7 Thelntegral

In previous chapters you have studied how to find derivatives and have seen how they have many useful interpre-
tations. Before Chapter 4 only the basic limit definition for computing derivatives was available, but in Chapter 4
you studied how to differentiate many different functionsexactly either by using MapleV or by hand. Up until now
most integrals that have been calculated have only been approximated by using limits of left-hand or right-hand
sums. In this chapter you will learn how to calculate the definite integral of certain functions exactly, by using the
Fundamental Theorem of Calculus. More efficient numerical methods will also be introduced.

7.1 SomeBasic Formulas

MapleV isan excellent tool for computing antiderivatives. In this section Maple V will be used to establish some
basic formulas. Remember the problem in finding an antiderivative for f(x) isto find afunction F(x) such that
F’(x) = f(x). Thusone can always determine the correctness of the antiderivative by differentiation. For example
the Maple V segment

> Int(x*n,x) : " = value(") + C;

Xn+1
/ x'dx = +C
n+1

+1

illustrates that if n £ —1 then the general antiderivative or the indefinite integral of x" is h + C. Thiscan be
checked by differentiation.

> diff(rhs("),x);
X1

X

> simplify(");

The following is a basic integration formula.

Xn+l
/x"dx: n+1+C’ n#-1

What happensin the case that n = —1? What is the antiderivative of )1(?
> Int(subs(n=-1,x"n),x) ;" = value(")+C;
/x‘ldx =In(x)+C

This implies that an antiderivative of % isInx. Recall that the domain of Inx is {x|x > 0} and hence the above
formulais undefined if x < 0. The Fundamental Theorem of Calculus holds only for continuous functions and ;1(
isdiscontinuous at x = 0. Thismeansthat one shouldn’t expect an antiderivative for )—1( tobedefinedat x = 0. This
function is continuous over every interval that does not include x = 0. Thus one can expect the function defined
by f(x) =1/x, for X < 0to have an antiderivative. If x < 0then In(—x) makes sense. Furthermore, by the Chain

Rule we have q 1 1
—In(—=x) =(-1)— = =.
ax N(—x) = ( )—x X

Therefore an antiderivative for f (x) isIn(—x) = In|x|. The formulafor the indefiniteintegral of )—1( isgiveninthe
box below.

/}dx: In|x| + C.
X

25
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Recall that the exponentia function is equal to its derivative and so the following istrue.

/e"dx: e+ C.

For the sin and cos functions we have
> Int(sin(x),x): "=value(")+C;
/si n(x)dx = —cos(x) + C

> Int(cos(x),x):"=value(") +C;
/cos(x)dx =sn(x)+C

/si n(x)dx = —cos(x) + C

/cos(x)dx =sn(x)+C

In practi ceastudent shoul d be ableto do acertain amount and differentiation and integration by hand even when
he or she has acomputer algebra system such as Maple V. Thisis analogousto the fact that every one should know
how to perform simple arithmetic computations even when hand calculators are available, or one needs to know
definitions of some words even when adictionary is available. Every calculus student should know the preceding
formulas (and some others) for finding indefinite integrals, but calculus students who have the use of computer
algebra systems, like Maple V, need not spend as much time memorizing integration formulas as students in the
past had to do.

The following is the indefinite integral version of the facts given in Chapter 6 about adding two definite in-
tegrals and multiplying an integral by a constant. You will find it very useful for finding antiderivatives of linear
combinations of functions with known antiderivatives.

Facts about Sumsand Constant Multiples

/(f(x) +g(x))dx=/ f (X)dx + g(x)dx
/cf (xX)dx = c/ f (x)dx.

Example 7.1.1 Evaluate the following definite integrals:

2 1 T
/ (1/x+ 1/x%)dx, / 37x°dx, / (3€* — 5cosx)dx.
1 0 0

Solution:

2 2
/ (1/x 4+ 1/x3)dx = Inx — )—1(‘1 —In2—-1/2+1=1In2+1/2.
1

1 5 X61
7xCdx = 37| = 37/6.
/03xdx 36‘0 37/6
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/ (36 — 5cosx)dx = 3e* — 55inxz =3¢ - 3.
0

Each of the preceding examples was simple enough that it was easily worked by hand. Sometimes one encoun-
ters more complicated functions and Maple V is helpful in such situations.

Example 7.1.2 Evaluate the following integrals:

1
/ oS +/XdX, / cos x2dx, / cos x2dx.
0

Solution:

> Int(cos(sqrt(x)),x) : "=value(")+C;

/cos(ﬁ)dx = 2 cos(+/X) + 2./xsin(y/X) + C

> diff(rhs("),x); s
cos(+/X)

> Int(cos(x*2),x):" = value(")+C;

/COS(XZ)dX = «/zﬁFresnelC(%()l/Z +C
pd

You will not be expected to know the properties of the function called FresnelC in this course.

> diff(rhs("),x); .
COoSs(X°)

> Int(cos(x"2),x=0..1): "= value(");
1 ﬁﬁFresnelC(% )
/ cos(x?)dx = 3
0

> Int(cos(x"2),x=0..1) = evalf(rhs("));

/ cos(x?)dx = 0.9045242375
0

Exercises 7.1

1. Use MapleV to evaluate the following:

€Y
/exp(Sx)sin(Sx)dx
®) Inx
/ 7dx
(©)
/ sin3xcos? 2xdx
(d)

2
f 4 — x2dx
0
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2. (a) UseMapleV tofind
/seczxdx.

(b) Based on your answer in (@) what should the derivative of tan x be?
(c) UseMapleV to find the derivative of tan x. Explain any apparent descrepancies.

3. Enter the following Maple V command in a worksheet.

> seq(int(sin(n*x)/sin(x),x=0..Pi),n=1..10);
Use your results to make a conjecture about the value of

.
sin nx
/ : dx
o Sin X

for positiveintegersn.

7.2 Finding Integrals by the Method of Substitution

Remember that the only thing you are required to do when finding an antiderivative of a given function f(x) is
to find a function F(x) such that F'(x) = f(x). Over the years there have been many techniques developed for
calculating integrals. The approach illustrated in this section can be regarded as a method of reversing the Chain
Rule which was given in Chapter 4. Recall that if f and g are given and the composition f o g isdefined then the
Chain Rule says

(fog)(x) = f'(g(x) g Xx).

Theindefinite integral that corresponds to the last formulais
/ f(9(x)) - g’ (0dx = (fog)'(x) +C.

Toillustrate this, consider the problem of integrating the function h(x) = 2xcosx?. Is there a function whose
derivative is equal to h(x)? By applying the Chain Rule it can be seen that

d . 2 __ 2 __
&smx = 2xc0sX* = h(x).

It follows that
/h(x)dx:/Zxcosxzdx=sinx2-|-c.

Another way to think of this problem isto look at the integral
/ 2xcosx? dx

and recognize that the integrand looks like the result of applying the Chain Rule in the situation where f (u) =
sin(u), and g(x) = x2. A device that helps us in this is to think of this process as changing variables. Thus we
think of making the substitution u = g(x) = X2 into the integral [ 2xsinx?dx. Thisiswritten

/.2xcosx2 dx:/cosx2(2xdx) =/cosu du=sinu+C =sinx’+C.

In order that the method of substitution be successful for a given function h it must be recognized that there are
two functions f and g such that h(x) = (f o @)’ (x) = f'(g(x)) - g’ (X).

Observethat [ cosx? dx does not fall into this category, since if we try the obvious sinx? as an antiderivative
then its derivative fails to equal cosx? because of the chain rule.
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Example 7.2.1 Find [ x*/x5 + 3dx.

