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Preface

This volume contains the proceedings of the 13th International Workshop on Functional and (Con-
straint) Logic Programming (WFLP), which took place on June 1 at Aachen, Germany, as part
of RDP’04, the Federated Conference on Rewriting, Deduction, and Programming. WFLP is a
platform for the exchange of ideas between researchers interested in functional programming, (con-
straint) logic programming, as well as their integration. It promotes the cross-fertilizing exchange of
ideas and experiences among researches and students from the different communities interested in
the foundations, applications, and combinations of high-level, declarative programming languages
and related areas.

WFLP has some considerable tradition already. The previous WFLP editions took place at Va-
lencia, Spain, 2003, Grado, Italy, 2002, Kiel, Germany, 2001, Benicassim, Spain, 2000, Greno-
ble, France, 1999, Bad Honnef, Germany, 1998, Schwarzenberg, Germany, 1997, Marburg, Ger-
many, 1996, Schwarzenberg, Germany, 1995 Schwarzenberg, Germany, 1994, Rattenberg, Ger-
many, 1993, and Karlsruhe, Germany, 1992.

WFLP’04 covers all areas of functional and (constraint) logic programming, including but not
limited to:

• Language Design: modules and type systems, multi-paradigm languages, concurrency and dis-
tribution, objects

• Foundations: formal semantics, rewriting and narrowing, non-monotonic reasoning, dynamics,
type theory

• Implementation: abstract machines, parallelism, compile-time and run-time optimizations, in-
terfacing with external languages

• Transformation and Analysis: abstract interpretation, specialization, partial evaluation, program
transformation, meta-programming

• Software Engineering: design patterns, specification, verification and validation, debugging, test
generation

• Integration of Paradigms: integration of declarative programming with other paradigms such as
imperative, object-oriented, concurrent, and real-time programming

• Applications: declarative programming in education and industry, domain-specific languages,
visual/graphical user interfaces, embeded systems, WWW applications, knowledge represen-
tation and machine learning, deductive databases, advanced programming environments and
tools.

Nine papers have been submitted to WFLP’04 and considered by the program committee. After
some careful peer reviewing all of them have been accepted for presentation at the workshop.

I would like to thank all the people who contributed to the suceess of WFLP’04, in particular
the authors for their presentations, the members of the program committee and the reviewers for
their careful work and their valuable hints to the authors, enabling them to improve their presenta-
tions. My special thanks go to the organizers of RDP’04, in particular to Jürgen Giesl, the RDP’04
conference chair, for their continuous support and the perfect organization.

Münster, Germany, May 1,

Herbert Kuchen
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TeaBag: A Functional Logic Language Debugger�

Sergio Antoy Stephen Johnson

Computer Science Department, Portland State University,
P.O. Box 751, Portland, OR 97207, U.S.A.
{antoy,stephenj}@cs.pdx.edu

Abstract We describe a debugger for functional logic computations. The debugger is an accessory of a virtual machine
currently under development. A distinctive feature of this machine is its operational completeness of computations, which
places novel demands on a debugger. We give an overview of the debugger’s features, in particular the handling of non-
determinism, the ability to control non-deterministic steps, to remove context information, to toggle eager evaluation, and
to set breakpoints on both functions and terms. We briefly describe the debugger’s architecture and its interaction with
the associated virtual machine. Finally, we describe a short debugging session of a defective program to show in action
debugger features and window screenshots.

1 Introduction

Functional logic programming joins in a single programming paradigm characterizing features of
functional and logic programming. There are a number of languages with this aim, e.g.,Curry [23],
Escher [26], Le Fun [2], Life [1], Mercury [36], NUE-Prolog [29], Oz [35] and Toy [27], to name a
few. These languages support user-defined functions and the subsequent evaluation of expressions
involving these functions. Debugging functional computations of this kind is a non-trivial, but well-
studied problem [5,14,15,18,31,32,37,38,40,42]. These languages also support the use of logic
variables. Debugging programs with the combination of user-defined functions and logic variables
is much more challenging for reasons that will be discussed shortly.

Indeed, programming with the combination of user-defined functions and logic variables is
the subject of active research even for its most fundamental aspects, e.g., the formulation of both
adequate semantics and efficient implementations. A significant problem of combining functions
and logic variables is what to do when the execution of a program leads to the evaluation of a
functional expression containing uninstantiated logic variables. This problem is solved by either
residuation or narrowing [19]. Residuation delays the evaluation by transferring control to some
other portion of the program in hopes that the variables will be instantiated by a predicate so that
the evaluation of the functional expression can continue. Narrowing, instead, guesses instantiations
of variables which allow the evaluation to continue. Thus, the result of evaluating by narrowing an
expression produces both the value of the expression, generalizing a functional computation, and
a substitution of some variables of the expression, generalizing a logic computation. The details
of this computation are quite technical and outside the scope of this discussion. Examples will be
provided in the next section.

Narrowing introduces non-determinism in the sense that distinct instantiations of a variable in
an expression may be equally plausible and different instantiations may lead to different values.
This suggests to allow functions (including constants seen as functions of zero arguments) that
for the same arguments return different results. Obviously, these “things” are not functions in the
mathematical sense, but they are defined and used as ordinary functions in a program. The semantics
of a functional logic program is often formulated by seeing the program as a first-order rewrite
system. Higher-order and partially applied functions are eliminated by a transformation referred to

� This research has been supported in part by the NSF grants CCR-0110496 and CCR-0218224.
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as firstification [8,41]. Then, the execution of a program consists in the evaluation by narrowing of
an expression using the rules of the rewrite system.

The characteristics discussed above pretty much shape a debugger for a functional logic lan-
guage. The debugger has the features generally found in tracing debuggers for functional languages.
It shows evaluation steps as reductions. In the case of a functional logic language, rather than the
β-reductions of the λ calculus, these reductions are narrowing steps of a rewrite system—for first-
order, variable-free expressions the difference between the two is small. In addition, the debugger
must handle logic variables and non-determinism. How this is done depends on what a functional
logic language provides. Our work is centered on Curry [23] and on an implementation of Curry,
referred to as the FLVM, currently under development [7]. Curry offers both narrowing and residua-
tion and the FLVM offers a complete implementation of non-determinism. How these characteristics
affect a debugger will be discussed at length in the following sections.

Section 2 contains background information on Curry and the FLVM. Section 3 presents an
overview of the significant features of our debugger. Section 4 sketches the architecture of the
debugger and how it interacts with the FLVM. Section 5 shows an example of a debugging session.
Section 6 discusses related work. Section 7 offers our conclusion.

2 Background

Curry provides built-in types, such as numbers and characters; user-defined algebraic data types;
functions, including higher-order and non-deterministic ones, defined by pattern matching; lazy
evaluation; logic variables; and built-in search. The syntax is Haskell-like. An example of a com-
plete program follows. The numbers to the left are not part of the program. They are used for
reference purposes only.

1 data Color = red | white | blue

2 mono _ = []
3 mono c = c : mono c

4 solve flag | flag =:= x ++ white:y ++ red:z
5 = solve (x ++ red:y ++ white:z)
6 where x,y,z free
7 solve flag | flag =:= x ++ blue:y ++ red:z
8 = solve (x ++ red:y ++ blue:z)
9 where x,y,z free

10 solve flag | flag =:= x ++ blue:y ++ white:z
11 = solve (x ++ white:y ++ blue:z)
12 where x,y,z free
13 solve flag | flag =:= mono red ++ mono white ++ mono blue
14 = flag

Line 1 defines the type Color whose instances are three constants. Lines 2 and 3 define a non-
deterministic function, mono, that takes an argument (of type Color) and returns a list whose ele-
ments are all equal to the argument. The textual order of the rules is irrelevant. Lists of any length
can be returned. The remaining lines define a function, solve, that “solves” the Dutch National
Flag problem in the spirit of [16], i.e., by swapping pebbles out of place.
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The function solve is defined by conditional rules of the form:

f t1 . . . tn | c = e where vs free

The conditions are equational constraints of the form e1 =:= e2 which are satisfiable if both sides
e1 and e2 evaluate to unifiable data terms. Free variables, introduced by the where clause, in a
condition may be instantiated by narrowing steps, if this is useful to satisfy the condition.

In contrast to other declarative programming languages, e.g., Haskell, where the first matching
rule is applied, in Curry all matching (to be more precise, unifiable) rules are non-deterministically
applied to support complete computations. This enables the definition of non-deterministic func-
tions, such as mono and solve, which may have more than one result on a given input. As an
example of solving constraints, consider the evaluation of the following expression:

solve [white,red,blue,white]

Both the first and third rule of solve can be fired, because the conditions of these two rules are
satisfiable. For example, the first condition holds if x = [], y = [] and z = [blue,white].
These instantiations of x, y and z are computed by the evaluation of the constraint. With these
instantiations, the expression is rewritten to solve [red,white,blue,white].

A crucial design decision of the implementation of the language is how to handle the fact that
two or more rules are applicable to the same expression. One common strategy is to select one rule
and delay the application of the others until the selected rule yields either a result or a failure. This
is a simple strategy adopted, e.g., by some implementations of Curry [20,28] and other functional
logic languages [27]. But it is unsatisfactory because if the application of the selected rule leads to
a non-terminating computation no other rule that could yield a result is ever applied.

Another strategy is to fork the computation for every applicable rule and to execute fairly and
independently all the results. This is the strategy adopted by the FLVM. This design decision is
more satisfactory because it ensures the operational completeness of the language implementation.
However, it also introduces novel problems for a debugger, since the trace of a computation is no
longer the traditional linear sequence of steps, but it has a tree-like structure. A distinctive feature
of our debugger is the handling of this structure.

3 Features Overview

In this section we present some characterizing features of our debugger, calledTeaBag (The Er-
rors And Bugs Are Gone!). These features are realized by several interactions with a computation.
A synopsis of these features follow: computation structure is a window that visualizes the non-
deterministic steps of a computation; choice control is an option for the early elimination of unde-
sired non-deterministic steps; context hiding is an option for displaying only a subterm of the term
being evaluated and/or only steps that affect this subterm; eager evaluation is an option to eagerly
evaluate and/or replace a subterm of a term; runtime debugging is a debugging mode that supports
non-terminating computations and runtime selection of non-deterministic steps; breakpoints is an
option to set breakpoints not only on functions, but also on terms; highlighting is the use of colors
and other visual clues to ease understanding.

There are several classes of debugging tools for declarative languages. This subject will be fur-
ther discussed in Section 6. To understand some of the following features, we recall the difference
between a tracer and a runtime debugger. These terms are not formally defined and our descrip-
tions are only a subjective point of view to aid comprehension. A tracer executes a computation
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and when the computation terminates it displays some representation of the computation, e.g., the
computation steps. A runtime debugger executes a computation and if some events occur it displays
information about these events. The events generally include the termination of the computation,
runtime errors, and the invocation of certain functions selected by the user. A runtime debugger can
provide useful information about non-terminating and/or failing computations. It can also be helpful
when debugging code that interacts with the outside world, e.g., the program directly paints to the
screen or uses a socket. However, a runtime debugger generally provides less detailed information
about ordinary computations.

3.1 Computation Structure

A computation is the set of the narrowing or rewriting steps performed on the term being evaluated.
Computations in deterministic languages are a linear sequences of steps. In a non-deterministic
language a computation is a tree sometimes called the narrowing space. The narrowing strategy
executed by the FLVM is essentially an implementation of the inductively sequential narrowing
strategy [6] with some adjustments to support residuation. In this framework, narrexes and possibly
redexes can have more than one replacement. When this happens, a trace forks into several paths—
one for each replacement. In other words, a computation has the structure of a tree and a trace is a
path in this tree.

TeaBag provides a view of the tree structure of a computation. This view does not show all the
rewriting and narrowing steps of the computation. It just shows a tree in which a branch represents
a non-deterministic step and a leaf represents the endpoint of a trace, which is a term totally or
partially evaluated. In this view, a sequence of deterministic steps is shown simply as an arc from
a parent to a child in the tree. This view highlights the current path through the tree that the user is
looking at in the trace browser. The trace browser, discussed in section3.2, shows all the rewriting
and narrowing steps of a trace.

Having a computation structure is very important to understand how a result is obtained. With-
out the computation structure it is difficult to know where a rewriting or narrowing step fits into the
overall computation. The computation structure lets the user know which non-deterministic steps
were made to get to any rewriting or narrowing step in a trace. In deterministic computations, where
traces are linear, this contextual information can be obtained with just a counter, but this is impos-
sible in non-deterministic computations. An example of the computation structure is in figure3.

A variable is displayed with both its source code name v and a unique internally generated
number n in the format v|n. The name aids the user in relating steps of the computation to the
source code. Since different variables may have the same name because of either recursion or the
scoping rules, the unique number allows the user to distinguish different variables with same name.

3.2 Trace Browser

The trace browser shows the rewriting and narrowing steps for the selected path in the computation
structure. There are two ways to view the trace. The first way is as a table of all rewriting and
narrowing steps. This view is convenient for getting a “birds eye” view of the trace. However, it is
not suitable for examining individual rewriting or narrowing steps of the trace. The second way to
view a trace is by examining each rewriting and narrowing step. The user can choose to view one
or two terms of the trace at a time. Each term in the trace is obtained from a rewriting or narrowing
step on the previous term. The trace browser includes buttons to move to the next, previous, first,
and last steps. The user can also select a particular step number to jump to.
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The trace browser interacts with the computation structure. The node or edge in the computa-
tion structure corresponding to the current step in the trace browser is highlighted. When a non-
deterministic step is displayed in the trace browser the user is given the option of which branch to
follow. The selected path is highlighted in the computation structure. The user can also select a path
in the computation structure and the trace browser will be updated to display that path. An example
of the trace browser is in figure 1.

Figure 1. Example of Trace Browser. The terms are displayed as trees. The user can expand and collapse subtrees. Nodes
in the tree are symbols and branches are arguments.

3.3 Choice Control

TeaBag includes computation management to control subcomputations originating from non-deter-
ministic steps made during runtime debugging. When a computation executes a non-deterministic
step, the FLVM evaluates fairly and independently all the results of this step. This is essential for
ensuring the operational completeness of a computation. This view allows the user to kill, pause,
and activate the subcomputation of any individual result. Often, the user is interested only in a
subset of all the choices of a non-deterministic step. Since there can be an exponential growth of
non-deterministic steps, being able to pause and kill subcomputations toward the beginning of a
computation can greatly reduce the total number of non-deterministic steps made. This makes it
easier for the user to debug computations that would normally produce too many steps to examine.

3.4 Context Hiding

Even for small programs, the sheer volume of data to be displayed and analyzed for an execution
may become a serious obstacle to debugging. TeaBag alleviates this problem with two features
intended to suppress unwanted information.

Term Size Lazy evaluation has a propensity for creating large terms during a computation. Large
terms are not displayed easily and they make it hard to find subterms of interest. Often, the pro-
grammer is interested in examining a subterm nested somewhere in a large term. To assist the user
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in focusing on this term, TeaBag can be instructed to display a subterm of a term of a computation.
The subterm to be displayed is selected by the user. An option, allows the user to select only the
redex or narrex of each step, i.e., to eliminate the portion of a term above the subterm replaced by
a step. Also, TeaBag will expand terms only as much as is needed to display redex, narrex, and
created positions, i.e. to eliminate the portion of the term below the parts of the term that were re-
placed. The user has the option to further expand the term to see more. Hiding the context of a term
makes finding pertinent information easier for the user.

Trace Length Likewise, the number of steps in a trace can be very large. Many times the user will
only want to look at a subset of the trace steps, in particular at all the steps that affect a particular
subterm of the term being evaluated. For example, this may be convenient for terms rooted by a
function thought to be defective. TeaBag lets the user choose which terms to trace. The trace for
that term will only have the rewriting and narrowing steps performed on that term or one of its
subterms. This feature limits the number of rewriting and narrowing steps that the user needs to
look at. This makes it possible for the user to examine traces that would normally be too long to
look at.

The programmer may want to look at a portion of a trace after thousands or millions of steps
since the beginning of a computation. Displaying or even recording all the steps of a computation
can be very time consuming or even infeasible. TeaBag lets the user set breakpoints so that no step
is displayed or recorded until the breakpoint. The user can set breakpoints in a program and choose
to display only the steps that are executed on a subterm between breakpoints or until the subterm is
in normal form.

3.5 Eager Evaluation

In a lazy language, the arguments of a function application f t1 . . . tn are evaluated, as the name
says, lazily. For example, if ti is needed to compute the application of f , it will be evaluated to
a constructor head normal form. Then steps may be executed on other terms unrelated to f and
ti, but it is possible that either ti or some other argument of f will need to be further evaluated to
compute the application of f . In short, the arguments of f may be computed in stages. This back and
forth switching between arguments may occur repeatedly. It may be difficult for the programmer
to understand the behavior of f until some of its arguments are sufficiently evaluated, but it is time
consuming and distracting to interleave the evaluations of these arguments with the evaluation of
other unrelated terms.

On demand eager evaluation is a feature that lets the programmer override the default lazy
evaluation of a term. In this context, eager evaluation means evaluation to normal form. Any term
displayed in a window can be interactively selected. By default, the result of eagerly evaluating a
term is only displayed and does not replace the term. This lets the user see what the term evaluates
to without changing the lazy behavior of the program. An option, allows the user to replace a term
with its eagerly evaluated result. This is another device to compress the information displayed to the
user. Obviously, an attempt to eagerly evaluate a term may result in a non-terminating computation
even for a trace that terminates.

3.6 Runtime Debugging

TeaBag is not just merely a tracer. It is also a runtime debugger. TeaBag allows a programmer to
see the rewriting and narrowing steps of a computation at runtime. The unique feature ofTeaBag’s
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runtime debugging environment is that it interacts with the tracer. The tracer will reflect the compu-
tation(s) the programmer activated during runtime. It will also compress in a single step the optional
eager evaluation of a term. Choice Control, the feature described in Section3.3, is available dur-
ing runtime debugging and can effect what steps are generated for a trace. The runtime debugging
environment is shown in figure 2.

Figure 2. Runtime Debugging Environment

3.7 Breakpoints

TeaBag lets the programmer set a breakpoint on a function during runtime debugging. Whenever
a rewrite rule defining that function is applied, the FLVM will be paused and the rule application
will be displayed. This is convenient to debug non-terminating computations.TeaBag also lets the
programmer attach a breakpoint to an individual term during runtime debugging. When that one
term is replaced, the FLVM will be paused and the step from which the replacement originates will
be displayed. This is convenient when the programmer does not understand when or why a term is
evaluated. To the best of our knowledge this is the only debugger that allows breakpoints to be set
on individual terms.

3.8 Highlighting

Highlighting uses colors, icons, and other visual clues as aids to understand the large amounts of
displayed information.
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Term Replacement When a rewriting or narrowing step is displayed both the redex pattern and
created positions are highlighted. This information is intended to speed up the perception of how
a rewriting or narrowing step changes a term. It also enables the viewer to determine which of the
possibly many rewrite rules of a function has been applied in the step.

Variable Binding When a variable is bound, both the variable and its instantiation are highlighted.
This makes it easier to detect that a step involves a binding and to determine both the variable being
bound by the step and the step’s substitution.

Source Code When available, the source code executed to perform a step is highlighted. Informa-
tion about the source code is optionally added by the compiler to the generated bytecode. Providing
source code highlighting makes it easy for users to correlate the rewriting or narrowing steps with
their code. Being able to relate information displayed by the debugger to source code is considered
important [38] since ultimately a bug in a program will be fixed by changing the source code.

Non-Deterministic Choice Selection Source Code Highlighting When the user selects a non-
deterministic step to follow in the trace browser, the source code for that selection is highlighted if
it is available. For example, in figure 4 the non-deterministic choice selection in the trace browser
corresponds to the third rewrite rule for solve as highlighted in the source code.

4 Architecture

In this section, we give a few details on the architecture of our debugger. A significant aspect of
our architecture is that the debugger interface is entirely separated from the FLVM. The debugger
is implemented in Java. Java is a friendly, portable language with excellent graphical libraries. The
FLVM is implemented in Java as well, but this may change in the future. The efficiency of the FLVM
is obviously a concern and the size of its code is small, thus a conversion to a different language is
feasible.

A potential problem of most debuggers is scalability. Generally, one must consider both large
programs and programs that execute a large number of steps. In our case, one should also con-
sider programs with a large degree of non-determinism. Often, scalability is in conflict with both
providing detailed information and presenting information in a form visually rich, e.g., by means
of colors, fonts, and options. We have chosen to provide detailed, visually rich information and
have also implemented several features, described in Section 3.4, which should help in debugging
realistic programs.

Top Level Architecture The debugger interface is decoupled from the FLVM by running both
in separate processes and communicating over sockets. This allows the debugger to work with any
virtual machine that implements the socket interface. Having the FLVM in a separate process makes
it easy for the debugger to kill and restart it which is especially useful when the FLVM executes a
non-terminating computation.

Debug Events The FLVM communicates with the debugger by sending it debug events over a
socket. The debugger has a thread listening for these events. When data becomes available on this
socket the debugger parsers the event and dispatches it to the event thread for processing.
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Debug Commands The FLVM understands both user commands, such as “:load” and “:quit”
to respectively load a module and terminate an execution, and debugging commands, such as the
request to eagerly evaluate a term. User commands are given interactively to the command line
interpreter. Debugging commands for the FLVM have a textual representation that could be typed
in by a user. This allows the FLVM to redirect the socket of communication to standard input and
run as if there was a user typing in the commands. When a program is executed under the debugger,
the debugger acts as a proxy for the FLVM for all user input.

Tracing The information for a trace is written to a file during runtime. The trace browser reads data
from that file to display the steps in the trace window. Since, the user can choose which terms to
trace, not all steps of a computation are recorded to this file. Whenever a term is set to be traced, the
FLVM creates a chain of responsibility structure [17] among its subterms via a listener. Then, when
a subterm is replaced, it propagates this information up the chain of responsibility. Any term along
this chain that has a trace set on it fires a trace step event to the debugger. When the debugger gets
the trace step event, it writes the event to a file. In an attempt to make the changes to the FLVM as
simple as possible the debugger handles the files associated with tracing. However, marshaling and
unmarshaling the event is time consuming. One optimization we foresee is moving the file handling
to the FLVM and having it write the trace steps directly rather than through the debugger.

To minimize file sizes only the first step of the file contains the entire term. Subsequent steps
contain the difference from the previous term represented as a position and replacement. To get a
step from the file the first term is parsed out. Then for each step up to the desired one the given
position in the term is replaced with the replacement. Since this can be time consuming (it can take
as long as the entire computation) the files are broken up so that they contain at most 50 steps.

The execution of a non-deterministic step fires a non-deterministic trace step event to the de-
bugger. The debugger creates new traces for each of the possible replacements. A non-deterministic
trace step is just a collection of traces.

Breakpoints Each time the FLVM replaces a term it checks if either the term or the symbol (a
function) at the root of the term has a breakpoint set on it. If it does then the FLVM fires a breakpoint
event to the debugger, suspends the thread that evaluates terms, and wakes up the thread that reads
input from the user.

Eager Evaluation To perform eager evaluation of a term a new evaluation thread to work on a
deep copy of the term to be evaluated is created. Creating the deep copy makes sure that there are
no shared terms between the copy and any other term in the FLVM. This is necessary to preserve the
lazy evaluation. When the newly created evaluation thread finishes evaluating the term to normal
form an evaluation event is fired to the debugger. The FLVM holds on to the term to evaluate and its
replacement until it knows if the user has selected to replace the term or not.

5 Example

The following example demonstrates the computation structure of TeaBag. Consider the Dutch
National Flag program of Section 2 where lines 10-12 are replaced by:

10 solve flag | flag =:= blue:y ++ white:z
11 = solve (white:y ++ blue:z)
12 where y,z free
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i.e., the prefix, x, of a blue-white pair of pebbles out of place has been forgotten. When solve
[white,red,blue,white] is run using the above program the result is a failure. To find this
bug we first generated a trace of solve [white,red,blue,white]. Part of the structure for this
trace is shown in figure 3. We decided to follow the path through the computation structure that

Figure 3. Computation Structure for Buggy Dutch National Flag Program

we thought should have led to a solution. Since the choices along this path should have led to a
solution, examining the rewriting and narrowing steps on this path will tell us where the bug is
located. In this example we realized that to get a solution the first and third rules of solve would
need to be executed. The first rule should swap red and white and the third rule should swap blue
and white. Either order of applying these rules should led to a solution. We arbitrarily decided to
look at the path that is generated from applying the first rule and then applying the third rule. In
order for the first rule to swap red and white it must find bindings for the free variables x, y, and
z that satisfy flag =:= x ++ white:y ++ red:z. Since flag is [white,red,blue,white]
binding x to [], y to [], and z to [blue,white] will work. We used this information to find the
path thought the computation structure for applying the first rule.

There were two ways we could have found this trace path in the computation structure. We
could have stepped through the trace in the trace browser one step at the time. Then when a non-
deterministic step was made we would have been prompted to pick a branch to follow. By selecting
the appropriate branches we would have followed the trace corresponding to the path in the compu-
tation structure that we wanted. Because there is more contextual information, this method works
well when the correct choices at each non-deterministic step are difficult to determine. The second
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way to find a trace path in the computation structure is to follow branches through the tree. Each
node in the tree has one branch for each possible replacement. By knowing what the replacements
should be, the correct branch at each node can be selected. Thus, this method works well when
the correct choices at each non-deterministic step are known. We chose the second option since we
knew which choices we wanted to examine. The first branch we followed was the one for swapping
red and white. The next branch in the computation structure was for binding the variable x. One
of the branches was for binding x to the empty list and the other branch for the non-empty list. The
same was true of y. So we chose the empty list for both. We saw that there was no choice to be
made for z since our choices for x and y forced z to be bound to [blue,white]. The next choice
we had to make was for solve(:(...)).

At this point we needed to see what the term for the trace looked like to see if red and white
were actually swapped like we thought they should have been. We were expecting that the term
would be solve [red,white,blue,white]. To check this, we right clicked on the node in the
computation structure for solve(:(...)) and selected “Move trace to this step.” This updated
the trace browser to show the trace along the path we have chosen so far and to display the step
for this choice as the current step. Figure 4 shows the trace at this point. The upper left corner is
the trace step for picking a non-deterministic choice for solve(:(...)), the upper right corner
is the source code with the code for the choice in the trace browser highlighted, and the lower
panel shows the computation structure with the current path through the trace highlighted. Since
we were interested in whether or not red and white were actually swapped we moved the trace
back one step. This step showed that red and white had been swapped. The term for this step was
solve(red : [] ++ [white,blue,white]).

Now blue and white must be swapped to get a solution. So we continued along the path we
had followed so far choosing the path in the computation structure for swapping blue and white.
We noticed immediately that this path leads to a failure as can be seen in figure 4. This caused
us to think that the bug for this program was somewhere between choosing to swap blue and
white and the failure. So we stepped through the trace one step at a time in the trace browser
starting with the step for choosing to swap blue and white. After looking at five trace steps we
noticed that for the condition to evaluate to a success, [red,...] must be equal to [blue,...].
Obviously, this can never happen since red can not be equal to blue. With this information we
then went back in the trace to see why blue must be equal to red. We went back to the pre-
vious choice step to examine how the condition was created. Here we noticed that the condition
is [] ++ (red : [] ++ [white,blue,white])=:= [blue,y,white,z]. At this point we realized
that there is no way for red to match anything on the right hand side since there is no free variable
for it. So we added a free variable to this rule giving us the code presented in Section2.

We could have also found this bug by looking at the path in the computation structure that
corresponds to applying the third rule of solve and then the first rule of solve. If we had chosen
this path then we would have found the bug much faster since the path for applying the third rule of
solve immediately leads to a failure as can be seen in figure3.

6 Related Work

Functional logic languages borrow ideas from both functional and logic languages. Functional logic
language debuggers are no different. They borrow ideas from debugging functional languages and
from debugging logic languages. Four different debugging techniques have been applied to debug-
ging functional logic languages. The first one is tracing. Tracing is a debugging technique used for
debugging functional programs [14,15,38,42]. Tracers show each step of a computation to the pro-
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Figure 4. Trace of Buggy Dutch National Flag Program

grammer. Typically these steps are reductions, though they do not have to be. For example, tracing
has been used to trace the redex trail of Haskell programs [38,14]. Likewise, CIDER [22] is a func-
tional logic debugger for Curry based on tracing. Trace steps in CIDER are narrowing or rewriting
steps. A specialized form of tracing called box-oriented debugging is the second type of functional
logic debugging. Box-oriented debugging was first developed by Byrd [11] for debugging Prolog
programs. Box-oriented debuggers trace goals in logic programs. Box-oriented debugging has been
extended to functional logic languages by Hanus and Josephs [21] and by Arenas-Sánchez and Gil-
Luezas [9]. The third type of functional logic debugger is observation debugging. This idea was
first developed by Gill [18] for Haskell. It was latter incorporated into the Haskell tracer called Hat
[40]. Observational debugging works by letting the programmer see the intermediate data structures
that are passed between functions. Recently, Braßel, et al. extended this idea to functional logic lan-
guages by handling non-deterministic search, logical variables, concurrency, and constraints [10].
The final type of functional logic debugger is algorithmic. This idea was initially proposed by
Shapiro [34] for debugging Prolog programs. The idea of algorithmic debuggers has been used in
functional [31,32,37], logic [25,34,39], and functional logic debuggers [3,4,12,13,30]. Algorithmic
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debuggers work by using the declarative semantics of the program. An oracle, typically the user, is
asked questions about the intended meaning of their program in an automated way until the debug-
ger can point out where the bug is located. Some examples of algorithmic debuggers for functional
logic languages are Buggy [3], an accessory of the Münster compiler [12], and the debugger in the
Toy system [13].

At first glance it may seems surprising that almost all functional logic language debuggers are
algorithmic. Why haven’t more debugging ideas from the functional and logic communities be
explored in functional logic languages? We believe the reason for this is that algorithmic debuggers
have been proven to work in both functional and logic languages so it is only natural that they
would also work in functional logic languages. Most of the other debugging schemes for functional
and logic languages have only been shown to work in their respective family of languages. Thus
directly using one of those schemes for debugging functional logic languages will only debug “half”
of the language. For example, CIDER [22] contains a tracer of rewriting and narrowing steps for
debugging. This tracer works fine for tracing deterministic programs. However, it becomes difficult
to use in non-deterministic programs. It shows the trace of non-determinism as a deterministic
backtracking step which can be difficult to follow [11]. The tracer in CIDER is not as effective on
non-deterministic programs as it is on deterministic programs.

For a functional logic debugger to be useful it has to be able to deal with both deterministic
and non-deterministic features that real programs use [12]. We have applied this principle to tracing
rewriting and narrowing steps in functional logic programs. We created a functional logic tracer that
can be used to trace both deterministic and non-deterministic programs. To do this we borrowed the
traditional tracing of reduction steps idea from functional programming [42] and combined it with
the structure of the search space [33]. We believe that our approach is the first attempt to exploit
this combination to trace the steps in a computation.

TeaBag is a debugger for Curry. There are three other debuggers for Curry: Münster [12],
COOSy [10], and CIDER [22]. Münster is a compiler for Curry that contains a declarative debugger
of wrong answers. TeaBag and Münster take different approaches to debugging Curry. Münster uses
the declarative semantics of the program for debugging it.TeaBag uses the runtime narrowing and
rewriting steps. Münster systematically asks the user questions until it can deduce where the bug is
located. TeaBag, on the other hand, lets the user investigate how their program is being executed
to find the bug. Given these differences Münster and TeaBag should be viewed as complementary,
rather than competing, debuggers. Like Münster, COOSy takes a different approach to debugging
from TeaBag. COOSy is an observational debugger. Thus COOSy lets the user view the values of
expressions. To handle the non-deterministic aspects of functional logic programs COOSy extended
Gill’s observational debugging idea [18] to handle non-deterministic search, logical variables, con-
currency, and constraints. Like TeaBag, COOSy extended a functional language debugging idea
to handle all aspects of functional logic languages. Alternate non-deterministic choices in COOSy
are shown in a group and the bindings of logic variables are displayed.TeaBag is much more like
CIDER in that both of them use tracing for their debugger. CIDER is an IDE for Curry that contains
a debugger which uses tracing to debug Curry. However, CIDER does not provide context hiding,
highlighting, or a trace structure suitable for debugging non-deterministic programs. Thus CIDER
is more difficult to use than TeaBag for debugging large programs and non-deterministic programs.
While the sole focus of TeaBag is debugging, CIDER focuses on program development of which
debugging is just one aspect. Thus CIDER includes analysis, editing, and compilation tools which
are not in TeaBag.

TeaBag has a unique place in the current landscape of debuggers for functional logic languages.
It is the only tracer of narrowing steps we are aware of that truly handles both deterministic and
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non-deterministic features found in real functional logic programs. For more detailed information,
source code, and to download TeaBag refer to [24].

7 Conclusion

We have presented, TeaBag, a debugger for functional logic computations. TeaBag has been devel-
oped as an accessory of the FLVM, a virtual machine intended for the execution ofCurry programs.
A distinctive characteristic of this machine is its operational completeness. This means that the
strategy for the execution of non-deterministic steps is concurrency, rather than backtracking. This
strategy poses novel demands on a debugger.

Our debugger has both typical features of functional and logic debuggers, specifically features
found in tracers and/or runtime debuggers, and novel features for displaying and managing non-
determinism. In addition to standard features such as context elimination, highlighting and break-
points on functions and terms, the user can view the non-deterministic steps of a computation and
display only traces that make certain user-selected steps. To our knowledge, this is the first debugger
with this capability.
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Abstract Glass-box testing tries to cover paths through the tested code, based on a given criterion such as def-use chain
coverage. When generating glass-box test cases manually, the user is likely to overlook some def-use chains. Moreover
it is difficult to find suitable test cases which cause certain def-use chains to be passed. We have developed a tool which
automatically generates a system of test cases for a piece of Java byte code, which ensures that all def-use chains are
covered. The tool consists of a symbolic Java virtual machine (SJVM) and a system of dedicated constraint solvers. The
SJVM uses the constraint solvers in order to determine which branches the symbolic execution needs to consider. A
backtracking mechanism is applied in case that several branches remain feasible. Thus we have applied implementation
techniques known from functional logic and constraint programming to handle the considered applications problems.

1 Introduction

As quality standards for software systems are permanently increasing, software testing becomes a
more and more important part of the software development process. Since software testing is time
consuming and costly and tests have to be repeated several times, much effort has been invested
in the automation of testing. As a result of these endeavors many regression test suites have been
implemented. Even though these regression test suits assist a developer performing already known
tests on his code, the generation of new test cases remains up to the user.

In the literature, testing is divided into black-box testing and glass-box testing. While black-box
testing derives test cases from the specification of the user requirements, glass-box testing is based
solely on the code and is hence adapted exactly to the way a given problem will be solved by the
program. Here, we will focus on glass-box testing.

Glass-box testing is particularly suited to unit testing and to testing of algorithmically challeng-
ing parts of software systems. Unfortunately generating an exhaustive set of test cases based on a
given coverage criterion as the def-use chain coverage is then challenging and error-prone, too.

In order to simplify glass-box testing, we have developed a tool that automates the generation of
(mostly complete) sets of test cases satisfying a selectable testing criterion. Each test case consists
of a set of constraints that describe the values for the input parameters leading to the pass through the
test case in a general way, a concrete instance of values satisfying these constraints, a description
of the path that will be taken during the runtime of the test, and the symbolic and the real result
that will be expected at the end of the run. The testing criterion discussed in this paper will be the
def-use chain coverage, which roughly ensures that all values defined somewhere in the program
do not cause problems at places, where they are used. However the tool is also able to support
other coverage criteria like statement coverage, branch coverage, or condition coverage and offers
an open interface for the integration of further coverage criteria. Our tool is implemented in Java.

In order to identify the paths that may be followed by a real Java virtual machine [Su03] as
precisely as possible, we have designed our tool as a symbolic Java virtual machine that processes
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Java byte code. The difference of our SJVM to an original Java Virtual Machine [LY99] is that the
value of a variable is not just a numerical value but an expression on some input variables. Prior
to the symbolic execution, our tool analyzes the byte code in order to determine all def-use chains.
During the symbolic execution, the SJVM generates at each branching instruction (e.g. a conditional
jump) a constraint corresponding to the branch taken and propagates it to a constraint solver. If the
overall system of constraints has no more solutions, or if all definitions and uses in the considered
branch have been processed, the SJVM backtracks to the latest branching instruction and continues
with an alternative branch, much like the Warren Abstract Machine known from Prolog [Wa83].
When the end of a path has been reached without any conflicts, it is up to the constraint solver to
calculate one particular solution of the collected set of constraints, and to generate a corresponding
test case. This can be added to a regression test suite.

As already mentioned, the main difficulty of the approach above is checking, whether the col-
lected constraints remain solvable, or if they are already contradicting each other. For this purpose
we have implemented a dedicated constraint solver, which is integrated into our SJVM and is con-
nected to the symbolic execution engine by a special constraint solver manager that administrates
the gathering of new constraints and facilitates an incremental growth and solving of the constraints
(see Fig. 1). The SJVM has been presented in [ML03] and will not be explained in detail here. We
will rather focus on the system of constraint solvers.

This paper is structured as follows. The tasks and the functionality of the constraint solver
manager are described in Section 2. Section 3 explains how linear constraints will be handled,
while Section 4 shows the treatment of non-linear constraints. Extracts of our experimental results
and some known limitations of our approach will be discussed in Section 5. Related work and our
conclusions can be found in Section 6 and 7, respectively.

2 The Constraint Solver Manager

The constraint solver manager (CSM) acts as an interface between the symbolic execution engine
of the SJVM and the different constraint solvers we have implemented to handle different kinds
of constraints. Since the constraints produced by the execution engine arrive incrementally at the
CSM, it has to store each of them for further calculations. As the backtracking mechanism of our
tool also guarantees that the latest constraints added to the system are the first that will be removed
again, the CSM needs a constraint stack to maintain them.

Moreover, the CSM analyzes the constraints and transforms them to some kind of normal form.
Additionally, it selects the most appropriate constraint solver for each system of constraints and
distributes each constraint to the corresponding constraint solver, in case that the overall system of
constraints consisted of several independent subsystems. At present only a small set of constraint
solving algorithms are implemented, but the CSM has an easily implementable interface for the
integration of further, more powerful algorithms.

