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Abstract. Default logic is used to describe regular behavior and normal proper-
ties. We suggest to exploit the framework of default logic for detecting outliers
- individuals who behave in an unexpected way or feature abnormal properties.
The ability to locate outliers can help to maintain knowledgebase integrity and
to single out irregular individuals. We first formally define the notion of an out-
lier and an outlier witness. We then show that finding outliers is quite complex.
Indeed, we show that several versions of the outlier detection problem lie over
the second level of the polynomial hierarchy. For example, the question of es-
tablishing if at least one outlier can be detected in a given propositional default
theory is

����
-complete. Although outlier detection involves heavy computation,

the queries involved can frequently be executed off-line, thus somewhat alleviat-
ing the difficulty of the problem. In addition, we show that outlier detection can
be done in polynomial time for both the class of acyclic normal unary defaults
and the class of acyclic dual normal unary defaults.

1 Introduction

Default logics were developed as a tool for reasoning with incomplete knowledge. By
using default rules, we can describe how things work in general and then make some
assumptions about individuals and draw conclusions about their properties and behav-
ior.

In this paper, we suggest a somewhat different usage of default logics. The basic
idea is as follows. Since default rules are used for describing regular behavior, we can
exploit them for detecting individuals or elements who do not behave normally accord-
ing to the default theory at hand. We call such entities outliers. An outlier is an element
that shows some properties that are contrary to those that can be logically justified.
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Outlier detection can be useful in several application contexts, e.g., to single out
exceptional behaving individuals or system components. Note that according to our ap-
proach, exceptions are not explicitly listed in the theory as “abnormals,” as is often done
in logical-based abduction [12, 2, 3]. Rather, their “abnormality” is singled out exactly
because some of the properties characterizing them do not have a justification within
the theory at hand. For example, suppose that it usually takes about two seconds to
download a one-megabyte file from some server. Then, one day, the system is slower -
instead four seconds are needed to perform the same task. While four seconds may in-
dicate a good performance it is helpful to find the source of the delay. Another example
might be that someone’s car brakes are making a strange noise. Although they seem to
be functioning properly, this is not normal behavior and the car should be serviced. In
this case, the car brakes are outliers and the noise is their witness.

Outlier detection can also be used for examining database integrity. If an abnormal
property is discovered in a database, the source who reported this observation would
have to be double-checked.

Detecting abnormal properties, that is, detecting outliers, can also lead to an update
of default rules. Suppose we have the rule that birds fly, and we observe a bird, say
Tweety, that does not fly. We report this occurence of an outlier in the theory to the
knowledge engineer The engineer investigates the case, finds out that Tweety is, for
example, a penguin, and updates the knowledgebase with the default “penguins do not
fly.”

In this paper, we formally state the ideas briefly sketched above within the context
of Reiter’s default logic. For simplicity, we concentrate on the propositional fragment
of default logic although the generalization of such ideas to the realm of first-order
defaults also worth exploring. So, whenever we use a default theory with variables, as
in some of the following examples, we relate to it as an abbreviation of its grounded
version.

The rest of the paper is organized as follows. In Section 2, we give preliminary
definitions as well as a formal definition of the concept of an outlier. In Section 3, we
describe the complexity of finding outliers in propositional default logic. Section 4 ana-
lyzes the complexity of detecting outliers in disjunction-free propositional default log-
ics, and section 5 describes some tractable cases. Related work is discussed in Section
6. Conclusions are given in Section 7.

Because of space limitations, throughout the paper proofs of results are sketched or
omitted. Full proofs can be found in [1].

2 Definitions

In this section we provide preliminary definitions for concepts we will be using through-
out the paper.