Solution: This problem suggests the Chain Rule with f (u) = /U and u = x° + 3. Lets see what happens to the
integral if we make this substitution. Since du = 5x*dx or x*dx = du in this case we have

3/2
/X“vx5+3dX=/x/x5+3(><“dX)=/ﬁd—;J LU +C:1£5(x5+3)3/2+c.

T 532

Check thisresult by differentiation

d 2 5 3/2 _ 2 3 5 1/2 _ 5
K (ECHIVHC) =2 50C+3) - (5x*) = xX*/x5 43
In the previous example one is able to find a substitution that transforms the integrand into one that can be
readily integrated. Do you think that the method of substitution can be applied to the following integrals?

/ v/ X5 4 3dx, / X2/ X8 + 3dx

Example 7.2.2 Evaluate [ x3e<'+4 dx.

Solution: Inthiscasewe set u = x* + 4 and du = 4x3dx or x3dx = %“. Thisleads to the following calcul ation.

/x3e"4+4dx=/e"“*“(x3dx)=/e“djtj=%1 ”+C=%e"4+4+0.

Now check the result by differentiation.

%(%ex4+4+ C)= %ex4+4_ 4-x3) = 3K+

When using Maple V one can solve both of the above problems very easily.

> Int(x*4*sqrt(x"5+1),x): "=value(") +C;

5 3/2
/x“\/x5+1dx= 2(X;l)JrC

15

> Int(x*3*exp(x"4+1),x ) "= value() + C;
ot
/x3ex4+ldx: 7] +C

One might ask the question: why study the substitution method for integrating complicated expressions by
hand when the problem can be solved so effortlessly by Maple VV? It strue that in practice, when one has access to
computer algebra systems like Maple V, one can quickly integrate many complicated problems without needing to
know alarge bag of tricks. Nevertheless, in order to build up an intuition for the manipulation of functions and to
develop skillsin dealing with them, we will now introduce aMaple V procedure, changevar thatisaMapleV tool
for integrating functions by the method of substitution. The syntax ischangevar (s, f, u), wheresisan expression
of theform h(x) = g(u), defining x asafunction of u; f isanexpressionsuchas Int(F(x), x=a...b); anduisthe
name of the new integration variable. The procedure changevar is part of the student package and hence requires
either the with(student) command or isinvoked using the long version student[changevar].

Toillustrate this procedure the first example above will now bereworked using changevar . Invokethe student
package.

> with(student):
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Define the integral.
> 1 = Int(xM*sqrt(x"5+1),x,u);

11:= /x4\/x5+1dx

When this expression was integrated by hand the substitution u = x> + 1 was used. The proper syntax in this case
is x® 4 1 = u. Thisreduces the integration problem the following:

I2:=fgdu

The new integration problem is equivalent to the original one. However, the new problem is simpler and can be
integrated by the power rule discussed in the previous section.

> |2 := changevar(x"5+1=u,l1);

> value("); o 12
u

15
The value of the original integral is now obtained by using subswith u = x® 4 1.

> subs(u = x"5+1,");
2 (8 +1)%?
15
Aswith any antidifferentiation problem you can check your result by differentiation.

> diff(",x);
XX 41
When evaluating a definite integral it is usually easier to change the limits of integration defined by the trans-
formation.
Example 7.2.3 Evaluate the definite integral fol x4/ x5 + 3dx.

Solution: Enter the following Maple V statement.
> |11 := Int(x*4*sgrt(x"5+1),x=0..1);

1
||1:=f x*V/x8 + 1dx
0

Proceed just as you would when evaluating an indefinite integral with changevar

> |12 := student[changevar](x"5+1=u,ll1,u);
2
112:= / Yy
1 5
Observe the new limits of integration. Corresponding to x = 0 for the original lower limitis
u=0+1=1,

and corresponding to x = Lintheoriginal upper limitisu = 1° + 1. One can now evaluate the transformed integral
without the need for substituting in the original variables.

> value(");
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42
=5 —2/15

Therefore,
1
/ x*/ x5 + 3dx = 41—“2? —2/15.
0

When using the method of substitution either by hand or with the changevar command the goal isto reformu-
late an integral into aform in which the integral follows from a basic formula.

1
Example 7.2.4 Evaluate [ x——==dXx.

Solution: With some practice you should eventually be able to solve thisby hand. Theintegral will be calculating
by using changevar.

> I3 = Int(x/sqrt(4-9*x"2),x);

13:= / X dx
) VAT ox
What substitution should be used? In thiscaseif u = 4 — 9x?, then du = —18xdx. Thisappearsto beworth trying.

> |4 := student[changevar](4-9*x"2=u,I3,u);

1
14:= | ———d
/ 18./u !

Thisintegral appearsto be much simpler. Nevertheless let’s simplify it further.
> |5 = simplify(14);
[ J5du
T
The goal hereisto reduce the original problem to one of the basic formulas. We have done it and now its okay to
apply value.
> |6 := value(l5);

15:=

Ju
16:= ———
6 9
Returning to the original variables one has
> |7 := subs(u=4-9*x"2,16);
V4 —9x2
17=———
9
A check of thisis performed by differentiation:
> diff(17,x); X
V4 —9x2
It follows that
1 V4 —9x?
X dx=— +C.
Vi—9x2 9

Remember that you should regard changevar asatool to help you learn the method of substitution. In practical
situations you should be able to evaluate easy integrals by hand and compute complicated integrals viaMaple V
by using the int procedure.

Exercises 7.2
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1. Evauate each of the following using the method of substitution and the check your answers using Maple V
and changevar .

(@ [5v2+3xdx
(b) [73sin(x* +2) dx
1/2
(© { X \/ﬁ dx
(d) Jcos(3x+2) dx
(e) [sn°(2x)cos(2x) dx, try u=sin(5x)

2. If fisintegrablethen
/2 f(cosx) dx:/2 f(sinx) dx = }/ f (sinx) dx;
0 0 2 0

/ f (cos? X) dx = mfﬂ f (cos? ) dx.
0 0

3. Show that if m# nthen,

b
/cosmxcosnxdx:/ snmxsinnx dx =0,
0 0

but if m=n, then each integral isequal to 7. Also,

b
cosmMXsinnNx = ———,
/0 n2 — m2

if n—misodd, but
/ cosmxsinnx = 0,
0
if n— miseven. (Hint: Recall theidentities
sin(A+ B) =sin AcosB+ cosAsinB

and
cos(A+ B) =cosAcosB — sin AsinB.)

7.3 Integration by Parts

In the preceding section it was seen that the method of substitution for evaluating integralsis essentialy arestate-
ment of the Chain Rule for differentiation. In this section another important integration technique known as in-
tegration by parts will be presented. This latter method is merely a restatement of the rule for differentiating a
product. Recall that if u(x) and v(x) are differentiable functions then the rule for differentiation of their product
® d -

d—X(uv) =uv+uv.

Therulefor integration by partsis obtained by integrating both sides of the last equality

f%(uv) dx:/(uv’+u’v) dx=/UU’ dx+/u’v dx.

Observethat thefirst termin thelast set of equationsisthe antiderivative of the derivative of uv, and thusit follows

that
UU=/UU’ dx+/u’v’ dx.

Finally, by solving the last equation for [ uv’ dx theintegration by parts formulafollows.
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Integration by Parts
Let u(x) and v(x) be differentiable functions then

/u(x)v’(x) dx = u(x)v(x) —/u/(x)v(x) dx.

