
Aachen
Department of Computer Science

Technical Report

Byzantine Fault Tolerance on General

Hybrid Adversary Structures

Klaus Kursawe and Felix C. Freiling

ISSN 0935–3232 · Aachener Informatik Berichte · AIB-2005-09

RWTH Aachen · Department of Computer Science · April 2005

The publications of the Department of Computer Science of RWTH Aachen
University are in general accessible through the World Wide Web.

http://aib.informatik.rwth-aachen.de/

Byzantine Fault Tolerance

on General Hybrid Adversary Structures

Klaus Kursawe1 and Felix C. Freiling2

1 Dept. Elektotechniek ESAT - COSIC, Kasteelpark Arenberg 10, B 3001 Heverlee, Belgium
2 Lehr- und Forschungsgebiet Informatik 4, RWTH Aachen, Germany

Abstract. Adversary structures are a generalization of the classical “at most
t-out-of-n” threshold failure model which is used in many published Byzantine-
tolerant protocols. An adversary structure basically lists all coalitions of parties
whose corruption the protocol should tolerate. Using adversary structures it is
possible to encode dependent failure models, such as “either all Linux machines
fail or all Windows machines but not both at the same time”. We describe a
general technique that allows to transform an algorithm designed for the thresh-
old model into an algorithm that works for general adversary structures. Our
technique is based on several (partly informal) rules which describe how the algo-
rithm and its proof must be augmented so that general adversary structures can
be tolerated. We demonstrate the applicability of our approach by transforming
an asynchronous Byzantine-tolerant reliable broadcast protocol into one that tol-
erates Byzantine adversary structures. We also consider similar transformations
for hybrid failures (combinations of different fault models) and discuss ways to
map adversary structures to the real world and manage them efficiently.

1 Introduction

The Byzantine failure model [22, 19] allows faulty components to behave in an
arbitrary manner. It was introduced as a worst-case failure mode for components
in safety-critical computing systems and is used as the basis for designs in aircraft
control [27] and the control system of the International Space Station [21]. There,
Byzantine Agreement protocols maintain consistency of the redundant computer
systems which run the control software.

Recently, we are seeing an increasing use of the Byzantine failure model in the
area of security [24, 16, 5, 7, 17, 28, 29]. This is because the worst case assumption
of arbitrary behavior can also be regarded as malicious behavior of an attacker
of the system. Hence, a Byzantine-tolerant system can also be regarded as secure
against malicious attackers. However, there are several concerns that suggest care
in assuming Byzantine failures in security related settings. The main objection
is usually that the view of the world is too homogenous: component failures
are assumed to happen independently. This is usually expressed in what we
call the threshold failure model by the statement “any t out of n components
can fail”. In the original fault tolerance settings, this assumption is justifiable
because hardware failures empirically show signs of independence [3] and using
this assumption the overall failure rate of a system can be calculated from the
failure probabilities of individual components.

In the area of security, component failures due to security threats (denial-
of-service, system takeovers, web site defacements, etc.) do not happen indepen-
dently [11]. For example, if a set of replicated servers that offer a service on the
Internet all run the same operating system and a new vulnerability for this class

of systems is discovered, then all may be attacked and fail simultaneously. In
fact, the first papers on Byzantine fault tolerance where never meant to consider
malicious faults for exactly this reason.

A promising approach to deal with the problem of independent failures is
to use the concept of general adversary structures. The idea of this concept
is to explicitly consider the real-world dependencies between failures and map
these dependencies to sets of components which may fail concurrently. Instead
of stating thresholds like “any t out of n components may fail” we now say that
“either all Linux machines fail or all Windows machines but not both at the
same time”. This approach does not increase the number of tolerable failures,
but adds a degree of flexibility which is needed to model real world situations.

Of course, even without malicious attackers, various factors influence the
systems deployed today. Parties at the same physical location may fail simul-
taneously due to a power failure, and systems with the same operating-system
may be victims of the same type of vulnerability. So adversary structures do not
facilitate the calculations of failure probabilities, they merely offer a method to
develop systems that have higher assumption coverage [23] than previous systems
which are based on the threshold failure model.

In this paper, we use adversary structures to go beyond the traditional thresh-
old failure model. We argue that many published algorithms that work for the
old failure model also work for general adversary structures with only small mod-
ifications. We describe a general technique that allows to transform an algorithm
designed for the threshold model into an algorithm that works for general adver-
sary structures. The technique is based on several (partly informal) rules which
describe how the algorithm and its proof must be augmented so that general
adversary structures can be tolerated. The rules are derived from relative direct
correspondences between the threshold model and adversary structures, which
allow for the generalization of existing protocols.

We demonstrate the applicability of our approach by transforming an asyn-
chronous Byzantine-tolerant reliable broadcast protocol [6] into one that toler-
ates Byzantine adversary structures. We argue that the approach taken here is
rather general and also works for many other protocols for different problems,
e.g., Byzantine Agreement and Interactive Consistency.

Furthermore, instead of only accepting Byzantine failures, we also consider
the same type of transformation to automatically tolerate hybrid failures, a
mixture of Byzantine and (silent) crash failures, thereby increasing the fault-
tolerance of the protocol even further. More precisely, if c is the number of
crash failures, and b is the number of Byzantine failures, then the necessary and
sufficient condition is 2c + 3b < n, where n is the total number of redundant
components in the system.

The flexibility provided by the concept of adversary structures does not come
for free. In general, an adversary structure can contain the set of all subsets of
system components, resulting in an exponential number of possible failure coali-
tions. In most settings, the overhead required to identify, store and compute on
these sets can easily become the bottleneck. Therefore, as further contribution,
we discuss ways on how to efficiently manage adversary structures: We define
means to restrict the flexibility offered by the adversary structures in a meaning-

4

ful way, i.e., in a way that makes the sets easier to manage, while still mirroring
failure dependencies that occur in the real world.

1.1 Related Work

Malkhi and Reiter [20] where the first to use generic sets rather than thresh-
olds to describe Byzantine-tolerant protocols in their Byzantine quorum system.
Junqueira and Marzullo [15] used a systematic approach by introducing the con-
cept of core and survivor sets to replace the usual t-out-of-n threshold. These
sets are sets of parties that satisfy certain properties required by the protocol
(such as containing at least one non-faulty party). As long as these properties
are satisfied, it does not matter how the sets are composed or what size they
are. The core and survivor sets roughly correspond to the small, big and full sets
introduced in Section 2.

We go a step further than Junqueira and Marzullo [15] by defining the mini-
mal requirements on the set of corrupted parties which is needed for our protocols
to work. This is a generalized equivalent to the typical requirement commonly
stated for Byzantine fault tolerance, namely that n > 3t+1, where t is the number
of failures and n is the overall number of parties. Once the stated requirements
are met, we can also guarantee that the sets with the necessary requirements do
exist and can easily be found.

Adversary structures as used here have first been defined for secret sharing
schemes [14, 2, 26] in cryptography where an access structure Γ defines which sets
(coalitions) of parties are allowed to combine the secret. The first usage of adver-
sary structures beyond secret sharing goes back to Fitzi, Hirt and Maurer [13,
10] and since then has occasionally been used in the area of secure multiparty
computation [12].

1.2 Paper Outline

We first present the model and some preliminary definitions in Section 2. We
then describe in detail the rules of our transformation in Section 3. We apply
these rules in Section 4 to a Byzantine-tolerant reliable broadcast protocol, yield-
ing a protocol which tolerates general hybrid adversary structures. In Section 5
we discuss the practicality of adversary structures and present mechanisms to
manage them efficiently.

2 Model and Properties

Asynchronous message-passing systems. A system consists of a set P of partici-
pants (sometimes called parties, players, processes, or processors) which commu-
nicate over reliable point-to-point channels using message passing. The system
is asynchronous, i.e., there are no bounds on message delivery delays or relative
process speeds.

Crash, Byzantine, and hybrid failures. While channels are reliable, participants
may be faulty. Two types of faulty behavior are considered: crash and Byzantine
failures. A process crashes by just ceasing operation without notice, i.e., a crashed
process stops to execute steps of its algorithm. A process becomes Byzantine if

5

it behaves in an arbitrary manner. Byzantine processes are often considered to
be under the control of a malicious adversary who tries to prevent the protocol
from satisfying its specification. Formally, Byzantine behavior is a real superset of
crash behavior, however, a crashed process is usually not regarded to be under the
control of an adversary and so these two failure modes are considered orthogonal
in the area of security. A participant which fails is called faulty, dishonest or
corrupted.

We say that we operate in the crash model if participants can only fail by
crashing. Similarly, the Byzantine model assumes that participants fail only by
becoming Byzantine. We define the hybrid model as the model in which processes
can fail either by crashing or by becoming Byzantine.

Byzantine Agreement. In (binary) Byzantine Agreement, a set of parties P =
{P1, . . . , Pn} wishes to reach agreement on a single output bit value 0 or 1.
Every party Pi starts with an input bit ρi. A Byzantine Agreement protocol has
to satisfy the following three properties:

Validity If all parties are honest and have the same input value ρ, then no
honest party decides 1 − ρ.

Agreement All honest parties that decide decide the same value.

Termination All honest parties eventually decide (with probability 1).

Note that we consider here the probabilistic version of Byzantine Agreement
which for our purposes is the simplest one and avoids the impossibility result of
Fischer, Lynch and Paterson [8] on the solvability of consensus in asynchronous
systems.

Byzantine Agreement requires a certain minimal level of redundancy to be
solvable in different models. For example, in the Byzantine model it is well-known
that Byzantine Agreement requires that n > 3t + 1 where n is the total number
of parties and t is the number of parties which can be corrupted. In this paper,
such thresholds disappear. Instead, we allow the protocol designer to explicitely
define each and every set of parties that may simultaneously fail, and we define
the minimal requirements these sets need to satisfy.

Adversary structures and the predicate Q(3,2). Let P be the set of all participants.
An adversary class C = (B,C) is a pair of subsets of P, i.e., B,C ⊂ P. An
adversary class C ′ = (B′, C ′) is contained in an adversary class C = (B,C) if B ′

is a subset of B and C ′ is a subset of C. An adversary structure Z is a monotone
set of adversary classes C = (B,C), i.e., all classes contained in C are also in Z
[9].

As an example, let P = {P1, P2, P3} and consider the following structures:

Z1 = {({P1, P2}, {})}

Z2 = {({P1, P2}, {}), ({P1}, {}), ({}, {})}

Z3 = {({P1}, {}), ({}, {P2}), ({}, {P3}), ({}, {})}

The structure Z1 is not monotone and therefore no adversary structure whereas
both Z2 and Z3 are adversary structures.

