
Patterns, Tools and Models for Interaction Design

Daniel Sinnig1, 2, Ashraf Gaffar2, Ahmed Seffah2 and Peter Forbrig1

(1) Software Engineering Group

Department of Computer Science,
University of Rostock,

18051 Rostock, Germany
pforbrig@informatik.uni-rostock.de

(2) Human Centered Software Engineering Group
Department of Computer Science,

Concordia University,
1455 De Maisonneuve Blvd. West,

H3G 1M8, Montreal, Canada
{d_sinnig, gaffar, seffah}@cs.concordia.ca

ABSTRACT
In recent years the re-use of already existing solutions and
ideas has become more and more crucial. Re-inventing the
wheel over and over again is not feasible. Especially model
based development approaches suffer from the lack of
libraries populated with existing solutions and ideas which
must just be tweaked in order to applicable to different
context of use. Patterns have the potential to overcome this
major shortcoming. In this paper we will try to stimulate
and foster to idea of transferring the idea of patterns to the
model-based development community. We will introduce
patters as medium to capture ideas and solutions within the
domain of model based design.
Moreover the lack of tool support has led to situation that
model – based approaches have not been fully acknowledge
by the developers of interactive applications. In recent
years a set of tools has been developed in our group, which
the developer with the establishment of the various models.
Therefore In the following we will introduce our model –
based philosophy and the possible application and impact
of patterns for each of our models. Moreover we will
briefly introduce some of our tools and ideas which might
be helpful with the creation of the various models.
Keywords
Patterns, re-use, interactive applications, task, dialog,
presentation, layout
INTRODUCTION ON PATTERNS
The architect Christopher Alexander introduced the idea of
patterns in the early 1970s [1, 2]. He introduced patterns as
a three-part rule to help architects and engineers with the
design of buildings, towns, and other urban structures. His
definition of a pattern was as follows: “Each pattern is a
three-part rule, which expresses a relation between a certain
context, a problem, and a solution”.

The concept of patterns has been transferred to the software
community by [4]. Their book “Design Patterns” contained
a collection of patterns for the design of object–oriented
software. The book has been widely acknowledged and
referenced within the community.
Recently, like in the software engineering community, the
user interface design community has also been a forum for
vigorous discussions on pattern languages for user interface
design and usability engineering. UI patterns are an
effective way to transmit experience about recurrent
problems in the HCI domain related to UI design issues. A
pattern is a named, reusable solution to a recurrent problem
in a particular context of use. In other words UI patterns
capture the essence of successful solutions to recurring
design problems. Correctly applied they ease and accelerate
the development of initial prototypes and assist with design
choices. A pattern takes what was previously an art of
designing usable software and turns it into a reusable unit.
Until now, patterns have been used mainly used as tools for
designers in the same sense as UI development has been
treated as a rather creative design activity. However, with
the advent of pervasive computing and mobile users the
design and the development of UIs has become
increasingly complex. Thus, UIs must be aware of
dynamically changing contexts and withstand variations of
the environment. From this emerges the need for a
structured engineering-like development approach. Model
based approaches have the potential to establish the basic
foundation for a systematic engineering methodology for
UI development. Thus, also the idea of patterns should be
shifted from design to systematic development.
In the next section we will outline our model – based
development philosophy for interactive applications. We
will discuss the use of patterns for each model. Moreover
we will introduce some of our tools.
OUR MODEL-BASED PHILOSOPHY
In a model based UI design methodology for interactive
applications various models are used to describe the
relevant aspect of the User Interface. Many facets exist as
well as related models. As depicted in Figure 1 our
approach consists of: task models, user models, business

object models, a dialog model, a presentation and a layout
model.
Our approach starts of - like a typical development
lifecycle - and begins with domain analysis. To date the
creation of the task model has been commonly agreed to be
a reasonable starting point [10]. Therefore our approach
starts with the elicitation of the user’s tasks, as they are
currently performed, resulting in the task model. As a
consequence this task model is also often named “existing”
task model. Additionally models for capturing user
characteristics and business objects are developed. All
three analysis models are portrayed by the light shaded
ellipse at the top of Figure 1. In addition it is shown that the
task model has to be modeled in mutual relationship to the
user model, representing the functional roles users have to
play for task accomplishment, as well as their individual
perception of the tasks. The user model is also related to the
business-object model and the task model since the user
may require different views on the data while performing a
task. Besides, the task model has to reflect the abilities,
skills, and preferences of end users. A relationship between
the business-object model and the interaction model is
required, since the problem domain data in the business-
object model has to be presented to the end users for
interactive task accomplishment.

