any number of processes can crash, termination
detection is equivalent to consensus [7].

Now,recalling the result of Wu et al [33] that, for the strict-termination detection problem to be
solvable in a crash-prone distributed system, it must be possible to flush the channel from a crashed
process to a correct process, we ask the following question: What is the weakest failure detector for
strict-termination detection? An answer to this question sheds some light on the implementability of
the flush channel abstraction, since any failure detector which can be used to solve strict-termination
detection must also be sufficient to implement a flush channel.

We now prove that even a perfect failure detector cannot help to implement strict-termination
detection. By the result of Wu et al. [33], this implies that a stronger than perfect failure detector
is necessary to implement a flush channel. But, unfortunately, there is no stronger failure detector
[4]. Briefly spoken, this is because a failure detector only gives information about process synchrony
and not channel synchrony.

We prove the above result by showing that strict-termination detection is equivalent to a failure
detection sequencer [13], a device which can also express channel synchrony. Roughly speaking, a
failure detection sequencer, denoted Σ, behaves like a perfect failure detector if there are no crashes.
However, if there is a crash, Σ not only indicates which process has crashed but also the local state
of the process (the contents of all its variables) at the moment when it crashed. Note that Σ is not
a failure detector in the sense of Chandra and Toueg [4] but, in a precise sense, strictly stronger,
since it gives more information about the failures in the system than a perfect failure detector.

First we argue that given Σ, we can implement strict-termination detection.

We instruct every process in the system to keep track of the number of messages it has sent
to and received from other processes, that is, we assume that this information is part of the local
state of every process. Periodically, every correct process uses causal broadcast to send its local
state to every other process. From the collected information a process can construct a consistent
snapshot of the global state of the system. By looking at this snapshot, in particular the message
counters, a process can determine whether all processes are passive and all channels are empty. If
a snapshot satisfies this property, the process announces termination. In case there are no crashes,
this scheme obviously solves strict-termination detection. In there are crashes the problem is to
determine whether a channel from a crashed process towards a correct process contains in-transit
messages. This is easily verified by querying Σ and looking at the final state of the crashed process.
In particular, it is possible to determine whether the crashed process has sent a message which
has not yet been received by some correct process. When verifying that all such messages have
been received and all processes are either passive or crashed, a process announces termination.
Since the information given by Σ is reliable, this in fact implies that the system has gone through a
state in which the strict-termination condition holds. Hence, the algorithm solves strict-termination
detection.

Now we prove that any algorithm A which solves strict-termination detection can be transformed
into Σ. Again we prove this by constructing the part of Σ by which a correct process q monitors
the operational state of some other process p. By composing n parallel instances of this scheme,
one per process, q can monitor the operational state of all other processes. Again by invoking n

23

parallel instances of the composed scheme, every process can monitor the operational state of any
other process, as required by Σ.

So assume p and q are processes and q is correct. We instruct p and q to execute the following
computation C:

– p is always active.

– With every change of the variables of p, p sends a message about the state change to q.

– q is “always” passive, that is, upon receiving a message from p, q is briefly active but immediately
becomes passive again.

Process q now invokes the algorithm A to detect the strict-termination of computation C. Addi-
tionally, it keeps track of the state changes of p which p regularly sends within C. The output of Σ
is now emulated as follows: p is initially not suspected. When A announces termination, q suspects
p permanently. Additionally, the most recent state of p is output.

We now argue that this scheme implements Σ. By the same argument as in Section 4 we can
argue that the scheme implements a perfect failure detector: if A announces termination and because
of the nature of C (p always active and q always passive), this implies that p must in fact have
crashed. What is left to prove is to show that the state which is returned by our scheme is in fact the
final state of process p, that is, the state from the moment it crashed. Since A has announced strict-
termination, we know that all channels towards correct processes contain no in-transit messages.
From the nature of C (whenever p has a change of its local state it sends a message), this implies
that all messages from p to q have been received. Hence, there is no “more recent” state change of
p which q does not know of. Therefore, the state returned by q as the output of Σ is in fact the
final state of p, which concludes the proof.

Note that these results hold for strict-termination in a purely asynchronous system for any
number of faulty processes. Since strict-termination needs a flush channel primitive [33], the above
result implies that a flush channel needs Σ to be implemented. Since Σ is strictly stronger than
a perfect failure detector, we conclude that a flush channel cannot be implemented with a perfect
failure detector.

5 Conclusions and Future Work

In this paper, we present a transformation that can be used to convert any termination detection
algorithm for a fully connected communication topology that has been designed for a failure-
free environment into a termination detection algorithm that can tolerate process crashes. Our
transformation does not impose any additional overhead on the system (besides that imposed by
the underlying termination detection algorithm) if no process actually crashes during an execution.
Moreover, when applied to fault-sensitive termination detection algorithms by Dijkstra and Scholten
[9] and Huang [15], the resulting fault-tolerant termination detection algorithms compare very
favorably with those by Lai and Wu [18] and Tseng [30]. Our transformation can be generalized
to an arbitrary communication topology provided process crashes do not partition the system. We
also prove that perfect failure detector is the weakest failure detector for solving the termination
detection problem in a crash-prone distributed system.

As part of future work, we plan to investigate the termination detection problem when crashed
processes may recover and channels may be lossy. We also plan to apply ideas proposed in this paper
to transform other fault-sensitive algorithms—such as for detecting other stable properties—into
fault-tolerant algorithms.

24

References

1. A. Arora and M. G. Gouda. Distributed Reset. IEEE Transactions on Computers, 43(9):1026–1038, 1994.
2. R. Atreya, N. Mittal, and V. K. Garg. Detecting Locally Stable Predicates without Modifying Application

Messages. In Proceedings of the 7th International Conference on Principles of Distributed Systems (OPODIS),
La Martinique, France, December 2003.

3. B. Awerbuch. Optimal Distributed Algorithms for Minimum Weight Spanning Tree, Counting, Leader Election,
and Related Problems. In Proceedings of the 19th Annual ACM Symposium on Theory of Computing (STOC),
New York City, New York, May 1987.

4. T. D. Chandra and S. Toueg. Unreliable Failure Detectors for Reliable Distributed Systems. Journal of the
ACM, 43(2):225–267, 1996.

5. S. Chandrasekaran and S. Venkatesan. A Message-Optimal Algorithm for Distributed Termination Detection.
Journal of Parallel and Distributed Computing (JPDC), 8(3):245–252, March 1990.

6. K. M. Chandy and L. Lamport. Distributed Snapshots: Determining Global States of Distributed Systems. ACM
Transactions on Computer Systems, 3(1):63–75, February 1985.

7. C. Delporte-Gallet, H. Fauconnier, R. Guerraoui, V. Hadzilacos, P. Kouznetsov, and S. Toueg. The Weakest
Failure Detector to Solve Certain Fundamental Problems in Distributed Computing. In Proceedings of the ACM
Symposium on Principles of Distributed Computing (PODC), St. Johns, Newfoundland, Canada, July 2004.

8. E. W. Dijkstra. Shmuel Safra’s Version of Termination Detection. EWD Manuscript 998. Available at
http://www.cs.utexas.edu/users/EWD, 1987.

9. E. W. Dijkstra and C. S. Scholten. Termination Detection for Diffusing Computations. Information Processing
Letters (IPL), 11(1):1–4, 1980.

10. C. Dwork, N. Lynch, and L. Stockmeyer. Consensus in the presence of partial synchrony. Journal of the ACM,
35(2):288–323, April 1988.

