
Aachen
Department of Computer Science

Technical Report

Transformation Techniques for

Context-Sensitive Rewrite Systems

Jürgen Giesl and Aart Middeldorp

ISSN 0935–3232 · Aachener Informatik Berichte · AIB-2002-02

RWTH Aachen · Department of Computer Science · Nov. 2002 (revised version)

The publications of the Department of Computer Science of RWTH Aachen
(Aachen University of Technology) are in general accessible through the World
Wide Web.

http://aib.informatik.rwth-aachen.de/

Transformation Techniques for Context-Sensitive

Rewrite Systems?

Jürgen Giesl??1 and Aart Middeldorp? ? ?2

1 LuFG Informatik II, RWTH Aachen, Ahornstr. 55, 52074 Aachen, Germany
giesl@informatik.rwth-aachen.de

2 Institute of Information Sciences and Electronics, University of Tsukuba,
Tsukuba 305-8573, Japan
ami@is.tsukuba.ac.jp

Abstract. Context-sensitive rewriting is a computational restriction of term
rewriting used to model non-strict (lazy) evaluation in functional programming.
The goal of this paper is the study and development of techniques to analyze
the termination behavior of context-sensitive rewrite systems. For that purpose,
several methods have been proposed in the literature which transform context-
sensitive rewrite systems into ordinary rewrite systems such that termination
of the transformed ordinary system implies termination of the original context-
sensitive system. In this way, the huge variety of existing techniques for termi-
nation analysis of ordinary rewriting can be used for context-sensitive rewriting,
too.
We analyze the existing transformation techniques for proving termination of con-
text-sensitive rewriting and we suggest two new transformations. Our first method
is simple, sound, and more powerful than the previously proposed transforma-
tions. However, it is not complete, i.e., there are terminating context-sensitive
rewrite systems that are transformed into non-terminating term rewrite systems.
The second method that we present in this paper is both sound and complete.
All these observations also hold for rewriting modulo associativity and commu-
tativity.

1 Introduction

In the presence of infinite reductions in term rewriting, the search for normal
forms is usually guided by adopting a suitable reduction strategy. Consider the
following term rewrite system:

nats → adx(zeros) adx(x : y) → incr(x : adx(y))

zeros → 0 : zeros hd(x : y) → x

incr(x : y) → s(x) : incr(y) tl(x : y) → y

The function symbol zeros is used to generate the infinite list of 0’s. The function
incr(x) increments all elements in the list x by one and adx applied to a list
? A preliminary version of this paper appeared in the Proceedings of the 10th International

Conference on Rewriting Techniques and Applications, Lecture Notes in Computer Science
1631, pp. 271–285, 1999.

?? Supported by the DFG under grant GI 274/4-1
? ? ? Supported by the Grant-in-Aid for Scientific Research (C)(2) 13224006 of the Ministry of

Education, Culture, Sports, Science and Technology of Japan.

[x1, x2, x3, . . .] adds the index i to each element xi, i.e., it generates the list
[x1 + 1, x2 + 2, x3 + 3, . . .]. The name adx is therefore an abbreviation for “add
index”. Hence, nats reduces to the infinite list of positive integers.

A term like hd(tl(tl(nats))) admits a finite reduction to the normal form s3(0)
(the third positive integer) as well as infinite reductions. The infinite reductions
can for instance be avoided by always contracting the outermost redex. Context-
sensitive rewriting (Lucas [30, 31]) provides an alternative way of solving the
non-termination problem. Rather than specifying which redexes may be con-
tracted, in context-sensitive rewriting for every function symbol one indicates
which arguments may not be evaluated and a contraction of a redex is allowed
only if it does not take place in a forbidden argument of a function symbol some-
where above it. For instance, by forbidding all contractions in the argument t
of a term of the form s : t, infinite reductions are no longer possible while nor-
mal forms can still be computed. (See Lucas [35] for the relationship between
normalization under ordinary rewriting and under context-sensitive rewriting.)

Term rewriting is a basic computational paradigm with important appli-
cations in the design, analysis, verification, and implementation of functional
programs (see e.g., [39]). The above example illustrates that the restriction of
context-sensitive rewriting has strong connections with lazy evaluation strate-
gies used in functional programming languages, because it allows us to deal with
non-terminating programs and infinite data structures, cf. [31].

A central problem in the development of correct and reliable software is to
verify the termination of programs. Moreover, techniques for termination analysis
can also be helpful for program transformation, e.g., in order to guarantee ter-
mination of partial evaluation (see e.g. [24]). In this paper we are concerned with
the problem of proving termination of context-sensitive rewriting. More precisely,
we consider transformations from context-sensitive rewrite systems to ordinary
term rewrite systems that are sound with respect to termination: termination of
the transformed term rewrite system implies termination of the original context-
sensitive rewrite system. The main advantage of this transformational approach
is that all termination techniques for ordinary term rewriting (e.g., [1, 3, 5, 10, 11,
27, 29, 43, 46]) including future developments can be used to infer termination of
context-sensitive systems.

Three sound transformations are reported in the literature, by Lucas [30], by
Zantema [47], and by Ferreira & Ribeiro [13]. We add two more. Our first trans-
formation is simple, its soundness is easily established, and it improves upon the
transformations of [13, 30, 47]. To be precise, we prove that the class of termi-
nating context-sensitive rewrite systems for which our transformation succeeds
is larger than that of Lucas’, Zantema’s and Ferreira & Ribeiro’s transformation.
However, none of these four transformations succeeds in transforming every ter-
minating context-sensitive rewrite system into a terminating term rewrite system.
In other words, they all lack completeness. We analyze the failure of complete-
ness for our first transformation, resulting in a second transformation which is
both sound and complete. However, one should remark that the development of

4

our second transformation does not render our first transformation superfluous,
since in practical examples, termination of the system resulting from the sec-
ond transformation can be harder to prove than termination of the one resulting
from the first transformation. Similar statements hold for the transformations of
Lucas, Zantema, and Ferreira & Ribeiro.

The remainder of the paper is organized as follows. In the next section we
recall the definition of context-sensitive rewriting and illustrate its connection
with functional programming. In particular, we show how our results on termi-
nation analysis of context-sensitive rewriting can be used in order to investigate
the termination behavior of (lazy) functional programs. Section 3 recapitulates
the transformations of Lucas, Zantema, and Ferreira & Ribeiro. Moreover, we
analyze the relationship between these transformations. In Section 4 we present
our first transformation and prove that it is sound. Despite being incomplete,
we prove that it can handle more systems than the transformations of Lucas,
Zantema, and Ferreira & Ribeiro. In Section 5 we refine our first transformation
into a sound and complete one. The bulk of this section is devoted to the com-
pleteness proof. Section 6 shows that similar to the transformation of Ferreira &
Ribeiro, both our transformations easily extend to rewriting modulo associativ-
ity and commutativity axioms. In Section 7 we investigate how the transformed
system changes when modifying the set of argument positions where reductions
are allowed. It turns out that in contrast to all previous transformations, both
our transformations have a very natural behavior. We make some concluding
remarks in Section 8. Those proof details which are not presented in the main
text are given in the appendix.

2 Context-Sensitive Rewriting

Some familiarity with term rewriting [2] is assumed. We briefly recall some basic
definitions. A signature is a set F of function symbols equipped with a mapping
“arity : F → N”, where N is the set of natural numbers. We always require that
every signature contains at least one constant (i.e., a function symbol f with
arity(f) = 0). We assume the existence of a countably infinite set V of variables,
disjoint from F . The set of terms built from F and V is denoted by T (F ,V).
The set of variables contained in a term t is denoted by Var(t). A linear term
does not contain multiple occurrences of the same variable and a ground term
does not contain any variables. To denote the set of ground terms, we often write
T (F) instead of T (F , ∅). A position is a sequence of positive integers identifying
a subterm occurrence in a term. The empty sequence is denoted by ε and called
the root position. The set Pos(t) of positions in a term t is inductively defined as
follows: Pos(t) = {ε} if t ∈ V and Pos(t) = {ε} ∪ {iπ | 1 6 i 6 n, π ∈ Pos(ti)} if
t = f(t1, . . . , tn). If π ∈ Pos(t) then t|π denotes the subterm of t at position π and
t(π) denotes the function symbol or variable occurring at position π. We write
root(t) for t(ε); this is called the root symbol of t. Furthermore, t[u]π denotes
the term that is obtained from t by replacing the subterm at position π by the

5

term u. The set Pos(t) is partitioned into PosV(t) = {π ∈ Pos(t) | t|π ∈ V} and
PosF(t) = Pos(t) \ PosV(t). A substitution σ is a mapping from V to T (F ,V)
such that its domain {x ∈ V | σ(x) 6= x} is finite. The result of applying σ to a
term t is denoted by tσ.

A term rewrite system (TRS for short) R over a signature F is a set of rewrite
rules l → r with l, r ∈ T (F ,V) such that l /∈ V and Var(r) ⊆ Var(l). A TRS is
left-linear if the left-hand sides of all rewrite rules are linear terms. The binary
relation →R on T (F ,V) is defined as follows: s →R t if and only if there exist
a rewrite rule l → r ∈ R, a substitution σ, and a position π ∈ Pos(s) such that
s|π = lσ and t = s[rσ]π. We say that s reduces (in one step) to t by contracting
the redex lσ at position π. The root symbols of left-hand sides of rewrite rules
are called defined, whereas all other function symbols are constructors. For the
signature F of a TRS R we denote the set of defined symbols by FD and the
constructors by FC.

Let → be a binary relation on terms. We say that → is closed under contexts if
s → t implies u[s]π → u[t]π for all terms u and positions π ∈ Pos(u). The relation
→ is closed under substitutions if s → t implies sσ → tσ for all substitutions
σ. A relation that is closed under contexts and substitutions is called a rewrite
relation. The transitive reflexive closure of → is denoted by →∗. If s →∗ t we
say that s reduces to t. A term s is a normal form if there is no term t with
s → t. We write s →! t if s →∗ t with t a normal form. Let s ↑ t denote the
existence of a term u such that u →∗ s and u →∗ t. We write s ↓ t if there exists
a term u such that s →∗ u and t →∗ u. A TRS R is terminating if there are no
infinite reductions t1 →R t2 →R · · · and confluent if ↑R ⊆ ↓R. Every term t in
a confluent and terminating TRS R reduces to a unique normal form, denoted
by t↓R.

The following definition introduces context-sensitive rewriting.

Definition 1. Let F be a signature. A function µ : F → P(N) is called a re-
placement map if µ(f) is a subset of {1, . . . , arity(f)} for all f ∈ F . A context-
sensitive rewrite system (CSRS for short) is a TRS R over a signature F that is
equipped with a replacement map µ. The context-sensitive rewrite relation →R,µ

is defined as the restriction of the usual rewrite relation →R to contractions of
redexes at active positions. A position π in a term t is (µ-)active if π = ε or
t = f(t1, . . . , tn), π = iπ′, i ∈ µ(f), and π′ is active in ti. So s →R,µ t if and only
if there exist a rewrite rule l → r in R, a substitution σ, and an active position
π in s such that s|π = lσ and t = s[rσ]π. In the following we often abbreviate
→R,µ to →µ when R can be inferred from the context.

Consider the TRS of the introduction. By taking µ(:) = µ(s) = ∅ and
µ(incr) = µ(adx) = µ(hd) = µ(tl) = {1}, we obtain a terminating CSRS. The
term 0 : zeros, which has an infinite reduction in the TRS, is a normal form of
the CSRS because the reduction step to 0 : (0 : zeros) is no longer possible as the
contracted redex occurs at an inactive position (2 /∈ µ(:)).

6

Context-sensitive rewriting subsumes ordinary rewriting (when µ(f) = {1,
. . . , n} for every n-ary function symbol f). Context-sensitive rewriting can also
be used to model non-strict evaluation in functional programming where one
uses a leftmost-outermost strategy. Here, a term s can be evaluated to a term t
(s

ns
→ t) if the reduction takes place at the root position. Moreover, s may also

be evaluated below the root at a position π if this is necessary in order to find
out whether a rule l → r might be applicable for a root reduction. In particular,
we must have root(l) = root(s). This implies that terms with a constructor at
their root position cannot be evaluated further (they are in (weak) head normal
form). In addition, evaluating s|π must be necessary to check whether l matches
with s and π is required to be the minimal such position with respect to the
lexicographic order on positions. Here, a position π1 = m1 · · ·mk is smaller than
a position π2 = n1 · · ·nl if there is an i ∈ {1, . . . ,min(k+1, l)} such that mj = nj

for all j < i, and mi < ni if i 6 k. Similar to most functional programming
languages, we restrict ourselves to left-linear rules here. Then evaluating s|π is
necessary to match l with s if and only if the function symbols s(π) and l(π) are
different. The formal definition of non-strict evaluation is given below.

Definition 2. Let R be a left-linear TRS. A term s rewrites to a term t with
non-strict evaluation (s

ns
→R t) if and only if there is a rule l → r ∈ R such

that root(s) = root(l) and either s = lσ and t = rσ for some substitution σ or
s|π

ns
→ t′ and t = s[t′]π for the minimum position π ∈ PosF(l) ∩ Pos(s) with

respect to the lexicographic order on positions such that s(π) 6= l(π).

Of course, non-strict evaluation is non-deterministic since there may be sev-
eral applicable rules l → r. In functional programming languages, this non-
determinism is usually solved by ordering the rules (or equations) from top to
bottom and by taking the first applicable rule. As an example regard the follow-
ing rewrite rules:

f(x) → g(f(x), b) (1)

g(s(x), s(y)) → 0 (2)

g(x, 0) → 0 (3)

b → 0 (4)

The term f(0) can be reduced at the root position to g(f(0), b). Now in non-strict
evaluation one may try to evaluate this term further with rule (2). The minimum
position where the subterm of the left-hand side g(s(x), s(y)) does not match the
corresponding subterm of g(f(0), b) is 1. Hence, the subterm f(0) is evaluated
further which leads to non-termination. Indeed, such a functional program would
be non-terminating. However, if one exchanges rules (2) and (3), then a functional
program would first try to reduce the term g(f(0), b) with rule (3) and hence,
one would have termination. This cannot be detected with

ns
→, since here any of

the applicable rules may be selected. Note that if the order of the rules in the
above example would be unchanged, but the arguments of g would be exchanged
in all rules, then

ns
→ terminates. Another difference is that non-strict evaluation

7

does not capture sharing whereas in many functional programming languages
some common subterms are shared for efficiency reasons (evaluation strategies
resulting from non-strict evaluation with sharing are called lazy evaluation).

Now we show that non-strict evaluation can be simulated by context-sensitive
rewriting. To this end, we use the canonical replacement map µc which is the
most restrictive replacement map ensuring that non-variable subterms of left-
hand sides of rules are at active positions [31]. In other words, i ∈ µc(f) if and
only if there is a rule l → r ∈ R and a subterm f(t1, . . . , tn) of l such that ti /∈ V.
Lucas [35] recently proved that termination of (R, µc) implies top-termination
of R, i.e., that there is no R-reduction with infinitely many root reductions.
However, this does not yet imply termination of non-strict evaluation as can be
seen from the top-terminating system consisting of the two rules f(x) → g(f(x))
and g(0) → 0 where non-strict evaluation is not terminating. The following
theorem shows the new result that context-sensitive rewriting with the canonical
replacement map can also simulate non-strict evaluation. The reason is that µc

only makes those positions inactive where one would never reduce during non-
strict evaluation, since evaluation on these positions is not necessary in order to
apply rules at higher positions in the term.

Theorem 3. Let R be a left-linear TRS. If (R, µc) is terminating then non-
strict evaluation is terminating.1

Proof. Let s
ns
→R t. We show s →R,µc

t by structural induction on s. If the
reduction s

ns
→R t takes place at the root position then we obviously have s →R,µc

t, too. Otherwise there exists a rule l → r and a minimum position π ∈ PosF(l)∩
Pos(s) with respect to the lexicographic order on positions such that s(π) 6= l(π).
According to the definition of µc, π is an active position in l. By minimality of
π, the function symbols above π must be the same in l and in s. Thus, π is also
an active position in s. We have s|π

ns
→ t′ such that t = s[t′]π. Since π 6= ε we can

apply the induction hypothesis to conclude s|π →R,µc
t′. Since π is active in s,

this implies s →R,µc
t, as desired. ut

The reverse of the above theorem does not hold. In other words, termination
of (R, µc) is a sufficient but not a necessary criterion for the termination of
non-strict evaluation (and hence of the corresponding functional program). The
reason is that context-sensitive rewriting does not capture the fact that in non-
strict evaluation subterms of a rule are checked in leftmost order. Exchanging
the arguments of g in the rules (1)–(4) would affect termination of non-strict
evaluation, but not of context-sensitive rewriting. Because of the left-hand side
g(s(y), s(x)), we have µc(g) = {1, 2} and hence (R, µc) remains non-terminating.
1 Lucas [34] recently proved that under the same conditions as in Theorem 3, termination

of context-sensitive rewriting is equivalent to termination of lazy rewriting [14]. However,
since the leftmost evaluation strategy is not imposed in lazy rewriting, this notion has less
connections to lazy functional programming than our notion of non-strict evaluation. In fact,
the purpose of lazy rewriting is not to model the evaluation strategy of lazy functional lan-
guages, but to extend eager implementations in order to improve their termination behavior
and efficiency.

8

Another problem is that the canonical replacement map makes argument
positions of constructors active if constructors occur nested in left-hand sides.
However, this problem can be avoided by transforming the rules into a form
without nested constructors in left-hand sides. Then one would have µc(c) = ∅

for all constructors c and thus, all terms with constructors on their root position
would be in normal form (in this way, (weak) head normal forms can be simulated
by context-sensitive rewriting).

To summarize, if one is interested in termination of (first-order) lazy func-
tional programs, analyzing the termination behavior of (R, µc) is much more
accurate than analyzing full termination of R. For example, in the nats-system
from the introduction the canonical replacement map makes the arguments of
the constructors s and “:” inactive, which results in a terminating CSRS. So
developing methods for termination proofs of context-sensitive rewriting is use-
ful for termination analysis of lazy functional programs. The advantage of such
an approach is that in this way, the whole variety of techniques developed for
termination of term rewriting becomes available for termination proofs of lazy
functional languages.

Moreover, context-sensitive rewriting (with other replacement maps) can be
applied [32, 33] to study the termination behavior of programming languages
like OBJ [7, 12, 20] where the user can supply strategy annotations to control the
evaluation.

Apart from termination analysis, context-sensitive rewriting can also be used
for evaluation of functional programs. Here the interesting case is when R admits
infinite reductions and µ is defined in such a way that →R,µ is terminating but
still capable of computing all (R-)normal forms. For the latter aspect we refer
to Lucas [31, 35]; in the remainder of this paper we are only concerned with
termination of context-sensitive rewriting.

3 Transforming Context-Sensitive Rewrite Systems

In this section we review the existing transformations for termination analysis of
context-sensitive rewrite systems. Lucas [30] presented a simple transformation
from CSRSs to TRSs which is sound with respect to termination. The idea of
his transformation is to remove the inactive arguments of every function symbol
appearing in the rewrite rules of the CSRS.

Definition 4. Let (R, µ) be a CSRS over a signature F . The TRS RL
µ over the

signature FL = {fµ | f ∈ F} where the arity of fµ is |µ(f)| consists of the
rules l↓L → r↓L for all l → r ∈ R. Here L is the terminating and confluent
TRS consisting of all rules of the form f(x1, . . . , xn) → fµ(xi1 , . . . , xik) such
that µ(f) = {i1, . . . , ik} with i1 < · · · < ik. In the following we denote Lucas’
transformation (R, µ) 7→ RL

µ by ΘL and we abbreviate →RL
µ

to →L.

The idea is that instead of a context-sensitive reduction of a term t one
now regards the reduction of the term t↓L with respect to the TRS RL

µ. As an

9

example, consider the TRS R of the introduction where µ is again defined as
µ(:) = µ(s) = ∅ and µ(incr) = µ(adx) = µ(hd) = µ(tl) = {1}. Then RL

µ consists
of the following rewrite rules:

natsµ → adxµ(zerosµ) adxµ(:µ) → incrµ(:µ)

zerosµ → :µ hdµ(:µ) → x

incrµ(:µ) → :µ tlµ(:µ) → y

Due to the extra variable2 in the right-hand sides of the rules for hdµ and tlµ,
RL

µ is not terminating:
tlµ(:µ) →L tlµ(:µ) →L · · ·

Zantema [47] presented a more complicated transformation in which subterms
at inactive positions are marked rather than discarded. The transformed system
RZ

µ consists of two parts. The first part results from a translation of the rewrite
rules of R, as follows. Every function symbol f occurring in a left or right-
hand side is replaced by f (a fresh function symbol of the same arity as f) if it
occurs in an inactive argument of the function symbol directly above it. These
new function symbols are used to block further reductions at this position. In
addition, if a variable x occurs in an inactive position in the left-hand side l of
a rewrite rule l → r then all occurrences of x in r are replaced by a(x). Here
a is a new unary function symbol which is used to activate blocked function
symbols again. The second part of RZ

µ consists of rewrite rules that are needed
for blocking and unblocking function symbols.