Figure 1 Model based development at a glance

The introduction of a new interactive application leads
inevitably to a change of the role of the user and the tasks,
which the user will perform. Furthermore also new
interactive tasks (the actions the user performs with the
new interactive system) must be modeled. Thus, after
domain analysis first design decisions are made by
establishing the envisioned task, user and object models
with consideration of the future interactive system. The

dark shaded ellipse of Figure 1 illustrates that these modes
are mutually related as well.
Model – based design focuses on finding mapping between
the various models. [11] Thus, at this point based on these
rather abstract task, user and object models, a dialog, a
presentation and a layout model are derived to reveal some
implementation details of the user interface.
In a next step the dialog model is developed. It specifies the
navigational structure of the UI and the interaction
techniques. [11] It is a more specific model and can be
derived in good part from the more abstract task-, user- and
business object models.
From the dialog model the presentation and layout model
are derived. The presentation model maps the elements of
the different dialog views (defined in the dialog model) to
abstract interaction objects, such as menubar, groupbox,
listbox, etc. The layout model defines the arrangements and
the style of the user interface objects according to an
overall floor plan.
After outlining the basic structure of our approach, we will
now discuss which patterns can impact the establishment of
the task, dialog, presentation and layout model.
TOOLS AND PATTERNS FOR MODELS
In our approach we are aiming to use patterns as building
blocks in order to create these models. Different kinds of
models require different kinds of patterns which must be
formulated in a different way.
Task Model
The task models can be impacted by so called task patterns.
Task patterns have been first introduced by Paterno [3, 7]
as reusable structures for task models. The patterns were
described as hierarchical structured task fragments which
can be used to successively build the task model. Based on
this idea we have developed the tool “Task Pattern
Wizard”. The program is able to read and visualize already
existing task descriptions that are specified in XIML [14].
It is also capable to interpret task patterns descriptions
documented in a prototypical XML based mark-up
language. After the task pattern has been instantiated the
resulting task fragment can be inserted resulting in a
modified task model.
In contrast to Paterno’s task patterns, which are defined as
fixed fragments, the Task Pattern Wizard expects the
patterns to be specified in a dynamic fashion. Variables are
used as placeholders for the particular context of use.
During the so called process of pattern adaptation the
variables are replaced by concrete values representing the
current context of use. Different kinds of variables exist.
Among them: “Substitution variables” and “process
variables”. On the one hand substitution variables are
simply used as placeholders for certain values. During the
process of pattern adaptation the Task Pattern Wizard will
question the user for entering values for these variables.
Then, in a top down process each occurrence of a
substitution variable will be replace (substituted) with this
value. On the other hand, process variables are used to

describe the structure of the task fragment, which will be
created by the pattern. For example entering values into a
form is very repetitive. The same basic task (enter a value)
appears over and over again. Basically each peer task can
just be distinguished by its name and the kind of input.
Thus, instead of task description for each of these peer
tasks, a process variables, that signals the number of
respective tasks, can be used. A more detailed descriptions
about task patterns and the process of pattern adaptation
can be found in [8, 9]
This generic notation of patterns ensures that the same
pattern is applicable to different contexts of use. The past
has shown, that many approaches of reusing knowledge
failed, because they have been designed too specific and
rigid. (too context sensitive and domain dependent). Once
these knowledge fragments were ordered and classified in a
way, that efficient usage was possible, most of them were
not applicable anymore since the context has slightly
changed. Therefore we believe that the solution stated in
the pattern should be formulized generic enough in order to
withstand variations of context and domain.
In order to assess and validate the correctness and
appropriateness of the task model we have developed the
XIML Task Simulator [5]. It presents different views on the
tasks, their users and used (tools) and modified objects
(artefacts). Moreover tasks can be animated and the user
can step through possible task scenarios (Pluralistic
walkthrough) [6] within the scope of the underlying task
model.
Dialog Model
After developing the task model the dialog model is
interactively derived from the task, user and object model.
The dialog model associates several tasks to dialog views
and defines transitions between these dialog views. At this
stage dialog patterns can help grouping the tasks and
suggest sequences between dialog views.
Finding dialog views and transitions is closely connected to
the underlying task models. On the one hand, structural
information from the task model, which describes the task–
subtask hierarchy, can be used to group related tasks into
task views. On the other hand temporal transitions between
sub tasks can be used to constrain and derive possible
dialog transitions [11, 7]. Consequently patterns applied to
the task model indirectly affect the dialog model and in
particular the dialog graph. An example of a dialog pattern
is the wizard pattern (adopted from the wizard pattern by
Welie [13]. It describes a sequential run through a number
of dialogs until an end dialog has been reached. We are
currently experimenting to formulate such patterns with
XIML.
We have already developed the tool “Dialog Graph
Simulator” [5]. It allows to group different task to dialog
views and the definition of transition between various
dialog views. The designed dialog structure can be further
saved to XIML format and thus re-processed by other tools.
Moreover a first abstract prototype of the interface can
automatically be generated out the dialog description.