11. N. Francez. Distributed Termination. ACM Transactions on Programming Languages and Systems (TOPLAS),
2(1):42–55, January 1980.

12. F. C. Gärtner and S. Pleisch. (Im)Possibilities of Predicate Detection in Crash-Affected Systems. In Proceedings
of the 5th Workshop on Self-Stabilizing Systems (WSS), Lecture Notes in Computer Science (LNCS) 2194, pages
98–113, Lisbon, Portugal, October 2001. Springer-Verlag.

13. F. C. Gärtner and S. Pleisch. Failure Detection Sequencers: Necessary and Sufficient Information about Failures
to Solve Predicate Detection. In Proceedings of the 16th Symposium on Distributed Computing (DISC), number
2508 in Lecture Notes in Computer Science (LNCS), pages 280–294. Springer-Verlag, 2002.

14. M. Herlihy and N. Shavit. A Simple Constructive Computability Theorem for Wait-Free Computation. In
Proceedings of the 26th Annual ACM Symposium on Theory of Computing (STOC), pages 243–252, 1994.

15. S.-T. Huang. Detecting Termination of Distributed Computations by External Agents. In Proceedings of the
IEEE International Conference on Distributed Computing Systems (ICDCS), pages 79–84, 1989.

16. S.-T. Huang. Termination Detection by using Distributed Snapshots. Information Processing Letters (IPL),
32:113–119, August 1989.

17. A. A. Khokhar, S. E. Hambrusch, and E. Kocalar. Termination Detection in Data-Driven Parallel Computa-
tions/Applications. Journal of Parallel and Distributed Computing (JPDC), 63(3):312–326, March 2003.

18. T.-H. Lai and L.-F. Wu. An (N − 1)-Resilient Algorithm for Distributed Termination Detection. IEEE Trans-
actions on Parallel and Distributed Systems (TPDS), 6(1):63–78, January 1995.

19. N. R. Mahapatra and S. Dutt. An Efficient Delay-Optimal Distributed Termination Detection Algorithm. To
Appear in Journal of Parallel and Distributed Computing (JPDC), 2004.

20. F. Mattern. Algorithms for Distributed Termination Detection. Distributed Computing (DC), 2(3):161–175, 1987.
21. F. Mattern. Global Quiescence Detection based on Credit Distribution and Recovery. Information Processing

Letters (IPL), 30(4):195–200, February 1989.
22. J. Misra. Detecting Termination of Distributed Computations using Markers. In Proceedings of the ACM

Symposium on Principles of Distributed Computing (PODC), pages 290–294, 1983.
23. N. Mittal, S. Venkatesan, and S. Peri. Message-Optimal and Latency-Optimal Termination Detection Algorithms

for Arbitrary Topologies. In Proceedings of the Symposium on Distributed Computing (DISC), Amsterdam, The
Netherlands, October 2004.

24. S. Peri and N. Mittal. On Termination Detection in an Asynchronous Distributed System. In Proceedings
of the ISCA International Conference on Parallel and Distributed Computing Systems (PDCS), San Francisco,
California, September 2004.

25. S. P. Rana. A Distributed Solution of the Distributed Termination Problem. Information Processing Letters
(IPL), 17(1):43–46, 1983.

26. A. Shah and S. Toueg. Distributed Snapshots in spite of Failures. Technical Report TR84-624, Department of
Computer Science, Cornell University, Ithaca, NY, July 1984. (Revised February 1985).

25

27. N. Shavit and N. Francez. A New Approach to Detection of Locally Indicative Stability. In Proceedings of the
International Colloquium on Automata, Languages and Systems (ICALP), pages 344–358, Rennes, France, 1986.

28. G. Stupp. Stateless Termination Detection. In Proceedings of the 16th Symposium on Distributed Computing
(DISC), pages 163–172, Toulouse, France, 2002.

29. G. Tel and F. Mattern. The Derivation of Distributed Termination Detection Algorithms from Garbage Collection
Schemes. ACM Transactions on Programming Languages and Systems (TOPLAS), 15(1):1–35, January 1993.

30. Y.-C. Tseng. Detecting Termination by Weight-Throwing in a Faulty Distributed System. Journal of Parallel
and Distributed Computing (JPDC), 25(1):7–15, February 1995.

31. S. Venkatesan. Reliable Protocols for Distributed Termination Detection. IEEE Transactions on Reliability,
38(1):103–110, April 1989.

32. X. Wang and J. Mayo. A General Model for Detecting Termination in Dynamic Systems. In Proceedings of the
18th International Parallel and Distributed Processing Symposium (IPDPS), Santa Fe, New Mexico, April 2004.

33. L.-F. Wu, T.-H. Lai, and Y.-C. Tseng. Consensus and Termination Detection in the Presence of Faulty Processes.
In Proceedings of the International Conference on Parallel and Distributed Systems (ICPADS), pages 267–274,
Hsinchu, Taiwan, December 1992.

26

Aachener Informatik-Berichte

This is a list of recent technical reports. To obtain copies of technical reports please consult

http://aib.informatik.rwth-aachen.de/ or send your request to: Informatik-Bibliothek, RWTH

Aachen, Ahornstr. 55, 52056 Aachen, Email: biblio@informatik.rwth-aachen.de

1987-01 ∗ Fachgruppe Informatik: Jahresbericht 1986

1987-02 ∗ David de Frutos Escrig, Klaus Indermark: Equivalence Relations of Non-

Deterministic Ianov-Schemes

1987-03 ∗ Manfred Nagl: A Software Development Environment based on Graph

Technology

1987-04 ∗ Claus Lewerentz, Manfred Nagl, Bernhard Westfechtel: On Integration

Mechanisms within a Graph-Based Software Development Environment

1987-05 ∗ Reinhard Rinn: Über Eingabeanomalien bei verschiedenen Inferenzmod-

ellen

1987-06 ∗ Werner Damm, Gert Döhmen: Specifying Distributed Computer Archi-

tectures in AADL*

1987-07 ∗ Gregor Engels, Claus Lewerentz, Wilhelm Schäfer: Graph Grammar En-

gineering: A Software Specification Method

1987-08 ∗ Manfred Nagl: Set Theoretic Approaches to Graph Grammars

1987-09 ∗ Claus Lewerentz, Andreas Schürr: Experiences with a Database System

for Software Documents

1987-10 ∗ Herbert Klaeren, Klaus Indermark: A New Implementation Technique

for Recursive Function Definitions

1987-11 ∗ Rita Loogen: Design of a Parallel Programmable Graph Reduction Ma-

chine with Distributed Memory

1987-12 J. Börstler, U. Möncke, R. Wilhelm: Table compression for tree automata

1988-01 ∗ Gabriele Esser, Johannes Rückert, Frank Wagner Gesellschaftliche As-

pekte der Informatik

1988-02 ∗ Peter Martini, Otto Spaniol: Token-Passing in High-Speed Backbone

Networks for Campus-Wide Environments

1988-03 ∗ Thomas Welzel: Simulation of a Multiple Token Ring Backbone

1988-04 ∗ Peter Martini: Performance Comparison for HSLAN Media Access Pro-

tocols

1988-05 ∗ Peter Martini: Performance Analysis of Multiple Token Rings

1988-06 ∗ Andreas Mann, Johannes Rückert, Otto Spaniol: Datenfunknetze

1988-07 ∗ Andreas Mann, Johannes Rückert: Packet Radio Networks for Data Ex-

change

1988-08 ∗ Andreas Mann, Johannes Rückert: Concurrent Slot Assignment Protocol

for Packet Radio Networks

1988-09 ∗ W. Kremer, F. Reichert, J. Rückert, A. Mann: Entwurf einer Netzw-

erktopologie für ein Mobilfunknetz zur Unterstützung des öffentlichen

Straßenverkehrs

1988-10 ∗ Kai Jakobs: Towards User-Friendly Networking

1988-11 ∗ Kai Jakobs: The Directory - Evolution of a Standard

1988-12 ∗ Kai Jakobs: Directory Services in Distributed Systems - A Survey

1988-13 ∗ Martine Schümmer: RS-511, a Protocol for the Plant Floor

27

1988-14 ∗ U. Quernheim: Satellite Communication Protocols - A Performance

Comparison Considering On-Board Processing

1988-15 ∗ Peter Martini, Otto Spaniol, Thomas Welzel: File Transfer in High Speed