Definition 5. Let (R, µ) be a CSRS over a signature F . The TRS RZ
µ over the

signature FZ = F∪{f | f ∈ F}∪{a} consists of two parts, i.e., RZ
µ = RZ1

µ ∪RZ2

µ .

The first part RZ1

µ consists of the rules Z(l) → Z(r)σl for all l → r ∈ R. The
mappings Z and Z′ from T (F ,V) to T (FZ,V) are defined inductively by

Z(x) = Z′(x) = x

Z(f(t1, . . . , tn)) = f(u1, . . . , un)

Z′(f(t1, . . . , tn)) = f(u1, . . . , un)

with ui = Z(ti) if i ∈ µ(f) and ui = Z′(ti) if i /∈ µ(f), for all 1 6 i 6 n, and the
substitution σl is defined by

σl(x) =

{

a(x) if x appears in an inactive position in l

x otherwise

The second part RZ2

µ consists of a(x) → x together with

f(x1, . . . , xn) → f(x1, . . . , xn)

a(f(x1, . . . , xn)) → f(x1, . . . , xn)

2 Extra variables can be instantiated by arbitrary terms. So strictly speaking, R
L

µ is not a
TRS.

10

for every n-ary f for which f appears in RZ1

µ . We denote Zantema’s transforma-

tion (R, µ) 7→ RZ
µ by ΘZ and we abbreviate →RZ

µ
to →Z. Moreover, FZ

µ denotes

the sub-signature of FZ which consists of the function symbols of RZ
µ.

In the approach of Zantema, the aim is to translate the context-sensitive
reduction of a term t into an RZ

µ-reduction of the term Z(t). The example CSRS
(R, µ) is transformed into

nats → adx(zeros) 0 → 0 a(0) → 0

zeros → 0 : zeros s(x) → s(x) a(s(x)) → s(x)

incr(x : y) → s(a(x)) : incr(a(y)) zeros → zeros a(zeros) → zeros

adx(x : y) → incr(a(x) : adx(a(y))) incr(x) → incr(x) a(incr(x)) → incr(x)

hd(x : y) → a(x) adx(x) → adx(x) a(adx(x)) → adx(x)

tl(x : y) → a(y) a(x) → x

Zantema’s transformation is sound but not complete as we have the infinite
reduction

adx(zeros)→Z adx(0 : zeros)→Z incr(a(0) : adx(a(zeros)))→+
Z

incr(0 : adx(zeros))

→Z s(a(0)) : incr(a(adx(zeros))) →+
Z

s(0) : incr(adx(zeros)) →Z · · ·

Zantema’s method appears to be more powerful than Lucas’ transformation
since already the rule tl(x : y) → y is transformed into a non-terminating rule by
ΘL whereas it remains terminating under the transformation ΘZ. However, the
two methods are incomparable.

Example 6. Consider the CSRS (R, µ) consisting of the rules c → f(g(c)) and
f(g(x)) → g(x) with µ(f) = µ(g) = ∅. Lucas’ transformation yields the termi-
nating TRS RL

µ = {cµ → fµ, fµ → gµ} whereas RZ
µ

c → f(g(c)) f(x) → f(x) a(f(x)) → f(x)

f(g(x)) → g(a(x)) g(x) → g(x) a(g(x)) → g(x)

c → c a(c) → c

does not terminate: c →Z f(g(c)) →Z g(a(c)) →Z g(c) →Z · · ·

Ferreira & Ribeiro [13] refined Zantema’s transformation further. The first
part of their transformed system RFR

µ results from the first part of RZ
µ by under-

lining all function symbols (except a) which occur below an underlined symbol.
So for example, if 2 /∈ µ(:) then a term x : f(g(y)) in Zantema’s transformation
would now be replaced by x : f(g(y)). Thus, in Ferreira & Ribeiro’s transforma-
tion all function symbols of terms occurring in inactive arguments are underlined
(instead of just the root symbols of such terms as in RZ

µ).

11

Definition 7. Let (R, µ) be a CSRS over a signature F . The TRS RFR
µ over the

signature FZ consists of two parts, i.e., RFR
µ = RFR1

µ ∪RFR2

µ The first part RFR1

µ

consists of the rules FR(l) → FR(r)σl for all l → r ∈ R. The mappings FR and
FR′ from T (F ,V) to T (FZ,V) are defined inductively by

FR(x) = FR′(x) = x

FR(f(t1, . . . , tn)) = f(u1, . . . , un)

FR′(f(t1, . . . , tn)) = f(FR′(t1), . . . ,FR′(tn))

with ui = FR(ti) if i ∈ µ(f) and ui = FR′(ti) if i /∈ µ(f), for all 1 6 i 6 n. The
substitution σl is defined as in Zantema’s transformation (Definition 5). The
second part RFR2

µ consists of a(x) → x together with

f(x1, . . . , xn) → f(x1, . . . , xn)

a(f(x1, . . . , xn)) → f([[x1]]
f
1 , . . . , [[xn]]fn)

for every n-ary f for which f appears in RFR1

µ , and

a(f(x1, . . . , xn)) → f([[x1]]
f
1 , . . . , [[xn]]fn)

for every n-ary f for which f does not appear in RFR1

µ . Here [[t]]fi = a(t) if

i ∈ µ(f) and [[t]]fi = t otherwise. We denote Ferreira & Ribeiro’s transfor-
mation (R, µ) 7→ RFR

µ by ΘFR and we abbreviate →RFR
µ

to →FR and →
R

FRi
µ

to →FRi
. We add a prime (′) for the transformation which excludes the rules

a(f(x1, . . . , xn)) → f([[x1]]
f
1 , . . . , [[xn]]fn). The sub-signature of FZ which consists

of the function symbols of RFR
µ is denoted by FFR

µ .

Similar to Zantema’s approach, here the context-sensitive reduction of a term
t is translated into an RFR

µ -reduction of the term FR(t). Note that we always have

FZ
µ ⊆ FFR

µ . In Theorem 22(b) we will show that the rules a(f(x1, . . . , xn)) →

f([[x1]]
f
1 , . . . , [[xn]]fn) are superfluous. In other words, Θ′

FR
is already a sound trans-

formation.
The example CSRS (R, µ) is transformed into

nats → adx(zeros) 0 → 0 a(0) → 0

zeros → 0 : zeros s(x) → s(x) a(s(x)) → s(x)

incr(x : y) → s(a(x)) : incr(a(y)) zeros → zeros a(zeros) → zeros

adx(x : y) → incr(a(x) : adx(a(y))) incr(x) → incr(x) a(incr(x)) → incr(a(x))

hd(x : y) → a(x) adx(x) → adx(x) a(adx(x)) → adx(a(x))

tl(x : y) → a(y) a(x) → x a(nats) → nats

a(x : y) → x : y

a(hd(x)) → hd(a(x))

a(tl(x)) → tl(a(x))

12

Again, this transformation technique is sound but not complete, because the
infinite reduction with RZ

µ sketched above is also possible with both RFR
µ and

RFR
′

µ (where the reduction from s(0) : incr(a(adx(zeros))) to s(0) : incr(adx(zeros))
now takes two steps instead of one). Moreover, Ferreira & Ribeiro’s method is
still incomparable with Lucas’ transformation. This can be shown with the same
example used above to demonstrate the incomparability of the transformations
of Zantema and Lucas (Example 6).

Finally, let us compare Ferreira & Ribeiro’s technique with the one of Zan-
tema. As illustrated in [13], there are examples where their technique succeeds,
whereas Zantema’s fails. For the one-rule TRS R

f(x) → g(h(f(x)))

from [47] with µ(g) = ∅ and µ(h) = µ(f) = {1}, RZ
µ is not terminating since it

contains the rule f(x) → g(h(f(x))). On the other hand, RFR
µ is terminating since

here one has the rule f(x) → g(h(f(x))) instead. (For example, the recursive path
order [9] with precedence a � f � f � g � h � h applies.)

Ferreira & Ribeiro [13] conjectured that their method is more powerful than
the one of Zantema. Below we prove this (non-trivial) conjecture. So Ferreira &
Ribeiro’s transformation proves termination of more CSRSs than Zantema’s.

In order to relate the two transformations, we have to show that every reduc-
tion between two ground terms s and t in RFR

µ corresponds to a similar reduction

between related ground terms Φ(s) and Φ(t) in RZ
µ. Here, Φ is a mapping which

removes all occurrences of a and all additional underlining that is done in Ferreira
& Ribeiro’s transformation, but not in Zantema’s. In particular, Φ has to remove
the underlining from every function symbol f that appears in an active argument
position of the function symbol directly above it. So in the example above, we
would have Φ(g(h(f(x)))) = g(h(f(x))). Hence, when defining Φ(f(t1, . . . , tn)) or
Φ(f(t1, . . . , tn)), if i is an active argument of f , then any potential underlining
of ti’s root symbol should be removed. Here, the argument position of a is also
considered active (e.g., Φ(g(a(h(x)))) = g(h(x))). Moreover, the underlining is
also removed if f does not belong to the signature FZ

µ . So in the above example,
all occurrences of f would be replaced by f. For the formal definition of Φ, we
define an auxiliary mapping Φ′ which is like Φ except that the underlining from
an underlined root symbol is always removed.

Definition 8. Let (R, µ) be a CSRS over a signature F . We define two mappings
Φ and Φ′ from T (FFR

µ) to T (FZ
µ) inductively as follows:

Φ(f(t1, . . . , tn)) = Φ′(f(t1, . . . , tn)) = Φ′(f(t1, . . . , tn)) = f(〈t1〉
f
1 , . . . , 〈tn〉

f
n)

Φ(f(t1, . . . , tn)) =

{

f(〈t1〉
f
1 , . . . , 〈tn〉

f
n) if f ∈ FZ

µ

f(〈t1〉
f
1 , . . . , 〈tn〉

f
n) if f /∈ FZ

µ

Φ(a(t)) = Φ′(a(t)) = Φ′(t)

with 〈t〉fi = Φ′(t) if i ∈ µ(f) and 〈t〉fi = Φ(t) if i /∈ µ(f), for all 1 6 i 6 n.

13

The next two lemmata show that every reduction step s →FR t corresponds
to a reduction from Φ(s) to Φ(t) in RZ

µ. More precisely, we have the following
correspondence.

Lemma 9. For all terms s, t ∈ T (FFR
µ), if s →FR1

t then Φ(s) →+
Z

Φ(t).

Lemma 10. For all terms s, t ∈ T (FFR
µ), if s →FR2

t then Φ(s) →∗
Z

Φ(t).

We refer to Appendix A for the proofs of these two lemmata. With these
lemmata we obtain the desired result on the transformations of Zantema and
Ferreira & Ribeiro.

Theorem 11. Let (R, µ) be a CSRS. If RZ
µ is terminating then RFR

µ is termi-
nating.

Proof. Suppose that RFR
µ admits an infinite reduction. Then there also exists an

infinite reduction of ground terms:

t1 →FR t2 →FR t3 →FR t4 →FR · · ·

Since RFR2

µ is terminating, the reduction must contain infinitely many RFR1

µ -

steps. Hence, by applying Lemmata 9 and 10, we obtain an infinite RZ
µ-reduction

starting from Φ(t1). ut

To summarize, we have reviewed three transformation techniques from the lit-
erature which transform CSRSs into ordinary TRSs and we have investigated the
relationship between these three transformations. All three methods are sound,
i.e., if the transformed TRS terminates then the original CSRS is also terminat-
ing. But none of these three methods is complete, e.g., they all transform the
nats example from the introduction into a non-terminating TRS, although the
original CSRS is terminating. This already indicates that there are many natural
and interesting systems where these techniques are not applicable.

4 A Sound Transformation

In this section we present our first transformation from CSRSs to TRSs. The
advantage of this transformation is that it is easy and more powerful than the
transformations of Lucas, Zantema, and Ferreira & Ribeiro. In the transformation
we extend the original signature F of the TRS by a unary function symbol
mark and a function symbol factive of arity n for every n-ary defined function
symbol f ∈ FD. Essentially, the idea for the transformation is to mark the
active positions in a term on the object level, because those positions are the
only ones where context-sensitive rewriting may take place. For this purpose we
use the function symbols factive. Thus, instead of a rule f(l1, . . . , ln) → r the
transformed TRS should contain a rule whose left-hand side is factive(l1, . . . , ln).
Now an instance of a left-hand side f(· · ·) can only be rewritten if it exposes the

14

fact that it is at an active position (it does that by being of the form factive(· · ·)).
Moreover, after rewriting an instance of l to the corresponding instance of r, we
have to mark the new active positions in the resulting term. For that purpose we
replace every occurrence of a defined function symbol f at an active position in
r by factive and every occurrence of a variable x at an active position by mark(x).
The symbol mark is used to ensure that in instantiations of r, defined function
symbols at active positions in the substitution part are marked as well. This is
achieved by the rules

mark(f(x1, . . . , xn)) → factive([x1]
f
1 , . . . , [xn]fn) if f ∈ FD

mark(f(x1, . . . , xn)) → f([x1]
f
1 , . . . , [xn]fn) if f ∈ FC

where the form of the argument [xi]
f
i depends on whether i is an active argument

of f : if i ∈ µ(f) then xi must also be marked active and thus [xi]
f
i = mark(xi),

otherwise the ith argument of f is not active and we define [xi]
f
i = xi. Let M

denote the set of all these mark-rules. Since M is confluent and terminating,
every term t has a unique normal form t↓M with respect to M. It is easy to
see that transforming the right-hand side r as described above yields the term
mark(r)↓M. Finally, we also need rules to deactivate terms. For example, consider
the TRS consisting of the following rewrite rules:

b → f(c) f(c) → b c → d

No matter how the replacement map µ is defined, the resulting CSRS is not
terminating. Suppose µ(f) = {1}. In the transformed system we would have the
rules

bactive → factive(cactive) mark(b) → bactive

factive(c) → bactive mark(c) → cactive

cactive → d mark(d) → d

mark(f(x)) → factive(mark(x))

This TRS is terminating because bactive rewrites to factive(cactive), but if we can-
not deactivate the subterm cactive then the second rule is not applicable. Thus,
we have to add the rule cactive → c. To summarize, we obtain the following
transformation.

Definition 12. Let (R, µ) be a CSRS over a signature F . The TRS R1
µ over the

signature F1 = F ∪ {factive | f ∈ FD} ∪ {mark} consists of the following rewrite
rules:

factive(l1, . . . , ln) → mark(r)↓M for all f(l1, . . . , ln) → r ∈ R

mark(f(x1, . . . , xn)) → factive([x1]
f
1 , . . . , [xn]fn) for all f ∈ FD

mark(f(x1, . . . , xn)) → f([x1]
f
1 , . . . , [xn]fn) for all f ∈ FC

factive(x1, . . . , xn) → f(x1, . . . , xn) for all f ∈ FD

15

Here M is the (confluent and terminating) subset of R1
µ consisting of all mark-

rules and [t]fi = mark(t) if i ∈ µ(f) and [t]fi = t otherwise. We denote the
transformation (R, µ) 7→ R1

µ by Θ1 and we abbreviate →R1
µ

to →1.

Soundness of our transformation is an easy consequence of the following
lemma which shows how context-sensitive reduction steps are simulated in the
transformed system. The context-sensitive reduction of a term t is now translated
into a reduction of the term mark(t)↓M in the TRS R1

µ.

Lemma 13. Let (R, µ) be a CSRS over a signature F and let s, t ∈ T (F). If
s →µ t then mark(s)↓M →+

1 mark(t)↓M.

Proof. There is a rewrite rule l → r ∈ R, a substitution σ, and an active po-
sition π in s such that s|π = lσ and t = s[rσ]π. We prove the lemma by in-
duction on π. If π = ε then s = lσ and t = rσ. An easy induction on the
structure of s = f(s1, . . . , sn) reveals that mark(s)↓M →∗

1 factive(s1, . . . , sn)
(one just has to deactivate all inner occurrences of activated function sym-
bols). Since factive(s1, . . . , sn) → mark(r)↓Mσ is an instance of a rule in R1

µ

we obtain mark(s)↓M →∗
1 factive(s1, . . . , sn) →1 mark(r)↓Mσ →∗

1 mark(rσ)↓M =
mark(t)↓M. If π = iπ′ then we have s = f(s1, . . . , si, . . . , sn) and t = f(s1, . . . , ti,
. . . , sn) with si →µ ti. Note that i ∈ µ(f) due to the definition of context-sensitive
rewriting. For 1 6 j 6 n we define s′j = mark(sj)↓M if j ∈ µ(f) and s′j = sj if j /∈

µ(f). The induction hypothesis yields s′i = mark(si)↓M →+
1 mark(ti)↓M. Note

that mark(s)↓M is factive(s
′
1, . . . , s

′
i, . . . , s

′
n) if f ∈ FD and f(s′1, . . . , s

′
i, . . . , s

′
n) if

f ∈ FC. Similarly, mark(t)↓M is factive(s
′
1, . . . ,mark(ti)↓M, . . . , s′n) if f ∈ FD and

f(s′1, . . . ,mark(ti)↓M, . . . , s′n) if f ∈ FC. Hence, the result follows. ut

Theorem 14. Let (R, µ) be a CSRS over a signature F . If R1
µ is terminating

then (R, µ) is terminating.

Proof. If (R, µ) is not terminating then there exists an infinite reduction of
ground terms. Any such sequence is transformed by the previous lemma into
an infinite reduction in R1

µ. ut

The converse of the above theorem does not hold, i.e., the transformation is
incomplete.

Example 15. As an example of a terminating CSRS that is transformed into a
non-terminating TRS by our transformation, consider the following variant R of
a well-known example from Toyama [44]:

f(b, c, x) → f(x, x, x) d → b d → c

If we define µ(f) = {3} then the resulting CSRS is terminating because the usual
cyclic reduction from f(b, c, d) to f(d, d, d) and further to f(b, c, d) can no longer

16

be done, as one would have to reduce the first and second argument of f. However,
the transformed TRS R1

µ

factive(b, c, x) → factive(x, x,mark(x)) dactive → b dactive → c

mark(f(x, y, z)) → factive(x, y,mark(z)) mark(b) → b factive(x, y, z) → f(x, y, z)

mark(d) → dactive mark(c) → c dactive → d

is not terminating:

factive(b, c, dactive) →1 factive(dactive, dactive,mark(dactive))

→+
1 factive(b, c,mark(d)) →1 factive(b, c, dactive)

Note that RL
µ

fµ(x) → fµ(x) dµ → bµ dµ → cµ

and RZ
µ

f(b, c, x) → f(x, x, x) d → c a(b) → b b → b

d → b a(c) → c a(x) → x c → c

also fail to terminate. For example, RZ
µ admits the cycle

f(b, c, d) →Z f(d, d, d) →+
Z

f(b, c, d) →+
Z

f(b, c, d)

Because RFR
µ = RZ

µ ∪ {a(f(x, y, z)) → f(x, y, a(z)), a(d) → d}, RFR
µ admits the

same cycle.

Nevertheless, compared to the transformations of Lucas, Zantema, and Fer-
reira & Ribeiro, our easy transformation is very powerful. There are numerous
CSRSs where our transformation succeeds and which cannot be handled by the
other three transformations.

Example 16. As a simple example, consider the terminating CSRS R

g(x) → h(x) c → d h(d) → g(c)

with µ(g) = µ(h) = ∅ from [47]. The TRS RL
µ

gµ → hµ cµ → dµ hµ → gµ

is non-terminating as it admits the cycle gµ →L hµ →L gµ. The TRS RZ
µ

g(x) → h(a(x)) h(d) → g(c) a(c) → c c → c

c → d a(x) → x a(d) → d d → d

17

is non-terminating as it admits the cycle

g(c) →Z h(a(c)) →Z h(c) →Z h(d) →Z h(d) →Z g(c)

Because RZ
µ ⊆ RFR

µ , RFR
µ is also non-terminating. In contrast, our transformation

generates the TRS R1
µ

gactive(x) → hactive(x) cactive → d hactive(d) → gactive(c)

mark(g(x)) → gactive(x) mark(c) → cactive gactive(x) → g(x) cactive → c

mark(h(x)) → hactive(x) mark(d) → d hactive(x) → h(x)

which is compatible with the recursive path order for the precedence

mark � cactive � d � gactive � hactive � g � h � c

and hence terminating.

Moreover, while the techniques of Lucas, Zantema, and Ferreira & Ribeiro
fail for the nats example from the introduction, our transformation generates a
TRS that is easily proved to be terminating.

