
DLDB: Extending Relational Databases to Support        
Semantic Web Queries 

Zhengxiang Pan  
(Lehigh University, USA 

zhp2@cse.lehigh.edu) 

Jeff Heflin 
(Lehigh University, USA 
heflin@cse.lehigh.edu) 

Abstract: We present DLDB, a knowledge base system that extends a rela-
tional database management system with additional capabilities for 
DAML+OIL inference. We discuss a number of database schemas that can be 
used to store RDF data and discuss the tradeoffs of each. Then we describe how 
we extend our design to support DAML+OIL entailments. The most significant 
aspect of our approach is the use of a description logic reasoner to precompute 
the subsumption hierarchy. We describe a lightweight implementation that 
makes use of a common RDBMS (MS Access) and the FaCT description logic 
reasoner. Surprisingly, this simple approach provides good results for exten-
sional queries over a large set of DAML+OIL data that commits to a representa-
tive ontology of moderate complexity. As such, we expect such systems to be 
adequate for personal or small-business usage. 

Keywords: DAML+OIL, Knowledge Base, Relational Database, Description Logic Reasoner, 
Storing RDF 

1  Introduction 

DAML+OIL enables the creation of ontologies and provides extensive semantics for 
Web data. This language is heavily influenced by description logics. Research on DL 
reasoners is primarily focused on intensional queries, that is, queries about the 
structure of an ontology. However, it is almost certain that the majority of Semantic 
Web queries will be extensional ones. Databases are excellent tools for storing and 
querying data, but lack the ability to perform the inference sanctioned by DAML+OIL 
entailments. This paper describes one method to extend relational databases to support 
DAML+OIL semantics. 

Making use of the FaCT DL reasoner [Horrocks, 00], DLDB has been success-
fully implemented on a common RDBMS: Microsoft Access. It can process, store and 
query DAML+OIL formatted semantic content. The main purpose of this system is to 
investigate how DL reasoning and relational database systems can be combined to 
support extensional queries about DAML+OIL documents. By extensional, we mean 
queries that concern ground data, as opposed to queries about the structure of the on-
tologies. This system is optimized for ontologies of moderate sizes (at the magnitude 
of hundreds of classes and properties).  



2 Design 

Since DAML+OIL builds on RDF, we will first look at how to represent RDF 
information in a database. Then, we describe how to add support for RDF and 
DAML+OIL inference to our design. 

2.1  RDF(S) Storage in Relational Databases 

Although there are differences between RDF's graph-based model and the semi-
structured model of XML, our work can benefit from the research on storing XML 
data in relational databases [Florescu and Kossman, 99].  
Horizontal DB: Horizontal schema [Agrawal et al., 01] only need one “universal” 
table in the database. Every individual (instance) falls into one record in the table. 
While the data model is simple, there are some drawbacks within this approach: large 
number of columns; limits on property values; sparsity, etc.   
Vertical table: In [Alexaki et al., 01], it is also named the “Generic Representation”. 
This approach has a single table where each record corresponds to a RDF triple. 
However, this design means that any query has to search the whole database and 
queries that involve joins will be especially expensive.  
Horizontal class: This approach is similar to the horizontal database approach but 
there is a separate table for each class in the ontology. This essentially corresponds to 
the entity-relational approach frequently used when designing databases.  
Table per property: Yet another alternative is to assign a table to each property: 
 PROPERTY_name(Subject,Object) 
In the database community, this approach is called the “decomposition storage model” 
[Agrawal et al., 01]. Like the vertical table approach, queries involving the implicit 
instances of a class can be particularly expensive.  
Hybrid approach: We adopted an approach that combines the property table 
approach with the horizontal class aproach (see Figure 1). It is similar to the “Specific 
Representation” in [Alexaki et al., 01]. According to this model, creating tables 
corresponds to the definition of classes or properties in ontology. The classes or 
properties’ ID should serve as the table names.   

 

Figure 1:  Example data model for a small ontology using Hybrid design 

For ontologies with a moderate number of classes (a few hundred at most), this 
approach should perform well for simple queries. The experiments of [Agrawal et al., 
01] showed that the table per property approach performed as well as or better than 
the horizontal and vertical approaches. However, ontologies with too many classes 
(e.g. the openDirectory ontology) either can’t be accommodated in the underlying da-
tabase or have a significant overhead [Alexaki et al., 01]. Yet, such schemas are rare, 
as discovered by the survey in [Magkanaraki et al., 02].  

