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Abstract. Adversary structures are a generalization of the classical “at most
t-out-of-n” threshold failure model which is used in many published Byzantine-
tolerant protocols. An adversary structure basically lists all coalitions of parties
whose corruption the protocol should tolerate. Using adversary structures it is
possible to encode dependent failure models, such as “either all Linux machines
fail or all Windows machines but not both at the same time”. We describe a
general technique that allows to transform an algorithm designed for the thresh-
old model into an algorithm that works for general adversary structures. Our
technique is based on several (partly informal) rules which describe how the algo-
rithm and its proof must be augmented so that general adversary structures can
be tolerated. We demonstrate the applicability of our approach by transforming
an asynchronous Byzantine-tolerant reliable broadcast protocol into one that tol-
erates Byzantine adversary structures. We also consider similar transformations
for hybrid failures (combinations of different fault models) and discuss ways to
map adversary structures to the real world and manage them efficiently.

1 Introduction

The Byzantine failure model [22, 19] allows faulty components to behave in an
arbitrary manner. It was introduced as a worst-case failure mode for components
in safety-critical computing systems and is used as the basis for designs in aircraft
control [27] and the control system of the International Space Station [21]. There,
Byzantine Agreement protocols maintain consistency of the redundant computer
systems which run the control software.

Recently, we are seeing an increasing use of the Byzantine failure model in the
area of security [24, 16, 5, 7, 17, 28, 29]. This is because the worst case assumption
of arbitrary behavior can also be regarded as malicious behavior of an attacker
of the system. Hence, a Byzantine-tolerant system can also be regarded as secure
against malicious attackers. However, there are several concerns that suggest care
in assuming Byzantine failures in security related settings. The main objection
is usually that the view of the world is too homogenous: component failures
are assumed to happen independently. This is usually expressed in what we
call the threshold failure model by the statement “any t out of n components
can fail”. In the original fault tolerance settings, this assumption is justifiable
because hardware failures empirically show signs of independence [3] and using
this assumption the overall failure rate of a system can be calculated from the
failure probabilities of individual components.

In the area of security, component failures due to security threats (denial-
of-service, system takeovers, web site defacements, etc.) do not happen indepen-
dently [11]. For example, if a set of replicated servers that offer a service on the
Internet all run the same operating system and a new vulnerability for this class



of systems is discovered, then all may be attacked and fail simultaneously. In
fact, the first papers on Byzantine fault tolerance where never meant to consider
malicious faults for exactly this reason.

A promising approach to deal with the problem of independent failures is
to use the concept of general adversary structures. The idea of this concept
is to explicitly consider the real-world dependencies between failures and map
these dependencies to sets of components which may fail concurrently. Instead
of stating thresholds like “any t out of n components may fail” we now say that
“either all Linux machines fail or all Windows machines but not both at the
same time”. This approach does not increase the number of tolerable failures,
but adds a degree of flexibility which is needed to model real world situations.

Of course, even without malicious attackers, various factors influence the
systems deployed today. Parties at the same physical location may fail simul-
taneously due to a power failure, and systems with the same operating-system
may be victims of the same type of vulnerability. So adversary structures do not
facilitate the calculations of failure probabilities, they merely offer a method to
develop systems that have higher assumption coverage [23] than previous systems
which are based on the threshold failure model.

In this paper, we use adversary structures to go beyond the traditional thresh-
old failure model. We argue that many published algorithms that work for the
old failure model also work for general adversary structures with only small mod-
ifications. We describe a general technique that allows to transform an algorithm
designed for the threshold model into an algorithm that works for general adver-
sary structures. The technique is based on several (partly informal) rules which
describe how the algorithm and its proof must be augmented so that general
adversary structures can be tolerated. The rules are derived from relative direct
correspondences between the threshold model and adversary structures, which
allow for the generalization of existing protocols.

We demonstrate the applicability of our approach by transforming an asyn-
chronous Byzantine-tolerant reliable broadcast protocol [6] into one that toler-
ates Byzantine adversary structures. We argue that the approach taken here is
rather general and also works for many other protocols for different problems,
e.g., Byzantine Agreement and Interactive Consistency.

Furthermore, instead of only accepting Byzantine failures, we also consider
the same type of transformation to automatically tolerate hybrid failures, a
mixture of Byzantine and (silent) crash failures, thereby increasing the fault-
tolerance of the protocol even further. More precisely, if c is the number of
crash failures, and b is the number of Byzantine failures, then the necessary and
sufficient condition is 2c + 3b < n, where n is the total number of redundant
components in the system.