Example 17. With our transformation one obtains the following TRS R1
µ

natsactive → adxactive(zerosactive) hdactive(x) → hd(x)

zerosactive → 0 : zeros tlactive(x) → tl(x)

incractive(x : y) → s(x) : incr(y) mark(nats) → natsactive

adxactive(x : y) → incractive(x : adx(y)) mark(zeros) → zerosactive

hdactive(x : y) → mark(x) mark(incr(x)) → incractive(mark(x))

tlactive(x : y) → mark(y) mark(adx(x)) → adxactive(mark(x))

natsactive → nats mark(hd(x)) → hdactive(mark(x))

zerosactive → zeros mark(tl(x)) → tlactive(mark(x))

incractive(x) → incr(x) mark(0) → 0

adxactive(x) → adx(x) mark(s(x)) → s(x)

mark(x : y) → x : y

Termination of R1
µ can be proved by the following polynomial interpretation:

[nats] = 0 [hd](x) = 5x + 8

[natsactive] = 6 [hdactive](x) = 5x + 9

[zeros] = 0 [tl](x) = 5x + 8

[zerosactive] = 1 [tlactive](x) = 5x + 9

[incr](x) = x + 1 [0] = 0

[incractive](x) = x + 2 [s](x) = x

[adx](x) = x + 1 [x : y] = x + y

[adxactive](x) = x + 4 [mark](x) = 5x + 7

18

Systems for the automated generation of polynomial orders can for instance be
found in [4, 8, 15, 42], see [23] for a comparison of some of the underlying methods.
The above interpretation is computed by CiME [8].

In fact, there does not exist any example where the methods of Lucas, Zan-
tema, or Ferreira & Ribeiro work but our method fails. In other words, our
transformation is more powerful than all other three approaches. One should re-
mark that this also provides an alternative proof of the soundness of these three
approaches. We first prove this for the transformation of Lucas.

Theorem 18. Let (R, µ) be a CSRS over a signature F . If RL
µ is terminating

then R1
µ is terminating.

Proof. We prove termination of R1
µ using the dependency pair approach [1, 16].

The dependency pairs of R1
µ are

Factive(l1, . . . , ln) → Gactive(t1, . . . , tn) (1)

Factive(l1, . . . , ln) → MARK(x) (2)

for all rewrite rules f(l1, . . . , ln) → r ∈ R, active subterms g(t1, . . . , tn) of r with
a defined root symbol, and active variables x in r,

MARK(f(x1, . . . , xn)) → Factive([x1]
f
1 , . . . , [xn]fn) (3)

for all f ∈ FD, and

MARK(f(x1, . . . , xn)) → MARK(xi) (4)

for all f ∈ F and i ∈ µ(f). Every cycle of the dependency graph must contain a
dependency pair of type (1), (2), or (4). Thus, it is sufficient if dependency pairs
of type (1), (2), and (4) are strictly decreasing, whereas for dependency pairs
of type (3) it is enough if they are weakly decreasing. Moreover, all rules of R1

µ

should be weakly decreasing. Thus, we have to find a reduction pair (%, >) such
that

factive(l1, . . . , ln) % mark(r)↓M

Factive(l1, . . . , ln) > Gactive(t1, . . . , tn)

Factive(l1, . . . , ln) > MARK(x)

for all rewrite rules f(l1, . . . , ln) → r ∈ R, active subterms g(t1, . . . , tn) of r with
a defined root symbol, and active variables x in r, and

mark(f(x1, . . . , xn)) % factive([x1]
f
1 , . . . , [xn]fn) for all f ∈ FD

mark(f(x1, . . . , xn)) % f([x1]
f
1 , . . . , [xn]fn) for all f ∈ FC

factive(x1, . . . , xn) % f(x1, . . . , xn) for all f ∈ FD

MARK(f(x1, . . . , xn)) % Factive([x1]
f
1 , . . . , [xn]fn) for all f ∈ FD

MARK(f(x1, . . . , xn)) > MARK(xi) for all f ∈ F , i ∈ µ(f)

19

A suitable reduction pair (%, >) can be obtained from the reduction relation →L

provided the terms in the above inequalities are first transformed into terms over
the signature FL. To this end, we replace all mark- and MARK-terms by their
arguments and we replace all activated function symbols factive and the tuple sym-
bols Factive by the original symbols f . Then we proceed as in the transformation
of Lucas by eliminating all inactive arguments using the TRS L (Definition 4).
Thus, let L′ be the following terminating and confluent TRS:

L′ = L ∪ {mark(x) → x, MARK(x) → x}

∪ {factive(x1, . . . , xn) → f(x1, . . . , xn) | f ∈ FD}

∪ {Factive(x1, . . . , xn) → f(x1, . . . , xn) | f ∈ FD}

Now we define > by s > t if and only if s↓L′ (→L ∪ �)+ t↓L′ . Here � denotes
the proper subterm relation. Moreover, let % be the relation where s % t if and
only if s↓L′ →∗

L
t↓L′ . One easily verifies that (%, >) is a reduction pair (> is well

founded by the termination of RL
µ), which satisfies the constraints above. Hence,

due to the soundness of the dependency pair approach, the termination of R1
µ is

established. ut

Now we show that our transformation is also more powerful than the ones of
Zantema and of Ferreira & Ribeiro. In fact, this already holds if one eliminates
the rules

a(f(x1, . . . , xn)) → f([[x1]]
f
1 , . . . , [[xn]]fn)

from RFR
µ . In other words, these rules are superfluous for a sound transforma-

tion technique (this is shown in Theorem 22(b) below). Theorem 22(a) states
that the resulting transformation Θ′

FR
is less powerful than our transformation.

Theorem 22(c) states that the same is true for Ferreira & Ribeiro’s original
transformation ΘFR and Theorem 22(d) states that this holds for Zantema’s
transformation, too. The proof of Theorem 22(a) has the same structure as the
one of Theorem 11.

So in order to relate the two transformations, we have to show that every
reduction between two ground terms s and t in R1

µ corresponds to a similar

reduction between related ground terms Ψ(s) and Ψ(t) in RFR
′

µ . Here, Ψ is a
mapping which removes all active subscripts and mark symbols. Moreover, Ψ
underlines function symbols f at an inactive position, provided that f ∈ FFR

µ .

In principle, all positions below an inactive position are also inactive. How-
ever, in the mapping Ψ , every f with f /∈ FFR

µ , every factive, and the symbol
mark make their active argument positions “active” again. Thus, if µ(:) = ∅,
then we obtain Ψ(0 : adx(zeros)) = 0 : adx(zeros), but Ψ(0 : mark(adx(zeros))) =
0 : adx(zeros), Ψ(0 : adxactive(zeros)) = 0 : adx(zeros), and Ψ(0 : tl(zeros)) = 0 :
tl(zeros), since tl /∈ FFR

µ . For the definition of Ψ we use another mapping Ψ ′ which
is like Ψ except that in Ψ the root position is considered active and in Ψ ′ it is
considered inactive.

20

Definition 19. Let (R, µ) be a CSRS over a signature F . We define two map-
pings Ψ and Ψ ′ from T (F1) to T (FFR

µ) inductively as follows:

Ψ(f(t1, . . . , tn)) = Ψ(factive(t1, . . . , tn)) = f(〈t1〉
f
1 , . . . , 〈tn〉

f
n)

Ψ ′(f(t1, . . . , tn)) =

{

f(Ψ ′(t1), . . . , Ψ
′(tn)) if f ∈ FFR

µ

f(〈t1〉
f
1 , . . . , 〈tn〉

f
n) if f /∈ FFR

µ

Ψ ′(factive(t1, . . . , tn)) = f(〈t1〉
f
1 , . . . , 〈tn〉

f
n)

Ψ(mark(t)) = Ψ ′(mark(t)) = Ψ(t)

with 〈t〉fi = Ψ(t) if i ∈ µ(f) and 〈t〉fi = Ψ ′(t) if i /∈ µ(f), for all 1 6 i 6 n.

The aim is to show that every reduction step s →1 t corresponds to a reduc-
tion from Ψ(s) to Ψ(t) in RFR

′

µ . In the following, M2 denotes the subset of R1
µ

consisting of all rules in M together with all rules of the form factive(x1, . . . , xn) →
f(x1, . . . , xn) and M1 = R1

µ \M2. Then we have the following correspondence.

Lemma 20. For all terms s, t ∈ T (F1), if s →M1
t then Ψ(s) →+

FR
′ Ψ(t).

Lemma 21. For all terms s, t ∈ T (F1), if s →M2
t then Ψ(s) →∗

FR
′ Ψ(t).

The proofs can be found in Appendix B.

Theorem 22. Let (R, µ) be a CSRS over a signature F .

(a) If RFR
′

µ is terminating then R1
µ is terminating.

(b) If RFR
′

µ is terminating then (R, µ) is terminating.

(c) If RFR
µ is terminating then R1

µ is terminating.

(d) If RZ
µ is terminating then R1

µ is terminating.

Proof. Because M2 is terminating, every infinite R1
µ-reduction of ground terms

in T (F1) is transformed into an infinite RFR
′

µ -reduction as a consequence of Lem-
mata 21 and 20. This proves (a). Claim (b) is an immediate consequence of (a)
and the soundness of our transformation (Theorem 14). Claim (c) follows from
(a) since RFR

′

µ is a subset of RFR
µ . Finally, Claim (d) is implied by (c) and The-

orem 11. ut

The relationship between the various transformations is illustrated in Fig-
ure 1. Here, “Transformation 1 → Transformation 2” means that Transforma-
tion 2 is more powerful than Transformation 1, i.e., if Transformation 1 yields
a terminating TRS, then so does Transformation 2, but not vice versa. We have
proved that the relations between the four transformations ΘL, ΘZ, ΘFR, and
Θ1 depicted in Figure 1 really hold and that these are all relations between
these transformations (i.e., Lucas’ transformation is incomparable with the ones
of Zantema and of Ferreira & Ribeiro). Hence, our transformation Θ1 is the
most powerful one up to now. Still, Θ1 is incomplete (Example 15) and we will
introduce a complete transformation Θ2 in the next section.

One should remark that while Θ1 is incomplete in general, there do exist some

21

Θ2

Θ1

OO

ΘFR

CC�����

ΘZ

CC�����

ΘL

[[66666666666666

Fig. 1. Relationship between all transformations.

restricted completeness results for Θ1. Lucas [35] recently observed that Θ1 is
complete for such CSRSs (R, µ) where µ is at least as restrictive as the canonical
replacement map µc associated with R. Moreover, in [19] we investigated the use
of Θ1 for innermost termination. It turns out that although termination of (R, µ)
does not imply termination of R1

µ, it at least implies innermost termination of
R1

µ. An immediate consequence of this result is that Θ1 is complete for innermost
termination of those CSRSs which have the property that innermost termination
coincides with termination.3 The latter is known to be true for orthogonal CSRSs
[19] and for locally-confluent overlay systems with the additionally property that
variables that occur at an active position in a left-hand side l of a rewrite rule
l → r do not occur at inactive positions in l or r [21].

5 A Sound and Complete Transformation

In this section we present a transformation of context-sensitive rewrite systems
which is not only sound but also complete with respect to termination.

Let us first investigate why the transformation of Section 4 lacks complete-
ness. Consider again the CSRS (R, µ) of Example 15. The reason for the non-
termination of R1

µ is that terms may have occurrences of factive symbols at inac-
tive positions, even if we start with a “proper” term (like factive(b, c, dactive)). The
“forbidden” occurrences of dactive in the first two arguments of factive (in the term
factive(dactive, dactive,mark(dactive)))) lead to contractions which are impossible in
the underlying CSRS. Thus, the key to achieving a complete transformation is
to control the number of occurrences of factive symbols. We do this in a rather
drastic manner: We will work with a single occurrence of a symbol marked with
active. Of course, we cannot forbid the existence of terms with multiple occur-
rences of factive symbols but we can make sure that no new factive symbols are
introduced during the contraction of an active redex.

3 These restricted completeness results were originally achieved for a slightly different presen-
tation of our transformation (see Definition 50). However, these results immediately carry
over to the current transformation Θ1.

22

Instead of having a separate symbol factive for every function symbol f in the
signature of the CSRS, we use a new unary function symbol active. Working with
a single active occurrence entails that we have to shift it in a non-deterministic
fashion downwards to any active position. This is achieved by the rules

active(f(x1, . . . , xi, . . . , xn)) → f(x1, . . . , active(xi), . . . , xn)

for every i ∈ µ(f). By this shifting of the symbol active, our TRS implements
an algorithm to search for redexes subject to the constraints of the replacement
map µ. Once we have shifted active to the position of the desired redex, we can
apply one of the rules

active(l) → mark(r)

The function symbol mark is used to mark the contractum of the selected redex.
In order to continue the reduction it has to be replaced by active again. Since the
next reduction step may of course take place at a position above the previously
contracted redex, we first have to shift mark upwards through the term, i.e., we
use rules of the form

f(x1, . . . ,mark(xi), . . . , xn) → mark(f(x1, . . . , xi, . . . , xn))

for every i ∈ µ(f). We want to replace mark by active if we have reached the top
of the term. Since it cannot be determined whether mark is on the root position
of the term, we introduce a new unary function symbol top to mark the position
below which reductions may take place. Thus, the reduction of a term s with
respect to a CSRS is modeled by the reduction of the term top(active(s)) in
the transformed TRS. If top(active(s)) is reduced to a term top(mark(t)), we are
ready to replace mark by active. This suggests adding the rule

top(mark(x)) → top(active(x))

However, as illustrated with the counterexample in Section 4 (Example 15),
we have to avoid making infinite reductions with terms which contain inner
occurrences of new symbols like active and mark. For that reason we want to
make sure that this rule is only applicable to terms that do not contain any other
occurrences of the new function symbols. Thus, before reducing top(mark(t)) to
top(active(t)) we check whether the term t is proper, i.e., whether it contains only
function symbols from the original signature F . This is easily achieved by new
unary function symbols proper and ok. For any ground term t ∈ T (F), proper(t)
reduces to ok(t), but if t contains one of the newly introduced function symbols
then the reduction of proper(t) is blocked. This is done by the rules

proper(c) → ok(c)

for every constant c ∈ F and

proper(f(x1, . . . , xn)) → f(proper(x1), . . . , proper(xn))

f(ok(x1), . . . , ok(xn)) → ok(f(x1, . . . , xn))

for every function symbol f ∈ F of arity n > 0. Then, instead of the rewrite rule
top(mark(x)) → top(active(x)), we take the rules

23

top(mark(x)) → top(proper(x))

top(ok(x)) → top(active(x))

Now the context-sensitive reduction of a term t is translated into a reduction of
the term top(active(t)) with the transformed TRS. This concludes our informal
explanation of the new transformation, whose formal definition is summarized
below.

Definition 23. Let (R, µ) be a CSRS over a signature F . The TRS R2
µ over the

signature F2 = F ∪{active,mark, top, proper, ok} consists of the following rewrite
rules (for all l → r ∈ R, f ∈ F of arity n > 0, i ∈ µ(f), and constants c ∈ F):

active(l) → mark(r)

active(f(x1, . . . , xi, . . . , xn)) → f(x1, . . . , active(xi), . . . , xn)

f(x1, . . . ,mark(xi), . . . , xn) → mark(f(x1, . . . , xi, . . . , xn))

proper(c) → ok(c)

proper(f(x1, . . . , xn)) → f(proper(x1), . . . , proper(xn))

f(ok(x1), . . . , ok(xn)) → ok(f(x1, . . . , xn))

top(mark(x)) → top(proper(x))

top(ok(x)) → top(active(x))

We denote the transformation (R, µ) 7→ R2
µ by Θ2 and we abbreviate →R2

µ
to

→2.

The following example shows that the rules for proper and ok are essential
for completeness.

Example 24. Consider the CSRS R

f(x, g(x), y) → f(y, y, y) g(b) → c b → c

with µ(f) = ∅ and µ(g) = {1}. This CSRS is clearly terminating. The TRS

active(f(x, g(x), y)) → mark(f(y, y, y)) active(g(x)) → g(active(x))

active(g(b)) → mark(c) g(mark(x)) → mark(g(x))

active(b) → mark(c) top(mark(x)) → top(active(x))

that is obtained from R2
µ by merging the two rules top(mark(x)) → top(proper(x))

and top(ok(x)) → top(active(x)) into top(mark(x)) → top(active(x)) and remov-
ing all rules for proper and ok is non-terminating because t = top(active(f(s, s, s)))
with s = active(g(b)) admits the following cycle:

t → top(active(f(mark(c), s, s))) → top(active(f(mark(c), g(active(b)), s)))

→ top(active(f(mark(c), g(mark(c)), s))) → top(mark(f(s, s, s))) → t

In the remainder of this section we show that our second transformation is
both sound and complete. We start with a preliminary lemma, which states that
proper has indeed the desired effect.

24

Lemma 25. Let (R, µ) be a CSRS over a signature F and let s, t ∈ T (F2). We
have proper(s) →+

2 ok(t) if and only if s = t and s ∈ T (F).

Proof. The “if” direction is an easy induction proof on the structure of s. The
“only if” direction is proved by induction on the length of the reduction. First as-
sume that the first reduction step takes place inside s, so proper(s) →2 proper(s′)
→+

2 ok(t) for some term s′ with s →2 s′. The induction hypothesis yields
s′ ∈ T (F). However, an inspection of the rules of R2

µ shows that then s →2 s′

is impossible, since terms from T (F) can never be obtained by R2
µ-reductions.

So the first reduction step takes place at the root. If s is a constant c, then
we obtain proper(c) →2 ok(c) and thus s = c = t ∈ T (F). Otherwise, a
root reduction is only possible if s has the form f(s1, . . . , sn). Then we have
proper(f(s1, . . . , sn)) →2 f(proper(s1), . . . , proper(sn)) →+

2 ok(t). In order to re-
duce a term f(· · ·) to ok(·), all arguments of f must reduce to terms with root
symbol ok. Hence, we must have proper(si) →

+
2 ok(ti). The induction hypothesis

yields si = ti ∈ T (F) and hence t = f(t1, . . . , tn) = s, as desired. ut

The next lemma shows how context-sensitive reduction steps are simulated
by the second transformation. The “if” part is used in the completeness proof.

Lemma 26. Let (R, µ) be a CSRS over a signature F and let s ∈ T (F). We
have s →µ t if and only if active(s) →+

2 mark(t).

Proof. The “only if” direction is easily proved by induction on the depth of the
position of the redex contracted in s →µ t. We prove here the “if” direction
by induction on s. There are two possibilities for the rewrite rule of R2

µ that is
applied in the first step of the reduction from active(s) to mark(t). If a rule of
the form active(l) → mark(r) is used then s = lσ for some substitution σ. Since
rσ contains only symbols from F , mark(rσ) is in normal form and thus t = rσ.
Clearly s →µ t. Otherwise, s must have the form f(s1, . . . , si, . . . , sn) and in the
first reduction step active(s) is reduced to f(s1, . . . , active(si), . . . , sn) for some
i ∈ µ(f). Note that all reductions of the latter term to a term of the form mark(t)
have the form

f(s1, . . . , active(si), . . . , sn) →+
2 f(s1, . . . ,mark(ti), . . . , sn)

→2 mark(f(s1, . . . , ti, . . . , sn))

Hence t = f(s1, . . . , ti, . . . , sn). The induction hypothesis yields si →µ ti and as
i ∈ µ(f) we also have s →µ t. ut

Soundness of our second transformation is now easily shown.

Theorem 27. Let (R, µ) be a CSRS over a signature F . If R2
µ is terminating

then (R, µ) is terminating.

Proof. If (R, µ) is not terminating then there exists an infinite reduction of
ground terms in T (F). Note that s →µ t implies active(s) →+

2 mark(t) by
Lemma 26. Hence it also implies

25

top(active(s)) →+
2 top(mark(t)) →2 top(proper(t))

Moreover, by Lemma 25 we have proper(t) →+
2 ok(t) and thus

top(proper(t)) →+
2 top(ok(t)) →2 top(active(t))

Concatenating these two reductions shows that top(active(s)) →+
2 top(active(t))

whenever s →µ t. Hence any infinite reduction of ground terms in (R, µ) is
transformed into an infinite reduction in R2

µ. ut

To prove that the converse of Theorem 27 holds as well, we define S2
µ as the

TRS R2
µ without the two rewrite rules for top. The following lemma states that

we do not have to worry about S2
µ.

Lemma 28. The TRS S2
µ is terminating for any CSRS (R, µ).

Proof. Let F be the signature of (R, µ). The rewrite rules of S2
µ are oriented from

left to right by the recursive path order induced by the following precedence on
F2: active � proper � f � ok � mark for every f ∈ F . It follows that S2

µ is
terminating. ut

The following lemma implies that the two top-rules must be applied in alter-
nating order.

Lemma 29. Let (R, µ) be a CSRS over a signature F and let s ∈ T (F2).

(a) There is no t ∈ T (F2) such that proper(s) →+
2 mark(t).

(b) There is no t ∈ T (F2) such that active(s) →+
2 ok(t).

