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Interfaces with Default Implementations in Java

Markus Mohnen

Lehrstuhl für Informatik II, RWTH Aachen, Germany
mohnen@informatik.rwth-aachen.de

Abstract. With the interface construct, Java features a concept with high potential for
producing reusable code: Java’s interfaces allow the definition of class properties indepen-
dently of class inheritance. We propose an extension of Java for providing default imple-
mentations in interfaces. Default implementations are useful since they reduce the effort
required to implement an interface. They are especially interesting if there is a canoni-
cal way to implement methods of the interface in terms of some other methods. In these
cases, an implementation can be obtained by implementing the base methods and use the
default implementations of the other methods. We discuss the rationale for our design and
show that the extension can be implemented both efficiently and conservatively, i.e. without
modification of the Java virtual machine.

1 Introduction

The interface construct in Java allows the definition of properties which can be imple-
mented by classes. An interface in Java just contains names and signatures of methods
and fields, but no method implementations. If a class implements in interface, it must
provide implementations for the methods.

Since interfaces can be used just like classes in declarations and signatures, it is
possible to base programs on properties of classes instead of classes. Furthermore, the
inheritance hierarchy of interfaces is independent of the class inheritance tree. Therfore,
this language feature gives a higher potential to produce reusable code than abstract
classes, i.e. classes where the implementation of some methods is omitted. The Java 2
API makes extensive use of interfaces. For instance, the package java.util contains
six interface hierarchies.

In many cases, it is useful to equip an interface with a set of default implementations
of methods since they reduce the effort required to implement an interface. They are
especially interesting if there is a canonical way to implement functions of an interface
in terms of some other functions. In these cases, an implementation can be obtained by
implementing the base methods and use default implementations of the other methods.

The usefulness of default implementations has also been seen by the Java devel-
opers. In the Java 2 API there are several abstract classes which provide default im-
plementations for some of the interfaces. For instance, in the package java.util,
the class AbstractCollection is an abstract class implementing Collection
except for the methods iterator and size.

However, the approach of adding abstract classes containing default implementa-
tions has drawbacks for the implementation of the interface and for the implementation
of the abstract classes:
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– To use the default implementation of the interface, a class must extend the abstract
class. Consequently, the programmer is no longer free to create an inheritance hi-
erarchy matching the needs of the problem at hand. Altogether, this abolishes the
advantages of interfaces over abstract classes.

– To provide default implementations for all interfaces in an interface hierarchy with
multiple inheritance, it is unavoidable to duplicate code in the abstract classes.

The contribution of this paper is a proposal for an extension of Java which allows
the direct definition of default implementations in interfaces and avoids the drawbacks
imposed by their simulation in terms of abstract classes. We provide a complete design
of this extension and discuss the interaction of default implementations with Java’s
inheritance mechanisms.

An explicit goal of our work was to propose a conservative extension. This is im-
portant in two aspects: (1) The semantics of all existing programs remain unchanged.
(2) The extension can be implemented efficiently by using the existing Java virtual
machine.

This paper is the successor of [16] and improves the work presented there in terms
of a more efficient and simpler implementation and in terms of better syntax of the
proposed extension.

The paper is organised as follows. In the next section we give an overview of related
work. An example of the usefulness of interfaces is presented in Section 3. In addition,
this section describes how default implementations are simulated in the Java 2 API. In
Section 4 we describe our extension to the Java language. Section 5 describes how we
propose to implement the language extension in terms of a translation to standard Java.
Section 6 concludes.

2 Related Work

Interfaces are not novel to Java. Similar constructs are known for instance in the con-
text of design patterns (template methods in [9]), and have been used in other languages:
In the object-oriented language Actor [24], the corresponding construct is named pro-
tocol. The functional language Haskell [11] features type classes. In contrast to these
approaches, however, Java lacks the feature of providing default implementations in
interfaces. Another object-oriented language with an interface-like construct without
default implementations is POOL-I [1]. Here, the construct is called type.