2.1 Preliminaries

The following definitions will be assumed. Let � be a propositional theory. Then ���
denotes its logical closure. If � is a set of literals, then ��� denotes the set of all literals
that are the negation of some literal in � .
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Default logic was introduced by Reiter [13]. A propositional default theory � is
a pair �������	� consisting of a set � of propositional formulas and a set � of default
rules. A default rule 
 has the form �� �� (or, equivalently, ��������� ), where � , � and� are propositional formulas, called, respectively, prerequisite, justification, and con-
sequent of 
 . The prerequisite could be omitted, though justification and consequent
are required. If ����� , the default rule is called normal. The informal meaning of a
default rule 
 is the following: if � is known, and if it is consistent to assume � , then
we conclude � . An extension is a maximal set of conclusions that can be drawn from a
theory. An extension � of a propositional default theory ��������� �	� can be finitely
characterized through the set �"! of generating defaults for � w.r.t. � , i.e., the set�#!$�	%�����&�'�)(��+*��(,�.-��/�10(,�32 . Indeed, �1�4�5�768%9�:*��������;(,�8!&2'� � .

Let � be a default theory and < a literal. Then �=* �>< means that < belongs to
every extension of � . Similarly, for a set of literals � , ��* � � means that every literal<?( � belongs to every extension of � . A default theory is coherent if it has at least one
extension.

We review some basic definitions about complexity theory, particularly, the poly-
nomial hierarchy. The reader is referred to [6] for more on complexity theory. The
classes @#AB and C�AB are defined as follows: @8AD �EC�AD � P and for all FHGJI ,@#AB � NP KMLN�OQP , and CRAB � co- @8AB . @#AB models computability by a nondeterministic
polynomial-time algorithm which may use an oracle, loosely speaking a subprogram
that can be run with no computational cost, for solving a problem in @"ABTS � . The class�"AB , FUGVI , is defined as the class of problems that consists of the conjunction of
two independent problems from @ AB and C AB , respectively. Note that for all FWGXI ,@#ABZY �"AB:Y @#AB\[ � . A problem ] is complete for the class ^ iff ] belongs to ^ and ev-
ery problem in ^ is reducible to ] by polynomial-time transformations. A well known@#AB -complete problem is to decide the validity of a formula _a`b� B�c d , that is, a formula
of the form egf �ih f �?j9jkj _lf B'm �nf � � jkjkj �of B � , where _ is e if F is odd and is h if F
is even, f � � jkj9j �of B are disjoint set of variables, and m �nf � � j9jkj �if B � is a propositional
formula in f � � jkjkj �of B . Analogously, the validity of a formula _a`p� BTc q , that is a for-
mula of the form h f � egf �Mj9jkj _lf Bm ��f � � j9jkj �if B � , where _ is h if F is odd and is e ifF is even, is complete for C AB . Deciding the conjunction r�-ts , where r is a _a`p� B�c d
formula and s is a _a`p� BTc q formula, is complete for �tAB .

2.2 Defining outliers

Next we formalize the notion of an outlier in default logic. In order to motivate the
definition and make it easy to understand, we first look at an example.

Example 1. Consider the following default theory which represents the knowledge that
birds fly and penguins are birds that do not fly, and the observations that Tweety and
Pini are birds and Tweety does not fly.