Proof. (a) We prove the claim by induction on the length of the reduction. If the
first reduction step takes place inside s then the claim immediately follows
from the induction hypothesis. Otherwise, the first step is a root reduction
step. If the first step is proper(c) →2 ok(c) with s = c = t, then the claim
is obvious, since the root symbol ok is a constructor which can never be
reduced. In the remaining case, we have s = f(s1, . . . , sn) and proper(s) →2

f(proper(s1), . . . , proper(sn)). In order to rewrite this term to a term with
mark as root symbol, one subterm proper(si) must be reduced to mark(ti) for
some term ti. However, this contradicts the induction hypothesis.

(b) Again we use induction on the length of the reduction. If the reduction starts
inside s, the claim is obvious. If the reduction starts with active(s) →2

mark(·), then the claim is proved, since mark is a constructor which can
never be reduced. The remaining case is s = f(s1, . . . , sn) and active(s) →2

f(s1, . . . , active(si), . . . , sn). This term can only be reduced to a term with
the root symbol ok if all arguments of f rewrite to ok-terms. In particu-
lar, we must have active(si) →+

2 ok(ti) for some term ti. This, however, is a
contradiction to the induction hypothesis.

ut

26

Now we are ready to present the completeness theorem.

Theorem 30. Let (R, µ) be a CSRS over a signature F . If (R, µ) is terminating
then R2

µ is terminating.

Proof. First note that the precedence used in the proof of Lemma 28 cannot
be extended to deal with the whole of R2

µ as the rewrite rules for top require
mark � proper and ok � active. Since R2

µ lacks collapsing rules, it is sufficient to
prove termination of any typed version of R2

µ, cf. [37, 45]. Thus we may assume
that the function symbols of R2

µ come from a many-sorted signature, where the
only restriction is that the left and right-hand side of any rewrite rule are well
typed and of the same type. We use two sorts α and β, with top of type α → β
and all other symbols of type α × · · · × α → α. So if R2

µ allows an infinite
reduction then there exists an infinite reduction of well-typed terms. Since both
types contain a ground term, we may assume for a proof by contradiction that
there exists an infinite reduction starting from a well-typed ground term t. Terms
of type α are terminating by Lemma 28 since they cannot contain the symbol
top and thus the only applicable rules stem from S2

µ. So t is a ground term of
type β, which implies that t = top(t′) with t′ of type α. Since t′ is terminating,
the infinite reduction starting from t must contain a root reduction step. So t′

reduces to mark(t1) or ok(t0) for some terms t1 or t0 (of type α).
We first consider the former possibility. The infinite reduction starts with

t →∗
2 top(mark(t1)) →2 top(proper(t1))

Since proper(t1) is of type α and thus terminating, after some further reduc-
tion steps another step takes place at the root. According to Lemma 29(a),
proper(t1) cannot reduce to a mark-term. Thus, another root step is only possi-
ble if proper(t1) reduces to ok(t′1) for some term t′1. According to Lemma 25 we
must have t1 = t′1 ∈ T (F). Hence the presupposed infinite reduction continues
as follows:

top(proper(t1)) →
+
2 top(ok(t1)) →2 top(active(t1))

Repeating this kind of reasoning reveals that the infinite reduction must be of
the following form, where all root reduction steps between top(proper(t1)) and
top(mark(t3)) are made explicit:

t →+
2 top(proper(t1)) →

+
2 top(ok(t1)) →2 top(active(t1)) →

+
2 top(mark(t2))

→2 top(proper(t2)) →
+
2 top(ok(t2)) →2 top(active(t2)) →

+
2 top(mark(t3))

→2 · · ·

Hence active(ti) →
+
2 mark(ti+1) and ti ∈ T (F) for all i > 1. We obtain

t1 →µ t2 →µ t3 →µ · · ·

from Lemma 26, contradicting the termination of (R, µ).

27

Next suppose that t′ reduces to ok(t0) for some term t0. In this case the infinite
reduction starts with t →∗

2 top(ok(t0)) →2 top(active(t0)). Since active(t0) is also
of type α and hence terminating, there must be another root reduction step.
So active(t0) must reduce to mark(t1) for some term t1, since it cannot rewrite
to an ok-term by Lemma 29(b). Hence, we end up with t →∗

2 top(ok(t0)) →2

top(active(t0)) →
+
2 top(mark(t1)) as in the first case. ut

Example 31. To illustrate our new transformation, let us reconsider the CSRS
(R, µ) in the counterexample to the completeness of Θ1 (Example 15). Apart
from the rules for proper, ok, and top, R2

µ contains the following rules:

active(f(b, c, x)) → mark(f(x, x, x)) active(f(x, y, z)) → f(x, y, active(z))

active(d) → mark(b) f(x, y,mark(z)) → mark(f(x, y, z))

active(d) → mark(c)

The term factive(b, c, dactive) admitted an infinite R1
µ-reduction. In R2

µ, the corre-
sponding term t = top(active(f(b, c, active(d)))) rewrites to top(mark(f(active(d),
active(d), active(d)))), but in order to change mark back to active, all auxiliary
symbols below mark must be eliminated (this is checked by the rules for proper
and ok). Since this is impossible here, t is terminating. For instance,

t → top(mark(f(active(d), active(d), active(d))))

→ top(proper(f(active(d), active(d), active(d))))

→ top(f(proper(active(d)), proper(active(d)), proper(active(d))))

→+ top(f(proper(mark(b)), proper(mark(c)), proper(mark(b))))

6 Context-Sensitive Rewriting Modulo AC

In this section we extend our results to context-sensitive rewriting modulo as-
sociativity and commutativity. Operators that are associative and commutative
occur frequently in practice. Since the commutativity axiom cannot be oriented
into a terminating rewrite rule, one has to work modulo associativity and com-
mutativity in order to have any hope for terminating computations. (Turning
the associativity axiom into a rewrite rule and working modulo commutativity
causes non-termination.) Context-sensitive rewriting modulo associativity and
commutativity was first studied by Ferreira & Ribeiro [13]. Throughout this sec-
tion, let G ⊆ F be some subset of binary function symbols and let AC(G) (or
just AC if G can be inferred from the context) consist of the rules

f(f(x, y), z) → f(x, f(y, z))

f(x, y) → f(y, x)

for all f ∈ G. As usual, we write ∼AC for ↔∗
AC. Then the context-sensitive

rewrite relation →µ/AC is defined as follows: s →µ/AC t if and only if there

28

exist terms s′ and t′ such that s ∼AC s′ →µ t′ ∼AC t. Note that a replacement
map µ with µ(f) = {1} or µ(f) = {2} for an AC-symbol f ∈ G does not
make sense, since otherwise associativity and commutativity can be used to bring
terms from inactive positions into active ones. Therefore, one demands that the
replacement map µ satisfies µ(f) = {1, 2} or µ(f) = ∅ for all AC-symbols
f ∈ G.4 In the sequel we tacitly restrict ourselves to replacement maps satisfying
this requirement.

Ferreira & Ribeiro [13] proved that their transformation can also be used
in the presence of AC-symbols. More precisely, if G = G ∪ {f | f ∈ G and

f ∈ FFR
µ } then termination of RFR

µ modulo AC(G) implies termination of (R, µ)
modulo AC(G). Thus, by using any of the methods developed for proving AC-
termination (e.g., [17, 25, 26, 28, 36, 40, 41]), one can now verify termination of
context-sensitive rewriting modulo AC as well.

In this section we prove that analogous statements also hold for our two
transformations. Moreover, we show that in the presence of AC-symbols our first
transformation is still more powerful than the one of Ferreira & Ribeiro and our
second transformation is still complete.

When regarding our first transformation, it is clear that we have to perform
a small change in its presentation first. To see this, assume that f is an AC-
symbol with replacement map µ(f) = ∅ and consider the TRS R with the rule
f(f(b, c), d) → f(b, f(c, d)). (Context-sensitive) rewriting modulo AC is obviously
not terminating. However, R1

µ would be terminating, since the present rule would
be replaced by factive(f(b, c), d) → mark(f(b, f(c, d)))↓M = factive(b, f(c, d)). In or-
der to simulate the non-terminating reduction in R1

µ one would need associativity
not just for f and factive, but also for a combination of these two symbols.

Hence, in rules of R1
µ of the form factive(l1, . . . , ln) → mark(r)↓M, the rules

mark(g(· · ·)) → gactive(· · ·) for defined AC-symbols with µ(g) = ∅ should not
be used to normalize the right-hand sides. This results in a slightly modified
transformation Θ′

1.

Definition 32. Let (R, µ) be a CSRS over a signature F and let G ⊆ F . The
TRS R1′

µ over the signature F1 = F ∪ {factive | f ∈ FD} ∪ {mark} consists of the
following rewrite rules:

factive(l1, . . . , ln) → mark(r)↓M′ for all f(l1, . . . , ln) → r ∈ R

mark(f(x1, . . . , xn)) → factive([x1]
f
1 , . . . , [xn]fn) for all f ∈ FD

mark(f(x1, . . . , xn)) → f([x1]
f
1 , . . . , [xn]fn) for all f ∈ FC

factive(x1, . . . , xn) → f(x1, . . . , xn) for all f ∈ FD

4 Ferreira & Ribeiro also regard a further restriction of context-sensitive rewriting where one
uses a second replacement map in order to restrict those positions where application of
AC-axioms is allowed. However, we do not see any motivation for this restriction in practice.
Moreover, if one wants to prove termination of the transformed system with existing methods,
one can never benefit from this restriction (i.e., one can only prove termination of →µ/AC

where application of AC-axioms is unrestricted).

29

Here M′ is the subset of R1′
µ consisting of all mark-rules except those where

f ∈ G ∩ FD and µ(f) = ∅. Again, [t]fi = mark(t) if i ∈ µ(f) and [t]fi = t
otherwise. We denote the transformation (R, µ) 7→ R1′

µ by Θ′
1 and we abbreviate

→
R1′

µ
to →1′.

So in the example above R1′
µ differs from R1

µ in that the rule factive(f(b, c), d)
→ factive(b, f(c, d)) is replaced by factive(f(b, c), d) → mark(f(b, f(c, d))).

Before proving the soundness of the transformation Θ′
1 for termination of

context-sensitive rewriting modulo AC, let us first show that in the absence of
AC-axioms, R1′

µ is really just a slightly different presentation of R1
µ (i.e., they do

not differ in their termination behavior).

Theorem 33. Let (R, µ) be a CSRS over a signature F . The TRS R1
µ is ter-

minating if and only if R1′
µ is terminating.

Proof. The “if” direction is trivial, since →1 ⊆ →+
1′ . For the “only if” direction

note that non-termination of R1′
µ can only be due to the rules from R1′

µ \ M.
We show that if s →1′ t by application of one of these rules, then we have
s↓M →+

1 t↓M. First regard the case where s|π = factive(l1, . . . , ln)σ and t =
s[mark(r)↓M′σ]π for some rule l → r ∈ R. Let σ′(x) = σ(x)↓M for all variables x.
Then we obtain s↓M = s↓M[factive(l1, . . . , ln)σ′]π′ →1 s↓M[mark(r)↓Mσ′]π′ →∗

1

t↓M. Next let s|π = factive(s1, . . . , sn) and t = s[f(s1, . . . , sn)]π. Then we obtain
s↓M = s↓M[factive(s1↓M, . . . , sn↓M)]π′ →1 s↓M[f(s1↓M, . . . , sn↓M)]π′ →∗

1 t↓M.
ut

Now we show that transformation Θ′
1 remains sound in the presence of AC-

axioms.

Theorem 34. Let (R, µ) be a CSRS over a signature F and let G ′ = G∪{factive |
f ∈ G ∩ FD}. If R1′

µ is terminating modulo AC(G ′) then (R, µ) is terminating
modulo AC(G).

Proof. As in Lemma 13 and Theorem 14, it is enough to show that for all ground
terms s, t ∈ T (F), if s ∼AC(G) s′ →µ t′ ∼AC(G) t then

mark(s)↓M′ ∼AC(G′) mark(s′)↓M′ →+
1′ mark(t′)↓M′ ∼AC(G′) mark(t)↓M′

Similar to the proof of Lemma 13 one shows that s′ →µ t′ implies mark(s′)↓M′

→+
1′ mark(t′)↓M′ . So it remains to show that s ∼AC(G) s′ implies mark(s)↓M′

∼AC(G′) mark(s′)↓M′ . Using induction on the number of AC-steps, it is suffi-
cient to show that s →AC(G) s′ implies mark(s)↓M′ →AC(G′) mark(s′)↓M′ . Let
us regard the case where associativity is applied, i.e., s|π = f(f(s1, s2), s3) and
s′ = s[f(s1, f(s2, s3))]π for f ∈ G, some position π, and some terms s1, s2, and
s3. (The case where the commutativity rule is applied is completely analogous.)

First, let π be an active position in s and let µ(f) = {1, 2} or f ∈ FC. Then
mark(s)↓M′ |π = f ′(f ′(s′1, s

′
2), s

′
3) and mark(s′)↓M′ = mark(s)↓M′ [f ′(s′1, f

′(s′2,

30

s′3))]π for some terms s′1, s′2, and s′3, where f ′ = factive if f ∈ FD and f ′ =
f if f ∈ FC. If π is active, µ(f) = ∅, and f ∈ FD then mark(s)↓M′ |π =
mark(f(f(s1, s2), s3)) and mark(s′)↓M′ = mark(s)↓M′ [mark(f(s1, f(s2, s3)))]π. If
π is an inactive position in s then mark(s)↓M′ = mark(s)↓M′ [f(f(s1, s2), s3)]π′

and mark(s′)↓M′ = mark(s)↓M′ [f(s1, f(s2, s3))]π′ for some position π′. In all
cases we clearly have mark(s)↓M′ →AC(G′) mark(s′)↓M′ . ut

Finally, we compare our transformation Θ′
1 with the one of Ferreira & Ribeiro

[13] when using it for context-sensitive rewriting modulo AC. First of all, note
that Ferreira & Ribeiro’s transformation can only be used if the replacement map
µ satisfies µ(f) = {1, 2} for all AC-symbols f . Otherwise, their transformation
is unsound. To illustrate this, consider the CSRS

f(c, c) → f(c, f(b, b)) f(f(c, b), b) → f(c, c)

with µ(f) = ∅ and f an AC-symbol. Clearly, (R, µ) is not terminating modulo
AC. However, RFR

µ

f(c, c) → f(c, f(b, b)) a(f(x1, x2)) → f(x1, x2) f(x1, x2) → f(x1, x2)

f(f(c, b), b) → f(c, c) a(b) → b b → b

a(x) → x a(c) → c c → c

is terminating modulo AC({f, f}). The problem is that for the desired step from
f(c, f(b, b)) to f(f(c, b), b) we need the rule f(x, f(y, z)) → f(f(x, y), z), which is
not an associativity axiom.

Thus, Θ′
1 is more widely applicable since our transformation is sound for

any replacement map µ (where µ(f) = {1, 2} or µ(f) = ∅ for AC-symbols f).
Moreover, even in the case where µ(f) = {1, 2} for all AC-symbols f , our trans-
formation Θ′

1 is still more powerful than the one of Ferreira & Ribeiro. This is
shown in the following theorem. Again, G is a subset of the binary function sym-
bols in F , G ′ = G ∪ {factive | f ∈ G ∩FD}, and G = G ∪ {f | f ∈ G and f ∈ FFR

µ }.

Theorem 35. Let (R, µ) be a CSRS over a signature F . Let µ(f) = {1, 2} for
all f ∈ G. If RFR

′

µ is terminating modulo AC(G) then R1′
µ is terminating modulo

AC(G′).

Proof. Similar to the proof of Theorem 22(a), it suffices to show that for all terms
from T (F1), s ∼AC(G′) s′ →1′ t′ ∼AC(G′) t implies

Ψ(s) ∼AC(G) Ψ(s′) →∗
FR

′ Ψ(t′) ∼AC(G) Ψ(t)

where we have →+
FR

′ instead of →∗
FR

′ whenever a rule factive(l1, . . . , ln) →
mark(r)↓M′ is applied to rewrite s′ to t′. Similar to Lemmata 20 and 21 one
can show that s′ →1′ t′ implies Ψ(s′) →∗

FR
′ Ψ(t′) and if a rule factive(l1, . . . , ln) →

mark(r)↓M′ is applied in the step from s′ to t′ then at least one rule of RFR
′

µ is
needed to reduce Ψ(s′) to Ψ(t′). Hence, it remains to show that if s ∼AC(G′) s′

31

then Ψ(s) ∼AC(G) Ψ(s′). Using induction on the number of AC-steps, it is suffi-
cient to show Ψ(s) →AC(G) Ψ(s′) for s →AC(G′) s′. We only regard the application
of an associativity rule; the proof for commutativity is completely analogous. We
consider two cases:

(i) s|π = f(f(s1, s2), s3) and s′ = s[f(s1, f(s2, s3))]π,
(ii) s|π = factive(factive(s1, s2), s3) and s′ = s[factive(s1, factive(s2, s3))]π with f ∈

FD

for some position π, terms s1, s2, s3, and f ∈ G.

(i) When computing Ψ(s) and Ψ(s′), either Ψ or Ψ ′ is propagated to the subterms
s|π and s′|π. In the former case we have

Ψ(s) = Ψ(s)[Ψ(s|π)]π′

= Ψ(s)[Ψ(f(f(s1, s2), s3))]π′

= Ψ(s)[f(f(Ψ(s1), Ψ(s2)), Ψ(s3))]π′

where the last equality follows from µ(f) = {1, 2}, and likewise

Ψ(s′) = Ψ(s)[f(Ψ(s1), f(Ψ(s2), Ψ(s3)))]π′

for some position π′. Hence Ψ(s) →AC(G) Ψ(s′) by applying the associativity

rule for f . In the latter case we need to distinguish whether or not f ∈ FFR
µ .

If f /∈ FFR
µ then we obtain Ψ(s) →AC(G) Ψ(s′) exactly as before. If f ∈ FFR

µ

then

Ψ(s) = Ψ(s)[Ψ ′(s|π)]π′

= Ψ(s)[f(f(Ψ ′(s1), Ψ
′(s2)), Ψ

′(s3))]π′

and Ψ(s′) = Ψ(s)[f(Ψ ′(s1), f(Ψ ′(s2), Ψ
′(s3)))]π′ . Because f ∈ FFR

µ , AC(G)
contains the associativity rule for f and thus Ψ(s) →AC(G) Ψ(s′).

(ii) We have

Ψ(s) = Ψ(s[factive(factive(s1, s2), s3)]π)

= Ψ(s)[f(f(Ψ(s1), Ψ(s2)), Ψ(s3))]π′

and likewise Ψ(s′) = Ψ(s)[f(Ψ(s1), f(Ψ(s2), Ψ(s3)))]π′ , for some position π′.
Using the associativity rule for f , we obtain Ψ(s) →AC(G) Ψ(s′), as desired.

ut

Now we prove that soundness and completeness of our second transformation
also hold in the presence of AC-axioms.

Theorem 36. Let (R, µ) be a CSRS over a signature F . If R2
µ is terminating

modulo AC(G) then (R, µ) is terminating modulo AC(G).

32

Proof. We show that for ground terms s, t ∈ T (F), s →µ/AC t implies

top(active(s)) →+
2/AC top(active(t)). By definition, there exist terms s′ and t′

such that s ∼AC s′ →µ t′ ∼AC t. As in the proof of Theorem 27, we obtain
top(active(s′)) →+

2 top(active(t′)) from Lemmata 25 and 26. Clearly top(active(s))
∼AC top(active(s′)) and top(active(t′)) ∼AC top(active(t)), and hence the claim
is proved. ut

In order to prove completeness, we first extend Lemma 25 about the effect of
proper to the AC-case.

Lemma 37. Let (R, µ) be a CSRS over a signature F and let s, t ∈ T (F2). We
have proper(s) →+

2/AC ok(t) if and only if s ∼AC t and s ∈ T (F).

Proof. The “if” direction follows from Lemma 25: s ∈ T (F) implies that
proper(s) →+

2 ok(s) and since ok(s) ∼AC ok(t) we obtain proper(s) →+
2/AC ok(t).

The proof of the “only if” direction is completely analogous to the corresponding
proof in Lemma 25 by using an induction on the length of the →2/AC-reduction.

ut

The next lemma shows that similar to Lemma 26, context-sensitive reduction
steps modulo AC can still be simulated by the second transformation.

Lemma 38. Let (R, µ) be a CSRS over a signature F and let s ∈ T (F). We
have s →µ/AC t if and only if active(s) →+

2/AC mark(t).

Proof. For the “if” direction we observe that the reduction active(s) →+
2/AC

mark(t) can be rearranged into active(s) ∼AC active(s′) →+
2 mark(t′) ∼AC

mark(t). Since s′ ∈ T (F), we can apply Lemma 26. This yields s′ →µ t′ and
thus s →µ/AC t as desired. For the “only if” direction we reason as follows.
By definition, there exist terms s′ and t′ such that s ∼AC s′ →µ t′ ∼AC t.
Lemma 26 yields active(s′) →+

2 mark(t′). Clearly active(s) ∼AC active(s′) and
mark(t′) ∼AC mark(t), and therefore active(s) →+

2/AC mark(t). ut

Recall that S2
µ is the TRS R2

µ without the two rewrite rules for top.