Asanillustration of how integration by partsis used consider the following integral:

/ xe* dx.

For thisintegral let u(x) = x, and v’ (x) dx = €* dx. Theproduct of thesetermsistheintegrand intheintegral onthe
left hand side of theintegration by partsformula. For thefirst term on the right-hand side one must determine v(x)
from the equality v’ (x) dx = €* dx. Upon integration one has v(x) = €*. Differentiation of the equality u(x) = x
gives U’ (x) = 1. Substituting these results into the integration by parts formula gives

/xexdx=xex—f1-exdx.
Integrating the integral on the right-hand side yields the formula
fxexdx:xex—eX+C.

In applications one usually needs to compute a definite integral. The integration by parts formulafor definite
integralsis given below.

Integration by Partsfor Definite Integrals
Let u(x) and v(x) be differentiable functions then

b b
/u(x)v/(x) dx:u(x)v(x)‘b—/ U (X)v(x) dx.

For purposes of illustration calculate

3
/ xe* dx.
-1

Just as before set u = x, and v' = €*. Using the integration by parts formula

3 3
/ NG dx=x-ex‘3l—/ edx = ((3e3—(—l)e‘l)—(e3—e‘1)=2(e3+%).
1 - -1

General Principlesfor Applying Integration by Parts
The reason to use the method of integration by partsisto express acomplicated integral into simpler
parts.

1. Make surethat you set v’ equal to afunction for which you are able to find an antiderivative v.
2. Make surethat U’ issimpler than u (or at least no more complicated than u).

3. Try to make sure v issimpler than v’ (or at least no more complicated than v’).
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The above principles explain the reason for making the choices u = x, and v'dx = €*. What if, instead, the
choicesu = e and v'dx = x had been made? Then u’ = €, which isno more complicated than u, but v = x—; The
result isthe following:

X2 X2
_
/xexdx_e2 Zexdx,

which is more complicated than the original problem.

Example 7.3.1 Integrate [ xInx dx.

Solution: Inthisproblem set v'dx = xdx (even though it seemsto contradict thethird principle above) then v = x_22
Thisis required because thefirst principle states that you must be able to integrate v’ and if you set v' = Inx, then

you can't easily find v. Let u = Inx, which meansu’ = )1( and then apply integration by parts

X2 1 %2
fxlnxdx:(lnx)i—/)—(i dx,

x?Inx X  XInx X2
/xlnxdx: > —/EZT_Z_FQ
The student package has a procedure called intparts that helps you to practice the technique of integration
by parts. The syntax for intpartsisintparts( f, u), where f isan expression of the form I nt(udv, X), and uisthe
factor of the integrand to be differentiated. We now give afew examples.

and hence

Example 7.3.2 Useintpart to integrate

3
/xexdx, fxexdx,and /xlnxdx.
-1

Solution: Sincewe let u = x for this problem
> 1 = Int(x*exp(x),X);

11:= /xe"dx

> |2 := student[intparts](I1,x);
12:=xe" — /e"dx
Thisismostly aninstructional tool for learning the technique of integration by parts. You have worked the problem

correctly only when the integrals on the right-hand side are integrabl e directly from one of the basic formulas. The
above Maple V output passes the test so apply value.

> [2 := value(12);

xe* — e

It followsthat [xe*dx = xe* — e*+ C.
Now calculate the definite integral. Since the final formula gives an antiderivative for xe*, the answer can be
calculated in the usual manner, i.e using the fundamental formula

b
f f(x) dx = F(b) — F(a).

> subs(x=3,12)-subs(x=-1,12);
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2e+2e71
Conclude that

3
/ xe*dx =2e’+2e L,
-1

You can also evaluate a definite integral directly using intparts.

> [la := Int(x*exp(x),x=-1..3);

lla:= /3xexdx

-1
> |2a := student[intparts](I1a,x);
12a:= 3e3+e1—f3lexdx
> value(l2a);
26® +2¢et

Now for the third integral.
> 13 = Int( x*In(x),X);

13:= /xln(x)dx

One shoulds set u = InX, when using integration by parts for thisintegral.

2
14 .= InCOX —/gdx

> |4 := student[intparts](I3,In(x));

2
The integral f>—2‘dx, is basic so you can apply value.

> |4 = value(l4); | ) )
n(x)x X

14
2 4

Conclude that [xIn(x)dx = < _ ¢ | ¢,

35

Be careful when applying intparts that you stick to the principles in the box above, because Maple V can
integrate so well that it can evaluate some integrals that have not been reduced to one of the basic formulas. For

example, suppose we let u = x instead of u = Inx in the last problem.
> |4 := student[intparts](12,x);

14 := x(XIn(X) — X) — /xln(x) — xdx

Now most of us can’t directly integrate the above expression, but Maple V can.

> value(");
IN(X)x%  3x2

X (XIn(x) — x) — > + 7

> simplify(");
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INX)x2 X2
2 4

This gives the same answer as before. However, if you solve the problem like this, it means that you have missed
the point.

Remember that you should regard intparts as atool to help you learn how to integrate by parts. In practical
situations you should be able to evaluate easy integrals by hand and compute complicated integrals via Maple V
by using the int procedure.

Sometimes you might need to apply integration by parts more than once.

Example 7.3.3 Evaluate [ x?sinx dx.

Solution: Using the principlesthat are suggested for the process of computing an integral by integrating by parts
let u= x?, and v’ = sinx for this problem.

> |5 = Int(x*2*sin(x),x);

15:= /xzsin(x)dx

> |6 := student[intparts](I5,x"2);
16 := —Xx? Ccos(X) — /—Zxcos(x)dx

You are not done yet. Theintegral on the right hand side has to be integrated by parts with u = x and v' = cosx.
> |7 := student[intparts](16,x);
17 := —x%cos(X) + 2xsin(x) + /—2 sin(x)dx

The problem has now been reduced to a problem that is easily integrated.

> I8 := value(l7);
18 := —x?cos(X) + 2Xxsin(x) + 2 cos(X)

Conclude that
/ x2sinx dx = —x2cos(x) + 2xsin(x) + 2 cos(x) + C.

Sometimesiit is not obvious what to let u and v be.

Example 7.3.4 Evaluate [‘arcsinx dx.
Solution: Inthiscaselet u=arcsinxand v’ = 1.
> 19 := Int(arcsin(x),x);
19:= /arcsin(x)dx

> [10 := student[intparts](19,arcsin(x));

110:= arcsin(x)x—/ X

V11— x2
Now what do we do about the integral on the right-hand side in this case? Thisis an example of a problem that
can be worked by a substution of U = 1 — x°.

> |11 := student[changevar](1-x"2=U,110,U);
111 := arcsin(x)x—/

dx

1
———du
2/u
The last integral is basic so integrate and return to the original variables.
> |11 := value(l11);
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111 := arcsin(x)x + ~/U
> 112 := subs(U=1-x"2,111);
112 := arcsin(X)X + v/1 — X2
Conclude that
/arcsinx dx = arcsin(X)Xx++v1—x2+C
At other times, when using integration by parts one gets the original integral as an intermediate step.

Example 7.3.5 Evaluate [ € cosx dx.

Solution: Hereit really doesn’t matter which of the two functions you set u and v’ equal to originally. The results
turn out to be essentially the same. We will set u = €* and v’ = cosx.

> 113

Int(exp(x)*cos(x),X);
113 := /excos(x)dx

> 114

student[intparts](113,exp(x));
114 := €*sin(x) — /exsin(x)dx

Hereis asituation in which the new integral is not simpler than the original integral, but it also is no more com-
plicated than the original integral either. Continue integrating by partsusing u = €*.