�u� v `xwzy'{|�n}|�~���a<n����}|��a<n����}|� �Q�a�T���Q� w � �n}|����`pwzy�{|�n}��`xwzy'{|�n}|� �Q�a�T���Q� w � �n}|��� �?�a<����n}|�
�?�a<�����}|� ����W%�`xwzy'{�� �~� ���T� ���\� �a�T���g� w � � � w � w���� �?�a<n��� �~� ���T� ���\2
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This theory has two extensions. One extension is the logical closure of �	6�%T`xwzy'{|� � w � w�� ,�?�a<n��� � w � w���2 and the other is the logical closure of �	6)%T`pw y'{|� � w � w�� , �a<���� � w � w���2 .
If we look carefully at the extensions, we note that Tweety not flying is quite strange,
since we know that birds fly and Tweety is a bird. Therefore, there is no apparent jus-
tification for the fact that Tweety does not fly (other than the fact �?�a<���� �~� ���T� ��� be-
longing to � ). Had we been told that Tweety is a penguin, we could have explained
why Tweety does not fly. But, as the theory stands now, we are not able to explain why
Tweety does not fly, and, thus, Tweety is an exception. Moreover, if we are trying to
nail down what makes Tweety an exception, we notice that if we would have dropped
the observation �?�a<���� �~� ���T� ��� from � , we would have concluded the exact opposite,
namely, that Tweety does fly. Thus, �?�a<n��� � � ���9� ��� “induces” such an exceptional-
ity (we will call witness a literal like �?�a<���� �~� ���T� ��� ). Furthermore, if we drop from� both �?�a<���� �~� ���T� ��� and `xwzy'{�� �~� ���T� ��� , we are no longer able to conclude that
Tweety flies. This implies that �a<���� �~� ���T� ��� is a consequence of the fact that Tweety
is a bird, and thus `xwzy'{|� �~� ���T� ��� is the property of Tweety that behaves exceptionally
(or the outlier).

From the above example, one could be induced to define an outlier as an individual,
i.e., a constant, in our case Tweety, that possesses an exceptional property, denoted
by a literal having the individual as one of its arguments, in our case `pwzy�{|� � � ���9� ��� .However, for a conceptual viewpoint, it is much more general and flexible to single out
a property of an individual which is exceptional, rather than simply the individual. That
assumed, we also note that within the propositional context we deal with here, we do
not explicitly have individuals distinct from their properties and, therefore, the choice
is immaterial.

Based on the example and considerations mentioned above, we can define the con-
cept of an outlier as follows.

Definition 1. Let �����5��� �	� be a propositional default theory such that � is con-
sistent and </(�� is a literal. If there exists a set of literals � Y � such that:

1. ������� � ��* � ��� , and
2. ������� � c � � 0* � ��� .

where � � ��� �
� and � � c � � � � � %T<�2 , then we say that < is an outlier in � and �

is an outlier witness set for < in � .

According to this definition, a literal < is an outlier if and only if there is an exceptional
property, denoted by a set of literals � , holding in every extension of the theory.

The exceptional property is the outlier witness for < . Thus, according to this defini-
tion, in the default theory of Example 1 above we should conclude that `pw y'{|� �~� �T�T� ���denotes an outlier and % �?�a<���� �~� ���T� ����2 is its witness. Note that we have defined an
outlier witness to be a set, not necessarily a single literal since in some theories tak-
ing a single literal does not suffice to form a witness for a given outlier being that all
witnesses of such an outlier have a cardinality strictly larger than one.

Example 2. Consider the default theory ���1�5��� �	� , where the set of default rules �
conveys the following information about weather and traffic in a small town in southern
California:
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1. � � �������	�
��B����� � ��������������� � ��� � ��� ��� ����!�������"�#� � ��� � ��� ��� � - that is, normally during a July weekend there
are no traffic jams nor any rain.

2. � � � � ��� � � � ��� �� ��� � � � � � � ��� � � ��� ��� ���� ��� � - in January it sometimes rains and sometimes it
doesn’t rain.

3.
�$�
��B���%��� ���&�����"��� � ��� � ' ��(� ����*),+ � ��� �' ��(� ����*),+ � ��� � - If there is a traffic jam in the weekend then
normally it must be raining or there would have been an accident.

Suppose also that �=�U%%- � <n� , � ��� F �T� { , �~y*. m�m w/ - .10 , 23.Qw � 2 . Then, the set � �% �~y*. m�m w/ - .10 , 24.Qw � 2 is an outlier witness for both � �T� F �T� { and - � <�� . Moreover,
� is a minimal outlier witness set for either � ��� F �T� { or - � <�� , since deleting one of
the members from � will render � not being a witness set.

Here is another example.