The flexibility provided by the concept of adversary structures does not come
for free. In general, an adversary structure can contain the set of all subsets of
system components, resulting in an exponential number of possible failure coali-
tions. In most settings, the overhead required to identify, store and compute on
these sets can easily become the bottleneck. Therefore, as further contribution,
we discuss ways on how to efficiently manage adversary structures: We define
means to restrict the flexibility offered by the adversary structures in a meaning-
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ful way, i.e., in a way that makes the sets easier to manage, while still mirroring
failure dependencies that occur in the real world.

1.1 Related Work

Malkhi and Reiter [20] where the first to use generic sets rather than thresh-
olds to describe Byzantine-tolerant protocols in their Byzantine quorum system.
Junqueira and Marzullo [15] used a systematic approach by introducing the con-
cept of core and survivor sets to replace the usual t-out-of-n threshold. These
sets are sets of parties that satisfy certain properties required by the protocol
(such as containing at least one non-faulty party). As long as these properties
are satisfied, it does not matter how the sets are composed or what size they
are. The core and survivor sets roughly correspond to the small, big and full sets
introduced in Section 2.

We go a step further than Junqueira and Marzullo [15] by defining the mini-
mal requirements on the set of corrupted parties which is needed for our protocols
to work. This is a generalized equivalent to the typical requirement commonly
stated for Byzantine fault tolerance, namely that n > 3t+1, where t is the number
of failures and n is the overall number of parties. Once the stated requirements
are met, we can also guarantee that the sets with the necessary requirements do
exist and can easily be found.

Adversary structures as used here have first been defined for secret sharing
schemes [14, 2, 26] in cryptography where an access structure Γ defines which sets
(coalitions) of parties are allowed to combine the secret. The first usage of adver-
sary structures beyond secret sharing goes back to Fitzi, Hirt and Maurer [13,
10] and since then has occasionally been used in the area of secure multiparty
computation [12].

1.2 Paper Outline

We first present the model and some preliminary definitions in Section 2. We
then describe in detail the rules of our transformation in Section 3. We apply
these rules in Section 4 to a Byzantine-tolerant reliable broadcast protocol, yield-
ing a protocol which tolerates general hybrid adversary structures. In Section 5
we discuss the practicality of adversary structures and present mechanisms to
manage them efficiently.

2 Model and Properties

Asynchronous message-passing systems. A system consists of a set P of partici-
pants (sometimes called parties, players, processes, or processors) which commu-
nicate over reliable point-to-point channels using message passing. The system
is asynchronous, i.e., there are no bounds on message delivery delays or relative
process speeds.

Crash, Byzantine, and hybrid failures. While channels are reliable, participants
may be faulty. Two types of faulty behavior are considered: crash and Byzantine
failures. A process crashes by just ceasing operation without notice, i.e., a crashed
process stops to execute steps of its algorithm. A process becomes Byzantine if
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it behaves in an arbitrary manner. Byzantine processes are often considered to
be under the control of a malicious adversary who tries to prevent the protocol
from satisfying its specification. Formally, Byzantine behavior is a real superset of
crash behavior, however, a crashed process is usually not regarded to be under the
control of an adversary and so these two failure modes are considered orthogonal
in the area of security. A participant which fails is called faulty, dishonest or
corrupted.

We say that we operate in the crash model if participants can only fail by
crashing. Similarly, the Byzantine model assumes that participants fail only by
becoming Byzantine. We define the hybrid model as the model in which processes
can fail either by crashing or by becoming Byzantine.

Byzantine Agreement. In (binary) Byzantine Agreement, a set of parties P =
{P1, . . . , Pn} wishes to reach agreement on a single output bit value 0 or 1.
Every party Pi starts with an input bit ρi. A Byzantine Agreement protocol has
to satisfy the following three properties:

Validity If all parties are honest and have the same input value ρ, then no
honest party decides 1 − ρ.

Agreement All honest parties that decide decide the same value.

Termination All honest parties eventually decide (with probability 1).

Note that we consider here the probabilistic version of Byzantine Agreement
which for our purposes is the simplest one and avoids the impossibility result of
Fischer, Lynch and Paterson [8] on the solvability of consensus in asynchronous
systems.