> [15 := studentintparts](114,exp(x));

115 := €*sin(x) + €* cos(x) + /—e" cos(x)dx

Now, if you factor out the —1 from the integrand you see that the new integral isidentical to the original integral.
You can finish this problem by solving algebraically for the original integral.

> isolate(113=simplify(115),113);

/ex cos(X)dx = esin(x) N e cos(x)
2 2
Conclude that N i}
/ex cos(x)dx = sin(x) n COS(X) ‘e
2 2
Exercises 7.3

1. Evaluate each of the following integrals by hand if possible. Use Maple V and the student package proce-
dureintpartsfor help if necessary.

(@ [te*dt

(b) [x*Inxdx

(c) [ x?sin3xdx

(d) [e*sin3xdx

(e) [arctan2x dx

(f) [ sec®x dx

2. (a) Useintegration by partsor intpartsto show that for any positive integer n.

/(Inx)n dx = x(Inx)" — n/(lnx)”*l dx.
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(b) Apply the (reduction) formula obtained in the previous part to cal culate by hand the exact value of

3
/ (Inx)* dx.
1

(c) Check your answer to part (b) using Maple V.

7.4 Using MapleV in Place of Integral Tables

Most functions do not have elementary antiderivatives. The onesthat do are so few in number that they can almost
all belooked up in tables of integrals. Some students feel that since most of the integrals that have antiderivatives
can be looked up in tables that they need not study how to find integrals by their own devices. However, the prob-
lems encountered while using tables include some rather sophisticated agebraic techniques such aslong division
of polynomials, completing the square, and converting rational functions to partial fractions. The student must
also develop an ability to recognize the general class of the function that is being integrated. Indeed since tables
of integrals are developed by humans, there are errors in the tables. You also need to develop skillsin verifying
that the results you get are are correct

MapleV isan excellent tool for finding antiderivatives of functions. For thisreason itsuse can virtually replace
the need for using integral tables. Remember that there are bugs in any computer programs, including Maple V.
Hence, even when using MapleV, you need to devel op skillsin verifying that the resultsthat you get are are correct.

You probably can use Maple V to integrate most any integral that has an elementary integral or that you could
use atable to integrate.

We illustrate with afew examples.

Example 7.4.1 Evaluate [ sin12xsin7x dx.

Solution: Without Maple V thiswould might be arather challenging integration by parts problem. Can you work
it that way? You could also use atable of integrals. The problem is easily worked with Maple V.

> INsin(127)*sin(7%).x ) " = value(")+C; .
/Sin(12x)sin(7x)dx= snGx) _ sind9%)

10 38

Now that was easy, but how do we know that the answer is correct? Thisis an example in which verifying
the correctness of the answer is more difficult than the actual integration. In order to show the integral is correct
differentiate the right-hand side of the last equation.

> diff(rhs("),x);
cos(5x)  cos(19x)
2 2
Does thislook like the integrand in the original problem? You can verify that it is by using trig identities. To see
that the integrand is equal to the preceding Maple V output, use the combine command with the trig option:

> combine(sin(12*x)*sin(7*x),trig);
cos(5x)  cos(19x)

2 2
This verifies that the value of the integral is correct.

Example 7.4.2 Evaluate [ x'°cos7x dx.
Solution:

> Int(x"10*cos(7*x),x): "=value(")+C;
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10 o 9 8 o 7 6 o
10 _xsn(7x) | 10x”cos(7X) _ 90 x°sin(7 x) _ 720x"cos(7x) =~ 720x°sin(7X)
/ xTeos(fxjdx = ————+ ——3 343 2401 2401
4320 x5 cos(7 x) 21600 x*sin(7x) 86400 x3cos(7x)  259200x2sin(7x) B
16807 117649 823543 5764801
518400 sin(7x)  518400xcos(7 X) e
282475249 40353607

Thistime despite the complicated answer the problem is answer is easily checked.

> diff(rhs("),x);
10x° cos(7x) — 7x°sin(7x)

X2+43x—2
Example 7.4.3 Evaluate [ 55 CaTTy dx.

Solution: Thisisthe kind of problem that you would have to use partial fractions to work by hand. We can use
MapleV to evaluate thisthisintegral immediately, but first we will expand the integrand into partial fractions and
then integrate. Then we will use Maple V to get the same answer by integrating the problem directly.

> fi= x -> (XM2+3*%-2)/((x+1)*(x+2)"2*(x"2+6*x+14));
. X2 +3x—2

X >
(X+ 1) (X+ 2)% (X2 + 6X+ 14)
Use the convert command with the par frac option to expand the expression by partial fractions.

> g = convert(f(x),parfrac,x);

gi=—

4 2 n 1 16 +3x
9x+9 3 (x+2)? 18x+36 18x?+ 108x+ 252
The idea of partial fractionsis to reduce the rather complicated rational function into a sum of fractions that

are easily integrated. Can you integrate each expression in the preceding sum? Remember that you should be able
to evaluate each of the integrals in the above expression by hand.

> 1 := int(g,X);
41n(x+ 1) 2 11In(x+2) In(2+6x+ 14) 7\/§arctan(%§)

11:= —
9 3X+6 18 12 90
Now check the result.
> diff(11,x);
4 2 11 2X+6 7

TOx1 9 3(x12? 18x136 12+ 72x1 168 90 4 2267

Upon simplifying by using normal we arrive at the integrand.

> normal("); 2. 3 )
Xc 43X —

(X+1) (X+ 2)% (X2 + 6x + 14)
If al one wantsis the answer then one can work the problem in a single step using Maple V.

> Int(f(x),x):" = value(") + C;
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X2 4+3x—2
> dx
(X4 1) (X+2)? (X% + 6x+ 14)

C4Inx+1l) 2 1In(x+2)  In0+6x+14) 7/Barctan(2x£05) c
9 3X+6 18 12 20
SometimesMapleV givesan answer that isn’t acceptable, and you can remedy thiswith the assume command.

Example 7.4.4 Verify the following formulawhich comes from integral tables.

/ ! = arcsin X +C, a#0
/a2 _ XZ - a ’ ’

Solution: Inthis case, if you do the obvious, you get arather strange answer, which is unacceptable.
> Int(1l/sqrt(a"2-x"2),x): "=value(") +C;

/a2 J— X2
What went wrong here? Maple V often gives answers that make little sense to us whenever the problem involves
square roots of numbers which may or may not be negative such as, in this case, a? — x2. If you imform Maple V
that you want to assume that a > 0, then use the assume command.

dx = —IIn(vIx++va2—x2)+C

> assume(a>0);
Now try the same command as before.
> Int(1/sgrt(a™2-x"2),x): "=value(") +C;
1

‘a ;._2_X2

Thistime value of the integral isthe same one asthe one given in tables.

dx = arcsin(%) +C

Exercises 7.4 Evaluate the following integrals. Check your answers though differentiation and simplification.
1. [x®Inxdx
2. [(x®—3%x+5)xe*dx
3. [sn’tdt
4. [sin®tdt
5. [ 5oz dx
6. [/ @—x2)7 dx

X3 —24x245
f X3 (X—4) (X242x+2) dx

~

7.5 Approximating Definite Integrals Numerically

Sofar, inthischapter, we have studied how to get exact answersof integralsin anumber of special cases. However,
for most functionsit isimpossible to find a suitable closed form for an antiderivative, even though we know one
exists from the Fundamental Theorem of Calculus.