One step of the normalization of constraints is that inequalities of the form exp1 �= exp2 are
transformed to an easier manageable system of inequalities exp1 < exp2∨exp1 > exp2. Moreover,
fractions are removed by expanding and extending the constraints as shown in Figure2. Here it is
important to notice that for each denominator it has to be examined, in which situations it will have
the value 0, because then the occurrence of an ArithmeticExcpetion has to be considered (in
Figure 2 this is represented by constraint (1)). Since multiplying inequalities with negative factors
lets the comparison operator switch its direction, the original constraint has to be split into two new
systems of constraints (line (2) and (3) of the example; all connected by ∨). These three systems
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Figure 1. Symbolic Java Virtual Machine
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Figure 2. Removal of fractions for 1
1+x

≥ a

will be successively considered using a backtracking mechanism. Thus, one system at a time will
be passed on to an appropriate constraint solver.

Removing divisions also implies a consideration of the data types of the involved variables.
While the types float and double introduce few difficulties, integer divisions (for the Java types
byte, char, short, int, and long) have to be replaced in a special way. For example the equation
a/5 = 4 containing the double variable a will be transformed to a = 20.0, while the same equation
with an integer division has to be transformed to the set of constraints a = 20 + r ∧ r ≥ 0∧ r ≤ 4.
Possible values for a will then be 20, 21, 22, 23, and 24.

The resulting system of purely polynomial equations and inequalities is then analyzed, in or-
der to check whether they can be broken up into smaller, independently solvable systems. This is
an interesting question, because maybe some parts of the system then can be handled by the more
efficient linear constraint solvers, while only those parts that are really depending on nonlinear
equations are passed on to the more complex nonlinear solvers. The next benefit of this approach
concerns the ability of handling incrementally growing systems of constraints. When a new equa-
tion or inequality arrives, it has to be checked, which constraints are depending on the variables
contained in the new equation or inequality and only for these constraints a new solution has to
be computed. All the other constraints that are not depending on the variables of the new equation
are left untouched and their solution calculated before can be reused. Because calculating solutions
for complex systems of equations and inequalities can be very time consuming, the CSM firstly
verifies if the existing solution of the previous calculations satisfies the new equation too. Only if
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the old solution does not fit any longer, the computation of a new tuple of values will be initiated.
Nevertheless the new constraint has to be added to the constraint stack in both cases.

The next and maybe most important job of the CSM is the analysis of the constraints and the
choice of the best constraint solver for the given problem. For this purpose the constraints are
divided up into several categories, each having a dedicated constraint solver.

Pure boolean constraints consisting only of the boolean constants true and false, boolean
variables and the boolean Java operations & (and), | (or), ! (not),ˆ(xor), and the comparison op-
erators == (equal) and != (not equal) are solved by a simple backtracking mechanism known from
(functional) logic programming languages like Prolog [SS94] or Curry [HK95].

The most important decision criterion of the arithmetic constraints is the linearity or nonlinearity
of the system. Further criteria are the existence of weak (≤, ≥) or strict (<, >) inequalities or of
variables with integer data types (byte, char, short, int, or long).

Linear equations consisting only of floating-point data types (float and double) can easily
be solved using Gaussian elimination, while inequalities can be solved using a variable elimination
solver, parts of the simplex algorithm [BJ90] or a combination of them. The simplex algorithm
can be enhanced by a branch-and-bound add-on or total enumeration, which enables the solution
of linear (mixed) integer problems [BJ90,GN72]. These solvers are already included in the current
version of our test tool and have proven to be reliable.

To explain the functionality of the whole test tool and especially of some of the mentioned
solvers, the analysis of the short Java method gcd that calculates the greatest common divisor of
two positive integer numbers will be used as a running example. The source code of the Java method
is shown in Figure 3.

public static double gcd (double a, double b){
while (a > 0){

if (a < b){
double h = a;
a = b;
b = h;

}
a = a % b;

}
return b;

}

Figure 3. Java source code of the greatest common divisor method

Since our tool operates on the byte code due to several reasons (e.g. efficiency and support of
different programming languages (Java 1.4, Java 1.5, Pizza)) the source code of Figure3 has to be
compiled to the form presented in Figure 4. Starting from that byte code our test tool offers the
developer the choice of different testing criteria. In our example we decided to select the def-use
chain coverage. Def-use chains [Be90] are defined as follows:

def(S) := {X| instruction S (re)defines X}
use(S) := {X| instruction S uses X}

Then [X,S, S′] is a def-use chain for variable X, if X ∈ def(S)∩use(S′) but X /∈ def(S′′) for all
instructions S′′ passed on some path from S to S′. We will indicate S and S′ by the corresponding
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0 goto 15 11 dload_0 // a
1 dload_0 // a 12 dload_1 // b
2 dload_1 // b 13 drem // a%b
3 dcmpg 14 dstore_0 // a=a%b
4 ifge 11 // a<b? 15 dload_0 // a
5 dload_0 // a 16 dconst_0 // 0
6 dstore_2 // h=a; 17 dcmpl
7 dload_1 // b 18 ifgt 1 // a>0?
8 dstore_0 // a=b; 19 dload_1 // b
9 dload_2 // h 20 dreturn // return b

10 dsotre_1 // b=h;

Figure 4. Java byte code of the greatest common divisor method

byte code line numbers. Taking into account that according to the Virtual Machine Specification
[LY99] the SJVM puts the input parameters of the gcd-method on top of the methods local operand
stack as variables 0 and 1 (which is annotated with VM in the def-use chains), the method contains
the following set of def-use chains: [a,VM,1], [a,VM,5], [a,VM,11], [a,VM,15], [a,8,11], [a,14,1],
[a,14,5], [a,14,11], [a,14,15], [b,VM,2], [b,VM,7], [b,VM,12], [b,VM,19], [b,10,2], [b,10,7], [b,10,12],
[b,10,19], and [h,6,9].

To cover all these def-use chains several test cases have to be generated, each causing a dif-
ferent path through the code to be taken and requiring special values as input for the method. The
computation of these values will be discussed in the following sections.

3 Solving Linear Constraints

Even though solving linear constraints seems to be one of the easier manageable problems during
the generation of test cases and lots of algorithms concerning this subject have been discussed in
the literature, many of the known algorithms may be applied just to special subsets of the problems
that appear in practice. While Gaussian elimination is working fine on systems of linear equations,
the first phase of the Two-Phase Simplex Algorithm (leading to an initial basic feasible solution)
[BJ90] are utilized for systems of linear equations and weak inequalities (≤, ≥). Although some
variations of the simplex algorithm exists that allow e.g. the additional handling of negative vari-
ables, the treatment of strict inequalities (<, >) is not sufficiently supported. For this reason we
added an additional, more flexible algorithm to our test tool based on the Fourier-Motzkin elimina-
tion procedure [DE73,Ap03]. This elimination procedure iteratively removes a selected variable by
isolating it in each inequality, combining these new inequalities and replacing the whole system of
inequalities by a new system that does not contain the selected variable. It has been shown that the
new system has a solution if and only if the original system has a solution, too (the two systems are
also called equisatisfiable). This approach will be repeated until a system of inequalities remains
that contains a set of restrictions to only one variable, for which a solution can easily be found.
Substituting the solution for the last variable into the previously build systems leads then iteratively
to a complete solution of the whole original problem.

More detailed the approach works as follows. Firstly all equations have to be removed from
the system of equations and inequalities. This can be done by isolating an arbitrary variable of the
first equation that is contained in the system of constraints. This variable can now be substituted in
all equations and inequations by the right hand side of the transformed equation without varying
the solution space of the remaining variables. This step will be repeated until the constraints are
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free from any equations. If the original equations contain both integer and noninteger variables it is
recommendable to remove the noninteger variables first.

Then the m inequalities with n variables have to be transformed to a system of inequalities of
the form shown in (1). The operator � stands for one of the operators ≤ and < in the following:

a11x1 + · · · + a1nxn � b1
...

...
am1x1 + · · · + amnxn � bm

(1)

Choosing x1 as the first variable to eliminate lets us split the set I = {1, ...,m} of indices for the
inequalities into I = I− ∪ I0 ∪ I+:

I− = {i ∈ I|ai1 < 0}
I0 = {j ∈ I|aj1 = 0}
I+ = {k ∈ I|ak1 > 0}

(2)

The classification of the inequalities into the sets I− and I+ assists us to transform the inequalities
of system (1) into the form (3):

a−1
j1 bj − a−1

j1 aj2x2 − · · · − a−1
j1 ajnxn � x1 ∀j ∈ I−

x1 � a−1
i1 bi − a−1

i1 ai2x2 − · · · − a−1
i1 ainxn ∀i ∈ I+

(3)

Combining each of the inequalities with the indices in I− with each of the inequalities with indices
in I+ by the isolated variable x1 using the transitivity of the ≤ and < relations leads to the new
system (4):

n∑
j=2

(a−1
k1 akj − a−1

l1 alj)xj � a−1
k1 bk − a−1

l1 bl ∀k ∈ I+, l ∈ I−

n∑
j=2

aijxj � bi ∀i ∈ I0

(4)

It is obvious that the new system consists only of n− 1 variables and |I0|+ |I−| · |I+| inequalities.
This step has to be repeated until only one variable is left or some constraint becomes obviously
contradictory. Here it is also recommendable to begin eliminating the noninteger variables so that
after some eliminations a system of inequalities remains that does only contain integer variables1.
Together with the integer equations noted before, the generated weak inequalities over integer vari-
ables may now be solved by the branch and bound extended simplex algorithm or total enumeration.

Although the number of inequalities grows in the worst case exponentially in the number of
variables, in our application this is no problem, since it is usually no problem to find a variable for
which one of the sets I+ or I− and thus the total number of inequalities in the next step become
relatively small. Note that if I− or I+ are empty, it is trivial to find a solution. Additionally the
number of input parameters of typical Java methods tends to be small.

Taking our example of the gcd-method described earlier, the Fourier-Motzkin elimination will
be used by the CSM for situations, where the SJVM wants to know, what branches of the if-
instruction in the byte code on line 4 are still reachable, after the ”true branch” of the conditional
jump instruction on line 18 has been taken positive. Here the simple inequalities a > 0 ∧ a < b
will have to be handled. Since this is a trivial problem for the elimination algorithm, we make the
example a little bit more interesting by adding the conditions a ≤ 100 and b ≤ 100.

1 This mixture of possibly strict and weak inequalities can then easily be transformed into a system of weak inequalities
by subtracting the greatest common divisor of all coefficients and the right hand side of each inequality from their right
hand sides.
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The set of inequalities gathered so far by the CSM will then be:

a > 0 � −a < 0 (1)
a < b � a − b < 0 (2)
a ≤ 100 � a ≤ 100 (3)
b ≤ 100 � b ≤ 100 (4)

Selecting a as the next variable to eliminate lets us build the three sets of indices I− = {1},
I0 = {4}, and I+ = {2, 3}. Preparing the inequalities (1), (2), and (3) for the later elimination of a
leads to:

0 < a
a < b
a ≤ 100

Combining them pairwise and adding the inequalities of I0 produces the 1+1·2 = 3 inequalities
with b as the only contained variable:

0 < b 0 < 100 b ≤ 100

The constraint solver is now able to detect that there are no conflicting constraints and that the
value of the variable b has to be selected from the interval ]0; 100]. Selecting b = 50 randomly and
inserting this value into the original system results in:

−a < 0 a < 50
a ≤ 100 50 ≤ 100

Thus the interval for the variable a is ]0; 50[. The information, the CSM can pass on to the
symbolic execution engine of the SJVM is that the considered path of the symbolic execution can
still be reached and possible values for a test case leading to that path can e.g. be a = 40 and b = 50.

4 The Nonlinear Constraint Solver

For nonlinear constraints we offer a symbolic approach based on the Buchberger algorithm [BW93]
[ML03] and a numerical approach. The Buchberger algorithm has the disadvantage that it is doubly
exponential and that there is no systematic approach to find one concrete solution which could be
used to generate a test case in case that there are infinitely many solutions. In the present paper we
will focus on our numeric approach, a bisection algorithm, which successively divides the search
space looking for solutions of the considered system of polynomial equations and inequalities.

Returning to our running example, the gcd-method, let us consider the constraints gathered
when for the first three if-instructions of the byte code the true-branch was selected and for the fol-
lowing two if-instructions the conditions were assumed to be false. This leads to a test case covering
the def-use chains [a,VM,1], [a,VM,11], [a,VM,15], [a,8,11], [a,14,1], [a,14,5], [a,14,15], [b,VM,2],
[b,VM,7], [b,VM,12], [b,10,12], [b,10,19], and [t,6,9]. The result of the symbolic execution in that
case is (a mod b) and the gathered constraints are:

a > 0 a mod b > 0 b mod (a mod b) ≤ 0
a ≥ b a mod b < b

Because many algorithms can not handle constraints containing modulo operations directly, the
disturbing mod-operations will be eliminated first by inserting additional variables:
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a > 0 x > 0 y ≤ 0
a ≥ b a = mb + x b = nx + y

m ≥ 0 x ≥ 0 x ≤ b − 1
n ≥ 0 y ≥ 0 y ≤ x − 1

Here it is easy to see, that y has to be zero and that the whole problem is obviously nonlinear.
Substituting b, the equation for the variable a will be transformed to a = m ·n ·x+m ·y +x, which
is a polynomial equation of third degree and thus finding solutions for it is a nontrivial problem.

The constraints in our setting are conjunctions of atomic polynomial constraints. Disjunctions
are not considered because the solver manager handles them via backtracking. Each atomic poly-
nomial constraint has the form p ♦ 0 , where p is a polynomial and ♦ ∈ {=, <}. Notice that for the
further reasoning it is not necessary to include weak inequalities, since they can be decomposed in
the disjunction of an equality and a strict inequality, and that constraints of the form p > 0 can be
replaced by −p < 0.

After transforming the example we get:

−a < 0 −n < 0 b − nx = 0
b − a < 0 a − mb − x = 0 x − b + 1 < 0
−m < 0 −x < 0 1 − x < 0

Each variable in the constraint has some predefined domain, represented by the different types
used in Java for representing numbers (byte, char, short, int, long, float, double). Given a
variable x we represent the set of values of its domain by dom(x). In our example we would expect
a, b, and x to be double values and, m and n int values.

Let xn be the number of different variables in a constraint ϕ, ε ∈ R+, and cn ∈ R
n. Then we

say:

• cn ε-satisfies an atomic constraint of the form p < 0 if p(cn) < −ε and each ci ∈ dom(xi)
for i = 1 . . . n.

• cn ε-satisfies an atomic constraint of the form p = 0 if −ε ≤ p(cn) ≤ ε and each ci ∈
dom(xi) for i = 1 . . . n.

• cn ε-satisfies a constraint ϕ if it ε-satisfies all the atomic constraints in ϕ.

• cn satisfies a constraint ϕ if it 0-satisfies all the atomic constraints in ϕ.

The constraint solver aims at finding some values cn ε-satisfying the constraint ϕ for some small
enough ε, 0 < ε < 1. However, this problem is quite involved.

Fortunately, we are not interested in finding all the solutions of the system. For our purposes it
is enough to find one solution, if such a solution exists, to obtain a test case covering the considered
def-use chains. With this aim our solver uses a numerical technique based on a generalized bisection
algorithm [KS99], which has proved to be reliable for isolating real solutions of multivariate poly-
nomial systems. The algorithm, adapted to our requirements, considers some initial n-dimensional
rectangle D, where the number n of variables in the given constraint ϕ, and some error bound ε,
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and checks if there is any point qn ∈ D which ε-satisfies ϕ. It can be summarized as follows:

Solve(D,ϕ,ε):

I = {D}
While I is not empty and no solution has been found

Select a rectangle S of I.
I = I - {S}
if there exists qn ∈ S such that qi ∈ dom(xi) for i = 1 . . . n then

if qn ε-satisfies ϕ then a solution has been found (qn)
else if mightBeSatisfied(S,ϕ, ε) then

split S in smaller rectangles {S1, . . . , Sk}
I = I ∪{S1, . . . , Sk}

As it can be seen in this description, the algorithm first checks whether there is any point qn
in the rectangle such that qi ∈ dom(xi) for all i = 1 . . . n. If such a point does not exist then the
rectangle can be discarded. Otherwise one of these points is singled out to check if it ε-satisfies
the constraint. In this case we have obviously found a solution. Otherwise the algorithm uses a
test, represented by the function mightBeSatisfied to determine if the rectangle could still contain
some point ε-satisfying ϕ. If this happens the rectangle is split into k smaller rectangles (in our
current implementation k = 3), which will be considered in turn. The process continues until some
solution is found or the set of rectangles is empty, meaning that no solution has been found. Both
the termination property and the correctness of the algorithm depend on the test mightBeSatisfied,
which:

1. Returns no if it can be ensured that actually there is no point in the rectangle that can ε-satisfy
the constraint. In this way the correctness is ensured, since no solution can be skipped.

2. Returns no too, if the size of the rectangle S is smaller than our predefined ε in each dimension
and if any qn ∈ S with qi ∈ dom(xi) for i = 1 . . . n does not ε-satisfy ϕ. This ensures the
termination of the algorithm if no valid solution will be found within the given precision.

To meet the first requirement we must devise some test cannotBeSatisfied(S,ϕ,ε) that can ensure, in
certain cases, that the constraint cannot be ε-satisfied in some rectangle S. Then obviously mightBe-
Satisfied can be defined as:

mightBeSatisfied(S,ϕ,ε):

if cannotBeSatisfied(S,ϕ,ε) ⇒ then return no
else return yes

A constraint ϕ cannot be ε-satisfied if some of its atomic constraints p ♦ 0 cannot be ε-satisfied.
And this can be checked since p is a polynomial and hence a continuous function:
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cannotBeSatisfied(S,p♦0,ε):

Let m,M ∈ R
n be two numbers such that m < p(qn) < M for all qn ∈ S

if ♦ is ’=’ and m · M > 0 and |m|, |M | > ε then return yes
else (♦ is ′ <′)

if m > −ε then return yes
else return no

i.e. a constraint of the form p = 0 cannot be ε-satisfied in S when the upper and the lower
bounds of the polynomial have the same sign (condition m · M > 0) and both are greater that
ε in absolute value. The same occurs if the constraint is of the form p < 0 and the lower bound
is greater than −ε. If neither of these cases occurs then the constraint still might be ε-satisfied
in S. To determine the upper and the lower bounds of a polynomial p in the rectangle S we use
the Bernstein expansion of the polynomial since this representation has the following well-known
property [GG99]:

Let p be a polynomial with n variables and pB its Bernstein expansion. Let m,M be the min-
imum and the maximum respectively of the coefficients of pB . Then m < p(qn) < M for all
qm ∈ [0, 1]n, where [0, 1]n represents the n-dimensional cube [0, 1] × · · · × [0, 1]︸ ︷︷ ︸

n

Then the steps to find the values m,M used in the definition of the function
cannotBeSatisfied(S, p♦0, ε) are the following:

1. Define a n-dimensional homotecy h : [0, 1]n → S converting [0, 1]n into S.
2. Compute the Bernstein expansion pB of the composition p · h, which is also a polynomial.
3. Obtain the maximum coefficient of pB as value M and the minimum coefficient as value m.

Checking that the lower (respectively the upper) bounds of p ◦h in [0, 1]n is the lower (respectively
the upper) bounds of p in S is straightforward. Moreover this technique has the following nice
property:

Let p be a polynomial with n variables and ε ∈ R, 0 < ε < 1. Then for small rectangles S, the
composition p ◦ h, with h an homotecy such that h : [0, 1]n → S, verifies that the minimum m and
the maximum M coefficients of its Bernstein expansion (p ◦ h)B are such that M − m < ε.

This ensures the termination property of the algorithm, since every rectangle such that M−m <
ε either contains a solution or can be discarded. However our current implementation also includes
a time-out to ensure that reaching this limit is not too costly. Of course if the time-out is triggered
then the technique cannot ensure if there is any solution to the system. But in practice this occurs
only with very complex constraints (i.e. polynomials of very high degree). For instance given the
system at the beginning of the section, the solver gets a solution after a few milliseconds.

5 Experimental Results and Restrictions

As we have seen in the previous sections, our constraint solvers are able to handle linear and nonlin-
ear constraints and combinations of them. Interestingly, many of the common algorithms and data
structures known from the literature get by with simple boolean and linear constraint solvers and
the nonlinear solvers will rarely be used.
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Characteristics of constraintsAlgorithm
linear nonlinear floating-point integer

Ackermann
√ √

Binary search
√ √

Bubble Sort
√ √

Bresenham
√ √

Factorial
√ √

Gaussian Elimination
√ √

Greatest Common Divisor
√ √ √

Histogram
√ √

Dijkstra Shortest Path
√ √

Logarithm
√ √

Matrix Multiplication
√ √

McCarthy
√ √

Pattern Matching
√ √

Sin
√ √

Sqrt
√ √

StoogeSort
√ √

Table 1. Characteristics of constraints for several algorithms

This phenomenon is caused in the fact that although the results of many algorithms can involve
rather complex calculations, the decisions, which guide the control flow, are mostly very simple.
Taking for example factorial: the results for the factorials of the first natural numbers are 1! = 1,
2! = 2, 3! = 6, 4! = 24, and 5! = 120. Admittedly the corresponding calculations are surely
nonlinear, but a look at the definition factorial(n) =

∏n
i=1 i shows that a simple loop over the

natural numbers from 1 to n is sufficient. The constraints the CSM has to solve during test case
generation for the factorial method are 1 ≤ n, 2 ≤ n, 3 ≤ n, etc., because only the value of the
control variable i and the value of the input variable n are responsible for the termination of the
loop, whereas the value of the variable i is known in each iteration.

A similar behavior can be observed for every algorithm that is based on simple loops or even
several nested loops having dependent or independent termination conditions. Algorithms in this
category are vector and matrix multiplication, several sorting algorithms such as bubble sort, naive
string pattern matching algorithms, and even the recursive Ackermann function.

The constraints become a little bit more complicated, if methods are performing nonlinear com-
putations and their results are used to decide on the termination of the algorithm. Then the nonlinear
computations will become part of the constraints. This problem can often be found in numerical al-
gorithms like the computation of different Taylor series to approximate trigonometric functions,
logarithms, roots, or the exponential function. Here often the value of a previously calculated esti-
mation is compared to the current result to check whether more approximations are needed.

At a first glance this may quickly lead to a big problem, since in some calculations the exponents
of the symbolically calculated intermediate results grow by each iteration of the calculation. But in
order to generate complete sets of test cases for simple testing criteria like the commonly used
def-use chain coverage we typically require only a small number of passes through loops. Thus
the complexity of the constraints we gathered was mostly relatively small and hence manageable
in a short amount of time. In particular our tool is able to generate the complete sets of test cases
regarding the def-use chain coverage for the algorithms mentioned in Table1 in a few seconds. This
table shows what kinds of constraints occur in the example applications we have considered.

Although the prototype of our test case generator has proven to be applicable to many algo-
rithms, there are still a few problems we have to solve. For instance, our tool does not yet offer a
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constraint solver that can manage constraints containing bit operations corresponding to the byte
code instructions ishl, ishr, iushr, lshl, lshr, and lushr, which are produced by Java’s shift
operators <<, >>, and <<< on expressions of the types int and long. Since these operations are
lacking in the usual algebra, workarounds have to be invented to deal with them. Fortunately, they
rarely occur in application software and are typically only found in system software such as device
drivers.

As mentioned already, very few iterations of each loop are typically sufficient to cover all def-
use-chains. In cases where the number of iterations or recursive calls is very large, e.g. since it has
been fixed by a large constant (note that this is bad programming style), the symbolic computation
might take too long. Pragmatically, our tool will stop with a corresponding error message in that
case. Note that due to the halting problem, it is in general impossible to determine the number of
required iterations.

On the other hand our approach is vulnerable to rounding errors that come along with calcu-
lations on floating point values. Since our computations are not identical to that of the concrete
JVM, the rounding errors in our tool and in the concrete JVM computation may differ. Note that it
is equally bad to be less precise that the concrete JVM computation than to be more precise. The
different rounding behavior may cause the symbolic and concrete computation to diverge, which
would affect the correctness of our approach. Thus after generating the test cases, we will compare
the paths taken by the symbolic and concrete computations. If they diverge, we will (try to) adapt
the responsible input parameter, say from 3.9999 to 4.0. In case, where this does not work, our tool
has to give up with a corresponding error message. After all, our tool tries to be helpful in almost all
cases. In the few remaining cases, the user has to find suitable test cases on his own. In particular,
this might happen in numerically instable calculations, which should be avoided anyway. In any
case, we can guarantee that only correct test cases are generated. To summarize, our tool is correct
but not necessarily complete (among others due to the halting problem).

As we already mentioned, we actually have only a prototypically implementation of our test
tool and some features are not entirely realized. E.g. the symbolic execution engine of our tool
is not yet able to handle all of the features of the Java language. First of all we have to consider
the multithreading capability in this context, which may cause a nondeterministic behavior of Java
programs and thus makes it hard to generate test cases that satisfy a certain coverage criterion
in a real virtual machine. Secondly it is allowed to integrate functions and applications into Java
programs that are not written in the Java language by using the Java Native Interface [Li99]. Java
methods based on native method calls or methods invoking those native methods are at the moment
not analyzable by our test tool.

6 Related Work

Many approaches to software testing have been proposed (see e.g. [Ed99] for an overview), but only
a few can directly be related to our approach.

Gupta, Mathur and Soffa [GM00] have proposed an approach that uses a branch selection al-
gorithm that generates input data which exercises a selected branch in a program. However their
approach features no virtual machine and is strictly numerical. Gotlieb, Botella and Rueher [GB98]
have proposed a limited constraint-based approach for a sub-set of the C-language that can identify
paths that cover every instruction in the program. Their approach featured neither an exchangeable
testing criterion, nor did the test tool contain several, automatically chosen constraint solvers. Korel
[Ko96] has presented an approach to generate test data by performing a data dependence analysis
in Turbo Pascal programs and using minimization techniques to discover suitable input values. The
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constraint-based approach by Offutt and DeMillo [DO91] is based on their unusual mutation anal-
ysis test criterion, but comprehends just a naive constraint solver. An early approach to test-data
generation was proposed by Ramamoorthy, Ho, and Chen [RH76], who transformed Fortran-code
to a basic form and tried to solve the constraints describing the sought paths through the program
by forward substitution. Finally, Lapierre et al. [LM99] implemented a tool that tried to solve the
path-describing constraints by using mixed-integer linear programming for C programs.

7 Conclusions and Future Work

In this paper we have presented a tool for the automatized generation of glass-box test cases for
Java methods using a combination of a symbolic Java virtual machine and a dedicated constraint
solver. We pointed out that a simple usage of already known constraint solvers or constraint solving
algorithms is not sufficient for the considered application, since the constraints that have to be
managed occur not in normalized forms but have to be transformed by a dedicated constraint solver
manager before passing them to the various solvers. We also discussed the influence of the different
Java primitive types on the way, the constraints will be treated. We have additionally shown how
the constraint solver manager handles incrementally arriving constraints.

Our system of constraint solvers contains in particular a solver using the simplex algorithm, a
Fourier-Motzkin elimination solver for linear constraints, and a bisection solver for nonlinear ones.
We are not aware of any other test case generator, which provides this powerful combination of
solvers.

The experiences with our prototype have shown a few possible enhancements and some topics
that will have to be improved in future releases, e.g. the handling of threads and the integration of
native method calls.
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Abstract. We address in this paper the question of how to verify properties of functional logic programs
like those of Curry or Toy. The main problem to face is that equational reasoning is not valid for this
purpose, due to the possible presence of non-deterministic functions with call-time choice semantics. We
develop some logical conceptual tools providing sound reasoning mechanisms for such kind of programs,
in particular for proving properties valid in the initial model of a program. We show how CRWL, a well
known logical framework for functional logic programming, can be easily mapped into logic programming,
and we use this mapping as a starting point of our work. We explore then how to prove properties of the
resulting logic programming translation by means of different existing interactive proof assistants, and give
some initial proposals trying to overcome the limitations of the approach, both in terms of efficiency and
theoretical strength.

1 Introduction

One distinguished feature of modern functional logic languages like Curry [18] or Toy [20]
is that programs are constructor based rewrite systems allowed to be non-terminating and
non-confluent. Semantically this leads to the presence of non-strict and non-deterministic
functions, which have been shown quite useful for practical declarative programming.

However, non-determinism makes equational reasoning non valid for reasoning about
programs. The CRWL framework [13,14] - which is the theoretical basis of our work -
gives a well-established alternative logic for functional logic programming (FLP). In CRWL
the semantics of a program is given by its possible reductions, expressed by means of a
reducibility relation e → t between evaluable expressions and constructor terms, which are
the sensible kind of result of computations. CRWL provides a proof calculus prescribing
which reduction statements e → t hold for a given program1. Programs have initial models,
which are commonly accepted as the natural candidates to be intended models of programs.

CRWL has been extended with success to cope with many other features relevant to
productive programming: HO, objects, subsorts, algebraic datatypes, constraints and fail-
ure. See [29] for a recent survey of the CRWL-approach to FLP. Here we restrict ourselves
to first order programs.

Verification of properties of logic and functional programs have been frequently studied
[28,27,17]. We do not know of many results in the FLP setting. The work of Padawitz
[24,25] in equational logic programming constitute a serious effort, both at the theoretical
and the practical level. In Padawitz functions are deterministic and with strict semantics.
There is some other work contemplating the issue of FLP program properties from a specific
point of view. This includes different topics about declarative debugging [7,8,1], abstract
interpretation [6] or abstract diagnosis [2].

� The authors are partially supported by the Spanish project TIC2002-01167 ‘MELODIAS’.
1 CRWL considers also a different kind of semantic statements, called joinability statements, which are

useful for a good treatment of strict equality, a matter which we do not consider here.



The goal of our paper is to develop a logical basis from which quite general properties of
FLP programs (like those of Curry or Toy) can be formulated and proved. The main lines
of our approach can be summarized in advance as follows:

• Programs are CRWL-programs and the properties of interest are those valid in the
initial model of a given program P , expressed as first order logic (FOL) formulas with
reduction (→) as relation symbol.

• The CRWL-semantics of P is expressed by means of a FOL theory, which actually is a
logic program PL, whose least model corresponds closely to the CRWL-initial model of
P .

• We can prove properties valid in those models by FOL deduction from a FOL theory
consisting of the completion of PL extended with inductive axioms. The set of provable
valid properties can be enhanced by refining this theory, in particular by embedding in
it some meta-theory about CRWL-derivations.

The remainder of the paper is organized as follows. The next section presents some
preliminaries about CRWL. In section 3 we draw a parallel FOL theory PL – a logic program
indeed – for any given CRWL-program P such that CRWL-deducibility from P corresponds
to FOL-logical consequence from PL. In section 4, in order to prove properties of the initial
model of a sample CRWL-program P , we translate the inductive extension of the completion
of PL into several existing interactive proof assistants. In section 5 we introduce a variant
of the logic program PL emulating CRWL, where the derivation trees for statements e → t
are explicit. Finally, section 6 summarizes some conclusions. Due to lack of space, proofs
are omitted.

2 Preliminaries: CRWL programs and their logical semantics

We assume a signature Σ = DCΣ ∪ FSΣ where DCΣ =
⋃

n∈IN DCn
Σ is a set of constructor

symbols and FSΣ =
⋃

n∈IN FSn
Σ is a set of function symbols, all of them with associated

arity and such that DCΣ ∩FSΣ = ∅. We also assume a countable set V of variable symbols.
We write ExpΣ for the set of (total) expressions built up with Σ and V in the usual way, and
we distinguish the subset CTermΣ of (total) constructor terms or (total) c-terms, which
only make use of DCΣ and V. The subindex Σ will usually be omitted. Expressions intend
to represent possibly reducible expressions, while c-terms represent not further reducible
data values.

The signature Σ⊥ results of extending Σ with the new constant (0-arity constructor) ⊥,
that plays the role of the undefined value. The sets Exp⊥ and CTerm⊥ of (partial) expres-
sions and (partial) c-terms respectively are built up using Σ⊥. Partial c-terms represent the
result of partially evaluated expressions; thus, they can be seen as approximations to the
value of expressions. A partial c-term is called ground if it does not contain any variable.

As usual notation we will write X,Y,Z, ... for variables, c, d for constructor symbols, f, g
for functions, e for expressions and s, t for c-terms. In all cases, primes (’) and subindices can
be used. Expressions can be compared by the approximation ordering �, defined as the least
partial ordering verifying: ⊥� e and e1 � e′1∧ . . .∧ en � e′n ⇒ h(e1, . . . , en) � h(e′1, . . . , e

′
n),

for h ∈ DCn ∪ FSn.
We will use the sets of substitutions CSubst = {θ : V → CTerm} and CSubst⊥ = {θ :

V → CTerm⊥}. We write eθ for the result of applying θ to e.
In the next sections we will need some familiar notions about first order logic and logic

programming (see e.g. [11,5] for standard references). We will use ϕ,ϕ′, . . . for FOL-formulas
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Table 1. Rules for CRWL-provability

(BT) Bottom
e → ⊥ for e ∈ Exp⊥

(DC) Decomposition
e1 → t1 ... en → tn

c(e1, ..., en) → c(t1, ..., tn)
c ∈ DCn, ti ∈ CTerm⊥, n ≥ 0

(FR) Function reduction
e1 → t1 ... en → tn e → t

f(e1, ..., en) → t
if t �≡ ⊥, f(t1, ..., tn) → e ∈ [P ]⊥

and the standard notation T |= ϕ, I |= ϕ for logical consequence from a FOL theory (i.e.,
set of formulas) T and validity in a given interpretation I. We write also I |= T to indicate
that I is a model of T .

2.1 The Proof Calculus for CRWL

In [13,14] programs are made of conditional rules, where conditions are conjunctions of
joinability (or strict equality) conditions. Since we are not dealing here with strict equality
as a specific, built-in construct, and it is known [4,30] that in programs like ours (follow-
ing constructor discipline) conditions can be replaced by semantically equivalent if-then
expressions, we consider here programs with non-conditional rules.

So, in this work a CRWL-program P is a finite set of rewrite rules of the form f(t1, ..., tn) →
e where f ∈ FSn, (t1, ..., tn) is a linear tuple (each variable in it occurs only once) of c-terms,
and e is an expression. Notice that e can contain variables not occurring in f(t1, ..., tn). We
write Pf for the set of defining rules of f in P.

From a given program P, the proof calculus for CRWL can derive reduction or approx-
imation statements of the form e → t, with e ∈ Exp⊥ and t ∈ CTerm⊥. The intended
meaning of such statement is that e can be reduced to t, where reduction may be done by
applying rewriting rules of P or by replacing subterms of e by ⊥. If e → t can be derived,
t represents one of the possible values of the denotation of e.

When using a function rule R to derive statements, the calculus uses the so called c-
instances of R, defined as [R]⊥ = {Rθ|θ ∈ CSubst⊥}. We write[P ]⊥ for the set of c-instances
of all the rules of a program P . Parameter passing in function calls are expressed by means
of these c-instances in the proof calculus.

Table 1 shows the proof calculus for CRWL. We write P 
CRWL ϕ for expressing that the
statement ϕ is provable from the program P with respect to this calculus. The rule (FR)
allows to use c-instances of program rules to prove approximations. Thesen c-instances may
contain ⊥ and by rule (BT) any expression can be reduced to ⊥. This reflects a non-strict
semantics, allowing non-terminating programs to be meaningful.

A distinguished feature of CRWL (shared by concrete systems like Curry or Toy) is that
programs can be non-confluent, defining thus non-deterministic functions. As a typical
example, consider the program (called Coin for future references) in Fig.1, which assumes
the constructors 0 and s for natural numbers.

Notice that coin is a non-deterministic function, for which the previous calculus can
derive the statements coin → 0 and coin → s(0). The use of c-instances in rule (FR)
instead of general instances corresponds to call time choice semantics for non-determinism
[19,13,14]). In the example, it is possible to build a CRWL-proof for double(coin) → 0 and
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0 + Y → Y coin → 0
s(X) + Y → s(X + Y ) coin → s(0)
double(X) → X + X

Fig. 1. CRWL sample program Coin

also for double(coin) → s(s(0)), but not for double(coin) → s(0). This semantic choice is
not a caprice of CRWL. Call-time choice is related to sharing, a well known operational
technique considered essential for the effective implementation of lazy funcional languages
like Haskell. Existing FLP languages like Curry or Toy also use sharing and call-time choice
semantics. The above described behaviour for the reduction of double(coin) corresponds
exactly with what happens in those systems. Run-time choice, an alternative semantics for
non-determinism with which double(coin) can be reduced also to s(0) is investigated for
the FLP setting in [3].

From the point of view of verifying properties of FLP programs, non-determinism and
call-time choice semantics have the unpleasant consequence that equational reasoning is
not valid for CRWL-programs. In the previous example, if the rules for coin were under-
stood as the equalities coin = 0 and coin = s(0), then we could deduce 0 = s(0), which
is not intended. Call-time choice implies that not only equational reasoning, but also ordi-
nary rewriting is invalid since, from the point of view of rewriting, the rule double(X) →
X + X should be applicable to any X, and not only to c-terms. Hence, we would have
double(coin) → coin + coin, and from this, double(coin) → s(0), which is not valid with
call-time choice. A remark about the CRWL-calculus presented here, with respect to the
original in [13,14]: in addition to the above mentioned elimination of joinability statements,
we have also dropped the so called restricted reflexivity rule:

(RR)
X → X

X ∈ V

At the end of this section we argue the advantages of having done so. But we first discuss
the relation between both calculi. Inside this discussion, let us call CRWL the calculus of
table 1, and CRWLRR the proof calculus with the rule (RR). Within CRWLRR we can
prove, for instance, 0 + X → X and all its c-instances while in CRWL only the ground
c-instances 0 + t → t, for any ground partial c-term t. The next result precises the relation
between both calculi:

Proposition 1. Let P be a CRWL-program. Then:
(i) P 
CRWL e → t ⇒ P 
CRWLRR

e → t
(ii) P 
CRWLRR

e → t ⇒ P 
CRWL e′ → t′, for all ground c-instances e′ → t′ of e → t

With respect to models the situation is the following. In CRWLRR Herbrand models of
programs have as support a Herbrand universe of partial c-terms with variables [13,14], and
every program P has a least Herbrand model MRRP

which is technically a free model, while
with CRWL as it has been presented here we must use the ordinary Herbrand universe of
ground c-terms, and it can be shown that every program P has a least Herbrand model
MP which is an initial model. Least models verify:

Proposition 2. For any CRWL-program P ,
(i) P 
CRWLRR

e → t ⇔ MRRP
|= e → t

(ii) P 
CRWL e → t ⇔ MP |= e → t, for any ground e → t
(iii) MRRP

|= e → t ⇒ MP |= ∀(e → t), where ∀ϕ indicates the universal closure of ϕ
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We believe that, in some sense, MP is more natural than MRRP
as intended model

whose properties are to be formally verified. For instance, in the Coin example above, the
property ϕ ≡ ∀E,T.(E → T ⇒ E + 0 → T ), which is intuitively a true property about
addition and reduction, is in fact valid in MP , but not in MRRP

, because with RR we
can CRWL-prove X → X (and then MRRP

|= X → X), but not X + 0 → X (and then
MRRP

�|= X + 0 → X).