Example 3. Consider the following default theory � :

� � 576 � �89� ��:<;�=>� ' � � ��)(:<;�= � � 8?� B�@&:<;"=� 89� B�@&:<;"= �A ��� � �*B � :<;�= � 6 �*),� � �
@) ��� B��C ��� :<;"=6 �D),� � �?@() ��� B��C ��� :<;"= �A ��� � �*B � :<;�= � 6 �*),� � �
@)FE ��G�� B � ),�&:#;�=6 �D),� � �?@()FE ��G�� B � ),��:<;�= H� �	%"I � /�J�0 � �
- JDK ��� ���\� ] { � < � �- JDK ��� ������M�LJ�y'FNM��
- JDK ��� ���\� �a<n�gw ��� �~�- JDK ��� ������OI ����� y � M � �P.gF ��Q m�m �
- JDK ��� ����2
This theory claims that normally adults who have a monthly income work, and students
who take flying lessons are interested in learning how to take off and navigate. The ob-
servations are that Johnny is an adult who has a monthly income, but he does not work.
He is also a student in a flying school but he is not interested in learning how to take-
off. Based on the events of September 11, 2001, we’d like our system to conclude that
Johnny is the argument of two outliers. Indeed, the reader can verify that the following
facts are true:

1. ������� � � 8?� B�@&: � 89R �D�%��= ��* ��LJ�y'FNM��
- JDK ��� ��� ,
2. ������� � 6 �*),� � �
@) ��� B��C ��� : � 8&R �D�D��= ��* �I ����� y � M � �P.gF ��Q m�m �
- JDK ��� ��� ,
3. ������� � � 8?� B�@&: � 89R �D�%��=zc ' � � �S)(: � 89R �D�D��= � 0* ��LJ�y'FNM��
- JDK ��� ��� , and
4. ������� � 6 �*),� � �
@) ��� B��C ��� : � 8&R �D�D��= c A ��� � �*B � : � 8&R �D�D��= � 0* �I ����� y � M � �P.gF ��Q m�m �
- JDK ��� ���

Hence, both �M�LJ�yF�MQ�
-TJDK ��� ��� and �OI ����� y � M � �U.�F �*Q m�m �- JDK ��� ��� are outlier wit-
nesses, while ] { � < � �- JDK ��� ��� and �a<n�gw ��� ���
- JDK ��� ��� are outliers. Note that I � /�J�0 � �
- JDK ��� ���is also an outlier, with the witness �M�LJ�yF�MQ�- JDK ��� ��� .
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2.3 Defining outlier detection problems

In order to state the computational complexity of detecting outliers, in the rest of the
work we refer to the following problems (also referred to as queries) defined for an
input default theory �U�4�������	� :_�� : Given � , does there exist an outlier in � ?_3I : Given � and a literal <?(,� , is there any outlier witness for < in � ?_�� : Given � and a set of literals � Y � , is � a witness for any outlier < in � ?_�� : Given � , a set of literals � Y � , and a literal </(�� , is � a witness for < in � ?

3 General complexity results

In this section we analyze the complexity associated with detecting outliers. First, we
give some preliminary definitions involving notation.

Let � be a set of literals such that �3(�� implies that ��� 0(�� . Then we denote by	�

the truth assignment on the set of letters occurring in � such that, for each positive

literal ��(� ,
	�
 ����� ��������� , and for each negative literal ����(� ,

	�
 ����� ������� ��� .
Let � be a truth assignment on the set } � � jkj9j �i} � of letters. Then we denote by

� w � � � � the set of literals %!� � � j9jkj �"� � 2 , such that � � is } � if �p�n} � � �#�!�$��� and is �/} � if
�p�n} � �����%���&�'� , for w?�	I�� jkjkj � � .

Theorem 1. _(� is @8A� -complete.