In Chapters 3 and 6 we discussed the definition of the Riemann Integral and how to obtain bounds on the error
encountered in estimating its value with afinite left-hand or right-hand sum.
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When the definition of the Riemann Integral of afunction f defined on an interval [a, b] was given only par-
titions of the interval that consist on n equally spaced subintervals of the form

a=to<ti<---<ti1<th=Dh,

having width
b—a
At=t1 —to=th—t1=---=th —th1 = .
were considered. Examples of Riemann Sums were left-hand sums,
n—1
leftsum= f(to)At+ f(t)At+ -+ f(ti)) At =Y f(t)AL,
k=0

and right-hand sums,

n
rightsum= f(t)At+ f(t)At+---+ f(t) At =) f(to)At.
k=1

Asamatter of fact, the general definition of Riemann Sum uses partitionsin which the subinterval sare not restricted
to be of equal length and the function f can be evaluated at arbitrary points within each subinterval. For example,
if foreachi, i=1,---,n, afinite sequence z of pointsis chosen arbtrarily, except that each i, z istaken from
thei th subinterval, i.e., chosen so that x;_1 < z < x;, then asum of the form

n
f(z)Ax;, which AX =X —X_1
i=1

isalso called a Riemann Sum. Another type of Riemann Sum is obtained by selecting z to be the midpoint of the

subinterval inwhich it lies. Sums of thistype are called midpoint sums. Recall that the Maple V student package

has procedures leftsum and rightsum for obtaining values for left-hand and right-hand sums. The same package

al so has corresponding graphics procedures, leftbox and rightbox, that show the figures associated with each type

of sum. The student package also has the analogous procedures, middlesum and middlebox for midpoint sums.
Anillustration of the use of these proceduresis given in the following Maple V segment for

fX)=x(x—1(x—2)+1,

defined on interval [0.5, 2].

> f =t > tR(t-1)*(t-2)+1;
f=t>tt-1)(t—-2)+1

We now obtain the left-hand sum accurate to 10 digits for a partition with 10 subintervals.
> LeftHandSum := evalf(student[leftsum](f(t),t=0.5..2,10));

LeftHandSum := 1.391718750

This number represents the sum of the areas of the rectangles shown in Figure 11.
> student[leftbox](f(t),t=0.5..2,10);

We now do the same thing with rightsum and rightbox. See Figure 12.
> RightHandSum := evalf(student[rightsum](f(t),t=0.5..2,10));

RightHandSum := 1.335468750

> student[rightbox](f(t),t=0.5..2,10);
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1.4+ 1.4+
~
124 \ 1.24 *[\
1- 1+ _—
0.8+ 0.8+
0.6+ 0.6+ —|
0.4+ 0.4+
0.2+ 0.2+
0 0.6 0.8 1 12t 1.4 1’6 1’8 0 0.6 0.8 1 12[ 1.4 1’6 1’8
Figure 11: Left-hand sum Figure 12: Right-hand sum

Below isthe computation and plot commands necessary for using middlesum and middlebox. See Figure 13.
> MiddleSum := evalf(student[middlesum](f(t),t=0.5..2,10));

MiddleSum := 1.357265625

> student[middlebox](f(t),t=0.5..2,10);

1.4

Figure 13: Midpoint sum
Each of these sums represent an approximation to the definite integral
2
/ t(t—1)(t—2)+ 1dt,
0.5

given to 10 digits of accuracy by
> evalf(int(f(t),t=0.5..2));
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1.359375000
So which of the Riemann Sums represent the best approximation?

> [1-MiddleSum; I1-LeftHandSum; I1-RightHandSum;
.002109375
-.032343750

.023906250

Thus we conclude that in this case the procedure middlesum gives the numerical value whichisclosest to the true
value of the derivative.

The Trapezoid Rule

Recall that in Chapter 3, when the problem was to determine how large n must be in order to approximate the
integral to within a prescribed accuracy, we were able to reduce the error by half (for monotone functions) by
taking the average of the left-hand sum and the right-hand sum for the same partition. Up to now the numerical
integration methods that have been used consisted of certain well defined Riemann Sums. What about a procedure
that takes the average of the left-hand sums and the right-hand sums? Continuing with the sameillustration above
with

f()=tt—1)(t—2)+1,

and interval [0.5, 2] we take the average of the left-hand and right-hand sums.

> Average = (LeftHandSum+RightHandSum)/2;
Average := 1.363593750

> |1 - Average;
-.004218750

At least for thisillustration the value of the approximation obtained by taking the average gives amuch better
approximation than that given by any of the three Riemann Sums above.

Itisilluminating to ask about the geometry associated with thisaveraging method. First letslook at the average
algebraically. For the partition

a=to<ti<---<ti_1<ty=Db
with
b—a

At:tl_t0=t2_t1:"‘=tn—tn,1= —,

the average of the left-hand and right-hand sumsis

(leftsum+rightsum) Y35 f(t)At+ Y0 f(t) At

average =
verag 2 2

We can rearrange the terms of the above to the following form:

aUer(,ige=<f(to)+ f(t1) _At)+<f(t1)+ f(t2) _At)+.._+(f(tn71)+ f(tn) .At)'

2 2 2

How can weinterpret this sum? Each expression enclosed by parentheses representsthe area of acertain trapezoid.
For example, the expression W - Atisthe areaof the trapezoid with vertices (11, 0), (t2, 0), (t2, f(t2)) and
(t1, f(t1)). The student package has a procedure called trapezoid which can calculate this sum.

> evalf(student[trapezoid](f(t),t=0.5..2,10));

1.363593750
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Figure 14: Trapezoid sum

Unlike the other three approximation procedures Maple V does not seem to have a corresponding procedure to
illustrate the trapezoids. The following Maple V segment plots the 10 trapezoids which occur in the preceeding
sum along with the graph of f (t). See Figure 14.

> PIt1 := plots[display]([seq(plots[polygonplot]([[0.5+i*3/20,0],
> [0.5+(i+1)*3/20,0],[0.5+(i+1)*3/20,f(0.5+(i+1)*3/20)],

> [0.5+i*3/20,f(0.5+i*3/20)]]),i=0..9)]):

> PIt2 = plot(f(t),t=0.5..2):

> plots[display]({PIt1,PIt2});

When an Approximation isan Over- or Underestimate

In Chapter 3 it was seen that a left-hand sum taken over an interval in which the function is increasing gives an
underestimate and the right-hand sum gives an overestimate. Thereisasimilar statement for adecreasing function.
See Figures 15-18.

If fisincreasingon|a,b],

b
leftsum(f(x),x =a..b,n) < / f(X) dx < rightsum (f(x), X = a..b, n).

a
If f isdecreasingon |[a, b],

b
rightsum((f(x),x =a.b,n) < / f(x) dx < leftsum(f(x),x = a..b, n).

a
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6] 6]
51 51
4+ 4+
3 3

L !

17/ 1,/

Figure 15: Left-hand sum < f: f(t) dt Figure 16: f; f (t) dt < Right-hand sum

0.8+ 0.8+
0.6 0.6

0.4+ 0.4+

0.2 0.2

Figure 17: Left-hand sum > f; f(t) dt Figure 18: f; f (t) dt > Right-hand sum

Supposethat afunction f isconcave down over aninterval [a, b], for example, supposethat f’(x) < 0 on that
interval, then f liesabove theline segment joining the points (a, f(a)) and (b, f(b)). Similarly, afunction which
is concave up lies below such aline segment. See Figures 19 and 20.