3 CRWL as a logic program

In this section we will map CRWL into first order logic (FOL). We assume the reader is
familiar with standard notions of FOL (see e.g.[11]) and logic programming (see e.g. [5]).
We want to associate to a given CRWL-program P a FOL theory PL such that CRWL-
deducibility from P corresponds to FOL-logical consequence from PL. The theory PL will
be indeed a logic program, and we will use this logic program to prove properties of the
original CRWL program as stated by the results given in this section.

Consider a CRWL program P with signature Σ = DC ∪ FS . The logic program PL

associated with P is made of the following clauses (written as implications l ⇐ C1∧ . . .∧Cn,
n ≥ 0) defining the relation →:

⊥→⊥
For every c ∈ DC :

c(E1, . . . , En) →⊥
c(E1, . . . , En) → c(T1, . . . , Tn) ⇐ E1 → T1 ∧ . . . ∧ En → Tn

For every f ∈ FS :
f(E1, . . . , En) →⊥
For every rule f(t1, . . . , tn) = e ∈ P :
f(E1, . . . , En) → T ⇐ E1 → t1 ∧ . . . ∧ En → tn ∧ e → T

Since PL is a logic program, we may consider for it standard notions, like that of the
completion of PL [5], Comp(PL). The following are well known results about logic programs:

Proposition 3. Let P be a CRWL-program and PL its associated logic program. Then:
(i) Comp(PL) |= PL

(ii) There exists a least Herbrand model MPL
of PL, which is also the least model of

Comp(PL).
(iii) If e → t is ground, then PL |= e → t ⇔ MPL

|= e → t

There is a close relation between a CWRL-program P and its associated PL, as given
by the following result:

Proposition 4. Let P be a CRWL-program and PL its corresponding logic program. Then,
for any expression e and term t,
(i) PL |= e → t ⇔ P 
CRWL e → t.
(ii) Comp(PL) |= e �→ t ⇒ P �
CRWL e → t (where e �→ t stands for ¬(e → t)).

We are interested in properties which are expressible as FOL formulas ϕ over the relation
→. In this sense, we consider the following FOL theories:

TPL
= {ϕ | PL |= ϕ}

TComp(PL) = {ϕ | Comp(PL) |= ϕ}
TMP

= {ϕ | MPL
|= ϕ}
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We are mainly interested in the properties valid in MPL
, that is, in TMP

. But since MPL

is a model of PL and Comp(PL), we have TPL
⊆ TComp(PL) ⊆ TMP

, which means that in
practice we can use PL or Comp(PL) to obtain properties of MPL

by FOL deduction.
Of course, TPL

is a rather poor approximation to TMP
. We find in TComp(PL) more

interesting properties, in particular related to impossible reductions from a given expression.
For instance, in the Coin example we have Comp(CoinL) |= double(coin) �→ s(0), where
e �→ t stands for ¬(e → t).

There are nevertheless many interesting properties of MPL
which are not deducible from

Comp(PL), in particular many inductive properties. In order to cope with (some of) these
properties within the framework of FOL deduction, we consider the inductive extension of
the completion.

Definition 1 (Inductive extension). Let P be a CRWL program and consider its com-
pletion Comp(PL). The inductive extension of the completion, CompInd(PL), results of
adding to Comp(PL) the following axioms for the structural induction scheme:

For every formula ϕ with one free variable:
. . . ∧ ϕ(a) ∧ . . . ∧ ϕ(g) ∧ . . .∧
. . . ∧ ∀x1, . . . , xn.(ϕ(x1) ∧ . . . ∧ ϕ(xn) ⇒ ϕ(c(x̄))) ∧ . . .∧
. . . ∧ ∀x1, . . . , xn.(ϕ(x1) ∧ . . . ∧ ϕ(xn) ⇒ ϕ(f(x̄))) ∧ . . .
⇒ ∀x.ϕ(x)
where a, g range over DC0 and FS0, and c, f over DCn and FSn (n > 0).

All these FOL axioms for induction are valid in MPL
, and then MPL

|= CompInd(PL).
CompInd(PL) is powerful enough for proving many interesting properties of MPL

. One
example of formula valid in MPL

that can be proved from CompInd(PL) but not from
Comp(PL) is the above mentioned formula ∀E,T.(E → T ⇒ E + 0 → T ).

Let us discuss now how good is CompInd(PL) as axiomatization of MPL
. If we call

TCompInd(PL) = {ϕ | CompInd(PL) |= ϕ}, we have the following chain of FOL theories:

TPL
⊆ TComp(PL) ⊆ TCompInd(PL) ⊆ TMP

where we know that the first two inclusions are strict. It is easy to give examples showing
that also TCompInd(PL) ⊆ TMP

is a strict inclusion (we start Sect. 5 with some of such
examples). But note that this is an old known limitation of formalizations which come back
to Gödel uncompleteness results. Since PL, Comp(PL) and CompInd(PL) are recursive,
TPL

, TComp(PL) and TCompInd(PL) are all recursively enumerable, while TMP
is not, except

for some very simple P .

4 Translation into some existing frameworks

In this section we put in practice the ideas introduced in the last section: to prove properties
of the initial model of a CRWL-program, use the inductive extension of the completion of
its associated logic program, and perform FOL deduction.

To this purpose, we have translated into several existing interactive proof assistants the
inductive extension of the completion of some CRWL-programs. Actually, since all the used
systems include induction as a built-in reasoning mechanism, it suffices to translate the
completion.

To guide the discussion in this section, we use in all cases the program Coin in Fig. 1.
and consider for it the following very simple properties:
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(P1) double(coin) → 0: This formula is in fact a consequence of CoinL.
(P2) double(coin) � s(0): This formula is in fact a consequence of Comp(PL).
(P3) ∀X,Y, T.(term(X)∧ term(Y )∧X +Y → T ⇒ Y +X → T ): This is an inductive

property deducible from CompInd(PL), but not from Comp(PL). We make use
of the auxiliary predicate term - defined in the natural way- to recognize if an
expression is indeed a constructor term.

We have used ITP [10], LPTP [31] and Isabelle [23] as proof assistants. Different reasons
are behind the choice of each one of these systems: our interest in ITP is explained by the
relative proximity (see [26]) of CRWL and rewriting logic [22], the underlying logic of ITP;
we expect LPTP to be useful for our purposes, because we translate CRWL into logic
programming and LPTP is a specific tool for proving properties of logic programs; finally,
Isabelle is a general purpose and widely used powerful proof assistant.
The ITP prover [10]: The ITP tool is designed to prove properties of the initial model
of an equational specification written in Maude [9]. As it has been explained from the very
beginning in this work, it would be unsound to introduce in ITP a CRWL program as an
equational specification, because of the semantics of CRWL . Instead, we must specify the
reduction relation → by means of equations giving the value true or false. In figure 2 part
of this specification is shown. As it can be seen, the possible reductions are split by the
rules that can be applied at this moment. The condition in the rules giving the value false
is, in consequence, the negation of the disjunction of the conditions of the rules giving true.
To specify universal quantification we need to use new constants, which are denoted as C∗.

op _->_ : Expression Expression -> Bool .

op _+_ : Expression Expression -> Expression [ctor] .

op double : Expresison -> Expression [ctor] .

op coin : -> Expression [ctor] .

...

ceq (X + Y) -> T = true if eq(T, bottom) [label sumbot] .

ceq (X + Y) -> T = true if ((X -> 0) and (Y -> T)) .

ceq (X + Y) -> T = true if ((X -> s(T1)) and (s(T1 + Y) -> T)) [label sumI] .

ceq (X + Y) -> T = false if ((not eq(T, bottom)) and (not ((X -> 0) and (Y -> T)))

and (not ((X -> s(Z*)) and ((s(Z* + Y) ->T))))) [label redmas] .

ceq double(X) -> T = true if eq(T, bottom) [label doublebot] .

ceq double(X) -> T = true if ((X -> T1) and ((T1 + T1) -> T)) [label pdob] .

ceq double(X) -> T = false if ((not eq(T, bottom)) and (not (((X -> Y*)

and ((Y* + Y*) -> T))))) [label nredd] .

ceq coin -> T = true if eq(T, bottom) .

ceq coin -> T = true if (0 -> T) .

ceq coin -> T = true if (s(0) -> T) .

ceq coin -> T = false if ((not eq(T, bottom)) and (not(0 -> T)) and

(not (s(0) -> T))) .

...

Fig. 2. Part of Maude specification for Coin

Using this specification we obtain a perfect control on the nondeterministic reduction
possibilities and therefore on the call-time choice semantics, but there is also a loss of
automation when using the theorem prover tool.
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We have tested this system with the three simple properties already mentioned. The
property P1 is easily proved using this tool, but not automatically, as one would desire.
This is because we need to make explicit which of the possible reductions of coin is ad-
equate to instantiate the existential variable T1 which appears in the rule for double. In
ITP, in general, rules having new variables on their right hand side cannot be applied auto-
matically, and the user must apply the rule manually by making explicit the rule instance
which is interesting to apply. When dealing with negative properties like P2, it is needed an
application of a rule for false reductions. Such rules cannot be applied neither automatically
nor manually because of the introduction of the variables C∗. Therefore, we need to prove
lemmas specifying the condition with universally quantified variables. Many of this lemmas
introduce numerous impossible cases increasing the length of the proof. Non-determinism
of the reductions of expressions bring supplementary complexity because all possible ways
to obtain the result are explored. Large proofs like that of P3 evolve into a chain of impli-
cations. This chain of implications is not directly treated as the tool does not have methods
for reasoning on logical formulas. For example, to prove e → t = true ⇒ e′ → t′ = true
we do not simplify e → t to e′ → t′ because this cannot be done by any rewriting rule.
Therefore we split the proof into two different modules, one using e′ → t′ and another using
e′ � t′. The first one is the original one adding the implication step as assumption and
therefore simulating the next step of the chain of implications. For the second one we have
to prove, using a new lemma, the impossibility of such an assumption. When reasoning on
the chain of implications we also introduce many negative proofs increasing the complexity.
The successive steps of the proof are not automatic because they use internal assumptions
of the module.

The LPTP prover [31]: LPTP is a theorem prover for success, failure and termination
properties of Prolog programs. To use this tool we only have to translate a logic program
expressing CRWL properties into a Prolog program. LPTP automatically generates the
inductive completion of the program. One of the advantages of using this tool is that, being
LPTP a prover for Prolog properties, the introduction of non-determinism does not cause
as many problems as in ITP. Therefore, proving P1 is simpler with LPTP.

Testing the second and third properties LPTP has as many problems as ITP. First, there
are too many possibilities in the reduction relation for negative or universally quantified
properties. Second, the proof simplifies the goal adding the corresponding assumptions to
the theory. This causes a growing on the number of variables. For properties as simple as
those introduced here the system generates a complex proof of more than one thousand lines.

Isabelle [23]: Isabelle/HOL is a theorem prover where specifications and validations are
considered on Higher-Order logic. In this case we specify the system as an inductive set
for the least model of the logic program. In such a least model we can prove positive and
negative facts about the reduction relation and also inductive properties of it. In figure 3
appears part of the theory on which the results are proved.

Isabelle provides methods to reason on logic formulas, relations and sets. Using these
methods the property P1 was proved automatically. Negative properties like P2 require
reasoning on the completion. This can be done using axioms for inductive sets. Similarly as
in the other systems, the different ways to derive the same term in CRWL introduce many
repeated facts to be proved. On the other hand it is not difficult to prove known facts of
this calculus such as transitivity of the reduction relation. Inductive properties like P3 can
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theory Arrows = Main:

datatype exp = bottom | zero | s exp | coin | sum exp exp | double exp

consts arrow :: "(exp * exp) set"

inductive arrow

intros

bt [intro]: "(x, bottom) : arrow"

dczero [intro]: "(zero, zero) : arrow"

dcs [intro]: "(x, t):arrow ==> (s x, s t):arrow"

fcoin1 [intro]: "(zero, t):arrow ==> (coin, t):arrow"

fcoin2 [intro]: "(s(zero), t):arrow ==> (coin, t):arrow"

sum1 [intro]: "[|(x, zero):arrow ; (y, t):arrow|] ==> (sum x y,t):arrow"

sum2 [intro]: "[|(x, s(t1)):arrow ; (y,t2):arrow ; (s(sum t1 t2),t):arrow|]

==> (sum x y , t):arrow"

double [intro]: "[|(x, t1):arrow ; (sum t1 t1,t):arrow|] ==> (double(x), t):arrow"

...

Fig. 3. Part of Isabelle specification for Coin

be expressed by a first order logic formula, then applying the rules for such formulas it is
not difficult to prove the property. This translation does not introduce limitations on the
formulas that can be specified nor on the induction mechanisms.

4.1 Improving determinism of CRWL

A common problem arising in the three approaches is the repetition of essentially the same
proofs. The problem comes from the source logic CRWL. For a constructor term t, CRWL
provides many different approximations t → t′, for all t′ � t, that is, for all different
t′ obtained by replacing some subterms of t by ⊥. This kind of non-determinism of →
can be avoided, since for constructor terms t, only the maximal approximation t → t is
really necessary. In this section we present a simplified CRWL calculus eliminating all those
superfluous reductions associated to terms.

Definition 2 (CRWL’). The proof calculus CRWL’ results of replacing the rule (BT) in
CRWL (Fig. 1) by the new rule (BT’)

if e = f(e1, . . . , en) or e =⊥
e →⊥

The next result relates the provable statements of CRWL and CRWL’.

Proposition 5. Let P be a CRWL-program. For any expression e and any term t:

(i) P 
CRWL e → t ⇒ P 
CRWL’ e → t′ for some t′ � t.
(ii) P 
CRWL’ e → t ⇒ P 
CRWL e → t
As a consequence, if t is a total term: P 
CRWL e → t ⇔ P 
CRWL’ e → t

We have tested our sample properties with the refined calculus CRWL’, conveniently
translated to the different systems, obtaining significant shortenings in the proofs. Further-
more, since reduction between c-terms is now deterministic, it is possible to use equational
reasoning in those parts of the proofs involving this kind of reductions. This has been a
further source of simplification of the proofs while using ITP.
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5 Beyond the completion: axiomatizing derivability

As we discussed at the end of Sect. 3, no FOL axiomatization can be complete for the
least model of a program. In the case of CompInd(PL), although it covers many interesting
properties, it is nevertheless quite easy to find examples revealing its limitations. Consider
for example the following simple program Loop:

loop → loop

It is not difficult to see that loop � 0 is valid in MLoopL
, but CompInd(LoopL) �|=

loop � 0. A less trivial example is given by the following program Even:

even(0) → true an even → 0
even(s(0)) → false an even → s(s(an even))
even(s(s(X))) → even (X)

Notice that an even admits an infinite number of reductions giving all the even natural
numbers. The property even(an even) � false is valid in MEvenL

but, again, is not de-
ducible from CompInd(EvenL).

We remark that the two given examples express negative properties involving nontermi-
nation. It is not so strange that completion is not able to prove them, since it is known that
completion is related to finite failure. But nontermination analysis by itself does not suffice
to prove the properties. Notice also that, in both cases, the properties can be proved by in-
ductive reasoning over the universe of CRWL-derivations. This suggests some meta-theory
at the object level, by considering a variant of CRWL (to be precise, of the logic program
mirroring CRWL) where the CRWL-derivation trees for statements e → t are made explicit.

We first introduce some constructor terms representing CRWL-derivations.

Definition 3 (Derivation terms). The set of derivation constructors symbols CSDer
consists of the following symbols:

bt ∈ CSDer0

dcc ∈ CSDerk for every c ∈ DC k

faf,R ∈ CSDerk+1 for every f ∈ FS k and every R rule for f .

Constructor terms built up with derivation constructors are called derivation terms.

We will use d, d′, . . . to denote derivation terms.
Now, given a CRWL-program P , we associate to it a logic program defining a ternary

relation d 
 e → t whose intended meaning is ‘d represents a CRWL-derivation of e → t’.

Definition 4 (Axiomatization of derivability (logic program)). Given a CRWL pro-
gram P the associated logic program making explicit the proofs, Der(P), consists of the
following clauses defining the ternary relation 
 → :

bt 
⊥→⊥
For every c ∈ DC :

bt 
 c(E1, . . . , En) →⊥
dcc(D1, . . . ,Dn) 
 c(E1, . . . , En) → c(T1, . . . , Tn)

⇐ D1 
 E1 → T1 ∧ . . . ∧ Dn 
 En → Tn
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For every f ∈ FS :
bt 
 f(E1, . . . , En) →⊥
For every rule R f(t1, . . . , tn) = e for this f :

faf,R(D1, . . . ,Dn,D) 
 f(E1, . . . , En) → T
⇐ D1 
 E1 → t1 ∧ . . . ∧ Dn 
 En → tn ∧ D 
 e → T

As we did with PL in Sect. 3, we can think on the least model MDer(P ) of Der(P ), the
completion Comp(Der(P )) and its inductive extension CompInd(Der(P )).

In the Loop and Even examples, we have CompInd(Der(Loop)) |= loop � 0 and
CompInd(Der(Even)) |= even(an even) � false.

We explore now some logical relations between Der(P ) and the original program. Our
first result relates the reduction statements derived using this approach and those of the
original calculus.

Proposition 6. For every P CRWL program, and for every e expression and t term:

(i) Der(P ) |= ∃D.D 
 e → t ⇔ PL |= e → t ⇔ P 
CRWL e → t
(ii) Comp(Der(P )) |= �D.D 
 e → t ⇒ P �CRWL e → t

In order to compare the behavior of Der(P ) with respect to more general properties ϕ,
we define a natural conversion of FOL formulas using the relation → into formulas using

 → , as well as a natural relation between models of PL and of Der(P ).

Definition 5. (i) If ϕ is a FOL formula using the relation → , we write ϕ̂ for the result
of replacing in ϕ each subformula e → t by ∃D.D 
 e → t (with D not occurring in e → t).
(ii) Let M be a model for PL, we define the following set SM of models of Der(P ):

SM = {M ′ |= Der(P ) | ∀e, t(M |= e → t ⇔ exists d such that M ′ |= d 
 e → t}

Proposition 7. (i) M ′ |= Der(P ) iff there exists M |= PL such that M ′ ∈ SM

(ii) MDer(P ) ∈ SMPL

The following result relates validity in a model of PL with validity in the corresponding
model of Der(P )

Proposition 8. Let ϕ be a formula and M model of PL and M ′ ∈ SM then:

M |= ϕ ⇔ M ′ |= ϕ̂

In particular,
MPL

|= ϕ ⇔ MDer(P ) |= ϕ̂

As a consequence of the previous results, we conclude also that the properties derived
from PL and from Der(P ) are the same (via ̂ ), as stated by the following proposition:

Proposition 9. For any ϕ, PL |= ϕ ⇔ Der(P ) |= ϕ̂.

All these results show that nothing new can be obtained from Der(P ) and MDer(P )

with respect to PL and MPL
. The Loop and Even examples show that the real gain comes

from CompInd(Der(P )) with respect to CompInd(PL) . Therefore, those properties not
involving reasoning on the structure of the CRWL-derivation will be proved using the
first approach, where the proofs are simpler. Only when reasoning on the structure of the
derivation is needed the second approach will we used.
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We have tested this new approach with ITP and Isabelle. As it was expected, with
this approach we can prove properties reasoning by structural induction on the derivation
terms. As an example, consider the program Loop. Its associated translation into Isabelle
is shown in figure 4. It is not too difficult to prove loop � 0 reasoning by induction on the
derivations and discarding all those incorrect derivations. The proof is slightly complicated
because of the introduction of such incorrect cases, but the steps are not difficult.

As it has been previously remarked, the resulting proofs with the new approach can
be in general more complicated than the corresponding ones with the original approach,
whenever the latter is applicable. But this is not always true. For instance, consider again the
program Coin and the sample properties of section 4. The property P1, rephrased as ∃D.D 

coin → 0, can be still proved automatically in Isabelle. The situation is different for negative
properties like P2, that are expressed in the new approach as universal quantifications over
derivations. Therefore, when trying to prove such negative properties we have to inspect all
possible derivations. There are only a few of them possible for a given expression as can be
deduced from the logic program DerP , but all the possibilities have to be explored, hence
complicating the proof.

theory Demos = Main:

datatype exp = bottom | zero | s exp | coin | sum exp exp | double exp | loop

datatype dem = bt | dczero | dcs dem | facoin1 dem | facoin2 dem | fasum1 dem dem

|fasum2 dem dem dem | fadouble dem dem | faloop dem

consts demo :: "(dem * exp * exp) set"

inductive demo

intros

rbt [intro]: "(bt, x, bottom) : demo"

rdczero [intro]: "(dczero, zero, zero) : demo"

rcs [intro]: "(d, x, t):demo ==> (dcs d, s x, s t):demo"

rfcoin1 [intro]: "(d, zero, t):demo ==> (facoin1 d, coin, t):demo"

rfcoin2 [intro]: "(d, s(zero), t):demo ==> (facoin2 d, coin, t):demo"

rsum1 [intro]: "[|(d, x, zero):demo ; (d1, y, t):demo|]

==> (fasum1 d d1, sum x y, t):demo"

rsum2 [intro]: "[|(d, x, s(t1)):demo ; (d1, y,t2):demo ; (d2, s(sum t1 t2), t):demo|]

==> (fasum2 d d1 d2, sum x y , t):demo"

rdouble [intro]: "[|(d, x, t1):demo ; (d1, sum t1 t1,t):demo|]

==> (fadouble d d1, double(x), t):demo"

rloop [intro]: "(d, loop, t):demo ==> (faloop d, loop, t):demo"

Fig. 4. Isabelle specification of the least model of Der(P )

6 Conclusions

We have presented some logical conceptual tools for proving properties of first order func-
tional logic programs. Programs consist of constructor based rewrite systems possibly non-
terminating and non-confluent, defining thus non-strict non-deterministic functions, with
call-time choice semantics. This corresponds to the first order core of existing modern FLP
systems like Curry or Toy.

Our logical starting point has been CRWL, a well known semantic framework for FLP.
CRWL includes a proof calculus giving logical semantics to programs, and a model theory
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satisfying that every program has an initial model. The program properties of interest are
those valid in that initial model, which are then typically inductive properties.

In order to prove such program properties, we have mapped CRWL into logic program-
ming in the following sense: to each CRWL-program P we associate in a simple manner a
logic program PL such that the least model of PL consists exactly of the reduction statements
which are CRWL-provable from P . As a nice consequence, all the machinery (theoretical
and practical) of logic programming is available to us. For instance, the completion of PL

can be used to deduce negative results, and with its inductive extension we can deduce
inductive properties of the least model.

We have made experiments with this approach by encoding into several existing proof
assistants the completion of simple programs (the inductive extension is implicit in all these
systems). Namely, we have used: ITP [10], a tool based on rewriting logic [22] and designed
for proving properties of equational specifications; LPTP [31], a tool designed specifically
for logic programs; and Isabelle [23], a well known general purpose proof assistant. In all
cases, to prove simple properties of CRWL-programs is not as easy as one would desire.
We have detected two particular aspects having great impact in the simplicity of proofs.
One is, of course, the concrete encoding: for instance, in the ITP case, an unsorted version
was clearly worse than the sorted one (distinguishing terms and expressions). The other
one is the formulation of the CRWL logic itself: we have proposed a refinement eliminating
superfluous sources of non-determinism of the reduction relation →, with which some proofs
are remarkably simpler and shorter.

Of course, due to Gödel-like arguments, no deductive system can prove all properties
of initial models. The limits of the completion+induction approach are easily reachable
by considering properties which are valid due to non-termination. This is natural, since
completion is closely related to finite failure.

To enlarge the class of provable properties we have then sophisticated the logic pro-
gramming specification PL of the semantics of a CRWL-program P , by making explicit the
CRWL-proof tree corresponding to CRWL-provable reduction statements for P . The re-
sulting logic program Der(P ) has its own completion Comp(Der(P )), inductive extension
of the completion CompInd(Der(P )), and its least model MDer(P )). An interesting point
is that the logical consequences of Der(P ) and Comp(Der(P )) are essentially the same of
PL and Comp(PL), and the same happens with the valid properties in MPL

and MDer(P ).
What produces new results is CompInd(Der(P )) with respect to CompInd(PL), as we
have indeed shown in our implementations.

We have in mind many things to do as future work. In the practical side it is important
to test the approach with interesting non trivial case studies and to use other existing
theorem provers like SPASS [12] and SATURATE [32]. In the theoretical side we plan to
improve the approach by making the mapping of logics more precise, refining the target
logic by considering many sorted logic programs, and refining the source logic by considering
extensions of CRWL with other features like HO [15,16] or failure [21].
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Abstract TypeTool is a tool for visualizing the type inference process for functional programming languages. It is a
Web-based tool, which is freely usable at the Web in a quite simple way. This tool is especially useful for students,
because it helps to understand the type systems of the most common typed functional languages. The tool is also useful
for programmers who want to quickly become aware of the functional paradigm. TypeTool shows in detail the constraints
generated by the type inference algorithm for any given expression, their solutions and their application in the type
inference process. It deals with the Simple Type System for the Lambda-calculus and with the polymorphic type system
of pure ML.

1 Introduction

The important role of type systems in modern, higher-order programming languages such as Haskell
and ML is now well established.

Type systems are powerful verification tools which guide the programmer by pointing out er-
rors at compile-time. One big problem of these systems is the lack of clarity and conciseness of type
errors reported by modern compilers. Thus it is not easy to see what modifications are needed to
fix an ill-typed program. These problems are exacerbated when teaching functional programming
using typed languages. Languages such as Haskell and ML are excellent choices for teaching intro-
ductory programming. One reason for this is exactly their type discipline which helps to enforce a
design discipline for the beginning programmer. But unfortunately, the lack of clarity of type errors
messages, sometimes discourages the students from programming in a functional language, and
rejection of ill-typed programs may be seen as a nuisance instead of a blessing.

When the University of Porto implemented programming courses based on a typed functional
programming language (in this particular case the chosen language is Haskell), we presented the
basis of type inference technology early in the course program. This significantly improved the way
students deal with type errors because they understand the type system. This understanding makes
it more easy to fix ill-typed programs and clearly convinces the student that rejecting ill-typed
programs at compile time is a benefit, not a nuisance.

The main difficulty to teach type systems to beginners programmers was their lack of the formal
reasoning needed to fully understand these systems. To address these problems we built TypeTool,
a type inference visualization tool initially targeted at students.

This paper presents TypeTool, a simple type inference visualization tool, presents several ex-
amples, describes its overall architecture and sketches solutions to some implementation issues.

Although TypeTool was first designed for students, the tool has grown past its original goals.
It can be useful for any beginning programmer in a functional programming language. One can try
TypeTool at its web site:

http://www.ncc.up.pt/typetool/

Due to space limitations, in this paper we will only show TypeTool applied to pure ML. But our
system also works for the Simple Type System for the λ-calculus [4].

{hrsimoes, amf}@ncc.up.pt


We assume that the reader is familiar with functional programming and type inference for func-
tional programs. A good survey of the area may be found in [15]. We start in section 2 with the
presentation of the related work. In section 3 we present the type system of pure ML. Then, some
examples are given in section 4. In sections 5 and 6 we briefly describe TypeTool’s architecture and
present our technology and programming languages choices for implementing this application. And
finally we conclude in section 7.

2 Related Work

There was some previous work into visualizing the type inference process for functional languages.
New visual models for improving the understanding of type inference and type errors were pre-
sented by Jung and Michaelson in [13] and by Erwig in [7]. The goal of TypeTool is to have a system
as simple as possible to help us on teaching the basics of type inference technology. We concentrate
the visualization on three main processes of a type inference algorithm: type constraints generation,
constraint solving and annotating the program with the inferred types. Thus our visualization model
is far simpler than the previous ones being quite effective with respect to our initial goals. There
were also simple visualization tools for new type systems (more complex than the ML type system)
(see [18]).

Interactive tools that explain the type inference algorithm step by step were presented in [17,6].
Other tools enabled the programmer to browse through the program syntax to see the type of subex-
pressions (see [12,3]). This last approach had clear advantages because it avoided the huge output
that can be produced by other systems (including TypeTool) when applied to big programs. For now
this is not a problem in our system because TypeTool is being used to help to understand the most
used type systems for a functional core language, where typical examples are small expressions.
However, if we want to extend TypeTool to deal with real programs we will also have to be able
to show partial type information. To deal with this problem we intend to show annotated subtrees
previously selected by the user, but this is left for future work.

There was also a lot of work trying to improve the quality of error messages and to give better
explanations of type errors ([11,20,19,14,10]). These systems had as initial goal to explain better
type errors to programmers which do not understand the type system. Our goal is different: we want
to help the programmer to understand better the details of the type system.

3 The Damas-Milner Type System

The Damas-Milner type system [5] is the base of type systems for languages that allow the use of
parametric polymorphism, such as ML or Haskell.

Here we assume the reader to be familiar with standard notation for the λ-calculus [2].

3.1 The Term Language

Given an infinite set of variables V , the term language is defined by the following grammar:

M ::= x | MM ′ | λx.M | let x = M in M ′

3.2 Types

We now briefly describe the syntax of types and the Damas-Milner type system.
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Definition 31 Assuming we are given a set of type variables α, the syntax of types is given by τ ::=
α | τ ′ → τ ′′.

Definition 32 We say that σ is a type scheme if σ is a type τ or σ is of the form ∀α1, . . . , αn.τ ,
where α1, . . . , αn are type variables called generic variables.

Definition 33 Let τ be a type and σ be a type scheme, τ is a generic instance of σ if and only
if σ = τ or σ = ∀α1, . . . , αn.τ ′ and ∃τ1, . . . , τn such that τ = [τi/αi]τ ′ ([τi/αi] denotes the
substitution of αi by τi).

Definition 34 An assumption is a pair of the form x : σ where x is a variable and σ is a type
scheme. A set of assumptions is called an environment.

3.3 The Type System

Let x ∈ V , α ∈ V, M and M ′ be terms, τ and τ ′ types and σ and σ′ type schemes. Let Γ � M : σ
mean that term M has type σ given the environment Γ . The Damas-Milner type system is defined
by the following rules:

(Axiom) Γ � x : σ, if (x : σ) ∈ Γ

(Generalization)
Γ � M : σ, there is no free occurrence of α in Γ

Γ � M : ∀α.σ

(Instantiation)
Γ � M : ∀α.σ

Γ � M : σ[τ/α]

(Application)
Γ � M : (τ ′ → τ), Γ � M ′ : τ ′

Γ � (MM ′) : τ

(Abstraction)
Γ ∪ {x : τ ′} � M : τ

Γ � λx.M : (τ ′ → τ)

(Let)
Γ � M : σ, Γ ∪ {x : σ} � M ′ : τ

Γ � let x = M in M ′ : τ

Example 1. The type derivation for let i = (λx.x) in ii is given in figure1.

3.4 Type Inference

The Damas-Milner type system is decidable. The type inference algorithm for this system, originally
presented in [5], follows:

Definition 35 Let V be a set of variables, Γ an environment and τ ∈ T. The closure of τ with
respect to V, V (τ), is the type scheme ∀α1, . . . , αn.τ , where α1, . . . , αn are variables that occur in
τ and are not in V. Γ (τ) is the closure of τ with respect to the set of variables that occur in Γ .

Definition 36 Let Γ be an environment, M a term, τ ∈ T and S a substitution. Let UNIFY be
Robinson unification [16] such that UNIFY (τ1, τ2) = S, where S is the most general unifier of
τ1 and τ2. Function W (Γ,M) = (S, τ) defines the type inference algorithm for the Damas-Milner
type system:
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{x : α} � x : α

ABS

� λx.x : α → α

GEN

{i : ∀α.α → α} � i : ∀α.α → α

INST

{i : ∀α.α → α} � i : ∀α.α → α

INST

{i : ∀α.α → α} � i : (β → β) → (β → β)

APP

������

{i : ∀α.α → α} � i : β → β

APP

������
� λx.x : ∀α.α → α

LET

��������

{i : ∀α.α → α} � ii : β → β

LET

��������
� let i = (λx.x) in ii : β → β

Figure 1. Type derivation for let i = (λx.x) in ii

1. If M is a variable x and x : ∀α1, . . . , αn.τ ′ ∈ Γ then S is the identity function and τ = [βi/αi]τ ′,
where each βi is a fresh variable (1 ≤ i ≤ n).

2. If M ≡ M1M2, let:
• W (Γ,M1) = (S1, τ1);
• W (S1Γ,M2) = (S2, τ2);
• U = UNIFY (S2τ1, τ2 → β), where β is a fresh variable;

then S = U ◦ S2 ◦ S1 and τ = Uβ;
3. If M ≡ λx.N , let β be a fresh variable and W (Γx ∪ {x : β}, N) = (S1, τ1), then S = S1 and

τ = S1β → τ1;
4. If M ≡ let x = M1 in M2, let:

• W (Γ,M1) = (S1, τ1) and
• W (S1Γx ∪ {x : S1Γ (τ1)},M2) = (S2, τ2)

then S = S2 ◦ S1 and τ = τ2

In [5] it was proved the soundness and completeness of this algorithm.
The following example, where we sketch an application of W to an expression by

specifying the arguments and results of W and UNIFY , illustrates the main features of the type
inference algorithm.

Example 2. Consider the application of function W to let i = (λx.x) in ii.
W ({}, λx.x) = ([ ], α → α)

Using the closure of type (α → α), as the type of i in W ({i : ∀α.α → α}, ii), we have:
W ({i : ∀α.α → α}, i) = ([ ], α1 → α1) and
W ({i : ∀α.α → α}, i) = ([ ], α2 → α2)

Since U = UNIFY (α1 → α1, (α2 → α2) → β) = [(α2 → α2)/α1, (α2 → α2)/β], then:
W ({}, let i = (λx.x) in ii) = (U,α2 → α2)

Note that we could infer a type for this term because i is used in (ii) with two different types.

4 Using TypeTool

Throughout this section we will see some examples of the graphical interface illustrating a type
inference request.

To perform an inference request, the user can choose one of the following methods
[see figure 2]:
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Figure 2. Choosing a term

• upload a file containing the term for which one wants to infer the type
• write the term directly on the text area
• select one of the predefined examples

This alternatives were described in decreasing priority. Thus, if we write a term and an example
is selected, the application considers as input only the written term. File upload has priority over
the two other alternatives.

The term in figure 2 is the factorial function (as usual Y stands for the fixed point operator), for
which we will infer a type in the Damas-Milner system. Clicking on the “infer” button will take us
to an HTML web page with the inference result [see figures 3, 4 and 5].
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Figure 3. List of built-ins

In figure 3 we can see which type inference system was selected and which term was introduced.
Next, the built-in operators1 that were found in the term are presented. Note that built-ins are treated
as special variables with their corresponding types declared in an initial set of assumptions.

In figure 4 we have the syntactic tree of the term, for which we can see the initially generated
type and, right below, which constraints (equations) were produced during the inference process.
Applying the unification algorithm to this constraint set, we can get the final substitution. This
substitution is then applied to the initial syntax tree to obtain the final derivation tree [see figure5].

1 built-in operators added to the term language of the Damas-Milner type system
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Figure 4. Generated equations and corresponding solutions

As another example consider example 1. In this case the result produced by TypeTool is pre-
sented in figure 6.

The example in figure 7 shows the case of a term which is not typable in the
Damas-Milner type system. This happens because when typing x x the algorithm tries to unify
the type of a function with its argument.
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Figure 5. Type derivation

5 System’s Architecture

TypeTool follows a typical CGI application architecture, in which a user sends a request (through a
browser) to the Web server, which then executes a CGI script and redirects the script reply back to
the user.

Before showing how the interaction between different requests/reply is performed,
TypeTool application components are now briefly described.
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Figure 6. Example of type derivation for let i = (λx.x) in ii

5.1 TypeTool components

TypeTool is essentially composed by a central script and a set of modules, where each installed
module is responsible for a type system. The central script, besides allowing the user to visualize
the application state (installed modules and possible actions), is also an interface between the user
and each module, making the interaction between this two parts. Each module replies to the central
script inference requests.

5.2 Different kinds of user/TypeTool interaction

The user can perform the following requests to the TypeTool application: interface request and
inference request.
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Figure 7. Example of a term for which type inference fails

Interface request This kind of request occurs when a user accesses the central script’s URL,
through a browser.

The central script is then in charge of gathering information about the installed type system
modules. Based on this information, the script can now produce an HTML web page (interface)
that allows the use of the application [see figure8].

Inference request After selecting a type system and entering an expression (for which to infer a
type), the user is then able to send the inference request to the server.

Then the central script receives the request and redirects the expression to the selected type
system module [see figure 9].
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Figure 8. Creating TypeTool’s graphical interface

The type system module starts by checking the expression syntax and semantics. When the
inference process is concluded, the output is produced [see figure10].

6 Implementation

6.1 Choice of technologies and programming languages

CGI technology The choice of CGI technology for implementing TypeTool is two-fold. First,
CGI is supported by every web server, without installing further software. Secondly, it is a sim-
ple technology offering vast possibilities, being perfectly suited to the development of the needed
functionalities of a graphical interface accessible through a standard web browser.

Perl TypeTool’s central script is written in Perl, taking advantage of this language. These advan-
tages are especially relevant when Perl is used in the context of CGI applications
(see [9] for more details).

Prolog and CHR For the inference processes of the installed type systems, the choice was Prolog
with Constraint Handling Rules (CHR) [8], along the lines presented in [1].

CHR: CHR is a high-level language designed to write constraint solvers using rewriting. As a spe-
cial purpose language, CHR “extends” a host language with (more) constraint solving capabilities.

A constraint is considered to be a distinguished, special first-order predicate (atomic formula)
and there are two types of constraints. One for built-in (predefined) constraints and the other for
CHR (user-defined) constraints. Built-in constraints are handled by a predefined constraint solver
that already exists in the host language (note that we can consider host language statements as
built-in constraints) and CHR constraints are those defined by a CHR program.