Byzantine Agreement requires a certain minimal level of redundancy to be
solvable in different models. For example, in the Byzantine model it is well-known
that Byzantine Agreement requires that n > 3t + 1 where n is the total number
of parties and t is the number of parties which can be corrupted. In this paper,
such thresholds disappear. Instead, we allow the protocol designer to explicitely
define each and every set of parties that may simultaneously fail, and we define
the minimal requirements these sets need to satisfy.

Adversary structures and the predicate Q(3,2). Let P be the set of all participants.
An adversary class C = (B,C) is a pair of subsets of P, i.e., B,C ⊂ P. An
adversary class C ′ = (B′, C ′) is contained in an adversary class C = (B,C) if B ′

is a subset of B and C ′ is a subset of C. An adversary structure Z is a monotone
set of adversary classes C = (B,C), i.e., all classes contained in C are also in Z
[9].

As an example, let P = {P1, P2, P3} and consider the following structures:

Z1 = {({P1, P2}, {})}

Z2 = {({P1, P2}, {}), ({P1}, {}), ({}, {})}

Z3 = {({P1}, {}), ({}, {P2}), ({}, {P3}), ({}, {})}

The structure Z1 is not monotone and therefore no adversary structure whereas
both Z2 and Z3 are adversary structures.
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An adversary structure Z satisfies the predicate Q(3,2)(P,Z) iff

∀(B1, C1), (B2, C2), (B3, C3) ∈ Z : {B1 ∪ B2 ∪ B3 ∪ C1 ∪ C2} 6= P

Roughly speaking, the predicate Q(3,2)(P,Z) states that no three elements from
the adversary structure Z add up to the total set of participants P. Considering
the above examples, Z2 satisfies Q(3,2)(P,Z) while Z3 does not.

For an adversary structure Z and any (B,C) ∈ Z, the set B corresponds to
those participants which can become Byzantine and the set C to those which can
crash. We now show that an adversary structure Z that satisfies Q(3,2)(P,Z) is
necessary sufficient to solve Byzantine agreement in an asynchronous environ-
ment.

Theorem 1. To solve (probabilistic) asynchronous Byzantine agreement for a
set of participants P on an adversary structure Z, a necessary and sufficient
condition is that Z satisfies Q(3,2)(P,Z).

Proof. We will show only necessity here; sufficiency follows from the correct-
ness of a corresponding (randomized) protocol that has been presented by Kur-
sawe [18].

Let Z be an adversary structure and let (B1, C1), (B2, C2), (B3, C3) ∈ Z such
that P = {B1 ∪ B2 ∪ B3 ∪ C1 ∪ C2}. Now fix two honest parties P1 6∈ B1 ∪ C1

and P2 6∈ B2 ∪ C2.
Now P1 has to be able to terminate the protocol without ever having heard

from any party in B1 ∪ C1. Similarly, P2 must be able to decide without ever
having heard of any party in the set B2 ∪C2. Thus, the input-values P1 sees are
the values from the parties in the set

B2 ∪ B3 ∪ C2,

while P2 sees the input values of the parties in

B1 ∪ B3 ∪ C1.

As all parties in B1, B2, and B3 are Byzantine and might send different input
values to different parties, these sets are disjunct, and an adversary can easily
cause disagreement. ut

Theorem 1 encompasses several special cases for the non-hybrid model (where
an adversary structure is a set of subsets of P rather than a set of classes), and
the threshold model:

– If only crash failures are possible, then it is necessary and sufficient that Z
satisfies Q2(P,Z), i.e., that no two sets in Z cover P.

– If only Byzantine failures are possible, then it is necessary and sufficient that
Z satisfies Q3(P,Z), i.e., that no three sets in Z cover P.

– If Z is homogeneous, i.e., all Z contains exactly all classes (C,B) with |C| =
c, |B| = b, then 2c + 3b < n is a necessary and sufficient condition. This
corresponds to the threshold model without adversary structures, where b is
the maximum number of Byzantine failures and c is the maximum number
of crash failures.

Since many problems like Broadcast or Interactive Consistency are equivalent
to Byzantine Agreement, the predicate Q(3,2) is an essential requirement for any
useful adversary structure in crash, Byzantine or hybrid settings.

7



3 Protocol Transformation

Given a protocol in the threshold model, we ask the question, whether this pro-
tocol can be transformed into a protocol that works also for general adversary
structures. We now give a set of (partly informal) rules on how such a transfor-
mation can be achieved.