Since Java allows multiple inheritance of interfaces, the introduction of default im-
plementations is related to multiple inheritance of method implementations from more
than one superclass. Consequently, it might be argued that our proposal is weaker than
extending Java with full multiple inheritance. However, we belive that the Java lan-
guage design excluded this for good reasons. A lot of research has been done on full
multiple inheritance and it turned out that the main problem is how to define a satis-
factory general strategy for choosing or combining inherited method implementations,
which is at the same time intuitive and easy to use.
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– One of the most general approaches was taken in CLOS [12, 13]. Here, a method
can be declared to be either primary, before, around, or after. These at-
tributes control if, and in which order the corresponding methods of the immediate
superclasses are called. In addition, the programmer has control over how the results
of the methods calls are combined to the final result. While this approach grants al-
most total control over method combination, it also introduces a high degree of
complexity in the language. This might be the reason why newer languages resign
from this approach in favour of simpler solutions.

– Eiffel [15] also allows multiple inheritance of methods, but differs from CLOS in
the way this is implemented. While CLOS requires linearisation of the inheritance
hierarchy, Eiffel implements it directly. The approach avoids the problems of the
encapsulation violation [20] resulting from the linearisation in CLOS.

– While multiple inheritance is still allowed in C++ [21, 22], this language has a
more restrictive way of handling inherited method implementations: If a method is
inherited from more than one superclass, calls to this method must be qualified with
the name of the superclass. The disadvantage of this approach lies in the resulting
dependencies between unrelated classes: To use a class with methods inherited from
more than one superclass, the programmer is forced to encode parts of the inheri-
tance hierarchy. Consequently, resulting programs become harder to maintain.

– The newest object–oriented languages Ada95 [7, 3], and Java [10] disallow multi-
ple inheritance of method implementations.

Another related thread of research are mixins [5, 8]: While inheritance allows for
the creation of one new class, based on zero or more superclasses and a specification of
an increment, mixins liberate the increment such that it can be re-used and applied to
different superclasses. Of course, this is also a restricted form of multiple inheritance,
where the increment is used as an (abstract) superclasses. Not surprisingly, default im-
plementations of interfaces can be simulated by placing the default implementations in
a mixin. However, we consider this to be a pollution of the mixin concept, since the
increment represented by the mixin is not a freely reusable component: The mixin can
only be used when the interface is also used.

3 Interfaces in Java

In this section, we introduce our running example and use it to demonstrate the useful-
ness of Java’s interfaces.

3.1 Applications of Interfaces

In general, interfaces are useful to avoid that related classes have to share a common
(abstract) superclass. Instead, classes can support multiple common behaviours by im-
plementing multiple interfaces. For instance, the code in Fig. 1 is taken from a package
we developed for modelling mathematical structures. The structures we consider here
are the following:
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Fig. 1 Modelling Mathematical Structures

interface Set {
boolean isElement(Object e);
java.util.Enumeration elements();

}

(a) Sets
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

interface POSet extends Set {
boolean le(Object e1, Object e2) throws IllegalArgumentException;
boolean lt(Object e1, Object e2) throws IllegalArgumentException;

}

(b) Partially Ordered Sets
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

interface LSLattice extends POSet {
Object meet(Object e1, Object e2) throws IllegalArgumentException;

}

(c) Lower Semi Lattice
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

interface USLattice extends POSet {
Object join(Object e1, Object e2) throws IllegalArgumentException;

}

(d) Upper Semi Lattice
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

interface Lattice extends LSLattice, USLattice { }

(e) Lattice

Sets (Fig. 1(a)) in the mathematical sense (not to be confused with the collection data
structure java.util.Set) can be used to check if an element belongs to this
set by using the method isElement. Furthermore, a set “knows” all its elements
and makes the accessible as a java.util.Enumeration through the method
elements.