Definition 61 A CHR program is a finite set of CHR rules. There are three kinds of CHR rules:

• A simplification is of the form H1, ...,Hi <=> G1, ..., Gj | B1, ..., Bk
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Figure 9. Inference request to a given type system

Figure 10. Execution flow of the inference process in detail

• A propagation is of the form H1, ...,Hi ==> G1, ..., Gj | B1, ..., Bk

• A simpagation is of the form H1, ...,Hl \ Hl+1, ...,Hi <=> G1, ..., Gj | B1, ..., Bk

with i ≥ 1, j ≥ 0, k ≥ 0, l ≥ 1 and where the multi-head H1, ...,Hi is a nonempty sequence of
CHR constraints, the guard G1, ..., Gj is a sequence of built-in constraints, and the body B1, ..., Bk

is a sequence of built-in and CHR constraints.

Empty sequences are represented by the built-in constraint true and, for simplicity, the empty
guard, true, can be removed from a rule together with the ’|’ operator.
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Declaratively, a rule relates heads and body provided the guard is true. A simplification rule means
that the heads are true if and only if the body is true. A propagation rule means that the body is true
if the heads are true. A simpagation rule combines a simplification and a propagation rule. The rule
Heads1 \ Heads2 <=> Body is equivalent to the simplification rule
Heads1, Heads2 <=> Body, Heads1. More information can be found in [8].

Due to the declarative character of the algorithms used in the type systems inference process
and their need for an explicit use of the unification algorithm, the choice of CHR occurred natu-
rally, given the clear and elegant way of implementing the unification algorithm on this constraint
solver. As an example, the CHR implementation of unification is presented in the following lines
(var(X) denotes a type variable, X -> Y an “arrow” type and T1 = T2 an equation to be solved
by unification):

T1 -> T2 = T3 -> T4 <=> T1 = T3, T2 = T4.
var(X) = var(X) <=> true.
T1 -> T2 = var(X) <=> var(X) = T1 -> T2.
var(X) = T1 -> T2 <=> occurs(var(X), T1 -> T2) | fail.
var(X) = T \ T1 = T2 <=> occurs(var(X), T1 -> T2) |

replace(var(X), T, T1, NT1),
replace(var(X), T, T2, NT2),
NT1 = NT2.

In the CHR rules presented above the last rule applies the substitution var(X) = T to every
constraint where var(X) occurs. Note that the 4th argument of the predicate “replace” is the result
of replacing, in the 3rd argument, the 1st by the 2nd argument.

Prolog: The declarative character, mentioned above, supports the use of a declarative language for
the implementation of the type systems inference algorithms. The choice of Prolog in particular
(and not a functional language) was made basically because now CHR is more stable linked to
Prolog.

7 Conclusion

We presented a lightweight web-based type inference visualization tool. The user can follow the
type inference algorithm for any given expression. TypeTool was first designed for students, but it
has grown past its original goals and it is being used by professional programmers which want to
understand in more detail the type systems of the most common functional programming languages.
Since it is freely available on the Web, TypeTool had about 1500 visits and we had a lot of feedback
which enabled us to improve the tool.

This system works for the Simple Type System, the basis of every type system for functional
languages, and the polymorphic type system of a core ML. In the future we intend to extend the
system to deal with Haskell type classes and to the full syntax of Haskell and ML.
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Abstract In this paper we propose a new concept to deal with dynamic predicates in functional logic programs. The
definition of a dynamic predicate can change over time, i.e., one can add or remove facts that define this predicate. Our
approach is easy to use and has a clear semantics that does not depend on the particular (demand-driven) evaluation
strategy of the underlying implementation. In particular, the concept is not based on (unsafe) side effects so that the order
of evaluation does not influence the computed results—an essential requirement in non-strict languages.

Dynamic predicates can also be persistent so that their definitions are saved across invocations of programs. Thus,
dynamic predicates are a lightweight alternative to the explicit use of external database systems that can be applied in
many applications. Moreover, they extend one of the classical application areas of logic programming to functional logic
programs. We present the concept, its use and an implementation in a Prolog-based compiler.

1 Introduction and Related Work

Functional logic languages aim to integrate the best features of functional and logic languages in or-
der to provide a variety of programming concepts to the programmer. For instance, the concepts of
demand-driven evaluation, higher-order functions, polymorphic typing from functional program-
ming can be combined with logic programming features like computing with partial information
(logical variables), constraint solving and non-deterministic search for solutions. This combination
leads to optimal evaluation strategies [2] and new design patterns [4] that can be applied to provide
better programming abstractions, e.g., for implementing graphical user interfaces [11] or program-
ming dynamic web pages [12].

However, one of the traditional application areas of logic programming is not yet sufficiently
covered in existing functional logic languages: the combination of declarative programs with persis-
tent information, usually stored in relational databases, that can change over time. Logic program-
ming provides a natural framework for this combination (e.g., see [7,9]) since externally stored re-
lations can be considered as facts defining a predicate of a logic program. Thus, logic programming
is an appropriate approach to deal with deductive databases or declarative knowledge management.
In this paper, we propose a similar concept for functional logic languages. Nevertheless, this is not
just an adaptation of existing concepts to functional logic programming. We will show that the ad-
dition of advanced functional programming concepts, like the clean separation of imperative and
declarative computations by the use of monads [24], provides a better handling of the dynamic be-
havior of database predicates, i.e., when we change the definition of such predicates by adding or
removing facts. To motivate our approach, we shortly discuss the problems caused by traditional
logic programming approaches to dynamic predicates.

The logic programming language Prolog allows to change the definition of predicates1 by
adding or deleting clauses using predefined predicates like asserta (adding a new first clause),
assertz (adding a new last clause), or retract (deleting a matching clause). Problems occur if
the use of these predicates is mixed with their update. For instance, if a new clause is added during
the evaluation of a literal, it is not directly clear whether this new clause should be visible during

� This research has been partially supported by the German Research Council (DFG) under grant Ha 2457/1-2.
1 In many Prolog systems, such predicates must be declared as “dynamic” in order to change their definitions dynami-

cally.
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backtracking, i.e., a new proof attempt for the same literal. This has been discussed in [18] where
a so-called “logical view” of database updates is proposed. In the logical view, only the clauses
that exist at the first proof attempt to a literal are used. Although this solves the problems related to
backtracking, advanced evaluation strategies cause new problems.

It is well known that advanced control rules, like coroutining, provide a better control behavior
w.r.t. the termination and efficiency of logic programs [21]. Although the completeness of SLD
resolution w.r.t. any selection rule seems to justify such advanced control rules, it is not the case
w.r.t. dynamic predicates. For instance, consider the Prolog program

ap(X) :- assertz(p(X)).

q :- ap(X), p(Y), X=1.

If there are no clauses for the dynamic predicate p, the proof of the literal q succeeds due to the
left-to-right evaluation of the body of the clause for q. However, if we add the block declaration (in
Sicstus-Prolog) “:- block ap(-).” to specify that ap should be executed only if its argument is
not a free variable, then the proof of the literal q fails, because the clause for p has not been asserted
when p(Y) should be proved.

This example indicates that care is needed when combining dynamic predicates and advanced
control strategies. This is even more important in functional logic languages that are usually based
on demand-driven (and concurrent) evaluation strategies where the exact order of evaluation is
difficult to determine in advance [2,10].

Unfortunately, existing approaches to deal with dynamic predicates do not help here. For in-
stance, Prolog and its extensions to persistent predicates stored in databases, like the Berkeley DB
of Sicstus-Prolog or the persistence module of Ciao Prolog [6], suffer from the same problems. In
the other hand, functional language bindings to databases do not offer the constraint solving and
search facilities of logic languages. For instance, HaSQL2 supports a simple connection to rela-
tional databases via I/O actions but provides no abstraction for computing queries (the programmer
has to write SQL queries in plain text). This is improved in Haskell/DB [17] which allows to ex-
press queries through the use of specific operators. More complex information must be deduced by
defining appropriate functions.

Other approaches to integrate functional logic programs with databases concentrate only on the
semantical model for query languages. For instance, [1] proposes an integration of functional logic
programming and relational databases by an extended data model and relational calculus. However,
the problem of database updates is not considered and an implementation is not provided. Echahed
and Serwe [8] propose a general framework for functional logic programming with processes and
updates on clauses. Since they allow updates on arbitrary program clauses (rather than facts), it is
unclear how to achieve an efficient implementation of this general model. Moreover, persistence is
not covered in their approach.

Since real applications require the access and manipulation of persistent data, we propose a new
model to deal with dynamic predicates in functional logic programs where we choose the declarative
multi-paradigm language Curry [16] for concrete examples.3 Although the basic idea is motivated
by existing approaches (a dynamic predicate is considered as defined by a set of basic facts that can
be externally stored), we propose a clear distinction between the accesses and updates to a dynamic
predicate. In order to abstract from the concrete (demand-driven) evaluation strategy, we propose
the use of time stamps to mark the lifetime of individual facts.

2 http://members.tripod.com/˜sproot/hasql.htm
3 Our proposal can be adapted to other modern functional logic languages that are based on the monadic I/O concept to

integrate imperative and declarative computations in a clean manner, like Escher [19], Mercury [23], or Toy [20].
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Dynamic predicates can also be persistent so that their definitions are saved across invocations
of programs. Thus, our approach to dynamic predicates is a lightweight alternative to the use of
external database systems that can be easily used in many applications. Nevertheless, one can also
use an external database if the size of the dynamic predicate definitions becomes too large.

The next section provides a basic introduction into Curry. Section 3 contains a description of
our proposal to integrate dynamic predicates into functional logic languages. Section4 sketches a
concrete implementation of this concept and Section5 contains our conclusions.

2 Basic Elements of Curry

In this section we review those elements of Curry which are necessary to understand the contents of
this paper. More details about Curry’s computation model and a complete description of all language
features can be found in [10,16].

Curry is a modern multi-paradigm declarative language combining in a seamless way features
from functional, logic, and concurrent programming and supporting programming-in-the-large with
specific features (types, modules, encapsulated search). From a syntactic point of view, a Curry
program is a functional program extended by the possible inclusion of free (logical) variables in
conditions and right-hand sides of defining rules. Curry has a Haskell-like syntax [22], i.e., (type)
variables and function names usually start with lowercase letters and the names of type and data
constructors start with an uppercase letter. The application of f to e is denoted by juxtaposition
(“f e”).

A Curry program consists of the definition of functions and data types on which the functions
operate. Functions are evaluated lazily. To provide the full power of logic programming, functions
can be called with partially instantiated arguments and defined by conditional equations with con-
straints in the conditions. The behavior of function calls with free variables depends on the evalua-
tion mode of functions which can be either flexible or rigid. Calls to flexible functions are evaluated
by a possibly non-deterministic instantiation of the demanded arguments (i.e., arguments whose
values are necessary to decide the applicability of a rule) to the required values in order to apply a
rule (“narrowing”). Calls to rigid functions are suspended if a demanded argument is uninstantiated
(“residuation”).

Example 1. The following Curry program defines the data types of Boolean values, “possible”
(maybe) values, and polymorphic lists (first three lines) and functions for computing the concate-
nation of lists and the last element of a list:

data Bool = True | False
data Maybe a = Nothing | Just a
data List a = [] | a : List a

conc :: [a] -> [a] -> [a]
conc [] ys = ys
conc (x:xs) ys = x : conc xs ys

last :: [a] -> a
last xs | conc ys [x] =:= xs = x where x,ys free

The data type declarations define True and False as the Boolean constants, Nothing and Just as
the constructors for possible values (where Nothing is considered as no value), and [] (empty list)
and : (non-empty list) as the constructors for polymorphic lists (a is a type variable ranging over
all types and the type “List a” is usually written as [a] for conformity with Haskell).
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The (optional) type declaration (“::”) of the function conc specifies that conc takes two lists
as input and produces an output list, where all list elements are of the same (unspecified) type.4

Since conc is flexible,5 the equation “conc ys [x] =:= xs” is solved by instantiating the first
argument ys to the list xs without the last argument, i.e., the only solution to this equation satisfies
that x is the last element of xs.

In general, functions are defined by (conditional) rules of the form

f t1 . . . tn | c = e where vs free

with f being a function, t1, . . . , tn patterns (i.e., expressions without defined functions) without
multiple occurrences of a variable, the condition c is a constraint, e is a well-formed expression
which may also contain function calls, lambda abstractions etc, and vs is the list of free variables
that occur in c and e but not in t1, . . . , tn. The condition and the where parts can be omitted if c
and vs are empty, respectively. The where part can also contain further local function definitions
which are only visible in this rule. A conditional rule can be applied if its left-hand side matches
the current call and its condition is satisfiable.

A constraint is any expression of the built-in type Success. For instance, the trivial constraint
success is an expression of type Success that denotes the always satisfiable constraint. “c1 & c2”
denotes the concurrent conjunction of the constraints c1 and c2, i.e., this expression is evaluated
by proving both argument constraints concurrently. Each Curry system provides at least equational
constraints of the form e1 =:= e2 which are satisfiable if both sides e1 and e2 are reducible to unifi-
able patterns. However, specific Curry systems can also support more powerful constraint structures,
like arithmetic constraints on real numbers or finite domain constraints, as in the PAKCS implemen-
tation [13].

Predicates in the sense of logic programming can be considered as functions with result type
Success. For instance, a predicate isPrime that is satisfied if the argument (an integer number) is
a prime can be modeled as a function with type

isPrime :: Int -> Success

The following rules define a few facts for this predicate:

isPrime 2 = success
isPrime 3 = success
isPrime 5 = success
isPrime 7 = success

Apart from syntactic differences (that support, in contrast to pure logic programming, the use of
predicates and partial applications of predicates as first-class citizens in higher-order functions),
any pure logic program have a direct correspondence to a Curry program. For instance, a predicate
isPrimePair that is satisfied if the arguments are primes that differ by 2 can be defined as follows:

isPrimePair :: Int -> Int -> Success
isPrimePair x y = isPrime x & isPrime y & x+2 =:= y

The operational semantics of Curry, precisely described in [10,16], is based on an optimal evalua-
tion strategy [2] which is a conservative extension of lazy functional programming and (concurrent)

4 Curry uses curried function types where α->β denotes the type of all functions mapping elements of type α into
elements of type β.

5 As a default, all functions except for I/O actions and external functions are flexible.
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logic programming. Due to its demand-driven behavior, it provides optimal evaluation (e.g., short-
est derivation sequences, minimal solution sets) on well-defined classes of programs (see [2] for
details). Curry also offers the standard features of functional languages, like higher-order functions
(e.g., “\x -> e” denotes an anonymous function that assigns to each x the value of e) or monadic
I/O. Since the latter is important for the ideas in this paper, we sketch the I/O concept of Curry
which is almost identical to the monadic I/O of Haskell [24].

In the monadic approach to I/O, an interactive program is considered as a function computing a
sequence of actions which are applied to the outside world. An action changes the state of the world
and possibly returns a result (e.g., a character read from the terminal). Thus, actions are functions
of type

World -> (α,World)

(where World denotes the type of all states of the outside world). This function type is also abbre-
viated by IOα. If an action of type IOα is applied to a particular world, it yields a value of type
α and a new (changed) world. For instance, getChar of type IO Char is an action which reads a
character from the standard input whenever it is executed, i.e., applied to a world. The important
point is that values of type World are not accessible to the programmer—she/he can only create
and compose actions on the world. For instance, the action getChar can be composed with the
action putChar (which has type Char -> IO () and writes a character to the terminal) by the
sequential composition operator >>= (which has type IO α -> (α -> IO β) -> IO β), i.e.,
“getChar >>= putChar” is a composed action which prints the next character of the input stream
on the screen. The second composition operator >> is like >>= but ignores the result of the first
action. Furthermore, done is the “empty” action which does nothing (see [24] for more details). For
instance, a function which takes a string (list of characters) and produces an action that prints it to
the terminal followed by a line feed can be defined as follows:

putStrLn [] = putChar ’\n’
putStrLn (c:cs) = putChar c >> putStrLn cs

It should be noted that an action is executed when the program (applied to the world) is executed.
Since the world cannot be copied, non-deterministic actions as a result of a program are not allowed.
Therefore, all possible search must be encapsulated between I/O operations using the features for
encapsulating search [5,15].

3 Dynamic Predicates

In this section we describe our proposal to dynamic predicates in functional logic programs and
show its use by several examples.

3.1 General Concept

Since the definition of dynamic predicates is also intended to be stored persistently in files, we
assume that dynamic predicates are defined by ground (i.e., variable-free) facts. However, in contrast
to predicates that are explicitly defined in a program (e.g., isPrime in Section 2), the definition
of dynamic predicates is not provided in the program code but will be dynamically computed.
Thus, dynamic predicates are similar to “external” functions whose code is not contained in the
program but defined elsewhere. Therefore, the programmer has to specify in a program only the
(monomorphic) type signature of a dynamic predicate (remember that Curry is strongly typed) and
mark its name as “dynamic”.
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As a simple example, we want to define a dynamic predicate prime to store prime numbers
whenever we compute them. Thus, we provide the following definition in our program:

prime :: Int -> Dynamic
prime dynamic

Similarly to Success, the predefined type “Dynamic” is abstract, i.e., there are no accessible data
constructors of this type but a few predefined operations that act on objects of this type (see below).
From a declarative point of view, Dynamic is similar to Success, i.e., prime can be considered as
a predicate. However, since the definition of dynamic predicates may change over time, the access
to dynamic predicates is restricted in order to avoid the problems mentioned in Section1. Thus,
the use of the type Dynamic ensures that the specific access and update operations (see below) can
be applied only to dynamic predicates. Furthermore, the keyword “dynamic” informs the compiler
that the code for prime is not in the program but externally stored (similarly to the definition of
external functions).

In order to avoid the problems related to mixing update and access to dynamic predicates, we
put the corresponding operations into the I/O monad since this ensures a sequential evaluation order.
Thus, we provide the following predefined operations:

assert :: Dynamic -> IO ()

retract :: Dynamic -> IO Bool

getKnowledge :: IO (Dynamic -> Success)

assert adds a new fact about a dynamic predicate to the database where the database is considered
as the set of all known facts for dynamic predicates. Actually, the database can also contain multiple
entries (if the same fact is repeatedly asserted) so that the database is a multi-set of facts. For the
sake of simplicity, we ignore this detail and talk about sets in the following.

Since the facts defining dynamic predicates should not contain unbound variables,6 assert
is a rigid function, i.e., it suspends when the arguments (after evaluation to normal form) contain
unbound variables. Similarly, retract is also rigid7 and removes a matching fact, if possible (this
is indicated by the Boolean result value). For instance, the sequence of actions

assert (prime 1) >> assert (prime 2) >> retract (prime 1)

asserts the new fact (prime 2) to the database.
The action getKnowledge is intended to get the set of facts stored in the database at the time

when this action is executed. In order to provide access to the set of facts, getKnowledge returns a
function of type “Dynamic -> Success” which can be applied to expressions of type “Dynamic”,
i.e., calls to dynamic predicates. For instance, the following sequence of actions asserts a new fact
(prime 2) and retrieves its contents by unifying the logical variable x with the value 2:8

assert (prime 2) >> getKnowledge >>= \known ->
doSolve (known (prime x))

6 Since the definition of a dynamic predicate could also be stored in files or external databases (see Section 3.2), this
restriction is reasonable.

7 One could argue that retract could be also called with logical variables which should be bound to the values of the
retracted facts; however, this might cause non-deterministic actions (if more than one fact matches) which leads to
run-time errors.

8 The action doSolve is defined as “doSolve c | c = done” and can be used to embed constraint solving into the
I/O monad.
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Since writing monadic sequences of I/O actions is not well readable, we will use Haskell’s “do”
notation [22] in the following. Thus, we write the previous action sequence in the following form:

do assert (prime 2)
known <- getKnowledge
doSolve (known (prime x))

Since there might be several facts that match a call to a dynamic predicate, we have to encapsulate
the possible non-determinism occurring in a logic computation. This can be done in Curry by the
primitive action to encapsulate the search for all solutions to a goal:

getAllSolutions :: (a -> Success) -> IO [a]

getAllSolutions takes a constraint abstraction and returns the list of all solutions, i.e., all values
for the argument of the abstraction such that the constraint is satisfiable.9 For instance, the evaluation
of

getAllSolutions (\x -> known (prime x))

returns the list of all values for x such that known (prime x) is satisfied. Thus, we can define a
function printKnownPrimes that prints the list of all known prime numbers as follows:

printKnownPrimes = do
known <- getKnowledge
sols <- getAllSolutions (\x -> known (prime x))
print sols

If we just want to check whether a particular fact of a dynamic predicate is known, we can define
the following general function:

isKnown :: Dynamic -> IO Bool
isKnown p = do

known <- getKnowledge
sols <- getAllSolutions (\ _ -> known p)
return (sols /= [])

Here we are not interested in individual solutions. Thus, we write the anonymous variable “_” as
the argument to the search goal and finally check whether some solution has been computed.

Note that we can use all logic programming techniques also for dynamic predicates: we just
have to pass the result of getKnowledge (i.e., the variable known above) into the clauses defining
the deductive part of the database program and wrap all calls to a dynamic predicate with this result
variable. For instance, we can print all prime pairs by the following definitions:

primePair known (x,y) =
known (prime x) & known (prime y) & x+2 =:= y

printPrimePairs = do
known <- getKnowledge
sols <- getAllSolutions (\p -> primePair known p)
print sols

9 getAllSolutions is an I/O action since the order of the result list might vary from time to time due to the order of
non-deterministic evaluations.
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The constraint primePair specifies the property of being a prime pair w.r.t. the knowledge known,
and the action printPrimePairs prints all currently known prime pairs.

If one wants to avoid passing the variable known through all predicates that do inferences on
the current knowledge, one can also define these predicates locally so that known becomes auto-
matically visible to all predicates. In order to write the program code even more in the logic pro-
gramming style, we define the composition of known and prime as a single name. The following
code, which defines a constraint for sequences of primes, shows an example for this “LP” style (“.”
denotes function composition):

primeSequence known l = primes l

where

isPrime = known . prime

primes [p] = isPrime p
primes (p1:p2:ps) = isPrime p1 &

isPrime p2 &
(p1<p2)=:= True &
primes (p2:ps)

Our concept provides a clean separation between database updates and accesses. Since we get the
knowledge at a particular point of time, we can access all facts independent on the order of evalua-
tion. Actually, the order is difficult to determine due to the demand-driven evaluation strategy. For
instance, consider the following sequence of actions:

do assert (prime 2)
known1 <- getKnowledge
assert (prime 3)
assert (prime 5)
known2 <- getKnowledge
sols1 <- getAllSolutions (\x -> known1 (prime x))
sols2 <- getAllSolutions (\x -> known2 (prime x))
return (sols1,sols2)

Executing this with the empty database, the pair of lists ([2],[2,3,5]) is returned. Although the
concrete computation of all solutions is performed later than they are conceptually accessed (by
getKnowledge) in the program text, we get the right facts (in contrast to Prolog with coroutining,
see Section 1). Therefore, getKnowledge conceptually copies the current database for later access.
However, since an actual copy of the database can be quite large, this is implemented by the use of
time stamps (see Section 4).

3.2 Persistent Dynamic Predicates

One of the key features of our proposal is the easy handling of persistent data. The facts about
dynamic predicates are usually stored in main memory which supports fast access. However, in
most applications it is necessary to store the data also persistently so that the actual definitions of
dynamic predicates survive different executions (or crashes) of the program. One approach is to
store the facts in relational databases (which is non-trivial since we allow arbitrary term structures
as arguments). Another alternative is to store them in files (e.g., in XML format). In both cases the
programmer has to consider the right format and access routines for each application. Our approach
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is much simpler (and often also more efficient if the size of the dynamic data is not extremely
large): it is only necessary to declare the predicate as “persistent”. For instance, if we want to store
our knowledge about primes persistently, we define the predicate prime as follows:

prime :: Int -> Dynamic
prime persistent "file:prime_infos"

Here, prime_infos is the name of a directory where the run-time system automatically puts all files
containing information about the dynamic predicate prime.10 Apart from changing the dynamic
declaration into a persistent declaration, nothing else needs to be changed in our program, i.e.,
the same actions like assert, retract, or getKnowledge can be used to change or access the
persistent facts of prime. Nevertheless, the persistent declaration has important consequences:

• All facts and their changes are persistently stored, i.e., after a termination (or crash) and restart
of the program, all facts are recovered.

• Changes to dynamic predicates are immediately written into a log file so that they can be recov-
ered.

• getKnowledge gets always the current knowledge persistently stored, i.e., if other processes
also change the facts of the same predicate, it becomes immediately visible with the next call to
getKnowledge.

• In order to avoid conflicts between parallel processes working on the same dynamic predicates,
there is also a transaction concept (see Section3.3).

Note that the easy and clean addition of persistency was made possible due to our concept to sep-
arate the update and access to dynamic predicates. Since updates are put into the I/O monad, there
are obvious points where changes must be logged. On the other hand, the getKnowledge action
needs only a (usually short) synchronization with the external data and then the knowledge can be
used with the efficiency of the internal program execution.

3.3 Transactions

The persistent storage of dynamic predicates causes another problem: if several processes running
in parallel updates the same data, some synchronization is necessary. Since we intend to use our
proposal also for web applications [12], there is a clear need to solve the synchronization problem
since in such applications one does not know when the individual programs reacting to client’s
requests are executed. Fortunately, the database community has solved this problem via transaction
models so that we only have to adapt them into our framework of functional logic programming.

We consider a transaction as a sequence of changes to (possibly several different) dynamic
predicates that should only be performed together or completely ignored. Moreover, the changes of
a transaction become visible to other parallel processes only if the complete transaction has been
successfully executed. This model can be easily supported by providing two I/O actions:

transaction :: IO a -> IO (Maybe a)

abortTransaction :: IO a

transaction takes an I/O action (usually, a sequence of updates to dynamic predicates) as argu-
ment and tries to execute it. If this was successfully done, the result r of the argument action is

10 The prefix “file:” instructs the compiler to use a file-based implementation of persistent predicates. For future work,
it is planned also to use relational databases to store persistent facts so that this prefix is used to distinguish the different
access methods.
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returned as (Just r) and all changes to the dynamic predicates become visible to other processes.
Otherwise, i.e., in case of a failure, run-time error, or if the action abortTransaction has been
executed, all changes to the dynamic predicates performed during this transaction are undone and
Nothing is returned to indicate the failure of the transaction. For instance, consider the following
transaction:

try42 = do assert (prime 42)
abortTransaction
assert (prime 43)

If we execute “transaction try42”, then no change to the definition of the persistent dynamic
predicate prime becomes visible.

4 Implementation

In order to test our concept and to provide a reasonable implementation, we have implemented it
in the PAKCS implementation of Curry [13]. This implementation is fairly efficient and has been
used for many non-trivial applications, e.g., a web-based system for e-learning [14]. The system
compiles Curry programs into Prolog by transforming pattern matching into predicates and exploit-
ing coroutining for the implementation of the concurrency features of Curry [3]. Due to the use of
Prolog as the back-end language, the implementation of our concept is not very difficult. Therefore,
we highlight only a few aspects of this implementation.

First of all, the compiler of PAKCS has to be adapted since the code for dynamic predicates
must be different from other functions. Thus, the compiler translates a declaration of a dynamic
predicate into specific code so that the run-time evaluation of a call to a dynamic predicate yields
a data structure containing information about the actual arguments and the name of the external
database (in case of persistent predicates). In this implementation, we have not used a relational
database for storing the facts since this is not necessary for the size of the dynamic data (in our
applications only a few megabytes). Instead, all facts are stored in main memory and in files in case
of persistent predicates. First, we describe the implementation of non-persistent predicates.

Each assert and retract action is implemented via Prolog’s assert and retract. However,
as additional arguments we use time stamps to store the lifetime (birth and death) of all facts in order
to implement the visibility of facts for the getKnowledge action (similarly to [18]). Thus, there is a
global clock (“update counter”) in the program that is incremented for each assert and retract.
If a fact is asserted, it gets the actual time as birth time and ∞ as the death time. If a fact is retracted,
it is not retracted in memory but only the death time is set to the actual time since there might be
some unevaluated expression for which this fact is still visible. getKnowledge is implemented
by returning a predefined function that keeps the current time as an argument. If this function is
applied to some dynamic predicate, it unifies the predicate with all facts and, in case of a successful
unification, it checks whether the time of the getKnowledge call is in the birth/death interval of
this fact.

Persistent predicates are similarly implemented, i.e., all known facts are always kept in main
memory. However, each update to a persistent predicate is written into a log file. Furthermore, all
facts of this predicate are stored in a file in Prolog format. This file is only read and updated during
the initialization time of the program, where the following operations are performed:

1. The previous database file with all Prolog facts is read.
2. All changes from the log file are replayed, i.e., executed.
3. A new version of the database file is written.
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4. The log file is cleared.

In order to avoid problems in case of program crashes during this critical period, the initialization
phase is made exclusive to one process via operating system locks and backup files are written.

To reduce the time to load the database, we store it also in an intermediate format (Prolog object
file format of Sicstus-Prolog). With this binary format, the database for most applications can be
loaded very efficiently. For instance, it needs 120 milliseconds to load a database of 12.5 MB Prolog
source code on a 2.0 GHz Linux-PC (AMD Athlon XP 2600 with 256 KB cache).

In order to implement transactions and the concurrent access to persistent data, operating system
locks are used. Moreover, version numbers of the database are stored in order to inform the running
program about changes to the database by other processes. These changes are taken into account
when getKnowledge is executed. Transactions are implemented by writing marks into the log files
and considering only complete transactions when recovering the database in the initialization phase
described above.

5 Conclusions

We have proposed a new approach to deal with dynamic predicates in functional logic programs. It
is based on the idea to separate the update and access to dynamic predicates. Updates can only be
performed on the top-level in the I/O monad in order to ensure a well-defined sequence of updates.
The access to dynamic predicates is initiated also in the I/O monad in order to get a well-defined
set of visible facts for dynamic predicates. However, the actual access can be done at any execution
time since the visibility of facts is controlled by time stamps. This is important in the presence
of an advanced operational semantics (demand-driven evaluation) where the actual sequence of
evaluation steps is difficult to determine in advance.

Furthermore, dynamic predicates can be also persistent so that their definitions are externally
stored and recovered when programs are restarted. This persistence model is also supported by a
transaction concept in order to provide the parallel execution of processes working on the same
data. We have sketched an implementation of this concept in a Prolog-based compiler.

Although the use of our concept is quite simple (one has to learn only three basic I/O actions),
it is quite powerful at the same time since the applications of logic programming to declarative
knowledge management can be directly implemented with this concept. We have used this concept
in practice to implement a bibliographic database system and obtained quite satisfying results. The
loading of the database containing almost 10,000 bibliographic entries needs only a few millisec-
onds, and querying all facts is also performed in milliseconds due to the fact that they are stored in
main memory.

For future work, we want to test this concept in larger applications. Furthermore, we intend
to implement this concept by the use of a relational database instead of the current file-based im-
plementation. In this case, it might be interesting to extend the set of access primitives in order to
combine them into larger queries that can be directly solved by the database system.
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Abstract. One of the key features of the integration of functional and logic languages is the access to non-
deterministic computations from the functional part of the program. In order to ensure the determinism of
top-level computations in a functional logic program, which is usually a monadic sequence of I/O operations,
one has to encapsulate the non-determinism (i.e., search for solutions) of logic computations. However, an
appropriate approach to encapsulation can be quite subtle if subexpressions are shared, as in lazy evaluation
strategies. In this paper we propose a new approach to encapsulate non-deterministic computations for the
declarative multi-paradigm language Curry. It is based on providing a primitive I/O action for encapsulation
from which various specialized search operators can be derived. In order to provide a formal foundation for
this new approach to encapsulation, we define the operational semantics of the new primitive.

1 Why Encapsulate and How (Not) To

Functional logic languages are intended to integrate the best features provided in func-
tional and logic languages. They are also a basis to improve the evaluation strategies of
existing languages since optimal evaluation strategies exist for functional logic languages
[4]. However, there is one subtle problem when combining the worlds of functional and logic
programming. Usually, the top-level of a realistic functional (logic) programs is a monadic
sequence of I/O operations that should be applied to the outside world (e.g., see [17]).
Since the outside world cannot be copied, all non-determinism in logic computations must
be encapsulated, as proposed in [10] for the declarative multi-paradigm language Curry.
Modern functional logic languages are based on demand-driven evaluation strategies [4,7]
which require the sharing of common subexpressions. This can cause strange behavior if
some of these shared subexpressions occur within encapsulation operators. This problem
will be discussed in the following.

1.1 Problems of Combining Sharing and Encapsulation

As the connection between sharing and encapsulation is central to this article, we provide a
small series of examples with increasing complexity. The function “coin” will play the role
of the archtype of all non-determinism. It is defined as

coin = 0

coin = 1

To give a first impression of the complications of non-determinism when sharing is added,
regard the following two functions:

Example 1 (Different Values in the Presence of Sharing).

withoutSharing = coin + coin

withSharing = let x = coin in x+x

� This work has been partially supported by the DFG under grant Ha 2457/1-2.



According to the meaning of non-deterministic functions [5] or the operational semantics
of Curry [2], the two functions should show different behavior. Evaluating “withoutSharing”
will compute all four possible combinations of 0 and 1 and add each of them, yielding 0, 1,
1, or 2. In contrast, a call to “withSharing” will only reduce to one of the two solutions 0 or
2. The reason for this can be seen when looking at the reduction for both function calls,
where non-deterministic choices will be denoted by putting | between them:

withoutSharing → coin + coin → 0 + coin | 1 + coin

→ 0 + 0 | 0 + 1 | 1 + 0 | 1 + 1 → 0 | 1 | 1 | 2

The example without sharing can be seen as a reduction on terms. In contrast to this, a
function employing sharing is a reduction on directed graphs:

withSharing → let x=coin in x+x → +

coin

→ +

0

+

1

→ 0 | 2

One of the key properties of integrating functional and logic languages is to provide access
to non-deterministic search computations from the purely functional part of the program.
To do this, a particular primitive is needed, which takes an arbitrary expression and yields
all possible values of this expression in a single data structure, e.g., a list. We will call such
a function getAllValues and, corresponding to Example 1, it should show the following be-
havior: getAllValues withoutSharing should evaluate to [0,1,1,2] and getAllValues withSharing

should lead to [0,2].
Such a search primitive has been proposed in [10] and is contained in the definition

of Curry [12]. However, the formal definition of this search primitive in [10,12] is based
on a term rewriting semantics and does not cover the behavior when some subexpressions
are shared. As we will see, there are different possibilities how to deal with sharing in the
context of encapsulated search, and the purpose of this paper is to clarify these differences
and propose a new and practically useful alternative.

We could already see one problem with a search primitive. If a function like getAllValues

really evaluates to a list of possible results, the actual sequence of this list depends on the
search strategy. From a declarative point of view, both sequences [0,1] and [1,0] are legiti-
mate results of getAllValues coin. From this perspective it seems mandatory that getAllValues

should return a set rather than a list of results. Later on we will argue, however, why in our
approach getAllValues does indeed return an ordered structure. We will continue to assume
a list as the result of getAllValues until coming back to this point later on.

Based on the previous examples, we can now consider applications of getAllValues for
which the expected result is less clear:

Example 2 (Difference Between Strong and Weak Encapsulation).

coinList = getAllValues coin ++ getAllValues coin

Judging from the discussion up to now, it is reasonable that the result of a call to coinList

should yield the solution [0,1,0,1]. However, what happens if we identify both calls to coin

via sharing?

coinListWithSharing = let x=coin in getAllValues x ++ getAllValues x

Since the behavior w.r.t. sharing was left open in [10,12], there are at least two possibilities,
which can be found in different implementations of Curry. The first possibility will be called
strong encapsulation in the following. The strong encapsulation view is driven by the idea
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that the search operator should definitely encapsulate all non-determinism. Consequently,
if the expression that should be encapsulated contains a subexpression that is connected
(via sharing) to some expression outside of the encapsulation, this connection is cut off.
Conceptually, this means that encapsulated search creates a a copy of the expression before
starting its evaluation. In this case, coinListWithSharing evaluates to [0,1,0,1]. One can argue
that this is reasonable due to the correspondence to coinList and the property that sharing
should have no effect on the computed results (“referential transparency”). Actually, the
PAKCS implementation of Curry [9] does indeed feature this behavior.1

However, there is another view which we call weak encapsulation. This view is based
on the idea that sharing should be respected even inside encapsulated search. When pro-
cessing an expression shared with the outside of the encapsulation, the evaluation of this
expression will not be encapsulated. If this expression generates non-determinism, this
non-determinism also effects the computation outside which shares the expression. Thus,
for coinListWithSharing we obtain two non-deterministic solutions [0,0] and [1,1]. Actually,
the encapsulated search implemented in the Münster Curry Compiler (MCC [13]) features
weak encapsulation.2

In order to explain the complications with the combination of sharing and encapsulated
search in more detail, we consider a slight modification of Example 2:

Example 3 (Problems of Strong Encapsulation).

coinListWithSharing2 = let x=coin in getAllValues x ++ [x] ++ getAllValues x

Comparing to Example 2, one might expect that the results of a call to coinListWithSharing2

should yield [0,1]++[0]++[0,1] | [0,1]++[1]++[0,1] for strong encapsulation. However, this
is not the case, as we will see by examining the reduction on the corresponding directed
graphs step by step:

coinListWithSharing2 → let x=coin in getAllValues x ++ [x] ++ getAllValues x

→ getAllValues ++ [ ] ++ getAllValues

coin

Since strong encapsulation duplicates subexpressions which are shared with the outside
before evaluating them, the connection of coin inside the first getAllValues is cut from the
other occurrences (the argument of the second getAllValues is still shared since its evaluation
has not been initiated):

→ getAllValues ++ [ ] ++ getAllValues

coin coin

→ [0,1] ++ [ ] ++ getAllValues

coin

Due to the standard definition of ++ (which demands the evaluation of the left argument
first), the list in the middle is evaluated in the next step. As this list contains (a reference
to) a call to coin, this step yields a non-deterministic branching:

→ [0,1] ++ [ ] ++ getAllValues [0,1] ++ [ ] ++ getAllValues

0 1

1 In PAKCS getAllValues can be defined as getAllValues x = findall (=:= x).
2 For reasons, which will be clarified in the following, getAllValues can not be defined in MCC. In-

stead of getAllValues x, we have to use the expression findall (\y -> y =:= x). The analogon to
coinListWithSharing is then:
coinListWithSharing = let x = coin in findall (\y -> y =:= x) ++ findall (\y -> y =:= x)

which yields the solutions [0,0] and [1,1].
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The second call to getAllValues is evaluated last, again cutting off the sharing connection.

