10 Infinite Series

Have you ever wondered how a calculator or acomputer can approximate the values of afunction? In this chapter
it isshown how to approximate functions by polynomial functions (including trigonometric polynomial functions).
Just asirrational numbers can be approximated by rational numbers, which can be evaluated by “hand,” wewill see
that transcendental and rational functions can be approximated (locally) by polynomials. Thisisan improvement
to the idea of approximating (locally) a differentiable function by its tangent line (which can be viewed as given
by a polynomial of degree one). You will also see how trigonometric polynomials can be used to approximate
functions over an entire interval.

10.1 Taylor Polynomials

In Chapter 2 it was shown that adifferentiable function can be approximated by itstangent linein the neighborhood
of apoint.

Tangent Line Approximation at a Point
Let f(x) bedefined and differentiablein aneighborhood of the point x = a. Then for x near
athefunction f (x) is approximated by

f(a)+ f'(@(x—a),

i.e., wewrite
f(x)~ f(a)+ f'(a)(x— a).

Example 10.1.1 Find the linear approximation of f(x) =sinx near x=0.

Solution: The slope of thetangent lineat x=0is
D(sin)(0) = cos0 = 1.

The equation of thetangent lineat x=01is
y=X
and, hence, for x near 0
Snx & X.
The following Maple V segment calculates the value of sin at the points —0.1, —0.05, —0.01, .01, 0.05, and 0.1.
> map(sin,[-0.1,-0.05,-.01,0.01,.05,0.1]);

[-.09983341665, -.04997916927, -.009999833334, .009999833334, .04997916927,

.09983341665]

It is evident from the last Maple V output that sinx is well approximated by these values of x. Indeed the ab-
solute values of the errorsin the approximation are computed as follows.

> map(x -> abs(sin(x)-x),[-0.1,-0.05,-.01,0.01,.05,0.1));
-6 -6
[.00016658335, .00002083073, .166666*10 , .166666*10 , .00002083073,

.00016658335]
The fact that x is a good approximation to sinx only locally isillustrated in Figure 81.

> plot({sin(x),x},x=-Pi/2..Pi/2);
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Figure 81: Plot of sinx and x on [—m/2, /2]

Ingeneral, apolynomial of degreen, whose derivatives at some point agree with thefirst n derivativesof f (x),
at that point is called a Taylor Polynomial of f(x) of degree n at the point.

Taylor Polynomial Approximation of Degree n at a Point
Let f(x) be defined and n times differentiable in a neighborhood of the point x = a. Then
for x near a the function f (x) is approximated by

" (n)
f(a)+ f'(a)(x—a) + f (a)(x— a2+ + f ( )(x a)",
i.e., wewrite
" (n)
f(x)~ f(a)+ f'(@)(x—a) + f (a)(x—a)z-. f n(a)(x a)".

When afunction has an infinite number of derivativesin the neighborhood of x = a, then it has a Taylor Poly-
nomial Approximation of Degree n for every positive integer n. In this case, we speak of a Taylor’s Series.

Taylor Seriesat a Point
Let f(x) be defined and have infinitely many derivatives in a neighborhood of the point
X = a. Then the series

” M (a
f (a)(X—a) +- +f el

f@ + f'(@Q(x—a) + (x—a)"+

iscalled the Taylor Series Expansion of f(x) at x = a.
When a = 0 the seriesis called a Maclaurin Series.

The Maple V procedure taylor provides a method for obtaining the Taylor Series expansion up through any
value of n. The syntax for using this procedure is taylor (expr, eg/nm, n), where expr is an expression eg/nmisan
equation (such as x = @) or name (such asx) and n is a (optional) non-negative integer.

For example, we can apply taylor to the sin function at x = 0. (Since a = 0 here we are actualy finding the
Maclaurin Series.)
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> f :=taylor(sin(x),x=0);
. 1 3 1 5 6
f:=x &% + 125X + O(x°)
Theterm O (xe) indicatesthat the termsthat are not shown in the series all contain afactor of x8. The default value
of nis6. If you want the series to more or less terms through order 5 then you should elect to set the option for n
to adifferent value. Thusif you wish to obtain the Taylor Seriesfor the sin function at x = 0 through order 9 you
can issue the following:

> taylor(sin(x),x=0,10);
X— =X+ 1 1 X'+
6 120 5040 362880
The next MapleV segment indicates that the derivatives of the Taylor Series and the function agree at the point
X=a.