6

An adversary structure Z satisfies the predicate Q(3,2)(P,Z) iff

∀(B1, C1), (B2, C2), (B3, C3) ∈ Z : {B1 ∪ B2 ∪ B3 ∪ C1 ∪ C2} 6= P

Roughly speaking, the predicate Q(3,2)(P,Z) states that no three elements from
the adversary structure Z add up to the total set of participants P. Considering
the above examples, Z2 satisfies Q(3,2)(P,Z) while Z3 does not.

For an adversary structure Z and any (B,C) ∈ Z, the set B corresponds to
those participants which can become Byzantine and the set C to those which can
crash. We now show that an adversary structure Z that satisfies Q(3,2)(P,Z) is
necessary sufficient to solve Byzantine agreement in an asynchronous environ-
ment.

Theorem 1. To solve (probabilistic) asynchronous Byzantine agreement for a
set of participants P on an adversary structure Z, a necessary and sufficient
condition is that Z satisfies Q(3,2)(P,Z).

Proof. We will show only necessity here; sufficiency follows from the correct-
ness of a corresponding (randomized) protocol that has been presented by Kur-
sawe [18].

Let Z be an adversary structure and let (B1, C1), (B2, C2), (B3, C3) ∈ Z such
that P = {B1 ∪ B2 ∪ B3 ∪ C1 ∪ C2}. Now fix two honest parties P1 6∈ B1 ∪ C1

and P2 6∈ B2 ∪ C2.
Now P1 has to be able to terminate the protocol without ever having heard

from any party in B1 ∪ C1. Similarly, P2 must be able to decide without ever
having heard of any party in the set B2 ∪C2. Thus, the input-values P1 sees are
the values from the parties in the set

B2 ∪ B3 ∪ C2,

while P2 sees the input values of the parties in

B1 ∪ B3 ∪ C1.

As all parties in B1, B2, and B3 are Byzantine and might send different input
values to different parties, these sets are disjunct, and an adversary can easily
cause disagreement. ut

Theorem 1 encompasses several special cases for the non-hybrid model (where
an adversary structure is a set of subsets of P rather than a set of classes), and
the threshold model:

– If only crash failures are possible, then it is necessary and sufficient that Z
satisfies Q2(P,Z), i.e., that no two sets in Z cover P.

– If only Byzantine failures are possible, then it is necessary and sufficient that
Z satisfies Q3(P,Z), i.e., that no three sets in Z cover P.

– If Z is homogeneous, i.e., all Z contains exactly all classes (C,B) with |C| =
c, |B| = b, then 2c + 3b < n is a necessary and sufficient condition. This
corresponds to the threshold model without adversary structures, where b is
the maximum number of Byzantine failures and c is the maximum number
of crash failures.

Since many problems like Broadcast or Interactive Consistency are equivalent
to Byzantine Agreement, the predicate Q(3,2) is an essential requirement for any
useful adversary structure in crash, Byzantine or hybrid settings.

7

3 Protocol Transformation

Given a protocol in the threshold model, we ask the question, whether this pro-
tocol can be transformed into a protocol that works also for general adversary
structures. We now give a set of (partly informal) rules on how such a transfor-
mation can be achieved.

For arguing about protocols in the new setting of adversary structures, we
need to completely abstract away all thresholds. Instead of thresholds, we define
sets with certain properties that we need in the algorithm and in the proofs. As
an example, consider a line in a protocol that states:

wait for n − t votes

Taken literally, this statement demands that we wait for n− t messages to arrive.
However, the deeper semantics of this statement look more closely at the reason
why we need to wait for exactly n−t votes, i.e., this number of votes has a certain
property. For example, in an asynchronous protocol, it is the highest number of
votes we can wait for without risking a deadlock.

In this direction, if we want to argue about complicated adversary structures,
it is helpful to identify the properties of the thresholds that are used in today’s
protocols and their proofs. Once we defined the properties of the individual
thresholds we prove certain properties of the resulting concepts. These properties
can be used in the proofs of the transformed protocol. In this way, it is relatively
easy to move a protocol from the simple threshold model to a more refined failure
model.

We start by defining sets that correspond to the different thresholds usually
needed in the conventional model.

Definition 1. Let Z be an adversary structure that satisfies Q(3,2)(P,Z). A set
A ⊂ P is called a

– full set, if there exists a class (B,C) ∈ Z, such that A ⊇ P \ (B ∪ C).

– big set, if there exists two classes (B1, C1) and (B2, C2) ∈ Z, such that A ⊇
P \ (B1 ∪ C1 ∪ B2).

– small set, if there is no class (B,C) ∈ Z such that B ⊇ A.

Intuitively, A is a full set if all parties in P\A might be faulty; after receiving
messages from a full set A of parties, a party cannot expect to receive more
messages. This corresponds to the threshold n− t in our previous notation. Note
that the set of all uncorrupted parties is a full set.

Given a full set of parties, some of which are Byzantine, a big set is the set
that remains when the Byzantine parties are taken away. This corresponds to
the threshold n − 2t in our conventional notation.

Finally, a small set of parties is a set that contains at least one non-Byzantine
party. This corresponds to the threshold of t + 1.

Transformation rules. Given a protocol designed in the threshold model, consider
all protocol statements where thresholds are hard-coded to govern the execution
of the protocol. Now consider every such statement carefully and obey the fol-
lowing three rules:

8

1. If the threshold to be reached is of the type “n−t” (e.g., wait for n−t messages
before advancing to the next statement), then replace this threshold with a
reference to a full set (e.g., wait for messages corresponding to any full set in
Z).

2. If the threshold to be reached is of type “n−2t” (e.g., wait for n−2t messages
before advancing to the next statement), then replace this threshold with a
reference to a big set.

3. If the threshold to be reached is of type “t + 1” (e.g., upon receiving t + 1
messages of the same type, do something), then replace this threshold with
a reference to a small set.

Transforming the proofs. We will now prove some elementary properties of above
sets. The properties will be useful when transforming the proof of a protocol in
the threshold model to the model of general adversary structures.

Lemma 1. The following statements hold:

P1. Any big set and any small set contain at least one non-Byzantine party.

P2. Two full sets always have at least one non-Byzantine party in common.

P3. Each full set of parties contains at least a big set of non-Byzantine parties.

P4. If a full set of parties does an action X, and no non-Byzantine party does
both actions X and Y , then no full set of parties does Y .

P5. Every big set is a small set.

P6. Each pair of a full set and a big set of parties intersects.

Proof. P1: Suppose statement 1 does not hold for big sets. Then there is a big
set A and a class (C,B) such that A ⊆ B. By definition, there are two classes
(C1, B1) and (C2, B2) such that A = P\(C1∪B1∪B2). Thus, P\(C1∪B1∪B2) ⊆
B, and therefore P ⊆ (C1 ∪ B1 ∪ B2 ∪ B). This contradicts the definition of a
full set. For small sets, the statement holds by definition.

P2: To see statement 2, take two full sets A1 = P \ (B1 ∪ C1) and A2 =
P \ (B2 ∪ C2). Thus,

A1 ∩A2 = P \ (B1 ∪ C1 ∪ B2 ∪ C2).

By the definition of Q(3,2)(P,Z), the remaining set is larger than any B3 that
occurs in a class (B3, C3) ∈ Z.

P3, P4, P5: Statement 3 follows directly from the definition of a full and
a big set. Statement 4 follows directly from the Statement 2, while statement 5
follows directly from statement 1.

P6: Let A ⊇ P \ (B1 ∪ C1) be a full set, where (B1, C1) ∈ Z. If A′ =
P \A ⊆ (B1 ∪ C1) is a big set, then there exist (B2, C2), (B3, C3) ∈ Z such that
A′ ⊇ P \ (B2 ∪B3 ∪C2), and thus (B1 ∪C1) ⊇ P \ (B2 ∪B3 ∪C2), which implies
P ⊆ (B1 ∪B2 ∪B3 ∪C1 ∪C2), which contradicts Q(3,2)(P,Z). In other words, if
a full set of parties is removed from the set of all parties, the remaining set is not
big, which proves the claim that each pair of a full and a big set intersects. ut

Note that in the conventional threshold model, if we assume the maximum
number of corruptions (i.e., n = 3t + 1) we get n − 2t = t + 1, i.e., there is no
difference between a big set and a small set.

9

4 Case Study

4.1 Transforming Efficient Reliable Broadcast

Reliable broadcast. Reliable broadcast [4] provides a way for a party to send a
message to all other parties. It requires that all honest parties deliver the same set
of messages and that this set includes all messages broadcast by honest parties.
However, it makes no assumptions if the sender of a message is corrupted and
does not guarantee anything about the order in which messages are delivered.

More precisely, given a distinct party (the sender) with input m on a pro-
tocol instance ID , a protocol satisfies reliable broadcast if the following three
conditions are satisfied [1, 6]:

– If the sender is uncorrupted, then all the uncorrupted parties eventually com-
plete the protocol.

– If any uncorrupted party completes the protocol, then all uncorrupted parties
eventually complete the protocol

– If the uncorrupted parties complete the protocol, then they do so with a
common output m′. Furthermore, if the sender is uncorrupted, then m′ = m.

Protocol RBC

input: message m

upon initialization
sm ← 0
rm ← 0

upon (ID, j, r-broadcast, m)
send (ID, j, r-send, m) to all parties

upon receiving message (ID, j, r-send, m) from Pl for the first time
if j = l then

send (ID, j, r-echo, m) to all parties.
upon receiving message (ID, j, r-echo, m) from Pl for the first time

sm ← sm + 1
if sm = n− t and rm < t + 1 then

send (ID, j, r-ready, m) to all parties.
upon receiving message (ID, j, r-ready, m) from Pl for the first time

rm ← rm + 1
if rm = t + 1, and sm < n− t, then

send (ID, j, r-ready, m) to all parties.
else if rm = n− t,

output (ID, j, r-deliver, m)

Fig. 1. The reliable broadcast protocol RBC with sender Pj [6].

A reliable broadcast protocol. Now consider the algorithm in Figure 1. It is an
efficient reliable broadcast protocol by Cachin et al. [6]. Whenever the sender Pj

wants to broadcast a message m he triggers the local event (ID, j, r-broadcast,m).
This results in a message being sent over the reliable channels to every other
party. All parties then relay the received message to all other parties using echo
messages. Upon receiving n− t echos, a party sends a ready message to all other

10

parties. Finally, upon receiving n − t ready messages, the message m is output
(delivered) by the protocol.