Lemma 39. The TRS S2
µ is terminating modulo AC for any CSRS (R, µ).

Proof. The rewrite rules of S2
µ are oriented from left to right for example by the

AC-extension of the recursive path order from [26], where the precedence is as
in Lemma 28. Hence, S2

µ is terminating modulo AC. ut

In the AC-case, the two top-rules must also be applied in alternating order.

Lemma 40. Let (R, µ) be a CSRS over a signature F and let s ∈ T (F2).

(a) There is no t ∈ T (F2) such that proper(s) →+
2/AC mark(t).

(b) There is no t ∈ T (F2) such that active(s) →+
2/AC ok(t).

33

Proof. The proof is analogous to the proof of Lemma 29, using induction on
the length of the →2/AC-reduction. The only difference is in part (b), when s =
f(s1, . . . , sn) and the reduction starts with active(s) →2/AC f(s1, . . . , active(si),
. . . , sn). This term can only be reduced to a term with the root symbol ok if
f(s1, . . . , active(si), . . . , sn) →∗

2/AC f(ok(t1), . . . , ok(tn)). Since f could be asso-
ciative, this does not imply that each argument of f must reduce to an ok-term.
However, let T consist of all maximal subterms of f(s1, . . . , active(si), . . . , sn)
with a root symbol different from f . Then it is easy to show that in order to
reduce the whole term to an ok-term, all t ∈ T must reduce to an ok-term. Since
active(si) ∈ T , we must also have active(si) →+

2/AC ok(·) which contradicts the
induction hypothesis. ut

Now we can finally prove the completeness of our second transformation for
context-sensitive rewriting modulo AC.

Theorem 41. Let (R, µ) be a CSRS over a signature F . If (R, µ) is terminating
modulo AC then R2

µ is terminating modulo AC.

Proof. The proof is very similar to the proof of Theorem 30. Since AC only
contains non-collapsing and variable preserving equations, it is again sufficient
to prove that a suitably typed version of R2

µ is terminating modulo AC, cf. [37].
The typing is done as in Theorem 30, i.e., top is of type α → β and all other
symbols are of type α × · · · × α → α. By Lemma 39, any term t that is non-
terminating modulo AC must be of type β, which implies that t = top(t′) with
t′ of type α. Since t′ is terminating modulo AC and top is not an AC-symbol,
the infinite reduction starting from t must contain a root reduction step. So t′

reduces to mark(t′1) or ok(t0) for some terms t′1 or t0 (of type α).

We first consider the former possibility. The infinite reduction starts with

t →∗
2/AC top(mark(t′1)) →2/AC top(proper(t′′1))

where t′1 ∼AC t′′1. Since proper(t′′1) is of type α and thus terminating modulo AC,
after some further reduction steps another step takes place at the root. According
to Lemma 40(a) this is only possible if proper(t′′1) reduces modulo AC to ok(t′′′1)
for some term t′′′1 . According to Lemma 37 we must have t′′1 ∼AC t′′′1 ∈ T (F).
Hence the presupposed infinite reduction continues as follows:

top(proper(t′′1)) →
+
2/AC top(ok(t′′′1)) →2/AC top(active(t1))

where t1 ∼AC t′′′1 . Thus, by rearranging the AC-steps, we obtain

t →+
2/AC top(proper(t1)) →

+
2 top(ok(t1)) →2 top(active(t1))

Repeating this kind of reasoning reveals that the infinite reduction can be rear-
ranged into the following form, where all root reduction steps between the terms

34

top(proper(t1)) and top(mark(t3)) are made explicit:

t →+
2/AC top(proper(t1)) →

+
2 top(ok(t1)) →2 top(active(t1)) →

+
2/AC top(mark(t2))

→2 top(proper(t2)) →
+
2 top(ok(t2)) →2 top(active(t2)) →

+
2/AC top(mark(t3))

→2 · · ·

Hence active(ti) →
+
2/AC mark(ti+1) and ti ∈ T (F) for all i > 1. We obtain

t1 →µ/AC t2 →µ/AC t3 →µ/AC · · ·

from Lemma 38, contradicting the termination of (R, µ) modulo AC.
Next suppose that t′ reduces to ok(t0) for some term t0. In this case the

infinite reduction starts with t →∗
2/AC top(ok(t0)) →2/AC top(active(t′0)) where

t0 ∼AC t′0. Since active(t′0) is also of type α and hence terminating modulo AC,
there must be another root reduction step. So by Lemma 40(b), active(t′0) must
reduce modulo AC to mark(t′1) for some term t′1. Hence, we end up with t →∗

2/AC

top(ok(t0)) →2/AC top(active(t′0)) →
+
2/AC top(mark(t′1)) as in the first case. ut

7 Incrementality

It is natural to expect that termination of a CSRS becomes easier to prove when
restricting the associated replacement map. In this section we investigate this
issue for the five transformations discussed in this paper.

Definition 42. We call a transformation Θ from CSRSs to TRSs incremental
if Θ(R, ν) is terminating for all those TRSs R and replacement maps µ, ν where
Θ(R, µ) is terminating and where ν is a restriction of µ, i.e., ν(f) ⊆ µ(f) for
all function symbols f .

Lucas’ transformation is not incremental. Consider the TRS R

f(b, x) → f(c, x)

and replacement maps µ(f) = {1, 2} and ν(f) = {2}. One easily verifies that
RL

µ is terminating and that RL
ν lacks termination. (In particular, this example

shows that Lucas’ transformation lacks incrementality even in examples where
the transformed system is still a proper TRS, i.e., where all variables in right-
hand sides of rules occur in the corresponding left-hand sides as well.)

We do not know whether Zantema’s transformation is incremental. However,
restricting the replacement map may make the task of proving termination of
the transformed system more difficult. In particular, there are examples where
termination of RZ

µ can be proved by the recursive path order, but termination

of RZ
ν cannot be proved by any recursive path order. Consider e.g. the one-rule

TRS R

f(x) → g(f(x))

35

and replacement maps µ and ν defined by µ(g) = ν(g) = ∅, µ(f) = {1}, and
ν(f) = ∅. Termination of the TRS RZ

µ

f(x) → g(f(x)) f(x) → f(x)

a(f(x)) → f(x) a(x) → x

can be proved by the recursive path order with precedence a � f � g � f. The
TRS RZ

ν

f(x) → g(f(a(x))) f(x) → f(x)

a(f(x)) → f(x) a(x) → x

is terminating but this cannot be proved by any recursive path order since the rule
f(x) → g(f(a(x))) requires both f � f and f � a, whereas the rule a(f(x)) → f(x)
requires either f � f or a � f.

Concerning incrementality, the results for Ferreira & Ribeiro’s transformation
are analogous to the ones for Zantema’s transformation. Again, restricting the
replacement map can make the termination proof of the transformed system
harder. For the previous TRS R, RFR

µ only differs from RZ
µ in that a(f(x)) → f(x)

is replaced by the rules a(f(x)) → f(a(x)) and a(g(x)) → g(x). Its termination
proof succeeds with the same recursive path order used for RZ

µ. But again, since

RZ
ν ⊆ RFR

ν , termination of RFR
ν cannot be proved by any recursive path order.

In the remainder of this section we show that the two transformations intro-
duced in this paper are incremental. The following two lemmata are needed in
the incrementality proof of Θ1 in order to simulate reductions of R1

ν by R1
µ if the

replacement map ν is a restriction of the replacement map µ.

Lemma 43. Let (R, µ) be a CSRS over a signature F . For all terms t ∈ T (F1)
we have mark(t) →+

1 t.

Proof. The lemma is proved by induction on the structure of t. We distinguish
three cases. First let t = mark(t′). We obtain

mark(t) = mark(mark(t′)) →+
1 mark(t′) = t

by the induction hypothesis. Next let t = factive(t1, . . . , tn). We obtain

mark(factive(t1, . . . , tn)) →1 mark(f(t1, . . . , tn)) →1 factive([t1]
f
1 , . . . , [tn]fn)

If i ∈ µ(f) then [ti]
f
i = mark(ti) →+

1 ti by the induction hypothesis. Otherwise,

i /∈ µ(f) and we directly obtain [ti]
f
i = ti. Hence the above reduction continues

with factive([t1]
f
1 , . . . , [tn]fn) →∗

1 factive(t1, . . . , tn) = t. Finally, if t = f(t1, . . . , tn)
with f ∈ F then mark(t) reduces to f(t1, . . . , tn) if f ∈ FC and to factive(t1, . . . , tn)
if f ∈ FD as in the previous case. Since factive(t1, . . . , tn) →1 f(t1, . . . , tn) = t,
the claim is proved. ut

36

Lemma 44. Let (R, µ) be a CSRS over a signature F . For all terms t ∈ T (F ,V)
and substitutions σ such that tσ ∈ T (F1) we have mark(t)↓Mσ →∗

1 tσ.

Proof. We use induction on the structure of t. If t is a variable then mark(t)↓Mσ
= mark(tσ) →+

1 tσ by Lemma 43. If t = f(t1, . . . , tn) then

mark(f(t1, . . . , tn))↓Mσ = f(u1σ, . . . , unσ) if f ∈ FC

mark(f(t1, . . . , tn))↓Mσ = factive(u1σ, . . . , unσ) →1 f(u1σ, . . . , unσ) if f ∈ FD

Here, ui = mark(ti)↓M if i ∈ µ(f) and ui = ti if i /∈ µ(f). If i ∈ µ(f) then we
obtain uiσ →∗

1 tiσ from the induction hypothesis. Hence f(u1σ, . . . , unσ) →∗
1 tσ.

ut

Now we are in a position to prove the incrementality of our first transforma-
tion.

Theorem 45. The transformation Θ1 is incremental.

Proof. Let R be a TRS over a signature F with replacement maps µ and ν such
that R1

µ is terminating and ν is a restriction of µ. It suffices to show that s →1ν t

implies s →+
1µ

t for all ground terms s and t. Without loss of generality we assume
that µ 6= ν and that the difference between them is minimal, i.e., µ(f)\ν(f) = {i}
for some function symbol f and 1 6 i 6 arity(f), and µ(g) = ν(g) for all other
function symbols g. The difference between R1

µ and R1
ν is twofold. First of all,

in R1
µ we have

mark(f(x1, . . . , xn)) → f ′([x1]
f,µ
1 , . . . , [xn]f,µ

n)

with [xi]
f,µ
i = mark(xi) and in R1

ν we have

mark(f(x1, . . . , xn)) → f ′([x1]
f,ν
1 , . . . , [xn]f,ν

n)

with [xi]
f,ν
i = xi and [xj]

f,ν
j = [xj]

f,µ
j for all other argument positions j. Here,

f ′ = factive if f ∈ FD and f ′ = f if f ∈ FC. If the reduction s →1ν t was
performed with this last rule then there is a position π in s such that s|π =

mark(f(t1, . . . , tn)) and t = s[f ′([t1]
f,ν
1 , . . . , ti, . . . , [tn]f,ν

n)]π. Note that [ti]
f,µ
i =

mark(ti) →
+
1µ

ti by Lemma 43. Hence

s →1µ s[f ′([t1]
f,µ
1 , . . . ,mark(ti), . . . , [tn]f,µ

n)]π

→+
1µ

s[f ′([t1]
f,ν
1 , . . . , ti, . . . , [tn]f,ν

n)]π = t

The second difference between R1
µ and R1

ν is in the translation of the rules of R:

gactive(l1, . . . , ln) → mark(r)↓Mµ = rµ

in R1
µ and

gactive(l1, . . . , ln) → mark(r)↓Mν = rν

37

in R1
ν . Suppose the reduction s →1ν t was performed using one of the latter

rules. So s|π = gactive(l1, . . . , ln)σ and t = s[rνσ]π for some position π in s.
We have s →1µ s[rµσ]π, so it suffices to show that rµσ →∗

1µ
rνσ. We do this

by induction on r. If r is a variable then rµσ = rνσ. For the induction step we
consider two cases. If r = h(r1, . . . , rm) with f 6= h then rµσ = h′(s1, . . . , sm) and
rνσ = h′(t1, . . . , tm) with sj = rjσ = tj if j /∈ µ(h) and sj = mark(rj)↓Mµσ and
tj = mark(rj)↓Mνσ if j ∈ µ(h). Moreover h′ = hactive if h ∈ FD and h′ = h if h ∈
FC. The induction hypothesis yields sj →

∗
1µ

tj for j ∈ µ(h) and thus rµσ →∗
1µ

rνσ.
Finally, if r = f(r1, . . . , rn) then rµσ = f ′(s1, . . . , sn) and rνσ = f ′(t1, . . . , tn)
with sj = rjσ = tj if j /∈ µ(f), sj = mark(rj)↓Mµσ and tj = mark(rj)↓Mνσ if
j ∈ µ(f) \ {i}, and si = mark(ri)↓Mµσ and ti = riσ. The induction hypothesis
yields sj →

∗
1µ

tj for j ∈ µ(f) \ {i} and Lemma 44 yields si →
∗
1µ

ti. Hence also in
this case we obtain the desired rµσ →∗

1µ
rνσ. ut

Incrementality of Θ2 is an immediate consequence of the following, more
general, result.

Theorem 46. Any sound and complete transformation from CSRSs to TRSs is
incremental.

Proof. Let Θ be a sound and complete transformation from CSRSs to TRSs.
Let R be a TRS over a signature F with replacement maps µ and ν such that
Θ(R, µ) is terminating and ν is a restriction of µ. Soundness of Θ implies that
(R, µ) is a terminating CSRS. Since →ν is a restriction of →µ, the CSRS (R, ν)
inherits termination from (R, µ). Completeness of Θ yields the termination of
Θ(R, ν). ut

The results presented in this section also extend to termination modulo
AC, i.e., both Θ′

1 and Θ2 are incremental modulo AC. For Θ2, the reason is
that Theorem 46 carries over to context-sensitive rewriting modulo AC. For
Θ′

1, the proof of Theorem 45 cannot be re-used directly. The problem is that
we might have a restriction ν of the replacement map µ where ν(f) = ∅ and
µ(f) = {1, 2} for a defined AC-symbol f. Recall that in the transformation
Θ′

1 not all mark-rules are used to normalize right-hand sides (one may not use
mark(g(· · ·))-rules for defined AC-symbols g with inactive arguments). For ex-
ample, if we have a rule a → f(a, a) in R, then R1

ν would contain the rule
aactive → mark(f(a, a))↓M′

ν
= mark(f(a, a)) and R1

µ would contain aactive →

mark(f(a, a))↓M′

µ
= factive(aactive, aactive). Thus, s →1′ν t does not imply s →+

1′µ
t.

However, we will show that s →1′ν t implies s↓M′

µ
→+

1′µ
t↓M′

µ
for all ground

terms s and t. To handle the problematic case sketched above, we first need two
auxiliary lemmata.

Lemma 47. Let R be a TRS over a signature F with replacement map µ, let
f ∈ G ∩FD (where G is the set of AC-symbols), and let µ(f) = {1, 2}. We define
the restriction ν of µ as ν(f) = ∅ and ν(g) = µ(g) for all g ∈ F with g 6= f . Let

38

t ∈ T (F ,V) or t = mark(r) with r ∈ T (F ,V). Moreover, let t →∗
M′

ν
u and let σ

and σ′ be substitutions such that σ′(x) = σ(x)↓M′

µ
for all x ∈ V. Then we have

t↓M′

µ
σ′ →∗

1′µ
uσ↓M′

µ
.

Proof. We prove the lemma by induction on the size of t. If t ∈ V then we have
u = t and t↓M′

µ
σ′ = σ′(t) = uσ↓M′

µ
. If t = g(t1, . . . , tn) for g ∈ F (where g = f is

also possible) then we obtain u = g(u1, . . . , un) with ti →
∗
M′

ν
ui for all i. We have

t↓M′

µ
σ′ = g(t1↓M′

µ
σ′, . . . , tn↓M′

µ
σ′) and uσ↓M′

µ
= g(u1σ↓M′

µ
, . . . , unσ↓M′

µ
). The

induction hypothesis yields ti↓M′

µ
σ′ →∗

1′µ
uiσ↓M′

µ
for all i. Hence t↓M′

µ
σ′ →∗

1′µ

uσ↓M′

µ
. Finally, we regard the case where t = mark(r) with r ∈ T (F ,V). We

perform a case analysis on r.

– If r ∈ V then we have u = mark(r). So we obtain t↓M′

µ
σ′ = mark(r)σ′ =

mark(σ(r)↓M′

µ
) and uσ↓M′

µ
= mark(σ(r))↓M′

µ
. Since M′

µ ⊆ R1′
µ , t↓M′

µ
σ′ →∗

1′µ
uσ↓M′

µ
holds.

– Now let r = g(r1, . . . , rn) with g ∈ F \{f}, such that in the case of g ∈ G∩FD

we have µ(g) = ν(g) = {1, 2}. We obtain t↓M′

µ
σ′ = g′(r′1, . . . , r

′
n), where

g′ = g if g ∈ FC and g′ = gactive if g ∈ FD. Moreover, r′i = mark(ri)↓M′

µ
σ′

if i ∈ µ(g) and r′i = ri↓M′

µ
σ′ if i /∈ µ(g). For u there are two possibili-

ties. If u = g′(u1, . . . , un) then we have mark(ri) →∗
M′

ν
ui if i ∈ µ(g) and

ri →∗
M′

ν
ui if i /∈ µ(g). Hence, uσ↓M′

µ
= g′(u1σ↓M′

µ
, . . . , unσ↓M′

µ
). The

induction hypothesis yields r′i →
∗
1′µ

uiσ↓M′

µ
, which proves the claim. Other-

wise, u = mark(g(u1, . . . , un)) with ri →∗
M′

ν
ui for all i. Thus, uσ↓M′

µ
=

mark(g(u1σ, . . . , unσ))↓M′

µ
= g′(u′

1, . . . , u
′
n) where u′

i = mark(ui)σ↓M′

µ
if

i ∈ µ(g) and u′
i = uiσ↓M′

µ
if i /∈ µ(g). Again, we obtain r′i →∗

1′µ
u′

i from

the induction hypothesis and hence t↓M′

µ
σ′ →∗

1′µ
uσ↓M′

µ
.

– Next let r = g(r1, r2) with g ∈ G ∩ FD and µ(g) = ν(g) = ∅. We have
t↓M′

µ
σ′ = mark(g(r1↓M′

µ
σ′, r2↓M′

µ
σ′)). Because the rule mark(g(x1, x2)) →

gactive(x1, x2) is missing from M′
ν , we must have u = mark(g(u1, u2)) with

ri →∗
M′

ν
ui for i ∈ {1, 2}. Consequently, uσ↓M′

µ
= mark(g(u1σ↓M′

µ
,

u2σ↓M′

µ
)). The induction hypothesis yields ri↓M′

µ
σ′ →∗

1′µ
uiσ↓M′

µ
and thus

t↓M′

µ
σ′ →∗

1′µ
uσ↓M′

µ
.

– Finally, we consider the case where r = f(r1, r2). We clearly have t↓M′

µ
σ′ =

factive(mark(r1)↓M′

µ
σ′,mark(r2)↓M′

µ
σ′). Moreover, u = mark(f(u1, u2)) with

ri →∗
M′

ν
ui for i ∈ {1, 2} and hence uσ↓M′

µ
= mark(f(u1σ, u2σ))↓M′

µ
=

factive(mark(u1)σ↓M′

µ
,mark(u2)σ↓M′

µ
). From the induction hypothesis we ob-

tain mark(ri)↓M′

µ
σ′ →∗

1′µ
mark(ui)σ↓M′

µ
and hence the lemma is proved.

ut

Lemma 48. Let R be a TRS over a signature F with replacement map µ, let
G ⊆ F , and let s ∈ T (F1). Then we have mark(s)↓M′ →∗

1′ s↓M′ .