> seq(subs(x=0,diff(f,x$i)),i=1..5);

X9 +0 (XlO)

1, 0, -1, 0, 1
> seq(eval(subs(x=0,diff(sin(x),x$i))),i=1..5);

1,0, -1, 0, 1
You may use the convert procedure to convert a Taylor Series expansion to a Taylor Polynomial.

> convert(f,polynom);
2 X
"% "10

You can use this whenever you want to use the Taylor Polynomial to approximate the function by the polyno-
mial or to plot the approximation.

Thefollowing MapleV segment createsalist of the Taylor Polynomialsfor sinat x = 0 of degrees 1 through 5.
Note that, for thisfunction, the polynomials of even degree are actually odd degree polynomials of one less degree
since al even coefficients are zero.

> P := [seq(convert(taylor(sin(x),x=0,i),polynom),i=2..6)];
3 X3 X3 X5

X
P.=[x,x,x—€,x—€,x—€+@]

In Figure 82 plot the Taylor Polynomials of degree 1, 3, and 5 along with the function sin over the interval
[—7, 7].

> plot({sin(x),P[1],P[3],P[5]},x=-Pi..Pi);

You should be ableto identify the various Taylor Polynomials of sinin Figure 82 and observethat asthe degree
increases the approximation gets better.
You can aso usetaylor to obtain the Taylor Polynomials of arbitrary degree about any point, say, for example,
setting x = 1 and n = 3 gives a Taylor Polynomial of degree2 at x = 1.
> taylor(sin(x),x=1,3); .
sin(1)
2

(sin(1) +cos(1) (x— 1) — (x— 1%+ O((x—1)3)

The

> convert(",polynom);
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Figure 82: Plot of sinx and several Taylor Polynomialson [—r/2, /2]

sin(1) (x — 1)2

sin(1) + cos(1) (x—1) — 5

following gives away to bound the error.

Error Bound for Taylor Polynomial Approximations
Let f(x) bedefined and have n + 1 derivativesin aneighborhood of the point x = a. Define

the error term En(X) by

fW(a)
n!

f// (a)
2!

En(x) = f(x) — (f(a)+ f'(a)(x—a) + (X—a)+---+ (x—a)").

Supposethat | f ™D (x)| < M for |[x—a| < d, then

|En x—a™t

M
X < (nTl)'

for [x—al <d.
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Isthere an analytic way of estimating the error made in approximating afunction by a Taylor Polynomia? The

Example 10.1.2 Give a bound on the error made in approximating xe™* by its tenth degree Taylor Polynomial
about x = 0, over theinterval —0.75 < x < 0.75.

Solution let f(x) = xe~*. Thenthemaximum value, M, of the eleventh derivativefunction of f(x) must befound.
Define f(x), inaMaple V session and then find the eleventh derivative.

> f = x -> x*exp(-x);

fi=xr> xe X

> f11 = diff(f(x),x$11);
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fll:=11e * — xe *

In Calculus| the problem of finding a maximum value of afunction on a closed interval was studied. One of the
better ideas for solving such a problem isto plot its graph. See Figure 83.

> plot(f11,x=-0.75..0.75);
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Figure 83: Plot of the eleventh derivative of xe . Figure 84: Plot of twelfth derivative of xe .

Figure 84 suggests that the eleventh derivative is decreasing on the interval [—0.75, 0.75]. If thisis true the
maximum value of the eleventh derivativeisequal toitsva ue at theleft-hand end-point x = —0.75. Weinvestigate
the sign of the twelfth derivative of f(x).

> 12 = diff(f(x),x$12);

> plot(f12,x=-0.75..0.75,y=-30..0);
See Figure 84 for evidence that the twelfth derivative is aways negative and hence the maximum value M of
the eleventh derivative is obtained as follows.

> M := evalf(subs(x=-0.75,f11));

M = 24.87475020
Now we can obtain abound on the error made by approximation f (X) = xe™* by itstenth order Taylor Polynomial
with about x = 0. The valuethat d, given in the boxed statement, assumesin thisexampleisd = 0.75. The bound
isthus

> evalf(M*((0.75)*11)/(111));
.2631945594 10~/

It follows that the error in approximating xe * by

> convert(taylor(f(x),x=0,11),polynom);

, X x5 NG X7 x8 X9 %10
X—X+—=——-——=+———+=—=- —

+ 2 6 + 24 120 + 720 5040 + 40320 362880

is bounded by
.2631945594 10"

Exercises 10.1
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1. Find the Maclaurin Series expansion for cos(3x? + x) though terms of order 10.
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2. Usethe Maclaurin Series expansion of f(x) = cos(3x? + 2) to compute the values of the third, fourth, and

fifth derivatives of f(x) at x = 0. Use coeff, but do not use diff.