It is rather straightforward to verify the three conditions of reliable broadcast
for the protocol (a formal proof can be found in [18]):

– If the sender is uncorrupted, then all the uncorrupted parties receive a send
message and will thus send the corresponding echo message. Thus, at least
n − t such messages will be generated for message m, triggering each honest
party to send a ready messages. Again, n − t such messages will be created,
causing all parties to terminate.

– If any uncorrupted party completes the protocol, then it received n− t ready
messages, at least t+1 of which originate from uncorrupted parties. Those t+1
messages are thus received by all uncorrupted parties parties. On receiving
t+1 ready messages, an uncorrupted party will send out a ready message itself
(unless it already did so). Thus, n− t ready messages are sent by uncorrupted
parties, causing all uncorrupted parties to complete the protocol.

– Suppose an uncorrupted party Pi has completed the protocol with message m

and another uncorrupted party Pi′ has completed with m′ 6= m. Then Pi must
have received ready messages containing m from at least t + 1 uncorrupted
parties; the same holds for Pi′ with m′. An uncorrupted party generates a
ready message only if it has received n−t echo messages containing m or t+1
ready messages already containing m. Thus, at least one uncorrupted party
has sent a ready message containing m upon receiving n− t r-echo messages;
at most t of them are from corrupted parties. Similarly, some uncorrupted
party must have received n− t echo messages containing m′. Thus, there are
at least 2(n − t) ≥ n + t + 1 echo messages and at least n − t + 1 among
them from uncorrupted parties. But no uncorrupted party generates more
than one such message by the protocol.

If the sender is honest, then all echo messages sent by honest parties are on
m, which by the same logic implies that m is the only possible output value.

Transforming the protocol. To transform the protocol, we first identify the count-
ing variables that keep track of incoming messages. In this protocol, those vari-
ables are sm and rm. In the new protocol, these counters are replaced by sets
Sm and Rm which collect messages. Incrementing the counter is replaced by
adding the message to the corrseponding set. Although this seems to increase
the memory overhead, this is not the case in real implementations, since the
original protocol needs to keep a list of incoming messages as well. If it would
not do so, it could be fooled into counting a message from a particular sender
twice.

The next step is to transform all comparisons, such as rm = n − t. First, we
must identify what set the comparison value (i.e., the n − t) corresponds too.
This can sometimes be performed automatically, but some intelligent verification
against the protocol logic might be required here.

In our protocol, the substitution is rather simple. The value n−t corresponds
to a full set, while t + 1 corresponds to a small set. Note that since the sets are
monotone, if Cm satisfies the definition of a full set, so do all supersets of Cm.
Thus, the expression

the set C is a big set

11

corresponds to the numeric expression

the value c is equal or larger than n − t.

For the protocol, this is not the expression we need, as it would trigger the
corresponding definition every time a new message arrives. We solve this by
using the term

the set C is a big set for the first time

which corresponds to:

the value c is equal to n − t

With these modifications, we obtain the new protocol, as shown in Figure 2.

Protocol HQ32-RBC

input: message m

upon initialization
Sm ← ∅
Rm ← ∅

upon (ID, j, r-broadcast, m)
send (ID, j, r-send, m) to all parties

upon receiving message (ID, j, r-send, m) from Pl for the first time
if j = l then

send (ID, j, r-echo, m) to all parties.
upon receiving message (ID, j, r-echo, m) from Pl for the first time

Sm ← S1 ∪ {m}
if S1 is a full set for the first time, and Rm is not a small set then

send (ID, j, r-ready, m) to all parties.
upon receiving message (ID, j, r-ready, m) from Pl for the first time

Rm ←R1 ∪ {m}
if Rm is a small set for the first time, and Sm is not a full set then

send (ID, j, r-ready, m) to all parties.
else if Rm is a full set then

output (ID.j, out, r-deliver, m)

Fig. 2. The transformed protocol HQ3-RBC.

Transforming the proof. Modifying the proof is somewhat more difficult, as the
counting arguments have to be matched against the properties of the different
sets. We provide only the resulting proof here, which reduces all counting argu-
ments in the original proof to the set properties shown in Lemma 1.

– If the sender is uncorrupted, then all the uncorrupted parties receive a send
messages and will thus send the corresponding echo message. Thus, a full
set of such messages will be generated for message m, triggering each honest
party to send an ready messages. Again, a full set of such messages will be
created, causing all parties to terminate.

– If any uncorrupted party completes the protocol, then it received a full set of
ready messages, a big set of which originate from uncorrupted parties (by P3).
The messages from this big set are thus received by all uncorrupted parties.
Every big set is a small set (by P5), and on receiving a small set of ready

12

messages, an uncorrupted party will send out a ready message itself (unless it
already did so). Thus, all uncorrupted parties send ready messages, causing
them to complete the protocol.

– Suppose an uncorrupted party Pi has completed the protocol with message m

and another uncorrupted party Pi′ has completed with m′ 6= m. Then Pi must
have received ready messages containing m from a small set of uncorrupted
parties; the same holds for Pi′ with m′. An uncorrupted party generates a
ready message only if it has received n − t echo messages containing m or
a small set of ready messages already containing m. By P1, at least one
uncorrupted party has sent an ready message containing m upon receiving a
full set of r-echo messages. Similarly, some honest party must have received a
full set of echo messages containing m′. As an uncorrupted party sends only
one echo message, and by P2, this is a contradiction.

If the sender is honest, then all echo messages sent by honest parties are on
m, which by the same logic implies that m is the only possible output value.

4.2 Discussion

Different models. We have performed the case study in the asynchronous message
passing model with probabilistic protocol properties. We note that our method
is not tied to this model. The general technique used here can also be used with
different models such as ones with broadcast channels and ones with deterministic
protocol properties together with synchrony abstractions like failure detectors.
While the properties proved in Lemma 1 may not be sufficient to transform those
protocols, the gaps should be reasonably easy to fill.

Generalizing the Cryptographic Primitives. While most fault tolerant protocols
are based on counting arguments and thus can be relatively easily transformed,
cryptographic primitives — such as threshold signature schemes [25] or a coin
tossing scheme [5] are a little more difficult to handle. The usual technique of
proving such a protocol correct is by using the simulator technique — provided
an adversary that can break the real scheme, we can provide him with a spe-
cially constructed mock-up simulation of the scheme that the adversary cannot
distinguish from a real protocol run, but the result he obtains by breaking our
simulation can be used to solve an algebraic problem that is assumed to be hard
(e.g., computing a discrete logarithm). These proofs are significantly more sen-
sitive to changes in the model, and thus are not as easily transformed into the
adversary structure world.

One solution is to (virtually) run a separate protocol instance for each allowed
coalition. As those protocol instances are independent, they do not interfere with
each other, and the classical security proofs survive. However, the number of
allowed instances can be rather large; as they all have to run in parallel, the effort
in terms of computation and communication may quickly become unreasonable
high. Techniques to reduce the complexity by slightly limiting the flexibility, as
introduced in the next section, may help here. Nevertheless, security proofs of
cryptographic protocols do need some special attention.

13

5 Managing Adversary Structures

The flexibility provided by the concept of adversary structures does not come
for free. The number of possible coalitions can be expected to be exponential in
the number of parties in most settings, the overhead required to identify, store
and compute on these sets can easily become the bottleneck. Furthermore, once
cryptographic primitives are used, any computation requiring exponential time
in one of the protocol parameters can invalidate the security proofs.

Therefore, in this section, we define means to restrict the flexibility offered
by the adversary structures in some meaningful way, i.e., in a way that makes
the sets easier to manage, while mirroring failure dependencies that occur in the
real world.

5.1 Attribute based Adversary Structures

For practical purposes, the flexibility provided by the general adversary struc-
tures might be too much; for n parties, there are 2n different sets of parties that
have to be managed. This might be both too much for theoretical proofs (if cryp-
tographic primitives are used) and for practical purposes. Therefore, one might
want to limit the flexibility of the structures a bit to increase the manageability.
To reach this, we introduce an attribute based adversary structure.

There are l attributes that characterize a party. We impose no restriction on
how the attributes are defined; in practice, it makes sense to use attributes such
that parties with the same attribute are more likely to fail together than parties
with different attributes. For example, the operating system or the geographical
location of a party would be suitable attributes.

For every attribute, there are several possible values. For example, the at-
tribute “Operating System” can have the values “Linux”, “Windows”, “OS/2”,
“MAC OS” and “BeOS”. Let ni be the number of possible values of attribute
ai. During the initialization of the system, for each attribute ai two thresholds
bi and ci are fixed, such that ni > 3bi +2ci. These parameters define the balance
between tolerable Byzantine failures and crashes. For each attribute ai, the ad-
versary may choose bi values and (byzantinely) corrupt all parties for which ai

has one of these values. Similarly, the adversary may choose ci values such that
and all parties for which ai has one of these values are subject to crash failures.

We demand that for each possible combination of attribute values, there is
one party with that combination.

Definition 2. Given n parties P1, . . . , Pn and l attributes a1, . . . , al, let Vi de-
note the set of possible values ai can have. An attribute based adversary structure
Z is the set of all classes (B,C) such that for all attributes ai, the parties in set
B cover at most bi values of ai, and the parties in the set C cover at most ci

values of ai, where 3bi + 2ci < |Vi|.

For all attributes ai, the number values of ai (i.e., |Vi|) is also denoted ni.

Lemma 2. The attribute based adversary structure Z satisfies Q(3,2)(P,Z)

Proof. Recall that an adversary structure Z over the set P of parties satisfies
Q(3,2)(P,Z) if

∀(B1, C1), (B2, C2), (B3, C3) ∈ Z : B1 ∪ B2 ∪ B3 ∪ C1 ∪ C2 6= P.

14

Suppose that there is an attribute based adversary structure Z that does not
satisfy Q(3,2)(P,Z). Then, there are sets (B1, C1), (B2, C2), (B3, C3) such that
B1 ∪ B2 ∪ B3 ∪ C1 ∪ C2 = P. Fix an attribute ai. Now each of the sets B1, B2

and B3 covers at most bi values of the attribute, while each of the sets C1 and
C2 covers at most ci of those values. As the total number ni of possible values
for ai is bigger than 3bj + 2cj , this implies that there is some value of ai that is
not covered by the parties in B1 ∪ B2 ∪ B3 ∪ C1 ∪ C2.

As this holds for all attributes a1, . . . , al, and for each combination of attribute
values there is some party for which this combination applies, there is at least
one party that is not in B1 ∪ B2 ∪ B3 ∪ C1 ∪ C2, which is a contradiction. ut

As an example, consider a distributed system with two attributes. The at-
tribute a1 is the operating system with the values

V1 = {OS1, OS2, OS3, OS4}

and the attribute a2 is the geographical location with the values

V2 = {Aland,Bkistan,United C, Dien}.