If fisconcave downon|a,b],
b
trapezoid(f(x),x =a.b,n) < f f(x) dx.
a
If fisconcaveupon|a,b],

b
/ f(X) dx < trapezoid(f(x), X = a..b, n).
a

Theinformation in the latter box allows one to say something about upper- and lower-estimates for midpoint
sum estimates. Let a curve be concave down and take a rectangle whose top intersects the curve at the midpoint
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Figure 19: Trapezoid sum < fab f(t) dt Figure 20: f; f(t) dt > Trapezoid sum

of theinterval. Now consider atangent to the curve at the the midpoint and consider the trapezoid that is formed.
See Figure 21. Thetrapezoid has the same area as the area of midpoint rectangle, sincethetrianglesformed at the
midpoint are congruent. 1t may be concluded that the midpoint sum overestimatesin this case since the upper edge
of the trapezoid is above the curve. Similarly, one may conclude that the midpoint sum underestimates the integral
when the curve is concave up. The following summarizes these conclusions.

If fisconcave down on[a,b],

b
trapezoid(f(x),x=a.b,n) < f f (X) dx < middlesum(f(x), x = a..b, n).
a

If fisconcaveupon]a,b],

b
middlesum(f(X),x =a.b,n) < / f(x) dx < trapezoid(f(x),x = a..b, n).
a

Figure 21. Midpoint area > fab f(t) dt Figure 22: Midpoint area < fab f(t) dt
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Example 7.5.1
For the integral

JT
f sint? dt
0

1. Findthesubinterval of theinterval [0, /7] in which thetrapezoid rule gives an underestimate and the subin-
terval in which the trapezoid rule gives an overestimate of the integral.

perform the following tasks.

2. Do the samething asin (a) except use the midpoint rule.

3. Finally use partitionswith 4 subintervalsin each of the two subintervalsfound above and use the appropriate
Maple V procedure to obtain under- and overestimates of the value of the integral

Solution: According to the statement in the box above we need to determine subintervals of [0, z] in which the
function
f(t) = sint?

is concave up or down.
> f = t->sin(t"2);
f =t sint?)
To get an idea of where theseintervals are we make aMaple V plot of the function and its second derivative. See
Figure 23

Figure 23: f(t) and it second derivative

> plot({f,(D@@2)(f)},0..sqrt(Pi));
By observing Figure 23 we see that the second derivative changes sign from positive to negative around 0.8.
Using fsolve we find this point to 10 digits of accuracy.

> fsolve((D@@2)(f)(x)=0,x,0.5..0.9):

.8082519329
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We concludethat f isconcave up on theinterval

[0, 0.8082519329],
and concave down on

[0.8082519329, /7].
This means that any trapezoid sum is an underestimate and any midpoint sum is an overestimate of

0.8082519329
f sint? dt
0

when taken over theinterval [0, 0.8082519329]. The reverseistrue over the interval [0.8082519329, /7].
> Overl := evalf(student[trapezoid](f(t),t=0..0.8082519329,10));

Overl = .1714091423

> Underl := evalf(student[middlesum](f(t),t=0..0.8082519329,10));
Underl := .1703598876

> Under2 := evalf(student[trapezoid](f(t),t=0.8082519329..sqrt(Pi),10));
Under2 := .7203743485

> Qver2 :=

evalf(student[middlesum](f(t),t=0.8082519329..sqrt(Pi),10));

Over2 := .7259977915

> Underall := Underl+Under2;
Underall := .8907342361
> OQOverall := Overl+Over2;
Overall := .8974069338
> evalf(int(f(t),t=0..sqrt(Pi)));
.8948314690

Thus .8907342361 is an underestimate and .8974069338 is an overestimate for the value the integral

JT
/ sint? dt
0

which to 10 places of accuracy turns out to be 0.8948314690.

Exercises 7.5

1. Consider theintegrals:

20 5
/ Inx dx / et dx.
1 0
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(8 For eachintegral find theleft-hand sum, the right-hand sum, and the trapezoid sum for apartition of the
appropriate interval with 50 subintervals. Also obtain valuesfor the integrals to 10 digits of accuracy.

(b) For each integral arrange the left-hand sum, the right-hand sum, and the trapezoid sum and the true
valuein ascending order. Explain, using MapleV segments and plots where necessary, how you could
predict this ordering without doing any calculationsin part (a).

2. Consider theintegrals
7 1
/ exp(—x?) dx / exp(—x?) dx.
-7 0.8

(8) Foreachintegral find thetrapezoid sum, and the midpoint sum, for apartition of theappropriateinterval
with 50 subintervals. Also obtain values for the integrals to 10 digits of accuracy.

(b) For each integral arrange the trapezoid sum, the midpoint sum, and the true value in ascending order.
Explain, using MapleV segments and plots where necessary, how you could predict this ordering with-
out doing any calculationsin part (a).

7.6 Approximation Errorsand Simpson’s Rule

Any time that you make a numerical approximation you should keep in mind that there is going to be some nu-
merical error. In this section numerical experiments are performed to gain insight into how the error decreases
as n increases for the various approximation methods that have been introduced and, in addition, a more efficient
procedure known as Simpson’s Rule is presented.

It is known that

2
/ Inx dx = In(2) ~ .6931471806.
1

In order to get an ideaof how the error reduces as n increases for the approximation method being used, thisknown
value will be used as akey.

We start our experiment with left- and right-hand sums. Since the student package will be used throughout
thisillustration, the package is made available.

> with(student):
Define the test function which will be used thoughout.

> f = x > 1/x;

fi=xr— x1!

The pattern for this experiment is as follows:

1. Apply an approximation rule, such asthe left-hand rule, to the function f (t) over theinterval [1, 2] for n =
10, 100, 1000, and 10, 000 subintervals, respectively.

2. Compute the error as the difference between the approximation for the particular value of n and In2.

3. Computetheratio of the error for the previous step and the error at the current step.

dt

For example, if n = 10 the error in the approximating the integral ff t

> LS1 := evalf(leftsum(f(t),t=1..2,10));

by using leftsum is obtained from:

LS1 := .7187714032

> errorl := LS1 - evalf(In(2));
errorl := .0256242226
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Next the error when n = 100 is calcul ated:

> LS2 := evalf(leftsum(f(t),t=1..2,100));
LS2 := .6956534305
> error2 = LS2 - evalf(In(2));
error2 = .0025062499
Finally, compute the ratio of the errors.
> RL := errorl/error2;
RL := 10.22412913

In this case atenfold increase in n amounts to an error which is about % of thefirst error, i.e. an improvement of
about one decimal place. Now using this idea one can produce aMaple VV segment that will make these computa-
tionsfor n = 10, 100, 1000, and n = 10, 000.

This segment uses ado “loop”. The variable LSl is assigned the result of calculating the left-hand sum for
n = 10. In the next step one must make sure that the index k is unassigned so that it can be used as an index in
the do statement. After that, the loop statement is created. Within the loop the left-hand sum is calculated for
n=10% = 100, and assigned to L S2. In the next two steps the errors are computed and assigned the values error 1
and error2. Then the ratio of the errors are calculated and assigned to Lratio. The next step produces alist with
four elements that consists of the current value of n, the old approximation, the current approximation, and the
ratio of the two errors. The output is suppressed to save space and the results are summarized in Table 1.