→ [0,1] ++ [0] ++ getAllValues 0 | [0,1] ++ [1] ++ getAllValues 1

→ [0,1]++[0]++[0] | [0,1]++[1]++[1]

It is obvious that this example is problematic from a declarative point of view. Think-
ing in equations, both calls to getAllValues x in the example should evaluate to the same
result. Even worse, the result of coinListWithSharing2 would yet be different if the expres-
sion was evaluated right-to-left rather than left-to-right. All of this shows that the strong
encapsulation view does not provide a declarative functional access to non-determinism.

After studying Example 3, it becomes clearer that there are good reasons to avoid the
encapsulation of non-determinism when sharing is involved, like in the weak encapsulation
view. Unfortunately, this approach is just as unsatisfying as strong encapsulation from a
declarative point of view.

Example 4 (Problems of Weak Encapsulation).
In the weak encapsulation view, the expressions
findall (\y -> y =:= coin) and let x = coin in findall (\y -> y =:= x)

are not equivalent. The first yields [0,1], whereas the second evaluates to [0] | [1].
Moreover, findall (\y -> y =:= coin) is different from findall (=:= coin): again the first
equals [0,1], the second results in [0] | [1].

Because of all this, one cannot define getAllValues for MCC at all. Any definition like

getAllValues x = findall (\y -> y =:= x)

results in the non-determinism being not encapsulated.

1.2 Problems of Encapsulation of Logical Variables

Encapsulation in the presence of logical variables features some parallels to the sharing
problem. Again, we can distinguish a strong encapsulation view from a weak one.

Example 5 (Encapsulation of Logical Variables).

f 1 = 1 f 2 = 2 g 0 = 0

main = getAllValues (f x) ++ [g x] ++ getAllValues (f x) where x free

Functional logic languages allows the evaluation of function calls with logical variables as
arguments. Thus, a call to f with a logical variable x results in the two non-deterministic
alternatives 1 and 2 with x bound to 1 and 2, respectively. For the call g x, x is bound to
0. If we take the view of strong encapsulation, Example 5 should evaluate (with a left-
to-right strategy) to [1,2]++[0]++[]. This is because the sharing connection to the outside
of getAllValues is cut off and the bindings to x are not visible on the top level, i.e., they
are encapsulated. Strong encapsulation of logical variables is performed by Prolog (see [14]
for a detailed discussion of Prolog’s findall). It is obvious that this behavior is just as
problematic as the one discussed in Example 3.

Example 6 (Problems of Strongly Encapsulating Logical Variables).
The behavior of the following Prolog Program has similarities with Example 3.

coin(0). coin(1).

test1(L) :- findall(X,coin(X),L),findall(X,coin(X),L).

test2(L) :- X=0,findall(X,coin(X),L),findall(X,coin(X),L).

test3(L) :- findall(X,coin(X),L),X=0,findall(X,coin(X),L).
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The proof of the literal test1(L) succeeds with L=[0,1] and test2(L) succeeds with L=[0]

whereas the proof of test3(L) fails because of the left-to-right semantics of Prolog.

Indeed the problems of strongly encapsulating logical variables become even worse if
we think in terms of lazy evaluation, which we will do in detail in the next subsection. If
getAllValues could be evaluated lazily, then it is possible to influence the result of a call to
getAllValues by the following computation even if getAllValues was explicitly sequentialized.
Such an explicit sequence can be expressed by monads which is especially important for
defining sequences of I/O actions [17]. Later on (Section 1.4) we will argue why it is sensible
to provide the access to encapsulated search only from the I/O monad. For now, we assume
that there is a function getAllValuesIO of type IO [a] which returns a list of all values. If
getAllValuesIO features strong encapsulation and is evaluated lazily, the following program
is problematic:

Example 7 (Strong Encapsulation and Influencing the Past).

f 1 = 1 f 2 = 2

main = do values <- getAllValuesIO (f x) main’ = do values <- getAllValuesIO (f x)

print values doSolve (x=:=1)

doSolve (x=:=1) print values

where x free where x free

If getAllValuesIO is strongly encapsulating, the statement print values in main generates [1,2]

whereas the one in main’ prints [1]. The reason is that print evaluates its argument to normal
form. Thus, the execution of print is the time when the decision (whether x should be copied
or not) is made. This shows that it is possible to influence the result of the encapsulated
search by actions that are explicitly declared to take place later in time.

Because of these increased problems, no current implementation of Curry takes the view
of strong encapsulation where logical variables are concerned, whereas the strict world of
Prolog is (a bit) better suited for strong encapsulation.

What is the result of Example 5 in the view of weak encapsulation? In analogy to
Section 1.1, we could state that getAllValues (f x) can not encapsulate the non-determinism
occurring in (f x) but the computation splits into two non-deterministic branches. In both
branches x is bound to a value (1 or 2) and, consequently, the call (g x) fails due to the
unification of the instantiated variable x and 0.

However, none of the implementations of Curry takes this view of weak encapsulation
since they use a third possibility between strong and weak encapsulation for logical variables
(which is also used in Oz [16]): rigid encapsulation.

In the view of rigid encapsulation, if a logical variable declared outside the encapsulation
is processed, i.e., bound or returned as result, then the whole computation suspends. It can
later be resumed if the variable gets bound by a concurrent computation. In this view,
the evaluation of Example 5 would suspend. There are programs, however, for which rigid
encapsulation encapsulates the non-determinism where weak encapsulation can not.

Example 8 (Rigid Encapsulation vs. Weak).

f 1 = 1 f 2 = 2

main | getAllValues (f x) =:= y & x=:=0 = y where x,y free

In rigid encapsulation, a call to main results in [] regardless of the order in which the two
concurrent constraints are evaluated. In contrast, weak encapsulation produces a branching
with two failing computations for left-to-right evaluation and [] for right-to-left.
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All current implementations of Curry which feature encapsulated search take a vari-
ation of the rigid encapsulation view. It seems to be the method most conform to the
“least surprise” principle when thinking in terms of declarative programming. However,
rigid encapsulation has also its problems:

Example 9 (Problems of Rigid Encapsulation).

g 0 = 0

main1 = getAllValues (g x) ++ [g x] where x free

main2 = [g x] ++ getAllValues (g x) where x free

With the standard definition of ++, which requires only the evaluation of its left argument,
main1 suspends (its result is undefined) whereas main2 can be reduced to [0,0].

When looking at current implementations featuring rigid encapsulation, there are no-
table differences. In PAKCS, the computation is suspended directly when applying the
search operator to an expression containing a logical variable declared outside. In MCC,
the computation is only suspended when such a variable is to be bound.

Example 10.

f x y = x

main = (findall (\y -> y =:= f 1 x)) where x free

The call to main suspends using PAKCS, whereas it reduces to [1] using MCC.

As a less academic example one can think of a web service. In Curry such a service commu-
nicates to the outer world via ports, i.e., synchronizing by logical variables [8]. In this case,
the difference between rigid encapsulation in MCC and PAKCS is that in MCC the web
service may perform all sorts of start up routines before suspending on the port, whereas
in PAKCS this initialization only takes place when a message comes in.

Although MCC is preferable to PAKCS in this respect, there is another problematic
difference to what we called rigid encapsulation. If the result of an encapsulated search is a
logical variable declared outside the encapsulation, MCC returns this result. Unfortunately,
this feature opens the door to “influencing the past” analogously to Example 7.

Example 11 (Influencing the Past in MCC).

f 1 x = x f 2 2 = 2 f 3 3 = 3 g = let x free in f x

main = do values <- getAllValuesIO (g y) main’ = do values <- getAllValuesIO (g y)

doSolve (y=:=2) doSolve (y=:=3)

print values print values

where y free where y free

When calling main, print values generates [2,2] whereas for main’ the result [3,3] is printed.
In PAKCS, as in our operational semantics, both calls are suspended.

1.3 Lazy Evaluation and Search Strategies

One last feature of current implementations of encapsulated search should be noted: the
possibility to evaluate a call to getAllValues lazily. The problem is well known and, thus, we
give only a small example.

Example 12 (Eager vs. Lazy Encapsulated Search).
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coin = 0

coin = coin

main = head (findall (\y -> y=:=coin))

Evaluating the search space eagerly, like in PAKCS, the call to main does not terminate.
Using MCC, which features lazy search, main reduces to 0.

Of course, termination is not only influenced by lazy or eager evaluation but also by the
search strategy employed. Current implementations of Curry employ depth-first search. In
consequence, a slight change to Example 12 leads to a different run-time behavior:

Example 13 (Depth-First Search).

coin = coin

coin = 0

main = head (findall (\y -> y=:=coin))

This program does not terminate both using PAKCS and MCC. However, the order of
choices, which is relevant for depth-first search, can also be influenced by pattern matching,
as the following example shows:

coin x = coin x

coin 0 = 0

main = head (findall (\y -> y=:=coin 0))

Due to the additional pattern matching in coin, a call to main terminates using MCC.

1.4 Wish List for Future Implementations of Encapsulated Search

From the discussion above, we can now derive the desirable features of encapsulated search.

Strong Encapsulation of Sharing: One of the main reasons to provide encapsulated
search is to make sure that certain parts of the program evaluation are definitely deter-
ministic. This is especially important for I/O actions. Since weak encapsulation does not
ensure encapsulation of non-determinism, cf. Examples 2 and 4, some variant of strong
encapsulation has to be used to achieve deterministic I/O.

As we have seen in Example 3, strong encapsulation leads to unexpected results. In
order to obtain a declarative access to search, we have to omit nested encapsulations of
search.

Restriction of Encapsulated Search to Top Level: In the problematic examples for
strong encapsulation, Examples 3 and also 5, getAllValues is called within arguments of
other functions. If we restrict the use of getAllValues to the deterministic top level of the
computation, the irritating examples are excluded. In the operational semantics, we propose
in the next section, Example 3 leads to a run-time error. The intended usage within Curry
is the restriction of encapsulated search to the I/O monad. Within the monad, different calls
to a search operator like getAllValues have to be explicitly sequentialized. Using search as
an I/O action also models its behavior more correctly, since we have seen in some examples
that identical calls to getAllValues can have different results depending on progress and
order of evaluation. In such a model, it is also less problematic to use ordered structures to
represent the results of encapsulated search.

When restricting search to the I/O monad, almost all of the examples above are in-
correctly stated and have to be explicitly sequentialized. Some of them will then lead to
run-time error because non-determinism is not allowed in the I/O monad. Note that many
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of such errors can be detected at compile time by means of a program analysis for non-
determinism, like the one developed in [11].

Rigid Encapsulation for Logical Variables: As discussed in Section 1.2, rigid encap-
sulation is the best known choice for the treatment of logical variables. In conjunction with
the top-level restriction, it might seem that strong encapsulation like in Prolog might be
a good choice, too. However, it was also stated that strong encapsulation is increasingly
problematic in the context of a lazy search primitive which is next on the wish list. In
contrast, the only kinds of problematic examples for rigid encapsulation, cf. Example 9, are
excluded by the top-level restriction discussed above.

Lazy Evaluation: For a seamless combination of functional and logic programming, a
lazy search primitive is desirable. Otherwise, there is no complete correspondence between
a search on the top level of the interactive environment and a search within the program.
Moreover, the programmer has to think in terms of terminating reduction for the searches
he wishes to encapsulate.3

Influencing the Search Strategy: We will show in the next section that by a lazy search
primitive another desirable effect can be accomplished. The actual search strategy can be
defined by manipulating the result of the search primitive. We will show how to implement
depth-first and breadth-first search using this approach.

In the next section we propose a formal definition of a new approach to encapsulate search in
(non-strict) functional logic languages. This approach features all the properties discussed
in this wish list.

2 A New Approach to Encapsulating Search in Functional Logic
Programs

In this section we first sketch our basic design of the functional access to non-deterministic
search (Section 2.1). Section 2.2 contains the formal definition of this design.

2.1 A Data Structure for Representing Search

The basic idea of our approach is that a non-deterministic computation yields a data struc-
ture representing the actual search space. The definition of this representation should be
independent of the search strategy employed. The basic structure of the search space can
be captured by the following algebraic data type:

data SearchTree a = Val a | Fail | Or [SearchTree a]

Thus, a non-deterministic computation yields either the successful computation of a value
v (constructor-rooted term or logical variable) represented by Val v, an unsuccessful com-
putation (Fail), or a branching to several subcomputations represented by Or [t1, . . . , tn]
where t1, . . . , tn are search trees representing the subcomputations.

Analogously to findall in MCC, this structure should be provided lazily, i.e., search
trees are only evaluated to head normal form. By means of pattern matching on the search
tree, a programmer can explore the structure and demand the evaluation of subtrees. Hence,
3 Note that the encapsulated search primitives of Oz [16] and Prolog’s findall [14] are related to strict

languages where sharing only occurs via logical variables.
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it is possible to define arbitrary search strategies on the structure of the search tree. For
instance, variations of getAllValues for depth-first search and breadth-first search can be
defined as follows:

getAllValuesD :: SearchTree a -> [a] -- depth-first search

getAllValuesD (Val v) = [v]

getAllValuesD Fail = []

getAllValuesD (Or ts) = concatMap getAllValuesD ts

getAllValuesB :: SearchTree a -> [SearchTree a] -- breadth-first search

getAllValuesB t = getAllValuesB’ [t]

getAllValuesB’ :: [SearchTree a] -> [SearchTree a]

getAllValuesB’ [] = []

getAllValuesB’ (t:ts) = filter isValue (t:ts)++

getAllValuesB’ (concatMap (\(Or ts) -> ts) (filter isOr (t:ts)))

where isValue and isOr are test predicates for the constructors Val and Or, respectively.
Evaluating the search tree lazily, these functions evaluate the list of all values in a lazy
manner. For instance, a first solution can be computed using the function head.

2.2 An Operational Semantics for Encapsulated Search

In this section, we present an operational semantics as a proposal for a standard way to deal
with the problems discussed above. This semantics is based on the operational semantics
for functional logic languages presented in [2]. In the following, we explain how to extend
this operational semantics in order to provide access to search data. We will explain our
considerations rule by rule together with a discussion of the differences from the original
rules in [2].

We define the semantics not directly for Curry. Instead, we consider a core sublanguage
called Flat Curry into which Curry programs can be translated. Local function definitions
are eliminated by lambda lifting. Higher-order constructs are translated to primitive func-
tions partcall and apply. Needed narrowing and residuation are implemented as case expres-
sions, which correspond to definitional trees [3], fcase for flexible functions, case for rigid
functions, and or for non-deterministic branching. Furthermore, we consider normalized
Flat Curry programs in which functions are only applied to variables (bound to expressions
in let) representing references to shared expressions. For more details, see [1,2].

The basic components of the original semantics are (a) a heap which is a mapping
from variables to expressions and which is necessary to model sharing, (b) a control which
always holds the expression currently processed, and (c) a stack which holds two types of
information: case expressions for pattern matching and variables which will be updated as
soon as their corresponding expressions have been evaluated to head normal form.

For our approach we need the possibility to encapsulate computations. This is done by
considering a sequence of heaps rather than a single heap and a sequence of stacks rather
than a single one. These sequences of heaps and stacks are essentially push-down structures,
the topmost is always the one currently processed. A rule which deals with the topmost
heap Γ and the topmost element x of the topmost stack S has the following form:

Rulename Heaps Control Stacks
example γ · Γ e x · S · (S′)

�→ γ · Γ [x �→ e] e S · (S′)
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Note that, for the sake of readability, the sequence of heaps grows towards the right and
the stacks towards the left. · denotes the concatenation on sequences. As each stack in the
sequence of stacks is itself modeled by a sequence, we use brackets () to separate the different
stacks, whereas no such separation is necessary for the heaps. Finally, the notation Γ [x �→ e]
denotes a heap in which the variable x maps to the expression e and other mappings of
x in Γ are ignored (i.e., it represents a destructive heap update). Logical variables are
represented by self-references ([x �→ x]).

The heap/stack sequences grow whenever a new layer of encapsulation is needed. Thus,
there may be as many layers as there are calls to getAllValues in the program plus one.
This additional layer encapsulates top-level non-determinism. This is important because
the top level is usually deterministic, featuring I/O actions to present the computed values.
As discussed in Section 1, this means that any non-determinism has to be encapsulated.

As in the original approach, we assume that the evaluation starts with the designated
function main. Thus, with the additional layer, the initial state of the operational semantics is

Heaps Control Stacks
[ ] · [ ] main ε · (ε)

Naturally, ε · (ε) will be written as (ε).
Now we are ready to discuss the different rules applicable on the operation states. The

first two rules deal with retrieving information from the heaps:

Rule Heaps Control Stacks
varcons γ · Γ [x �→ c(xn)] · γ′ x S

�→ γ · Γ [x �→ c(xn)] · γ′ c(xn) S

varexp γ · Γ [x �→ e] · γ′ x S
�→ γ · Γ [x �→ e] · γ′ e x · S

where e is not constructor-rooted, e �= x, and there
is no mapping from x in any of the heaps in γ′

In our notation, c denotes a constructor symbol, e represents arbitrary expressions, and over-
lined terms like xn represent the sequence of terms x1, . . . , xn. The only difference to the
original rules of [2] is the condition on the heaps in γ′. As a small example, the configuration
([] · [x �→ x] · [x �→ 0], x, ((ε))) can only be succeeded by ([] · [x �→ x] · [x �→ 0], 0, ((ε))).

The next three rules, val,fun and let, are very similar to the original rules. The only point
worth mentioning is that heap manipulations in these rules can only affect the topmost heap:

Rule Heaps Control Stacks
val γ · Γ v x · S
�→ γ · Γ [x �→ v] v S

fun γ f(xn) S
�→ γ ρ(e) S

let γ · Γ let {xk = ek} in e S

�→ γ · Γ [yk �→ ρ(ek)] ρ(e) S

where in val v is constructor-rooted or a variable with Γ [v] = v,
in fun f(yn) = e is a program rule and ρ = {yn �→ xn},
and in let ρ = {xk �→ yk} and yk are fresh w.r.t. the heaps
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The next rule, or, is more interesting as it strongly differs from the original:

Rule Heaps Control Stacks
or Γ · γ · Γ ′ · Γ ′′ e1 or e2 S · (S′)

�→ Γ [vs �→ [z1, z2], Or(vs) S′

z1/2 �→ search(Γ ′′, e1/2, S)] · γ · Γ ′

where z, z1 and z2 are fresh

Here and in the following x �→ [z1, . . . , zn] is a shortcut for

x �→ l0, ln−1 �→ zn : ln, ln �→ [] where l0, . . . , ln are fresh variables.

In this rule, we lift the idea of lazy evaluation to the meta-level of search. This results in
a lazy construction of the SearchTree, demanded by the top-level evaluation or a pattern
matching on the SearchTree by means of (f)case, like for any other head normal form.
Whenever a non-deterministic branching is executed, we know that the resulting constructor
of the search tree at this point is Or. Thus, the current layer of encapsulation has been
evaluated to head normal form. The or rule stores this result by updating the base heap
(which corresponds to the top level of evaluation) and putting Or(vs) on the control. As
the evaluation is finished (for now), the current layer of encapsulation can be removed while
its context, i.e., its topmost heap, the expression on the control, and the topmost stack,
is carefully stored for future reference. We omit non-determinism at the top level of the
computation, by requiring at least one heap between the top level and the current heap.
Hence, non-determinism must be encapsulated in every program. Note that the other heaps
in γ · Γ ′ are unaffected by the rule: the different layers of encapsulation are independent of
each other.

The next rule, search, is responsible for restoring this context whenever one of the
arguments of Or is demanded:

Rule Heaps Control Stacks
search γ search(Γ, e, S) S′

�→ γ · Γ e S · (S′)

It can be easily checked that restoring the evaluation context with search is indeed dual to
storing it with or.

The next two rules are concerned with the implementation of pattern matching. They
are almost identical to the original ones presented in [2].

Rule Heaps Control Stacks
case γ (f )case e of {pk → ek} S
�→ γ e (f){pk → ek} · S

select γ c(yn) (f){pk → ek} · S
�→ γ ρ(ei) S

where pi = c(xn) and ρ = {xn �→ yn}

The two variations case and fcase (short for “flexible case”) correspond to the evaluation
modes “rigid” and “flexible” as described in [12]. The difference will become important
when discussing rule guess below.

Before discussing the remaining rules, we give an example of a simple program applying
only those rules discussed so far.
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Example 14 (Operational Semantics in Action).
Consider the following simple program:

main = let c = coin in coin = 0 or 1

case c of { 0 -> c;

1 -> c}

Using our operational semantics, we obtain:
[ ] · [ ] main (ε)

�→fun [ ] · [ ] let c=coin in case {0->c;1->c} (ε)
�→let [ ] · [c �→ coin] case c of {0->c;1->c} (ε)
�→case [ ] · [c �→ coin] c {0->c;1->c}(ε)
�→varexp [ ] · [c �→ coin] coin c{0->c;1->c}(ε)
�→fun [ ] · [c �→ coin] 0 or 1 c{0->c;1->c}(ε)
�→or Γ1 Or vs ε

where Γ1 = [vs �→ z1:vs1, vs1 �→ z2:vs2, vs2 �→ [],
z1 �→ search([c �→ coin],0,c{0->c;1->c}),
z2 �→ search([c �→ coin],1,c{0->c;1->c})]

If we later resume the evaluation of the second argument of the search tree, we get:
Γ1 z2 S

�→varexp Γ1 search([c �→ coin],1,c{0->c;1->c}) z2S
�→search Γ1 · [c �→ coin] 1 c{0->c;1->c}(z2)S
�→val Γ1 · [c �→ 1] 1 {0->c;1->c}(z2)S
�→select Γ1 · [c �→ 1] c (z2)S
�→varcons Γ1 · [c �→ 1] 1 (z2)S

The next rule, guess, is responsible for starting those non-deterministic searches which are
induced by guessing bindings for logical variables (narrowing). Consider a flexible function
f . When f is called with a logical variable x as an argument, pattern matching on this
variable results in a non-deterministic branching. In each branch, x is bound to a different
constructor corresponding to the patterns of the fcase. This behavior is modeled by the
rule guess which combines the rules select and or discussed above.

Rule Heaps Control Stacks

guess Γ · γ · Γ ′ · Γ ′′[x �→ x] x f
{

ck(xnk
) → ek

}
·S ·(S′)

�→ Γ [vs �→ [z1, . . . , zk], zk �→ sk] · γ · Γ ′ Or(vs) S′

where k > 1, and for all i ∈ {1, . . . , k} ρi = {xni �→ yni}, yni are fresh
and si = search(Γ ′′[x �→ ci(yni), yni �→ yni ], ρi(ei), S)

Since this rule induces non-determinism, we again restrict its application to encapsulated
search computations (recognizable by the existence of at least three heaps) to omit non-
deterministic top-level computations.

Note that, in order to apply rule guess, the logical variable x must be declared within
the topmost heap. No guessing of bindings will take place when x is declared outside the
encapsulation. This corresponds to the view of rigid encapsulation discussed in Section 1.2.
The computation will suspend, i.e., no rule is applicable until the variable is bound by
another (concurrent) constraint. However, treating concurrency is beyond the scope of this
paper but discussed in [1].
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Furthermore, in order to apply rule guess, there has to be more than one pattern in
the case expression. If there is only a single pattern, there is no need to perform a non-
deterministic branching. Therefore, the corresponding rule guess-1 is quite simple and more
similar to select than to guess:

Rule Heaps Control Stacks
guess-1 γ · Γ [x �→ x] x f{c(xn) → e} · S

�→ γ · Γ [x �→ c(yn), yn �→ yn] ρ(e) S

where yn are fresh and ρ = {xn �→ yn}

The next three rules deal with computations that have been finished, both at top level or
for an encapsulated search. If the computation was successful (i.e. the remaining stack is
empty), the result has to be wrapped with the corresponding constructor Val . Analogously
to or, the context of the computation has to be stored for future reference.

Rule Heaps Control Stacks
rescons Γ · γ · Γ ′ c(xn) (S)

�→ Γ
[
z �→ c(zn), zn �→ search(Γ ′, xn, ε)

]
· γ Val(z) S

resvar Γ · γ · Γ ′[x �→ x] x (S)
�→ Γ [z �→ z] · γ Val(z) S

where z, zn are fresh

Failing computations are encoded by the constructor Fail . Obviously, the evaluation context
of such a computation can be thrown away.

Rule Heaps Control Stacks
fail γ · Γ c(xn) (f){pk → ek} · S · (S′)
�→ γ Fail S′

where pi �= c(· · ·) for i = 1, . . . , k

The purpose of the last rule of the operational semantics is simply to ensure that an encap-
sulated search can only be started at top level (a configuration with exactly two heaps).

Rule Heaps Control Stacks
getsearchtree Γ · Γ ′ getSearchTree(e) S

�→ Γ · Γ ′ search([ ], e, ε) S

3 A Complex Example

The following program demonstrates the effect of using the function getSearchTree twice
which is in some sense nested because of lazy evaluation. First, the program computes
the search tree resulting from coin. This tree is then used in the function getAny to select
all values in this tree non-deterministically. This non-deterministic computation is again
encapsulated by getSearchTree and both encapsulated results are compared.

main = let c = coin, coin = 0 or 1

cST = getSearchTree c,

any = getAny cST, x == y = let a = prim_Eq(x,y),
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cST’ = getSearchTree any b = hnf(y,a)

in cST == cST’ in hnf(x,b)

getAny t = case t of { getAnyL ts = case ts of {
Or ts -> getAnyL ts; (x:xs) ->

Val v -> v} (getAny x) or (getAnyL xs)}

To compare the two results, we use the (predefined) function “==”. It evaluates its arguments
to head normal form (hnf) and compares them by prim Eq afterwards. The function prim Eq

is a primitive function which, for identical top-level constructors, compares their arguments
recursively by means of (==) and sequential conjunction (&&). See [1] for a more detailed
description of the integration of primitive functions into the semantics. Appendix A presents
the semantics for this example.

The computation yields the value Val False. This (perhaps) surprising result is produced
due to different searches performed for the computations of cST and cST’. A full evaluation of
the search tree would yield cST = Or [Val 0, Val 1]. Applying the function any to this value
and encapsulating it again by getSearchTree, we obtain cST’ = Or [Val 0,Or [Val 1,Fail]].
The presented program compares the structure of the search tree exactly. However, both
compute the same values and a comparison of getAllValuesD or getAllValuesB applied to cST

and cST’ would succeed.

4 Conclusion

In this paper we presented a new approach to the encapsulation of non-determinism in
lazy functional logic languages. The initial discussion showed that existing approaches are
inadequate. A good approach should strongly encapsulate sharing, omit nested usage of
encapsulation, rigidly encapsulate logical variables and generate the encapsulation of the
search lazily. Our solution is the lazy creation of a search tree, representing the search
space of the computation. By means of this lazy data structure, it is possible to define
different search strategies on the level of the functional logic language. The basic idea in the
construction of the search tree is adapted from laziness in a standard operational semantics
for functional logic languages with sharing and attracts to be a consequent extension of this
semantics to the level of meta-programming.

The search tree presented in this paper covers only the kind of fairness one can accom-
plish by the operator try [10]. However, this is not a principal limitation of the approach.
Extending search trees by
data SearchTree a = Val a | Fail | Or [SearchTree a] | Eval (SearchTree a)

and yielding a value of type Eval in every fun rule, we would cover fair search in the
stronger sense. However, the practicability of this extension can only be estimated by an
implementation of the approach.

For future work, we want to prove that the presented semantics and the semantics
without encapsulation [2] compute comparable results for non-deterministic computations.
Furthermore, we have to show that our approach implements strong and rigid encapsulation
for shared expressions and logical variables, respectively, and that the proposed properties of
these encapsulation strategies hold. To estimate the practical usability of our approach, we
plan to integrate this semantics into our Flat Curry interpreter based on [1,2]. In a second
step, we want to use the presented ideas for a new implementation of Curry. In contrast to
PAKCS, which translates to Prolog, we want to use Haskell [15] as target language. This
implementation should then cover all discussed aspects.
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A A Complex Example

The example program of Section 3 has the following operational semantics:
[ ] · [ ] main (ε)

�→ [ ] · [ ] let c=coin,...in cST==cST’ (ε)
�→ [ ] · Γ1 = [c �→ coin,

cST �→ getSearchTree c,
any �→ getAny cST,
cST’ �→ getSearchTree any]

cST == cST’ (ε)

�→ [ ] · Γ1 let a=... in hnf(cST,b) (ε)
�→ [ ] · Γ2 = Γ1[a �→ prim Eq(cST,cST’),

b �→ hnf(cST’,a)]
hnf(cST,b) (ε)
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�→ [ ] · Γ2 cST hnf(b)(ε)
�→ [ ] · Γ2 getSearchTree(c) cST hnf(b)(ε)
�→ [ ] · Γ2 search([],c,ε) cST hnf(b)(ε)
�→ [ ] · Γ2 · [ ] c (cST hnf(b)(ε))
�→ [ ] · Γ2 · [ ] coin c(cST hnf(b)(ε))
�→ [ ] · Γ2 · [ ] 0 or 1 c(cST hnf(b)(ε))
�→ Γ3 = [vs �→ z1:vs’, vs’ �→ z2:vs’’,

vs’’ �→ [], z1 �→ search([ ],0,c),
z2 �→ search([ ],1,c)] · Γ2

Or vs cST hnf(b)(ε)

�→ Γ3 · Γ4 = Γ2[cST �→ Or vs] Or vs hnf(b)(ε)
�→ Γ3 · Γ4 b (ε)
�→ Γ3 · Γ4 hnf(cST’,a) (ε)
�→ Γ3 · Γ4 cST’ hnf(a)(ε)
�→ Γ3 · Γ4 getSearchTree any S1 = cST’ hnf(a)(ε)
�→ Γ3 · Γ4 search([ ],any,ε) S1

�→ Γ3 · Γ4 · [ ] any (S1)
�→ Γ3 · Γ4 · [ ] getAny cST any(S1)
�→ Γ3 · Γ4 · [ ] case cST of... any(S1)
�→ Γ3 · Γ4 · [ ] cST {Or ts->...}any(S1)
�→ Γ3 · Γ4 · [ ] Or vs {Or ts->...}any(S1)
�→ Γ3 · Γ4 · [ ] getAnyL vs any(S1)
�→ Γ3 · Γ4 · [ ] case vs of ... any(S1)
�→ Γ3 · Γ4 · [ ] vs {(x:xs)->...}any(S1)
�→ Γ3 · Γ4 · [ ] z1:vs’ {(x:xs)->...}any(S1)
�→ Γ3 · Γ4 · [ ] (getAny z1) or (getAnyL vs’) any(S1)
�→ Γ5 = Γ3[vs1 �→ [z3,z4]

z3 �→ search([ ],getAny z1,any)

z4 �→ search([ ],getAnyL vs’,any)] · Γ4

Or vs1 S1

�→ Γ5 · Γ6 = Γ4[cST’ �→ Or vs1] Or vs1 hnf(a)(ε)
�→ Γ5 · Γ6 a (ε)
�→ Γ5 · Γ6 prim Eq(cST,cST’) a(ε)
�→ Γ5 · Γ6 vs == vs1 a(ε)
�→ Γ5 · Γ7 = Γ6[b1 �→ z1==z3, b2 �→ z2==z4] b1 && b2 a(ε)
�→ Γ5 · Γ7 case b1 of . . . a(ε)
�→ Γ5 · Γ7 b1 {True -> b2; False -> Fale}a(ε)
�→ Γ5 · Γ7 z1==z3 {...}a(ε)

�→ Γ5 · Γ7
let e1=prim Eq(z1,z3),e2=hnf(z3,e1)

in hnf(z1,e2)
{...}a(ε)

�→ Γ5 · Γ8 = Γ7[e1 �→ prim Eq(z1,z3),
e2 �→ hnf(z3,e1)]

hnf(z1,e2) {...}a(ε)

�→ Γ5 · Γ8 z1 hnf(e2){...}a(ε)
�→ Γ5 · Γ8 search([ ],0,c) z1 hnf(e2){...}a(ε)
�→ Γ5 · Γ8 · [ ] 0 c(z1 hnf(e2){...}a(ε))
�→ Γ5 · Γ8 · [c �→ 0] 0 (z1 hnf(e2){...}a(ε))
�→ Γ9 = Γ5[v1 �→ 0] · Γ8 Val v1 z1 hnf(e2){...}a(ε)
�→ Γ9 · Γ10 = Γ8[z1 �→ Val v1] Val v1 hnf(e2){...}a(ε)
�→ Γ9 · Γ10 e2 {...}a(ε)
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�→ Γ9 · Γ10 hnf(z3,e1) {...}a(ε)
�→ Γ9 · Γ10 z3 hnf(e1){...}a(ε)
�→ Γ9 · Γ10 search([ ],getAny z1,any) S2 = z3 hnf(e1){...}a(ε)
�→ Γ9 · Γ10 · [ ] getAny z1 any(S2)
�→ Γ9 · Γ10 · [ ] case z1 of... any(S2)
�→ Γ9 · Γ10 · [ ] z1 {Or ts -> ...}any(S2)
�→ Γ9 · Γ10 · [ ] Val v1 {Or ts -> ...}any(S2)
�→ Γ9 · Γ10 · [ ] v1 any(S2)
�→ Γ9 · Γ10 · [ ] 0 any(S2)
�→ Γ9 · Γ10 · [any �→ 0] 0 z1(S2)
�→ Γ9 · Γ10 · [any �→ 0, z1 �→ 0] 0 (S2)
�→ Γ11 = Γ9[v2 �→ 0] · Γ10 Val v2 S2

�→ Γ11 · Γ12 = Γ10[z3 �→ Val v2] Val v2 hnf(e1){...}a(ε)
�→ Γ11 · Γ12 e1 hnf(e1){...}a(ε)
�→ Γ11 · Γ12 prim Eq(z1,z3) {...}a(ε)
�→ Γ11 · Γ12 prim Eq(v1,v2) {...}a(ε)
�→ Γ11 · Γ12 True {...}a(ε)
�→ Γ11 · Γ12 b2 a(ε)
�→ Γ11 · Γ12 z2==z4 b2 a(ε)

�→ Γ11 · Γ12
let e3=prim Eq(z2,z4),e4=hnf(z4,e3) in

hnf(z2,e4)
b2 a(ε)

�→ Γ11 · Γ13 = Γ12[e3 �→ prim Eq(z2,z4),
e4 �→ hnf(z4,e3)]

hnf(z2,e4) b2 a(ε)

�→ Γ11 · Γ13 z2 hnf(e4)b2 a(ε)
�→ Γ11 · Γ13 search([ ],1,c) z2 hnf(e4)b2 a(ε)
�→ Γ11 · Γ13 · [ ] 1 c(z2 hnf(e4)b2 a(ε))
�→∗Γ11 · Γ13 · [c �→ 1] 1 (z2 hnf(e4)b2 a(ε))
�→ Γ14 = Γ11[v3 �→ 1] · Γ13 Val v3 z2 hnf(e4)b2 a(ε)
�→ Γ14 · Γ15 = Γ13[z2 �→ Val v3] Val v3 hnf(e4)b2 a(ε)
�→ Γ14 · Γ15 e4 b2 a(ε)
�→ Γ14 · Γ15 hnf(z4,e3) e4 b2 a(ε)
�→ Γ14 · Γ15 z4 hnf(e3)e4 b2 a(ε)
�→ Γ14 · Γ15 search([ ],getAnyL vs’,any) S3 = z4 hnf(e3)e4 b2 a(ε)
�→ Γ14 · Γ15 · [ ] getAnyL vs’ any(S3)
�→ Γ14 · Γ15 · [ ] case vs’ of . . . any(S3)
�→ Γ14 · Γ15 · [ ] vs’ {(x:xs)->...}any(S3)
�→ Γ14 · Γ15 · [ ] z2:vs’’ {(x:xs)->...}any(S3)
�→ Γ14 · Γ15 · [ ] (getAny z2) or (getAnyL vs’’) any(S3)
�→ Γ16 · Γ15 Or vs2 S3

where Γ16 = Γ14[vs2 �→ [z5,z6], z5 �→ search([ ],getAny z2,any)

z5 �→ search([ ],getAnyL vs’’,any)]
�→ Γ16 · Γ17 = Γ15[z4 �→ Or vs2] Or vs2 hnf(e3)e4 b2 a(ε)
�→ Γ16 · Γ17 e3 e4 b2 a(ε)
�→ Γ16 · Γ17 prim Eq(z2,z4) e4 b2 a(ε)
�→ Γ16 · Γ17 False e4 b2 a(ε)
�→ Γ16 · Γ17[e4,b2,a �→ False] False (ε)
�→ Γ16[v4 �→ False] Val v4 ε
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Abstract The multi-paradigm language Curry seamlessly integrates concepts from functional programming, logic pro-
gramming, and concurrent constraint solving. One of its distinctive features is the encapsulated search that allows the
programmer to control non-deterministic computation steps in a program. This makes it possible to use other strategies
for computing the solutions of a goal than the global backtracking search which is usually employed by implementations
of logic programming languages.

The encapsulated search requires an implementation to maintain multiple bindings for a single variable at the same
time. Different solutions to this problem have been proposed in the context of parallel logic programming, including
copying, binding arrays, and extended trailing schemes. In this paper we compare two implementations of the Münster
Curry compiler using copying and trailing, respectively. Preliminary experimental data for both implementations suggest
that trailing is preferable to copying.

1 Introduction

The multi-paradigm language Curry [Han03] integrates features from functional languages, logic
languages, and concurrent constraint programming. Curry supports the two most important opera-
tional principles developed for the evaluation of functional logic languages, namely narrowing and
residuation. A distinctive feature of Curry is the encapsulated search [HS98] that serves two differ-
ent purposes. First, it allows the programmer to constrain non-deterministic search in programs that
interact with the external world without breaking Curry’s declarative approach to I/O, and, second,
it makes it possible to implement and use search strategies other than the usual depth-first search
for computing the solutions of a goal without having to change the goal itself.

With search strategies implemented using the encapsulated search, it becomes possible to ex-
plore different parts of a goal’s search tree concurrently. This is useful, for instance, in order to
avoid non-termination if the search tree contains infinite paths. In addition, search strategies can
be used for pruning the search tree, e.g., with previously computed solutions. For an implementa-
tion this means that different instantiations of the variables in the goal can exist at the same time.
This problem has been studied, among others, in the context of or-parallel implementations of logic
languages. Such implementations explore different parts of the search tree concurrently in order to
speed up the search for solutions when don’t know non-determinism is involved.