Proof. (Membership) Given a a theory � ���������	� , we must show that there exists
a literal < in � and a subset � � %*M � � j9jkj ��M � 2 of � such that ������� � ��* � � M � -jkjkj - � M � (query )$* ) and �5��� � � c � �R0* � � M � - jkj9j - M � (query )$* * ). Query )$* is C�A� -
complete, while query )+* * is @#A� -complete [8, 14]. Thus, we can build a polynomial-
time nondeterministic Turing machine with a @ A� oracle, solving query _(� as follows:
the machine guesses both the literal < and the set � and then solves queries ),* and )$* *
using two calls to the oracle.

(Hardness) Let rZ� egf h.- e�/ m �nf�� - �0/ � be a quantified boolean formula, wheref+�Z} � � j9jkj �i} � , - � � � � jkj9j �i� � , and / are disjoint set of variables. We associate withr the default theory � ��r ���1�5����r ��� ����r �i� , where ���5r � is the set %�<��&M � � M � � jkj9j ��M � � M � 2
consisting of new letters distinct from those occurring in r , and �R��r �a� � � 6�� � 6� � 6 �21�6t�43 : � � � 5 
 � c � � � � @65,��;'5F� �65;�5,� �75 �
 � c � � � � @ 5 � � ; 5 � � 5� ;'5F� �65 *�w?�	I�� j9jkj � � H� � � 5 
 � c � ��� � @65,� � @65>� ��8 �:99 *�w?�	I�� jkjkj � � H 66 5 
 � � 9 � 88 H� � � 5 
 � c ; � � �=<�=< � 
 � c ; � � � �=<� �=< *!>b�1I�� j9jkj �90 H�21 � 5 
!1 � �<� � P �@?A?A? � �6B � � :DC c E�c F�=,�1BB H�43 � 5 
�3 c � � B � � @ 5� @ 5 � 
$3 c � � B � � @ 5� @ 5 *'w?�WI�� j9jkj � � H
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where also � ,
�

, � , � � � j9jkj � � � are new variables distinct from those occurring in r .
Clearly, ����r � is consistent and � ��r � can be built in polynomial time. We next show
that r is valid iff there exists an outlier in � �5r � .

In the rest of the proof we denote by �M�>M � � ( � �M�n} � � resp.) the literal } � ( M � resp.) and
by �M� M � � ( � �M� �/} � � resp.) the literal �/} � ( M � resp.), for w/�1I�� jkjkj � � . Letting � be a subset
of %�M � � M � � j9jkj ��M � � M � 2 ( %T} � � �/} � � j9jkj �i} � � �/} � 2 resp.), we denote by �M� � � ( � �M� ��� resp.)
the set %��M�>M��~*DMx( �&2 ( %���M�>M���*DMx( �&2 resp.).

( � ) Suppose that r is valid. Then we can show that < is an outlier in � ��r � . As r
is valid, then there exists a truth assignment � C on the set f of variables such that � C
satisfies h - e�/ m �nfR� - � / � . Let �;����M�&� w � � � C �i� . It can be shown that we can associate
to each truth assignment � E on the set - of variables, one and only one extension� E of �����5r �\������r � � � . In particular, � E	� � w � � � C ��6 � w � � � E � . As r is valid, then
� m �nf�� - �0/ �30($� E and � E * � ��� . Furthermore, since there is no other extension of�����5r �\� ���5r � � � , then �5����r ��� ���5r � � ��* � ��� .

Consider now the theory �5����r ��� ����r � � c � � . We note that the literal < appears in the
precondition of rule 
�1 , whose conclusion � represents, in turn, the precondition of the
rules in the set � 3 , rules that allow to conclude ��� , and that < does not appear in the
conclusion of any rule of ���5r � . Thus �5����r ��� ����r � � c � � 0* � ��� . Hence < is an outlier in�t�5r � .