> LS1 := evalf(leftsum(f(t),t=1..2,10)):
> k = k-
> for k from 2 to 4 do
> LS2 := evalf(leftsum(f(t),t=1..2,10"K)):
> errorl = LS1 - evalf(In(2));
> error2 = LS2 - evalf(In(2));
> Lratio := errorl/error2;
> [107k,LS1,LS2,Lratio];
> LS1 = LS2;
> od;
n | Sumforn/10 | Sumforn Ratio of errors
100 | .7187714032 | .6956534305 | 10.22412913
1000 | .6956534305 | .6933972431 | 10.02249398
10000 | .6933972431 | .6931721812 | 10.00225995

Table 1: Table showing ratio of errors as n increases for |eft-hand sums

What does the datain Table 1 imply? Notice that if nisincreased by a factor of 10 a decrease in error by a
factor of about 10 occurs. It isrecommended that you make your own experiments using different valuesof n. You
will find that the number 10 is not specia in that if you increase the number n by afactor of p then the error will
decrease by nearly the same factor. You should also take different functions and repeat the experiment. The same
results concerning the ratio by which the error decreases should be nearly the same. The experiment is repeated
using right-hand sums.

The following Maple V segment does for right-sums what the previous one did for left-hand sums. Again we
do not give the Maple V output but we summarize Table 2.

> RS1 := evalf(rightsum(f(t),t=1..2,10)):
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k = k:

for k from 2 to 4 do
evalf(rightsum(f(t),t=1..2,10"k)):

RS2

errorl :
error2 .

Rratio :=

RS1 - evalf(In(2));
RS2 - evalf(In(2));
errorl/error2;

[10"k,RS1,RS2,Rratio];
RS2;

RS1
od;

n

100
1000
10000

Sum for n/10
.6687714032
.6906534305
.6928972431

Sum for n
.6906534305
.6928972431
.6931221812

Ratio of errors
9.774747438
9.977494774
9.997739946

Table 2: Table showing ratio of errors as n increases for right-hand sums

51

Theresultsin thiscase are of the same order of magnitude asin the previousone. Observethat atenfoldincrease
in results in about that much decrease in the error. In this case the ratio is just less than 10. Notice that the ratio
seems to be getting closer 10 as n increases.

The experiment with the trapezoid rule and the midpoint rule suggests that these methods are more efficient.
First the midpoint rule. In this case the error became so small for large n that division became rather inaccurate
using the default value of 10 digits. Hence we set Digitsto 15.

>

VVVVVVYVYV

Digits :

MS1 :

15;

for k from 2 to 4 do
MS2 := evalf(middlesum(f(t),t=1..2,10"k)):
errorl :
error2

Rratio =

MS1 - evalf(In(2));
MS2 - evalf(In(2));
errorl/error2;

[10"k,MS1,MS2,Rratio];

MS1
od;

MS2;

Digits

evalf(middlesum(f(t),t=1..2,10)):

The summary in thiscaseisgivenin Table 3

= 15

If you felt that the midpoint rule gave better results in previous examples then your intuition was correct. In

this case when the number of subintervalsin the partition isincreased by afactor of 10 then the error isreduced by
afactor of about 100. In other words, about 2 digits of accuracy are added each time the number of subintervals
isincreased by afactor of 10.

Next for the trapezoid rule. We leave the Digits equal to 16.
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n Sum for n/10 Sum for n Ratio of errors
100 | .692835360409960 | .693144055628301 | 99.7846306762286
1000 | .693144055628301 | .693147149309952 | 99.9978350075150
10000 | .693147149309952 | .693147180247445 | 99.9999776000000

52

Table 3: Table showing ratio of errors as n increases for midpoint sums

> TS1 := evalf(trapezoid(f(t),t=1..2,10)):
> k = k"

> for k from 2 to 4 do

> TS2 := evalf(trapezoid(f(t),t=1..2,10"k)):
> errorl = TS1 - evalf(In(2));

> error2 = TS2 - evalf(In(2));

> Rratio := errorl/error2;

> [107k,TS1,TS2,Rratio];

> TS1 = TS2;

> od;

The results are summarized in Table 4.

n Sum for n/10 Sum for n Ratio of errors
100 | .693771403175428 | .693153430481824 | 99.8768668741947
1000 | .693153430481824 | .693147243059938 | 99.9987612638613
10000 | .693147243059938 | .693147181184945 | 99.9999888000000

Table 4: Table showing ratio of errors as n increases for trapezoid sums

Aswith the midpoint rule an increase of afactor on 10 in the number of subintervalsleads to a corresponding
decrease in the error by afactor of 100.

Another rule is defined as alinear combination of the trapezoid rule and the midpoint rule. It is convenient to
use Maple V notation in defining thisrule:

2-middlesum( f (t),t = a..b, n) + trapezoid(f(t),t =a..b, n)
3 )

Thisformulais called Simpson’s Rule and aMaple V procedure called smpson is contained in the student pack-
age. In fact the following example shows that the above formula agrees with smpson.

Simpson( f(t),t=a..b,n) =

> evalf(simpson(f(t),t=1..2,20)- (2*middlesum(f(t),t=1..2,10)+
> trapezoid(f(t),t=1..2,10))/3);

0

Noticethat inthelast segment the Maple V procedure simpson hasn = 20 whilefor middlesum and tr apezoid
was set to n = 10. A restriction in using the procedure simpson isthat it requiresthat the argument n be even. This
isnatural from its definition in terms of the midpoint rule and the trapezoid rul e using the same partition with, say,
msubintervals. The valuesfor the trapezoid rule are taken at the endpoints of the subintervals, while the valuesfor
the midpoint rule are eval uated al ong the midpoints of the subintervals. Thus, for all practical purposes, evaluating
both of these sums for a partition with m subintervalsis equivalent to having a partition with 2m subintervals.

We now evaluate simpson for values of n = 20, 200, 2000, and 20, 000. We find that we need to set Digits =
20 to keep from dividing by zero for the larger values of nin this case.
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SS1 := evalf(simpson(f(t),t=1..2,2*10)):

> Digits = 20;

>

> k = 'k

> for k from 2 to 4 do

>

> errorl := SS1 - evalf(In(2));
> error2 = SS2 - evalf(In(2));
> Rratio := errorl/error2;

> [107k,SS1,SS2,Rratio];

> SS1 := SS2;

> od;

Digits := 20

SS2 := evalf(simpson(f(t),t=1..2,2*10"k)):

53

Table 5 gives a summary. Note that an increase for n by afactor of 10 yields a corresponding decrease in the
error by afactor of nearly 10* = 10, 000. This means with each increase in n by afactor of 10 one makes again
of around 4 digits of accuracy.

100
1000
10000

Sum for n/10
.69314737466511611897
.69314718057947533885
.69314718055994726254

Sum for n
.69314718057947533885
.69314718055994726254
.69314718055994530961

Ratio of errors
9938.8058530718762977
9999.4006666257065618
10279.578947368421053

Table 5: Table showing ratio of errors as n increases for Simpson’s Rule

Simpson’'s Ruleis avery important method for numerical integration and provides a reasonabl e degree of ac-
curacy for modestly small values of n.
In practice you use something like Simpson’s Rule when you don’t already know the answer. When do you
know when you havethe accuracy that you want to have? Supposethat you wish to be surethat the answer iscorrect
to 4 decimal places. Onerather heuristic procedureisto keep increasing n until thefirst four decimal places do not
change with successive estimates. The following example illustrates one such example.
Example 7.6.1 Use Simpson’s Rule to estimate the value

with an error less than 10~4.

N
/ sinx? dx
0

Solution: We will use afor loop and compute approximations using Simpson’s Rule for values of 2 - n for n from
5t0 10. Looking at the values we will determine (heuristically) a value for the integral accurate to four decimal

places.