Token Ring Networks: Performance Evaluation by Approximate Analysis

and Simulation

1988-16 ∗ Fachgruppe Informatik: Jahresbericht 1987

1988-17 ∗ Wolfgang Thomas: Automata on Infinite Objects

1988-18 ∗ Michael Sonnenschein: On Petri Nets and Data Flow Graphs

1988-19 ∗ Heiko Vogler: Functional Distribution of the Contextual Analysis in

Block-Structured Programming Languages: A Case Study of Tree Trans-

ducers

1988-20 ∗ Thomas Welzel: Einsatz des Simulationswerkzeuges QNAP2 zur Leis-

tungsbewertung von Kommunikationsprotokollen

1988-21 ∗ Th. Janning, C. Lewerentz: Integrated Project Team Management in a

Software Development Environment

1988-22 ∗ Joost Engelfriet, Heiko Vogler: Modular Tree Transducers

1988-23 ∗ Wolfgang Thomas: Automata and Quantifier Hierarchies

1988-24 ∗ Uschi Heuter: Generalized Definite Tree Languages

1989-01 ∗ Fachgruppe Informatik: Jahresbericht 1988

1989-02 ∗ G. Esser, J. Rückert, F. Wagner (Hrsg.): Gesellschaftliche Aspekte der

Informatik

1989-03 ∗ Heiko Vogler: Bottom-Up Computation of Primitive Recursive Tree

Functions

1989-04 ∗ Andy Schürr: Introduction to PROGRESS, an Attribute Graph Gram-

mar Based Specification Language

1989-05 J. Börstler: Reuse and Software Development - Problems, Solutions, and

Bibliography (in German)

1989-06 ∗ Kai Jakobs: OSI - An Appropriate Basis for Group Communication?

1989-07 ∗ Kai Jakobs: ISO’s Directory Proposal - Evolution, Current Status and

Future Problems

1989-08 ∗ Bernhard Westfechtel: Extension of a Graph Storage for Software Doc-

uments with Primitives for Undo/Redo and Revision Control

1989-09 ∗ Peter Martini: High Speed Local Area Networks - A Tutorial

1989-10 ∗ P. Davids, Th. Welzel: Performance Analysis of DQDB Based on Simu-

lation

1989-11 ∗ Manfred Nagl (Ed.): Abstracts of Talks presented at the WG ’89 15th

International Workshop on Graphtheoretic Concepts in Computer Sci-

ence

1989-12 ∗ Peter Martini: The DQDB Protocol - Is it Playing the Game?

1989-13 ∗ Martine Schümmer: CNC/DNC Communication with MAP

1989-14 ∗ Martine Schümmer: Local Area Networks for Manufactoring Environ-

ments with hard Real-Time Requirements

1989-15 ∗ M. Schümmer, Th. Welzel, P. Martini: Integration of Field Bus and

MAP Networks - Hierarchical Communication Systems in Production

Environments

1989-16 ∗ G. Vossen, K.-U. Witt: SUXESS: Towards a Sound Unification of Ex-

tensions of the Relational Data Model

28

1989-17 ∗ J. Derissen, P. Hruschka, M.v.d. Beeck, Th. Janning, M. Nagl: Integrat-

ing Structured Analysis and Information Modelling

1989-18 A. Maassen: Programming with Higher Order Functions

1989-19 ∗ Mario Rodriguez-Artalejo, Heiko Vogler: A Narrowing Machine for Syn-

tax Directed BABEL

1989-20 H. Kuchen, R. Loogen, J.J. Moreno Navarro, M. Rodriguez Artalejo:

Graph-based Implementation of a Functional Logic Language

1990-01 ∗ Fachgruppe Informatik: Jahresbericht 1989

1990-02 ∗ Vera Jansen, Andreas Potthoff, Wolfgang Thomas, Udo Wermuth: A

Short Guide to the AMORE System (Computing Automata, MOnoids

and Regular Expressions)

1990-03 ∗ Jerzy Skurczynski: On Three Hierarchies of Weak SkS Formulas

1990-04 R. Loogen: Stack-based Implementation of Narrowing

1990-05 H. Kuchen, A. Wagener: Comparison of Dynamic Load Balancing Strate-

gies

1990-06 ∗ Kai Jakobs, Frank Reichert: Directory Services for Mobile Communica-

tion

1990-07 ∗ Kai Jakobs: What’s Beyond the Interface - OSI Networks to Support

Cooperative Work

1990-08 ∗ Kai Jakobs: Directory Names and Schema - An Evaluation

1990-09 ∗ Ulrich Quernheim, Dieter Kreuer: Das CCITT - Signalisierungssystem

Nr. 7 auf Satellitenstrecken; Simulation der Zeichengabestrecke

1990-11 H. Kuchen, R. Loogen, J.J. Moreno Navarro, M. Rodriguez Artalejo:

Lazy Narrowing in a Graph Machine

1990-12 ∗ Kai Jakobs, Josef Kaltwasser, Frank Reichert, Otto Spaniol: Der Com-

puter fährt mit

1990-13 ∗ Rudolf Mathar, Andreas Mann: Analyzing a Distributed Slot Assign-

ment Protocol by Markov Chains

1990-14 A. Maassen: Compilerentwicklung in Miranda - ein Praktikum in funk-

tionaler Programmierung (written in german)

1990-15 ∗ Manfred Nagl, Andreas Schürr: A Specification Environment for Graph

Grammars

1990-16 A. Schürr: PROGRESS: A VHL-Language Based on Graph Grammars

1990-17 ∗ Marita Möller: Ein Ebenenmodell wissensbasierter Konsultationen - Un-

terstützung für Wissensakquisition und Erklärungsfähigkeit

1990-18 ∗ Eric Kowalewski: Entwurf und Interpretation einer Sprache zur Beschrei-