( 
 ) Suppose that there exists an outlier in �t�5r � . It can be shown that the outlier
is < . Hence, there exists a nonempty set of literals � Y ����r ��� %�< 2 such that � is an
outlier witness for < in � �5r � . It can then be shown that � � %*M$* � � j9jkj �&M'*� 2 , where M'*� is
either M � or M � , for w ��I�� j9jkj � � . Now we show that

	� : � = satisfies h - e�/ m �nf�� - �0/ � ,
i.e. that r is valid. For each set ��� %!� � � j9jkj �"� � 2 , where � ; is either � ; or �/� ; , for
>b�1I�� j9jkj �90 , there exists one extension � 


of �5����r ��� ���5r ��� � � such that � 
 � � .
We note also that � 
 � �M� � � . Thus, in order for < to be an outlier in �t�5r � , it must be
the case that for each set � , � m ��f�� - � / �l0(�� E i.e., that

	� : � =�� 
 satisfies m �nf�� - �0/ � .
Hence, we can conclude that r is valid.

Theorem 2. _8I is @8A� -complete.

Proof. The proof is analogous to that used in Theorem 1.

Theorem 3. _�� is � A� -complete.

Proof. (Membership) Given a theory �+���������	� and a subset �Z��%*M � � jkjkj �&M � 2 Y� , we should verify that ����� � � �a* � � M � - j9jkj - � M � (statement )$* ) and there exists
a literal <~( � such that �5��� � � c � �30* � � M � - j9jkj - � M � (statement )$* * ). Solving )$* is
in C�A� . As for statement )+* * , it can be decided by a polynomial time nondeterministic
Turing machine, with an oracle in NP, that (a) guesses both the literal < ( � and the
set � ! Y � of generating defaults of an extension � of �5��� � � c � � together with an
order of these defaults; (b) checks the necessary and sufficient conditions that � ! must
satisfy to be a set of generating defaults for � (see [15] for a detailed description of these
conditions), by multiple calls to the oracle; and (c) verifies that � M � - jkj9j -�� M � 0(,� by
other calls to the oracle. It can be shown that the total number of calls to the oracle is
polynomially bounded. Thus, _�� is the conjunction of two independent problems, one
in C�A� ( )$* ) and the other in @8A� ( )$* * ), i.e. it is in � A� .
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(Hardness) Let � � �H��� � ��� � � and � � �u�5� � � � � � be two propositional default
theories such that � � and � � are consistent, let M � �&M � be two letters, and let ) be the
statement �5� � * � M � -;� � 0* � M � � . W.l.o.g, we can assume that � � and � � contain
different letters, the letter M � occurs in � � but not in � � (and, from the previous con-
dition, not in � � ), and the letter M � occurs in � � but not in � � (and hence not in � � ).
We associate with ) the default theory � �&)�a� �5���&)��� ��� )�o� defined as follows. Let� � � % 8 5 � 9 5� 5 *Mw3�>I�� j9jkj � � 2 and let � � � %!� � � jkjkj �7� � 2 Y � � be all the literals

belonging to � � , then ��� )�x��% @��&� 8 5 � 9$5� 5 *|w � I�� j9jkj � � 2 6.%T
 ; � � ��� 5F� ��� ���� *�>R�I�� j9jkj �90R2�6�%T
 D � � � �� 2�6 � � , and ���&)��� � � 6 � � 6�% � M � ��M � 2 , where 	 and 
 are
new letters distinct from those occurring in � � and � � , and from M � and M � . It can be
shown that ) is true iff % � M � 2 is a witness for some outlier in � �&)� . We note that ) is
the conjunction of a CRA� -hard and a @8A� -hard independent problems, thus this proves
the hardness part.

Theorem 4. _(� is � A� -complete.

4 Disjunction-free theories

Disjunction-free theories form a significant subset of propositional default theories be-
cause they are equivalent to extended logic programs under stable model semantics [7].
A finite propositional theory �+���5��� �	� is disjunction-free (DF in short), if � is a
set of literals, and the precondition, justification and consequence of each default in �
is a conjunction of literals. As we see below, outlier detection for DF theories is still
quite complex.

Theorem 5. _(� restricted to disjunction-free theories is @3A� -complete.