Essentially, three different solutions have been developed for maintaining multiple bindings:
Extended trailing schemes, binding arrays, and copying. The encapsulated search in Curry is more
general than an or-parallel evaluation. Nevertheless, these techniques are applicable to it as well.

In this paper we compare copying and trailing implementations of the encapsulated search.
The novel aspect of our work is that the comparison is based on two implementations of the same
abstract machine using the same compiler front-end. In addition, most other comparisons are based
only on an or-parallel evaluation, with the exception of [Sch99]. However, that paper compares
different implementations and tries only to show the general feasibility of a copying approach.
Thus, we think to be the first to perform a fair comparison between both approaches. We will also
consider implementation details, in particular related to memory management, that are entailed by
the choice of the algorithm. Measurements comparing both implementations suggest that the trailing
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append [] ys = ys

append (x:xs) ys = x : append xs ys

last xs | append ys [y] =:= xs = y where y,ys free

Figure 1. A sample Curry program

approach is in general the better choice for an implementation, even though copying leads to a more
streamlined implementation and runs faster on purely functional code.

The rest of the paper is organized as follows. In the next section we will briefly introduce the
language Curry and the encapsulated search. In section 3, we will discuss the different algorithms
for managing multiple bindings in general. The next sections introduce our abstract machine and
outline the differences between the trailing and copying implementations of the machine. Sections 6
and 7 present experimental data for both implementations and related work, and the final section
concludes.

2 The Encapsulated Search in Curry

Curry combines lazy functional programming with the capabilities of logic programming languages
and concurrent constraint solving. Curry’s operational model is based on an optimal reduction strat-
egy [Ant97] that integrates narrowing and residuation, the two most important operational principles
developed for the implementation of functional logic languages. Narrowing [Red85] combines uni-
fication and reduction, allowing the non-deterministic instantiation of logic variables in expressions,
whereas the residuation strategy [ALN87] delays the evaluation of functions until their arguments
have been sufficiently instantiated. We will not consider concurrent evaluation and residuation in
the rest of this paper.

Curry uses the same syntax and supports most features of Haskell [Pey03]. In addition, programs
in Curry can use logic variables, which allow representing data with partial information and implicit
search for solutions. The kernel of Curry includes only equality constraints, but implementations can
provide constraint solving capabilities for other domains as well. Constraint expressions in Curry
have type Success and can be used in guards of function definitions where they are checked for
satisfiability. The primitive constraint functions are the trivially satisfied constraint success, the
(concurrent) conjunction of two constraints (&), and the equality constraint (=:=). An equality
constraint e1 =:= e2 between two expressions e1 and e2 is satisfied if both expressions can be
reduced to the same finite data term. During the evaluation of both arguments, unbound variables
are instantiated as necessary.

Predicates in the sense of logic programming are functions with result type Success. As there
is no syntactical distinction between predicates and other functions, higher order functions like map
can be applied to them as well.

Fig. 1 shows a simple Curry program defining two functions append and last that implement
list concatenation and return the last element of a list, respectively. The definition of last uses an
implicit search in its guard expression append ys [y] =:= xs. Logic variables have to be
introduced explicitly with a declaration of the form x1, . . . , xn free. This is necessary in order to
control the scope of variables in the context of an encapsulated search, but also helps to avoid some
trivial programming errors.

A distinctive feature of Curry is the encapsulated search [HS98] that allows the programmer to
provide optimal search strategies for the goals in the program without having to change the goals
themselves. In addition, it makes it possible to use non-deterministic search in the context of Curry’s
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monadic I/O system, which enforces a single threaded interaction with the external world and thus
provides a declarative approach to input and output.

The basic primitive of the encapsulated search is the function try :: (a → Success)
→ [a → Success]. The argument of try is the predicate whose solution is searched. For
clarity, we will call this function a search goal henceforth. When an application try g is evaluated,
the search goal g is applied to a fresh variable x and this application is reduced until one of the
following three conditions is met: The reduction of the expression g x fails, the reduction succeeds,
or the reduction can be continued only by performing a non-deterministic computation step. In the
first case try returns an empty list, and in the second case it returns a list [g′] where g′ is the
solved form of the search goal g. The solved form of g is a function that is equivalent to the λ-
abstraction λx→ x=:=t where t is the solution of g. If a non-deterministic computation step must
be performed, the reduction of the search goal is suspended and try returns a list with one function
for each possible continuation of the computation after the non-deterministic step. For instance,
the evaluation of try (λy → let ys free in append ys [y] =:= [1,2]) yields
a list equivalent to

[(λy → let ys free in
ys =:= [] & append [] [y] =:= [1,2]),

(λy → let ys,y’,ys’ free in
ys =:= (y’:ys’) & append (y’:ys’) [y] =:= [1,2])]

On top of the primitive search operator, search strategies for a goal can be implemented. For
instance, a breadth-first search strategy can be implemented as follows.

bfs g = search [g]
where search [] = []

search (g:gs) = collect (try g) gs
collect [] gs’ = search gs’
collect [g] gs’ = g : search gs’
collect (g1:g2:gs) gs’ = search (gs’++g1:g2:gs)

The local function search processes a list of goals that are not yet solved. As long as this list is
not empty, search takes the first goal from the list and applies try to it. The result returned by
try is then used by the collect function in order to decide how the search is continued. Each of
the three equations defining collect corresponds to one of the conditions when the encapsulated
search returns control to the caller. If the goal fails (first equation), search continues with the next
goal. If the goal succeeds (second equation), its solved form is returned and search is applied to
the remaining goals. If a non-deterministic computation step must be performed (third equation), all
possible continuations are appended to the list of unsolved goals, and search continues with the
first goal from the combined list. If the continuations were added to the front of the list of unsolved
goals, one would obtain an implementation of depth-first search. Conforming to the overall lazy
evaluation mechanism employed by Curry, search goals are evaluated only as far as needed by the
program. Thus, by composing bfs with the function head that returns the head of a list one can
define a search strategy that computes only one solution with a breadth-first search:

one g = head (bfs g)

Due to lazy evaluation, one can be applied to search goals with an infinite search tree. For instance,
it could be used for finding a path between two nodes in a cyclic graph without having to maintain
a set of nodes that have been traversed already. In addition, using one for this kind of problem has
the appealing property that it returns the shortest path between the two nodes.
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Search strategies are not limited to simple traversals of the search tree. The functions returned
from the encapsulated search can be used like any other function defined in the program. For exam-
ple it is possible to set up additional constraints that cut off parts of the search tree using previously
computed solutions. It is even possible to continue the evaluation of the goals returned by try on
the top-level.

3 Implementation Techniques for Multiple Bindings

Fig. 2 displays the search tree of the search goal λy → let ys free in append ys [y]
=:= [1,2]. The marked nodes correspond to the computation steps where the encapsulated
search returns. The edges are labeled with the variable instantiations performed by the computa-
tion. In an implementation that traverses this search tree sequentially in depth-first order, only one

[y] =:= [1,2]

fail

append ys [y] =:= [1,2]

ys=[]

append ys' [y] =:= [2]

ys=y':ys'

ys'=[]

y'':append ys'' [y] =:= [2]

[y] =:= []

ys''=[]

Success

[y] =:= [2]

y=2

ys'=y'':ys''

y':append ys' [y] =:= [1,2]

y'=1

append ys'' [y] =:= []

y''=2

y''':append ys''' [y] =:= []

fail fail

ys''=y''':ys'''

Figure 2. Search tree for λy → let ys free in append ys [y] =:= [1,2]

set of variable bindings is active at each time. This is no longer the case for other strategies that
can be implemented with the encapsulated search. In this case, search goals corresponding to dif-
ferent nodes in the search tree can exist at the same time in the program and therefore different sets
of bindings for the search goal may exist simultaneously. In order to distinguish the different sets,
we assign a unique identifier to each of them, which we will call a search space identifier in the
following. The identified set of bindings will be called a search space.

The problem of maintaining multiple bindings for a variable simultaneously has been studied in
the context of (or-)parallel implementations of logic languages, but also for concurrent constraint
solving and for implementing first-class stores [JD98]. Implementation techniques that have been
developed include copying [GHPS94], extended trailing schemes[MSS95], binding arrays [GSP95],
and recomputation. All of these techniques can be used for the implementation of the encapsulated
search as well.
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3.1 Copying

In an implementation that uses copying, the representation of the search goal in memory is dupli-
cated at a non-deterministic computation step. Thus, independent copies of the search goal exist
for each search space that is explored by the program. Therefore, bindings performed in one part
of the search tree do not interfere with those performed by other solutions. In the context of Curry
this means that each of the search goals that are returned by try can be executed as in a purely
functional program. In particular, it is trivial to switch between different nodes in the search tree. On
the other hand, the obvious disadvantage of copying is that it has to create a new copy of the whole
search goal when a non-deterministic computation step is performed. This not only does increase
the memory usage of the program, but also requires computation time which is proportional to the
size of the search goal.

The amount of copying can be reduced by various techniques. First of all, the Münster Curry
compiler creates copies of a search goal lazily, i.e., only when one of the search continuations is
actually evaluated. Furthermore, constant data can be shared among the different solutions. For
instance, in the sample search goal from Fig. 2, the list [1,2] can be shared between all solutions
and need not be copied. While this can be implemented trivially for constants which are manifest in
the source code, it is more difficult to share ground data terms which are results of lazy applications.

3.2 Trailing

The trail stack used by backtracking implementations of logic and functional logic languages can
be regarded as an efficient means to store only the difference between two neighboring nodes in
the search tree. Obviously, for a depth-first traversal of the search tree it is sufficient to save only
the information that is necessary in order to recover the bindings that were in effect at a particular
node in the search tree after its subtree has been traversed. In addition, this information can be
discarded immediately after restoring the bindings. For other search strategies this information can
no longer be discarded and therefore a simple stack is no longer sufficient. Furthermore, the trail has
to be complemented by an inverse trail1 holding the bindings that must be restored when the node
is visited again from its parent. For instance, at the node append ys’ [y] =:= [2] in the
center of Fig. 2, the trail contains the information that the variables y’ and ys have to be unbound
when returning to the root of the tree, whereas the inverse trail contains the information that ys has
to be bound to the term y’:ys’, and y’ to the number 1 when entering the node again.

When switching between two nodes in the search tree, the program has to undo the bindings
performed on the path from the active node in the tree up to the closest common ancestor with the
target node, and then restore the bindings recorded on the inverse trails on the path from the ancestor
to the target node. Obviously, the amount of work to be performed for this switch is proportional
to the distance of the nodes in the search tree and thus limited only by the tree’s size. In addition,
the trailing implementation adds a small but constant overhead to the binding of a variable for
recording the update on the trail. It is possible to avoid trailing of updates when the old state of the
computation cannot be observed by the program. For instance, the unbound state of the variable y’
in the example cannot be observed in any of the search goals that are returned from a traversal of
the search tree with the encapsulated search and therefore its binding need not be saved. If memory
is allocated in ascending order, it is easy to check whether trailing is necessary with at most two
address comparisons.

1 The inverse trail is called a script in AMOZ[MSS95], the abstract machine for Oz.
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Another problem of trailing is that the trails accumulate bindings for nodes which are no longer
actively used by the computation. For instance, for the goal from Fig.2, the trails will contain bind-
ings for the auxiliary variables ys and ys’. Thus, their bindings are changed even when entering
or leaving search spaces in which these variables are not used, e.g., the search space returned for
the node append ys’’ [y] =:= []. Techniques for removing such redundant trail entries are
known for a depth-first traversal using a single trail stack, but these are not directly applicable to the
distributed trail segments used by an implementation of the encapsulated search.

3.3 Binding Arrays

Binding arrays were introduced for the or-parallel execution of logic programs on shared memory
multi-processor architectures. Instead of saving the binding of a variable directly in the correspond-
ing node, a variable is now associated with a unique key. Each processor maintains a separate
memory region, the binding array, where variable bindings are stored and the variables’ keys are
used as indices into the binding arrays. This technique can be used for implementing the encapsu-
lated search as well. As for a copying implementation, switching between two nodes of the tree can
be implemented as a constant time operation; only the pointer to the current binding array has to
be changed. When a computation is split, the program must only copy the current binding array.
While the size of the binding array is potentially unbounded, it will be smaller than the whole graph
and therefore copying it will require less time than in a copying the graph. On the downside, every
reference to a variable’s binding is now penalized with a small but constant overhead due to the
indirect access.

Binding arrays can be regarded as a two dimensional matrix that is indexed by variable keys
and processor numbers, using the processor number as major index. Organizing this matrix in an-
other way, namely by using the variable keys as major index, leads to yet another implementation
technique for multiple bindings. In this scheme, which we call the binding tables approach, every
variable is associated with an array of values that is indexed by search space identifiers. When a
computation is split, each binding table has to be extended by one slot for the new search space. In
order to avoid recording all variables globally, the new element is added to a variable’s binding table
only when the program actually looks up the binding of the variable. For such an implementation
creating new search spaces and switching between two search spaces are now constant time oper-
ations. However, determining the value of a variable is no longer a constant time operation. When
a variable is used for the first time in a search space, the program must propagate the binding from
the parent of the current space into the new slot. As the variable might not have been used in the
parent space, this propagation may continue up to root of the search space tree.

3.4 Summary

None of the solutions presented so far is optimal in the sense that all of three basic operations
search space creation, switching between two spaces, and determining the binding of a variable are
performed in constant time. In fact, [GJ93] have proved that no implementation mechanism for the
or-parallel execution of logic programs exists with the property that all of the operations creating a
new node in the tree, switching between two nodes in the tree, and accessing or updating a variable
can be executed in constant time. A fortiori, this result also applies to the implementation of the
encapsulated search. Therefore, one has to identify the “usual” needs of the implementation and
choose the technique which is best suited to the average tasks being executed. In performing this
decision one should also take into account the effects that are entailed on the implementation by
each of the approaches, including code generation and memory management.
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4 The Curry Abstract Machine

The Münster Curry compiler2 is an implementation of Curry that generates efficient native code for
the target machine using a translation into C code. It is based on an abstract machine that is similar
to the JUMP machine [CL97], an abstract machine developed for the execution of functional, logic,
and functional logic programs.

Fig. 3 shows the syntax of abstract machine code programs. Due to lack of space we cannot
present the operational semantics of the abstract machine in this paper. Every abstract machine code

p ::= d1 ; . . . ; dn programs
d ::= data t x1 . . . xk = cstrs declarations

| f x1 . . . xk = st
cstrs ::= cd1 | . . . | cdn

cd ::= c ty1 . . . tyk constructor declarations
ty ::= x types

| t ty1 . . . tyk

| ty1 → ty2

st ::= return x statements
| enter x
| f x1 . . . xk

| x ← st1; st2
| let { x1 = e1 ; . . . ; xn = en } in st
| switch (rigid | flex) x of { a1 | . . . | an }
| choices { st1 | . . . | stn }

e ::= x expressions
| data c x1 . . . xk

| partial f x1 . . . xn

| lazy f x1 . . . xk

| lvar
a ::= data c x1 . . . xk → st case alternatives
x ∈ Var, c ∈ Con, f ∈ Fun, t ∈ Type

Figure 3. Syntax of Abstract Machine Code Programs

function returns (a pointer to) a node that is in head normal form. New nodes are introduced by let-
statements. A data expression creates a new node representing a data constructor application. The
number of arguments must match the arity of the data constructor. Similarly, a lazy expression
creates a node representing an unevaluated function application. Again, the number of arguments
must match the arity of the function. Nodes representing partial applications are created with a
partial expression, and fresh logic variables are created with lvar expressions.

Abstract machine code functions always return nodes which are in head normal form. The
return statement is therefore used only for returning a node that is known to be in head normal
form, i.e., either a data constructor application, a partial application, or a logic variable. The enter
statement performs a jump to the code that evaluates the node bound to variable x to head normal
form. Statement sequencing is implemented with the statement x ← st1; st2. This statement first
executes the statement st1 and binds the variable x to the node that is returned. The statement st2 is
then executed in the extended environment.

The switch statement is used for implementing pattern matching; it scrutinizes the node bound
to x – which must be in head normal form – and selects the matching alternative. If x is bound to an

2 Available at http://danae.uni-muenster.de/˜lux/curry
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uninstantiated variable, evaluation of the current thread is either suspended or the variable is non-
deterministically instantiated, depending on whether the switch is rigid or flexible. Finally,
the choices statement is used for the implementation of non-deterministic alternatives.

As an example, Fig. 4 shows the abstract machine code for the function append from Fig.1.

append a1 ys =

a2 ← enter a1;

switch flex a2 of {
[] → enter ys

| (:) x xs →
let { a3 = lazy append xs ys; a4 = data (:) x a3 } in

return a4

}

Figure 4. Abstract Machine Code for append

5 Implementation Issues

At present, we have implemented two versions of the abstract machine which use trailing and copy-
ing, respectively, in order to implement the encapsulated search. In both implementations, nodes are
represented by arrays in the heap, where the first element of the array is a pointer to a record that
contains descriptive information about the node. This information includes the size of the node, a
tag number which is used for distinguishing the data constructors in a data type, and the entry-point
of the code that evaluates the node to head normal form. This entry-point is used by the enter
statement of the abstract machine code. Note that this statement is used only when the compiler
cannot prove that the node is in head normal form, i.e., usually only for arguments passed to a
function or nodes that are returned from a function call. Fig. 5a shows the representation of the
expression append [1] [2] in the heap where we represent the tag pointer by the name of the
function or data constructor, respectively.

When a lazy application has been evaluated, the node is overwritten with an indirection to
the result. This is shown in Fig. 5b for the evaluation of the append application. The program
could overwrite the application node directly when the result is not a variable node and fits into
the application node. This optimization has not been implemented at present. However, the garbage
collector can remove such indirection pointers as will be explained below.

In the trailing implementation, the update of the application node may have to be recorded on
the trail in order to be able to restore the unevaluated state of the application if it can be observed by
the program. This makes the flat representation of applications from Fig.5a an unfortunate choice,
because we either have to overwrite all arguments of the node – and therefore save them to the trail
– or risk a space leak in the program. In order to circumvent this problem, the trailing implemen-
tation uses a different representation of lazy applications which is shown in Fig.5c. For every lazy
application, two nodes are allocated in the heap. The first is a fixed size node that comprises only
the descriptor, and a pointer to an argument vector. The argument vector has its own tag descriptor
in order to facilitate garbage collection. Incidentally, the argument vector could be used for repre-
senting the application directly when the compiler can prove that the result of the application is not
shared (cf. [LGH+93] for a corresponding analysis). With this representation of lazy applications,
only the argument pointer has to be saved on the trail. However, it requires an additional cell to
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Copying Implementation

(:) 1 []

(:) 2 []

append

(:) 1 []

(:) 2 []

INDIR

(:) 1

a) Before evaluation b) After evaluation

Trailing implementation

ARGS

(:) 1 []

(:) 2 []

append

(:) 1

(:) 1 []

(:) 2 []

INDIR

ARGS

c) Before evaluation d) After evaluation

Figure 5. Representation of append [1] [2]

be allocated for each lazy application. Note that in a lazy language, without further analysis every
application occurring in an argument position is a lazy application that can potentially be shared.

In order to avoid dereferencing indirection pointers that are introduced when a lazy application
node is overwritten and also when a variable is bound, implementations of functional and logic
languages replace pointers to indirection nodes by pointers to the referenced nodes during garbage
collection.3 There is no problem with implementing this optimization in the copying based imple-
mentation. However, when trailing is used, this optimization cannot be used. Consider that a garbage
collection occurs in the program fragment

coin = 0
coin = 1
f x | x =:= y = ... (x + y) ... where y free
main = f coin

after the guard of f has been evaluated, but before the value of the addition x + y is computed.
If the garbage collector replaces the references to indirection nodes resulting from the evaluation of
coin and binding the variable y with the particular result of coin, the arguments of the addition
become fixed and are not changed when the program starts exploring the search tree for the other
solution of coin. Therefore, the trailing implementation does not short-circuit indirect references
during garbage collection.

6 Experimental Results

The discussion in the previous section shows that the copying technique allows for a more stream-
lined implementation of the abstract machine. On the other hand, copying necessarily adds an over-
head to the implementation of search strategies due to the copying of the graph corresponding to the

3 This technique is known as variable shunting [SC91] in Prolog implementations.
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search goal. This leaves the question whether the optimizations outweigh this overhead for practi-
cal problems. In order to give an answer to this question, we have run some benchmarks for both
implementations of the abstract machine.

The results for the benchmarks are shown in Fig. 6. Execution and garbage collection times
are measured in seconds, allocation in megabytes. The execution times are averaged over five runs
of each benchmark problem. The last two columns show the ratios of execution time and memory
allocation for the copying implementation with respect to the trailing implementation. The statistics
were collected with the built-in facilities of the Münster Curry compiler. All benchmarks were
executed on an Apple PowerBook equipped with a 550MHz PowerPC processor and 256 MBytes
of main memory under Mac OS X 10.2.8.

Copying Trailing Copy/Trail
user gc alloc user gc alloc user alloc

best1st F 0.35 0.01 6 0.41 0.01 8 0.86 0.71
best1st D 0.58 0.01 10 0.60 0.01 12 0.97 0.84
boyer F 1.10 0.02 22 1.15 0.04 27 0.95 0.81
exp3 8 F 5.24 0.07 185 5.79 0.09 246 0.91 0.75
exp3 8 L 6.62 0.13 185 6.92 0.16 185 0.96 1.00
flparse 1 1.85 0.15 72 0.27 0.03 24 6.89 2.99
money F 0.82 0.00 22 0.80 0.00 32 1.02 0.71
money D 3.75 0.00 113 0.85 0.00 27 4.42 4.14
fib F 5.59 0.00 72 4.89 0.00 113 1.14 0.64
fib L 12.12 0.00 277 10.19 0.00 349 1.19 0.79
queens F 1.91 0.00 50 2.18 0.00 71 0.88 0.70
queens D 1.60 0.00 41 1.07 0.00 36 1.49 1.13
queens B 0.95 0.03 36 0.98 0.03 44 0.97 0.81
rev F 2.00 0.02 84 2.20 0.01 108 0.91 0.78
rev L 5.47 0.00 133 5.65 0.01 133 0.97 1.00
sieve F 0.81 0.00 12 0.87 0.00 17 0.92 0.73

F: functional
L: logical without search
D: depth-first search for all solutions
B: breadth-first search for all solutions
1: depth-first search for only one solution

Figure 6. Benchmark results

The best1st benchmark computes a solution for the 8-puzzle with 15 steps, boyer is the well-
known Boyer benchmark, exp3 8 computes the eighth power of 3 on natural numbers. The flparse
benchmark uses functional logic parsing combinators [CL99] in order to implement a simple cal-
culator. This calculator is then applied to the string 1*. . .*1 containing 100 1s. Money computes
the number of solutions of the SEND+MORE=MONEY puzzle, fib computes the 30th Fibonacci
number using the naive algorithm, queens computes the number of solutions for the 8-queens prob-
lem (actually, the breadth-first solution uses only 7 queens), rev uses the naive reverse algorithm to
reverse a list of 250 integers 100 times, and sieve computes the first 750 prime numbers using the
classical Sieve of Erathosthenes. For some of the benchmarks we have made use of the possibility
to implement a problem in different paradigms. This is indicated by the letter to the right of each
benchmark.

In the set of benchmarks presented, the copying implementation is up to 10% faster in the case of
purely functional code and a little bit faster for code written in a logic style, but without search. In the
case of the n-queens benchmark implemented with a breadth-first search, the runtime does not differ

100



very much. However, for the benchmarks using depth-first search the copying implementation is
significantly slower than the trailing implementation (up to a factor of nearly 7). The only exception
is the best1st benchmark, where performance of both versions is nearly identical. This is due to the
fact that in this benchmark the encapsulated search is used only for computing a list of possible
moves at each position and therefore no deep search is involved in the problem.

As it could be expected, the copying implementation performs quite poorly as soon as a deep
search is involved because of the large amount of copying that has to be performed. On the other
hand, code without search performs slightly better for the copying implementation, which can be
attributed to the more compact representation of lazy application nodes. While it is too early to
draw final conclusions from this small set of benchmarks, we take the results as an indication that
a trailing implementation is preferable to a copying one, at least as far as the implementation of
copying in the Münster Curry compiler is concerned.

7 Related Work

Implementation techniques for managing multiple bindings have been studied for a while, among
others, in the context of (or-)parallel implementations of logic languages. It has been shown that
no technique can be optimal in the sense that all of the operations task creation, task switching,
and variable access are implemented by constant time operations [GJ93,RPG99]. A fortiori, this
result applies to the implementation of the encapsulated search in Curry that is more general than a
parallel traversal of a goal’s search tree.

With the exception of binding arrays, all of the presented implementation techniques have been
used by different Curry implementations. An earlier implementation of the Münster Curry compiler,
that was based on a less efficient stack-based abstract machine [LK99], was using only an extended
trailing scheme [Lux99]. Unfortunately, it turns out that a pure trailing approach cannot implement
the full encapsulated search. In order to be able to restore search continuations in arbitrary search
spaces it is necessary to support copying as well. However, copying is rarely used in practice. It
can occur only when a controlling search strategy continues the evaluation of a search goal without
encapsulating the search, or when two different searches are combined. In addition, copying is
applied to the final solution of a search goal.

The Curry2Java implementation [HS99] was the first to implement non-deterministic choice by
independent threads in Java with the goal of providing fair search strategies. It was using binding
tables in order to implement multiple bindings. The implementation was quite slow compared to a
native code compiler like the Münster Curry compiler and development of the implementation has to
stalled. NarrowMinder [AHMS01] has been designed to support fair evaluation of non-deterministic
choice and uses copying.

The encapsulated search in Curry is a generalization of a similar feature introduced into the Oz
language in order to control search [SSW94,Sch97]. [Sch99] also performs a comparison between
copying and trailing implementations. However, the goal of that paper was only to show the feasibil-
ity of copying as an implementation mechanism. In contrast to our work, different implementations
of constraint logic languages were compared in the paper.

8 Conclusion and Future Work

In this paper we have compared two different implementation techniques for encapsulated search in
Curry, a feature that gives control to the programmer on how the search space of a goal is explored
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and allows using non-deterministic search in the context of a declarative I/O mechanism. The exper-
imental results for the Münster Curry compiler show that neither of the implementation techniques
is strictly better than the other – a result that is not very surprising given the analysis from [GJ93]
and [RPG99]. The copying implementation yields faster executables for purely functional programs
due to some optimization that cannot be used with trailing. However, as soon as search is involved,
the picture changes. For depth-first search algorithms the copying implementation was significantly
slower than the trailing implementation.

The data presented in this paper can be regarded as an indication for trailing being more feasible
for an implementation of the encapsulated search. However, this has to be backed by more experi-
ments. In addition, the copying approach currently used is quite naive and should be improved.

Another topic of future research are implementations of the Münster Curry compiler using bind-
ing arrays and binding tables, respectively, in order to provide a more comprehensive comparison
of implementation strategies.
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Abstract In this paper, we develop a symbolic representation for timed concurrent constraint (tccp) programs, which
can be used for defining a new model–checking algorithm for reactive systems. Our approach is based on using streams
to extend Difference Decision Diagrams (DDDs) which generalize the classical Binary Decision Diagrams (BDDs) with
constraints. We use streams to model the values of system variables along the time, as occurs in many other (declara-
tive) languages. Then, we define a symbolic (finite states) model checking algorithm for tccp which mitigates the state
explosion problem that is common to more conventional model checking approaches. In particular, we show how the
symbolic approach to model checking for tccp improves previous approaches based on the classical Linear Time Logic
(LTL) model checking algorithm. Keywords: Timed Concurrent Constraint Programming, Model Checking, DDDs

1 Introduction

In the last decades, formal verification of industrial applications has become a hot topic of research.
As the complexity of software systems increases, automatic verification tools which are able to
guarantee the correct behavior of such systems are dramatically lacking. Model checking is a fully
automatic formal verification technique which is able to demonstrate certain properties formalized
as logical formulas which are automatically checked on a model of the system; otherwise, it provides
a counterexample which helps the programmer to debug the wrong code.

The concurrent constraint paradigm (cc) was first introduced in [16] to model concurrent sys-
tems. A global store consisting of a set of constraints contains the information gathered during the
computation. Constraints are dynamically added to the store which can also be consulted. The pro-
gramming model was extended in [2] over a discrete notion of time in order to deal with reactive
systems, that is, systems which continuously interact with their environment without producing a
final result and execute infinitely along the time. The use of constraints and the notion of time which
lay in tccp permit to program reactive systems in a very natural way. Reactive systems are usually
modeled as concurrent systems which are more difficult to be manually debugged, simulated or
verified than sequential systems. In previous works ([9,10,19]) we have defined an explicit model
checking algorithm for tccp programs. Such method automatically constructs a model of the system
which is similar to a Kripke Structure. Unfortunately, we are able to verify only small programs due
to the explicit exploration of the graph.

Recent advances in model checking deal with huge state-spaces by using symbolic manipulation
algorithms inside model checkers [5,7,13]. Other techniques such as abstract interpretation, partial
evaluation, and on-the-fly methods have also been proposed in the literature as a mean to (partially)
solve the state-space explosion problem [6].

The main purpose of this work is to improve the exhaustive model checking algorithm defined
in the last years to verify tccp programs. Starting from the graph representation of [10], in this paper
we formalize a symbolic representation of reactive systems specified in tccp. Such representation
allows us to formulate a symbolic model checking algorithm which allows us to verify more com-
plex reactive systems in tccp. In order to ensure the termination of our approach we refer to finite
state systems in this work. It would be possible to remove this assumption and consider infinite

� This research is partially supported by the MCyT under grants TIC2001-2705-C03-01 and HU 2003-0003.

{alpuente,villanue}@dsic.upv.es.
falaschi@dimi.uniud.it.


state systems by requiring the user to indicate a finite time interval for limiting the duration of tccp
computations, as we did in [9,19]. This idea could be extended also to our new framework. To the
best of our knowledge, we define the first symbolic model checking algorithm for tccp.

The paper is organized as follows. In Section 2 we introduce the tccp programming language
and the tccp Structure constructed from the program specification and which is the reference point
of this work. We introduce also an example which is used in the remaining sections to illustrate for-
mal definitions. In Section 3 we introduce the verification method that we propose and in Section4
we define the technical mechanisms that we need to apply the verification method. In particular we
introduce the symbolic structure used to represent tccp programs. In Section5 we show the algo-
rithms that allow us to automatize the construction process and finally, in Section6 we develop an
example of property verification. Section 7 is devoted to conclusions and future work.

2 The tccp Framework

The cc paradigm has some nice features which can be exploited to improve the difficult process of
verifying software: the declarative nature of the language ease the programming task of the user,
and the use of constraints naturally reduces the state space of the specified system.

2.1 The tccp language

The Timed Concurrent Constraint Language (tccp) was developed in [2] by F. de Boer et al. as a
framework for modeling reactive and real-time systems. It was defined by extending the concurrent
computational model of the cc paradigm [16,18] with a notion of discrete time.

Basically, a cc program describes a system of agents that can add (tell) information into a
store as well as check (ask) whether a constraint is entailed by such global store. The basic agents
defined in tccp are those inherited from cc plus a new conditional agent described below. Moreover,
a discrete global clock is provided. Computation evolves in steps of one time unit by adding or
asking (entailment test) some information to the store. It is assumed that ask and tell actions take
one time unit, and the parallel operator is interpreted in terms of maximal parallelism. Moreover,
it is assumed that constraint entailment tests take a constant time independently of the size of the
store1.

Let us first recall the notion of cylindric constraint system as it is used in the cc paradigm. A
simple constraint system can be defined as a set of tokens (or primitive constraints) together with
an entailment relation. Examples of such constraint systems are the Herbrand constraint system, the
FD constraint system [12] and the Gentzen constraint system [17].

Definition 1 (Simple constraint system [18]). Let D be a non-empty set of tokens (primitive con-
straints). A simple constraint system is a structure 〈D,�〉 where �⊆ 2D×D is an entailment relation
satisfying:

C1 u � P whenever P ∈ u,
C2 u � Q whenever u � P for all P ∈ v and v � Q.

A cylindric constraint system consists of a simple constraint system plus an existential quantifi-
cation operator which is monotonic, conservative and supports renaming. The existential quantifi-
cation allows one to model local variables in a given agent. The formal definition of the notion of
cylindric constraint system can be found in [2,11].

1 In practice, some syntactic restrictions are imposed in order to ensure that these hypotheses are reasonable (see [2] for
details).
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In this work, we consider a specific constraint system which allows us to verify a class of
software systems. In particular, we consider the traditional arithmetic for real numbers including
addition, equality and order comparison. This part of the constraint system handles the information
related to the constrained nature of the system. On the other hand, we are also interested to handle
streams which in tccp are modeled as lists of terms. Each stream represents the value of a given
system variable along the time. Intuitively, in the current time instant, the head of the list represents
the value of a variable and the tail of the list models the future. The entailment relation for lists is
specified by Clark’s Equality Theory. For example, [X|Z] = [a|Y ] 2 entails X = a and Z = Y .

We use V to denote the set of variables ranging over R (or Z), and LV is the set of lists of such
variables. From now, we will use D ∈ {R, Z} to denote arbitrarily one of the two domains. Roughly
speaking, we define the set of tokens of our constraint system as the set of difference constraints
of the form X − Y ≤ c and X − Y < c, and the set of stream constraints of the form V = [ ],
V = [X|W ] and V = [c|W ], where X and Y belong to V , V and W are in LV , and the constant c
belongs to D.

We define the set AP of atomic propositions as the set of tokens of the cylindric constraint
system above. In the rest of the paper, we identify the notion of (finite) constraint with atomic
propositions.

Let us now recall the syntax of tccp, defined in [2] as follows:3

Definition 2 (tccp Language). Let C be a cylindric constraint system. The syntax of agents of the
language is given by the following grammar:

A ::= stop | tell(c) |
∑n

i=1 ask(ci) → Ai | now c then A else A | A ||A | ∃xA | p(x)

where c, ci are finite constraints of C . A tccp process P is an object of the form D.A, where D is
a set of procedure declarations of the form p(x) : −A, and A is an agent.

The stop agent terminates the execution whereas the tell(c) agent adds the constraint c to the store.
Nondeterminism is modeled by the choice agent (written

∑n
i=1 ask(ci) → Ai) that executes nonde-

terministically one of the choices whose guard is satisfied by the store. The agent A ||A represents
the concurrent component of the language, and ∃xA is the existential quantification, that makes the
variable x local to the agent A. The agent for the procedure call is p(x).

Finally, the now c then A else B agent (called conditional agent) is the new agent (w.r.t. cc)
which allows us to describe notions such as timeout or preemption. This agent executes A if the
store entails c, otherwise it executes B.

2.2 The tccp Structure

The reference point of this work is a model of tccp programs introduced in [10], which essentially
consists of a graph structure. The main difference w.r.t. a Kripke Structure is in the definition of the
states. A state in a tccp Structure represents a set of states of a Kripke Structure since it contains a
conjunction of constraints instead of a valuation of the system variables. Formally, a tccp Structure
is as follows. In [10] the reader can find how to automatically obtain the tccp Structure from a given
tccp program.

Definition 3 (tccp structure). Let AP be a set of atomic propositions. We define a tccp Structure
M over AP as a 5-tuple M = (S, S0, R,C, T ), where

2 We follow the Prolog notation for lists.
3 The operational and denotational semantics of the language can be found in [2].
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1. S is a finite set of states,

2. S0 ⊆ S is the set of initial states,
3. R ⊆ S × S is a transition relation,
4. C : S → 2AP is the function that returns the set of atomic propositions which hold in a given

state, and
5. T : S → 2L is the function that returns the set of labels in a given state.

Informally, labels are used to identify the point of execution of the program. Each occurrence
of every agent of a program is labelled, thus the set of labels in a given state represents the set of
agents that must run in such execution point.

2.3 The scheduler example

In Figure 1 we show a tccp program which we use to motivate different points of the paper. The
program consists of a predicate with three output variables. We use streams to simulate the values
of the system variables along the time, since the constraint system in tccp is monotonic (see [2] for
details).

Intuitively, the program gets the value of variables D1, T1 and E1 by calling the auxiliary
process get constraints. These variables represent the duration of three different tasks of the
process of building a house. This is executed in parallel with an ask agent which simply checks if
the values of the variables are integer numbers and, in that case, some constraints are added to the
global store which contains the available information of the system. Finally, a recursive call to the
building process is made which would allow to recalculate the planning schedule.

build([PD|PD ],[PT|PT ],[PE|PE ]) ::=

∃ D1,T1,E1 (get constraints(D1,T1,E1) ||
ask(atom(D1),atom(T1),atom(E1)) →

(tell(PD+D1 =< PT) ||
tell(PT+T1 =< PE) ||
tell(PE+E1 =< PA)) ||
build(PD ,PT ,PE )).

Figure 1. Example of a tccp program

The tccp Structure associated with this code is shown in Figure 2. The black circle indicates
the initial state of the graph. We have simplified the structure by showing, in each state, only the
new information added to the store. At each state, we also show the set of labels (beginning with
the character ’l’) representing the agents that must be executed, and the local variables.

The most important point of this example is the fact that we have added to the store only con-
straints of the form V1+C=<V2 which can also be written as V 1 − V 2 ≤ C being C an integer
or real constant. This kind of constraints appears in applications where, for example, we compare
two clocks of a system to control the timing between tasks, or in scheduling applications such as
this example. In the following sections, we show how we can symbolically represent this kind of
constraints in a similar way as Binary Decision Diagrams (BDDs) do in the basic symbolic model
checking approach.
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Figure 2. tccp Structure of build

3 Symbolic Model Checking

The idea of symbolic model checking is to represent the graph structure (the model) as a boolean
formula, and then transform it into the efficient structure of BDD. In our approach, we aim to
represent the tccp Structure as a formula with difference constraints and logical streams, and then
transform it into a suitable extension of BDDs.

In [10,19], a logic dealing with constraints was proposed as the basis to develop a classical
LTL model checking algorithm based on a tableau algorithm. The most important advantage of this
approach is that the use of constraints leads to a compact representation of the system which we also
exploit to effectively check properties on the model. Unfortunately, the expected state-explosion
problem shows up when we combine the model with the property that we want to verify.

By considering the constraint system defined in Section 2.1 for the tccp language, the model
which can be automatically obtained by following [10,19] only contains difference and stream con-
straints. Thus, our aim is to represent the tccp Structure by means of a new symbolic structure
called DDD+LSs, then we use the efficient algorithms for checking DDD+LSs in order to verify
tccp programs. In the following, we formalize our verification strategy and illustrate it by means
of an example. We use the temporal logic with constraints of [3] to specify the properties we are
interested to verify.