bung von Konsultationsphasen in Expertensystemen

1990-20 Y. Ortega Mallen, D. de Frutos Escrig: A Complete Proof System for

Timed Observations

1990-21 ∗ Manfred Nagl: Modelling of Software Architectures: Importance, No-

tions, Experiences

1990-22 H. Fassbender, H. Vogler: A Call-by-need Implementation of Syntax Di-

rected Functional Programming

1991-01 Guenther Geiler (ed.), Fachgruppe Informatik: Jahresbericht 1990

1991-03 B. Steffen, A. Ingolfsdottir: Characteristic Formulae for Processes with

Divergence

1991-04 M. Portz: A new class of cryptosystems based on interconnection net-

works

29

1991-05 H. Kuchen, G. Geiler: Distributed Applicative Arrays

1991-06 ∗ Ludwig Staiger: Kolmogorov Complexity and Hausdorff Dimension

1991-07 ∗ Ludwig Staiger: Syntactic Congruences for w-languages

1991-09 ∗ Eila Kuikka: A Proposal for a Syntax-Directed Text Processing System

1991-10 K. Gladitz, H. Fassbender, H. Vogler: Compiler-based Implementation

of Syntax-Directed Functional Programming

1991-11 R. Loogen, St. Winkler: Dynamic Detection of Determinism in Func-

tional Logic Languages

1991-12 ∗ K. Indermark, M. Rodriguez Artalejo (Eds.): Granada Workshop on the

Integration of Functional and Logic Programming

1991-13 ∗ Rolf Hager, Wolfgang Kremer: The Adaptive Priority Scheduler: A More

Fair Priority Service Discipline

1991-14 ∗ Andreas Fasbender, Wolfgang Kremer: A New Approximation Algorithm

for Tandem Networks with Priority Nodes

1991-15 J. Börstler, A. Zündorf: Revisiting extensions to Modula-2 to support

reusability

1991-16 J. Börstler, Th. Janning: Bridging the gap between Requirements Anal-

ysis and Design

1991-17 A. Zündorf, A. Schürr: Nondeterministic Control Structures for Graph

Rewriting Systems

1991-18 ∗ Matthias Jarke, John Mylopoulos, Joachim W. Schmidt, Yannis Vassil-

iou: DAIDA: An Environment for Evolving Information Systems

1991-19 M. Jeusfeld, M. Jarke: From Relational to Object-Oriented Integrity

Simplification

1991-20 G. Hogen, A. Kindler, R. Loogen: Automatic Parallelization of Lazy

Functional Programs

1991-21 ∗ Prof. Dr. rer. nat. Otto Spaniol: ODP (Open Distributed Processing):

Yet another Viewpoint

1991-22 H. Kuchen, F. Lücking, H. Stoltze: The Topology Description Language

TDL

1991-23 S. Graf, B. Steffen: Compositional Minimization of Finite State Systems

1991-24 R. Cleaveland, J. Parrow, B. Steffen: The Concurrency Workbench: A

Semantics Based Tool for the Verification of Concurrent Systems

1991-25 ∗ Rudolf Mathar, Jürgen Mattfeldt: Optimal Transmission Ranges for Mo-

bile Communication in Linear Multihop Packet Radio Networks

1991-26 M. Jeusfeld, M. Staudt: Query Optimization in Deductive Object Bases

1991-27 J. Knoop, B. Steffen: The Interprocedural Coincidence Theorem

1991-28 J. Knoop, B. Steffen: Unifying Strength Reduction and Semantic Code

Motion

1991-30 T. Margaria: First-Order theories for the verification of complex FSMs

1991-31 B. Steffen: Generating Data Flow Analysis Algorithms from Modal Spec-

ifications

1992-01 Stefan Eherer (ed.), Fachgruppe Informatik: Jahresbericht 1991

1992-02 ∗ Bernhard Westfechtel: Basismechanismen zur Datenverwaltung in struk-

turbezogenen Hypertextsystemen

1992-04 S. A. Smolka, B. Steffen: Priority as Extremal Probability

1992-05 ∗ Matthias Jarke, Carlos Maltzahn, Thomas Rose: Sharing Processes:

Team Coordination in Design Repositories

30

1992-06 O. Burkart, B. Steffen: Model Checking for Context-Free Processes

1992-07 ∗ Matthias Jarke, Klaus Pohl: Information Systems Quality and Quality

Information Systems

1992-08 ∗ Rudolf Mathar, Jürgen Mattfeldt: Analyzing Routing Strategy NFP in

Multihop Packet Radio Networks on a Line

1992-09 ∗ Alfons Kemper, Guido Moerkotte: Grundlagen objektorientierter Daten-

banksysteme

1992-10 Matthias Jarke, Manfred Jeusfeld, Andreas Miethsam, Michael Gocek:

Towards a logic-based reconstruction of software configuration manage-

ment

1992-11 Werner Hans: A Complete Indexing Scheme for WAM-based Abstract

Machines

1992-12 W. Hans, R. Loogen, St. Winkler: On the Interaction of Lazy Evaluation

and Backtracking

1992-13 ∗ Matthias Jarke, Thomas Rose: Specification Management with CAD

1992-14 Th. Noll, H. Vogler: Top-down Parsing with Simultaneous Evaluation on

Noncircular Attribute Grammars

1992-15 A. Schuerr, B. Westfechtel: Graphgrammatiken und Graphersetzungssys-

teme(written in german)

1992-16 ∗ Graduiertenkolleg Informatik und Technik (Hrsg.): Forschungsprojekte

des Graduiertenkollegs Informatik und Technik

1992-17 M. Jarke (ed.): ConceptBase V3.1 User Manual

1992-18 ∗ Clarence A. Ellis, Matthias Jarke (Eds.): Distributed Cooperation in

Integrated Information Systems - Proceedings of the Third International

Workshop on Intelligent and Cooperative Information Systems

1992-19-00 H. Kuchen, R. Loogen (eds.): Proceedings of the 4th Int. Workshop on

the Parallel Implementation of Functional Languages

1992-19-01 G. Hogen, R. Loogen: PASTEL - A Parallel Stack-Based Implementation

of Eager Functional Programs with Lazy Data Structures (Extended

Abstract)

1992-19-02 H. Kuchen, K. Gladitz: Implementing Bags on a Shared Memory MIMD-

Machine

1992-19-03 C. Rathsack, S.B. Scholz: LISA - A Lazy Interpreter for a Full-Fledged

Lambda-Calculus

1992-19-04 T.A. Bratvold: Determining Useful Parallelism in Higher Order Func-

tions

1992-19-05 S. Kahrs: Polymorphic Type Checking by Interpretation of Code

1992-19-06 M. Chakravarty, M. Köhler: Equational Constraints, Residuation, and

the Parallel JUMP-Machine

1992-19-07 J. Seward: Polymorphic Strictness Analysis using Frontiers (Draft Ver-

sion)

1992-19-08 D. Gärtner, A. Kimms, W. Kluge: pi-Redˆ+ - A Compiling Graph-

Reduction System for a Full Fledged Lambda-Calculus

1992-19-09 D. Howe, G. Burn: Experiments with strict STG code

1992-19-10 J. Glauert: Parallel Implementation of Functional Languages Using

Small Processes

1992-19-11 M. Joy, T. Axford: A Parallel Graph Reduction Machine

1992-19-12 A. Bennett, P. Kelly: Simulation of Multicache Parallel Reduction

31

1992-19-13 K. Langendoen, D.J. Agterkamp: Cache Behaviour of Lazy Functional

Programs (Working Paper)

1992-19-14 K. Hammond, S. Peyton Jones: Profiling scheduling strategies on the

GRIP parallel reducer

1992-19-15 S. Mintchev: Using Strictness Information in the STG-machine

1992-19-16 D. Rushall: An Attribute Grammar Evaluator in Haskell

1992-19-17 J. Wild, H. Glaser, P. Hartel: Statistics on storage management in a lazy

functional language implementation

1992-19-18 W.S. Martins: Parallel Implementations of Functional Languages

1992-19-19 D. Lester: Distributed Garbage Collection of Cyclic Structures (Draft

version)