Partially Ordered Sets (Fig. 1(b)) have an additional binary relation “less-or-equal”, re-
presented as method le. The relation must be reflexive, transitive, and anti–symmet-
ric, but of course these properties cannot be guaranteed in this context. Often it is
useful to have the strict portion “less-than-but-not-equal” separately as method lt.
Obviously, it should hold that the value of le(e1,e2) is equal to the value of
lt(e1,e2)||e1.equals(e2).

Lower Semi Lattices (Fig. 1(c)) are partially ordered sets with the additional property
that the greatest lower bound (meet) of any two elements exists. Again, conditions
which cannot be expressed here are: (1) meet should be commutative and associa-
tive and (2) le(e1,e2) should be equal to e1.equals(meet(e1,e2)).

Upper Semi Lattices (Fig. 1(d)) are dual to lower semi lattices: The operation meet for
greatest lower bound is replaced with the operation join for least upper bound.

Lattices (Fig. 1(e)) are both lower and upper semi lattices. The absorption laws, i.e. e1
must be equal to both meet(join(e1,e2),e1)and join(e1,meet(e1,e2))
cannot be expressed in Java.

Since the methods lt, le, meet, and join are applicable only to elements of the
corresponding structure, these methods throw a IllegalArgumentException if
this condition is violated. In fact, the throws clause would not be necessary since any
method can throw this exception in Java; However, we included it anyway.
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Fig. 2 Interface Hierarchy staring from Set:

Set

POSet

LSLattice

Lattice

USLattice

In this example we can see two variations of the of interfaces:

1. As a definition of properties, like the interfaces Set, POSet, LSLattice, and
USLattice.

2. As a collection of properties, like the interface Lattice.

These interfaces form the following inheritance hierarchy in Fig. 2.
A class VectorSet implementing the interface Set in shown in Fig. 3. Since

the class java.lang.Vector already contains an appropriate elements method,
we can avoid implementing one by using Vector as superclass. The implementation of
the method isElement is generic it the sense that it works for any class implementing
Set.

It can be argued that this example is not the best possible, since we can easily avoid
extending Vector by encapsulating a field of type Vector in an implementation of
Set. The missing elements method can easily be provided as a stub which redirects
to the elements method of the encapsulated field. With this approach, an implemen-
tation of Set would be free to extend other classes.

However, in principle, this argument is always possible. Replacing inheritance by
membership and adding stubs for relevant inherited methods is a well known technique.
Obviously, the resulting class is a simulation of the original class with a similar inter-
face. However, it also clear that the resulting class is not equivalent to the original class,
simply because it cannot be used in a context where the superclass is needed. In a certain
sense, it is the opposite of object-orientation, since we have to add stubs where inheri-
tance could be used to reuse existing solutions. Whether this technique is appropriate or
not always depends on the complexity of the classes involved and on the intended use
of the classes. In our example, it would be applicable, since the classes are simple and
there is only one stub.

Nevertheless, in view of these objections, we still favour this example. In contrast
to other examples used in literature (which typically involve classes representing docu-
ments, employees, or aircrafts) our example is fully self contained and demonstrates all
effects. Its major flaw is that it might be considered too small to need the attention.

3.2 Default Implementations using Abstract Classes

In general, default implementations of methods can reduce the amount of effort required
to implement an interface. Furthermore, there are two special situations where default
implementations are useful:
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Fig. 3 An Implementation of Set

class VectorSet extends java.util.Vector implements Set {
public boolean isElement(Object e) {
for (java.util.Enumeration es=elements();es.hasMoreElements();) {

if (e.equals(es.nextElement())) return true;
}
return false;

}
}

1. There is a standard way to implement a method using other methods. For instance,
the method isElement from interface Set in Fig. 1(a) can be implemented using
the (generic) method elements as shown in the class VectorSet from Fig. 3.

2. Additional conditions must be fulfilled. For example, reconsider the conditions for
the methods le and lt in the interface POSet from Fig. 1(b): le must be re-
flexive, transitive, and anti-symmetric, and it should hold that le(e1,e2) ==
(lt(e1,e2)||e1.equals(e2)). Obviously, it is appealing to provide default
implementations which ensure that these conditions are met.