Student takeCourse Course 

ID (PK) Subject (PK) 
Object (PK) 

ID (PK) 



2.2 RDF(S) Entailment in Relational Databases 

RDF entailment is relatively simple, mostly consisting of taxonomic inference using 
rdfs:subClassOf and rdfs:type, and similar inference for rdfs:subPropertyOf.  

In our system class hierarchy information is stored through views. A view is a 
form of query in relational database. Some early research on loading data into DL rea-
soners also addressed similar method. In our design, the view of a class is defined re-
cursively (see figure 2). It is the union of its table and all of its direct subclasses’ 
views. Hence, a class’s view contains the instances that are explicitly typed, as well as 
those that can be inferred.  

In the terminology of deductive databases, the views are intensional database 
(IDB) relations which are defined by logical rules. The tables are extensional database 
(EDB) relations which store the explicit information from the documents. 

For example, consider the following statements in a RDF model: 
<rdfs:Class rdf:ID=”Student”/> 
<rdfs:Class rdf:ID="UndergraduateStudent"> 
    <rdfs:subClassOf rdf:resource="#Student" /> 
<rdfs:Class/> 
The Class view creation algorithm will define the view of Student as: 
 SELECT * FROM Student 
 UNION SELECT * FROM UndergraduateStudent_view; 

 

 

 

 

 

 

 

Figure 2:  RDF Class view creation algorithm 

The rdfs:subPropertyOf relationship between properties is implemented in a simi-
lar way. The only remaining RDF entailments are those that entail class membership 
based on the use of a property and its domain or range. This could be accommodated 
in the view approach by adding another view to the union; however we do not cur-
rently implement this. 

2.3 Supporting DAML+OIL Entailment 

DAML+OIL has many features from description logics, the most significant are the 
constraints for class description. Using these, a DL reasoner can compute class 

function CreateViews(R) 
 inputs: R, a RDF model 
 static: T1,T2,…Tn, a set of database tables 
  V1,V2,…,Vn, a set of database views 
 
 for all triples (type  x  Class) ∈ R do 
  let Tx be the table containing explicit instances of class x 
  let Vx be the view corresponding to class x 
     Vx � Tx 

 for all triples (subClassOf   y  x) ∈  R do  
  let Vx be the view corresponding to class x 
     if¬ ( 'x∃ , ( (subClassOf  y  'x )∈ R) ∧ ( (subClassOf  'x   x)∈ R)  ) then 
  let Vy be the view corresponding to class y 
         Vx �  Vx ∪  Vy    



subsumption, i.e., the implicit subClassOf relations. Our database design can benefit 
from subsumption by using a DL reasoner to precompute subsumption, and then using 
the inferred class taxonomy to create our class views.  

Using the above mechanism, our system stores the results of subsumption and 
only consults the DL reasoner once for each new ontology in the knowledge base. 
Whenever queries are issued concerning the instances of the ontology, the inferred hi-
erarchy information can be automatically utilized. The intuition here is that ontologies 
don’t change frequently although they can be imported or referred to many times. 
Thus, precomputation improves the computational efficiency which can save time as 
well as system resources. Note that at this time, we have not considered those ele-
ments (features) that are not related to subsumption. They are: daml:inverseOf,  
daml:equivalentTo, daml:hasValue, daml:sameIndividualAs, 
daml:UnambigousPropery and daml:UniqueProperty, etc.  

3 Implementation 

In our implementation, we use Microsoft Access as our relational database 
management system. In addition to our table design, some details should be taken into 
account when implementing the database schemas for the system. We use a 
’ONTOLOGY-INDEX’ table to manage loaded ontologies’ infomation in the 
database. We include a ‘source’ field in each class and property table to support 
tracing the source document. In order to shrink the size of database and hence reduce 
the average query time, we assign each URI a unique ID number in our system. We 
use a indexed ’URI-INDEX’ table to record the URI-ID pairs. We also use a hash 
table to cache every URI-ID pair found during the current loading process.  