For arguing about protocols in the new setting of adversary structures, we
need to completely abstract away all thresholds. Instead of thresholds, we define
sets with certain properties that we need in the algorithm and in the proofs. As
an example, consider a line in a protocol that states:

wait for n − t votes

Taken literally, this statement demands that we wait for n− t messages to arrive.
However, the deeper semantics of this statement look more closely at the reason
why we need to wait for exactly n−t votes, i.e., this number of votes has a certain
property. For example, in an asynchronous protocol, it is the highest number of
votes we can wait for without risking a deadlock.

In this direction, if we want to argue about complicated adversary structures,
it is helpful to identify the properties of the thresholds that are used in today’s
protocols and their proofs. Once we defined the properties of the individual
thresholds we prove certain properties of the resulting concepts. These properties
can be used in the proofs of the transformed protocol. In this way, it is relatively
easy to move a protocol from the simple threshold model to a more refined failure
model.

We start by defining sets that correspond to the different thresholds usually
needed in the conventional model.

Definition 1. Let Z be an adversary structure that satisfies Q(3,2)(P,Z). A set
A ⊂ P is called a

– full set, if there exists a class (B,C) ∈ Z, such that A ⊇ P \ (B ∪ C).

– big set, if there exists two classes (B1, C1) and (B2, C2) ∈ Z, such that A ⊇
P \ (B1 ∪ C1 ∪ B2).

– small set, if there is no class (B,C) ∈ Z such that B ⊇ A.

Intuitively, A is a full set if all parties in P\A might be faulty; after receiving
messages from a full set A of parties, a party cannot expect to receive more
messages. This corresponds to the threshold n− t in our previous notation. Note
that the set of all uncorrupted parties is a full set.

Given a full set of parties, some of which are Byzantine, a big set is the set
that remains when the Byzantine parties are taken away. This corresponds to
the threshold n − 2t in our conventional notation.

Finally, a small set of parties is a set that contains at least one non-Byzantine
party. This corresponds to the threshold of t + 1.

Transformation rules. Given a protocol designed in the threshold model, consider
all protocol statements where thresholds are hard-coded to govern the execution
of the protocol. Now consider every such statement carefully and obey the fol-
lowing three rules:
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1. If the threshold to be reached is of the type “n−t” (e.g., wait for n−t messages
before advancing to the next statement), then replace this threshold with a
reference to a full set (e.g., wait for messages corresponding to any full set in
Z).

2. If the threshold to be reached is of type “n−2t” (e.g., wait for n−2t messages
before advancing to the next statement), then replace this threshold with a
reference to a big set.

3. If the threshold to be reached is of type “t + 1” (e.g., upon receiving t + 1
messages of the same type, do something), then replace this threshold with
a reference to a small set.

Transforming the proofs. We will now prove some elementary properties of above
sets. The properties will be useful when transforming the proof of a protocol in
the threshold model to the model of general adversary structures.

Lemma 1. The following statements hold:

P1. Any big set and any small set contain at least one non-Byzantine party.

P2. Two full sets always have at least one non-Byzantine party in common.

P3. Each full set of parties contains at least a big set of non-Byzantine parties.

P4. If a full set of parties does an action X, and no non-Byzantine party does
both actions X and Y , then no full set of parties does Y .

P5. Every big set is a small set.

P6. Each pair of a full set and a big set of parties intersects.

Proof. P1: Suppose statement 1 does not hold for big sets. Then there is a big
set A and a class (C,B) such that A ⊆ B. By definition, there are two classes
(C1, B1) and (C2, B2) such that A = P\(C1∪B1∪B2). Thus, P\(C1∪B1∪B2) ⊆
B, and therefore P ⊆ (C1 ∪ B1 ∪ B2 ∪ B). This contradicts the definition of a
full set. For small sets, the statement holds by definition.

P2: To see statement 2, take two full sets A1 = P \ (B1 ∪ C1) and A2 =
P \ (B2 ∪ C2). Thus,

A1 ∩A2 = P \ (B1 ∪ C1 ∪ B2 ∪ C2).

By the definition of Q(3,2)(P,Z), the remaining set is larger than any B3 that
occurs in a class (B3, C3) ∈ Z.

P3, P4, P5: Statement 3 follows directly from the definition of a full and
a big set. Statement 4 follows directly from the Statement 2, while statement 5
follows directly from statement 1.