We demonstrate how default implementations can be provided by using abstract classes
and we show the deficiencies of this approach. The Java 2 API uses this method to a
large extent.

Fig. 4 shows default implementations in this style for two of the interfaces from the
previous section: The abstract class AbstractSet in Fig. 4(a) contains the generic
implementation of the method isElement which we already used in VectorSet
from Fig. 3. A full implementation of the interface Set can be obtained by extending
AbstractSet with a method elements. The modifier abstract in the declara-
tion of the class AbstractPOSet in Fig. 4(b) is actually not required from the Java
type system, since neither does AbstractPOSet contain abstract methods nor does
it omit to implement methods from the interface POSet. However, it provides default
implementations for both le and lt, each in terms of the other. Consequently, using
both default implementations at the same time would result in a nonterminating recur-
sion. To prevent that AbstractPOSet is used directly without overriding one of the
methods, the modifier abstractwas added.

Using abstract classes to provide default implementations has several severe disad-
vantages:

1. A class implementing an interface by extending the corresponding abstract class is
no longer free to extend other classes. Consequently, the class VectorSet from
Fig. 3 cannot be expressed in terms of AbstractSet.

2. Since abstract classes cannot inherit from more than one abstract class, this ap-
proach leads to code duplication in the case that the interfaces use multiple inheri-
tance. For instance, assume that we have abstract classes AbstractLSLattice
and AbstractUSLattice both extending the abstract class AbstractPOSet
and implementing the interfaces LSLattice and USLattice, respectively. Since
multiple inheritance of classes is prohibited, the straightforward way of defining
a class AbstractLattice implementing the interface Lattice by extending
both the class AbstractLSLattice and the class AbstractUSLattice is
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Fig. 4 Default Implementations using Abstract Classes

abstract class AbstractSet implements Set {
public boolean isElement(Object e) {

for (java.util.Enumeration es=elements();es.hasMoreElements(); ) {
if (e.equals(es.nextElement())) return true;

}
return false;

}
}

(a) Default Implementation of Set
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

abstract class AbstractPOSet extends AbstractSet implements POSet {
public boolean lt(Object e1, Object e2) throws IllegalArgumentException {

if (!isElement(e1) || !isElement(e2)) throw new IllegalArgumentException();
return le(e1,e2) && !e1.equals(e2);

}
public boolean le(Object e1, Object e2) throws IllegalArgumentException {

if (!isElement(e1) || !isElement(e2)) throw new IllegalArgumentException();
return lt(e1,e2) || e1.equals(e2);

}
}

(b) Default Implementation of POSet

not possible. Instead, an abstract class AbstractLattice can only be defined
by extending either AbstractLSLattice or AbstractUSLattice; In both
cases, the default implementation of one the method join and meet must be du-
plicated from the missing class.

3. The default implementations are located in a separate class, which might even be in
a separate compilation unit.

4 An Extension of Java

Several extensions of Java have been considered in literature, e.g. functional constructs
in Pizza [17] (now superseded by GJ [6], which is no longer promoted as functional),
virtual types [23], and parametric types [2].

Having identified default implementations as a useful language feature, we propose
an extension of Java. With this language extension, interfaces can be augmented with
default implementations, and classes and interfaces can refer to those. We deliberately
define default implementations of methods such that they are not automatically used in
the absence of an explicit implementation. To use a default implementation, a class or
interface must explicitly state this. There are two main reasons for this decision:

1. We avoid the problems with method combination and method selection which would
occur otherwise in the context of multiple inheritance of interfaces.

