
Generative Programming of Graphical User Interfaces

Max Schlee
Software Engineer, DFA

Thomson grass valley
Brunnenweg 9, D-64331 Weiterstadt (Germany)

+49 (0) 6150 104 0
Max.Schlee@thomson.net

ABSTRACT
Generative Programming (GP) is a new paradigm that
allows automatic creation of entire software family, using
the configuration of elementary and reusable components.
GP can be projected on different technologies, e.g. C++-
templates, JavaBeans, Aspect-Oriented Programming
(AOP), or Frame technology. This paper focuses on Frame
Technology, which aids the possible implementation and
completion of software components. The purpose of this
paper is to introduce the GP paradigm in the area of GUI
application generation. It also demonstrates how
automatically customized executable applications with GUI
parts can be generated from an abstract specification.

Keywords
ABA, AI, ANGIE, DSL, FODA, GP, JANUS, OO, OOA/D, Qt
, XML, UML

INTRODUCTION
The evaluation of such a technical projection was done
using an application as an example. For this purpose, a
family of image processing program was chosen, as it
provides enough variability, which makes it an excellent
base for generative programming. The purpose is to use the
GP paradigm in the field of GUI generation.

Unlike the well-known GUI generators such as JANUS, the
ANGIE-Based GUI generAtor (ABA) is domain-specific.
This means that the GUI part of the system that needs to be
generated also undergoes a feature modeling process. This
permits the creation of the systems containing only those
GUI parts and functions that were specified by the user,
both in their generated source code and in the executable
binary file. Furthermore, it is possible to use the
components created by the user as well as those created by
a software designer. Though ABA is a (feature) model-
based GUI generator, it does not require an extensive
knowledge of the base model because it is completely
projected on the GUI elements and the specificator is
connected to the generator. This is the reason why the
generator can be used intuitively and can be easily
understood [6].

INTRODUCTION OF GENERATIVE PROGRAMMING (GP)
“Most OOA/D methods focus on developing single
systems rather than families of systems. OO implementation

mechanisms for implementing intra-application variability
(e.g., dynamic polymorphism) are also used for inter-
application variability. This results in “fat” components or
frameworks ending up in “fat” application.”[3]

Generative Programming (GP) is a software engineering
paradigm based on modeling software system families.
When given a particular requirement specification, it can
use configuration knowledge to automatically manufacture
highly customized and optimized intermediate and end
products from elementary reusable implementation
components [2]. It does not compete with the existing
paradigms but supplements them. GP supports reusability
and adjustability much better than object-oriented
programming, frameworks and design patterns [5].

The purpose of software development automation is not
only to speed up the development process and reduce
development costs, but also to improve software quality
and error resistance. Besides, it helps reduce the cost of
maintenance and similar necessities [10].

Generative Domain Model
Generative Programming represents an approach permitting
the creation of whole product families. It consists of three
elements:
1. The left oval represents the methods used for the

family member specification. It is made for users and
computer experts. They use a specific language that
has specific features and terms. This language is
implemented as a domain-specific language (DSL).
The purpose of a DSL is to give the user the
opportunity to describe a particular system in a most
suitable way. This helps to “order” a particular system.
In order to do this, a text, a form dialog, or a graphical-
interactive environment can be used [7].

2. The arrow represents the configuration generator. The
configuration generator automates the product
assembly. It accepts a DSL specification and analyses
it. Then, if necessary, it carries out a buildability check
and assembles a software product from the
implementation components [6].

3. The right oval describes the world of the software
developer. It contains developed elementary
components the system can be assembled from. They

must have maximum combinability with minimum
redundancy. The use of a feature diagram which
graphically represents the elementary components in
the form of a tree-like structure is helpful.

Figure 1. Generative domain model

The GP principles assume that the members of a system
family can be generated based on the common model of
this system family, the generative domain model [10].
The modeling of software system families allows the
production of a large number of system variants based on
specific requirements. Most of this process can be
automated, which significantly reduces the development
time and cost as well as improves the software quality [6].

Feature Models
 “OO technology does not support reuse and
configurability in an effective way. One of weaknesses of
current OO Analysis and Design (OOA/D) is the
inadequate support for variability modelling Feature
modelling allows capturing the variability of domain
concepts. Concrete concept instances can then be
synthesized from abstract specification” [3]

“Current OO notations do not support variability
modelling in an implementationindependent way, e.g., the
moment you draw a UML class diagram, you have to
decide whether to use inheritance, aggregation, class
parametrisation, or some other implementation mechanism
to represent a given variation point” [3]

Feature modeling is the central activity of domain
engineering. It was introduced by the Feature-Oriented
Domain Analysis (FODA). Feature mo deling is the process
of analyzing and modeling of common and variable features
of concepts and their interdependencies, as well as
describing their arrangement in a coherent model, the so-
called feature model. Feature models serve as
documentation help.
With feature models, common and variable features within
a system family can be modeled. The main component of
the feature models are features. Apart from the name, a
large amount of additional information can belong to a
feature. This additional information comes mostly in the
form of tables, lists, or free text. It can also be documented
in diagrams or with the help of a suitable tool, for example,
the feature model editor AmiEddi[12]. Feature diagrams
with this additional information make up a feature model.