P6: Let A ⊇ P \ (B1 ∪ C1) be a full set, where (B1, C1) ∈ Z. If A′ =
P \A ⊆ (B1 ∪ C1) is a big set, then there exist (B2, C2), (B3, C3) ∈ Z such that
A′ ⊇ P \ (B2 ∪B3 ∪C2), and thus (B1 ∪C1) ⊇ P \ (B2 ∪B3 ∪C2), which implies
P ⊆ (B1 ∪B2 ∪B3 ∪C1 ∪C2), which contradicts Q(3,2)(P,Z). In other words, if
a full set of parties is removed from the set of all parties, the remaining set is not
big, which proves the claim that each pair of a full and a big set intersects. ut

Note that in the conventional threshold model, if we assume the maximum
number of corruptions (i.e., n = 3t + 1) we get n − 2t = t + 1, i.e., there is no
difference between a big set and a small set.
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4 Case Study

4.1 Transforming Efficient Reliable Broadcast

Reliable broadcast. Reliable broadcast [4] provides a way for a party to send a
message to all other parties. It requires that all honest parties deliver the same set
of messages and that this set includes all messages broadcast by honest parties.
However, it makes no assumptions if the sender of a message is corrupted and
does not guarantee anything about the order in which messages are delivered.

More precisely, given a distinct party (the sender) with input m on a pro-
tocol instance ID , a protocol satisfies reliable broadcast if the following three
conditions are satisfied [1, 6]:

– If the sender is uncorrupted, then all the uncorrupted parties eventually com-
plete the protocol.

– If any uncorrupted party completes the protocol, then all uncorrupted parties
eventually complete the protocol

– If the uncorrupted parties complete the protocol, then they do so with a
common output m′. Furthermore, if the sender is uncorrupted, then m′ = m.

Protocol RBC

input: message m

upon initialization
sm ← 0
rm ← 0

upon (ID, j, r-broadcast, m)
send (ID, j, r-send, m) to all parties

upon receiving message (ID, j, r-send, m) from Pl for the first time
if j = l then

send (ID, j, r-echo, m) to all parties.
upon receiving message (ID, j, r-echo, m) from Pl for the first time

sm ← sm + 1
if sm = n− t and rm < t + 1 then

send (ID, j, r-ready, m) to all parties.
upon receiving message (ID, j, r-ready, m) from Pl for the first time

rm ← rm + 1
if rm = t + 1, and sm < n− t, then

send (ID, j, r-ready, m) to all parties.
else if rm = n− t,

output (ID, j, r-deliver, m)

Fig. 1. The reliable broadcast protocol RBC with sender Pj [6].

A reliable broadcast protocol. Now consider the algorithm in Figure 1. It is an
efficient reliable broadcast protocol by Cachin et al. [6]. Whenever the sender Pj

wants to broadcast a message m he triggers the local event (ID, j, r-broadcast,m).
This results in a message being sent over the reliable channels to every other
party. All parties then relay the received message to all other parties using echo
messages. Upon receiving n− t echos, a party sends a ready message to all other
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parties. Finally, upon receiving n − t ready messages, the message m is output
(delivered) by the protocol.

It is rather straightforward to verify the three conditions of reliable broadcast
for the protocol (a formal proof can be found in [18]):

– If the sender is uncorrupted, then all the uncorrupted parties receive a send
message and will thus send the corresponding echo message. Thus, at least
n − t such messages will be generated for message m, triggering each honest
party to send a ready messages. Again, n − t such messages will be created,
causing all parties to terminate.

– If any uncorrupted party completes the protocol, then it received n− t ready
messages, at least t+1 of which originate from uncorrupted parties. Those t+1
messages are thus received by all uncorrupted parties parties. On receiving
t+1 ready messages, an uncorrupted party will send out a ready message itself
(unless it already did so). Thus, n− t ready messages are sent by uncorrupted
parties, causing all uncorrupted parties to complete the protocol.

– Suppose an uncorrupted party Pi has completed the protocol with message m

and another uncorrupted party Pi′ has completed with m′ 6= m. Then Pi must
have received ready messages containing m from at least t + 1 uncorrupted
parties; the same holds for Pi′ with m′. An uncorrupted party generates a
ready message only if it has received n−t echo messages containing m or t+1
ready messages already containing m. Thus, at least one uncorrupted party
has sent a ready message containing m upon receiving n− t r-echo messages;
at most t of them are from corrupted parties. Similarly, some uncorrupted
party must have received n− t echo messages containing m′. Thus, there are
at least 2(n − t) ≥ n + t + 1 echo messages and at least n − t + 1 among
them from uncorrupted parties. But no uncorrupted party generates more
than one such message by the protocol.