1992-19-20 J.C. Glas, R.F.H. Hofman, W.G. Vree: Parallelization of Branch-and-

Bound Algorithms in a Functional Programming Environment

1992-19-21 S. Hwang, D. Rushall: The nu-STG machine: a parallelized Spineless

Tagless Graph Reduction Machine in a distributed memory architecture

(Draft version)

1992-19-22 G. Burn, D. Le Metayer: Cps-Translation and the Correctness of Opti-

mising Compilers

1992-19-23 S.L. Peyton Jones, P. Wadler: Imperative functional programming (Brief

summary)

1992-19-24 W. Damm, F. Liu, Th. Peikenkamp: Evaluation and Parallelization of

Functions in Functional + Logic Languages (abstract)

1992-19-25 M. Kesseler: Communication Issues Regarding Parallel Functional Graph

Rewriting

1992-19-26 Th. Peikenkamp: Charakterizing and representing neededness in func-

tional loginc languages (abstract)

1992-19-27 H. Doerr: Monitoring with Graph-Grammars as formal operational Mod-

els

1992-19-28 J. van Groningen: Some implementation aspects of Concurrent Clean on

distributed memory architectures

1992-19-29 G. Ostheimer: Load Bounding for Implicit Parallelism (abstract)

1992-20 H. Kuchen, F.J. Lopez Fraguas, J.J. Moreno Navarro, M. Rodriguez

Artalejo: Implementing Disequality in a Lazy Functional Logic Language

1992-21 H. Kuchen, F.J. Lopez Fraguas: Result Directed Computing in a Func-

tional Logic Language

1992-22 H. Kuchen, J.J. Moreno Navarro, M.V. Hermenegildo: Independent

AND-Parallel Narrowing

1992-23 T. Margaria, B. Steffen: Distinguishing Formulas for Free

1992-24 K. Pohl: The Three Dimensions of Requirements Engineering

1992-25 ∗ R. Stainov: A Dynamic Configuration Facility for Multimedia Commu-

nications

1992-26 ∗ Michael von der Beeck: Integration of Structured Analysis and Timed

Statecharts for Real-Time and Concurrency Specification

1992-27 W. Hans, St. Winkler: Aliasing and Groundness Analysis of Logic Pro-

grams through Abstract Interpretation and its Safety

1992-28 ∗ Gerhard Steinke, Matthias Jarke: Support for Security Modeling in In-

formation Systems Design

1992-29 B. Schinzel: Warum Frauenforschung in Naturwissenschaft und Technik

32

1992-30 A. Kemper, G. Moerkotte, K. Peithner: Object-Orientation Axiomatised

by Dynamic Logic

1992-32 ∗ Bernd Heinrichs, Kai Jakobs: Timer Handling in High-Performance

Transport Systems

1992-33 ∗ B. Heinrichs, K. Jakobs, K. Lenßen, W. Reinhardt, A. Spinner: Euro-

Bridge: Communication Services for Multimedia Applications

1992-34 C. Gerlhof, A. Kemper, Ch. Kilger, G. Moerkotte: Partition-Based Clus-

tering in Object Bases: From Theory to Practice

1992-35 J. Börstler: Feature-Oriented Classification and Reuse in IPSEN

1992-36 M. Jarke, J. Bubenko, C. Rolland, A. Sutcliffe, Y. Vassiliou: Theories Un-

derlying Requirements Engineering: An Overview of NATURE at Gen-

esis

1992-37 ∗ K. Pohl, M. Jarke: Quality Information Systems: Repository Support for

Evolving Process Models

1992-38 A. Zuendorf: Implementation of the imperative / rule based language

PROGRES

1992-39 P. Koch: Intelligentes Backtracking bei der Auswertung funktional-

logischer Programme

1992-40 ∗ Rudolf Mathar, Jürgen Mattfeldt: Channel Assignment in Cellular Radio

Networks

1992-41 ∗ Gerhard Friedrich, Wolfgang Neidl: Constructive Utility in Model-Based

Diagnosis Repair Systems

1992-42 ∗ P. S. Chen, R. Hennicker, M. Jarke: On the Retrieval of Reusable Soft-

ware Components

1992-43 W. Hans, St.Winkler: Abstract Interpretation of Functional Logic Lan-

guages

1992-44 N. Kiesel, A. Schuerr, B. Westfechtel: Design and Evaluation of GRAS,

a Graph-Oriented Database System for Engineering Applications

1993-01 ∗ Fachgruppe Informatik: Jahresbericht 1992

1993-02 ∗ Patrick Shicheng Chen: On Inference Rules of Logic-Based Information

Retrieval Systems

1993-03 G. Hogen, R. Loogen: A New Stack Technique for the Management of

Runtime Structures in Distributed Environments

1993-05 A. Zündorf: A Heuristic for the Subgraph Isomorphism Problem in Ex-

ecuting PROGRES

1993-06 A. Kemper, D. Kossmann: Adaptable Pointer Swizzling Strategies in

Object Bases: Design, Realization, and Quantitative Analysis

1993-07 ∗ Graduiertenkolleg Informatik und Technik (Hrsg.): Graduiertenkolleg In-

formatik und Technik

1993-08 ∗ Matthias Berger: k-Coloring Vertices using a Neural Network with Con-

vergence to Valid Solutions

1993-09 M. Buchheit, M. Jeusfeld, W. Nutt, M. Staudt: Subsumption between

Queries to Object-Oriented Databases

1993-10 O. Burkart, B. Steffen: Pushdown Processes: Parallel Composition and

Model Checking

1993-11 ∗ R. Große-Wienker, O. Hermanns, D. Menzenbach, A. Pollacks, S. Repet-

zki, J. Schwartz, K. Sonnenschein, B. Westfechtel: Das SUKITS-Projekt:

A-posteriori-Integration heterogener CIM-Anwendungssysteme

33

1993-12 ∗ Rudolf Mathar, Jürgen Mattfeldt: On the Distribution of Cumulated

Interference Power in Rayleigh Fading Channels

1993-13 O. Maler, L. Staiger: On Syntactic Congruences for omega-languages

1993-14 M. Jarke, St. Eherer, R. Gallersdoerfer, M. Jeusfeld, M. Staudt: Con-

ceptBase - A Deductive Object Base Manager

1993-15 M. Staudt, H.W. Nissen, M.A. Jeusfeld: Query by Class, Rule and Con-

cept

1993-16 ∗ M. Jarke, K. Pohl, St. Jacobs et al.: Requirements Engineering: An In-

tegrated View of Representation Process and Domain

1993-17 ∗ M. Jarke, K. Pohl: Establishing Vision in Context: Towards a Model of

Requirements Processes

1993-18 W. Hans, H. Kuchen, St. Winkler: Full Indexing for Lazy Narrowing

1993-19 W. Hans, J.J. Ruz, F. Saenz, St. Winkler: A VHDL Specification of a

Shared Memory Parallel Machine for Babel

1993-20 ∗ K. Finke, M. Jarke, P. Szczurko, R. Soltysiak: Quality Management for

Expert Systems in Process Control

1993-21 M. Jarke, M.A. Jeusfeld, P. Szczurko: Three Aspects of Intelligent Co-

operation in the Quality Cycle

1994-01 Margit Generet, Sven Martin (eds.), Fachgruppe Informatik: Jahres-

bericht 1993

1994-02 M. Lefering: Development of Incremental Integration Tools Using Formal

Specifications

1994-03 ∗ P. Constantopoulos, M. Jarke, J. Mylopoulos, Y. Vassiliou: The Software