2. Our extension is backward compatible with the existing Java 2 in the following
sense: Assume we have an interface which provides default implementations for
some of its methods. If a class implementing the interface has no references to the
default implementation, then its semantics is the same with and without our exten-
sion. If we would choose to use default implementations of methods automatically,
then we would effectively change the semantics of existing classes.
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4.1 Specification

We reuse the Java keyword default for our purposes. Our extension allows this key-
word to be used as an additional modifier of method definitions in interfaces. In this way,
we allow the declaration of default implementations. Following the syntactical structure
of Java defined in [10], we extend the definition of AbstractMethodModifier [10, §9.4]:

AbstractMethodModifier: one of
public abstract default

To allow the use of default implementations, we change the definition of MethodBody
[10, §8.4.5] in the following way:

MethodBody:
Block
DefaultUse
;

DefaultUse:
= DefaultSpec ;

DefaultSpec:
default
TypeName . default

The syntactic alternative DefaultUse in the rule for MethodBody is new.
Furthermore, we require the following additional context sensitive conditions to be

fulfilled:

1. A declaration may not contain both the modifier abstract and the modifier default.
2. The declaration of a default implementation, i.e. one with the modifier default,

must either be accomplished by a body or by a DefaultUse. This changes the con-
dition in [10, §9.4], which states that “Every method declaration in the body of an
interface is implicitly abstract”.

3. A DefaultUse may occur both in interface definitions and class definitions. In addi-
tion, the condition in [10, §8.4.5] that “The body of a method must be a semicolon
if and only if the method is either abstract or native” remains valid. Conse-
quently, the body cannot be DefaultUse in these cases.

4. The unqualified form of DefaultUse may be used if and only if there is exactly one
direct superinterface which has a default implementation for the method.

5. For the qualified form of DefaultSpec, the TypeName must be the name of one of
the direct superinterfaces and this direct superinterface must contain a default im-
plementation for the method.

If a DefaultUse occurs in a method of an interface, then it operates as a declaration of
a default implementation for the method. This is useful for passing default implementa-
tions from a superinterface, since default implementations not inherited automatically.
Note that default implementations coming from superinterfaces which are more than
one step higher in the interface hierarchy may not be used. Hereby, we avoid that large
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Fig. 5 Default Implementations using Language Extension

interface Set {
default boolean isElement(Object e) {

for (java.util.Enumeration es=elements();es.hasMoreElements();) {
if (e.equals(es.nextElement())) return true;

}
return false;

}
java.util.Enumeration elements();

}

(a) Interface Set with Default Implementation
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

class VectorSet extends java.util.Vector implements Set {
public boolean isElement(Object e) = default;

}

(b) An Implementation of Set using Default Implementation
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

interface Lattice extends LSLattice, USLattice {
default Object meet(Object e1, Object e2) throws IllegalArgumentException

= USLattice.default;
default Object join(Object e1, Object e2) throws IllegalArgumentException

= USLattice.default;
}

(c) Default Implementations vs. Multiple Inheritance

parts of the interface hierarchy are used. Furthermore, we achieve a behaviour similar
to the one of super.

For instance, a reformulation of the interface Set using this extension is shown in
Fig. 5(a). It combines the pure interface from Fig. 1(a) with the generic implementation
of the method isElement from Fig. 3. The class VectorSet can then be written
by using the unqualified use. The qualified use is needed in the context of multiple
superinterfaces, as demonstrated in Fig. 5(c). Because the methods meet and join
both are inherited from exactly on superinterface, it would not be necessary to qualify
the use in this example. However, we added the qualifiers to increase readability of this
example.

In addition to the use of default implementations as declarations of methods, we
allow default implementations to be invoked explicitely. This is similar to the use of
super in ordinary methods. Therfore, we also change the definition of MethodInvoca-
tion [10, §15.11]:

MethodInvocation:
MethodName ( ArgumentListopt)
Primary . Identifier ( ArgumentListopt)
super . Identifier ( ArgumentListopt)
DefaultSpec . Identifier ( ArgumentListopt)

The last syntactical alternative is new. In contrast to the use of default implementations
as declarations of methods in DefaultUse, we require that the name of the method is
appended. This is useful, since it allows the use of default implementations in all meth-
ods. The additional context sensitive conditions are essentially the same we introduced
above.
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4.2 Discussion

The language extension we propose introduces default implementations in Java inter-
faces. We have deliberately defined the extension in such a way that default implemen-
tations of methods are not automatically used in the absence of an explicit implemen-
tation. Therfore, we can avoid the method combination/selection problems of multiple
inheritance of classes. Furthermore, this decision makes our extension conservative, in
the sense that the semantics of all existing Java programs remains unchanged. Conse-
quently, this decision is the one which fits Java best.