39

Proof. We prove the lemma by induction on the size of s. If s = markm(f(s1, . . . ,
sn)) with m > 0, f ∈ G ∩ FD, and µ(f) = ∅, then

mark(s)↓M′ = markm+1(f(s1, . . . , sn))↓M′

= markm+1(f(s1↓M′ , . . . , sn↓M′))

→1′ markm(factive(s1↓M′ , . . . , sn↓M′))

→1′ markm(f(s1↓M′ , . . . , sn↓M′))

= markm(f(s1, . . . , sn))↓M′

= s↓M′

Similarly, if s = markm(factive(s1, . . . , sn)) with m > 0, f ∈ G∩FD, and µ(f) = ∅,
then

mark(s)↓M′ = markm+1(factive(s1, . . . , sn))↓M′

= markm+1(factive(s1↓M′ , . . . , sn↓M′))

→1′ markm+1(f(s1↓M′ , . . . , sn↓M′))

→1′ markm(factive(s1↓M′ , . . . , sn↓M′))

= markm(factive(s1, . . . , sn))↓M′

= s↓M′

If s = markm(f(s1, . . . , sn)) with m > 0, f ∈ FD, and f /∈ G or µ(f) 6= ∅, then

mark(s)↓M′ = markm+1(f(s1, . . . , sn))↓M′

= markm(factive([s1]
f
1↓M′ , . . . , [sn]fn↓M′))

→∗
1′ markm(factive(s1↓M′ , . . . , sn↓M′)) (induction hypothesis)

→1′ markm(f(s1↓M′ , . . . , sn↓M′))

→∗
1′ markm(f(s1, . . . , sn))↓M′

= s↓M′

Similarly, if s = markm(factive(s1, . . . , sn)) with m > 0, f ∈ FD, and f /∈ G or
µ(f) 6= ∅, then

mark(s)↓M′ = markm+1(factive(s1, . . . , sn))↓M′

= markm+1(factive(s1↓M′ , . . . , sn↓M′))

→1′ markm+1(f(s1↓M′ , . . . , sn↓M′))

→1′ markm(factive([s1↓M′]f1 , . . . , [sn↓M′]fn))

→∗
1′ markm(factive([s1]

f
1↓M′ , . . . , [sn]fn↓M′))

→∗
1′ markm(factive(s1↓M′ , . . . , sn↓M′)) (induction hypothesis)

= markm(factive(s1, . . . , sn))↓M′

= s↓M′

40

Finally, if s = markm(f(s1, . . . , sn)) with f ∈ FC then let s′i = markm+1(si) and
s′′i = markm(si) for i ∈ µ(f) and let s′i = s′′i = si for i /∈ µ(f). Now we have

mark(s)↓M′ = markm+1(f(s1, . . . , sn))↓M′

= f(s′1↓M′ , . . . , s′n↓M′)

→∗
1′ f(s′′1↓M′ , . . . , s′′n↓M′) (induction hypothesis)

= s↓M′

ut

Now we can prove the desired incrementality of Θ′
1.

Theorem 49. The transformation Θ′
1 is incremental modulo AC.

Proof. Let R be a TRS over a signature F with replacement maps µ and ν such
that R1

µ is terminating and ν is a restriction of µ. Without loss of generality we
assume that µ 6= ν and that the difference between them is minimal, i.e., it only
concerns one function symbol f and we have µ(g) = ν(g) for all other function
symbols g. Of course, if f ∈ G (i.e., if f is an AC-symbol) then we must have
µ(f) = {1, 2} and ν(f) = ∅. If f /∈ G ∩ FD then we proceed as in the proof
of Theorem 45 and show that s →1′ν t implies s →+

1′µ
t for all ground terms

s and t. Note that Lemma 43 implies mark(t) →+
1′µ

t for all terms t ∈ T (F1)

(since →1µ ⊆ →+
1′µ

) and that Lemma 44 implies mark(t)↓M′

µ
σ →∗

1′µ
tσ whenever

t ∈ T (F ,V) and tσ ∈ T (F1) (since Mµ ⊆ R1′
µ). Hence in this case, with these

two auxiliary lemmata, the proof of Theorem 45 carries over.
Now we regard the case where f ∈ G∩FD. As mentioned before, here s →1′ν t

does not imply s →+
1′µ

t. Instead we prove that s →1′ν t implies s↓M′

µ
→+

1′µ
t↓M′

µ

for all ground terms s and t. Let π be the position where the reduction s →1′ν

t takes place. If the reduction step is done with a rule from R1′
ν ∩ M′

µ (i.e.,
s|π →M′

µ
t|π) then we obviously have s↓M′

µ
= t↓M′

µ
. If s|π = gactive(l1σ, . . . , lnσ)

and t = s[mark(r)↓M′

ν
σ]π for some rule g(l1, . . . , ln) → r ∈ R (where g = f is

possible) then we have

s↓M′

µ
= s↓M′

µ
[gactive(l1σ↓M′

µ
, . . . , lnσ↓M′

µ
)]π′

= s↓M′

µ
[gactive(l1σ

′, . . . , lnσ′)]π′ (li does not contain mark)

t↓M′

µ
= s↓M′

µ
[mark(r)↓M′

ν
σ↓M′

µ
]π′↓M′

µ

for some position π′ where σ′ is the substitution defined by σ′(x) = σ(x)↓M′

µ
for

all x ∈ V. Because mark(r) →∗
M′

ν
mark(r)↓M′

ν
, Lemma 47 is applicable and we

obtain

s↓M′

µ
→1′µ s↓M′

µ
[mark(r)↓M′

µ
σ′]π′

→∗
1′µ

s↓M′

µ
[mark(r)↓M′

ν
σ↓M′

µ
]π′ (Lemma 47)

→∗
1′µ

t↓M′

µ
(M′

µ ⊆ R1′

µ)

41

If s|π = gactive(s1, . . . , sn) and t = s[g(s1, . . . , sn)]π then we have

s↓M′

µ
= s↓M′

µ
[gactive(s1↓M′

µ
, . . . , sn↓M′

µ
)]π′

t↓M′

µ
= s↓M′

µ
[g(s1↓M′

µ
, . . . , sn↓M′

µ
)]π′↓M′

µ

for some position π′. Clearly, gactive(s1↓M′

µ
, . . . , sn↓M′

µ
) →∗

1′µ
g(s1↓M′

µ
, . . . ,

sn↓M′

µ
) and since M′

µ ⊆ R1′
µ we obtain s↓M′

µ
→∗

1′µ
t↓M′

µ
. Finally, if s|π =

mark(f(s1, s2)) and t = s[factive(s1, s2)]π then we have

s↓M′

µ
= s↓M′

µ
[factive(mark(s1)↓M′

µ
,mark(s2)↓M′

µ
)]π′

t↓M′

µ
= s↓M′

µ
[factive(s1↓M′

µ
, s2↓M′

µ
)]π′

for some position π′. Since mark(si)↓M′

µ
→∗

1′µ
si↓M′

µ
by Lemma 48, this implies

s↓M′

µ
→∗

1′µ
t↓M′

µ
. ut

A natural question is whether termination of Θ(R, µ) is equivalent to ter-
mination of R for the replacement map µ with µ(f) = {1, . . . , n} for all n-ary
function symbols f . For the five transformations studied in this paper this is
indeed the case. Because of Figure 1 we only need to show this for ΘL and ΘZ.
For Lucas’ transformation this is trivial as ΘL(R, µ) = R. We have ΘZ(R, µ) =
R ∪ {a(x) → x}. Since a does not appear in R, ΘZ(R, µ) inherits termination
from R. For instance, Theorem 6 in [38] applies.

8 Conclusion

In this paper we presented two new transformations from CSRSs to TRSs whose
purpose is to reduce the problem of proving termination of CSRSs to the prob-
lem of proving termination of TRSs. So in particular, techniques for termination
proofs of TRSs can now also be used to analyze the termination behavior of
lazy functional programs which may be modeled by CSRSs. Our first transfor-
mation Θ1 is simple, sound, and more powerful than all other transformations
suggested in the literature. Our second transformation Θ2 is not only sound but
also complete, so it transforms every terminating CSRS into a terminating TRS.

Nevertheless, Θ2 does not render the other (incomplete) transformations use-
less, since termination of R2

µ is often more difficult to prove than termination
of the TRSs resulting from the other transformations. For instance, while Θ1

transforms the CSRS in Example 16 into a TRS whose termination can easily be
proved by the recursive path order, no recursive path order can prove termination
of the TRS resulting from this CSRS by transformation Θ2.

While we already introduced related transformations in a preliminary version
of this paper [18], our second (complete) transformation has been simplified
compared to its earlier definition and our first transformation has been modified
in order to ease the termination proofs of the resulting transformed TRSs. In
[18], instead of Θ1 the following transformation was proposed.

Definition 50. Let (R, µ) be a CSRS over a signature F . The TRS R1′′
µ over

the signature F1′′ = F ∪ {active,mark} consists of the following rewrite rules:

42

active(l) → mark(r) for all l → r ∈ R

mark(f(x1, . . . , xn)) → active(f([x1]
f
1 , . . . , [xn]fn)) for all f ∈ F

active(x) → x

Here [t]fi = mark(t) if i ∈ µ(f) and [t]fi = t otherwise.

The following theorem states that the TRSs resulting from Θ1 and Θ′′
1 have

the same termination behavior. The equivalence proof is given in Appendix C.

Theorem 51. Let (R, µ) be a CSRS. The TRS R1
µ is terminating if and only if

R1′′
µ is terminating.

However, while Θ1 is just a different presentation of Θ′′
1 , termination of R1

µ is

often significantly easier to prove than termination of R1′′
µ . For example, termi-

nation of the CSRSs in Examples 16 and 17 can easily be verified automatically
by traditional simplification orders if Θ1 is used, whereas Θ′′

1 can only rarely be
used in combination with such orders (as shown in [6], confirming a claim of
[18]).5

Apart from the transformational approach, very recently some standard ter-
mination methods for term rewriting have been extended to apply directly to
context-sensitive rewriting [6, 22]. Direct approaches and transformational ap-
proaches both have their advantages. Techniques for proving termination of or-
dinary term rewriting have been extensively studied and with the transforma-
tional approach all termination techniques for ordinary term rewriting (including
future developments) become available for context-sensitive rewriting as well. In
particular, as long as the available techniques for direct termination analysis of
context-sensitive rewriting are incomplete or semi-automatic, (complete) trans-
formation methods are also useful since they offer additional possibilities for
performing termination proofs. For instance, the methods of [6, 22] cannot prove
termination of the following example, whereas with our first transformation ter-
mination is easily proved (automatically).

Example 52. Consider the TRS R

0 − y → 0 0 ÷ s(y) → 0

s(x) − s(y) → x − y s(x) ÷ s(y) → if(x ≥ y, s((x − y) ÷ s(y)), 0)

x ≥ 0 → true if(true, x, y) → x

0 ≥ s(y) → false if(false, x, y) → y

s(x) ≥ s(y) → x ≥ y

5 The main traditional techniques for automated termination proofs of TRSs are simplification
orders like the recursive path order, the Knuth-Bendix order, and (most) polynomial orders.
For instance, when using Θ

′′

1 in Example 16, termination cannot be proved by these tech-
niques and in Example 17, termination cannot even be proved by any simplification order.
The reason is that active(zeros) can be reduced to the term active(0 : zeros) in which it is
embedded.

43

This example shows that context-sensitive rewriting can also be used to simulate
the usual evaluation strategy for “ if”. To this end, we define µ(if) = {1}. This
ensures that in an if-term, the condition is evaluated first and depending on
the result of the evaluation either the second or the third argument is evaluated
afterwards. Moreover, we define µ(s) = µ(div) = {1} and µ(f) = ∅ for all other
function symbols f . So µ is the most restrictive replacement map ensuring that
defined symbols on right-hand sides would be on active positions if all arguments
of “ if” were active. This replacement map permits all evaluations which are
performed in an eager functional language where a term f(· · ·) with f 6= if may
only be reduced at root position if all its arguments are constructor ground terms.
The termination of R1

µ is easily proved (see Appendix D).

In addition to the modifications of the transformations, the present article
extends [18] by numerous significant new results. While in [18] it remained open
whether our first transformation is really more powerful than the one of [47],
we now gave a proof for this claim. We also included a comparison with the
technique of [13] which was developed independently and in parallel to [18]. To
this end, we showed that already our first transformation is more powerful than
the one of [13]. In addition, we proved that Ferreira & Ribeiro’s transformation is
more powerful than Zantema’s transformation. In this way, now the relationship
between all existing transformation techniques for context-sensitive rewriting has
been clarified. Finally, all observations presented in Sections 6 and 7 are new.
In Section 6 we showed that our results also hold for termination of context-
sensitive rewriting modulo AC and in Section 7 we prove that in contrast to
all other transformation techniques, our transformations behave naturally when
restricting the replacement map of context-sensitive rewriting.

As a final remark we mention that, inspired by work of [14], recently Lu-
cas [32] introduced an extension of context-sensitive rewriting called on-demand
rewriting which is characterized by two replacement maps. He showed that the
two transformations of the preliminary version of this paper [18] can also be
extended to on-demand rewriting.

Acknowledgments We thank Salvador Lucas, Hans Zantema, and anonymous
referees for many helpful remarks.

References

1. T. Arts and J. Giesl. Termination of term rewriting using dependency pairs. Theoretical
Computer Science, 236:133–178, 2000.

2. F. Baader and T. Nipkow. Term Rewriting and All That. Cambridge University Press,
1998.

3. F. Bellegarde and P. Lescanne. Termination by completion. Applicable Algebra in Engi-
neering, Communication and Computing, 1:79–96, 1990.

4. A. Ben Cherifa and P. Lescanne. Termination of rewriting systems by polynomial interpre-
tations and its implementation. Science of Computer Programming, 9:137–159, 1987.

44

5. C. Borralleras, M. Ferreira, and A. Rubio. Complete monotonic semantic path orderings.
In Proceedings of the 17th International Conference on Automated Deduction, volume 1831
of Lecture Notes in Artificial Intelligence, pages 346–364, 2000.

6. C. Borralleras, S. Lucas, and A. Rubio. Recursive path orderings can be context-sensitive.
In Proceedings of the 18th International Conference on Automated Deduction, volume 2392
of Lecture Notes in Artificial Intelligence, pages 314–331, 2002.

7. M. Clavel, S. Eker, P. Lincoln, and J. Meseguer. Principles of Maude. Proc. 1st WRLA,
Electronic Notes in Theoretical Computer Science, 4, 1996.

8. E. Contejean, C. Marché, B. Monate, and X. Urbain. CiME version 2, 2000. Available at
http://cime.lri.fr/.

9. N. Dershowitz. Orderings for term-rewriting systems. Theoretical Computer Science,
17:279–301, 1982.

10. N. Dershowitz. Termination of rewriting. Journal of Symbolic Computation, 3:69–116,
1987.

11. N. Dershowitz and C. Hoot. Natural termination. Theoretical Computer Science,
142(2):179–207, 1995.

12. R. Diaconescu and K. Futatsugi. CafeOBJ Report: The Language, Proof Techniques, and
Methodologies for Object-Oriented Algebraic Specification, volume 6 of AMAST Series in
Computing. World Scientific, 1998.

13. M.C.F. Ferreira and A.L. Ribeiro. Context-sensitive AC-rewriting. In Proceedings of the
10th International Conference on Rewriting Techniques and Applications, volume 1631 of
Lecture Notes in Computer Science, pages 173–187, 1999.

14. W.J. Fokkink, J.F.Th. Kamperman, and H.R. Walters. Lazy rewriting on eager machinery.
ACM Transactions on Programming Languages and Systems, 22(1):45–86, 2000.

15. J. Giesl. Generating polynomial orderings for termination proofs. In Proceedings of the 6th
International Conference on Rewriting Techniques and Applications, volume 914 of Lecture
Notes in Computer Science, pages 426–431, 1995.

16. J. Giesl, T. Arts, and E. Ohlebusch. Modular termination proofs for rewriting using de-
pendency pairs. Journal of Symbolic Computation, 34(1):21–58, 2002.

17. J. Giesl and D. Kapur. Dependency pairs for equational rewriting. In Proceedings of the
12th International Conference on Rewriting Techniques and Applications, volume 2051 of
Lecture Notes in Computer Science, pages 93–107, 2001.

18. J. Giesl and A. Middeldorp. Transforming context-sensitive rewrite systems. In Proceedings
of the 10th International Conference on Rewriting Techniques and Applications, volume
1631 of Lecture Notes in Computer Science, pages 271–285, 1999.

19. J. Giesl and A. Middeldorp. Innermost termination of context-sensitive rewriting. In
Proceedings of the 6th International Conference on Developments in Language Theory,
Lecture Notes in Computer Science, 2002. To appear.

20. J. Goguen, T. Winkler, J. Meseguer, K. Futatsugi, and J.-P. Jouannaud. Introducing
OBJ. In J. Goguen and G. Malcolm, editors, Software Engineering with OBJ: algebraic
specification in action. Kluwer, 2000.

21. B. Gramlich and S. Lucas. Modular termination of context-sensitive rewriting. In Pro-
ceedings of the 4th International Conference on Principles and Practice of Declarative Pro-
gramming, pages 50–61. ACM Press, 2002.

22. B. Gramlich and S. Lucas. Simple termination of context-sensitive rewriting. In Proceedings
of the 3rd ACM SIGPLAN Workshop on Rule-Based Programming, pages 29–42, 2002.

23. H. Hong and D. Jakuš. Testing positiveness of polynomials. Journal of Automated Rea-
soning, 21:23–28, 1998.

24. N.D. Jones and A.J. Glenstrup. Program generation, termination, and binding-time analy-
sis. In Proceedings of the ACM SIGPLAN/SIGSOFT Conference on Generative Program-
ming and Component Engineering, volume 2487 of Lecture Notes in Computer Science,
pages 1–31, 2002.

25. D. Kapur and G. Sivakumar. A total ground path ordering for proving termination of
AC-rewrite systems. In Proceedings of the 8th International Conference on Rewriting Tech-
niques and Applications, volume 1231 of Lecture Notes in Computer Science, pages 142–156,
1997.

45

26. D. Kapur, G. Sivakumar, and H. Zhang. A path ordering for proving termination of AC-
rewrite systems. Journal of Automated Reasoning, 14:293–316, 1995.

27. D.E. Knuth and P. Bendix. Simple word problems in universal algebras. In J. Leech, editor,
Computational Problems in Abstract Algebra, pages 263–297. Pergamon Press, 1970.

28. K. Kusakari and Y. Toyama. On proving AC-termination by AC-dependency pairs. IEICE
Transactions on Information and Systems, E84-D(5):604–612, 2001.

29. D. Lankford. On proving term rewriting systems are Noetherian. Technical Report MTP-3,
Louisiana Technical University, Ruston, LA, USA, 1979.

30. S. Lucas. Termination of context-sensitive rewriting by rewriting. In Proceedings of the
23rd International Colloquium on Automata, Languages and Programming, volume 1099 of
Lecture Notes in Computer Science, pages 122–133, 1996.

31. S. Lucas. Context-sensitive computations in functional and functional logic programs.
Journal of Functional and Logic Programming, 1:1–61, 1998.

32. S. Lucas. Termination of on-demand rewriting and termination of OBJ programs. In
Proceedings of the 3rd International Conference on Principles and Practice of Declarative
Programming, pages 82–93. ACM Press, 2001.

33. S. Lucas. Termination of rewriting with strategy annotations. In Proceedings of the 8th
International Conference on Logic for Programming, Artificial Intelligence and Reasoning,
volume 2250 of Lecture Notes in Artificial Intelligence, pages 669–684, 2001.

34. S. Lucas. Lazy rewriting and context-sensitive rewriting. In 10th International Work-
shop on Functional and (Constraint) Logic Programming, volume 64 of Electronic Notes in
Theoretical Computer Science, 2002.

35. S. Lucas. Termination of (canonical) context-sensitive rewriting. In Proceedings of the
13th International Conference on Rewriting Techniques and Applications, volume 2378 of
Lecture Notes in Computer Science, pages 296–310, 2002.

36. C. Marché and X. Urbain. Termination of associative-commutative rewriting by dependency
pairs. In Proceedings of the 9th International Conference on Rewriting Techniques and
Applications, volume 1379 of Lecture Notes in Computer Science, pages 241–255, 1998.

37. A. Middeldorp and H. Ohsaki. Type introduction for equational rewriting. Acta Informat-
ica, 36(12):1007–1029, 2000.

38. A. Middeldorp, H. Ohsaki, and H. Zantema. Transforming termination by self-labelling. In
Proceedings of the 13th International Conference on Automated Deduction, volume 1104 of
Lecture Notes in Artificial Intelligence, pages 373–387, 1996.

39. R. Plasmeijer and M. van Eekelen. Functional Programming and Parallel Graph Rewriting.
Addison Wesley, 1993.

40. A. Rubio. A fully syntactic AC-RPO. Information and Computation, 178:515–533, 2002.

41. A. Rubio and R. Nieuwenhuis. A total AC-compatible ordering based on RPO. Theoretical
Computer Science, 142:209–227, 1995.

42. J. Steinbach. Generating polynomial orderings. Information Processing Letters, 49:85–93,
1994.

43. J. Steinbach. Simplification orderings: History of results. Fundamenta Informaticae, 24:47–
87, 1995.

44. Y. Toyama. Counterexamples to the termination for the direct sum of term rewriting
systems. Information Processing Letters, 25:141–143, 1987.

45. H. Zantema. Termination of term rewriting: Interpretation and type elimination. Journal
of Symbolic Computation, 17:23–50, 1994.

46. H. Zantema. Termination of term rewriting by semantic labelling. Fundamenta Informati-
cae, 24:89–105, 1995.

47. H. Zantema. Termination of context-sensitive rewriting. In Proceedings of the 8th Interna-
tional Conference on Rewriting Techniques and Applications, volume 1232 of Lecture Notes
in Computer Science, pages 172–186, 1997.