Aland Bkistan United C Dien

OS1 P1 P2 P3, P4, P5 P6

OS2 P7 P8 P9 P10, P11

OS3 P12 P13 P14 P15

OS4 P16 P17 P18 P19

Table 1. Example attribute-based adversary structure.

Assume there are 19 parties with the attributes given in Table 1. Let b1 =
b2 = 1, c1 = c2 = 0. The class (B,C) = ({P1, P9, P13}, ∅) is not an element of
Z, as it is not possible for the adversary to corrupt these parties by corrupting
less than two locations and less than two operating systems. The class (B,C) =
({P3, P4, P5, P7, P8, P9, P10, P11, P14, P18}, ∅) however is in Z, as the adversary
can corrupt these parties by corrupting one out of four locations (being United
C) and one out of four operating systems (being OS 2).

5.2 Probability Based Structures

In a first iteration, this approach allows us to weigh individual parties; each
party gets an individual failure probability, and the traditional n > 3t is replaces
by a fixed probability p with which the system is allowed to fail. The adversary
coalitions are then simply all maximal sets such that the probability of all parties
in that set failing is smaller than p.

While the sets can be defined automatically in a precomputation step, their
number may still be rather large; it is not yet clear if an easy optimization exists
that allows for an efficient way to model those sets.

Also, this approach is a huge step backwards in that failure dependencies
are ignored. It is of course possible to add those to the computation of the sets.
However, this leads to a potentially exponential set of dependencies (as each

15

parties failure probability may depend on all other partys’ failures). Thus, we
merely get a different, potentially more suitable definition of out sets, but may
still be left with a large management-overhead.

Acknowledgments

We wish to thank Zinaida Benenson for her comments on a previous version of
this paper.

References

1. M. Bakes and C. Cachin. Reliable broadcast in a computational hybrid model with byzan-
tine faults, crashes, and recoveries. Technical Report RZ 3466, IBM Research, November
2002.

2. J. Benaloh and J. Leichter. Generalized secret sharing and monotone functions. In S. Gold-
wasser, editor, Proc. CRYPTO 88, pages 27–36. Springer-Verlag, 1988. Lecture Notes in
Computer Science No. 403.

3. A. Birolini. Reliability Engineering: Theory and Practice. Springer-Verlag, third edition,
1999.

4. G. Bracha and S. Toueg. Asynchronous consensus and broadcast protocols. Journal of the
ACM, 32(4):824–840, Oct. 1985.

5. C. Cachin, K. Kursawe, and V. Shoup. Random oracles in constantinople: Practical asyn-
chronous Byzantine agreement using cryptography. In Proceedings of the Symposium on
Principles of Distributed Computing, pages 123–132, Portland, Oregon, 2000.

6. C. Cachin, K. Kursawe, F. Petzold, and V. Shoup. Secure and efficient asynchronous
broadcast protocols. In Advances in Cryptology – CRYPTO ’ 2001, Lecture Notes in
Computer Science. International Association for Cryptologic Research, Springer-Verlag,
2001.

7. M. Correia, L. C. Lung, N. F. Neves, and P. Veŕıssimo. Efficient Byzantine-resilient reliable
multicast on a hybrid failure model. In Proc. of the 21st Symposium on Reliable Distributed
Systems, Suita, Japan, Oct. 2002.

8. M. J. Fischer, N. A. Lynch, and M. S. Paterson. Impossibility of distributed consensus
with one faulty process. Journal of the ACM, 32(2):374–382, Apr. 1985.

9. M. Fitzi, M. Hirt, and U. Maurer. General adversaries in unconditional multi-party com-
putation. In Proceedings of ASIACRYPT, pages 232–246, 1999.

10. M. Fitzi and U. Maurer. Efficient byzantine agreement secure against general adversaries.
In Proceedings of the International Symposium on Distributed Computing (DISC), volume
1499 of Lecture Notes in Computer Science. Springer-Verlag, 1998.

11. F. C. Gärtner. Byzantine failures and security: Arbitrary is not (always) random. Technical
Report IC/2003/20, Swiss Federal Institute of Technology (EPFL), School of Computer and
Communication Sciences, Lausanne, Switzerland, Apr. 2003.

12. O. Goldreich. Secure multi-party computation. Internet: http://www.wisdom.weizmann.
ac.il/~oded/pp.html, 2002.

13. M. Hirt and U. Maurer. Complete characterization of adversaries tolerable in secure multi-
party computation (extended abstract). In Proceedings of the Sixteenth Annual ACM Sym-
posium on Principles of Distributed Computing, pages 25–34, Santa Barbara, California,
21–24 Aug. 1997.

14. M. Ito, A. Saito, and T. Nishizeki. Secret sharing scheme realizing general access structure.
In Proceedings IEEE Globecom ’87, pages 99–102. IEEE, 1987.

15. F. P. Junqueria and K. Marzullo. Synchronous consensus for dependent process failures.
In Proceedings of the 23rd International Conference on Distributed Computing Systems
(ICDCS’03), 2003.

16. A. W. Krings and M. A. McQueen. A Byzantine resilient approach to network security. In
Digest of FastAbstracts of the 29th International Symposium on Fault-Tolerant Computing
(FTCS-29), Madison, Wisconsin, June 1999. http://www.crhc.uiuc.edu/FTCS-29/pdfs/

krings.pdf.

16

17. K. Kursawe. Asynchronous Byzantine group communication. In Proceedings of the 21st
IEEE Symposium on Reliable Distributed Systems (SRDS), Workshop on Reliable Peer-to-
Peer Distributed Systems, pages 352–357, Osaka, Japan, Oct. 2002. IEEE Computer Society
Press.

18. K. Kursawe. Distributed Trust. PhD thesis, University of Saarbrücken, March 2002.
19. L. Lamport, R. Shostak, and M. Pease. The Byzantine generals problem. ACM Transactions

on Programming Languages and Systems, 4(3):382–401, July 1982.
20. D. Malkhi and M. Reiter. Byzantine quorum systems. In Proceedings of the 29th Annual

ACM Symposium on the Theory of Computing (STOC ’97), pages 569–578, New York, May
1997. Association for Computing Machinery.

21. J. Oberg. NASA’s big push for the space station. IEEE Spectrum, 37(11):49–54, Nov. 2000.
22. M. Pease, R. Shostak, and L. Lamport. Reaching agreements in the presence of faults.

Journal of the ACM, 27(2):228–234, Apr. 1980.
23. D. Powell. Failure mode assumptions and assumption coverage. In D. K. Pradhan, editor,

Proceedings of the 22nd Annual International Symposium on Fault-Tolerant Computing
(FTCS ’92), pages 386–395, Boston, MA, July 1992. IEEE Computer Society Press.

24. M. K. Reiter. A secure group membership protocol. IEEE Transactions on Software
Engineering, 22(1):31–41, Jan. 1996.

25. V. Shoup. Practical threshold signatures. In B. Preneel, editor, Advances in Cryptology:
EUROCRYPT 2000, Lecture Notes in Computer Science, pages 207–220. Springer, 2000.

26. G. J. Simmons. How to (really) share a secret. In S. Goldwasser, editor, Proc. CRYPTO
88, pages 390–449. Springer-Verlag, 1988. Lecture Notes in Computer Science No. 403.

27. J. H. Wensley, L. Lamport, J. Goldberg, M. W. Green, K. N. Levitt, P. M. Melliar-Smith,
R. E. Shostak, and C. B. Weinstock. SIFT: Design and analysis of a fault-tolerant computer
for aircraft control. Proceedings of the IEEE, 66(10):1240–1255, Oct. 1978.

28. J. Yin, J.-P. Martin, A. Venkataramani, L. Alvisi, and M. Dahlin. Byzantine fault-tolerant
confidentiality. In Proceedings of the International Workshop on Future Directions in Dis-
tributed Computing, pages 12–15, June 2002.

29. L. Zhou, F. B. Schneider, and R. van Renesse. COCA: A secure distributed on-line certifi-
cation authority. ACM Transactions on Computer Systems, 20(4):329–368, Nov. 2002.

17

18

Aachener Informatik-Berichte

This is a list of recent technical reports. To obtain copies of technical reports

please consult http://aib.informatik.rwth-aachen.de/ or send your re-

quest to: Informatik-Bibliothek, RWTH Aachen, Ahornstr. 55, 52056 Aachen,

Email: biblio@informatik.rwth-aachen.de

1987-01 ∗ Fachgruppe Informatik: Jahresbericht 1986

1987-02 ∗ David de Frutos Escrig, Klaus Indermark: Equivalence Relations of Non-

Deterministic Ianov-Schemes

1987-03 ∗ Manfred Nagl: A Software Development Environment based on Graph

Technology

1987-04 ∗ Claus Lewerentz, Manfred Nagl, Bernhard Westfechtel: On Integration

Mechanisms within a Graph-Based Software Development Environment

1987-05 ∗ Reinhard Rinn: Über Eingabeanomalien bei verschiedenen Inferenzmod-

ellen

1987-06 ∗ Werner Damm, Gert Döhmen: Specifying Distributed Computer Archi-

tectures in AADL*

1987-07 ∗ Gregor Engels, Claus Lewerentz, Wilhelm Schäfer: Graph Grammar En-

gineering: A Software Specification Method

1987-08 ∗ Manfred Nagl: Set Theoretic Approaches to Graph Grammars

1987-09 ∗ Claus Lewerentz, Andreas Schürr: Experiences with a Database System

for Software Documents

1987-10 ∗ Herbert Klaeren, Klaus Indermark: A New Implementation Technique

for Recursive Function Definitions

1987-11 ∗ Rita Loogen: Design of a Parallel Programmable Graph Reduction Ma-

chine with Distributed Memory

1987-12 J. Börstler, U. Möncke, R. Wilhelm: Table compression for tree automata

1988-01 ∗ Gabriele Esser, Johannes Rückert, Frank Wagner: Gesellschaftliche As-

pekte der Informatik

1988-02 ∗ Peter Martini, Otto Spaniol: Token-Passing in High-Speed Backbone

Networks for Campus-Wide Environments

1988-03 ∗ Thomas Welzel: Simulation of a Multiple Token Ring Backbone

1988-04 ∗ Peter Martini: Performance Comparison for HSLAN Media Access Pro-

tocols

1988-05 ∗ Peter Martini: Performance Analysis of Multiple Token Rings

1988-06 ∗ Andreas Mann, Johannes Rückert, Otto Spaniol: Datenfunknetze

1988-07 ∗ Andreas Mann, Johannes Rückert: Packet Radio Networks for Data Ex-

change

1988-08 ∗ Andreas Mann, Johannes Rückert: Concurrent Slot Assignment Protocol

for Packet Radio Networks

1988-09 ∗ W. Kremer, F. Reichert, J. Rückert, A. Mann: Entwurf einer Netzw-

erktopologie für ein Mobilfunknetz zur Unterstützung des öffentlichen

Straßenverkehrs

1988-10 ∗ Kai Jakobs: Towards User-Friendly Networking

1988-11 ∗ Kai Jakobs: The Directory - Evolution of a Standard

1988-12 ∗ Kai Jakobs: Directory Services in Distributed Systems - A Survey

1988-13 ∗ Martine Schümmer: RS-511, a Protocol for the Plant Floor

19

1988-14 ∗ U. Quernheim: Satellite Communication Protocols - A Performance

Comparison Considering On-Board Processing

1988-15 ∗ Peter Martini, Otto Spaniol, Thomas Welzel: File Transfer in High Speed