> for n from 5

to 10 do

> [n,evalf(simpson(sin(t*2),t=0..sqrt(Pi),2*n))];

> od;

[5,

.8950818902]
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[6, .8949514362]

~

[

[8, .8948691440]

, .8948959374]

[9, .8948549391]

[10, .8948468435]

Observe that from n = 7 through n = 10 the first four decimal places does not change. The desired accuracy
seems to have been obtained with n = 7. We now doubl e this value and check the approximation with n = 14.

> evalf(simpson(sin(t*2),t=0..sqrt(Pi),2*14));

.8948354575

Since the approximation for n = 7 and 14 differ by less than .0000604799, we will consider .8948 as an ac-
ceptable answer for this approximation.

Exercises 7.6

1. For the following problems use Simpson’s Rule with various values of n to evaluate the definite integrals

1.7

with an error less than 0.0001. Explain why you believe that you have a valid approximation.

2 1 2
@ [ % (b) [sin(sin(x)) dx (c) [ SN2+ 3x+ 1) dx
0 0 1
From the fact that d
d—x(arCtan) (x) = 1
we know that

dx
/ 11 = arctan(x) + C.

Thus we have the following formulafor computing the number 7 :

1
,,24/ _dx
0 1+X2

Usethisformulaand Simpson’s Ruleto estimate 7z to an accuracy with error lessthan 0.00001. Explain why
you believe that you have a valid approximation.

Improper Integrals

Up to now all of the functions that have been studied with regard to integration have been bounded and defined on
intervals of finite length. In this section you will learn how to deal with integrals like the following:

and

o0 2
/ e X dx
0

/1 dx
0o VXA=X)

Integrals like the last two are called improper integrals.
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For example, consider the integral

T 2
/ e * dx,
0

for variousvaluesof T > 0.
> evalf(int(exp(-x"2),x=0..2));

.8820813910
> evalf(int(exp(-x"2),x=0..4));

.8862269120
> evalf(int(exp(-x"2),x=0..5));

.8862269255
> evalf(int(exp(-x"2),x=0..6));

.8862269255
> evalf(int(exp(-x"2),x=0..7));

.8862269255

Observe, that the value of the integral for T = 5 through T = 7 are unchanged to 10 digits of accuracy. We
know that e > 0 for all x. Thus we know that the area under the curve y= e between x = 5 and X = 7 must

be positive. We aso know that
7 5 7
/ e dx:/ e ¥ dx+/ e ¥ dx
0 0 5

5 2 7 2
/ e X dx</ e * dx.
0 0

Looking at the situation from a geometric point of view we now plot the indefinite integral of e over the
interval [O, 7].

> plot(int(exp(-t*2),t=0..x),x=0..7);

and so

According Figure 24 the graph of the antiderivative
X 2
F(x) = / et dt
0

appears to have a horizontal asymptote. Can we prove this? We know that F'(x) = e > 0for al x. Thus we
know that F(x) is monotone increasing function. Since F(x) isincreasing we can show that

lim F(x)
X— 00

existsif F(x) isbounded above. Can we show that F(x) is bounded? Well for one thing we know that for x > 1
that x2 > x and hence ,
e ¥ <eX for x>1

Now consider the function G(x) defined for x > 1 by

X
G(X) = / eldt=et—e>
1
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0.8

Figure 24: Antiderivative of e over [0, 7]

Now since e < e *for x > 1, we know from Chapter 6 that

X, X 1
f et §f eldt=et—e*< =,
1 0 €

Since e is continuous for all x it is clear that fo e dt is afinite number. Hence, for all x the function F(x)
satisfies
b 1
F(x) 5/ e dt+ -
0 e

We conclude that the limit .
lim F(x) = Iimf et dt
0

X—00 X— 00

exists. The following gives a definition for an improper integral on a semi-infinite interval.

Improper integral over [a, co)
Let f be defined and integrable over every interval [a, T] for T > a, then the improper

integral
/ f(t) dt
a

is defined to be the number given by

) T
Tll—>n;o/o f(t) dt,

if thislimit exists.
In the case that the limit exists we say that the integral converges.
If the limit does not exist we say that the integral diverges.

According to this definition the improper integral

o0 2
/ eV dt
0
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exists and is equal to the number .8862269255 to ten digits of accuracy.
Consider the improper integral
< dt
Jv

Thisintegral is divergent since
T
/ }dtzln(T),
1t

and
T1
Iim/ —dt,= limInT = oo.
Too0 0 t Too0

Now consider the function f (t) = % whichisdefined for al t > 0, but isunbounded in thevicinity of t = 0. Now
for € > 0 we have

1
/ idt:z\/f

1
=2—2€.
NG TR

Thus
Iing)2— 2/e=2.

Improper integral for Unbounded I ntegrand
Let f be defined and integrable over every interval of the form [a + ¢, b] for positive e.
Supposethat f isunbounded in the vicinity of t = a, then the improper integral

b
/ f(t) dt

is defined to be the number given by

b
Iim/ f(t) dt,

e—0 +e
if thislimit exists.

In the case that the limit exists we say that the integral converges.
If the limit does not exist we say that the integral diverges.

1
1
— dt

b

Therefore, the integral

convergesto 2.
Example 7.7.1 Determine that the integral

~ 1
/ 2int &
> tZInt

converges. Find the limit to 10 digits of accuracy.

Solution: Let x 1
F(x) = — dt
(X) /; t2Int

Sincelnisincreasing we have Int > In2for t > 2. This means that

1 <In2
t2Int — t2
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foral t > 2. It follows that
F(x)—/x 1 dt</1dt—1/2 1/x<1/2
L t2int T T ) 2T -

forall x> 2. Since F'(x) = lenx > 0for x > 1, F(x) is an increasing function which is bounded above by 1 5
Thustheintegral converges. Its value to 10 digits of accuracy is given by the following.

I1:=/ ;dx
5 X2In(x)

11 := .3786710430
Example 7.7.2 Determine that the integral
1
1
| ot
o 244/t

converges. Find the limit to 10 digits of accuracy.
Solution: Let

> |1 = Int(1/(x*2*In(x)),x=2..infinity);

> |1 := evalf(ll);

1

for0 < x < 1. Sincet? > Oforall t # 0, we have This means

<1
t%f NG

o 11 x
7dt§f — =2-2/x<2,
/xtz-i-«/f x W/t

foral 0 < x < 1. Now F'(x) = X2+ = < 0and F(x) isdecreasing asx increases. Thismeansthat F(x) increases
as x decreasesto 0. Since F(X) is bounded above by 2, it converges to some limit,

1
/ 1 g
o 24+t

which can not be greater than 2. The following Maple V segment obtains the value of the improper integral to 10
digits of accuracy.

> 12 Int(1/(x"2+sqrt(x)),x=0..1);

1
|2::/ (OF+ /%) dx
0
> 2 := evalf(12);
12 = 1.671297697

Exercise 7.7 Determine whether the following integrals are convergent or divergent. Evaluate the integral if it is
convergent.

1. f X dx (Hint: Compare the integrand with 2 J_)

2. it dt (Hint: Compare the integrand with

tlnt



7 THEINTEGRAL

3. t%et dt (Hint: Compare the integrand with et.)

o—3

3 1 3
4. [ T (Hint: Consider two improper integrals: | =37 and [ =$77)
0 0 1

59



	7.1 Some Basic Formulas
	7.2 Finding Integrals by the Method of Substitution
	7.3 Integration by Parts
	7.4 Using Maple V in Place of Integral Tables
	7.5 Approximating Definite Integrals Numerically
	7.6 Approximation Errors and Simpson’s Rule
	7.7 Improper Integrals