3.1 tccp Structures as logic formulas

A tccp Structure can be translated into a formula of the logic underlying our constraint system
similarly as it is done for boolean functions in the classical symbolic approach. The idea is to
encode states and to represent the relation R (i.e., the arcs of the graph) with a logic formula which
is defined from the labels and the store of states.

Once we have the formula, we can construct a symbolic BDD-like structure corresponding to
the formula, which represents an encoding of the system.
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Let us explain how to obtain the formula by using the graph example shown in Figure2. Each
arc of this graph corresponds to an element in the relation R. Now we can encode each arc as a
conjunction of constraints. For example, the formula

lget ∧ lask ∧ T1 ∧ D1 ∧ E1 ∧ lt1′ ∧ lt2′ ∧ lbuild′ ∧ lt′ (1)

represents the arc labelled with a1 .In the following, we call arc-formula the logic formula repre-
senting an arc of the tccp Structure. Note that we have used primed versions of agent labels in order
to express their value in the following time instant. This is equivalent to the use of program counters
in (imperative) classical model checking approaches.

It is easy to see that the R relation can be represented by a disjunction of arc-formulas. The
resulting formula is the subject of our next task: we have to symbolically represent this formula
and, for this purpose, we define a new structure (similar to a BDD) and the algorithms which auto-
matically construct it from the formula.

4 The Symbolic Structure

Difference Decision Diagrams (DDDs) are an extension of the Binary Decision Diagrams defined
in [4] to symbolically represent difference constraint expressions. Difference constraint expressions
are formulas of a logic extended with difference constraints. Difference constraints are inequalities
of the form x − y ≤ c where x and y are integer or real-valued variables, and c is a constant. A
difference constraint expression consists of difference constraints combined with boolean connec-
tives. d → a, b where d is a difference constraint and a and b are difference constraint expressions
means that, if d holds, then a, else b.

DDDs and BDDs share some common features. For example, both BDDs and DDDs can be
ordered and reduced, and the algorithms to handle them are quite similar. A drawback of DDDs is
the fact that maintaining them as a canonical data structure is more expensive than for BDDs.

It is important to remark that, in order to correctly represent tccp Structures, we cannot directly
use boolean structures such as BDDs. Nodes in DDDs contain constraints which can encode some
implicit information whereas nodes in BDDs contain only boolean variables [14]. This implicit in-
formation is the main reason why a DDD-like structure is necessary. This is also the reason why,
if we reduce a DDD following the ideas of BDDs, then we do not obtain a canonical representa-
tion for the considered difference constraint expression, as opposed to the case of Ordered BDDs.
However, it is still possible to obtain a semi-canonical4 structure which can be used to decide satisfi-
ability, validity, falsifiability and unsatisfiability of expressions. There is also an algorithm to obtain
a canonical representation of DDDs which is quite expensive ([15]).

Even though we can use DDDs to represent difference constraints, we need to model also con-
straints over streams (represented as logical lists in tccp). Therefore, we need to extend the expres-
sivity of DDDs and to redefine the algorithms which automatically construct the DDD Structure
from a given formula.

4.1 Extending Difference Decision Diagrams with Logical Streams

As we have shown in Section 3, we need to represent symbolically a graph structure which contains
difference constraints and stream constraints.

4 A DDD is semi-canonical if (i) an expression φ is represented by 1 iff φ is valid, and (ii) an expression φ is represented
by 0 iff φ is unsatisfiable.
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Formally, we define Difference Decision Diagrams + Logical Streams (DDD+LSs) to handle
the logic defined by the following grammar:

φ ::= x − y ≤ c | ¬φ | φ1 ∧ φ2 | ∃x.φ | X = [x|Y ] | X = [c|Y ] | X = [ ]

where the constant c belongs to D, and X,Y ∈ V denote variables. The grammar is extended as
usually with the derived operators x − y < c, φ1 ∨ φ2 and ∀x.φ. Similarly to DDDs, equality can
be modeled by using the < and ≤ operators.

Similarly to DDDs, a DDD+LS is a directed acyclic graph (V,E) where V is a set of vertices
and E a set of arcs connecting pairs of vertices. The set V contains two terminal vertices with out-
degree zero (called 0 and 1). In addition, V contains a set of non-terminal vertices with out-degree
two. Each non-terminal vertex v has nine attributes which can be classified in three subsets: (i) the
first three attributes (pos(v),neg(v) and const(v)) which are defined in the case when the node v
represents a difference constraint (otherwise they are set to ⊥), (ii) the attributes left(v), head(v)
and tail(v) that stand for the case when v represents a stream constraint (otherwise they are set to
⊥), and (iii) the last three attributes op(v), high(v) and low(v) which are defined in both cases.
Intuitively, op(v) determines which kind of expression represents v: if op(v) ∈ {LE, LEQ}, then
v represents the expression pos(v) − neg(v) op(v) const (v); otherwise (if op(v) = LIST), then v
represents the stream constraint left(v) = [head(v)|tail (v)] The remaining two attributes (high(v)
and low(v)) represent the two branches that can be followed from the non-terminal vertex v in the
graph.

Some shorthands are defined to reference combinations of attributes. Notation var(v) represents
the pair (pos(v),neg(v)) whereas we use bnd(v) to refer to the pair (op(v), const (v)). By varl(v)
we represent the pair (left(v), tail(v)) and listExp(v) is the pair (head(v), varl (v)). Finally, we
denote by attr (v) the set of attributes of the node v.

The set of edges E is defined as the set of pairs of the form (v, low (v)) and (v, high(v)), where
v ∈ V and v is not a terminal vertex.

A node of a DDD+LS Structure represents an expression which can be either a difference con-
straint (as in DDDs) or a stream constraint. The semantics of DDD+LS nodes is formalized in
Definition 4 which just adds to DDDs the semantics derived from the new DDD+LS attributes.
Exp stands for difference constraint expressions and stream expressions. The auxiliary function
(op(v)) is used to check whether the node represents a difference constraint expression (returning
values LE or LEQ), or a list expression (returning value LIST).

Definition 4. Let v be a vertex of a DDD+LS Structure. We define the function S : V → Exp:

S�0�
def= false

S�1�
def= true

S�v�
def=

⎧
⎨

⎩

(pos(v)−neg(v)<const (v))→ V�high(v)�,V�low (v)� if op(v)= LE,
(pos(v)−neg(v)≤const (v))→ V�high(v)�,V�low (v)� if op(v)= LEQ,
(left(v)=[head (v)|tail(v)])→ V�high(v)�,V�low (v)� if op(v)= LIST

For example, the meaning of the first row in the semantics of v means that, if pos(v)−neg(v)<
const(v) holds, then V�high(v)� is true, otherwise V�low(v)� holds.

We show in Figure 3 a DDD+LS graph representing the formula in (2).

PD− PT =< 4 ∧ PT− PE =< 7 ∧ P = [PT | PT ] (2)
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1 0

P=[PT|PT_]

PD−PT=<4

PT−PE=<7

Figure 3. Example: DDD+LS from the formula in (2).

In order to obtain an ordered graph structure, we extend the total order on the vertices of
the graph defined in [14] to consider the new attributes in DDD+LS. First of all, we assume an
order between variables. We require that both, pairs of variables of a vertex corresponding to
the difference expression, as well as pairs of list variables in the list expression, are normalized.
This means that pos(v) > neg(v) and left(v) < tail(v)5. Then we assume that LIST < LE <
LEQ. Finally, tuples formed by the set of attributes in a specific vertex u, i.e., tuples of the form
(pos(v),neg(v), op(v), const (v), left(v),
head(v), tail (v)), are ordered lexicographically. Note that ∀X,⊥ ≤ X where X ∈ {V,LV}.
We also have that for any constant c, ⊥ ≤ c.

By using the order < above, the notion of Ordered DDD+LS (called ODDD+LS in short) is
formalized:

Definition 5 (Ordered DDD+LS). Let O be a DDD+LS Structure. We say that O is an Ordered
DDD+LS (ODDD+LS) Structure if each non-terminal vertex v defined in O satisfies the following
properties:

1. neg(v) < pos(v),
2. left(v) < tail(v),
3. var(v) < var (high(v))
4. varl(v) < varl(high(v)),
5. var(v)<var (low (v))∨ (var (v)=var (low (v)) ∧ bnd(v)<bnd(low (v))),
6. varl(v)<varl (low(v))∨ (varl(v)=varl (low(v)) ∧ head(v)<head (low(v))

Intuitively, nodes containing difference expressions will appear in the graph structure before the
nodes containing stream expressions. The first two conditions in Definition5 require that variables
in a given node are normalized. The third and fourth requirements establish that, given a node v,
variables of the child in the high branch of v must be greater than the variables in v. The last two
points ensure that variables of the child in the low branch must be greater or equal than the variables

5 We note that this property is reasonable when we use this kind of constraints to model streams, as it simply establishes
that the list on the right hand side of the constraint is greater than the other one.
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of v; if they are equal, then bnd(low (v)) (head(low(v))), must be greater than bnd(v) (head(v)),
respectively. The structure in Figure 3 is an ODDD.

In order to verify properties, we can consider semi-canonical structures as mentioned before.
To get them, we propose some local and path reductions for ODDD+LSs, which are inspired in the
reductions defined for Ordered DDDs.

Definition 6 (Locally Reduced DDD). Let D be an ODDD+LS with domain D ∈ {N, Z}, and let
u and v be non-terminal vertices of D. Then D is a Locally Reduced DDD+LS (LRDDD+LS) if it
satisfies:

1. if D = Z then, for all v, op(v) = LEQ or op(v) = LIST,
2. for all v and u, if the set of attributes of u is identical to the set of attributes of v, then u = v,
3. for all v, low(v) �= high(v),
4. for all v, if var(v) = var(low(v)) then high(v) �= high(low(v)),
5. for all v, if list(v) = list(low(v)) then high(v) �= high(low(v))

The intuition of the first item is that, if the domain of the structure are integers, then we can
eliminate any occurrence of the LE operator since it can be reduced to the LEQ operator by de-
creasing in one unit the value of the constant and then comparing with LEQ. The second condition
ensures that there is no pair of different nodes with the same attributes. The rest of requirements
avoid redundant tests on the same variables.

The next step towards the semi-canonical representation of DDD+LSs is the formalization of
the notion of path reduction. We first need to define the semantics of edges and paths. By abuse,
we define the negation of lists as the absence of information. That is, when we negate a stream
expression we mean that the current store does not entail it.

Definition 7. Let u, v be vertices of a DDD+LS Structure. Let u and v be two adjacent vertices.
The function E : E → Exp is defined as follows:

E�(u, v)� def=

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(pos(u) − neg(u) < const(u)) if v = high(u) and op(v) = LE,
(pos(u) − neg(u) ≤ const(u)) if v = high(u) and op(v) = LEQ,
¬(pos(u) − neg(u) < const(u)) if v = low(u) and op(v) = LE,
¬(pos(u) − neg(u) ≤ const(u)) if v = low(u) and op(v) = LEQ

left(v) = [head(v)|tail(v)] if v = high(u) and op(v) = LIST,
¬(left(v) = [head(v)|tail(v)]) if v = low(u) and op(v) = LIST.

The notion of path in a DDD+LS Structure is defined as a finite sequence of edges of the form
〈(v0, v1), (v1, v2), . . . , (vk−1, vk)〉. We say that such path has length k. The semantics of a path
is defined as the conjunction of all difference constraints, negated difference constraints, stream
constraints, and negated stream constraints in the path.

Now we are ready to define the notion of path reduction which provides us the semi-canonical
representation. We denote by PRDDD+LS the structure resulting from applying this reduction step
to a LRDDD+LS. A semi-canonical representation has exactly one DDD+LS to denote valid ex-
pressions and also a single DDD+LS for unsatisfiable expressions.

Essentially, we can identify redundant edges regarding difference constraint expressions by
checking how expressions divide the domain. Each edge ei splits the domain into two disjoint sub-
sets. If one of these subsets is empty, then we know that the edge is redundant. This is the method
applied in [14]. Regarding nodes representing stream expressions, since we have defined the nega-
tion as the absence of information, then the domain is split into two possibly non disjoint subsets,
and no path-reduction can be done.
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Theorem 1 allows us to check properties in the PRDDD+LS in a safe way. We know that the
expression φu represented by the node u is valid if and only if u = 1. If u = 0, then the expression
is unsatisfiable. If u is a non terminal vertex, then we know that the expression is both satisfiable
and falsifiable. The proof of this result can be found in [1].

Theorem 1 (semi-canonicity). In a PRDDD+LS, the terminal vertex 1 is the only representation of
valid expressions, and the terminal vertex 0 is the only representation of unsatisfiable expressions.

In Figure 4 we show a DDD+LS Structure representing the same formula in (2), which has a
redundant edge (the second one from the top). We know that this node is redundant since the part of
the domain for which the constraint is not satisfied is empty. Thus we could eliminate it obtaining
the DDD+LS shown in Figure 3

PT−PE=<7

1

P=[PT|PT_]

0

PD−PT=<4

PT−PE=<9

Figure 4. Example: Non Path-reduced DDD+LS representing the formula in (2).

5 Construction of DDD+LSs

In this section we show the algorithms which automatically construct a Locally Reduced DDD+LS
from a given formula. In the rest of the section we assume that we are always considering Locally
Reduced DDD+LS. Vertices and edges of the DDD+LS are stored in a graph data structure simply
called Graph. Let G be a Graph. Initially, G contains only the two terminal vertices 0 and 1. The
set of edges of G are implicitly stored via the attributes of its vertices.

Let us introduce some functions which allow us to access the information or modify the struc-
ture. First, insert(G, a) creates a new vertex v in G with attribute a, and returns v. The function
member(G, a) returns true if there exists a vertex in G with attribute a. Finally, lookup(G, a) re-
turns the vertex in G with attribute a.
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We also need some operators which obtain information about the attributes of a graph. Since
names and behavior of these operations are very intuitive, we will use the name of attributes directly
in our pseudocode.

In the following, we extend the algorithms in [14] (defined to construct DDDs), to construct the
DDD+LS Structure. We also develop the new algorithms to deal with stream expressions.

vertex MKD(G: graph, x ∈ V , y ∈ V , o: operator,
c ∈ D, h: vertex, l: vertex)

if D = Z ∧ o = LE then c := c − 1
o := LEQ

if member(G, (x, y, o, c,⊥,⊥,⊥, h, l)) then
return lookup(G, (x, y, o, c,⊥,⊥,⊥, h, l))

else if l = h then return l
else if (x, y) = var(l) ∧ h = high(l) then return l

else return insert(G, (x, y, o, c,⊥,⊥,⊥, h, l))

Figure 5. MKD Algorithm

In Figure 5, the algorithm MKD for difference constraints is given as an extension of the algo-
rithm presented in [14]. We have modified the attributes of nodes to take into account that nodes in
DDD+LSs have three additional attributes.

The algorithm MKL is presented in Figure 6. It builds the vertex representing the stream ex-
pression x = [y|z] → h, l.

vertex MKL(G: graph, x ∈ LV , y ∈ V , z ∈ LV , o: operator,
h: vertex, l: vertex)

if member(G, (⊥,⊥, LIST,⊥, x, y, z, h, l)) then
return lookup(G, (⊥,⊥, LIST,⊥, x, y, z, h, l))

else if l = h then
return l

else if (x, z) = plist(l) ∧ h = high(l) then
return l

else
return insert(G, (⊥,⊥, LIST,⊥, x, y, z, h, l))

Figure 6. Algorithm MKL that creates a vertex for a list expression

These two algorithms have some preconditions which are similar to those for DDDs. For exam-
ple, pairs of variables must be normalized. In [14], some functions are given which normalize pairs
of variables before constructing vertices. We can use similar procedures for the difference expres-
sions contained in our DDD+LS Structures. A novel precondition for the MKD algorithm is that we
must ensure that we are dealing with difference constraints (namely, op(v) �= LIST). Similarly, for
the MKL algorithm we require that op(v) = LIST.

The next step for the construction of the DDD+LS Structure, is to define the algorithms which
combine difference and stream expressions with boolean operators. The idea is to recursively apply
a specific operator to all the vertices in the DDD Structure. In [4], this procedure is called APPLY.
The same idea can be used for our DDD+LS Structure. The APPLY algorithm returns a DDD which
is locally reduced, hence it is still necessary to path reduce the resulting DDD.
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We have called APPLYLS the corresponding algorithm for DDD+LSs. We show in Figure 7
this algorithm which follows closely the design of APPLY with some little adjustment to include
the handling of the list expressions. In the pseudocode, ’Connective’ denotes a boolean connective
of the logic. Moreover, eval is a function which takes the two terminal vertices and a boolean
connective as input and returns the truth value depending on the boolean connective.

Vertex APPLYLS(G: graph c: Connective, u: Vertex, v: Vertex)

r: Vertex

if u, v ∈{0,1} then return eval(c, u, v)
else if member(G, (c, u, v)) then return lookup(G, (c, u, v))

else if var(u) < var(v) then
if op(u) = LIST then

r ← MKL(left(u), head(u), tail(u),APPLYLS(c, high(u), v), APPLYLS(c, low(u), v))
else r ← MKD(var(u), bnd(u), APPLYLS(c, high(u), v), APPLYLS(c, low(u), v))
return r

else if var(u) = var(v) then
if bnd(u) < bnd(v) ∧ op(u) = LIST then

r ← MKL(left(u), head(u), tail(u), APPLYLS(c, high(u), high(v)), APPLYLS(c, low(u), v))
else if bnd(u) < bnd(v) ∧ op(u) �= LIST then

r ← MKD(var(u), bnd(u), APPLYLS(c, high(u), high(v)), APPLYLS(c, low(u), v))
else if bnd(u) = bnd(v) ∧ op(u) = LIST then

r ← MKL(left(u), head(u), tail(u), APPLYLS(c, high(u), high(v)),
APPLYLS(c, low(u), low(v)))

else if bnd(u) = bnd(v) ∧ op(u) �= LIST then
r ← MKD(var(u), bnd(u), APPLYLS(c, high(u), high(v)), APPLYLS(c, low(u), low(v)))

else if bnd(u) > bnd(v) ∧ op(v) = LIST then
r ← MKL(left(v), head(v), tail(v), APPLYLS(c, high(u), high(v)),

APPLYLS(c, u, low(v)))
else if bnd(u) > bnd(v) ∧ op(v) �= LIST then

r ← MKD(var(u), bnd(u), APPLYLS(c, high(u), high(v)), APPLYLS(c, u, low(v)))
else if var(u) > var(v) then

if op(u) = LIST then
r ← MKL(left(v), head(v), tail(v), APPLYLS(c, u, high(v)), APPLYLS(c, u, high(v)))

else r ← MKD(var(v), bnd(v), APPLYLS(c, u, high(v)), APPLYLS(c, u, high(v)))

Figure 7. Algorithm APPLYLS

6 Verification

In this section we show how the symbolic structure can be used to formalize a symbolic model
checking method for tccp programs. Assume that we express the property that we want to verify
by using a CTL logic [6], where the atomic propositions of the logic are the same set of atomic
propositions of the constraint system considered above. Note that we can use the defined entailment
relation to obtain the truth value of formulas (see [3]).

We illustrate the method by a simple example. Assume that we want to verify that whatever we
check that the variables have been assigned, there exists a successor where the same check is done.
This property is expressed by the following formula. We use the standard notation for the temporal
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operators, thus AG(f) is the logic operator meaning that the formula f holds at each state in the
future and EX(g) means that there exists a successor state where g is satisfied.

AG(¬lask ∨ EX(lask)) (3)

The classical symbolic model checking algorithm would take the formula in (3) as input and
would return an OBDD representing the set of states of the system satisfying that formula. Temporal
operators of the logic are represented as fix-points ([6]) and then, symbolic structures are manipu-
lated. In our approach we would substitute OBDDs by DDD+LSs and the CTL logic is interpreted
over constraints.

The formula AG(f) is equivalent to f ∧AX(f) where AX means that the formula holds at each
successive state. [6] shows that is possible to associate a fix-point operator to each CTL formula.
Thus, we consider the operator associated to f ∧ AX(f). This operator allows us to compute a
(greatest) fix-point which corresponds to the set of states starting from which the property to be
proven holds. Finally, if all initial states of the model (the tccp Structure) are included in the fix-
point, then the formula holds in the system. In our example, this algorithm [6] proves that the
formula holds.

7 Conclusions

We have generalized DDDs to a new structure which allows us to represent tccp programs sym-
bolically. We have introduced the corresponding notions and algorithms for automatically construct
the symbolic structures and we have shown how they can be used within a symbolic model check-
ing method. We think that this novel symbolic methodology improves the automatic verification of
reactive systems specified as tccp programs as it reduces the search space significantly.

As future work, we plan to extend the language to consider constraint expressions more general
than difference constraints.

[8] presents a different data structure called CST, which allows one to represent integer linear
constraints symbolically and is used to define a parameterized verification method for (infinite state)
Petri nets.

We also plan to implement our method and compare it with the exhaustive algorithm defined in
previous works in order to quantify the improvement of the symbolic method w.r.t. the exhaustive
one.
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Abstract. In [10] an extension of traditional Logic Programming was introduced combin-
ing two improving approaches. On one hand, extending Horn logic to hereditary Harrop
formulas, in order to enhance the expressive power, and on the other incorporating con-
straints, in order to improve the efficiency. The constraint logic programming language
obtained from such combination was in need of a declarative semantics. In this paper, we
present a fixed point semantics for it. Taking as starting point the technique used by Miller
to interpret intuitionistic implication in goals, we have formulated a novel extension to deal
with universal quantifiers and constraints. The corresponding theorems of soundness and
completeness are proved.

1 Introduction

One of the main features of Logic Programming (LP) is that, in a logic
program, the operational interpretation and the mathematical (declarative)
meaning agree each other, in the sense that the declarative meaning of a pro-
gram can be interpreted operationally as a goal-oriented search for solutions.
In [13] the notion of abstract logic programming language is formulated as
a formalization of this idea. There the declarative meaning of a program is
identified with the set of goals that can be proved from it by means of uniform
proofs in a deduction system. Several logic extensions of Horn logic, both of
first and higher order, have been proved to be abstract logic programming
languages that enhance the weak expressive power of logic programs based
on Horn clauses ([13,14]). This is also the case of the language HH(C), on
which the present paper focuses. It was introduced in [10] as a combina-
tion of the logic of Hereditary Harrop formulas (HH ) and Constraint Logic
Programming (CLP), obtaining a scheme HH(X ) that may be particularized
with any constraint system C, providing for an instance HH(C). This language
is not only an extension of traditional LP (based on Horn logic) improving
its expressivity, but also incorporating the efficiency advantages of CLP [7].
HH extends Horn logic including disjunctions, intuitionistic implications and
universal quantifiers in goals. These constructions are essential in capturing
module structure, hypothetical queries and data abstraction. On the other
hand, the purpose of the incorporation of the CLP approach is to overcome
the inherent limitations in dealing efficiently with elements of domains differ-
ent from Herbrand terms. Satisfiability of constraints of particular domains
may be checked in an efficient way, apart from the logic. In [6] an interest-
ing and useful constraint system that combines real numbers with Herbrand
terms is presented as an instance of our scheme.
� The authors are partially supported by the Spanish project TIC2002-01167 ‘MELODIAS’.



In addition, in [10] a goal solving procedure for the scheme HH(C) was
presented and it is proved to be sound and complete w.r.t. the intuitionistic
deduction system UC, previously defined. This goal solving procedure could
be considered an operational semantics of HH(C).

Of course, an operational interpretation is needed in order to specify pro-
grams which can be executed with certain efficiency. But a clear declarative
semantics would simplify the programmer’s work. If the deduction system
is supported by model-theoretic semantics involving more abstract elements,
then additional properties of programs can be analyzed in a formal way. The
attempts to provide declarative semantics for LP languages based on math-
ematical foundations are extensive and fruitful (see i.e. [11,2,3]). This is also
the case of CLP [8,5]. In both, LP and CLP , most of the studies are based on
fixed point theories, in which it is easy to define program analysis frameworks.

The aim of the present work is to define a fixed point semantics for HH(C).
That definition is inspired in the semantics for a fragment of HH described
in [12]. Our purpose is to find a model such that for any program ∆, finite set
of constraints Γ and goal G, G can be proved in the deduction system UC,
if and only if, G is satisfied in that model in the context 〈∆,Γ 〉. However, in
order to build such model, it is important to realize that, during the search of
a proof for a goal from a program ∆ and a set of constraints Γ , both ∆ and
Γ may grow. So we will identify the notion of interpretation with functions
that associate to every pair 〈∆,Γ 〉 a set of “true” atoms, in such a way that,
if ∆ or Γ are augmented, the set of true atoms cannot decrease. The model
we are looking for will be the least fixed point of a continuous operator that
transforms such interpretations.

The rest of this paper is organized as follows: Section 2 gathers the syn-
tax of constraint systems, as well as the syntax of programs and goals of
HH(C), and shows some examples of its use as logic programming language.
In Section 3 we recapitulate the definition of the proof system UC in HH(C),
which permits only uniform proofs of goals from programs and constraints.
Section 4 contains the main new results of the paper. A fixed point semantics
for HH(C) is presented, and soundness and completeness results are obtained.
The proofs are compressed, but they can be found extended in the Appendix.
Finally a new version of this semantics for an interesting class of constraint
systems is summarized. In Section 5 related works and future research lines
are commented.

2 The programming language HH(C)

The purpose of the present section is to briefly describe the syntax of HH(C),
introduced in [10]. HH(C) can be regarded as a constraint logic programming
language, not founded in Horn logic, as usual, but in the extended logic of
hereditary Harrop formulas. As most CLP languages, it is in fact a parame-
terized scheme that can be instantiated by particular constraint systems. The
requirements imposed to such generic constraint systems are gathered below.

Given a signature Σ, containing constants, function and predicate sym-
bols, including the equality predicate ≈, a constraint system C over Σ is a
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pair (LC ,�C), where LC is the set of formulas that play the role of constraints,
and �C⊆ P(LC) × LC 1 is the entailment or deduction relation between sets
of constraints and constraints. C must fulfill the following conditions:

• LC is a set of first-order formulas built up using the signature Σ, which
must specifically include � (true), ⊥ (false), and the equations t ≈ t′ for
any Σ-terms t and t′.

• LC is closed under ∧,⇒,∃,∀ and the application of substitutions of terms
for variables.

• �C is compact, i.e., Γ �C C iff Γ0 �C C for some finite Γ0 ⊆ Γ . �C is also
generic, i.e., Γ �C C implies Γσ �C Cσ for any substitution σ. Γσ is the
result of applying the substitution σ to each formula in Γ , avoiding the
capture of free variables.

• All the inference rules related to ∧,⇒,∃,∀ and ≈ valid in the intuitionistic
fragment of first-order logic are also valid to infer entailments in the sense
of �C.

Hereafter, we will consider a fixed signature Σ and a constraint system C
over Σ. C will stand for C-constraints and Γ for finite sets of C-constraints.∧

Γ stands for the conjunction of constraints of Γ .
Let the set of program predicate symbols ΠP be a set of predicate symbols

such that Σ ∩ΠP = ∅. In the rest of the paper Σ and ΠP are assumed fixed.
Let At be the set of atomic formulas built up with the predicate symbols in
ΠP and Σ-terms. The set G of goals G, and the set D of clauses D over Σ and
ΠP are defined by the mutually-recursive rules below. Notice that constraints
can be found embedded in goals and clauses.

G ::= A | C | G1 ∧ G2 | G1 ∨ G2 | D ⇒ G | C ⇒ G| ∃xG | ∀xG,
D ::= A | G ⇒ A | D1 ∧ D2 | ∀xD,

where A ∈ At .
A program over Σ and ΠP is a finite subset of D. The symbol ∆ will be

used for programs. Let W be the set of programs over Σ and ΠP .
The following definition will be useful in order to simplify the usage of

program clauses.

Definition 1. Given a clause D, the set of its elaborations, elab(D), is the
set of clauses defined by the following rules:

- elab(A)
def={� ⇒ A}.

- elab(D1 ∧ D2)
def= elab(D1) ∪ elab(D2).

- elab(G ⇒ A)
def= {G ⇒ A}.

- elab(∀xD)
def={∀xD′ |D′ ∈ elab(D)}.

This definition is naturally extended to sets S ⊆ D: elab(S)
def=

⋃
D∈S elab(D).

The clauses of elab(S) for any S are said to be elaborated. Notice that elabo-
rated clauses have always the form ∀x(G ⇒ A)2. A variant of ∀x(G ⇒ A) is
a clause ∀y((G ⇒ A)[y/x]), where no y ∈ y occurs in G ⇒ A. F [y/x] is the
result of applying to F the substitution that replaces xi by yi for each xi ∈ x.
1 Here and in the rest of the paper, given a set S, P(S) denotes its powerset.
2 ∀x is an abbreviation for ∀x1 . . .∀xn, and analogously for ∃x.
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One of the outstanding features of the logic programming language HH(C)
is its high expressive power. In order to illustrate it, a couple of examples is
presented below, in a Prolog-like notation, enriched with the logic symbols ∀
and ⇒.

Example 1. Let us consider the constraint system R, consisting of the field
of real numbers with the usual arithmetic, and predicate symbols =, <,>,≤
and ≥. Taking ΠP = {triangle, isosceles}, let us consider the singleton
program ∆1 with the clause:

triangle(A, B, C):- A > 0, B > 0, C > 0,
A < C + B, B < A + C, C < A + B.

The variables A, B and C are intended to be lengths, so that the predicate
triangle(A,B,C) becomes true when it is possible to build a triangle with
sides A, B and C. Let ∆2 be the program:

isosceles(A, B, C):- triangle(A, B, C), A = B.
isosceles(A, B, C):- triangle(A, B, C), A = C.
isosceles(A, B, C):- triangle(A, B, C), B = C.

Suppose we want to know which conditions over Y guarantee that, for any
X > 1, it is possible to build an isosceles triangle with sides 〈X,X, Y 〉. The
goal which captures that query is:

G ≡ (∆2 ⇒ ∀X (X>1⇒isosceles(X, X, Y))).

In G, similarly as in [12], the program ∆2 is being used as a module that
is loaded over ∆1 when solving G. Notice that such goal cannot be written
in CLP languages based on Horn clauses, because the connectives ⇒ and
∀ would not be allowed in goals. Given the program ∆1 and the goal G,
according to the proof theory that will be described in Section 3, 0<Y∧Y<=2
is a correct answer constraint for G from ∆1.

Example 2. This example shows an efficient and reversible program to com-
pute Fibonacci numbers. It is borrowed from [10]. The constraint system used
is R again.

fib(N,X):- memfib(0, 1) ⇒
(memfib(1, 1) ⇒ getfib(N, X, 1)).

getfib(N, X, M):- 0 <= N, N <= M, memfib(N, X).
getfib(N, X, M):- N > M, memfib(M-1, F1), memfib(M, F2),

(memfib(M + 1, F1 + F2) ⇒ getfib(N, X, M + 1)).

The goal getfib(N,X,M) computes the N-th Fibonacci number in X, assuming
that the Fibonacci numbers fibi, with 0 ≤ i ≤ M, are stored in the local
program as atoms for memfib. During the computation, atoms memfib for
fibi, with M< i ≤N, are locally memorized.

Other examples can be found in [10,9,6]. The ones in [9] belong to the higher-
order version of HH(C), and those in [6] to the instance HH(RH).
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3 The calculus UC

We follow the ideas of Miller et al. [13], in which logic programming languages
are identified with those such that non-uniform proofs of goals in a deduction
system can be discarded. Those languages are called abstract logic program-
ming languages. This characterization captures the fact that in LP the search
of a proof for a goal is directed by the structure of such goal. For the classical
and intuitionistic logics there are known deduction systems, based on sequent
calculus, such that certain fragments of those logics have been proved to be
abstract logic programming languages, w.r.t. them. For the case of HH(C),
the existence of constraints implies the necessity of a different calculus. In [10]
a sequent calculus that combines intuitionistic rules for the logic connectives
with the entailment relation �C is presented, and it is proved to be equivalent
to another calculus, designated by UC, such that every UC-proof is uniform,
therefore demonstrating that HH(C) is also an abstract logic programming
language.

The calculus UC is now briefly described. UC consists of the set of deduc-
tion rules below. For any program ∆, finite set of constraints Γ , and goal G,
the notation ∆;Γ �UC G stands for the assertion that there is a proof for the
sequent ∆;Γ |— G using, in a bottom-up fashion, the rules of the calculus UC.
So UC-proofs will be regarded as trees.

UC-Rules

Rules for constraints and atomic goals:

Γ �C C

∆;Γ |— C
(CR)

∆;Γ |— ∃x(A ≈ A′ ∧ G)
∆;Γ |— A

(Clause)

where ∀x(G ⇒ A′) is a variant of some clause in elab(∆); the variables of x
do not occur free in the lower sequent; A ≡ P (t1, . . . , tn), A′ ≡ P (s1, . . . , sn),
and A ≈ A′ denotes the conjunction t1 ≈ s1 ∧ . . . ∧ tn ≈ sn.

Rules introducing connectives:

∆;Γ |— G1 ∆;Γ |— G2

∆;Γ |— G1 ∧ G2
(∧R)

∆;Γ |— Gi

∆;Γ |— G1 ∨ G2
(∨R), i ∈ {1, 2}

∆,D;Γ |— G

∆;Γ |— D ⇒ G
(⇒R)

∆;Γ,C |— G

∆;Γ |— C ⇒ G
(⇒CR

)

∆;Γ,C |— G[y/x] Γ �C ∃yC

∆;Γ |— ∃xG
(∃R)

∆;Γ |— G[y/x]
∆;Γ |— ∀xG

(∀R)

In rules (∃R) and (∀R) the variable y does not occur free in any formula of
the lower sequent.

When ∆;C �UC G holds, if C is satisfiable, it is said to be a correct answer
constraint for G from ∆.

In [10] a goal solving procedure for HH(C) is introduced and proved to be
sound and complete w.r.t the deducibility �UC.
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4 Fixed Point Semantics

The goal solving procedure defined in [10] may be regarded as an operational
semantics for HH (C). However, from the theoretical point of view, the pro-
gramming language HH (C) presented lacks a declarative semantics. The only
meanings that we may associate to programs, so far, are sets of proofs. In
addition, having in mind that UC is not a traditional sequent calculus due to
the presence of constraints, its correspondence with any of the known logi-
cal inference relations (|=) cannot be direct, and the definition of a specific
model-theoretic semantics merging the intuitionistic behavior of HH and the
interpretation of constraints is a hard task.

In this section, alternative semantics based on a fixed point construction,
widely utilized in LP and CLP, are introduced. For the traditional LP lan-
guage, given a program P there is a continuous operator TP transforming
models (sets of atoms) such that a goal G can be proved from P , if and only
if, G “is true” in the least fixed point of TP [17]. As analyzed in [12], for
the fragment of HH that includes implications in goals, the situation is more
complex, since while building a proof for a goal G the program ∆ may be
augmented. Therefore programs play the role of contexts, and interpretations
become monotonous functions mapping each program into a set of atoms.
Instead of a family {T∆}∆∈W of continuous operators, there is a unique op-
erator T , and the main result is that G can be proved from ∆, if and only
if, G “is true” in the least fixed point of T at the context ∆. In the present
paper we extend this approach for the language HH(C). New difficulties arise
since the universal quantifier, as well as constraints, are allowed in goals, and
then embedded into programs. When proving a goal G from a program ∆
there is also the presence of a set of constraints Γ ; both ∆ and Γ may result
augmented, therefore the notion of context is extended to pairs 〈∆,Γ 〉. So an
interpretation of ∆ and Γ should depend on interpretations of 〈∆′, Γ ′〉 with
∆′ ⊆ ∆, Γ ′ ⊆ Γ . In this reason, interpretations are defined as monotonous
functions able to interpret every pair 〈∆,Γ 〉. A continuous operator trans-
forming such interpretations is defined. We prove that for any ∆,Γ and G,
∆;Γ �UC G if and only if G is satisfied by the least fixed point of this operator
at the context 〈∆,Γ 〉.

4.1 Interpretations

Let us assume that Σ, ΠP , a constraint system C over Σ and a set ΠP of
program predicate symbols have been chosen.

Definition 2. An interpretation I is a function I : W×P(LC) → P(At) that
is monotonous, i. e. for any ∆1,∆2 and Γ1, Γ2 such that ∆1 × Γ1 ⊆ ∆2 × Γ2,
I(∆1, Γ1) ⊆ I(∆2, Γ2) holds. Let I denote the set of interpretations.

So, interpretations are notions of truth. I(∆,Γ ) is the set of atoms that
are true for I in the context 〈∆,Γ 〉. The property that, when 〈∆,Γ 〉 be-
comes greater, the set of true atoms cannot decrease, is guaranteed by the
monotonicity of interpretations.
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Definition 3. For any I1, I2 ∈ I, I1 � I2 if for each ∆ and Γ , I1(∆,Γ ) ⊆
I2(∆,Γ ) holds.

It is straightforward to check that (I,�) is a poset, i. e. � is a partial order.
However, in order to define fixed point semantics, the set of interpretations

needs to be a complete lattice, not just a poset.

Lemma 1. The poset (I,�) is a complete lattice. Furthermore, given S ⊆ I,
its least upper bound and greatest lower bound, denoted by

⊔
S and

�
S, are

characterized by the following equations:

(
⊔

S)(∆,Γ ) =
⋃

I∈S I(∆,Γ ) for any ∆ and Γ,
(
�

S)(∆,Γ ) =
⋂

I∈S I(∆,Γ ) for any ∆ and Γ.

Proof. The claim follows from the fact that I is a set of monotonic functions
whose range, P(At), is a complete lattice. ��

As a particular case, (I,�) has an infimum
�
I, denoted by I⊥, the constant

function ∅.
The following definition formalizes the notion of a goal G being “true” for

an interpretation I in a context 〈∆,Γ 〉.

Definition 4. Given I ∈ I, ∆ and Γ , a goal G is forced by I,∆ and Γ if
I,∆, Γ �� G, where �� is the relation recursively defined depending on the
structure of G, as follows:

• I,∆, Γ �� C ⇐⇒def
Γ �C C.

• I,∆, Γ �� A⇐⇒def
A ∈ I(∆,Γ ).

• I,∆, Γ �� G1 ∧ G2 ⇐⇒def
I,∆, Γ �� Gi for each i ∈ {1, 2}.

• I,∆, Γ �� G1 ∨ G2 ⇐⇒def
I,∆, Γ �� Gi for some i ∈ {1, 2}.