If the sender is honest, then all echo messages sent by honest parties are on
m, which by the same logic implies that m is the only possible output value.

Transforming the protocol. To transform the protocol, we first identify the count-
ing variables that keep track of incoming messages. In this protocol, those vari-
ables are sm and rm. In the new protocol, these counters are replaced by sets
Sm and Rm which collect messages. Incrementing the counter is replaced by
adding the message to the corrseponding set. Although this seems to increase
the memory overhead, this is not the case in real implementations, since the
original protocol needs to keep a list of incoming messages as well. If it would
not do so, it could be fooled into counting a message from a particular sender
twice.

The next step is to transform all comparisons, such as rm = n − t. First, we
must identify what set the comparison value (i.e., the n − t) corresponds too.
This can sometimes be performed automatically, but some intelligent verification
against the protocol logic might be required here.

In our protocol, the substitution is rather simple. The value n−t corresponds
to a full set, while t + 1 corresponds to a small set. Note that since the sets are
monotone, if Cm satisfies the definition of a full set, so do all supersets of Cm.
Thus, the expression

the set C is a big set
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corresponds to the numeric expression

the value c is equal or larger than n − t.

For the protocol, this is not the expression we need, as it would trigger the
corresponding definition every time a new message arrives. We solve this by
using the term

the set C is a big set for the first time

which corresponds to:

the value c is equal to n − t

With these modifications, we obtain the new protocol, as shown in Figure 2.

Protocol HQ32-RBC

input: message m

upon initialization
Sm ← ∅
Rm ← ∅

upon (ID, j, r-broadcast, m)
send (ID, j, r-send, m) to all parties

upon receiving message (ID, j, r-send, m) from Pl for the first time
if j = l then

send (ID, j, r-echo, m) to all parties.
upon receiving message (ID, j, r-echo, m) from Pl for the first time

Sm ← S1 ∪ {m}
if S1 is a full set for the first time, and Rm is not a small set then

send (ID, j, r-ready, m) to all parties.
upon receiving message (ID, j, r-ready, m) from Pl for the first time

Rm ←R1 ∪ {m}
if Rm is a small set for the first time, and Sm is not a full set then

send (ID, j, r-ready, m) to all parties.
else if Rm is a full set then

output (ID.j, out, r-deliver, m)

Fig. 2. The transformed protocol HQ3-RBC.

Transforming the proof. Modifying the proof is somewhat more difficult, as the
counting arguments have to be matched against the properties of the different
sets. We provide only the resulting proof here, which reduces all counting argu-
ments in the original proof to the set properties shown in Lemma 1.

– If the sender is uncorrupted, then all the uncorrupted parties receive a send
messages and will thus send the corresponding echo message. Thus, a full
set of such messages will be generated for message m, triggering each honest
party to send an ready messages. Again, a full set of such messages will be
created, causing all parties to terminate.

– If any uncorrupted party completes the protocol, then it received a full set of
ready messages, a big set of which originate from uncorrupted parties (by P3).
The messages from this big set are thus received by all uncorrupted parties.
Every big set is a small set (by P5), and on receiving a small set of ready
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messages, an uncorrupted party will send out a ready message itself (unless it
already did so). Thus, all uncorrupted parties send ready messages, causing
them to complete the protocol.

– Suppose an uncorrupted party Pi has completed the protocol with message m

and another uncorrupted party Pi′ has completed with m′ 6= m. Then Pi must
have received ready messages containing m from a small set of uncorrupted
parties; the same holds for Pi′ with m′. An uncorrupted party generates a
ready message only if it has received n − t echo messages containing m or
a small set of ready messages already containing m. By P1, at least one
uncorrupted party has sent an ready message containing m upon receiving a
full set of r-echo messages. Similarly, some honest party must have received a
full set of echo messages containing m′. As an uncorrupted party sends only
one echo message, and by P2, this is a contradiction.

If the sender is honest, then all echo messages sent by honest parties are on
m, which by the same logic implies that m is the only possible output value.