Using the cognitive walkthrough method [6] users can walk
through the interface in order to accomplish predefined
tasks. Whenever the interface blocks the user from
completing a task, it is an indication that the interface or the
underlying task description is missing something. For the
future we envision that the Dialog Graph Simulator can
also process dialog patterns and thus semi-automatically
establish transitions between the various dialog views.
Presentation and Layout Model
Next, in order to develop the presentation model the tasks
of each dialog view are associated with interaction
elements such as buttons, trees and lists. Moreover, some
domain objects (tools or artefacts) which are related to the
tasks are also mapped to interaction elements. Presentation
patterns can be applied in order to map complex tasks (such
as advanced search) to a predefined set of interaction
elements. We are currently experimenting to describe such
presentation patterns as Velocity XUL templates [12, 15].
Presentation patterns describe fragments of the presentation
model. Each fragment describes one or a set of interaction
objects.
Finally the interaction objects are positioned following an
overall layout or floor plan described in the layout model.
Additionally, the visual appearance of each interaction
element is specified by setting fonts, colors and
dimensions. In our framework layout patterns -which are
described as XUL templates as well- are used to integrate
proven layouts and design solutions. An example of such a
layout pattern is the “3 – Column Layout” introduced by
Welie [13]. Practically the loose set of XUL fragments of
the presentation model is aggregated to XUL code. Finally
this XUL code is automatically rendered to a concrete user
interface implementation.
According to our model – based framework the
presentation model and layout model are logically
separated. In many model-based development approaches
these models are summarized to one model. However we
decided to split them up, since we believe that for each
model different kinds of patterns apply. On the one hand
patterns that describe a set of interaction elements
(presentation patterns) and on the other hand patterns that
describe the layout of the interaction elements (layout
patterns).
DISCUSSION AND OPEN QUESTIONS
In this paper we have introduced our model based
framework and have outlined the application of patterns
and the use of various tools. It was shown that patterns as a
medium for capturing and disseminating knowledge are
also an interesting tool in the domain of model – based
design. First tools and approaches for integrating patterns
into the development framework have been introduced.
However the work presented in this paper is of preliminary
nature, where the following questions remain open:
Existing patterns catalogues embody a substantial amount
of knowledge. How to make efficiently use of this
knowledge within the domain of model based design.

Different kinds of patterns exist as well as model. Which
patterns are useful for which model?
Which models would benefit most from the usage of
patterns?
Do patterns really speed up or improve the development of
interactive applications?
Is it feasible to create a universal pattern catalogue which
applies to users of different background pursuing different
goals?
What can the usage of patterns be validated?
REFERENCES
1. Alexander, C. The Timeless Way of Building. New

York: Oxford University Press, 1979.
2. Alexander C., Ishikawa S., Silverstein M., Jacobson M.,

Fiksdahl-King I., and Angel S., A Pattern Language:
Towns, Buildings, Construction. New York: Oxford
University Press, 1977.

3. Breedvelt, I., Paternò, F. & Severiins, C., “Reusable
Structures in Task Models”, Proceedings Design,
Specification, Verification of Interactive Systems '97,
Granada, June 1997, Springer Verlag, pp.251-265.

4. Gamma, E., Helm, R., Johnson, R., Vlissides, J.: Design
Patterns: Elements of Object-Oriented Software. Book
published by Addison-Wesley, 1995.

5. Forbrig, P., A. Dittmar, D. Reichart, and D. Sinnig,
“User-Centred Design and Abstract Prototypes”, in
Proceedigns of BIR 2003, (Berlin), pp. 132 - 145,
SHAKER, Sept. 2003.

6. Nielsen, J. ; Mack, R.: Usability Inspection Methods,
Book published by John Wiley & Sons, New York,
NY, 1994, ISBN 0-471-01877-5.

7. Paternó, F. Model-Based Design and Evaluation of
Interactive Applications, Springer, 2000.

8. Sinnig, D., H. Javahery, P. Forbrig, and A. Seffah,
“The Complicity of Model-Based Approaches and
Patterns for UI Engineering”, in Proceedings of BIR
2003, (Berlin), pp. 120 - 131, SHAKER, Sept. 2003.

9. Sinnig. D., Gaffar, A., Seffah, A., Forbrig, P., “Patterns
in Model-Based Engineering, Proceedings of CADUI
04, Portugal, 2004.

10. Vanderdonckt, J., Puerta, A.: Introduction to Computer-
Aided Design of User Interfaces, Proceedings of the
CADUI’99, Louvain-la-Neuve, Kluwer Academic
Publishers, 1999.

11. Vanderdonckt, J., Limbourg, Q., Florins, M., Deriving
the Navigational Structure of a User Interface, In
Proceedings of INTERACT 2003, Sept. 2003, Zuerich,
IOS Press, pp.455-462.

12. Velocity, Velocity, http://jakarta.apache.org/velocity/,
2003.

13. Welie, M., Patterns in Interaction Design,
http://www.welie.com, 2003.

14. XIML, eXtensible Interface Markup Language,
http://www.ximl.org, 2003.

15. XUL, XUL Planet, http://www.xulplanet.com/, 2003.