Proof. (Membership) The membership proof is analogous to that of Theorem 1. We
note that when disjunction-free theories are considered, ) * and )$* * are co-NP-complete
and NP-complete, respectively.

(Hardness) Let r � egf h - m �nfR� - � be a quantified boolean formula, where f �} � � jkj9j �o} � and - � � � � jkj9j �o� � are disjoint set of variables, and m �nf�� - � ��� � -jkjkj -� � , with � B � � B�c ��� jkjkj�� � B�c � N , and each � BTc � � jkj9j � � B�c � N is a literal, for F �I�� j9jkj �iy . We associate to r the default theory � ��r ���V���R��r �\������r �i� , with ���5r �
the set %�<���M � � M � � jkj9j �&M � � M � 2 of new letters distinct from those occurring in r , and����r � �4� � 6�� � 6�� � 6��43&6�� *� 6R� *� , where � � , � � , � � and �43 are the sets of
defaults as in Theorem 1 and � *� and � *� are the following sets of defaults:� *� � 5 ) N�� � � � N� N *F3�	I�� j9jkj �iy�� K �1I�� jkjkj � � B H� *� � 5 �#� � P �@?A?A? � � B � ��P �@?A?A? � ��� � BB H
where also � ,

�
, � , � � � j9jkj � � � , / � � jkj9j �9/ � are new variables distinct from those occurring

in r . Clearly, ����r � is consistent and � �5r � can be built in polynomial time. The rest
of the proof is similar to that of Theorem 1.

Theorem 6. _8I restricted to disjunction-free theories is @3A� -complete.

Theorem 7. _�� and _(� restricted to disjunction-free theories are � A -complete.
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5 Tractable Cases

In this section, we look for some classes of default theories for which outlier detection
is computationally tractable.

Definition 2. A default theory is normal mixed unary (NMU in short) iff � is a set of
literals and � is a set of defaults of the form

� � ;; where � is either missing or a literal
and } is a literal.

Definition 3. An NMU default theory is normal unary (NU in short) iff the prerequisite
of each default is either missing or positive. An NMU default theory is dual normal
unary (DNU in short) iff the prerequisite of each default is either missing or negative.

Thus, NMU, NU, and DNU theories have a quite simple structure. In spite of that,
the complexity of detecting outliers from these theories remain often quite high, as
demonstrated by the following results (proofs are omitted for the sake of brevity).

Theorem 8. The following hold over NMU default theories:

– _(� and _8I are @8A� -complete.
– _�� and _(� are � A -complete.

Theorem 9. The following hold over NU and DNU default theories:

– _(� and _8I are NP-complete.
– _�� and _(� are in P.

Thus, restricting our attention to NMU, NU, or DNU theories does not suffice to attain
tractability of the most general queries _(� and _8I . Some further restriction is needed,
which is considered next.

Theorem 10 ([9] [16]). Suppose � is a normal (dual normal) unary default theory. We
can decide whether a literal belongs to every extension of � in time Q � � � � , where � is
the length of the theory.

Definition 4. The atomic dependency graph of an NMU default theory � is a directed
graph whose nodes are all atoms in the language of � , and such that there is an arc
directed from � to ) iff there is a default in � in which � or ��� is a prerequisite and )
or � ) is a consequence.

Definition 5. A normal (dual normal) unary default theory is acyclic iff its atomic de-
pendency graph is acyclic.

Theorem 11. Queries _�� , _8I , _�� and _(� , restricted to the class of acyclic NU or
acyclic DNU default theories can be solved in polynomial time in the size of the input
theory.

Proof. It can be shown that for any acyclic NMU default theory �U�4�������	� such that� is consistent and for any literal < in � , any minimal outlier witness set for < in � is
at most 1 in size. Theorem’s statement then follows from Theorem 10.
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6 Related Work

The research on logical-based abduction [12, 2, 3] is related to outlier detection. In the
framework of logic-based abduction, the domain knowledge is described using a logical
theory � . A subset f of hypotheses is an abduction explanation to a set of manifesta-
tions � if ���pf is a consistent theory that entails � . Abduction resembles outlier
detection in that it deals with exceptional situations.