It is important to see that our extension is not intended to be an simulation of full-
featured multiple inheritance. In contrast to the developers of Actor, who promoted
protocols as “safe multiple inheritance” [25], we see interfaces as an orthogonal lan-
guage element. Its major purpose is to group kindred classes. Hence, the introduction
of default implementations in interfaces does not contradict the design decision of the
Java developers to disallow multiple inheritance of classes.

On the other hand, it would be possible to allow the definition of default imple-
mentations in classes also. Here, the presence of default would act opposing to the
qualifier abstract, resulting in four instead of three modes:

abstract: Overriding and hiding is allowed and inheriting happens automatically.
If a abstract method is not overridden, the extending class must be declared as
abstract.

default: Overriding and hiding is allowed and inheriting does not happen automat-
ically. If a default method is neither chosen nor overridden, the extending class
must be declared as abstract.

normal: Overriding and hiding is allowed and inheriting happens automatically.
final: Overriding and hiding is prohibited and inheriting happens automatically.

However, we are not sure if this approach is really interesting: In classes, the established
mechanism of providing an implementation is obviously the definition of methods. If a
subclass chooses not to use this implementation, it can simply override it. Consequently,
although this further extension would do no harm, it is unclear which benefits it would
bring.

5 Implementation

In this section we demonstrate the basic concepts involved in implementing the exten-
sion. We are able to implement the additional features such that no change to the design
of the Java virtual machine is needed. Hence, code generated from programs using the
extension can be executed on any implementation of the Java virtual machine.

Apart from the obvious extension of lexical and syntactical analysis, translating the
new language constructs involves two major tasks:

1. Checking the additional context sensitive conditions imposed by our extension.
2. Generating code for the declaration of default implementations, for DefaultUse, and

for the new alternative of MethodInvocation.
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We start by discussing Item 2 since the solution for Item 1 depends on the way the code
is generated.

5.1 Translation to Standard Java

We characterise the code generation for the new language constructs by a translation
to (standard) Java. Using this approach, we accomplish two targets: Firstly, the imple-
mentation is conservative in the sense that it does not need an extended JVM. Secondly,
the translation is much simpler than a direct generation of JVM code.

Translation of Method Bodies in Interfaces

To translate an interface I with default bodies to a standard Java interface, we recall
that in Java all methods reside inside classes; Standalone top–level methods do not
exist. Consequently, we must locate all default implementations of I inside a new class.
To emphasise the binding with I we create the class as an inner class of the translated
interface. The new inner class is named $default to avoid name clashes with other
inner classes of I (The Java specification allows mechanical translators the use of a
dollar sign in names). By placing the class inside the interface, we also avoid clashes
between translations of different default implementations. Of course, we also could have
avoided these by including the name of the interface in the name of a new top level
class. However, this is exactly the way the Java compilers translates inner classes: By
translation to top–level classes with qualified names not usable by programs. Therefore,
we can rely on the Java compiler to resolve the names correctly.

Since we use the inner class $default only as container for the method imple-
mentations, we will never create objects of this class or create subclasses. Hence, it is
a direct subclass on java.lang.Object. Being a member class of an interface also
means that $default is implicitly declared static, i.e. the nesting is only relevant
to scoping and has no effect on instances of I.