4.2 Discussion

Different models. We have performed the case study in the asynchronous message
passing model with probabilistic protocol properties. We note that our method
is not tied to this model. The general technique used here can also be used with
different models such as ones with broadcast channels and ones with deterministic
protocol properties together with synchrony abstractions like failure detectors.
While the properties proved in Lemma 1 may not be sufficient to transform those
protocols, the gaps should be reasonably easy to fill.

Generalizing the Cryptographic Primitives. While most fault tolerant protocols
are based on counting arguments and thus can be relatively easily transformed,
cryptographic primitives — such as threshold signature schemes [25] or a coin
tossing scheme [5] are a little more difficult to handle. The usual technique of
proving such a protocol correct is by using the simulator technique — provided
an adversary that can break the real scheme, we can provide him with a spe-
cially constructed mock-up simulation of the scheme that the adversary cannot
distinguish from a real protocol run, but the result he obtains by breaking our
simulation can be used to solve an algebraic problem that is assumed to be hard
(e.g., computing a discrete logarithm). These proofs are significantly more sen-
sitive to changes in the model, and thus are not as easily transformed into the
adversary structure world.

One solution is to (virtually) run a separate protocol instance for each allowed
coalition. As those protocol instances are independent, they do not interfere with
each other, and the classical security proofs survive. However, the number of
allowed instances can be rather large; as they all have to run in parallel, the effort
in terms of computation and communication may quickly become unreasonable
high. Techniques to reduce the complexity by slightly limiting the flexibility, as
introduced in the next section, may help here. Nevertheless, security proofs of
cryptographic protocols do need some special attention.
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5 Managing Adversary Structures

The flexibility provided by the concept of adversary structures does not come
for free. The number of possible coalitions can be expected to be exponential in
the number of parties in most settings, the overhead required to identify, store
and compute on these sets can easily become the bottleneck. Furthermore, once
cryptographic primitives are used, any computation requiring exponential time
in one of the protocol parameters can invalidate the security proofs.

Therefore, in this section, we define means to restrict the flexibility offered
by the adversary structures in some meaningful way, i.e., in a way that makes
the sets easier to manage, while mirroring failure dependencies that occur in the
real world.

5.1 Attribute based Adversary Structures

For practical purposes, the flexibility provided by the general adversary struc-
tures might be too much; for n parties, there are 2n different sets of parties that
have to be managed. This might be both too much for theoretical proofs (if cryp-
tographic primitives are used) and for practical purposes. Therefore, one might
want to limit the flexibility of the structures a bit to increase the manageability.
To reach this, we introduce an attribute based adversary structure.

There are l attributes that characterize a party. We impose no restriction on
how the attributes are defined; in practice, it makes sense to use attributes such
that parties with the same attribute are more likely to fail together than parties
with different attributes. For example, the operating system or the geographical
location of a party would be suitable attributes.

For every attribute, there are several possible values. For example, the at-
tribute “Operating System” can have the values “Linux”, “Windows”, “OS/2”,
“MAC OS” and “BeOS”. Let ni be the number of possible values of attribute
ai. During the initialization of the system, for each attribute ai two thresholds
bi and ci are fixed, such that ni > 3bi +2ci. These parameters define the balance
between tolerable Byzantine failures and crashes. For each attribute ai, the ad-
versary may choose bi values and (byzantinely) corrupt all parties for which ai

has one of these values. Similarly, the adversary may choose ci values such that
and all parties for which ai has one of these values are subject to crash failures.

We demand that for each possible combination of attribute values, there is
one party with that combination.

Definition 2. Given n parties P1, . . . , Pn and l attributes a1, . . . , al, let Vi de-
note the set of possible values ai can have. An attribute based adversary structure
Z is the set of all classes (B,C) such that for all attributes ai, the parties in set
B cover at most bi values of ai, and the parties in the set C cover at most ci

values of ai, where 3bi + 2ci < |Vi|.

For all attributes ai, the number values of ai (i.e., |Vi|) is also denoted ni.

Lemma 2. The attribute based adversary structure Z satisfies Q(3,2)(P,Z)

Proof. Recall that an adversary structure Z over the set P of parties satisfies
Q(3,2)(P,Z) if

∀(B1, C1), (B2, C2), (B3, C3) ∈ Z : B1 ∪ B2 ∪ B3 ∪ C1 ∪ C2 6= P.
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Suppose that there is an attribute based adversary structure Z that does not
satisfy Q(3,2)(P,Z). Then, there are sets (B1, C1), (B2, C2), (B3, C3) such that
B1 ∪ B2 ∪ B3 ∪ C1 ∪ C2 = P. Fix an attribute ai. Now each of the sets B1, B2

and B3 covers at most bi values of the attribute, while each of the sets C1 and
C2 covers at most ci of those values. As the total number ni of possible values
for ai is bigger than 3bj + 2cj , this implies that there is some value of ai that is
not covered by the parties in B1 ∪ B2 ∪ B3 ∪ C1 ∪ C2.