Token Ring Networks: Performance Evaluation by Approximate Analysis

and Simulation

1988-16 ∗ Fachgruppe Informatik: Jahresbericht 1987

1988-17 ∗ Wolfgang Thomas: Automata on Infinite Objects

1988-18 ∗ Michael Sonnenschein: On Petri Nets and Data Flow Graphs

1988-19 ∗ Heiko Vogler: Functional Distribution of the Contextual Analysis in

Block-Structured Programming Languages: A Case Study of Tree Trans-

ducers

1988-20 ∗ Thomas Welzel: Einsatz des Simulationswerkzeuges QNAP2 zur Leis-

tungsbewertung von Kommunikationsprotokollen

1988-21 ∗ Th. Janning, C. Lewerentz: Integrated Project Team Management in a

Software Development Environment

1988-22 ∗ Joost Engelfriet, Heiko Vogler: Modular Tree Transducers

1988-23 ∗ Wolfgang Thomas: Automata and Quantifier Hierarchies

1988-24 ∗ Uschi Heuter: Generalized Definite Tree Languages

1989-01 ∗ Fachgruppe Informatik: Jahresbericht 1988

1989-02 ∗ G. Esser, J. Rückert, F. Wagner (Hrsg.): Gesellschaftliche Aspekte der

Informatik

1989-03 ∗ Heiko Vogler: Bottom-Up Computation of Primitive Recursive Tree

Functions

1989-04 ∗ Andy Schürr: Introduction to PROGRESS, an Attribute Graph Gram-

mar Based Specification Language

1989-05 J. Börstler: Reuse and Software Development - Problems, Solutions, and

Bibliography (in German)

1989-06 ∗ Kai Jakobs: OSI - An Appropriate Basis for Group Communication?

1989-07 ∗ Kai Jakobs: ISO’s Directory Proposal - Evolution, Current Status and

Future Problems

1989-08 ∗ Bernhard Westfechtel: Extension of a Graph Storage for Software Doc-

uments with Primitives for Undo/Redo and Revision Control

1989-09 ∗ Peter Martini: High Speed Local Area Networks - A Tutorial

1989-10 ∗ P. Davids, Th. Welzel: Performance Analysis of DQDB Based on Simu-

lation

1989-11 ∗ Manfred Nagl (Ed.): Abstracts of Talks presented at the WG ’89 15th

International Workshop on Graphtheoretic Concepts in Computer Sci-

ence

1989-12 ∗ Peter Martini: The DQDB Protocol - Is it Playing the Game?

1989-13 ∗ Martine Schümmer: CNC/DNC Communication with MAP

1989-14 ∗ Martine Schümmer: Local Area Networks for Manufactoring Environ-

ments with hard Real-Time Requirements

1989-15 ∗ M. Schümmer, Th. Welzel, P. Martini: Integration of Field Bus and

MAP Networks - Hierarchical Communication Systems in Production

Environments

1989-16 ∗ G. Vossen, K.-U. Witt: SUXESS: Towards a Sound Unification of Ex-

tensions of the Relational Data Model

20

1989-17 ∗ J. Derissen, P. Hruschka, M.v.d. Beeck, Th. Janning, M. Nagl: Integrat-

ing Structured Analysis and Information Modelling

1989-18 A. Maassen: Programming with Higher Order Functions

1989-19 ∗ Mario Rodriguez-Artalejo, Heiko Vogler: A Narrowing Machine for Syn-

tax Directed BABEL

1989-20 H. Kuchen, R. Loogen, J.J. Moreno Navarro, M. Rodriguez Artalejo:

Graph-based Implementation of a Functional Logic Language

1990-01 ∗ Fachgruppe Informatik: Jahresbericht 1989

1990-02 ∗ Vera Jansen, Andreas Potthoff, Wolfgang Thomas, Udo Wermuth: A

Short Guide to the AMORE System (Computing Automata, MOnoids

and Regular Expressions)

1990-03 ∗ Jerzy Skurczynski: On Three Hierarchies of Weak SkS Formulas

1990-04 R. Loogen: Stack-based Implementation of Narrowing

1990-05 H. Kuchen, A. Wagener: Comparison of Dynamic Load Balancing Strate-

gies

1990-06 ∗ Kai Jakobs, Frank Reichert: Directory Services for Mobile Communica-

tion

1990-07 ∗ Kai Jakobs: What’s Beyond the Interface - OSI Networks to Support

Cooperative Work

1990-08 ∗ Kai Jakobs: Directory Names and Schema - An Evaluation

1990-09 ∗ Ulrich Quernheim, Dieter Kreuer: Das CCITT - Signalisierungssystem

Nr. 7 auf Satellitenstrecken; Simulation der Zeichengabestrecke

1990-11 H. Kuchen, R. Loogen, J.J. Moreno Navarro, M. Rodriguez Artalejo:

Lazy Narrowing in a Graph Machine

1990-12 ∗ Kai Jakobs, Josef Kaltwasser, Frank Reichert, Otto Spaniol: Der Com-

puter fährt mit

1990-13 ∗ Rudolf Mathar, Andreas Mann: Analyzing a Distributed Slot Assign-

ment Protocol by Markov Chains

1990-14 A. Maassen: Compilerentwicklung in Miranda - ein Praktikum in funk-

tionaler Programmierung (written in german)

1990-15 ∗ Manfred Nagl, Andreas Schürr: A Specification Environment for Graph

Grammars

1990-16 A. Schürr: PROGRESS: A VHL-Language Based on Graph Grammars

1990-17 ∗ Marita Möller: Ein Ebenenmodell wissensbasierter Konsultationen - Un-

terstützung für Wissensakquisition und Erklärungsfähigkeit

1990-18 ∗ Eric Kowalewski: Entwurf und Interpretation einer Sprache zur Beschrei-

bung von Konsultationsphasen in Expertensystemen

1990-20 Y. Ortega Mallen, D. de Frutos Escrig: A Complete Proof System for

Timed Observations

1990-21 ∗ Manfred Nagl: Modelling of Software Architectures: Importance, No-

tions, Experiences

1990-22 H. Fassbender, H. Vogler: A Call-by-need Implementation of Syntax Di-

rected Functional Programming

1991-01 Guenther Geiler (ed.), Fachgruppe Informatik: Jahresbericht 1990

1991-03 B. Steffen, A. Ingolfsdottir: Characteristic Formulae for Processes with

Divergence

1991-04 M. Portz: A new class of cryptosystems based on interconnection net-

works

21

1991-05 H. Kuchen, G. Geiler: Distributed Applicative Arrays

1991-06 ∗ Ludwig Staiger: Kolmogorov Complexity and Hausdorff Dimension

1991-07 ∗ Ludwig Staiger: Syntactic Congruences for w-languages

1991-09 ∗ Eila Kuikka: A Proposal for a Syntax-Directed Text Processing System

1991-10 K. Gladitz, H. Fassbender, H. Vogler: Compiler-based Implementation

of Syntax-Directed Functional Programming

1991-11 R. Loogen, St. Winkler: Dynamic Detection of Determinism in Func-

tional Logic Languages

1991-12 ∗ K. Indermark, M. Rodriguez Artalejo (Eds.): Granada Workshop on the

Integration of Functional and Logic Programming

1991-13 ∗ Rolf Hager, Wolfgang Kremer: The Adaptive Priority Scheduler: A More

Fair Priority Service Discipline

1991-14 ∗ Andreas Fasbender, Wolfgang Kremer: A New Approximation Algorithm

for Tandem Networks with Priority Nodes

1991-15 J. Börstler, A. Zündorf: Revisiting extensions to Modula-2 to support

reusability

1991-16 J. Börstler, Th. Janning: Bridging the gap between Requirements Anal-

ysis and Design

1991-17 A. Zündorf, A. Schürr: Nondeterministic Control Structures for Graph

Rewriting Systems

1991-18 ∗ Matthias Jarke, John Mylopoulos, Joachim W. Schmidt, Yannis Vassil-

iou: DAIDA: An Environment for Evolving Information Systems

1991-19 M. Jeusfeld, M. Jarke: From Relational to Object-Oriented Integrity

Simplification

1991-20 G. Hogen, A. Kindler, R. Loogen: Automatic Parallelization of Lazy

Functional Programs

1991-21 ∗ Prof. Dr. rer. nat. Otto Spaniol: ODP (Open Distributed Processing):

Yet another Viewpoint

1991-22 H. Kuchen, F. Lücking, H. Stoltze: The Topology Description Language

TDL

1991-23 S. Graf, B. Steffen: Compositional Minimization of Finite State Systems

1991-24 R. Cleaveland, J. Parrow, B. Steffen: The Concurrency Workbench: A

Semantics Based Tool for the Verification of Concurrent Systems

1991-25 ∗ Rudolf Mathar, Jürgen Mattfeldt: Optimal Transmission Ranges for Mo-

bile Communication in Linear Multihop Packet Radio Networks

1991-26 M. Jeusfeld, M. Staudt: Query Optimization in Deductive Object Bases

1991-27 J. Knoop, B. Steffen: The Interprocedural Coincidence Theorem

1991-28 J. Knoop, B. Steffen: Unifying Strength Reduction and Semantic Code

Motion

1991-30 T. Margaria: First-Order theories for the verification of complex FSMs

1991-31 B. Steffen: Generating Data Flow Analysis Algorithms from Modal Spec-

ifications

1992-01 Stefan Eherer (ed.), Fachgruppe Informatik: Jahresbericht 1991

1992-02 ∗ Bernhard Westfechtel: Basismechanismen zur Datenverwaltung in struk-

turbezogenen Hypertextsystemen

1992-04 S. A. Smolka, B. Steffen: Priority as Extremal Probability

1992-05 ∗ Matthias Jarke, Carlos Maltzahn, Thomas Rose: Sharing Processes:

Team Coordination in Design Repositories

22

1992-06 O. Burkart, B. Steffen: Model Checking for Context-Free Processes

1992-07 ∗ Matthias Jarke, Klaus Pohl: Information Systems Quality and Quality

Information Systems

1992-08 ∗ Rudolf Mathar, Jürgen Mattfeldt: Analyzing Routing Strategy NFP in

Multihop Packet Radio Networks on a Line

1992-09 ∗ Alfons Kemper, Guido Moerkotte: Grundlagen objektorientierter Daten-

banksysteme

1992-10 Matthias Jarke, Manfred Jeusfeld, Andreas Miethsam, Michael Gocek:

Towards a logic-based reconstruction of software configuration manage-

ment

1992-11 Werner Hans: A Complete Indexing Scheme for WAM-based Abstract

Machines

1992-12 W. Hans, R. Loogen, St. Winkler: On the Interaction of Lazy Evaluation

and Backtracking

1992-13 ∗ Matthias Jarke, Thomas Rose: Specification Management with CAD

1992-14 Th. Noll, H. Vogler: Top-down Parsing with Simultaneous Evaluation on

Noncircular Attribute Grammars

1992-15 A. Schuerr, B. Westfechtel: Graphgrammatiken und Graphersetzungssys-

teme(written in german)

1992-16 ∗ Graduiertenkolleg Informatik und Technik (Hrsg.): Forschungsprojekte

des Graduiertenkollegs Informatik und Technik

1992-17 M. Jarke (ed.): ConceptBase V3.1 User Manual

1992-18 ∗ Clarence A. Ellis, Matthias Jarke (Eds.): Distributed Cooperation in

Integrated Information Systems - Proceedings of the Third International

Workshop on Intelligent and Cooperative Information Systems

1992-19-00 H. Kuchen, R. Loogen (eds.): Proceedings of the 4th Int. Workshop on

the Parallel Implementation of Functional Languages

1992-19-01 G. Hogen, R. Loogen: PASTEL - A Parallel Stack-Based Implementation

of Eager Functional Programs with Lazy Data Structures (Extended

Abstract)

1992-19-02 H. Kuchen, K. Gladitz: Implementing Bags on a Shared Memory MIMD-

Machine

1992-19-03 C. Rathsack, S.B. Scholz: LISA - A Lazy Interpreter for a Full-Fledged

Lambda-Calculus

1992-19-04 T.A. Bratvold: Determining Useful Parallelism in Higher Order Func-

tions

1992-19-05 S. Kahrs: Polymorphic Type Checking by Interpretation of Code

1992-19-06 M. Chakravarty, M. Köhler: Equational Constraints, Residuation, and

the Parallel JUMP-Machine

1992-19-07 J. Seward: Polymorphic Strictness Analysis using Frontiers (Draft Ver-

sion)

1992-19-08 D. Gärtner, A. Kimms, W. Kluge: pi-Redˆ+ - A Compiling Graph-

Reduction System for a Full Fledged Lambda-Calculus

1992-19-09 D. Howe, G. Burn: Experiments with strict STG code

1992-19-10 J. Glauert: Parallel Implementation of Functional Languages Using

Small Processes

1992-19-11 M. Joy, T. Axford: A Parallel Graph Reduction Machine

1992-19-12 A. Bennett, P. Kelly: Simulation of Multicache Parallel Reduction

23

1992-19-13 K. Langendoen, D.J. Agterkamp: Cache Behaviour of Lazy Functional

Programs (Working Paper)

1992-19-14 K. Hammond, S. Peyton Jones: Profiling scheduling strategies on the

GRIP parallel reducer

1992-19-15 S. Mintchev: Using Strictness Information in the STG-machine

1992-19-16 D. Rushall: An Attribute Grammar Evaluator in Haskell

1992-19-17 J. Wild, H. Glaser, P. Hartel: Statistics on storage management in a lazy

functional language implementation

1992-19-18 W.S. Martins: Parallel Implementations of Functional Languages

1992-19-19 D. Lester: Distributed Garbage Collection of Cyclic Structures (Draft

version)

1992-19-20 J.C. Glas, R.F.H. Hofman, W.G. Vree: Parallelization of Branch-and-

Bound Algorithms in a Functional Programming Environment

1992-19-21 S. Hwang, D. Rushall: The nu-STG machine: a parallelized Spineless

Tagless Graph Reduction Machine in a distributed memory architecture

(Draft version)

1992-19-22 G. Burn, D. Le Metayer: Cps-Translation and the Correctness of Opti-

mising Compilers

1992-19-23 S.L. Peyton Jones, P. Wadler: Imperative functional programming (Brief

summary)

1992-19-24 W. Damm, F. Liu, Th. Peikenkamp: Evaluation and Parallelization of

Functions in Functional + Logic Languages (abstract)

1992-19-25 M. Kesseler: Communication Issues Regarding Parallel Functional Graph

Rewriting

1992-19-26 Th. Peikenkamp: Charakterizing and representing neededness in func-

tional loginc languages (abstract)

1992-19-27 H. Doerr: Monitoring with Graph-Grammars as formal operational Mod-

els

1992-19-28 J. van Groningen: Some implementation aspects of Concurrent Clean on

distributed memory architectures

1992-19-29 G. Ostheimer: Load Bounding for Implicit Parallelism (abstract)

1992-20 H. Kuchen, F.J. Lopez Fraguas, J.J. Moreno Navarro, M. Rodriguez

Artalejo: Implementing Disequality in a Lazy Functional Logic Language

1992-21 H. Kuchen, F.J. Lopez Fraguas: Result Directed Computing in a Func-

tional Logic Language

1992-22 H. Kuchen, J.J. Moreno Navarro, M.V. Hermenegildo: Independent

AND-Parallel Narrowing

1992-23 T. Margaria, B. Steffen: Distinguishing Formulas for Free

1992-24 K. Pohl: The Three Dimensions of Requirements Engineering

1992-25 ∗ R. Stainov: A Dynamic Configuration Facility for Multimedia Commu-

nications

1992-26 ∗ Michael von der Beeck: Integration of Structured Analysis and Timed

Statecharts for Real-Time and Concurrency Specification

1992-27 W. Hans, St. Winkler: Aliasing and Groundness Analysis of Logic Pro-

grams through Abstract Interpretation and its Safety

1992-28 ∗ Gerhard Steinke, Matthias Jarke: Support for Security Modeling in In-

formation Systems Design

1992-29 B. Schinzel: Warum Frauenforschung in Naturwissenschaft und Technik

24

1992-30 A. Kemper, G. Moerkotte, K. Peithner: Object-Orientation Axiomatised

by Dynamic Logic

1992-32 ∗ Bernd Heinrichs, Kai Jakobs: Timer Handling in High-Performance

Transport Systems

1992-33 ∗ B. Heinrichs, K. Jakobs, K. Lenßen, W. Reinhardt, A. Spinner: Euro-

Bridge: Communication Services for Multimedia Applications

1992-34 C. Gerlhof, A. Kemper, Ch. Kilger, G. Moerkotte: Partition-Based Clus-

tering in Object Bases: From Theory to Practice

1992-35 J. Börstler: Feature-Oriented Classification and Reuse in IPSEN

1992-36 M. Jarke, J. Bubenko, C. Rolland, A. Sutcliffe, Y. Vassiliou: Theories Un-

derlying Requirements Engineering: An Overview of NATURE at Gen-

esis

1992-37 ∗ K. Pohl, M. Jarke: Quality Information Systems: Repository Support for

Evolving Process Models

1992-38 A. Zuendorf: Implementation of the imperative / rule based language

PROGRES

1992-39 P. Koch: Intelligentes Backtracking bei der Auswertung funktional-

logischer Programme

1992-40 ∗ Rudolf Mathar, Jürgen Mattfeldt: Channel Assignment in Cellular Radio

Networks

1992-41 ∗ Gerhard Friedrich, Wolfgang Neidl: Constructive Utility in Model-Based

Diagnosis Repair Systems

1992-42 ∗ P. S. Chen, R. Hennicker, M. Jarke: On the Retrieval of Reusable Soft-

ware Components

1992-43 W. Hans, St.Winkler: Abstract Interpretation of Functional Logic Lan-

guages

1992-44 N. Kiesel, A. Schuerr, B. Westfechtel: Design and Evaluation of GRAS,

a Graph-Oriented Database System for Engineering Applications

1993-01 ∗ Fachgruppe Informatik: Jahresbericht 1992

1993-02 ∗ Patrick Shicheng Chen: On Inference Rules of Logic-Based Information

Retrieval Systems

1993-03 G. Hogen, R. Loogen: A New Stack Technique for the Management of

Runtime Structures in Distributed Environments

1993-05 A. Zündorf: A Heuristic for the Subgraph Isomorphism Problem in Ex-

ecuting PROGRES

1993-06 A. Kemper, D. Kossmann: Adaptable Pointer Swizzling Strategies in

Object Bases: Design, Realization, and Quantitative Analysis

1993-07 ∗ Graduiertenkolleg Informatik und Technik (Hrsg.): Graduiertenkolleg In-

formatik und Technik

1993-08 ∗ Matthias Berger: k-Coloring Vertices using a Neural Network with Con-

vergence to Valid Solutions

1993-09 M. Buchheit, M. Jeusfeld, W. Nutt, M. Staudt: Subsumption between

Queries to Object-Oriented Databases

1993-10 O. Burkart, B. Steffen: Pushdown Processes: Parallel Composition and

Model Checking

1993-11 ∗ R. Große-Wienker, O. Hermanns, D. Menzenbach, A. Pollacks, S. Repet-

zki, J. Schwartz, K. Sonnenschein, B. Westfechtel: Das SUKITS-Projekt:

A-posteriori-Integration heterogener CIM-Anwendungssysteme

25

1993-12 ∗ Rudolf Mathar, Jürgen Mattfeldt: On the Distribution of Cumulated

Interference Power in Rayleigh Fading Channels

1993-13 O. Maler, L. Staiger: On Syntactic Congruences for omega-languages

1993-14 M. Jarke, St. Eherer, R. Gallersdoerfer, M. Jeusfeld, M. Staudt: Con-

ceptBase - A Deductive Object Base Manager

1993-15 M. Staudt, H.W. Nissen, M.A. Jeusfeld: Query by Class, Rule and Con-

cept

1993-16 ∗ M. Jarke, K. Pohl, St. Jacobs et al.: Requirements Engineering: An In-

tegrated View of Representation Process and Domain

1993-17 ∗ M. Jarke, K. Pohl: Establishing Vision in Context: Towards a Model of

Requirements Processes

1993-18 W. Hans, H. Kuchen, St. Winkler: Full Indexing for Lazy Narrowing

1993-19 W. Hans, J.J. Ruz, F. Saenz, St. Winkler: A VHDL Specification of a

Shared Memory Parallel Machine for Babel

1993-20 ∗ K. Finke, M. Jarke, P. Szczurko, R. Soltysiak: Quality Management for

Expert Systems in Process Control

1993-21 M. Jarke, M.A. Jeusfeld, P. Szczurko: Three Aspects of Intelligent Co-

operation in the Quality Cycle

1994-01 Margit Generet, Sven Martin (eds.), Fachgruppe Informatik: Jahres-

bericht 1993

1994-02 M. Lefering: Development of Incremental Integration Tools Using Formal

Specifications

1994-03 ∗ P. Constantopoulos, M. Jarke, J. Mylopoulos, Y. Vassiliou: The Software

Information Base: A Server for Reuse

1994-04 ∗ Rolf Hager, Rudolf Mathar, Jürgen Mattfeldt: Intelligent Cruise Control

and Reliable Communication of Mobile Stations

1994-05 ∗ Rolf Hager, Peter Hermesmann, Michael Portz: Feasibility of Authenti-

cation Procedures within Advanced Transport Telematics

1994-06 ∗ Claudia Popien, Bernd Meyer, Axel Kuepper: A Formal Approach to

Service Import in ODP Trader Federations

1994-07 P. Peters, P. Szczurko: Integrating Models of Quality Management Meth-

ods by an Object-Oriented Repository

1994-08 ∗ Manfred Nagl, Bernhard Westfechtel: A Universal Component for the

Administration in Distributed and Integrated Development Environ-

ments

1994-09 ∗ Patrick Horster, Holger Petersen: Signatur- und Authentifikationsver-

fahren auf der Basis des diskreten Logarithmusproblems

1994-11 A. Schürr: PROGRES, A Visual Language and Environment for PRO-

gramming with Graph REwrite Systems

1994-12 A. Schürr: Specification of Graph Translators with Triple Graph Gram-

mars

1994-13 A. Schürr: Logic Based Programmed Structure Rewriting Systems

1994-14 L. Staiger: Codes, Simplifying Words, and Open Set Condition

1994-15 ∗ Bernhard Westfechtel: A Graph-Based System for Managing Configura-

tions of Engineering Design Documents

1994-16 P. Klein: Designing Software with Modula-3

1994-17 I. Litovsky, L. Staiger: Finite acceptance of infinite words

26

1994-18 G. Hogen, R. Loogen: Parallel Functional Implementations: Graphbased

vs. Stackbased Reduction

1994-19 M. Jeusfeld, U. Johnen: An Executable Meta Model for Re-Engineering

of Database Schemas

1994-20 ∗ R. Gallersdörfer, M. Jarke, K. Klabunde: Intelligent Networks as a Data

Intensive Application (INDIA)

1994-21 M. Mohnen: Proving the Correctness of the Static Link Technique Using

Evolving Algebras

1994-22 H. Fernau, L. Staiger: Valuations and Unambiguity of Languages, with

Applications to Fractal Geometry

1994-24 ∗ M. Jarke, K. Pohl, R. Dömges, St. Jacobs, H. W. Nissen: Requirements

Information Management: The NATURE Approach

1994-25 ∗ M. Jarke, K. Pohl, C. Rolland, J.-R. Schmitt: Experience-Based Method

Evaluation and Improvement: A Process Modeling Approach

1994-26 ∗ St. Jacobs, St. Kethers: Improving Communication and Decision Making

within Quality Function Deployment

1994-27 ∗ M. Jarke, H. W. Nissen, K. Pohl: Tool Integration in Evolving Informa-

tion Systems Environments

1994-28 O. Burkart, D. Caucal, B. Steffen: An Elementary Bisimulation Decision

Procedure for Arbitrary Context-Free Processes

1995-01 ∗ Fachgruppe Informatik: Jahresbericht 1994

1995-02 Andy Schürr, Andreas J. Winter, Albert Zündorf: Graph Grammar En-

gineering with PROGRES

1995-03 Ludwig Staiger: A Tight Upper Bound on Kolmogorov Complexity by

Hausdorff Dimension and Uniformly Optimal Prediction

1995-04 Birgitta König-Ries, Sven Helmer, Guido Moerkotte: An experimental

study on the complexity of left-deep join ordering problems for cyclic

queries

1995-05 Sophie Cluet, Guido Moerkotte: Efficient Evaluation of Aggregates on

Bulk Types

1995-06 Sophie Cluet, Guido Moerkotte: Nested Queries in Object Bases

1995-07 Sophie Cluet, Guido Moerkotte: Query Optimization Techniques Ex-

ploiting Class Hierarchies

1995-08 Markus Mohnen: Efficient Compile-Time Garbage Collection for Arbi-

trary Data Structures

1995-09 Markus Mohnen: Functional Specification of Imperative Programs: An

Alternative Point of View of Functional Languages

1995-10 Rainer Gallersdörfer, Matthias Nicola: Improving Performance in Repli-

cated Databases through Relaxed Coherency

1995-11 ∗ M.Staudt, K.von Thadden: Subsumption Checking in Knowledge Bases

1995-12 ∗ G.V.Zemanek, H.W.Nissen, H.Hubert, M.Jarke: Requirements Analy-

sis from Multiple Perspectives: Experiences with Conceptual Modeling

Technology

1995-13 ∗ M.Staudt, M.Jarke: Incremental Maintenance of Externally Materialized

Views

1995-14 ∗ P.Peters, P.Szczurko, M.Jeusfeld: Oriented Information Management:

Conceptual Models at Work

27

1995-15 ∗ Matthias Jarke, Sudha Ram (Hrsg.): WITS 95 Proceedings of the 5th

Annual Workshop on Information Technologies and Systems

1995-16 ∗ W.Hans, St.Winkler, F.Saenz: Distributed Execution in Functional Logic

Programming

1996-01 ∗ Jahresbericht 1995

1996-02 Michael Hanus, Christian Prehofer: Higher-Order Narrowing with Defi-

nitional Trees

1996-03 ∗ W.Scheufele, G.Moerkotte: Optimal Ordering of Selections and Joins in

Acyclic Queries with Expensive Predicates

1996-04 Klaus Pohl: PRO-ART: Enabling Requirements Pre-Traceability

1996-05 Klaus Pohl: Requirements Engineering: An Overview

1996-06 ∗ M.Jarke, W.Marquardt: Design and Evaluation of Computer–Aided Pro-

cess Modelling Tools

1996-07 Olaf Chitil: The Sigma-Semantics: A Comprehensive Semantics for Func-

tional Programs

1996-08 ∗ S.Sripada: On Entropy and the Limitations of the Second Law of Ther-

modynamics

1996-09 Michael Hanus (Ed.): Proceedings of the Poster Session of ALP96 - Fifth

International Conference on Algebraic and Logic Programming

1996-09-0 Michael Hanus (Ed.): Proceedings of the Poster Session of ALP 96 -

Fifth International Conference on Algebraic and Logic Programming:

Introduction and table of contents

1996-09-1 Ilies Alouini: An Implementation of Conditional Concurrent Rewriting

on Distributed Memory Machines

1996-09-2 Olivier Danvy, Karoline Malmkjær: On the Idempotence of the CPS

Transformation

1996-09-3 Vı́ctor M. Guĺıas, José L. Freire: Concurrent Programming in Haskell

1996-09-4 Sébastien Limet, Pierre Réty: On Decidability of Unifiability Modulo

Rewrite Systems

1996-09-5 Alexandre Tessier: Declarative Debugging in Constraint Logic Program-

ming

1996-10 Reidar Conradi, Bernhard Westfechtel: Version Models for Software Con-

figuration Management

1996-11 ∗ C.Weise, D.Lenzkes: A Fast Decision Algorithm for Timed Refinement

1996-12 ∗ R.Dömges, K.Pohl, M.Jarke, B.Lohmann, W.Marquardt: PRO-

ART/CE* — An Environment for Managing the Evolution of Chemical

Process Simulation Models

1996-13 ∗ K.Pohl, R.Klamma, K.Weidenhaupt, R.Dömges, P.Haumer, M.Jarke: A

Framework for Process-Integrated Tools

1996-14 ∗ R.Gallersdörfer, K.Klabunde, A.Stolz, M.Eßmajor: INDIA — Intelligent

Networks as a Data Intensive Application, Final Project Report, June

1996

1996-15 ∗ H.Schimpe, M.Staudt: VAREX: An Environment for Validating and Re-

fining Rule Bases

1996-16 ∗ M.Jarke, M.Gebhardt, S.Jacobs, H.Nissen: Conflict Analysis Across Het-

erogeneous Viewpoints: Formalization and Visualization

1996-17 Manfred A. Jeusfeld, Tung X. Bui: Decision Support Components on the

Internet

28

1996-18 Manfred A. Jeusfeld, Mike Papazoglou: Information Brokering: Design,

Search and Transformation

1996-19 ∗ P.Peters, M.Jarke: Simulating the impact of information flows in net-

worked organizations

1996-20 Matthias Jarke, Peter Peters, Manfred A. Jeusfeld: Model-driven plan-

ning and design of cooperative information systems

1996-21 ∗ G.de Michelis, E.Dubois, M.Jarke, F.Matthes, J.Mylopoulos, K.Pohl,

J.Schmidt, C.Woo, E.Yu: Cooperative information systems: a manifesto

1996-22 ∗ S.Jacobs, M.Gebhardt, S.Kethers, W.Rzasa: Filling HTML forms simul-

taneously: CoWeb architecture and functionality

1996-23 ∗ M.Gebhardt, S.Jacobs: Conflict Management in Design

1997-01 Michael Hanus, Frank Zartmann (eds.): Jahresbericht 1996

1997-02 Johannes Faassen: Using full parallel Boltzmann Machines for Optimiza-

tion

1997-03 Andreas Winter, Andy Schürr: Modules and Updatable Graph Views for

PROgrammed Graph REwriting Systems

1997-04 Markus Mohnen, Stefan Tobies: Implementing Context Patterns in the

Glasgow Haskell Compiler

1997-05 ∗ S.Gruner: Schemakorrespondenzaxiome unterstützen die paargramma-

tische Spezifikation inkrementeller Integrationswerkzeuge

1997-06 Matthias Nicola, Matthias Jarke: Design and Evaluation of Wireless

Health Care Information Systems in Developing Countries

1997-07 Petra Hofstedt: Taskparallele Skelette für irregulär strukturierte Prob-

leme in deklarativen Sprachen

1997-08 Dorothea Blostein, Andy Schürr: Computing with Graphs and Graph

Rewriting

1997-09 Carl-Arndt Krapp, Bernhard Westfechtel: Feedback Handling in Dy-

namic Task Nets

1997-10 Matthias Nicola, Matthias Jarke: Integrating Replication and Commu-

nication in Performance Models of Distributed Databases

1997-11 ∗ R. Klamma, P. Peters, M. Jarke: Workflow Support for Failure Manage-

ment in Federated Organizations

1997-13 Markus Mohnen: Optimising the Memory Management of Higher-Order

Functional Programs

1997-14 Roland Baumann: Client/Server Distribution in a Structure-Oriented

Database Management System

1997-15 George Botorog: High-Level Parallel Programming and the Efficient Im-

plementation of Numerical Algorithms

1998-01 ∗ Fachgruppe Informatik: Jahresbericht 1997

1998-02 Stefan Gruner, Manfred Nagel, Andy Schürr: Fine-grained and

Structure-Oriented Document Integration Tools are Needed for Devel-

opment Processes

1998-03 Stefan Gruner: Einige Anmerkungen zur graphgrammatischen Spezifika-

tion von Integrationswerkzeugen nach Westfechtel, Janning, Lefering und

Schürr

1998-04 ∗ O. Kubitz: Mobile Robots in Dynamic Environments

1998-05 Martin Leucker, Stephan Tobies: Truth - A Verification Platform for

Distributed Systems

29

1998-06 ∗ Matthias Oliver Berger: DECT in the Factory of the Future

1998-07 M. Arnold, M. Erdmann, M. Glinz, P. Haumer, R. Knoll, B. Paech, K.

Pohl, J. Ryser, R. Studer, K. Weidenhaupt: Survey on the Scenario Use

in Twelve Selected Industrial Projects

1998-08 ∗ H. Aust: Sprachverstehen und Dialogmodellierung in

natürlichsprachlichen Informationssystemen

1998-09 ∗ Th. Lehmann: Geometrische Ausrichtung medizinischer Bilder am

Beispiel intraoraler Radiographien

1998-10 ∗ M. Nicola, M. Jarke: Performance Modeling of Distributed and Repli-

cated Databases

1998-11 ∗ Ansgar Schleicher, Bernhard Westfechtel, Dirk Jäger: Modeling Dynamic

Software Processes in UML

1998-12 ∗ W. Appelt, M. Jarke: Interoperable Tools for Cooperation Support using

the World Wide Web

1998-13 Klaus Indermark: Semantik rekursiver Funktionsdefinitionen mit Strik-

theitsinformation

1999-01 ∗ Jahresbericht 1998

1999-02 ∗ F. Huch: Verifcation of Erlang Programs using Abstract Interpretation

and Model Checking — Extended Version

1999-03 ∗ R. Gallersdörfer, M. Jarke, M. Nicola: The ADR Replication Manager

1999-04 Maŕıa Alpuente, Michael Hanus, Salvador Lucas, Germán Vidal: Spe-

cialization of Functional Logic Programs Based on Needed Narrowing

1999-05 ∗ W. Thomas (Ed.): DLT 99 - Developments in Language Theory Fourth

International Conference

1999-06 ∗ Kai Jakobs, Klaus-Dieter Kleefeld: Informationssysteme für die ange-

wandte historische Geographie

1999-07 Thomas Wilke: CTL+ is exponentially more succinct than CTL

1999-08 Oliver Matz: Dot-Depth and Monadic Quantifier Alternation over Pic-

tures

2000-01 ∗ Jahresbericht 1999

2000-02 Jens Vöge, Marcin Jurdzinski: A Discrete Strategy Improvement Algo-

rithm for Solving Parity Games

2000-04 Andreas Becks, Stefan Sklorz, Matthias Jarke: Exploring the Semantic

Structure of Technical Document Collections: A Cooperative Systems

Approach

2000-05 Mareike Schoop: Cooperative Document Management

2000-06 Mareike Schoop, Christoph Quix (eds.): Proceedings of the Fifth Interna-

tional Workshop on the Language-Action Perspective on Communication

Modelling

2000-07 ∗ Markus Mohnen, Pieter Koopman (Eds.): Proceedings of the 12th Inter-

national Workshop of Functional Languages

2000-08 Thomas Arts, Thomas Noll: Verifying Generic Erlang Client-Server Im-

plementations

2001-01 ∗ Jahresbericht 2000

2001-02 Benedikt Bollig, Martin Leucker: Deciding LTL over Mazurkiewicz

Traces

2001-03 Thierry Cachat: The power of one-letter rational languages

30

2001-04 Benedikt Bollig, Martin Leucker, Michael Weber: Local Parallel Model

Checking for the Alternation Free mu-Calculus

2001-05 Benedikt Bollig, Martin Leucker, Thomas Noll: Regular MSC Languages

2001-06 Achim Blumensath: Prefix-Recognisable Graphs and Monadic Second-

Order Logic

2001-07 Martin Grohe, Stefan Wöhrle: An Existential Locality Theorem

2001-08 Mareike Schoop, James Taylor (eds.): Proceedings of the Sixth Interna-

tional Workshop on the Language-Action Perspective on Communication

Modelling

2001-09 Thomas Arts, Jürgen Giesl: A collection of examples for termination of

term rewriting using dependency pairs

2001-10 Achim Blumensath: Axiomatising Tree-interpretable Structures

2001-11 Klaus Indermark, Thomas Noll (eds.): Kolloquium Programmier-

sprachen und Grundlagen der Programmierung

2002-01 ∗ Jahresbericht 2001

2002-02 Jürgen Giesl, Aart Middeldorp: Transformation Techniques for Context-

Sensitive Rewrite Systems

2002-03 Benedikt Bollig, Martin Leucker, Thomas Noll: Generalised Regular

MSC Languages

2002-04 Jürgen Giesl, Aart Middeldorp: Innermost Termination of Context-

Sensitive Rewriting

2002-05 Horst Lichter, Thomas von der Maßen, Thomas Weiler: Modelling Re-

quirements and Architectures for Software Product Lines

2002-06 Henry N. Adorna: 3-Party Message Complexity is Better than 2-Party

Ones for Proving Lower Bounds on the Size of Minimal Nondeterministic

Finite Automata

2002-07 Jörg Dahmen: Invariant Image Object Recognition using Gaussian Mix-

ture Densities

2002-08 Markus Mohnen: An Open Framework for Data-Flow Analysis in Java

2002-09 Markus Mohnen: Interfaces with Default Implementations in Java

2002-10 Martin Leucker: Logics for Mazurkiewicz traces

2002-11 Jürgen Giesl, Hans Zantema: Liveness in Rewriting

2003-01 ∗ Jahresbericht 2002

2003-02 Jürgen Giesl, René Thiemann: Size-Change Termination for Term

Rewriting

2003-03 Jürgen Giesl, Deepak Kapur: Deciding Inductive Validity of Equations

2003-04 Jürgen Giesl, René Thiemann, Peter Schneider-Kamp, Stephan Falke:

Improving Dependency Pairs

2003-05 Christof Löding, Philipp Rohde: Solving the Sabotage Game is PSPACE-

hard

2003-06 Franz Josef Och: Statistical Machine Translation: From Single-Word

Models to Alignment Templates

2003-07 Horst Lichter, Thomas von der Maßen, Alexander Nyßen, Thomas

Weiler: Vergleich von Ansätzen zur Feature Modellierung bei der Soft-

wareproduktlinienentwicklung

2003-08 Jürgen Giesl, René Thiemann, Peter Schneider-Kamp, Stephan Falke:

Mechanizing Dependency Pairs

2004-01 ∗ Fachgruppe Informatik: Jahresbericht 2003

31

2004-02 Benedikt Bollig, Martin Leucker: Message-Passing Automata are expres-

sively equivalent to EMSO logic

2004-03 Delia Kesner, Femke van Raamsdonk, Joe Wells (eds.): HOR 2004 – 2nd

International Workshop on Higher-Order Rewriting

2004-04 Slim Abdennadher, Christophe Ringeissen (eds.): RULE 04 – Fifth In-

ternational Workshop on Rule-Based Programming

2004-05 Herbert Kuchen (ed.): WFLP 04 – 13th International Workshop on Func-

tional and (Constraint) Logic Programming

2004-06 Sergio Antoy, Yoshihito Toyama (eds.): WRS 04 – 4th International

Workshop on Reduction Strategies in Rewriting and Programming

2004-07 Michael Codish, Aart Middeldorp (eds.): WST 04 – 7th International

Workshop on Termination

2004-08 Klaus Indermark, Thomas Noll: Algebraic Correctness Proofs for Com-

piling Recursive Function Definitions with Strictness Information

2004-09 Joachim Kneis, Daniel Mölle, Stefan Richter, Peter Rossmanith: Param-

eterized Power Domination Complexity

2004-10 Zinaida Benenson, Felix C. Gärtner, Dogan Kesdogan: Secure Multi-

Party Computation with Security Modules

2005-01 ∗ Fachgruppe Informatik: Jahresbericht 2004

2005-02 Maximillian Dornseif, Felix C. Gärtner, Thorsten Holz, Martin Mink: An

Offensive Approach to Teaching Information Security: Aachen Summer

School Applied IT Security

2005-03 Jürgen Giesl, René Thiemann, Peter Schneider-Kamp: Proving and Dis-

proving Termination of Higher-Order Functions

2005-04 Daniel Mölle, Stefan Richter, Peter Rossmanith: A Faster Algorithm for

the Steiner Tree Problem

2005-05 Fabien Pouget, Thorsten Holz: A Pointillist Approach for Comparing

Honeypots

2005-06 Simon Fischer, Berthold Vöcking: Adaptive Routing with Stale Informa-

tion

2005-07 Felix C. Freiling, Thorsten Holz, Georg Wicherski: Botnet Tracking: Ex-

ploring a Root-Cause Methodology to Prevent Distributed Denial-of-

Service Attacks

2005-08 Joachim Kneis, Peter Rossmanith: A New Satisfiability Algorithm With

Applications To Max-Cut

∗ These reports are only available as a printed version.

Please contact biblio@informatik.rwth-aachen.de to obtain copies.

32