For each method m in I with a default body B, we create a static method m with
body B′in $default. Since m is static, we can use it without having to instanti-
ate $default. However, in order to allow B′ to call other methods of I, we have to
have a reference to the current instance of I. Therefore, we have to explicitely pass the
current instance in an additional parameter of m. Since this is exactly what the standard
translation of virtual (non–static) methods does by the implicit this parameter, we
name the new parameter thiss and it is of type I. Consequently, we obtain B ′ from B
by prefixing all unqualified method invocations with thiss.
Formally, we define the translation from extended Java to Java for such an interface

mod interface I extends sup {
M
defaultmod1 T1 m1(S1) {B1}
. . .

defaultmodn Tn mn(Sn) {Bn}
}

13



Fig. 6 Translating the Extension

interface Set {
boolean isElement(Object e);
java.util.Enumeration elements();
class Default {

static boolean isElement(Set thiss, Object e) {
for (java.util.Enumeration es=thiss.elements();es.hasMoreElements();) {

if (e.equals(es.nextElement())) return true;
}
return false;

}
}

}

(a) Translation of Set
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

class VectorSet extends java.util.Vector implements Set {
public boolean isElement(Object e) {

return Set.Default.isElement(this, e);
}

}

(b) Translation of VectorSet

with modifiers mod, super interface list sup, non–default members M, and default meth-
ods m1, . . . ,mn, each mi with modifiers modi, result type Ti, signature Si,and body Bi

as:

mod interface I extends sup {
M
mod1 T1 m1(S1);
. . .

modn Tn mn(Sn);
public class $default {

static mod1 T1 m1(I thiss,S1) {B′
1}

. . .

static modn Tn mn(I thiss,Sn) {B′
n}

}
}

Here, we assume that the new syntactic alternative DefaultUse is not used in I. However,
this is just to allow a separate presentation of this step and has no deeper consequences.
We will give the translation of this construct later. Fig. 6(a) contains an example of result
of this translation for the interface Set from Fig. 5(a).

Translation of DefaultUse and MethodInvocation

A method declaration with a DefaultUse occurring in a class is translated by creating
a new body for the method. The body mainly consists of a single invocation of the ac-
cording static method in the according super interface. As additional first argument
in this invocation, we provide the reference this to the current instance. If the method
returns a result, then the method invocation is prefixed by return.
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To define the translation, we assume that all occurrences of DefaultUse are in qual-
ified form. We define the translation from extended Java to Java for a class

mod classC extends supC implements supI {
M
mod1 T1 m1(T1,1 p1,1, . . . ,T1,kn p1,kn) =I1.default;
. . .

modn Tn mn(Tn,1 pn,1, . . . ,Tn,kn pn,kn) =In.default;
}

with modifiers mod, super class list supC, implemented interface list supI , non–DefaultUse
members M, and default using methods m1, . . . ,mn, each mi with modifiers modi, result
type Ti, signature Tn,1 pn,1, . . . ,Tn,kn pn,kn , and default location interface Ii:

mod classC extends supC implements supI {
M
mod1 T1 m1(T1,1 p1,1, . . . ,Tn,k1 pn,k1) {

return? I1.$default.m1(this,p1,1, . . . ,p1,k1);
}
. . .

modn Tn mn(Tn,1 pn,1, . . . ,Tn,k1 pn,k1) {
return? In.$default.mn(this,pn,1, . . . ,pn,kn);

}
}

The return statement is omitted in the body of mi iff Ti = void. Fig. 6(b) shows the
translation for the class VectorSet from Fig. 5(b).

The new alternative of MethodInvocation which may occur inside method bodies of
classes is translated in the same way: A method invocation of the from

I.default.m(a1, . . . ,an)

is translated to
I.$default.m(this,a1, . . . ,an)

In interfaces, both DefaultUse and the new alternative MethodInvocation may occur
at methods with the modifier default. Here, the translation is similar, except that the
additional parameter thiss is used instead of this. After this translation, the method
bodies are removed from the interface as described above.

Example Execution

To demonstrate the interaction of the various parts, we consider an instance o of the
class VectorSet from Fig. 5(b). A method invocation

o.isElement(a)
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with any argument a enters the body created by translating DefaultUse. Hence, the fol-
lowing method invocation is executed:

Set.Default.isElement(o,a)

Here, the for loop is entered and the Enumeration is created by the following
method invocation:

o.elements()

Hence, we have achieved exactly what we wanted.