In our implementation, we borrow some code from OilEd [Bechhofer et al., 01] 
and use FaCT [Horrocks, 00] as our reasoner. First, a DAML parser borrowed from 
OilEd parses the original ontology source file to an ontology object, and then is trans-
lated into an equivalent SHIQ knowledge base and serialized to a temporary XML-
formatted file. The reasoner running on the FaCT server reads that XML file to con-
struct concepts, checks for the consistency of classes, determines the implicit sub-
sumption relationships and reports what has been discovered by rewriting that tempo-
rary XML file. After the reasoner terminates, the program rearranges the class 
hierarchy in the ontology object based on the temporary XML file. DLDB then cre-
ates tables and views for corresponding classes and properties using a variation of the 
algorithm from Section 2.2.  

The query API in DLDB currently supports conjunctive queries in KIF-like for-
mat and is implemented as a set of Java classes. During execution, each original query 
is translated into a standard SQL query sentence and sent to the database via JDBC. 
Then the database’s DBMS processes the SQL query and returns appropriate results. 

4 Conclusion 

Preliminary experiments show that the use of views in a relational database and the 
FaCT reasoner make the results much more complete for some queries, while the 
costs (such as the increases on query time, loading time and database size) are 
considerably low or even negligible. Table 1 shows how the performance of DLDB 



scales with the number of instances in the system. All these prove that the idea of 
using description logic to extend the relational database is feasible.  

Although MS Access is not particularly scaleable, and would not be suitable for a 
large-scale knowledge portal, we see this system as fitting the needs of the personal or 
small business user who wishes to take advantage of semantic web technology. The 
integration of a common desktop database system with basic description logic reason-
ing gives such users the best of both worlds. It is also important to note that our de-
sign is not dependent on Access. We believe that given a suitable underlying 
RDBMS, this approach will scale well, and this is one of our chief directions for fu-
ture work. Other future directions include adding support for more RDF and 
DAML+OIL entailments, and experimenting with the performance of various design 
alternatives.  

 
Number of instances Loadtime 

(hr:min:sec) 
Size on disk  
(KB) 

Typical query time 
(ms) 

17,150 0:6:51 13,042 32 - 418 
107,421 0:22:39 73,925 200 - 4,962 
218,690 1:27:24 147,949 396 - 11,953 
462,316 3:06:32 311,099 881 - 32,948 
1,146,186 7:59:46 766,738 2295 - 115,782 

Table 1: Performance of DLDB  

Acknowledgement 

Some of the material in this paper is based upon work supported by the Air Force 
Research Laboratory, Contract Number F30602-00-C-0188. Any opinions, findings 
and conclusions or recommendations expressed in this material are those of the 
author(s) and do not necessarily reflect the views of the United States Air Force. 

Reference:  
[Agrawal et al., 01] R. Agrawal, A. Somani, and Y. Xu. Storage and Querying of E-Commerce 
Data. In Proc. of VLDB 2001 

[Alexaki et al., 01] S. Alexaki, V. Christophides, G. Karvounarakis, D. Plexousakis & 
K.Tolle, On Storing Voluminous RDF Description: The case of Web Portal Catalogs, In Proc. 
of WebDB2001 in conjunction with ACM SIGMOD'01 Conference, 2001.  

[Bechhofer et al., 01] S. Bechhofer, I. Horrocks, C. Goble and R. Stevens. OilEd: a Reason-
able Ontology Editor for the Semantic Web. In Proceedings of KI2001, Springer-Verlag LNAI 
Vol. 2174, pp 396--408. 2001.  

[Florescu and Kossman, 99] D. Florescu and D. Kossman. A performance evaluation of alter-
native mapping schemes for storing XML data in a relational database. Technical report, 
INRIA, France, May 1999. 

[Horrocks, 00] I. Horrocks. Benchmark Analysis with FaCT. In Proc. TABLEAUX 2000, pages 
62-66, 2000. 

[Magkanaraki et al., 02] A. Magkanaraki, S. Alexaki, V. Christophides, and D. lexousakis. 
Benchmarking RDF Schemas for the Semantic Web. In Proceedings of the First International 
Semantic Web Conference (ISWC 2002). 2002.  