46

A Proofs for Section 3

Before giving the proofs of Lemmata 9 and 10 we present two useful properties
of the mappings Φ and Φ′.

Lemma 53. For all terms t ∈ T (FFR
µ) we have Φ′(t) →∗

Z
Φ(t).

Proof. We distinguish three cases. If t = f(t1, . . . , tn) with f ∈ F or t =

f(t1, . . . , tn) with f ∈ FFR
µ \ FZ

µ then Φ′(t) = f(〈t1〉
f
1 , . . . , 〈tn〉

f
n) = Φ(t). If

t = f(t1, . . . , tn) with f ∈ FZ
µ then Φ′(t) = f(〈t1〉

f
1 , . . . , 〈tn〉

f
n) and Φ(t) =

f(〈t1〉
f
1 , . . . , 〈tn〉

f
n). In this case we obtain Φ′(t) →Z Φ(t) because RZ

µ contains

the rewrite rule f(x1, . . . , xn) → f(x1, . . . , xn) as f ∈ FZ
µ . Finally, if t = a(t′)

then Φ′(t) = Φ′(t′) = Φ(t). ut

Lemma 54. For all terms t ∈ T (FFR
µ) we have a(Φ(t)) →Z Φ′(t).

Proof. Again we distinguish three cases. If t = f(t1, . . . , tn) with f ∈ F or t =

f(t1, . . . , tn) with f ∈ FFR
µ \ FZ

µ then Φ(t) = f(〈t1〉
f
1 , . . . , 〈tn〉

f
n) = Φ′(t) and thus

a(Φ(t)) →Z Φ′(t) by applying the rule a(x) → x. If t = f(t1, . . . , tn) with f ∈ FZ
µ

then Φ(t) = f(〈t1〉
f
1 , . . . , 〈tn〉

f
n) and Φ′(t) = f(〈t1〉

f
1 , . . . , 〈tn〉

f
n). Because f ∈ FZ

µ ,

RZ
µ contains the rule a(f(x1, . . . , xn)) → f(x1, . . . , xn). Hence a(Φ(t)) →Z Φ′(t).

Finally, if t = a(t′) then a(Φ(t)) = a(Φ′(t′)) →Z Φ′(t′) = Φ′(a(t′)) = Φ′(t) by
applying the rule a(x) → x. ut

Lemma 9. For all terms s, t ∈ T (FFR
µ), if s →FR1

t then Φ(s) →+
Z

Φ(t).

Proof. Let s = C[lσ] →FR1
C[rσ] = t with l → r ∈ RFR1

µ . We have Φ(s) =
C ′[Φ(lσ)] or Φ(s) = C ′[Φ′(lσ)] for some context C ′. Likewise, Φ(t) = C ′[Φ(rσ)]
or Φ(t) = C ′[Φ′(rσ)]. Since Φ′(lσ) →∗

Z
Φ(lσ) and Φ′(rσ) →∗

Z
Φ(rσ) by Lemma 53,

it is sufficient to prove Φ(lσ) →+
Z

Φ′(rσ). Let lZ → rZ be the rewrite rule in RZ
µ

corresponding to l → r ∈ RFR1

µ . Define the substitution σΦ as follows:

σΦ(x) =

{

Φ(σ(x)) if x (also) occurs at an inactive position in l,

Φ′(σ(x)) otherwise.

One might expect that Φ(lσ) = lZσΦ holds, but if a variable x occurs both at an
active and an inactive position in l then in Φ(lσ) the two occurrences of σ(x) are
replaced by Φ′(σ(x)) and Φ(σ(x)), respectively, so Φ(lσ) need not be an instance
of lZ. However, because Φ′(σ(x)) →∗

Z
Φ(σ(x)) by Lemma 53 and because σΦ

instantiates all occurrences of such variables x in lZ by Φ(σ(x)), it follows that

Φ(lσ) →∗
Z

lZσΦ.

This can be formally proved as follows. Let us extend Φ and Φ′ to terms with
variables by defining Φ(x) = Φ′(x) = x for every variable x. Note that lZ =
Φ(l) = Φ′(l). Hence it suffices to show Φ(lσ) →∗

Z
Φ(l)σΦ. This follows from the

first part of the following statement, which we prove by induction on the structure
of t ∈ T (FFR

µ ,V):

47

– Φ(tσ) →∗
Z

Φ(t)σΦ for all non-variable subterms t of l, and
– Φ′(tσ) →∗

Z
Φ′(t)σΦ for all subterms t of l.

If t ∈ V then Φ′(t)σΦ = σΦ(t). If σΦ(t) = Φ(tσ) then we obtain Φ′(tσ) →∗
Z

Φ′(t)σΦ from Lemma 53 and if σΦ(t) = Φ′(tσ) then Φ′(tσ) = Φ′(t)σΦ. Suppose

t = f(t1, . . . , tn) or t = f(t1, . . . , tn). We have Φ′(tσ) = f(〈t1σ〉
f
1 , . . . , 〈tnσ〉fn),

Φ′(t) = f(〈t1〉
f
1 , . . . , 〈tn〉

f
n), and either Φ(tσ) = Φ′(tσ) and Φ(t) = Φ′(t) or Φ(tσ) =

f(〈t1σ〉
f
1 , . . . , 〈tnσ〉fn) and Φ(t) = f(〈t1〉

f
1 , . . . , 〈tn〉

f
n). So it suffices to show that

〈tiσ〉
f
i →∗

Z
〈ti〉

f
i σΦ. We distinguish two cases. If i ∈ µ(f) then 〈tiσ〉

f
i = Φ′(tiσ)

and 〈ti〉
f
i = Φ′(ti). Hence 〈tiσ〉

f
i →∗

Z
〈ti〉

f
i σΦ follows from the second part of the

induction hypothesis. If i /∈ µ(f) then 〈tiσ〉
f
i = Φ(tiσ) and 〈ti〉

f
i = Φ(ti). If ti /∈ V

then we obtain 〈tiσ〉
f
i →∗

Z
〈ti〉

f
i σΦ from the first part of the induction hypothesis.

If ti ∈ V then ti occurs at an inactive position in l since t is a subterm of l and
i /∈ µ(f), and thus 〈ti〉

f
i σΦ = σΦ(ti) = Φ(tiσ).

Combining Φ(lσ) →∗
Z

lZσΦ with lZσΦ →Z rZσΦ yields Φ(lσ) →+
Z

rZσΦ. To
conclude the proof it remains to show that rZσΦ →∗

Z
Φ′(rσ). Let us define

r′
Z

as the term obtained from rZ by replacing every subterm a(t) by t. Note
that Φ(r) = Φ′(r) = r′

Z
. We may write r′

Z
= D[x1, . . . , xn] with all occur-

rences of variables displayed and rZ = D[x′
1, . . . , x

′
n] with x′

i = a(xi) if xi oc-
curs at an inactive position in l and x′

i = xi if xi occurs only at active posi-
tions in l. We have rZσΦ = D[t1, . . . , tn] with ti = a(Φ(σ(xi))) if xi occurs at
an inactive position in l and ti = Φ′(σ(xi)) if xi occurs only at active posi-
tions in l. Moreover, Φ′(rσ) = D[u1, . . . , un] with ui ∈ {Φ′(σ(xi)), Φ(σ(xi))}. We
have a(Φ(σ(xi))) →Z Φ′(σ(xi)) →∗

Z
Φ(σ(xi)) by Lemmata 53 and 54, and thus

ti →
∗
Z

ui. Hence rZσΦ →∗
Z

Φ′(rσ) as desired. ut

Lemma 10. For all terms s, t ∈ T (FFR
µ), if s →FR2

t then Φ(s) →∗
Z

Φ(t).

Proof. Let s = C[lσ] →FR2
C[rσ] = t with l → r ∈ RFR2

µ . As in the proof of
Lemma 9, Φ(s) is C ′[Φ(lσ)] or C ′[Φ′(lσ)] and Φ(t) is C ′[Φ(rσ)] or C ′[Φ′(rσ)] for
some context C ′. Since Φ′(lσ) →∗

Z
Φ(lσ) and Φ′(rσ) →∗

Z
Φ(rσ) by Lemma 53, it

is sufficient to prove Φ(lσ) = Φ′(rσ). We distinguish four cases corresponding to
the four different types of rules in RFR2

µ .

(i) If l → r = a(x) → x then Φ(lσ) = Φ′(σ(x)) = Φ′(rσ).
(ii) If l → r = f(x1, . . . , xn) → f(x1, . . . , xn) then

Φ(lσ) = f(〈σ(x1)〉
f
1 , . . . , 〈σ(xn)〉fn) = Φ′(rσ).

(iii) If l → r = a(f(x1, . . . , xn)) → f([[x1]]
f
1 , . . . , [[xn]]fn) then

Φ(lσ) = f(〈σ(x1)〉
f
1 , . . . , 〈σ(xn)〉fn)

and
Φ′(rσ) = f(〈[[σ(x1)]]

f
1〉

f
1 , . . . , 〈[[σ(xn)]]fn〉

f
n).

Note that if i ∈ µ(f) then 〈[[σ(xi)]]
f
i 〉

f
i = Φ′(a(σ(xi))) = Φ′(σ(xi)) = 〈σ(xi)〉

f
i

and if i /∈ µ(f) then 〈[[σ(xi)]]
f
i 〉

f
i = Φ(σ(xi)) = 〈σ(xi)〉

f
i , so Φ(lσ) = Φ′(rσ).

48

(iv) If l → r = a(f(x1, . . . , xn)) → f([[x1]]
f
1 , . . . , [[xn]]fn) then we obtain Φ(lσ) =

Φ′(rσ) exactly as in the previous case.
ut

B Proofs for Section 4

Next we turn our attention to Lemmata 20 and 21. We start by proving two
useful properties of the mappings Ψ and Ψ ′.

Lemma 55. For all terms t ∈ T (F1) we have Ψ(t) →∗
FR

′ Ψ ′(t).

Proof. We distinguish three cases. If t = f(t1, . . . , tn) with f /∈ FFR
µ or t =

factive(t1, . . . , tn) then Ψ(t) = f(〈t1〉
f
1 , . . . , 〈tn〉

f
n) = Ψ ′(t). If t = f(t1, . . . , tn)

with f ∈ FFR
µ then Ψ(t) = f(〈t1〉

f
1 , . . . , 〈tn〉

f
n) and Ψ ′(t) = f(Ψ ′(t1), . . . , Ψ

′(tn)).

Because f ∈ FFR
µ , f(x1, . . . , xn) → f(x1, . . . , xn) ∈ RFR

′

µ and thus Ψ(t) →FR
′

f(〈t1〉
f
1 , . . . , 〈tn〉

f
n). Let i ∈ {1, . . . , n}. If i ∈ µ(f) then 〈ti〉

f
i = Ψ(ti) →

∗
FR

′ Ψ ′(ti)

by the induction hypothesis. If i /∈ µ(f) then 〈ti〉
f
i = Ψ ′(ti). Hence Ψ(t) →∗

FR
′

Ψ ′(t) as desired. Finally, if t = mark(t′) then Ψ(t) = Ψ(t′) = Ψ ′(t). ut

Lemma 56. For all terms t ∈ T (F1) we have a(Ψ ′(t)) →+
FR

′ Ψ(t).

Proof. Again we distinguish three cases. If t = f(t1, . . . , tn) with f /∈ FFR
µ

or if t = factive(t1, . . . , tn) then Ψ ′(t) = f(〈t1〉
f
1 , . . . , 〈tn〉

f
n) = Ψ(t). We have

a(Ψ ′(t)) →FR
′ Ψ(t) by applying the rule a(x) → x. If t = f(t1, . . . , tn) with

f ∈ FFR
µ then a(Ψ ′(t)) = a(f(Ψ ′(t1), . . . , Ψ

′(tn))) and Ψ(t) = f(〈t1〉
f
1 , . . . , 〈tn〉

f
n).

Because f ∈ FFR
µ , RFR

′

µ contains the rule a(f(x1, . . . , xn)) → f([[x1]]
f
1 , . . . , [[xn]]fn).

Hence a(Ψ ′(t)) →FR
′ f([[Ψ ′(t1)]]

f
1 , . . . , [[Ψ ′(tn)]]fn). So it suffices to show that

[[Ψ ′(ti)]]
f
i →∗

FR
′ 〈ti〉

f
i for all i. If i ∈ µ(f) then [[Ψ ′(ti)]]

f
i = a(Ψ ′(ti)) →

+
FR

′ Ψ(ti) =

〈ti〉
f
i by the induction hypothesis and if i /∈ µ(f) then [[Ψ ′(ti)]]

f
i = Ψ ′(ti) = 〈ti〉

f
i .

Finally, if t = mark(t′) then again, Ψ ′(t) = Ψ(t) and thus, a(Ψ ′(t)) →FR
′ Ψ(t) by

applying the rule a(x) → x. ut

Lemma 20. For all terms s, t ∈ T (F1), if s →M1
t then Ψ(s) →+

FR
′ Ψ(t).

Proof. Let s = C[lσ] → C[rσ] = t with l → r ∈ M1. We have Ψ(s) = C ′[Ψ(lσ)]
or Ψ(s) = C ′[Ψ ′(lσ)] for some context C ′. Likewise, Ψ(t) = C ′[Ψ(rσ)] or Ψ(t) =
C ′[Ψ ′(rσ)]. Let l = factive(l1, . . . , ln) → mark(r′)↓M = r and let lFR → rFR

be the corresponding rewrite rule in RFR
′

µ . We clearly have Ψ(lσ) = Ψ ′(lσ).

Lemma 55 yields Ψ(rσ) →∗
FR

′ Ψ ′(rσ). Hence, it is sufficient to prove Ψ(lσ) →+
FR

′

Ψ(rσ). We prove that Ψ(rσ) = Ψ(r′σ) by induction on r′. If r′ is a variable
then rσ = mark(r′σ) and thus Ψ(rσ) = Ψ(r′σ). If r′ = g(r1, . . . , rm) then
Ψ(rσ) = Ψ(g′(u1, . . . , um)) = g(〈u1〉

g
1, . . . , 〈um〉gm), where g′ = gactive if g ∈ FD

and g′ = g if g ∈ FC. Here, ui = mark(ri)↓Mσ if i ∈ µ(g) and ui = riσ if
i /∈ µ(g). Moreover Ψ(r′σ) = g(〈r1σ〉

g
1, . . . , 〈rmσ〉gm). The induction hypothesis

49

yields 〈ui〉
g
i = Ψ(mark(ri)↓Mσ) = Ψ(riσ) = 〈riσ〉

g
i for i ∈ µ(g). If i /∈ µ(g) then

〈ui〉
g
i = Ψ ′(riσ) = 〈riσ〉

g
i . It follows that Ψ(rσ) = Ψ(r′σ). We will now show that

Ψ(lσ) →+
FR

′ Ψ(r′σ). Define the substitution σΨ as follows:

σΨ (x) =

{

Ψ ′(σ(x)) if x (also) occurs at an inactive position in l,

Ψ(σ(x)) otherwise.

Here, we extend µ by defining µ(factive) = µ(f). One might expect that Ψ(lσ) =
lFRσΨ holds, but if a variable x occurs both at an active and an inactive position
in l then in Ψ(lσ) the two occurrences of σ(x) are replaced by Ψ(σ(x)) and
Ψ ′(σ(x)), respectively, so Ψ(lσ) need not be an instance of lFR. (Note that the
second case in the definition of Ψ ′(f(t1, . . . , tn)) is never applicable when applied
to subterms f(t1, . . . , tn) of l during the computation of Ψ(l).) However, because
Ψ(σ(x)) →∗

FR
′ Ψ ′(σ(x)) by Lemma 55 and because σΨ instantiates all occurrences

of such variables x in lFR by Ψ ′(σ(x)), it follows that

Ψ(lσ) →∗
FR

′ lFRσΨ .

This can be formally proved as follows. Let us extend Ψ and Ψ ′ to terms with
variables by defining Ψ(x) = Ψ ′(x) = x for every variable x. Note that lFR = Ψ(l).
Hence it suffices to show Ψ(lσ) →∗

FR
′ Ψ(l)σΨ . This follows from the first part

of the following statement, which we prove by induction on the structure of
t ∈ T (F1,V):

– Ψ(tσ) →∗
FR

′ Ψ(t)σΨ for all subterms t of l, and
– Ψ ′(tσ) →∗

FR
′ Ψ ′(t)σΨ for all subterms t at inactive positions in l.

If t ∈ V then Ψ(t)σΨ = σΨ (t). If σΨ (t) 6= Ψ(tσ) then σΨ (t) = Ψ ′(tσ) and thus
we obtain Ψ(tσ) →∗

FR
′ Ψ(t)σΨ from Lemma 55. For the second statement we

assume that t appears at an inactive position in l. So Ψ ′(t)σΨ = σΨ (t) = Ψ ′(tσ).
Note that no subterm t of l contains mark. So in the remaining case we have t =
f(t1, . . . , tn) or t = factive(t1, . . . , tn). We obtain Ψ(tσ) = f(〈t1σ〉

f
1 , . . . , 〈tnσ〉fn)

and Ψ(t) = f(〈t1〉
f
1 , . . . , 〈tn〉

f
n), so to conclude the first statement it suffices to

show that 〈tiσ〉
f
i →∗

FR
′ 〈ti〉

f
i σΨ . We distinguish two cases. If i ∈ µ(f) then 〈tiσ〉

f
i =

Ψ(tiσ) and 〈ti〉
f
i = Ψ(ti). Hence 〈tiσ〉

f
i →∗

FR
′ 〈ti〉

f
i σΨ follows from the first part

of the induction hypothesis. If i /∈ µ(f) then 〈tiσ〉
f
i = Ψ ′(tiσ) and 〈ti〉

f
i = Ψ ′(ti).

Note that ti occurs at an inactive position in l since t is a subterm of l and
i /∈ µ(f). Thus, we obtain 〈tiσ〉

f
i →∗

FR
′ 〈ti〉

f
i σΨ from the second part of the

induction hypothesis. For the second statement we reason as follows. Since t
appears at an inactive position in l, we have f ∈ FFR

µ and hence Ψ ′(tσ) =
f(Ψ ′(t1σ), . . . , Ψ ′(tnσ)) and Ψ ′(t) = f(Ψ ′(t1), . . . , Ψ

′(tn)). All subterms of t occur
at inactive positions in l and thus Ψ ′(tiσ) →∗

FR
′ Ψ ′(ti)σΨ for all i by the induction

hypothesis. Consequently, Ψ ′(tσ) →∗
FR

′ Ψ ′(t)σΨ as desired.

Combining Ψ(lσ) →∗
FR

′ lFRσΨ with lFRσΨ →FR
′ rFRσΨ yields Ψ(lσ) →+

FR
′

rFRσΨ . To conclude the proof of the lemma it remains to show that rFRσΨ →∗
FR

′

50

Ψ(r′σ). Let us define r′
FR

as the term obtained from rFR by replacing every
subterm a(t) by t. Note that r′

FR
= Ψ(r′). We may write r′

FR
= D[x1, . . . , xn]

with all occurrences of variables displayed and rFR = D[x′
1, . . . , x

′
n] with x′

i =
a(xi) if xi occurs at an inactive position in l and x′

i = xi if xi occurs only at
active positions in l. We have rFRσΨ = D[t1, . . . , tn] with ti = a(Ψ ′(σ(xi))) if xi

occurs at an inactive position in l and ti = Ψ(σ(xi)) if xi occurs only at active
positions in l. Moreover, Ψ(r′σ) = D[u1, . . . , un] with ui ∈ {Ψ(σ(xi)), Ψ

′(σ(xi))}.
We have a(Ψ ′(σ(xi))) →+

FR
′ Ψ(σ(xi)) →∗

FR
′ Ψ ′(σ(xi)) by Lemmata 55 and 56.

Hence ti →
∗
FR

′ ui and thus rFRσΨ →∗
FR

′ Ψ(r′σ). ut

Lemma 21. For all terms s, t ∈ T (F1), if s →M2
t then Ψ(s) →∗

FR
′ Ψ(t).

Proof. Let s = C[lσ] → C[rσ] = t with l → r ∈ M2. As in the proof of
Lemma 20, Ψ(s) = C ′[Ψ(lσ)] or Ψ(s) = C ′[Ψ ′(lσ)] and Ψ(t) = C ′[Ψ(rσ)] or
Ψ(t) = C ′[Ψ ′(rσ)] for some context C ′. Since Ψ(lσ) = Ψ ′(lσ) and Ψ(rσ) →∗

FR
′

Ψ ′(rσ) by Lemma 55, it is sufficient to prove Ψ(lσ) = Ψ(rσ). We distinguish two
cases corresponding to the different types of rules in M2.

(i) If l → r = factive(x1, . . . , xn) → f(x1, . . . , xn) then Ψ(lσ) = Ψ(rσ).