3. Determine the maximum error that could occur by using a Taylor Polynomial of degree 5 expanded about

x = 0 to approximate f (x) = cos(2x) sin(x), intheinterval —1 < x < 1.

10.2 Trigonometric Polynomials

In the preceding section the problem of approximating afunction in the neighborhood of apoint by Taylor Polyno-
mialswas studied. These approximations are local in the sense that they (typically) are accurate only within some
neighborhood. In this section trigonometric polynomials are utilized to approximate functions throughout a fixed

interval, which is not assumed to be small.

TheFourier Seriesfor f(x) on [, 7]
of theform
ag + a; COSX + a» COS2X + ag CoS3X - - -
bisinx+b,sin2x+ bssin3x- - -,

where

21

—7T

ak=%/ f(x)coskxdx, for k>0,

T

bk=£/ f(x)sinkxdx, for k>0
T -7

Let f(x) be defined and integrable on [—, 7], then f(X) has a Fourier Series Expansion

An infinite series of the form

o0 o0
ap + Zakcoskx-|- Z b SiNMX,
k=1 m=1

is called the Fourier Series Expansion of f(x), and apartial sum, S,(x) of

n n
Si0 =2+ ) aCoskx+ Y bpsinmx,
k=1 m=1

is called the Fourier Polynomial of degree n of f(x).

Example 10.2.1 Find Fourier Polynomials for the function

0 if —m<x<0,
f(x):{l if O<x<x

Make some maple V plots that compare these polynomials with the function. Solution: This function is nothing

more than the Heaviside Function, H, restricted to theinterval [ -7, 7r]. See Chapter 1.8. The following Maple V

makes defines f (x) an makes aplot. See Figure 85.

> alias(H=Heaviside);
I, H

> plot(H(x),x=-Pi..Pi,y=0..1.2);
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Figure 85: Plot of the Heaviside Function on [ -, 7]

The first component ag isthe average value of f (x) ontheinterval [—m, 7]. Therefore, it is clear without the
necessity of calculating an integral that

For k > 0, ay = 0, as can be seen from

akzif f(x)coskxdx:E/ coskx dx = 0.
b T

. 0

The by are obtained by

bkzlf f(x)sinkxdx:lf sinkxdx = = . 1= coskr.
wJ_ T Jo T k

T

This simplifiesto
by — Z ?f @fk?sodd,
0 if ifkiseven

Thus the Fourier Expansion of order n of f(x) isgiven by
M 2
Sh(X) = 1/2+ k; 57 Sn@k—1),

wheren = 2m— 1. Thefollowing Maple V segment makes these computations and prepares Maple V plots. Since
we already know that ap = 1/2, and if k > 0, then ax = 0, we compute only the by.

> b = k -> int(sin(k*x),x=0..Pi)/(Pi);
b=k <— —Cos(kk”) + kl) a

Thefollowing evaluatesby fork=1,---, 4.
> seq(b(k),k=1..4);
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2 2
—,0,—,0
[n 37 ]
Define the Fourier Polynomial of Order n asfollows.
> k = 'k S = n -> 1/2+sum(b(k)*sin(k*x),k=1..n);
n
S->1/2+ ) besinkx
k=1
The following calculates the Fourier Polynomials of orders 1 and 3.

> k := 'k SS := [seq(S(2*n-1),n=1..2)];
SS:=[1/2+ 2 sin(x)’ 12+ 2sin(x) n 2 si:r;(3x)]
The next command produces a multiple plot of f(x) aong Withnthe Fourier I;Tolynomials of orders 1 and 3. See
Figure 86.
> plot({H(x),SS[1],SS[2]},x=-Pi..Pi,scaling=CONSTRAINED);
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Figure 86: Multi-plot of Heaviside Function with Fourier Polynomiason [—r, 7]

Figure 87 isamultiple plot of f(x) along with the Fourier Polynomial of degree 9.
> plot({H(x),S(9)},x=-Pi..Pi,scaling=CONSTRAINED);

Figure 87 indicates that the Heaviside Function is approximated by the Fourier Polynomial of degree 9, i.e

HOO ~1/2+ 2 sin(x) n 28in(3x) 25|n(9x).
T 3 9m

Exercises 10.2 Follow the example in this section to find and make plots comparing several Fourier Polynomials

with each of the following functions.
1.

| x4+m if —m<x<0,

f(X)_{ T—Xx if O<x<m

F(x) = 0 if —m<x<0,
] snx if O<x<m
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Figure 87: Multi-plot of Heaviside Function with Fourier Polynomial of degree 9 on [—r, 7]
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