• I,∆, Γ �� D ⇒ G⇐⇒def
I,∆ ∪ {D}, Γ �� G.

• I,∆, Γ �� C ⇒ G⇐⇒def
I,∆, Γ ∪ {C} �� G.

• I,∆, Γ �� ∃xG⇐⇒def there is a constraint C and a variable y such that:
– y does not occur free in ∆, Γ , ∃xG.
– Γ �C ∃yC.
– I,∆, Γ ∪ {C} �� G[y/x].

• I,∆, Γ �� ∀xG⇐⇒def there is a variable y such that:
– y does not occur free in ∆, Γ , ∀xG.
– I,∆, Γ �� G[y/x].

Since the deduction system UC has a constraint-oriented formulation,
when a proof of an existential quantified goal ∃xG must be found, instead
of guessing a witness of x, by means of a substitution [t/x] or by the coun-
terpart constraint x ≈ t, some extra generality is necessary. Any satisfiable
constraint C may be considered,that represents a property characterizing x,
v.g. x2 ≈ 2. The semantics of a program provides for information regarding
the goals which can be proved from it. So, the definition of the forcing relation
for the case ∃xG should exhibit the same generality of the rule (∃R).

Defined this way, the relation �� has several properties that will help us
to prove other more significant results.
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Lemma 2. If I1, I2 ∈ I and I1 � I2, then for any G, ∆, and Γ , I1,∆, Γ �� G
implies I2,∆, Γ �� G.

Proof. The proof is inductive on the structure of G. Only a few cases are
considered here, the rest can be found in the Appendix.

• G ≡ A, atomic goal. I1,∆, Γ �� A ⇐⇒ A ∈ I1(∆,Γ ). I1 � I2 implies
that I1(∆,Γ ) ⊆ I2(∆,Γ ), so A ∈ I2(∆,Γ ) and therefore I2,∆, Γ �� A.

• G ≡ ∀xG′. I1,∆, Γ �� ∀xG′ ⇐⇒ there is a variable y such that: y
does not occur free in ∆, Γ , ∀xG′ and I1,∆, Γ �� G′[y/x]. By induction
hypothesis, it holds that I2,∆, Γ �� G′[y/x], so I2,∆, Γ �� ∀xG′. ��

The following lemma states a usual property of this kind of semantic
approach.

Lemma 3. Let {Ii}i≥0 be a denumerable family of interpretations such that
I0 � I1 � I2 � . . ., and let G be a goal. Then, for any ∆ and Γ ,⊔

i≥0 Ii,∆, Γ �� G ⇒ ∃k ≥ 0 such that Ik,∆, Γ �� G.

Proof. We already know that
⊔

i≥0 Ii(∆,Γ ) =
⋃

i≥0 Ii(∆,Γ ). The proof is
inductive on the structure of G. Here we deal with a few cases, the rest can
be found in the Appendix.

• G ≡ C ∈ LC .
⊔

i≥0 Ii,∆, Γ �� C ⇐⇒ Γ �C C ⇐⇒ Ik,∆, Γ �� C,
independently of k.

• G ≡ C ⇒ G′.
⊔

i≥0 Ii,∆, Γ �� C ⇒ G′ ⇐⇒
⊔

i≥0 Ii,∆, Γ ∪ {C} �� G′.
By induction hypothesis, there is k ≥ 0 such that Ik,∆, Γ ∪ {C} �� G′.
Therefore, Ik,∆, Γ �� C ⇒ G′. ��

As it has been mentioned before, the semantic approach we are formulat-
ing is based in searching for a model such that ∆;Γ �UC G iff G is true in
such model in the context 〈∆,Γ 〉. We have shown that each interpretation
provides for a version of truth of goals in such contexts. The next step is to
define an operator over interpretations whose least fixed point supplies the
desired version of truth.

Definition 5. The operator T : I −→ I transforms interpretations as fol-
lows. For any I ∈ I, ∆, Γ and A ∈ At , A ∈ T (I)(∆,Γ ) if there is a variant
∀x(G ⇒ A′) of a clause in elab(∆) such that the variables x do not occur free
in ∆, Γ , A, and I,∆, Γ �� ∃x(A ≈ A′ ∧ G).

Lemma 4 (Monotonicity of T ). Let I1, I2 ∈ I such that I1 � I2. Then,
T (I1) � T (I2).

Lemma 5 (Continuity of T ). Let {Ii}i≥0 be a denumerable family of in-
terpretations such that I0 � I1 � I2 � . . .. Then T (

⊔

i≥0

Ii) =
⊔

i≥0

T (Ii).

Proof. Let us deal with both inclusions.

⊇) This inclusion is always a consequence of the monotonicity of T .
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⊆) Let ∆, Γ and A ∈ T (
⊔

i≥0 Ii)(∆,Γ ). Due to the definition of T , there is
a variant ∀x(G ⇒ A′) of a clause of elab(∆) such that the variables x do
not occur free in ∆, Γ , A, and

⊔
i≥0 Ii,∆, Γ �� ∃x(A ≈ A′ ∧ G). Thanks

to Lemma 3, there exists k ≥ 0 such that Ik,∆, Γ �� ∃x(A ≈ A′ ∧G), and
therefore A ∈ T (Ik)(∆,Γ ). So, we have proved that T (

⊔
i≥0 Ii)(∆,Γ ) ⊆⋃

k≥0 T (Ik)(∆,Γ ) = (
⊔

k≥0 T (Ik))(∆,Γ ), for any ∆ and Γ , thus T (
⊔

i≥0 Ii)
�

⊔
k≥0 T (Ik). ��

Theorem 1. The operator T has a least fixed point, which is
⊔

i≥0 T i(I⊥).

Proof. The claim is an immediate consequence of Lemmas 4 and 5, and the
Knaster-Tarski fixed point theorem. ��

From now on, lfp(T ) denotes the least fixed point of T .

Example 3. Let ∆3 be the program in Example 2. Figure 1 shows some of the
goals that are forced by the first interpretations T i(I⊥) in the contexts 〈∆,Γ 〉,
where Γ = {z1 = 1, z2 = 1, x = z1 + z2}, ∆′

3 = ∆3 ∪ {mf (0, 1),mf (1, 1)} and
∆′′

3 = ∆3 ∪ {mf (0, 1),mf (1, 1),mf (2, z1 + z2)}.

〈∆, Γ 〉 T (I⊥) T 2(I⊥) T 3(I⊥) T 4(I⊥) T 5(I⊥)

〈∆3, Γ 〉 . . . . . . . . . mf (0, 1) ⇒ fib(2, x)
. . . . . . . . . (mf (1, 1) ⇒ gf (2, x, 1)) . . .

〈∆′
3, Γ 〉 mf (0, z1), . . . mf (2, z1 + z2) gf (2, x, 1) . . .

mf (1, z2) . . . ⇒ gf (2, x, 2) . . . . . .

〈∆′′
3 , Γ 〉 mf (2, x) gf (2, x, 2) . . . . . . . . .

Fig. 1. Steps leading to T 5(I⊥), ∆3, Γ �� fib(2, x).

The chart contains the main steps leading to T 5(I⊥),∆3, Γ �� fib(2, x).
memfib is abbreviated with mf, and getfib with gf.

4.2 Soundness and Completeness

The following theorem states the soundness and completeness we were looking
for, establishing the full connection between the fixed point semantics pre-
sented and the calculus UC. The definitions below will be used in its proof.

Let S = {〈∆,Γ,G〉 ∈ W × P(LC) × G | lfp(T ),∆, Γ �� G}. We define
the function ord : S −→ IN as follows. Given any 〈∆,Γ,G〉 ∈ S, Lemma
3 guarantees that the set of natural numbers k such that T k(I⊥),∆, Γ �� G
is nonempty. Therefore, it is possible to define ord(〈∆,Γ,G〉) as the least
element of such set. Let us consider the partial order (S, <) defined as follows.
Given any 〈∆1, Γ1, G1〉 , 〈∆2, Γ2, G2〉 ∈ S, 〈∆1, Γ1, G1〉 < 〈∆2, Γ2, G2〉 if

- ord(〈∆1, Γ1, G1〉) < ord(〈∆2, Γ2, G2〉), or
- ord(〈∆1, Γ1, G1〉) = ord(〈∆2, Γ2, G2〉) and G1 is a strict subformula of a

goal G′
2, where G′

2 is obtained by renaming the free variables in G2.

Such partial order is well-founded, because (IN, <) is also well-founded and
formulas are finite sequences of symbols.
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Theorem 2. For any ∆, Γ and G goal, lfp(T ),∆, Γ �� G ⇐⇒ ∆;Γ �UC G.

Proof. The whole proof can be found in the Appendix. Only the cases when
G is atomic or an existential quantification are considered below.

⇐) Let h be the height of a UC-proof for ∆;Γ �UC G. The claim is proved
inductively on h. For the base case h = 1 and G ≡ C (see the Appendix).
For the inductive case, we suppose that ∆;Γ |— G has a proof of height
h. Let us prove that lfp(T ),∆, Γ �� G by case analysis on the UC-rule
employed in the bottom of such proof.
– (Clause). It must be the case that there exist a variant ∀x(G ⇒ A′)

of a clause of elab(∆), such that the variables in x do not occur free
in ∆, Γ , A, and that the sequent ∆;Γ |— ∃x(A ≈ A′ ∧ G) has a proof
of height h − 1. By induction hypothesis, lfp(T ),∆, Γ �� ∃x(A ≈ A′ ∧
G). Using the definition of the operator T , the latter implies A ∈
T (lfp(T ))(∆,Γ ), which is equivalent to T (lfp(T )),∆, Γ �� A. But since
T (lfp(T )) = lfp(T ), the proof is complete.

– (∃R). G must be of the form ∃xG′, and there must be a constraint C
and a variable y not occurring free in ∆, Γ , ∃xG′, such that ∆;Γ,C |—
G′[y/x] has a proof of height h−1 and Γ �C ∃yC. By induction hypoth-
esis, lfp(T ),∆, Γ ∪{C} �� G′[y/x], and therefore lfp(T ),∆, Γ �� ∃xG′.

⇒) By induction on the order (S, <). Let us take 〈∆,Γ,G〉 ∈ S and as-
sume that, for any other 〈∆′, Γ ′, G′〉 ∈ S, 〈∆′, Γ ′, G′〉 < 〈∆,Γ,G〉 implies
∆′;Γ ′ �UC G′. Then, let us conclude ∆;Γ �UC G by case analysis on the
structure of G.
– G ≡ A. 〈∆,Γ,A〉 ∈ S implies that lfp(T ),∆, Γ �� A.

Let k = ord(〈∆,Γ,A〉), so T k(I⊥),∆, Γ �� A, which is equivalent to
A ∈ (T k(I⊥))(∆,Γ ). This implies that there is a variant ∀x(G ⇒ A′) of
a clause of elab(∆) such that the variables x do not occur free in ∆, Γ ,
A, and T k−1(I⊥),∆, Γ �� ∃x(A ≈ A′ ∧ G). So 〈∆,Γ,∃x(A ≈ A′ ∧ G)〉
< 〈∆,Γ,A〉, and the induction hypothesis can be applied, obtaining
that ∆;Γ �UC ∃x(A ≈ A′ ∧ G). Using the rule (Clause) with the elab-
orated clause ∀x(G ⇒ A′), it follows that ∆;Γ �UC A.

– G ≡ ∃xG′. Then 〈∆,Γ,G〉 ∈ S implies that there is a constraint
C and a variable y such that y does not occur free in ∆, Γ , ∃xG′,
Γ �C ∃yC ′ and lfp(T ),∆, Γ∪{C} �� G′[y/x]. Clearly, ord(〈∆,Γ,G〉) =
ord(〈∆,Γ ∪ {C}, G′[y/x]〉) and G′[y/x] is a renaming of a strict sub-
formula of G, so 〈∆,Γ ∪ {C}, G′[y/x]〉 < 〈∆,Γ,G〉. Therefore, by the
induction hypothesis we obtain ∆;Γ,C �UC G′[y/x]. Thanks to the
rule (∃R), it follows that ∆;Γ �UC G. ��

This fixed point semantics supplies a framework in which properties of
programs can be easily analyzed. For instance, two programs can be compared
using the interpretation lfp(T ). Let us consider that two programs ∆ and ∆′

are said to be equivalent if, for any Γ and G, ∆;Γ �UC G ⇐⇒ ∆′;Γ �UC
G. In other words, for every Γ , the same goals can be deduced from them.
Then the problem of check the equivalence between ∆ and ∆′ can be reduced
to prove that lfp(T )(∆,Γ ) = lfp(T )(∆′, Γ ), for every Γ . This is due to the
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previous results, since intuitively lfp(T ) provides the atoms that can be proved
from a program in the context of a set of constraints.

Example 4. Let ∆ = {∀x(x ≥ 0 ⇒ p(x)),∀x(x < 0 ⇒ p(x))}, and ∆′ =
{∀x(x ≥ 0 ∨ x < 0 ⇒ p(x))}, two programs for the instance HH (R). ∆ and
∆′ are not equivalent because lfp(T )(∆, ∅) = ∅, but p(y) ∈ lfp(T )(∆′, ∅). This
happens because the entailment relation in the constraint system R is classi-
cal deduction, but, for programs, an intuitionistic interpretation approach is
considered.

On the contrary, if ∆ and ∆′ are such that {∀x(q(x) ⇒ p(x)),∀x(q′(x) ⇒
p(x))} ⊆ ∆, and {∀x(q(x) ∨ q′(x) ⇒ p(x))} ⊆ ∆′, these programs could be
equivalent.

4.3 Models

At this stage, lfp(T ) has already been proved to be a sound and complete
semantics with respect to UC in a sense. However, instead of having a unique
model, it would also be desirable to provide for a more general notion of model
such that ∆,Γ �UC G iff G is true in the context 〈∆,Γ 〉 for every model. Such
notion of model is provided below, together with the expected results.

Definition 6. Given D ≡ ∀x(G ⇒ A), an interpretation I is a model of
D, denoted by I � D, if for any ∆, Γ and A′ ∈ At such that D is a vari-
ant of a clause in elab(∆) and no variable x ∈ x occurs free in ∆,Γ,A′, if
I,∆, Γ �� ∃x(G ∧ A ≈ A′) then A′ ∈ I(∆,Γ ).

Intuitively, an interpretation I is model of an elaborated clause D if,
whenever D is available, I gathers all the atoms possibly inferred by using
the clause D.

Definition 7. An interpretation I is said to be a model if I � D holds for
every elaborated clause D.

Lemma 6. For any interpretation I, I ∈ I is a model ⇐⇒ T (I) � I.

Proof. T (I) � I ⇐⇒ for any ∆ and Γ , T (I)(∆,Γ ) ⊆ I(∆,Γ ) ⇐⇒ for any
∆, Γ , A and any variant ∀x(G ⇒ A′) of a clause in elab(∆) such that the
variables x do not occur free in ∆, Γ , A, if I,∆, Γ �� ∃x(A ≈ A′ ∧ G) then
A ∈ I(∆,Γ ). However, by Definition 6, this is equivalent to say that I � D
for any elaborated clause D, i. e., I is a model. ��

Lemma 7. For any I ∈ I, if T (I) � I then lfp(T ) � I.

Proof. It is well known that, for continuous operators in complete lattices,
any postfixed point is greater (or equal to) the least fixed point. ��

Theorem 3. For any Γ , ∆ and G,

∆;Γ �UC G ⇐⇒ I,∆, Γ �� G holds for every model I.

Proof. I,∆, Γ �� G for every model I ⇐⇒ I,∆, Γ �� G for every I such that
T (I) � I, thanks to Lemma 6 ⇐⇒ lfp(T ),∆, Γ �� G, from Lemmas 2 and 7
⇐⇒ ∆;Γ �UC G, by virtue of Theorem 2. ��
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4.4 Considering particular classes of constraint systems

A fixed point semantics has just been presented for HH(C) for any general
constraint system C. In it, the constraint system has been used as a black
box, through the entailment relation �C, which is a syntactic tool. See, for
example, the cases C and ∃xG of Definition 4. The conditions imposed in
Section 2 are meant as minimal requirements for a C to be a constraint system,
but in many useful cases C satisfies additional properties. For example, it is
many times the case when LC is the whole set of first-order formulas over a
signature, and Γ �C C holds iff AxC ∪ Γ � C, where AxC is a suitable set of
first-order axioms and � is the entailment relation of classical first-order logic
with equality. There are many well known constraint systems of this form.
For instance, CFT , where AxCFT is Smolka and Treinen’s axiomatization of
the domain of feature trees [15]; or R, where AxR is Tarski’s axiomatization
of the real numbers [16]. See also the system RH defined in [6]. In these cases,
the syntactic relation �C has a clear connection with the inference relation
|= in classical logic, and the requirements specified by �C in the preceding
semantics can be replaced by conditions over |=.

As in the frame of CLP we are interested in generalized conditions for
the constraint systems that would guarantee the existence of semantics for
constraints, based on a model theory, and that could be incorporated to the
fixed point semantics of logic programs.

Usually the semantics of constraint logic programs are based on the as-
sumption that the domain of computation (model), which is the structure
used to interpret the constraints; the solver, which checks if a constraint is
satisfiable; and the constraint theory, that describes the logical semantics of
the constraints, agree. See [8] for details.

Now we will focus on constraint systems for which an additional condition
is required. This condition represents the same idea of agreement mentioned
before, and it is specified now. Some notation is introduced for that purpose.

Given a constraint system C over a signature Σ, the C-constraints will be
interpreted by means of a Σ-structure AC consisting of a carrier set and an
interpretation over it for every symbol of Σ. An assignment for AC , denoted
ν, is a function mapping variables into elements of the carrier of AC . [[ ]]AC

ν

is a boolean function that applied to a constraint C produces the classical
interpretation of C under AC and ν.

AC and C are said to agree if for any Γ , C and ν, Γ �C C if and only if
[[
∧

Γ ⇒ C]]AC
ν = true.

We have defined a semantics for this class of constraint systems, based
on a notion of forcing similar to that in Definition 4, but in which the sets
of constraints are replaced by the assignments making them true in AC. The
introduction of the whole theory leads to several intermediate definitions and
technical lemmas that are not developed here. However, the main ideas and
results are summarized.

Let us assume that AC and C agree, and that ν henceforth denotes assign-
ments for AC . Constraints will be interpreted by the sets of such assignments
that make them true. Formally, given a constraint C, the set [[C]] is defined as
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{ν : dom(ν) = free(C) | [[C]]ν = true}3, where dom(ν) is the set of variables
mapped by ν. Such definition is directly extended to finite sets of constraints,
i. e. [[Γ ]] = [[

∧
Γ ]]. Notice that Γ �C C iff [[Γ ]] ⊆ [[C]].

Example 5. Let C = R and AR be the Σ-structure whose carrier is IR and
that interprets constants for real numbers and arithmetic symbols in the
natural way. If C ≡ x∗x+y ∗y = 1, then [[C]] = {ν : {x, y} → IR2 | (ν(x))2 +
(ν(y))2 = 1}. Once each variable is associated to a coordinate axis, this can be
assimilated to the set {〈x, y〉 ∈ IR2 | x2+y2 = 1}, the circle of radius 1 centered
at the origin of the real plane. Thus, the syntactic object x ∗ x + y ∗ y = 1 is
replaced by the circle which is its intended meaning in AR.

As in the case of �� , we are looking for a model I and a relation ��C such
that for any ∆,Γ and G, ∆;Γ �UC G iff I,∆, [[Γ ]] ��CG. Several technicalities
are required in the proof of such result, but the foundations are in some sense
similar to those for the preceding semantics. A new notion of interpretation I
is defined. Interpretations are monotonous functions applied to pairs 〈∆, ν〉.
An operator T that transforms such interpretations is defined, whose least
fixed point is the model we were looking for. The main result is the following
theorem.

Theorem 4. For any ∆,Γ and G, lfp(T ),∆, Γ �� G⇐⇒ lfp(T ),∆, [[Γ ]] ��CG.
Therefore, ∆;Γ �UC G ⇐⇒ lfp(T ),∆, [[Γ ]] ��CG.

5 Conclusions

In previous papers [10,9] combinations of HH and CLP were proposed, pro-
ducing first and higher order schemes HH(C) parametric w.r.t. the constraint
system. These amalgamated languages gather the expressivity and the effi-
ciency advantages of HH and CLP, respectively. A proof system that merges
inference rules from intuitionistic sequent calculus with the entailment rela-
tion of a constraint system was defined. This proof system guarantees uniform
proofs, which are the basis of abstract logic programming languages [13]. A
goal solving procedure that is sound and complete w.r.t. the proof system
was also presented. Such procedure could be seen as an operational seman-
tics of HH(C), however the absence of a more declarative semantics for this
new language was evident. In this paper we have defined semantics for HH(C)
based on fixed point constructions as is usually done in the LP and CLP
fields [11,2,3,8,5].

As far as we know, our work is the first published attempt to give declara-
tive semantics to an amalgamated logic that combines the Hereditary Harrop
fragment of intuitionistic first-order logic with a constraint system. Due to
the embedding of implications and universal quantifiers inside goals (and so
inside programs), finding a fixed point semantics becomes a hard task, further
obstructed by the presence of constraints.

In [12] a model theory is presented for an extension of Horn clauses includ-
ing implications in goals based on a fixed point construction, and it is proved
3 free(O) is the set of free variables in O, where O stands for a formula or set of formulas.
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that the operational meaning of implication is sound and complete w.r.t. this
semantics. Our approach is close to this framework, but it incorporates the
semantics of universal quantifiers in goals and solves the new difficulties due
to the presence of constraints.

A semantics for the fragment of λ-prolog —that is based on the higher-
order logic HH without constraints—, in which classical and intuitionistic
theories coincide, is presented in [18]. But this is not the case if implications
and universal quantifiers are considered.

Referring to CLP, most of the defined semantics use different fixed point
constructions. For instance in [8] fixed point semantics constitute a bridge
between operational and algebraic semantics. This is also our aim. But notice
that in traditional CLP the programs are limited to be Horn clauses with
constraints. So in the frame of constraint systems which are complete w.r.t.
a theory, programs (with embedded constraints) may be interpreted using
classical logical inference. However, this is not the case in our language. A
classical theory can be considered for the constraint system, but anyway the
intuitionism remains, even in the interpretation of pure programs.

We are now researching for more abstract model theories based on indexed
categories or uniform algebras [4,1], that could provide a pure model-theoretic
semantics, not so directly connected with the operational semantics. Models
should provide for meanings of constraints, programs and goals in a homoge-
neous way, and the expected general result would claim that C is a correct
answer constraint for G from ∆, if and only if, every model satisfying ∆ and
C satisfies G.
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James Lipton concerning the presented work.
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Appendix

Lemma 2. If I1, I2 ∈ I and I1 � I2, then for any goal G, ∆, and Γ ,
I1,∆, Γ �� G implies I2,∆, Γ �� G.

Proof. The proof is inductive on the structure of G:

• G ≡ C ∈ LC .
I1,∆, Γ �� C ⇐⇒ Γ �C C ⇐⇒ I2,∆, Γ �� C.

• G ≡ A, atomic goal.
I1,∆, Γ �� A ⇐⇒ A ∈ I1(∆,Γ ). I1 � I2 implies that I1(∆,Γ ) ⊆
I2(∆,Γ ), so A ∈ I2(∆,Γ ) and therefore I2,∆, Γ �� A.

• G ≡ G1 ∧ G2.
I1,∆, Γ �� G1 ∧ G2 ⇐⇒ I1,∆, Γ �� Gi for each i ∈ {1, 2}. In both cases
the induction hypothesis can be used, so I2,∆, Γ �� Gi for each i ∈ {1, 2},
which implies that I2,∆, Γ �� G1 ∧ G2.

• G ≡ G1 ∨ G2.
I1,∆, Γ �� G1 ∨ G2 ⇐⇒ there is i ∈ {1, 2} such that I1,∆, Γ �� Gi. By
induction hypothesis, I2,∆, Γ �� Gi, which implies that I2,∆, Γ �� G1∨G2.

• G ≡ D ⇒ G′.
I1,∆, Γ �� D ⇒ G′ ⇐⇒ I1,∆ ∪ {D}, Γ �� G′. By induction hypothesis,
I2,∆ ∪ {D}, Γ �� G′ holds, which implies that I2,∆, Γ �� D ⇒ G′.

• G ≡ C ⇒ G′.
I1,∆, Γ �� C ⇒ G′ ⇐⇒ I1,∆, Γ ∪ {C} �� G′. By induction hypothesis,
I2,∆, Γ ∪ {C} �� G′ holds, which implies that I2,∆, Γ �� C ⇒ G′.

• G ≡ ∃xG′.
I1,∆, Γ �� ∃xG′ ⇐⇒ there is a C-constraint C and a variable y such
that:
– y does not occur free in ∆, Γ , ∃xG′.
– Γ �C ∃yC.
– I1,∆, Γ ∪ {C} �� G′[y/x].

By induction hypothesis, for the same C and y it holds that I2,∆, Γ ∪
{C} �� G′[y/x], therefore I2,∆, Γ �� ∃xG′.

• G ≡ ∀xG′.
I1,∆, Γ �� ∀xG′ ⇐⇒ there is a variable y such that: y does not occur
free in ∆, Γ , ∀xG′ and I1,∆, Γ �� G′[y/x]. By induction hypothesis, it
holds that I2,∆, Γ �� G′[y/x], therefore I2,∆, Γ �� ∀xG′. ��

Lemma 3. Let {Ii}i≥0 be a denumerable family of interpretations such
that I0 � I1 � I2 � . . ., and let G be a goal. Then, for any ∆ and Γ ,⊔

i≥0 Ii,∆, Γ �� G implies that there exists k ≥ 0 such that Ik,∆, Γ �� G.

Proof. We already know that (
⊔

i≥0 Ii)(∆,Γ ) =
⋃

i≥0 Ii(∆,Γ ). By induction
on the structure of G:

• G ≡ C ∈ LC .⊔
i≥0 Ii,∆, Γ �� C ⇐⇒ Γ �C C ⇐⇒ Ik,∆, Γ �� C is true independently

of k ≥ 0.
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• G ≡ A, atomic formula.⊔
i≥0 Ii,∆, Γ �� A ⇐⇒ A ∈ (

⊔
i≥0 Ii)(∆,Γ ) =

⋃
i≥0 Ii(∆,Γ ). Therefore,

there exists k ≥ 0 such that A ∈ Ik(∆,Γ ), hence, for that k, Ik,∆, Γ �� A.
• G ≡ G1 ∧ G2.⊔

i≥0 Ii,∆, Γ �� G1 ∧ G2 ⇐⇒
⊔

i≥0 Ii,∆, Γ �� Gj for each j ∈ {1, 2}. In
both cases the induction hypothesis can be used, so there exist k1, k2 ≥ 0
such that Ikj

,∆, Γ �� Gj for each j ∈ {1, 2}. Let k = max(k1, k2). Then
Ik,∆, Γ �� Gj for each j ∈ {1, 2} in virtue of Lemma 2, and therefore
Ik,∆, Γ �� G1 ∧ G2.

• G ≡ G1 ∨ G2.⊔
i≥0 Ii,∆, Γ �� G1∨G2⇐⇒ there is j ∈ {1, 2} such that

⊔
i≥0 Ii,∆, Γ �� Gj .

The induction hypothesis can be used, so there exist k ≥ 0 such that
Ik,∆, Γ �� Gj , and therefore Ik,∆, Γ �� G1 ∨ G2.

• G ≡ D ⇒ G′.⊔
i≥0 Ii,∆, Γ �� D ⇒ G′ ⇐⇒

⊔
i≥0 Ii,∆ ∪ {D}, Γ �� G′. By induction

hypothesis, there is k ≥ 0 such that Ik,∆ ∪ {D}, Γ �� G′. Therefore,
Ik,∆, Γ �� D ⇒ G′.

• G ≡ C ⇒ G′.⊔
i≥0 Ii,∆, Γ �� C ⇒ G′ ⇐⇒

⊔
i≥0 Ii,∆, Γ ∪ {C} �� G′. By induction

hypothesis, there is k ≥ 0 such that Ik,∆, Γ ∪ {C} �� G′. Therefore,
Ik,∆, Γ �� C ⇒ G′.

• G ≡ ∃xG′.⊔
i≥0 Ii,∆, Γ �� ∃xG′ ⇐⇒ there is a C-constraint C and a variable y such

that:
– y does not occur free in ∆, Γ , ∃xG′.
– Γ �C ∃yC.
–

⊔
i≥0 Ii,∆, Γ ∪ {C} �� G′[y/x].

By induction hypothesis, it holds that there is a k ≥ 0 such that Ik,∆, Γ ∪
{C} �� G′[y/x]. Therefore Ik,∆, Γ �� ∃xG′.

• G ≡ ∀xG′.⊔
i≥0 Ii,∆, Γ �� ∀xG′ ⇐⇒ there is a variable y such that:
– y does not occur free in ∆, Γ , ∀xG′.
–

⊔
i≥0 Ii,∆, Γ �� G′[y/x].

By induction hypothesis, it happens that there exists k ≥ 0 such that
Ik,∆, Γ �� G′[y/x]. Therefore Ik,∆, Γ �� ∀xG′. ��

Lemma 4 (Monotonicity of T ). Let I1, I2 ∈ I such that I1 � I2. Then,
T (I1) � T (I2).

Proof. Let us consider any ∆, Γ and A ∈ T (I1)(∆,Γ ). The latter implies that
there is a variant ∀x(G ⇒ A′) of a clause of elab(∆), such that the variables x
do not occur free in ∆, Γ , A, and I1,∆, Γ �� ∃x(A ≈ A′ ∧ G). Using Lemma
2 and the fact that I1 � I2, we obtain I2,∆, Γ �� ∃x(A ≈ A′ ∧ G), which
implies A ∈ T (I2)(∆,Γ ). Since no particular choice was made for A, ∆, Γ ,
this argument proves T (I1)(∆,Γ ) ⊆ T (I2)(∆,Γ ) for any ∆ and Γ , therefore
T (I1) � T (I2). ��

Theorem 2. For any ∆, Γ and G, lfp(T ),∆, Γ �� G ⇐⇒ ∆;Γ �UC G.
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Proof. Both implications are proved by induction.

⇐) Let h be the height of a UC-proof for ∆;Γ �UC G. The claim is proved
inductively on h.
– Base case: h = 1. The only possibility is that G ≡ C ∈ LC . Then

∆;Γ �UC C implies that Γ �C C, and therefore lfp(T ),∆, Γ �� C
holds.

– Inductive case. Assuming that ∆;Γ |— G has a proof of height h, let us
prove that lfp(T ),∆, Γ �� G by case analysis on the UC-rule employed
in the bottom of such proof.

(Clause) So there is a variant ∀x(G ⇒ A′) of a clause of elab(∆) such that
the variables in x do not occur free in ∆, Γ , A, and that the sequent
∆;Γ |— ∃x(A ≈ A′ ∧ G) has a proof of height h − 1. By induction
hypothesis, lfp(T ),∆, Γ �� ∃x(A ≈ A′ ∧ G). Using the definition
of the operator T , the latter implies that A ∈ (T (lfp(T )))(∆,Γ ),
which is equivalent to T (lfp(T )),∆, Γ �� A. But since T (lfp(T )) =
lfp(T ), the proof is complete.

(∧R) It must be the case that there are G1, G2 such that G ≡ G1 ∧ G2

and the sequents ∆;Γ |— Gi have a proof of height less than h for
each i ∈ {1, 2}. By induction hypothesis, lfp(T ),∆, Γ �� Gi holds
for i ∈ {1, 2}, which implies lfp(T ),∆, Γ �� G.

(∨R) Then there are G1, G2 such that G ≡ G1 ∨ G2 and the sequent
∆;Γ |— Gi has a proof of height h − 1 for some i ∈ {1, 2}. By
induction hypothesis, lfp(T ),∆, Γ �� Gi, hence lfp(T ),∆, Γ �� G.

(⇒R) In this case, G ≡ D ⇒ G′ for some D and G′, and the sequent
∆,D;Γ |— G′ has a proof of height h−1. By induction hypothesis,
lfp(T ),∆ ∪ {D}, Γ �� G′. Therefore lfp(T ),∆, Γ �� D ⇒ G′.

(⇒CR
) It must be the case that there are C and G′ such that G ≡ C ⇒ G′

and the sequent ∆;Γ,C |— G′ has a proof of height h−1. By induc-
tion hypothesis, lfp(T ),∆, Γ∪{C}�� G′. So, lfp(T ),∆, Γ �� C ⇒ G′.

(∃R) G must be of the form ∃xG′, and there must exist C and a variable
y not occurring free in ∆, Γ , ∃xG′, such that ∆;Γ,C |— G′[y/x]
has a proof of height h−1 and Γ �C ∃yC. By induction hypothesis,
lfp(T ),∆, Γ ∪ {C} �� G′[y/x], and therefore lfp(T ),∆, Γ �� ∃xG′.

(∀R) G must be of the form ∀xG′, and there must exist a variable y not
occurring free in ∆, Γ , ∀xG′ such that ∆;Γ |— G′[y/x] has a proof
of height h − 1. By induction hypothesis, lfp(T ),∆, Γ �� G′[y/x],
and therefore lfp(T ),∆, Γ �� ∀xG′.

⇒) By induction on the order (S, <). Let us take 〈∆,Γ,G〉 ∈ S and as-
sume that, for any other 〈∆′, Γ ′, G′〉 ∈ S, 〈∆′, Γ ′, G′〉 < 〈∆,Γ,G〉 implies
∆′;Γ ′ �UC G′. Then, let us conclude ∆;Γ �UC G by case analysis on the
structure of G.
– G ≡ C ∈ LC . Then 〈∆,Γ,C〉 ∈ S implies that Γ �C C, and therefore

∆;Γ �UC C.
– G ≡ A. In this case 〈∆,Γ,A〉 ∈ S implies that lfp(T ),∆, Γ �� A.

Let k = ord(〈∆,Γ,A〉), so T k(I⊥),∆, Γ �� A, which is equivalent to
A ∈ T k(I⊥)(∆,Γ ). This implies that there is ∀x(G ⇒ A′) ∈ elab(∆)
such that the variables x do not occur free in ∆, Γ , A, and in addition
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T k−1(I⊥),∆, Γ �� ∃x(A ≈ A′ ∧G). Due to the way in which the order
in S is defined, 〈∆,Γ,∃x(A ≈ A′ ∧ G)〉 < 〈∆,Γ,A〉, so the induction
hypothesis can be applied, obtaining that ∆;Γ �UC ∃x(A ≈ A′ ∧ G).
Using the rule (Clause) with the clause ∀x(G ⇒ A′), it follows that
∆;Γ �UC A.

– G ≡ G1 ∧ G2. Then 〈∆,Γ,G〉 ∈ S implies lfp(T ),∆, Γ �� G1 and
lfp(T ),∆, Γ �� G2. It is obvious that ord(〈∆,Γ,G〉) = ord(〈∆,Γ,G1〉 =
ord(〈∆,Γ,G2〉) and G1, G2 are strict subformulas of G, and hence
〈∆,Γ,G1〉 , 〈∆,Γ,G2〉 < 〈∆,Γ,G〉. Therefore, by the induction hy-
pothesis we obtain ∆;Γ �UC G1 and ∆;Γ �UC G2. Thanks to the rule
(∧R), it follows that ∆;Γ �UC G.

– G ≡ G1 ∨G2. Then 〈∆,Γ,G〉 ∈ S implies that there is i ∈ {1, 2} such
that lfp(T ),∆, Γ �� Gi. Clearly, ord(〈∆,Γ,G〉) = ord(〈∆,Γ,Gi〉) and
Gi is a strict subformula of G, so 〈∆,Γ,Gi〉 < 〈∆,Γ,G〉. Therefore, by
the induction hypothesis we obtain ∆;Γ �UC Gi for some i ∈ {1, 2}.
Thanks to the rule (∨Ri), it follows that ∆;Γ �UC G.

– G ≡ D ⇒ G′. Then 〈∆,Γ,G〉 ∈ S implies that lfp(T ),∆∪{D}, Γ �� G′.
Clearly, ord(〈∆,Γ,G〉) = ord(〈∆ ∪ {D}, Γ,G′〉) and G′ is a strict sub-
formula of G, so 〈∆ ∪ {D}, Γ,G′〉 < 〈∆,Γ,G〉. Therefore, by the induc-
tion hypothesis we obtain ∆,D;Γ �UC G′. Thanks to the rule (⇒R),
it follows that ∆;Γ �UC G.

– G ≡ C ⇒ G′. Then 〈∆,Γ,G〉 ∈ S implies that lfp(T ),∆, Γ∪{C} �� G′.
Clearly, ord(〈∆,Γ,G〉) = ord(〈∆,Γ ∪ {C}, G′〉) and G′ is a strict sub-
formula of G, so 〈∆,Γ ∪ {C}, G′〉 < 〈∆,Γ,G〉. Therefore, by the induc-
tion hypothesis we obtain ∆;Γ,C �UC G′. Thanks to the rule (⇒CR

),
it follows that ∆;Γ �UC G.

– G ≡ ∃xG′. Then 〈∆,Γ,G〉 ∈ S implies that there is a constraint C
and a variable y such that:
∗ y does not occur free in ∆, Γ , ∃xG′.
∗ Γ �C ∃yC.
∗ lfp(T ),∆, Γ ∪ {C ′} �� G′[y/x].

Clearly, ord(〈∆,Γ,G〉) = ord(〈∆,Γ ∪ {C ′}, G′[y/x]〉) and G′[y/x] is
a renaming of a strict subformula of G, so 〈∆,Γ ∪ {C}, G′[y/x]〉 <
〈∆,Γ,G〉. Therefore, by the induction hypothesis we obtain ∆;Γ,C �UC
G′[y/x]. Thanks to the rule (∃R), it follows that ∆;Γ �UC G.

– G ≡ ∀xG′. Then 〈∆,Γ,G〉 ∈ S implies that there is a variable y such
that:
∗ y does not occur free in ∆, Γ , ∀xG′.
∗ lfp(T ),∆, Γ �� G′[y/x].

Clearly, ord(〈∆,Γ,G〉) = ord(〈∆,Γ,G′[y/x]〉) and G′[y/x][x/y] ≡ G′

is a strict subformula of G, so 〈∆,Γ,G′[y/x]〉 < 〈∆,Γ,G〉. Therefore,
by the induction hypothesis we obtain ∆;Γ �UC G′[y/x]. Thanks to
the rule (∀R), it follows that ∆;Γ �UC G. ��
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