Information Base: A Server for Reuse

1994-04 ∗ Rolf Hager, Rudolf Mathar, Jürgen Mattfeldt: Intelligent Cruise Control

and Reliable Communication of Mobile Stations

1994-05 ∗ Rolf Hager, Peter Hermesmann, Michael Portz: Feasibility of Authenti-

cation Procedures within Advanced Transport Telematics

1994-06 ∗ Claudia Popien, Bernd Meyer, Axel Kuepper: A Formal Approach to

Service Import in ODP Trader Federations

1994-07 P. Peters, P. Szczurko: Integrating Models of Quality Management Meth-

ods by an Object-Oriented Repository

1994-08 ∗ Manfred Nagl, Bernhard Westfechtel: A Universal Component for the

Administration in Distributed and Integrated Development Environ-

ments

1994-09 ∗ Patrick Horster, Holger Petersen: Signatur- und Authentifikationsver-

fahren auf der Basis des diskreten Logarithmusproblems

1994-11 A. Schürr: PROGRES, A Visual Language and Environment for PRO-

gramming with Graph REwrite Systems

1994-12 A. Schürr: Specification of Graph Translators with Triple Graph Gram-

mars

1994-13 A. Schürr: Logic Based Programmed Structure Rewriting Systems

1994-14 L. Staiger: Codes, Simplifying Words, and Open Set Condition

1994-15 ∗ Bernhard Westfechtel: A Graph-Based System for Managing Configura-

tions of Engineering Design Documents

1994-16 P. Klein: Designing Software with Modula-3

1994-17 I. Litovsky, L. Staiger: Finite acceptance of infinite words

34

1994-18 G. Hogen, R. Loogen: Parallel Functional Implementations: Graphbased

vs. Stackbased Reduction

1994-19 M. Jeusfeld, U. Johnen: An Executable Meta Model for Re-Engineering

of Database Schemas

1994-20 ∗ R. Gallersdörfer, M. Jarke, K. Klabunde: Intelligent Networks as a Data

Intensive Application (INDIA)

1994-21 M. Mohnen: Proving the Correctness of the Static Link Technique Using

Evolving Algebras

1994-22 H. Fernau, L. Staiger: Valuations and Unambiguity of Languages, with

Applications to Fractal Geometry

1994-24 ∗ M. Jarke, K. Pohl, R. Dömges, St. Jacobs, H. W. Nissen: Requirements

Information Management: The NATURE Approach

1994-25 ∗ M. Jarke, K. Pohl, C. Rolland, J.-R. Schmitt: Experience-Based Method

Evaluation and Improvement: A Process Modeling Approach

1994-26 ∗ St. Jacobs, St. Kethers: Improving Communication and Decision Making

within Quality Function Deployment

1994-27 ∗ M. Jarke, H. W. Nissen, K. Pohl: Tool Integration in Evolving Informa-

tion Systems Environments

1994-28 O. Burkart, D. Caucal, B. Steffen: An Elementary Bisimulation Decision

Procedure for Arbitrary Context-Free Processes

1995-01 ∗ Fachgruppe Informatik: Jahresbericht 1994

1995-02 Andy Schürr, Andreas J. Winter, Albert Zündorf: Graph Grammar En-

gineering with PROGRES

1995-03 Ludwig Staiger: A Tight Upper Bound on Kolmogorov Complexity by

Hausdorff Dimension and Uniformly Optimal Prediction

1995-04 Birgitta König-Ries, Sven Helmer, Guido Moerkotte: An experimental

study on the complexity of left-deep join ordering problems for cyclic

queries

1995-05 Sophie Cluet, Guido Moerkotte: Efficient Evaluation of Aggregates on

Bulk Types

1995-06 Sophie Cluet, Guido Moerkotte: Nested Queries in Object Bases

1995-07 Sophie Cluet, Guido Moerkotte: Query Optimization Techniques Ex-

ploiting Class Hierarchies

1995-08 Markus Mohnen: Efficient Compile-Time Garbage Collection for Arbi-

trary Data Structures

1995-09 Markus Mohnen: Functional Specification of Imperative Programs: An

Alternative Point of View of Functional Languages

1995-10 Rainer Gallersdörfer, Matthias Nicola: Improving Performance in Repli-

cated Databases through Relaxed Coherency

1995-11 ∗ M.Staudt, K.von Thadden: Subsumption Checking in Knowledge Bases

1995-12 ∗ G.V.Zemanek, H.W.Nissen, H.Hubert, M.Jarke: Requirements Analy-

sis from Multiple Perspectives: Experiences with Conceptual Modeling

Technology

1995-13 ∗ M.Staudt, M.Jarke: Incremental Maintenance of Externally Materialized

Views

1995-14 ∗ P.Peters, P.Szczurko, M.Jeusfeld: Oriented Information Management:

Conceptual Models at Work

35

1995-15 ∗ Matthias Jarke, Sudha Ram (Hrsg.): WITS 95 Proceedings of the 5th

Annual Workshop on Information Technologies and Systems

1995-16 ∗ W.Hans, St.Winkler, F.Saenz: Distributed Execution in Functional Logic

Programming

1996-01 ∗ Jahresbericht 1995

1996-02 Michael Hanus, Christian Prehofer: Higher-Order Narrowing with Defi-

nitional Trees

1996-03 ∗ W.Scheufele, G.Moerkotte: Optimal Ordering of Selections and Joins in

Acyclic Queries with Expensive Predicates

1996-04 Klaus Pohl: PRO-ART: Enabling Requirements Pre-Traceability

1996-05 Klaus Pohl: Requirements Engineering: An Overview

1996-06 ∗ M.Jarke, W.Marquardt: Design and Evaluation of Computer–Aided Pro-

cess Modelling Tools

1996-07 Olaf Chitil: The Sigma-Semantics: A Comprehensive Semantics for Func-

tional Programs

1996-08 ∗ S.Sripada: On Entropy and the Limitations of the Second Law of Ther-

modynamics

1996-09 Michael Hanus (Ed.): Proceedings of the Poster Session of ALP96 - Fifth

International Conference on Algebraic and Logic Programming

1996-09-0 Michael Hanus (Ed.): Proceedings of the Poster Session of ALP 96 -

Fifth International Conference on Algebraic and Logic Programming:

Introduction and table of contents

1996-09-1 Ilies Alouini: An Implementation of Conditional Concurrent Rewriting

on Distributed Memory Machines

1996-09-2 Olivier Danvy, Karoline Malmkjær: On the Idempotence of the CPS

Transformation

1996-09-3 Vı́ctor M. Guĺıas, José L. Freire: Concurrent Programming in Haskell

1996-09-4 Sébastien Limet, Pierre Réty: On Decidability of Unifiability Modulo

Rewrite Systems

1996-09-5 Alexandre Tessier: Declarative Debugging in Constraint Logic Program-

ming

1996-10 Reidar Conradi, Bernhard Westfechtel: Version Models for Software Con-

figuration Management

1996-11 ∗ C.Weise, D.Lenzkes: A Fast Decision Algorithm for Timed Refinement

1996-12 ∗ R.Dömges, K.Pohl, M.Jarke, B.Lohmann, W.Marquardt: PRO-

ART/CE* — An Environment for Managing the Evolution of Chemical

Process Simulation Models

1996-13 ∗ K.Pohl, R.Klamma, K.Weidenhaupt, R.Dömges, P.Haumer, M.Jarke: A

Framework for Process-Integrated Tools

1996-14 ∗ R.Gallersdörfer, K.Klabunde, A.Stolz, M.Eßmajor: INDIA — Intelligent

Networks as a Data Intensive Application, Final Project Report, June

1996

1996-15 ∗ H.Schimpe, M.Staudt: VAREX: An Environment for Validating and Re-

fining Rule Bases

1996-16 ∗ M.Jarke, M.Gebhardt, S.Jacobs, H.Nissen: Conflict Analysis Across Het-

erogeneous Viewpoints: Formalization and Visualization

1996-17 Manfred A. Jeusfeld, Tung X. Bui: Decision Support Components on the

Internet

36

1996-18 Manfred A. Jeusfeld, Mike Papazoglou: Information Brokering: Design,

Search and Transformation

1996-19 ∗ P.Peters, M.Jarke: Simulating the impact of information flows in net-

worked organizations

1996-20 Matthias Jarke, Peter Peters, Manfred A. Jeusfeld: Model-driven plan-

ning and design of cooperative information systems

1996-21 ∗ G.de Michelis, E.Dubois, M.Jarke, F.Matthes, J.Mylopoulos, K.Pohl,

J.Schmidt, C.Woo, E.Yu: Cooperative information systems: a manifesto

1996-22 ∗ S.Jacobs, M.Gebhardt, S.Kethers, W.Rzasa: Filling HTML forms simul-

taneously: CoWeb architecture and functionality

1996-23 ∗ M.Gebhardt, S.Jacobs: Conflict Management in Design

1997-01 Michael Hanus, Frank Zartmann (eds.): Jahresbericht 1996

1997-02 Johannes Faassen: Using full parallel Boltzmann Machines for Optimiza-

tion

1997-03 Andreas Winter, Andy Schürr: Modules and Updatable Graph Views for

PROgrammed Graph REwriting Systems

1997-04 Markus Mohnen, Stefan Tobies: Implementing Context Patterns in the

Glasgow Haskell Compiler

1997-05 ∗ S.Gruner: Schemakorrespondenzaxiome unterstützen die paargramma-

tische Spezifikation inkrementeller Integrationswerkzeuge

1997-06 Matthias Nicola, Matthias Jarke: Design and Evaluation of Wireless

Health Care Information Systems in Developing Countries

1997-07 Petra Hofstedt: Taskparallele Skelette für irregulär strukturierte Prob-

leme in deklarativen Sprachen

1997-08 Dorothea Blostein, Andy Schürr: Computing with Graphs and Graph

Rewriting

1997-09 Carl-Arndt Krapp, Bernhard Westfechtel: Feedback Handling in Dy-

namic Task Nets

1997-10 Matthias Nicola, Matthias Jarke: Integrating Replication and Commu-

nication in Performance Models of Distributed Databases

1997-11 ∗ R. Klamma, P. Peters, M. Jarke: Workflow Support for Failure Manage-

ment in Federated Organizations

1997-13 Markus Mohnen: Optimising the Memory Management of Higher-Order

Functional Programs

1997-14 Roland Baumann: Client/Server Distribution in a Structure-Oriented

Database Management System

1997-15 George Botorog: High-Level Parallel Programming and the Efficient Im-

plementation of Numerical Algorithms

1998-01 ∗ Fachgruppe Informatik: Jahresbericht 1997

1998-02 Stefan Gruner, Manfred Nagel, Andy Schürr: Fine-grained and

Structure-Oriented Document Integration Tools are Needed for Devel-

opment Processes

1998-03 Stefan Gruner: Einige Anmerkungen zur graphgrammatischen Spezifika-

tion von Integrationswerkzeugen nach Westfechtel, Janning, Lefering und

Schürr

1998-04 ∗ O. Kubitz: Mobile Robots in Dynamic Environments

1998-05 Martin Leucker, Stephan Tobies: Truth - A Verification Platform for

Distributed Systems

37

1998-06 ∗ Matthias Oliver Berger: DECT in the Factory of the Future

1998-07 M. Arnold, M. Erdmann, M. Glinz, P. Haumer, R. Knoll, B. Paech, K.