As this holds for all attributes a1, . . . , al, and for each combination of attribute
values there is some party for which this combination applies, there is at least
one party that is not in B1 ∪ B2 ∪ B3 ∪ C1 ∪ C2, which is a contradiction. ut

As an example, consider a distributed system with two attributes. The at-
tribute a1 is the operating system with the values

V1 = {OS1, OS2, OS3, OS4}

and the attribute a2 is the geographical location with the values

V2 = {Aland,Bkistan,United C, Dien}.

Aland Bkistan United C Dien

OS1 P1 P2 P3, P4, P5 P6

OS2 P7 P8 P9 P10, P11

OS3 P12 P13 P14 P15

OS4 P16 P17 P18 P19

Table 1. Example attribute-based adversary structure.

Assume there are 19 parties with the attributes given in Table 1. Let b1 =
b2 = 1, c1 = c2 = 0. The class (B,C) = ({P1, P9, P13}, ∅) is not an element of
Z, as it is not possible for the adversary to corrupt these parties by corrupting
less than two locations and less than two operating systems. The class (B,C) =
({P3, P4, P5, P7, P8, P9, P10, P11, P14, P18}, ∅) however is in Z, as the adversary
can corrupt these parties by corrupting one out of four locations (being United
C) and one out of four operating systems (being OS 2).

5.2 Probability Based Structures

In a first iteration, this approach allows us to weigh individual parties; each
party gets an individual failure probability, and the traditional n > 3t is replaces
by a fixed probability p with which the system is allowed to fail. The adversary
coalitions are then simply all maximal sets such that the probability of all parties
in that set failing is smaller than p.

While the sets can be defined automatically in a precomputation step, their
number may still be rather large; it is not yet clear if an easy optimization exists
that allows for an efficient way to model those sets.

Also, this approach is a huge step backwards in that failure dependencies
are ignored. It is of course possible to add those to the computation of the sets.
However, this leads to a potentially exponential set of dependencies (as each
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parties failure probability may depend on all other partys’ failures). Thus, we
merely get a different, potentially more suitable definition of out sets, but may
still be left with a large management-overhead.
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1987-06 ∗ Werner Damm, Gert Döhmen: Specifying Distributed Computer Archi-

tectures in AADL*

1987-07 ∗ Gregor Engels, Claus Lewerentz, Wilhelm Schäfer: Graph Grammar En-
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1994-11 A. Schürr: PROGRES, A Visual Language and Environment for PRO-

gramming with Graph REwrite Systems
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2003-08 Jürgen Giesl, René Thiemann, Peter Schneider-Kamp, Stephan Falke:

Mechanizing Dependency Pairs

2004-01 ∗ Fachgruppe Informatik: Jahresbericht 2003

31



2004-02 Benedikt Bollig, Martin Leucker: Message-Passing Automata are expres-

sively equivalent to EMSO logic

2004-03 Delia Kesner, Femke van Raamsdonk, Joe Wells (eds.): HOR 2004 – 2nd

International Workshop on Higher-Order Rewriting

2004-04 Slim Abdennadher, Christophe Ringeissen (eds.): RULE 04 – Fifth In-

ternational Workshop on Rule-Based Programming

2004-05 Herbert Kuchen (ed.): WFLP 04 – 13th International Workshop on Func-

tional and (Constraint) Logic Programming

2004-06 Sergio Antoy, Yoshihito Toyama (eds.): WRS 04 – 4th International

Workshop on Reduction Strategies in Rewriting and Programming

2004-07 Michael Codish, Aart Middeldorp (eds.): WST 04 – 7th International

Workshop on Termination

2004-08 Klaus Indermark, Thomas Noll: Algebraic Correctness Proofs for Com-

piling Recursive Function Definitions with Strictness Information

2004-09 Joachim Kneis, Daniel Mölle, Stefan Richter, Peter Rossmanith: Param-

eterized Power Domination Complexity

2004-10 Zinaida Benenson, Felix C. Gärtner, Dogan Kesdogan: Secure Multi-
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