Figure 2. Example for a feature diagram

An example of a feature diagram is shown in a Figure 2. It
describes a part of a dialog window. Its root represents the
dialog concept. The other nodes of the features are:

- Mandatory features: Every dialog window has the
common buttons.

- Alternative features: A dialog window may support
either English or German languages.

- Or-features: A dialog window may have an Ok-
Button, a Cancel-Button, or both.

Optional feature: A dialog window may or may not have a
Help-Button.

Dialog-based graphical-interactive DSL
The use of a dialog-based graphical-interactive DSL permits
the user to automate the whole specification development
process. It is no longer necessary to see the logic or the
declarations in the specifications. The important part is that
the user needs no knowledge of the language used in the
specification (e.g. XML). GUI elements are easier for the
human perception than text specifications. When editing a
text specification, it is highly possible to make mistakes,
such as typing errors. Besides, the semantic rules can be
violated because the user has to create and run the logic of
the system that is being created in his head, which is
absolutely impossible if he has to create complex systems.
The introduction of a dialog-based graphical-interactive
DSL makes it easier for the user and takes over this task. It
is in charge of both dependencies appearing in the system
and invalid input. The generator is becoming more and more
user-friendly, the user can easily learn how to use it by
trying out the available options. The user can not do
anything wrong, as the system accompanies him at every
step assuring an error-free creation of a specification that
does not need to be verified by the generator. The
generator can be used intuitively and is easy to understand.
The whole process of the specification creation runs in the
background, visible for the user.

When creating a dialog-based graphical-interactive DSL, it
is necessary to transform the feature model into GUI
elements. This transformation has the advantage that the
user does not need an advanced knowledge of the feature
models used in the DSL. The transformation of the DSL
must meet the following criteria:

The mandatory features do not appear in the dialog because
they are available anyway. If such a feature does appear in
the dialog, then it appears only as a group boxes title.
The logic of the optional features is completely covered by
the checkboxes. An additional logic verification is
unnecessary.
The Radio buttons are suitable for the group of alternative
features. In this case, an additional logic verification is also
unnecessary because the logic coincides with the widgets
(RadioButtons).
A group of or-features can be represented with the help of
check box. In this case, an additional verification is
necessary because the user must make sure that at least one
feature is selected. Or, if the superior feature is an optional
feature, the user is not allowed to deactivate it, e.g. if the
user does not select one of its sub-features that are
gathered in an or-group).

FRAME TECHNOLOGY
Frame technology is a new generator technology suited for
use with the generative paradigms like generative
programming (GP), MDA and others. Frame technology
deals with the concept of frames and slots. In 1974, Marvin
Minsky’s article “A Framework for Knowledge
Presentation” [9] was published in the book “The
Psychology of Computer Vision” (ed. Patrick Winston) [7].
The frame/slot approach originated in Artificial Intelligence
(AI) and was then introduced to the area of picture
identification. Later, it turned out that it was also possible to
use this approach in the analysis and synthesis of
languages [10]. A frame defines set values, the so-called
slots. The slots of a frame can be filled with frame instances.
In this way, complex hierarchies can be created. The
purpose of the frames is to classify the scene descriptions
or texts based on their patterns [7]. This concept is very
powerful for the representation of text.
Frame technology most not be viewed as a paradigm of its
own. However, it can be used while working with the
generative paradigm [7]. This technology proved effective
and showed decent results in industrial use [1].
Frame technology is well suited for generative
programming. Feature mo dels [2] possess all necessary
information to build a frame hierarchy

ANGIE-BASED GUI-GENERATOR (ABA)
In ABA, the generative domain model is divided so that the
problem area is projected on the GUI of the specificator that
is connected to the GUI generator. Most of the
configuration knowledge such as the default settings,
dependent features, illegal feature combinations as well as
optimizations is taken over by the specificator. The

construction rules are carried out with the help of ANGIE
(developed by the Delta Software Technology GmbH)[4].
script functions. The solution area is projected on ANGIE
frames. The frame contents include such files as C++, make
files, XPM and Developer Studio workspace.
The generation process in ABA
The whole development process runs in the background
and is visible for the user. This is the reason why the
generator can be used intuitively and is easily
understandable. The base of the process is the ABA user
interface. It controls the whole generation process.