Pohl, J. Ryser, R. Studer, K. Weidenhaupt: Survey on the Scenario Use

in Twelve Selected Industrial Projects

1998-09 ∗ Th. Lehmann: Geometrische Ausrichtung medizinischer Bilder am

Beispiel intraoraler Radiographien

1998-10 ∗ M. Nicola, M. Jarke: Performance Modeling of Distributed and Repli-

cated Databases

1998-11 ∗ Ansgar Schleicher, Bernhard Westfechtel, Dirk Jäger: Modeling Dynamic

Software Processes in UML

1998-12 ∗ W. Appelt, M. Jarke: Interoperable Tools for Cooperation Support using

the World Wide Web

1998-13 Klaus Indermark: Semantik rekursiver Funktionsdefinitionen mit Strik-

theitsinformation

1999-01 ∗ Jahresbericht 1998

1999-02 ∗ F. Huch: Verifcation of Erlang Programs using Abstract Interpretation

and Model Checking — Extended Version

1999-03 ∗ R. Gallersdörfer, M. Jarke, M. Nicola: The ADR Replication Manager

1999-04 Maŕıa Alpuente, Michael Hanus, Salvador Lucas, Germán Vidal: Spe-

cialization of Functional Logic Programs Based on Needed Narrowing

1999-05 ∗ W. Thomas (Ed.): DLT 99 - Developments in Language Theory Fourth

International Conference

1999-06 ∗ Kai Jakobs, Klaus-Dieter Kleefeld: Informationssysteme für die ange-

wandte historische Geographie

1999-07 Thomas Wilke: CTL+ is exponentially more succinct than CTL

1999-08 Oliver Matz: Dot-Depth and Monadic Quantifier Alternation over Pic-

tures

2000-01 ∗ Jahresbericht 1999

2000-02 Jens Vöge, Marcin Jurdzinski A Discrete Strategy Improvement Algo-

rithm for Solving Parity Games

2000-03 D. Jäger, A. Schleicher, B. Westfechtel: UPGRADE: A Framework for

Building Graph-Based Software Engineering Tools

2000-04 Andreas Becks, Stefan Sklorz, Matthias Jarke: Exploring the Semantic

Structure of Technical Document Collections: A Cooperative Systems

Approach

2000-05 Mareike Schoop: Cooperative Document Management

2000-06 Mareike Schoop, Christoph Quix (eds.): Proceedings of the Fifth Interna-

tional Workshop on the Language-Action Perspective on Communication

Modelling

2000-07 ∗ Markus Mohnen, Pieter Koopman (Eds.): Proceedings of the 12th Inter-

national Workshop of Functional Languages

2000-08 Thomas Arts, Thomas Noll: Verifying Generic Erlang Client-Server Im-

plementations

2001-01 ∗ Jahresbericht 2000

2001-02 Benedikt Bollig, Martin Leucker: Deciding LTL over Mazurkiewicz

Traces

2001-03 Thierry Cachat: The power of one-letter rational languages

38

2001-04 Benedikt Bollig, Martin Leucker, Michael Weber: Local Parallel Model

Checking for the Alternation Free mu-Calculus

2001-05 Benedikt Bollig, Martin Leucker, Thomas Noll: Regular MSC Languages

2001-06 Achim Blumensath: Prefix-Recognisable Graphs and Monadic Second-

Order Logic

2001-07 Martin Grohe, Stefan Wöhrle: An Existential Locality Theorem

2001-08 Mareike Schoop, James Taylor (eds.): Proceedings of the Sixth Interna-

tional Workshop on the Language-Action Perspective on Communication

Modelling

2001-09 Thomas Arts, Jürgen Giesl: A collection of examples for termination of

term rewriting using dependency pairs

2001-10 Achim Blumensath: Axiomatising Tree-interpretable Structures

2001-11 Klaus Indermark, Thomas Noll (eds.): Kolloquium Programmier-

sprachen und Grundlagen der Programmierung

2002-01 ∗ Jahresbericht 2001

2002-02 Jürgen Giesl, Aart Middeldorp: Transformation Techniques for Context-

Sensitive Rewrite Systems

2002-03 Benedikt Bollig, Martin Leucker, Thomas Noll: Generalised Regular

MSC Languages

2002-04 Jürgen Giesl, Aart Middeldorp: Innermost Termination of Context-

Sensitive Rewriting

2002-05 Horst Lichter, Thomas von der Maßen, Thomas Weiler: Modelling Re-

quirements and Architectures for Software Product Lines

2002-06 Henry N. Adorna: 3-Party Message Complexity is Better than 2-Party

Ones for Proving Lower Bounds on the Size of Minimal Nondeterministic

Finite Automata

2002-07 Jörg Dahmen: Invariant Image Object Recognition using Gaussian Mix-

ture Densities

2002-08 Markus Mohnen: An Open Framework for Data-Flow Analysis in Java

2002-09 Markus Mohnen: Interfaces with Default Implementations in Java

2002-10 Martin Leucker: Logics for Mazurkiewicz traces

2002-11 Jürgen Giesl, Hans Zantema: Liveness in Rewriting

2003-01 ∗ Jahresbericht 2002

2003-02 Jürgen Giesl, René Thiemann: Size-Change Termination for Term

Rewriting

2003-03 Jürgen Giesl, Deepak Kapur: Deciding Inductive Validity of Equations

2003-04 Jürgen Giesl, René Thiemann, Peter Schneider-Kamp, Stephan Falke:

Improving Dependency Pairs

2003-05 Christof Löding, Philipp Rohde: Solving the Sabotage Game is PSPACE-

hard

2003-06 Franz Josef Och: Statistical Machine Translation: From Single-Word

Models to Alignment Templates

2003-07 Horst Lichter, Thomas von der Maßen, Alexander Nyßen, Thomas

Weiler: Vergleich von Ansätzen zur Feature Modellierung bei der Soft-

wareproduktlinienentwicklung

2003-08 Jürgen Giesl, René Thiemann, Peter Schneider-Kamp, Stephan Falke:

Mechanizing Dependency Pairs

2004-01 ∗ Fachgruppe Informatik: Jahresbericht 2003

39

2004-02 Benedikt Bollig, Martin Leucker: Message-Passing Automata are expres-

sively equivalent to EMSO logic

2004-03 Delia Kesner, Femke van Raamsdonk, Joe Wells (eds.): HOR 2004 – 2nd

International Workshop on Higher-Order Rewriting

2004-04 Slim Abdennadher, Christophe Ringeissen (eds.): RULE 04 – Fifth In-

ternational Workshop on Rule-Based Programming

2004-05 Herbert Kuchen (ed.): WFLP 04 – 13th International Workshop on Func-

tional and (Constraint) Logic Programming

2004-06 Sergio Antoy, Yoshihito Toyama (eds.): WRS 04 – 4th International

Workshop on Reduction Strategies in Rewriting and Programming

2004-07 Michael Codish, Aart Middeldorp (eds.): WST 04 – 7th International

Workshop on Termination

2004-08 Klaus Indermark, Thomas Noll: Algebraic Correctness Proofs for Com-

piling Recursive Function Definitions with Strictness Information

2004-09 Joachim Kneis, Daniel Mölle, Stefan Richter, Peter Rossmanith: Param-

eterized Power Domination Complexity

2004-10 Zinaida Benenson, Felix C. Gärtner, Dogan Kesdogan: Secure Multi-

Party Computation with Security Modules

2005-01 ∗ Fachgruppe Informatik: Jahresbericht 2004

2005-02 Maximillian Dornseif, Felix C. Gärtner, Thorsten Holz, Martin Mink: An

Offensive Approach to Teaching Information Security: “Aachen Summer

School Applied IT Security”

2005-03 Jürgen Giesl, René Thiemann, Peter Schneider-Kamp: Proving and Dis-

proving Termination of Higher-Order Functions

2005-04 Daniel Mölle, Stefan Richter, Peter Rossmanith: A Faster Algorithm for

the Steiner Tree Problem

2005-05 Fabien Pouget, Thorsten Holz: A Pointillist Approach for Comparing

Honeypots

2005-06 Simon Fischer, Berthold Vöcking: Adaptive Routing with Stale Informa-

tion

2005-07 Felix C. Freiling, Thorsten Holz, Georg Wicherski: Botnet Tracking: Ex-

ploring a Root-Cause Methodology to Prevent Distributed Denial-of-

Service Attacks

2005-08 Joachim Kneis, Peter Rossmanith: A New Satisfiability Algorithm With

Applications To Max-Cut

2005-09 Klaus Kursawe, Felix C. Freiling: Byzantine Fault Tolerance on General

Hybrid Adversary Structures

2005-10 Benedikt Bollig: Automata and Logics for Message Sequence Charts

2005-11 Simon Fischer, Berthold Vöcking: A Counterexample to the Fully Mixed

Nash Equilibrium Conjecture

2005-13 Carole Delporte-Gallet, Hugues Fauconnier, Felix C. Freiling: Revisiting

Failure Detection and Consensus in Omission Failure Environments

2005-14 Felix C. Freiling, Sukumar Ghosh: Code Stabilization

2005-15 Uwe Naumann: The Complexity of Derivative Computation

2005-16 Uwe Naumann: Syntax-Directed Derivative Code (Part I: Tangent-

Linear Code)

2005-17 Uwe Naumann: Syntax-directed Derivative Code (Part II: Intraprocedu-

ral Adjoint Code)

40

2005-18 Thomas von der Maßen, Klaus Müller, John MacGregor, Eva Geis-

berger, Jörg Dörr, Frank Houdek, Harbhajan Singh, Holger Wußmann,

Hans-Veit Bacher, Barbara Paech: Einsatz von Features im Software-

Entwicklungsprozess - Abschlußbericht des GI-Arbeitskreises “Features”

2005-19 Uwe Naumann, Andre Vehreschild: Tangent-Linear Code by Augmented

LL-Parsers

2005-20 Felix C. Freiling, Martin Mink: Bericht über den Workshop zur Ausbil-

dung im Bereich IT-Sicherheit Hochschulausbildung, berufliche Weiter-

bildung, Zertifizierung von Ausbildungsangeboten am 11. und 12. Au-

gust 2005 in Köln organisiert von RWTH Aachen in Kooperation mit

BITKOM, BSI, DLR und Gesellschaft fuer Informatik (GI) e.V.

2005-21 Thomas Noll, Stefan Rieger: Optimization of Straight-Line Code Revis-

ited

∗ These reports are only available as a printed version.

Please contact biblio@informatik.rwth-aachen.de to obtain copies.

41