5.2 Checking Context Sensitive Conditions

Context sensitive conditions in Java are checked by reading the class files resulting
from compilation of the classes on which the conditions depend. Hence, the only real
task for checking the newly introduced context sensitive conditions is to ensure that the
presence or absence of default implementations can be determined by examining the
class file resulting from compilation of the interface. In principle, we could insert addi-
tional attributes with the necessary information in the class files. The specification [14]
allows this under the restriction that additional attributes do not change the execution of
a class. Since these information would be needed only by the compiler and not by the
JVM, we would not violate this restriction.

However, we do not need to follow this approach. By translating default implemen-
tations using an inner class named $default we are able to check the presence or
absence of default implementations of a method by simply querying for methods inside
the inner class $default of the interface. If either the class or the method inside the
class is missing, then there is no default implementation.

5.3 Discussion

The approach for translating our extension to standard Java uses the static methods in
the inner classes for the simulation of virtual methods. Passing the current instance as
explicit first argument is exactly the same as the code generated by a standard Java does
for virtual methods of classes. Apart from the additional method invocations needed to
cross the border between default and explicit methods, our approach suffers no penalty
with respect to a textual code duplications. Fig. 7 contains the byte codes generated for
the method isElement by textual duplication and our approach. We can see that they
differ only in the way the method elements in invoked: For the class VectorSet,
the method is invoked as virtual method of java.util.Vector and for the interface
Set with default implementation it is invoked as method of the interface.

We have implemented a first version of a source to source compiler. It is based
on Barat [4], an open source front-end for Java. The implementation is available at
http://www-i2.informatik.rwth-aachen.de/∼mohnen/JDI/.
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Fig. 7 Comparison of Generated Byte Codes for isElement()

Method boolean isElement(java.lang.Object)
0 aload_0
1 invokevirtual #7 <Method java.util.Enumeration elements()>
4 astore_2
5 goto 23
8 aload_1
9 aload_2

10 invokeinterface #10 <InterfaceMethod java.lang.Object nextElement()>
15 invokevirtual #8 <Method boolean equals(java.lang.Object)>
18 ifeq 23
21 iconst_1
22 ireturn
23 aload_2
24 invokeinterface #9 <InterfaceMethod boolean hasMoreElements()>
29 ifne 8
32 iconst_0
33 ireturn

(a) Byte Code for VectorSet in Fig. 3
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Method boolean isElement(Set, java.lang.Object)
0 aload_0
1 invokeinterface #6 <InterfaceMethod java.util.Enumeration elements()>
6 astore_2
7 goto 25

10 aload_1
11 aload_2
12 invokeinterface #9 <InterfaceMethod java.lang.Object nextElement()>
17 invokevirtual #7 <Method boolean equals(java.lang.Object)>
20 ifeq 25
23 iconst_1
24 ireturn
25 aload_2
26 invokeinterface #8 <InterfaceMethod boolean hasMoreElements()>
31 ifne 10
34 iconst_0
35 ireturn

(b) Byte Code for Set in Fig. 5(a)

6 Conclusions

We have presented a new approach of using default implementations of methods in Java
interfaces. In contrast to providing default implementations by using abstract classes,
which is the current approach for providing default implementations, our approach has
three major advantages: (1) A class implementing an interface is free to extend other
classes. (2) No code duplication occurs in the presence of multiple inheritance of inter-
faces. (3) The default implementations are located in the interface.

The paper gives a complete design of the extension language and discusses the ra-
tionale for the decisions taken. We show that the extension is small and conservative.

In addition, we explain how the extension can be implemented efficiently. Our de-
sign is based on a translation to standard Java. Consequently, we were able to avoid
extending the Java virtual machine. Programs from our proposed extended Java can be
executed by any existing JVM implementation.
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