Figure 3. The generation process in ABA

One of the most important tasks of the ABA user interface
is the creation of the XML specification that is then
transferred to the ANGIE-part of the generator. There, the
system creates the source code according to the selected
specification. If the user wishes, the “Make” process is also
carried out. When it is completed, the ABA user interface
can start the created application.

The Process of Creating a XML-Specification
The main purpose of the specificator is to create a
specification of a system. In order to accomplish this, it is
necessary to remove all the variable parts from the feature
diagram.

Figure 4. The creation process of the XML-specification

The first part of the figure shows an example of a feature
model that undergoes a specialization process with the help

system. Alternately, the features marked with 1 are required
by the system.
This tree-like structure is described with XML. Based on
the XML presentation, the user can see the whole structure
of the system that is being generated and can imagine the
components the system consists of. Based on this
presentation, the user sees the non-existing components and
the corresponding parts of the system where these
components will not be situated.

Frame Creation
The user can see the tree-like structure created by the
specificator as a frame hierarchy tree. The logic of the
component construction rules is divided over the whole
frame hierarchy. Every frame is a world of its own. First,
the concept frame is created. It contains the knowledge of
the frames that only have to be “called to life”. With the
creation of the corresponding frame the purpose of the
specificator is fulfilled. The created frames create further
subordinate frames.
Parts of components appear in different parts of the code.
This is why every component includes parts from its father
node, as they contain the information about the correct
positioning of the component parts. First, the concept frame
is created. It receives the information about what
components are necessary from the XML specificator and
creates them. The created components receive further
information about the components they can contain from
the XML-specification. If required by the specification,
these components are created.

CONCLUSION
The feature diagram of the entire system of possible GUI
prototypes consist of over 200 features. The generator
permits the creation of a great number of prototype variants

17105 ∗≈V . In comparison with that, using the
Microsoft AppWizard

7106 ∗≈V prototype variants can
be created[11]. The frame borders are labelled in the
comments, in the source of the generated prototypes. The
frames can be updated in the generator after the editing of
source. This makes Roundtrip-Engineering possible and
allows to expand the generator when necessary.
During the MiniABA-Project was successfully tested the
option of generating GUI not as C++-Source but as
Resources. For further information, see [8].

ACKNOWLEDGMENTS
This research was carried out as part of the PoLITe project.
PoLITe stands for “The Development and Testing of the
Manual for the Software Product Line Implementation
Technologies”. This project was supported by the
Foundation for Innovation in Rhineland-Palatinate,

Germany. The development of the software lines is
documented at the Fraunhofer Institute for the Experimental
Software Engineering (IESE) and at the University of
Applied Sciences in Kaiserslatern (its branch in
Zweibrücken). I would like to thank all members of the
PoLITe project.

REFERENCES
1. Basset, P., Framing software reuse: lessons from the

real world, Yourdon Press, Prentice Hall, 1997.
2. Czarnecki, K., Eisenecker, U.W., Generative

Programming. Methods, Tools, and Applications,
Addison-Wesley, 2000, see http://www.generative-
programming.org .

3. Czarnecki, K., Eisenecker, U.W., Synthesizing Objects,
An Extended Version of a Paper Presented at
ECOOP’99 , 1999.

4. Delta Software Technology GmbH, Angie Online Help,
provided with ANGIE, version 2.1.2002 see
http://angie.d-s-t-g.com .

5. Eisenecker, U.W., Czarnecki, K., Generative
Programmierung: wie man Komponenten baut und
nutzt, In: iX 2/1999, S. 126-132.

6. Eisenecker, U.W., Henss, M., Lang, M., Schlee, M.,
Generative Programmierung, Slides, Net.ObjectDays
2002.

7. Eisenecker, U.W., Schilling, R., Generative
Programmierung mit einem Frameprozessor, In: iX
10/2002, S. 114-121.

8. Emrich, M., Eisenecker, U.W., Endler, Ch., Schlee, M.,
Emerging Product Line Implementation Technologies:
C++, Frames, and Generating Graphical User
Interfaces, not published jet see www.polite-project.org.

9. Minsky, M., A Framework for Representing Knowledge,
Massachusetts Institute of Technology, A.I. Laboratory,
Artificial Intelligence Memo No. 306, June 1974,
ftp://publications.ai.mit.edu/ai-publications/0-499/AIM-
306.ps.

10. Schilling, R., Generative Programming – Von der
Theorie zur Praxis, Delta Software Technology GmbH,
2001, see www.delta-software-technology.com.

11. Schlee, M., Generative Programming of Graphical
User Interfaces, Diploma Thesis, University of Applied
Sciences of Kaiserslautern, 2002

12. Selbig, M., A Feature Diagram-Editor – Analysis,
Design and Implementation of its Core Functionality,
Diploma thesis, University of Applied Sciences
Kaiserslautern, Zweibrücken 2001.