(ii) Let l → r = mark(f(x1, . . . , xn)) → f ′([x1]
f
1 , . . . , [xn]fi) with f ′ ∈ {factive, f}.

We have Ψ(lσ) = f(〈σ(x1)〉
f
1 , . . . , 〈σ(xn)〉fn) and Ψ(rσ) = f(〈[σ(x1)]

f
1〉

f
1 ,

. . . , 〈[σ(xn)]fn〉
f
n). Note that if i ∈ µ(f) then 〈σ(xi)〉

f
i = Ψ(σ(xi)) =

Ψ(mark(σ(xi))) = 〈[σ(xi)]
f
i 〉

f
i and if i /∈ µ(f) then 〈σ(xi)〉

f
i = Ψ ′(σ(xi)) =

〈[σ(xi)]
f
i 〉

f
i . Hence Ψ(lσ) = Ψ(rσ).

ut

C Proofs for Section 8

Theorem 51. Let (R, µ) be a CSRS. The TRS R1
µ is terminating if and only if

R1′′
µ is terminating.

Proof. For the “only if” direction we show that if s →1′′ t with s, t ∈ T (F1′′)
by an application of a rule active(l) → mark(r) in R1′′

µ then s↓A↓M →+
1 t↓A↓M.

Moreover, if s →1′′ t by applying one of the other rules in R1′′
µ then s↓A↓M →∗

1

t↓A↓M. Here A is the (terminating and confluent) rewrite system consisting of
the following rules:

active(f(x1, . . . , xn)) → factive(x1, . . . , xn) for all f ∈ FD

active(f(x1, . . . , xn)) → f(x1, . . . , xn) for all f ∈ FC

active(factive(x1, . . . , xn)) → factive(x1, . . . , xn) for all f ∈ FD

active(mark(x)) → mark(x)

First suppose that s|π = activem(f(l1, . . . , ln))σ and t = s[activem−1(mark(r))σ]π
for some m > 1, position π, substitution σ, and rule f(l1, . . . , ln) → r ∈ R, such

51

that there is no active symbol directly above the position π in s. Moreover, let
the substitutions σ′ and σ′′ be defined by σ′(x) = σ(x)↓A and σ′′(x) = σ′(x)↓M
for all variables x. Then we have

s↓A = s[activem(f(l1, . . . , ln))σ]π↓A

= s[factive(l1, . . . , ln)σ]π↓A

= s↓A[factive(l1σ↓A, . . . , lnσ↓A)]π′ (active is not directly above π)

= s↓A[factive(l1σ
′, . . . , lnσ′)]π′ (l1, . . . , ln do not contain active)

= s↓A[factive(l1, . . . , ln)σ′]π′

and thus

s↓A↓M = s↓A↓M[factive(l1, . . . , ln)σ′′]π′′

→1 s↓A↓M[mark(r)↓Mσ′′]π′′

→!
M s↓A[mark(r)σ′]π′↓M

Since

t↓A = s[activem−1(mark(r))σ]π↓A

= s[mark(r)σ]π↓A

= s↓A[mark(r)σ↓A]π′ (active is not directly above π)

= s↓A[mark(r)σ′]π′ (r does not contain active)

we obtain t↓A↓M = s↓A[mark(r)σ′]π′↓M and thus s↓A↓M →+
1 t↓A↓M.

Next let s|π = activem−1(mark(f(t1, . . . , tn))) and t = s[activem(f([t1]
f
1 , . . . ,

[tn]fn))]π for some m > 1, position π, terms t1, . . . , tn, and f ∈ F , such that there
is no active symbol directly above the position π in s. Let f ′ = factive if f ∈ FD

and f ′ = f if f ∈ FC. Then we have

s↓A = s[activem−1(mark(f(t1, . . . , tn)))]π↓A

= s↓A[mark(f(t1↓A, . . . , tn↓A))]π′ (active is not directly above π)

→M s↓A[f ′([t1↓A]f1 , . . . , [tn↓A]fn)]π′

= s↓A[f ′([t1]
f
1 , . . . , [tn]fn)↓A]π′

= s↓A[active(f([t1]
f
1 , . . . , [tn]fn))↓A]π′

= s[activem(f([t1]
f
1 , . . . , [tn]fn))]π↓A (active is not directly above π)

= t↓A

and hence s↓A↓M = t↓A↓M.

Finally, let s|π = activem(f(t1, . . . , tn)) and t = s[activem−1(f(t1, . . . , tn))]π
for some m > 1, position π, some f ∈ F ∪ {mark}, and terms t1, . . . , tn, such
that there is no active symbol directly above the position π in s. We distinguish

52

three cases. First assume that f ∈ FC ∪ {mark}. Then we have

s↓A = s[activem(f(t1, . . . , tn))]π↓A

= s↓A[f(t1↓A, . . . , tn↓A)]π′ (active is not directly above π)

= s[activem−1(f(t1, . . . , tn))]π↓A (active is not directly above π)

= t↓A

and thus s↓A↓M = t↓A↓M. Similarly, if f ∈ FD and m > 2 then

s↓A = s[activem(f(t1, . . . , tn))]π↓A = s↓A[factive(t1↓A, . . . , tn↓A)]π′

= s[activem−1(f(t1, . . . , tn))]π↓A = t↓A

and thus again s↓A↓M = t↓A↓M. Otherwise, we have f ∈ FD, m = 1, and thus

s↓A = s[active(f(t1, . . . , tn))]π↓A

= s↓A[factive(t1↓A, . . . , tn↓A)]π′ (active is not directly above π)

which implies that

s↓A↓M = s↓A↓M[factive(t1↓A↓M, . . . , tn↓A↓M)]π′′

→1 s↓A↓M[f(t1↓A↓M, . . . , tn↓A↓M)]π′′

→!
M s↓A[f(t1↓A, . . . , tn↓A)]π′↓M

= s[f(t1, . . . , tn)]π↓A↓M (active is not directly above π)

= t↓A↓M

The “if” direction can be proved in a similar way. Here, one has to show
that if s →1 t for s, t ∈ T (F1), then s↓B →+

1′′ t↓B, where B is the confluent and
terminating TRS consisting of the rules

factive(x1, . . . , xn) → active(f(x1, . . . , xn))

for all f ∈ FD. Let π be the position in s where the rule from R1
µ is applied.

Since s↓B = s↓B[s|π↓B]π′ and t↓B = s↓B[t|π↓B]π′ for some position π′, it suf-
fices to regard the case π = ε where the rule is applied at the root position.
If s = mark(f(s1, . . . , sn)) and t = factive([s1]

f
1 , . . . , [sn]fn) with f ∈ FD then

s↓B = mark(f(s1↓B, . . . , sn↓B)) →1′′ active(f([s1↓B]f1 , . . . , [sn↓B]fn)) = t↓B. Next,

if s = mark(f(s1, . . . , sn)) and t = f([s1]
f
1 , . . . , [sn]fn) with f ∈ FC then we

have s↓B = mark(f(s1↓B, . . . , sn↓B)) →1′′ active(f([s1↓B]f1 , . . . , [sn↓B]f1)) →1′′

f([s1↓B]f1 , . . . , [sn↓B]fn) = t↓B. If s = factive(s1, . . . , sn) and t = f(s1, . . . , sn)
then s↓B = active(f(s1↓B, . . . , sn↓B)) →1′′ f(s1↓B, . . . , sn↓B) = t↓B. Finally,
suppose that s →1 t is an instance of a rule factive(l1, . . . , ln) → mark(r)↓M
where f(l1, . . . , ln) → r ∈ R. So there exists a substitution σ such that s =
factive(l1, . . . , ln)σ and t = mark(r)↓Mσ. We have s↓B = active(f(l1, . . . , ln))σ′

→1′′ mark(r)σ′ for the substitution σ′ defined as σ′(x) = σ(x)↓B for all x ∈ V.

53

Furthermore t↓B = mark(r)↓M↓Bσ′. So it suffices to show that mark(r)
→∗

1′′ mark(r)↓M↓B. We perform induction on r ∈ T (F ,V). If r ∈ V then
mark(r)↓M↓B = mark(r). If r = g(r1, . . . , rm) with g ∈ FD then mark(r) →1′′

active(g([r1]
g
1, . . . , [rm]gm)) and mark(r)↓M↓B =gactive([r1]

g
1↓M, . . . , [rm]gm↓M)↓B =

active(g([r1]
g
1↓M↓B, . . . , [rm]gm↓M↓B)). If r = g(r1, . . . , rm) with g ∈ FC then

mark(r)→1′′ active(g([r1]
g
1, . . . , [rm]gm))→1′′ g([r1]

g
1, . . . , [rm]gm) and mark(r)↓M↓B

= g([r1]
g
1↓M↓B, . . . , [rm]gm↓M↓B). So we need to show that [ri]

g
i →∗

1′′ [ri]
g
i ↓M↓B

for all 1 6 i 6 m. If i ∈ µ(g) then [ri]
g
i = mark(ri) and the result follows from

the induction hypothesis. If i /∈ µ(g) then [ri]
g
i = ri = ri↓M↓B. ut

D Example 52

Let (R, µ) be the CSRS of Example 52. Our transformation Θ1 generates the
following TRS R1

µ:

0 −active y → 0 mark(0) → 0

s(x) −active s(y) → x −active y mark(s(x)) → s(mark(x))

x ≥active 0 → true mark(x − y) → x −active y

0 ≥active s(y) → false mark(x ≥ y) → x ≥active y

s(x) ≥active s(y) → x ≥active y mark(x ÷ y) → mark(x) ÷active y

0 ÷active s(y) → 0 mark(if(x, y, z)) → ifactive(mark(x), y, z)

s(x) ÷active s(y) → ifactive(x ≥active y, s((x − y) ÷ s(y)), 0)

ifactive(true, x, y) → mark(x) x −active y → x − y

ifactive(false, x, y) → mark(y) x ≥active y → x ≥ y

ifactive(x, y, z) → if(x, y, z) x ÷active y → x ÷ y

We prove termination with the dependency pair method. There are 13 depen-
dency pairs, where f] denotes the tuple symbol corresponding to f :

s(x) −]
active

s(y) → x −]
active

y mark](s(x)) → mark](x)

s(x) ≥]
active

s(y) → x ≥]
active

y mark](x − y) → x −]
active

y

s(x) ÷]
active

s(y) → if]
active

(x ≥active y, s((x − y) ÷ s(y)), 0)

s(x) ÷]
active

s(y) → x ≥]
active

y mark](x ≥ y) → x ≥]
active

y

if]
active

(true, x, y) → mark](x) mark](x ÷ y) → mark(x) ÷]
active

y

if]
active

(false, x, y) → mark](y) mark](x ÷ y) → mark](x)

mark](if(x, y, z)) → if]
active

(mark(x), y, z) mark](if(x, y, z)) → mark](x)

Since the pairs s(x) ÷]
active

s(y) → x ≥]
active

y, mark](x − y) → x −]
active

y, and

mark](x ≥ y) → x ≥]
active

y are not on cycles of the (estimated) dependency
graph, we can ignore them. Moreover, it suffices if dependency pairs of the form

54

mark](·) → f(· · ·) with f 6= mark] are only weakly decreasing (since they do not
form a cycle on their own). By using an argument filtering which maps x − y,
x −active y, mark(x), and mark](x) to x, the resulting constraints are satisfied by

the recursive path order induced by the quasi-precedence f ∼ factive ∼ f]
active

for
all f ∈ FD\{−} and “÷” � if, “≥”, s, 0 and “≥” � true, false. Thus, termination
of the original CSRS can easily be proved automatically using our transformation
Θ1.

55

56

Aachener Informatik-Berichte

This is a list of recent technical reports. To obtain copies of technical reports

please consult http://aib.informatik.rwth-aachen.de/ or send your request

to: Informatik-Bibliothek, RWTH Aachen, Ahornstr. 55, 52056 Aachen,

Email: biblio@informatik.rwth-aachen.de

95-11 ∗ M. Staudt / K. von Thadden: Subsumption Checking in Knowledge

Bases

95-12 ∗ G.V. Zemanek / H.W. Nissen / H. Hubert / M. Jarke: Requirements

Analysis from Multiple Perspectives: Experiences with Conceptual Mod-

eling Technology

95-13 ∗ M. Staudt / M. Jarke: Incremental Maintenance of Externally Material-

ized Views

95-14 ∗ P. Peters / P. Szczurko / M. Jeusfeld: Business Process Oriented Infor-

mation Management: Conceptual Models at Work

95-15 ∗ S. Rams / M. Jarke: Proceedings of the Fifth Annual Workshop on

Information Technologies & Systems

95-16 ∗ W. Hans / St. Winkler / F. Sáenz: Distributed Execution in Functional

Logic Programming

96-1 ∗ Jahresbericht 1995

96-2 M. Hanus / Chr. Prehofer: Higher-Order Narrowing with Definitional

Trees

96-3 ∗ W. Scheufele / G. Moerkotte: Optimal Ordering of Selections and Joins

in Acyclic Queries with Expensive Predicates

96-4 K. Pohl: PRO-ART: Enabling Requirements Pre-Traceability

96-5 K. Pohl: Requirements Engineering: An Overview

96-6 ∗ M. Jarke / W. Marquardt: Design and Evaluation of Computer–Aided

Process Modelling Tools

96-7 O. Chitil: The ς-Semantics: A Comprehensive Semantics for Functional

Programs

96-8 ∗ S. Sripada: On Entropy and the Limitations of the Second Law of Ther-

modynamics

96-9 M. Hanus (Ed.): Proceedings of the Poster Session of ALP’96 — Fifth

International Conference on Algebraic and Logic Programming

96-10 R. Conradi / B. Westfechtel: Version Models for Software Configuration

Management

96-11 ∗ C. Weise / D. Lenzkes: A Fast Decision Algorithm for Timed Refinement

96-12 ∗ R. Dömges / K. Pohl / M. Jarke / B. Lohmann / W. Marquardt: PRO-

ART/CE∗ — An Environment for Managing the Evolution of Chemical

Process Simulation Models

96-13 ∗ K. Pohl / R. Klamma / K. Weidenhaupt / R. Dömges / P. Haumer /

M. Jarke: A Framework for Process-Integrated Tools

57

96-14 ∗ R. Gallersdörfer / K. Klabunde / A. Stolz / M. Eßmajor: INDIA — Intel-

ligent Networks as a Data Intensive Application, Final Project Report,

June 1996

96-15 ∗ H. Schimpe / M. Staudt: VAREX: An Environment for Validating and

Refining Rule Bases

96-16 ∗ M. Jarke / M. Gebhardt, S. Jacobs, H. Nissen: Conflict Analysis Across

Heterogeneous Viewpoints: Formalization and Visualization

96-17 M. Jeusfeld / T. X. Bui: Decision Support Components on the Internet

96-18 M. Jeusfeld / M. Papazoglou: Information Brokering: Design, Search and

Transformation

96-19 ∗ P. Peters / M. Jarke: Simulating the impact of information flows in

networked organizations

96-20 M. Jarke / P. Peters / M. Jeusfeld: Model-driven planning and design

of cooperative information systems

96-21 ∗ G. de Michelis / E. Dubois / M. Jarke / F. Matthes / J. Mylopoulos

/ K. Pohl / J. Schmidt / C. Woo / E. Yu: Cooperative information

systems: a manifesto

96-22 ∗ S. Jacobs / M. Gebhardt, S. Kethers, W. Rzasa: Filling HTML forms

simultaneously: CoWeb architecture and functionality

96-23 ∗ M. Gebhardt / S. Jacobs: Conflict Management in Design

97-01 Jahresbericht 1996

97-02 J. Faassen: Using full parallel Boltzmann Machines for Optimization

97-03 A. Winter / A. Schürr: Modules and Updatable Graph Views for PRO-

grammed Graph REwriting Systems

97-04 M. Mohnen / S. Tobies: Implementing Context Patterns in the Glasgow

Haskell Compiler

97-05 ∗ S. Gruner: Schemakorrespondenzaxiome unterstützen die paargramma-

tische Spezifikation inkrementeller Integrationswerkzeuge

97-06 M. Nicola / M. Jarke: Design and Evaluation of Wireless Health Care

Information Systems in Developing Countries

97-07 P. Hofstedt: Taskparallele Skelette für irregulär strukturierte Probleme

in deklarativen Sprachen

97-08 D. Blostein / A. Schürr: Computing with Graphs and Graph Rewriting

97-09 C.-A. Krapp / B. Westfechtel: Feedback Handling in Dynamic Task Nets

97-10 M. Nicola / M. Jarke: Integrating Replication and Communication in

Performance Models of Distributed Databases

97-13 M. Mohnen: Optimising the Memory Management of Higher-Order

Functional Programs

97-14 R. Baumann: Client/Server Distribution in a Structure-Oriented Data-

base Management System

97-15 G. H. Botorog: High-Level Parallel Programming and the Efficient Im-

plementation of Numerical Algorithms

98-01 ∗ Jahresbericht 1997

58

98-02 S. Gruner/ M. Nagel / A. Schürr: Fine-grained and Structure-oriented

Integration Tools are Needed for Product Development Processes

98-03 S. Gruner: Einige Anmerkungen zur graphgrammatischen Spezifikation

von Integrationswerkzeugen nach Westfechtel, Janning, Lefering und

Schürr

98-04 ∗ O. Kubitz: Mobile Robots in Dynamic Environments

98-05 M. Leucker / St. Tobies: Truth — A Verification Platform for Distributed

Systems

98-07 M. Arnold / M. Erdmann / M. Glinz / P. Haumer / R. Knoll / B.

Paech / K. Pohl / J. Ryser / R. Studer / K. Weidenhaupt: Survey on

the Scenario Use in Twelve Selected Industrial Projects

98-08 ∗ H. Aust: Sprachverstehen und Dialogmodellierung in natürlichsprach-

lichen Informationssystemen

98-09 ∗ Th. Lehmann: Geometrische Ausrichtung medizinischer Bilder am

Beispiel intraoraler Radiographien

98-10 ∗ M. Nicola / M. Jarke: Performance Modeling of Distributed and Repli-

cated Databases

98-11 ∗ A. Schleicher / B. Westfechtel / D. Jäger: Modeling Dynamic Software

Processes in UML

98-12 ∗ W. Appelt / M. Jarke: Interoperable Tools for Cooperation Support

using the World Wide Web

98-13 K. Indermark: Semantik rekursiver Funktionsdefinitionen mit Strikt-

heitsinformation

99-01 ∗ Jahresbericht 1998

99-02 ∗ F. Huch: Verifcation of Erlang Programs using Abstract Interpretation

and Model Checking — Extended Version

99-03 ∗ R. Gallersdörfer / M. Jarke / M. Nicola: The ADR Replication Manager

99-04 M. Alpuente / M. Hanus / S. Lucas / G. Vidal: Specialization of Func-

tional Logic Programs Based on Needed Narrowing

99-07 Th. Wilke: CTL+ is exponentially more succinct than CTL

99-08 O. Matz: Dot-Depth and Monadic Quantifier Alternation over Pictures

2000-01 ∗ Jahresbericht 1999

2000-02 Jens Vöge / Marcin Jurdziński: A Discrete Strategy Improvement Algo-

rithm for Solving Parity Games

2000-04 Andreas Becks, Stefan Sklorz, Matthias Jarke: Exploring the Semantic

Structure of Technical Document Collections: A Cooperative Systems

Approach

2000-05 ∗ Mareike Schoop: Cooperative Document Management

2000-06 ∗ Mareike Schoop, Christoph Quix (Ed.): Proceedings of the Fifth Interna-

tional Workshop on the Language-Action Perspective on Communication

Modelling

2000-07 ∗ Markus Mohnen / Pieter Koopman (Eds.): Proceedings of the 12th In-

ternational Workshop of Functional Languages

59

2000-08 Thomas Arts / Thomas Noll: Verifying Generic Erlang Client-Server

Implementations

2001-01 ∗ Jahresbericht 2000

2001-02 Benedikt Bollig / Martin Leucker: Deciding LTL over Mazurkiewicz

Traces

2001-03 Thierry Cachat: The power of one-letter rational languages

2001-04 Benedikt Bollig / Martin Leucker / Michael Weber: Local Parallel Model

Checking for the Alternation free µ-calculus

2001-05 Benedikt Bollig / Martin Leucker / Thomas Noll: Regular MSC lan-

guages

2001-06 Achim Blumensath: Prefix-Recognisable Graphs and Monadic Second-

Order Logic

2001-07 Martin Grohe / Stefan Wöhrle: An Existential Locality Theorem

2001-08 Mareike Schoop / James Taylor (eds.): Proceedings of the Sixth Interna-

tional Workshop on the Language-Action Perspective on Communication

Modelling

2001-09 Thomas Arts / Jürgen Giesl: A collection of examples for termination of

term rewriting using dependency pairs

2001-10 Achim Blumensath: Axiomatising Tree-interpretable Structures

∗ These reports are only available as a printed version.

Please contact biblio@informatik.rwth-aachen.de to obtain copies.

60