The work most relevant to our study is perhaps the paper by Eiter, Gottlob, and
Leone on abduction from default theories [4]. There, the authors have presented a basic
model of abduction from default logic and analyzed the complexity of the main ab-
ductive reasoning tasks. They presented two modes of abductions: one based on brave
reasoning and the other on cautious reasoning. According to these authors, a default
abduction problem (DAP) is a tuple �����������.�i��� where � is a set of ground literals
called hypotheses, � is a set of ground literals called observations, and �������	� is a
default theory. Their goal, in general, was to explain some observations from � by
using various hypotheses in the context of the default theory ����� �	� . They suggest the
following definition for an explanation:

Definition 6 ([4]). Let � �	�
�������i��� ��� be a DAP and let � Y � . Then, � is a
skeptical explanation for � iff

1. ������� � �p��* ��� , and
2. ��������#�p� has a consistent extension.

There is a close relationship between outliers and skeptical explanations, as the follow-
ing theorem states. The theorem also holds for ordered semi-normal default theories
[5].

Theorem 12. Let � � ����� �	� be a normal default theory, where � is consistent.
Let <~( � and � Y � . � is an outlier witness set for < iff %�< 2 is a minimal skeptical
explanation for ��� in the DAP � ��� %�< 2Q� ���?� ��� � � c � �

Hence, we can say that � is an outlier witness for < if <?(,� , < is a skeptical explanation
for � , but still ��� holds in every extension of the theory.

Despite the close relationship between outlier detection and abduction demonstrated
by the above theorem (especially for normal defaults) we believe that there is a signif-
icant difference between the two concepts. In abduction, we have to single out a set of
manifestations and a set of potential explanations. Outlier detection, on the other hand,
has much more to do with knowledge discovery. The task in outlier detection is to learn
who the exceptionals (the outliers), or the suspects, if you wish, are, and to justify the
suspicion (that is, list the outlier witnesses).

It also turns out that reducing outlier detection queries to abduction and vice versa
is not straightforward, and therefore, when analyzing the computational complexities
involved in answering outlier detection queries we have preferred to use the classical
Boolean formula satisfiability problems.
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Theory � Query ��� ��� ��� ���
Propositional

����
-c
����

-c 	 �� -c 	 �� -c
DF, NMU

���� -c
���� -c 	 � -c 	 � -c

NU, DNU NP-c NP-c P P
Acy. NU, Acy. DNU P P P P

Table 1. Complexity results for outlier detection

7 Conclusion

Suppose you are walking down the street and you see a blind person walking in the
opposite direction. You believe he is blind because he is feeling his way with a walking
stick. Suddenly, something falls out of his bag, and to your surprise, he finds it imme-
diately without probing about with his fingers, as you would expect for a blind person.
This kind of behavior renders the “blind” person suspicious.

The purpose of this paper has been to formally mimic this type of reasoning using
default logic. We have formally defined the notion of an outlier and an outlier witness,
and analyzed the complexities involved, pointing out some non-trivial tractable subsets.
The complexity results are summarized in Table 1, where ^ -c stands for ^ -complete.
As explained in the introduction, outlier detection can also be used for maintaining
database integrity and completeness.

This work can be extended in several ways. First, we can develop the concept of
outliers in other frameworks of default databases, like System Z [11] and Circumscrip-
tion [10]. Second, we can look for intelligent heuristics that will enable us to perform
the involved heavy computational task more efficiently. Third, we can study the prob-
lem from the perspective of default theories as a “semantic check toolkit” for relational
databases.

Acknowledgements. The authors gratefully thank Michael Gelfond for some fruitful
discussions on the subject of the paper and Francesco Scarcello for providing insights
about some of the computational complexity tools we have used.
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